射频指标及测试方法

合集下载

76ghz车辆无线电设备射频指标技术要求及测试方法

76ghz车辆无线电设备射频指标技术要求及测试方法

76ghz车辆无线电设备射频指标技术要求及测试方法《76ghz车辆无线电设备射频指标技术要求及测试方法》一、引言在当今高科技发展的时代,车辆无线电设备的射频指标技术要求及测试方法越来越受到重视。

射频(Radio Frequency)技术是指在无线通信中传输信号所采用的一种技术,其在车辆通讯系统中的应用日益广泛。

本篇文章将围绕76ghz车辆无线电设备的射频指标技术要求及测试方法展开全面的探讨,深入分析其原理、应用和测试方法。

二、理论基础 1. 76ghz车辆无线电设备的射频技术概述 76ghz车辆无线电设备是指在车辆通讯系统中使用的无线电设备,其工作频率为76GHz。

射频技术在车联网、智能交通等领域发挥着重要作用,而76ghz频段的射频技术因其高频、大带宽等特点而备受关注。

1.射频指标技术要求在车辆无线电设备的设计和生产中,需要满足一定的射频指标技术要求,包括但不限于发射功率、频偏、带宽、调制度等。

这些技术要求对于保证设备在复杂环境下的稳定工作至关重要。

2.测试方法为了验证车辆无线电设备是否满足射频指标技术要求,需要进行一系列的测试。

常见的测试方法包括功率测试、频谱测试、调制度测试、接收灵敏度测试等。

这些测试方法可以全面客观地评估设备的射频性能。

三、技术要求及测试方法详解 1. 发射功率发射功率是衡量车辆无线电设备发射信号强度的重要指标,其测试方法主要包括功率分布测试和功率稳定性测试。

这两项测试可以评估设备的发射功率是否稳定、符合要求。

1.频偏频偏是指设备发射频率与标准频率之间的偏差,其测试方法主要包括频谱测试和频率精度测试。

通过这些测试方法可以评估设备的频率稳定性和精度。

2.带宽带宽是指设备发射信号的频率范围,其测试方法主要包括信号调制宽度测试和频谱带宽测试。

这些测试方法可以评估设备发射信号的带宽是否符合要求。

3.调制度调制度是指设备发射信号的调制深度,其测试方法主要包括调制度饱和度测试和调制度线性度测试。

射频测量指标参数

射频测量指标参数

射频指标1)频率误差定义:发射机的频率误差是指测得的实际频率与理论期望的频率之差。

它是通过测量手机的I/Q信号并通过相位误差做线性回归,计算该回归线的斜率即可得到频率误差。

频率误差是唯一要求在衰落条件下也要进行测试的发射机指标。

测试目的:通过测量发射信号的频率误差可以检验发射机调制信号的质量和频率稳定度。

频率误差小,则表示频率合成器能很快地切换频率,并且产生出来的信号足够稳定。

只有信号频率稳定,手机才能与基站保持同步。

若频率稳定达不到要求(±0.1ppm),手机将出现信号弱甚至无信号的故障,若基准频率调节范围不够,还会出现在某一地方可以通话但在另一地方不能正常通话的故障。

条件参数: GSM频段选1、62、124三个信道,功率级别选最大LEVEL5;DCS频段选512、698、885三个信道,功率级别选最大LEVEL0进行测试。

GSM频段的频率误差范围为+90HZ ——-90HZ,频率误差小于40HZ时为最好,大于40HZ小于60HZ时为良好,大于60HZ 小于90HZ时为一般,大于90HZ时为不合格;DCS频段的频率误差范围为+180HZ——-180HZ,频率误差小于80HZ时为最好,大于80HZ小于100HZ时为良好,大于100HZ小于180HZ时为一般,大于180HZ时为不合格。

2)相位误差定义:发射机的相位误差是指测得的实际相位与理论期望的相位之差。

理论上的相位轨迹可根据一个已知的伪随机比特流通过0.3 GMSK脉冲成形滤波器得到。

相位轨迹可看作与载波相位相比较的相位变化曲线。

连续的1将引起连续的90度相位的递减,而连续的0将引起连续的90度相位的递增。

峰值相位误差表示的是单个抽样点相位误差中最恶略的情况,而均方根误差表示的是所有点相位误差的恶略程度,是一个整体性的衡量。

测试目的:通过测试相位误差了解手机发射通路的信号调制准确度及其噪声特性。

可以看出调制器是否正常工作,功率放大器是否产生失真,相位误差的大小显示了I、Q数位类比转换器和高斯滤波器性能的好坏。

Wi-Fi射频测试技术

Wi-Fi射频测试技术
FHSS技术采用的方式较为简单,这也限制了它所能获得的最大 传输速度不能大于2Mbps,这个限制主要是受FCC规定的子频道的 划分不得小于1MHz。这个限制使得FHSS必须在2.4G整个频段内 经常性跳频,带来了大量的跳频上的开销。
OFDM(正交频分复用)
正交频分复用技术OFDM是一种多载波发射技术,它将可用频谱划分为 许多载波,每一个载波都用低速率数据流进行调制。它获取高数据传输率的 诀窍就是,把高速数据信息分开为几个交替的、并行的BIT流,分别调制到 多个分离的子载频上,从而使信道频谱被分到几个独立的、非选择的频率子 信道上,在AP与无线网卡之间进行传送,实现高频谱利用率。
MCS
空间流
调制方式
0
1
CCK
1
1
CCK
2
1
PBCC
3
1
PBCC
4
1
OFDM
5
1
OFDM
6
1
OFDM
7
1
OFDM
8
1
OFDM
9
1
OFDM
10
1
OFDM
11
1
OFDM
编码率
传输速率 5.5 11 22 33 6 9 12 18 24 36 48 54
备注 b/g b/g b/g b/g g g g g g g g g
定义了推荐方法和公用接入点协议,使得接入点之间能够交换需要的信息,以支持分 布式服务系统,保证不同生产厂商的接入点的互联性,例如支持漫游。
2003年推出,工作在2.4GHz ISM频段,组合了802.11b和802.11a标准的优点,在兼容 802.11b标准的同时,采用OFDM调制方式,速率可高达54Mbps。

射频指标的测试方法

射频指标的测试方法

射频指标的测试方法射频(Radio Frequency,RF)指标的测试方法是评估无线通信设备性能的重要手段之一,包括信号强度、信噪比、频谱带宽、频率误差、相位噪声等指标。

下面将详细介绍射频指标的测试方法。

1.信号强度测试:信号强度是衡量射频通信质量的重要指标之一、测试方法包括测量信号接收功率和发射功率。

接收功率测试可以使用光谱分析仪或功率计等仪器,将设备的天线连接到测试设备,并测量接收到的射频信号的功率。

发射功率测试可以使用功率计、天线分析仪或频谱分析仪等仪器,通过测量设备发射的射频信号功率来评估发射功率。

2.信噪比测试:信噪比是衡量射频通信系统性能的指标之一、测试方法包括测量信号功率和背景噪声功率。

信号功率可以通过功率计或频谱分析仪来测量,背景噪声功率可以通过无信号输入时的频谱或功率测量获得。

然后,计算信噪比等于信号功率减去背景噪声功率。

3.频谱带宽测试:频谱带宽是指射频信号频谱的宽度,用于评估通信信道的有效传输能力。

测试方法包括使用频谱分析仪测量射频信号的频谱,然后通过分析频谱曲线的宽度来确定频谱带宽。

4.频率误差测试:频率误差是指设备实际输出频率与理论频率之间的差值。

测试方法包括使用频谱分析仪或频率计等仪器,将设备的输出信号连接到测试设备,并测量输出信号的频率。

然后,与设备的理论频率进行比较,计算频率误差。

5.相位噪声测试:相位噪声是指射频信号相位的随机变化。

测试方法包括使用相位噪声测试仪或频谱分析仪等仪器,将设备的输出信号连接到测试设备,并测量输出信号的相位噪声。

常用的相位噪声度量单位为分贝/赫兹(dBc/Hz)。

除了上述常见的射频指标测试方法外,还有其他射频指标的测试方法,例如功率谱密度测试、穿透损耗测试、带内波动测试等。

测试方法的选择取决于需要评估的具体指标和设备特性。

在进行射频指标测试时,需要使用适当的测试设备和测试仪器,如频谱分析仪、功率计、天线分析仪等。

同时,测试环境的选择也很重要,应尽量减少外部干扰和背景噪声,以确保测试结果的准确性和可靠性。

射频导引头测试指标表

射频导引头测试指标表

射频导引头测试指标表射频导引头是一种用于无线通信中的设备,用于接收和发送无线信号。

为了确保导引头的性能和稳定性,需要进行一系列的测试,以验证其各项指标是否符合规定的要求。

一、测试指标及其意义1. 频率范围:指导引头能够接收和发送信号的频率范围。

这个指标决定了导引头可以使用的频段,以及其适用的通信制式。

2. 灵敏度:指导引头能够接收到的最弱信号强度。

灵敏度越高,导引头能够接收到的信号范围就越广,通信质量也就越好。

3. 带宽:指导引头能够支持的信号带宽范围。

带宽越宽,导引头能够传输的数据量就越大,通信速率也就越高。

4. 发射功率:指导引头发送信号时的输出功率。

发射功率越大,导引头的信号传输距离也就越远。

5. 调制方式:指导引头使用的调制方式,如频移键控(FSK)、相移键控(PSK)、正交幅度调制(QAM)等。

不同的调制方式适用于不同的通信场景和要求。

6. 误码率:指导引头在传输过程中产生的错误比特率。

误码率越低,说明导引头的信号传输质量越好。

7. 工作温度范围:指导引头能够正常工作的温度范围。

工作温度范围越宽,导引头能够适应的工作环境就越广。

8. 抗干扰能力:指导引头在复杂电磁环境下的工作稳定性。

抗干扰能力越强,导引头在干扰较大的环境中工作的可靠性就越高。

9. 供电电压:指导引头正常工作所需的电压范围。

供电电压范围越宽,导引头的适用性就越广。

10. 尺寸和重量:指导引头的外形尺寸和重量。

尺寸和重量适中的导引头更易于安装和携带。

二、测试方法及注意事项1. 频率范围可以通过频谱分析仪进行测试,测试时需要注意选择合适的分析仪和测试频段。

2. 灵敏度可以通过将不同强度的信号输入导引头,然后观察导引头的输出信号强度来测试。

3. 带宽可以通过信号发生器产生不同频率的信号,然后观察导引头的输出信号是否能够完整传输来测试。

4. 发射功率可以通过功率计进行测试,测试时需要注意选择合适的功率计和测试频段。

5. 调制方式可以通过观察导引头的输出信号波形来判断。

(完整版)射频指标测试介绍

(完整版)射频指标测试介绍

目录1GSM部分 (1)1.1常用频段介绍 (1)1.2发射(transmitter)指标 (2)1.2.1发射功率 (2)1.2.2发射频谱(Output RF spectrum<ORFS>) (4)1.2.2.1调制频谱 (4)1.2.2.2开关频谱 (5)1.2.3杂散(spurious emission) (5)1.2.4频率误差(Frequency Error) (6)1.2.5相位误差(Phase Error) (6)1.2.6功率时间模板(PVT) (7)1.2接收(receiver)指标 (8)1.2.1接收误码率(BER) (8)2 WCDMA (9)2.1常用频段介绍 (9)2.2发射(Transmitter)指标 (9)2.3接收(receiver)指标 (15)3 CDMA2000 (15)3.1常用频段介绍 (15)3.2发射(transmitter)指标 (16)3.3接收(receiver)指标 (19)4 TD-SCDMA部分 (20)4.1常用频段介绍 (20)4.2发射(transmitter)指标 (20)4.3接收指标(Receiver) (26)1GSM部分1.1常用频段介绍1.2发射(transmitter)指标1.2.1发射功率定义:发射机载波功率是指在一个突发脉冲的有用信息比特时间上内,基站传送到手机天线或收集及其天线发射的功率的平均值。

测量目的:测量发射机的载波输出功率是否符合GSM规范的指标。

如果发射功率在相应的级别达不到指标要求,会造成很难打出电话的毛病,即离基站近时容易打出而离基站远时打出困难,往往表现出发射时总是提示用户重拨号码。

如果发射功率在相应的级别超出指标的要求,则会造成邻道干扰。

测试方法:手机发射部分由发射信号形成电路、功率放大电路、功率控制电路三个单元组成。

GSM频段分为124个信道,功率级别为5----33dBm,即LEVEL5----LEVEL19共15个级别;DCS频段分为373个信道(512----885),功率级别为0----30dBm,即LEVEL0----LEVEL15共15个级别;每个信道有15个功率等级,测试时选上、中、下三个信道对每个功率等级进行测试,每个功率等级以2dBm增减。

射频指标及测试方法

射频指标及测试方法

射频指标及测试方法射频指标是指在射频电路设计和测试中用来描述电路性能的参数。

它们包括射频功率、频率、增益、带宽、噪声系数、相位噪声等指标。

下面将介绍几个常见的射频指标及其测试方法。

1.射频功率:射频功率是指射频信号在电路中传输或输出时的功率大小。

常用的射频功率单位有瓦特(W)、分贝毫瓦(dBm)等。

测试射频功率的方法主要有功率计和功率分配器。

-功率计是一种可以测量射频信号功率的仪器。

它通过接收射频信号并测量其功率大小,适用于不同功率级别的测量。

-功率分配器是一种可以将射频信号分配给多个测量点的设备。

它通常包含多个输出端口和一个输入端口,可以将输入信号按照一定的功率比例分配到各个输出端口上,用于同时测量多个信号的功率。

2.频率:频率是指射频信号的振荡频率。

在射频电路设计和测试中,往往需要准确测量射频信号的频率。

常用的测量方法有频谱仪和频率计。

-频谱仪是一种可以将射频信号的频谱显示出来的仪器。

它可以显示出信号的频率分布情况,包括主要的频率成分和谐波成分。

通过观察频谱仪上的显示,可以准确测量射频信号的频率。

-频率计是一种可以直接测量射频信号的频率的仪器。

它可以通过连接到射频电路上,直接读取射频信号的频率值。

3.增益:增益是指射频信号在电路中传输或放大时的信号增强的程度。

在射频电路设计和测试中,测量增益是非常重要的。

常用的测量方法有功率计和射频网络分析仪。

-功率计测量增益的方法是通过测量射频信号的输入功率和输出功率,计算出功率的增益。

-射频网络分析仪是一种可以测量射频电路的传输属性的仪器。

它可以通过测量射频电路的S参数(散射参数),计算出射频信号在电路中的增益。

4.带宽:带宽是指射频信号的频率范围。

在射频电路设计和测试中,测量带宽是评估电路性能的重要指标。

常用的测量方法有频谱仪和网络分析仪。

-频谱仪测量带宽的方法是通过观察频谱仪上的显示,找到射频信号的起始频率和终止频率,计算出频率范围,即为带宽。

-网络分析仪测量带宽的方法是通过测量射频电路的S参数,找到电路的3dB带宽,即为带宽。

射频测试规范

射频测试规范

扬州万事通通讯电子发展有限企业
一、目:
为确保待测试物品可靠性, 手机及相关产品符合国家.行业.企业要求.
测试手机射频指标符合要求要求.
二、适用范围:
适用万事通通讯电子发展有限企业试验室.
三、定义:
射频指标测试
四、测试步骤.
(1)、仪器连接如图一, 点测或耦合测试;
五、测试方法及测试条件:
1.首先由MS根据通常呼叫建立过程在一个绝对射频频道号(ARFCN)为60~65之间TCH信道上建立一个呼叫, 并将
该MS功率控制电平设置为其最大功率等级。

※8960与MS建立连接通常设置如节末附图。

2.连接完成后, 选择Power, 激活功率列表。

在每个频段上, 选择高中低三个信道, 从低到高选择多个功率等级进行功率测试, 统计测试数据。

GSM频段选1、
62、124 三个信道; DCS频段选512、698、885 三个信道。

对每个功率等级进行测试。

六、判定标准:
850/900/1800/1900MHz频段GSM射频性能测试标准
常温下耦合测试(背光亮)GSM850MHz频段射频性能测试标准
序号功率级测试项目单位测试标准及要求
1
5 功率dBm 29~36
2 灵敏度(ClassII RBER≤2%)dBm ≤-102
常温下耦合测试(背光亮)GSM900MHz频段射频性能测试标准
序号功率级测试项目单位测试标准及要求
1
5 功率电平dBm 29~36
2 灵敏度(ClassII RBER≤2%)dBm ≤-102。

射频指标及测试方法

射频指标及测试方法

CMS BU
17
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
上表中之值依以下原則修正: a)偏移载波600KHz以上到6MHz以下范围內之頻率,
其测量值最多可允许3個200KHz频宽之信号可 到-36 dBm,其200KHz频宽之中心频率为 200KHz的整数倍。 b)偏移载波6MHz以上之频率,其量测值最多可允 許12個200KHz频宽之信号可到-36 dBm,其 200KHz频宽之中心频率为200KHz的整数倍。 c)偏移载波600KHz以下,若上表之限制值低于36dBm时,可以-36dBm取代。此限制值於偏移 载波600KHz以上至1800KHz以下时,GSM900为51dBm,DCS1800為-56dBm。此限制值于偏移载 波1800KHz(含)以上时,GSM900为-46dBm, DCS1800为-51dBm。
CMS BU
5
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
全频及三温三压测试
2006-05-26
CMS BU
6
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
使用频率范围
2006-05-26
CMS BU
7
深圳中宇元一数码科技有限公司
2006-05-26
CMS BU
9
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
2006-05-26
CMS BU
10
深圳中宇元一数码科技有限公司 DCS1800 发射机功率之不同级別
A-MAX Technology(China) Ltd

60ghz频段无线电设备射频技术要求及测试方法

60ghz频段无线电设备射频技术要求及测试方法

60ghz频段无线电设备射频技术要求及测试方法一、射频技术要求1.瑞利准则:60GHz频段的传播特性与其他低频段频率不同,能够实现高速率和短距离的数据传输。

然而,由于瑞利准则的影响,60GHz频段的信号很容易受到障碍物和传播损耗的影响,因此必须有良好的空间规划和反射率。

2. 多径干扰管理:由于60GHz频段的多径干扰较严重,需要采用合适的技术手段进行多径干扰的管理,如波束成形(beamforming)和多用户MIMO(多输入多输出)等技术。

3.模拟前端技术:由于60GHz频段的波长较短,导致射频前端的损耗较大。

因此,需要采用高增益和低噪声的射频前端设计,以提高接收灵敏度和传输距离。

4.自适应调制与编码:考虑到60GHz频段容易受到信号衰落的影响,在射频技术上需要采用自适应调制与编码技术,以提高信号的容错性和可靠性。

二、测试方法1.信号质量测试:通过测量射频设备在60GHz频段的信号质量参数,如信噪比、信号衰减等,评估其性能。

可以使用频谱分析仪、信号源和功率计等设备进行测量。

2.数据传输性能测试:通过在实际环境下进行数据传输测试,评估60GHz频段无线电设备的传输速率、传输距离和传输可靠性等性能指标。

测试中可以使用特定应用程序或测试设备,并测量数据传输速率、传输延迟和误码率等参数。

3.多径干扰测试:通过在复杂的环境中进行多径干扰测试,评估60GHz频段无线电设备对多径干扰的抵抗能力。

可以使用多径信道仿真工具或特定的测试设备,进行多径干扰测试,并评估设备的传输质量和性能。

4.障碍物穿透测试:由于60GHz频段的信号容易受到障碍物的影响,测试时需要模拟不同类型的障碍物(如墙壁、家具等)对信号的衰减程度。

可以使用射频信号发生器、功率计和频谱分析仪等设备进行测试,并评估设备在不同障碍物条件下的传输性能和覆盖范围。

总结:60GHz频段的无线电设备在射频技术要求上需要考虑瑞利准则、多径干扰管理、模拟前端技术和自适应调制与编码等因素。

视频监控系统无线传输设备射频技术指标与测试

视频监控系统无线传输设备射频技术指标与测试

视频监控系统无线传输设备射频技术指标与测试1 范围本标准规定了工作在336MHz~344MHz或1785MHz~1805MHz频段视频监控系统无线传输设备的主要射频技术参数、限值要求和测试方法。

本标准适用于工作在336MHz~344MHz或1785MHz~1805MHz频段视频监控系统中的无线传输设备,包括基站、中继台和便携台等设备。

2 技术要求2.1 通用技术要求2.1.1 工作频率2.1.1.1 概述视频监控系统无线传输设备的用户应按照国家无线电管理部门的相关规定申请台站执照,并按照执照中指配的工作信道使用,不可随意更改工作信道。

2.1.1.2 336MHz~344MHz频段视频监控系统无线传输设备336MHz~344MHz频段视频监控系统无线传输设备的信道间隔为2MHz。

336MHz~344MHz频段视频监控系统无线传输设备的中心频率可由公式(1)得出: (1)f=N+2337⨯c式中:f——设备工作中心频率,单位为MHz;cN——整数,取值范围0~3。

2.1.1.3 1785MHz~1805MHz频段视频监控系统无线传输设备1785MHz~1805MHz频段视频监控系统无线设备可使用250kHz或者500kHz信道间隔。

基站和终端设备允许多信道合并使用,基站最大允许使用5MHz,终端类设备最大允许使用1MHz。

当信道间隔为250kHz时,其设备工作中心频率见公式(2):+=)f+(N.01785⨯125125. (2)c式中:f——设备工作中心频率,单位为MHz;cN——整数,取值范围1~80。

当信道间隔为500kHz时,其设备工作中心频率见公式(3):=)++f(N11785⨯5.0125. (3)c式中:f——设备工作中心频率,单位为MHz;cN——整数,取值范围1~40。

2.1.2 天线端口视频监控无线传输设备的天线端口分别开路、短路3min后,其射频性能不变。

视频监控无线传输设备天线端口阻抗为50 。

GSM射频性能指标及调试

GSM射频性能指标及调试

GSM射频性能指标及调试一、GSM射频性能指标1. 接收灵敏度(RX Sensitivity):接收灵敏度是指手机接收信号的最低能力。

该指标表示手机能正常接收信号的最低功率水平。

较高的接收灵敏度意味着手机可以在更远的距离内接收到信号。

2. 发射功率(Transmit Power):发射功率是指手机发送信号的功率水平。

该指标表示手机发送信号的强度。

较高的发射功率可以提高信号覆盖范围和质量。

3. 信号质量(Signal Quality):信号质量是指手机接收到的信号的质量。

主要包括误码率、信噪比、相位误差等指标。

较好的信号质量意味着较低的误码率,更好的语音和数据传输质量。

4. 信道质量(Channel Quality):信道质量是指网络中不同信道的质量。

主要包括信号强度、信噪比、多径衰落等指标。

较好的信道质量意味着更稳定的通信连接和更高的数据传输速率。

5. 射频覆盖(RF Coverage):射频覆盖是指网络信号在特定区域内的分布情况。

主要包括覆盖范围、覆盖强度等指标。

较好的射频覆盖意味着在特定区域内用户可以较为稳定地使用移动通信服务。

二、GSM射频性能调试1.优化基站布局:通过合理的基站布局,包括位置、天线高度和天线方向等因素,可以提高射频覆盖范围和质量。

2.调整天线参数:通过调整天线的传输功率、方向和倾角等参数,可以优化信号传输,提高覆盖范围和质量。

3.设置网络参数:通过调整网络中的相关参数,如功控参数、邻区参数等,可以提高网络的性能和覆盖。

4.测试设备:使用专业的测试设备,如功率分析仪、信号发生器等,进行精确的信号测试和分析。

5.故障排除:及时对出现的信号问题和故障进行排除和修复,提高网络的稳定性和可靠性。

针对以上调试方法,需要具备一定的专业知识和技能。

同时,也需要不断学习和了解最新的射频调试技术和设备,以适应移动通信技术的发展。

总结起来,GSM射频性能指标的调试和优化是确保通信质量的关键。

通过合理的基站布局、调整天线参数、设置网络参数、使用专业测试设备和故障排除等方法,可以提高GSM网络的覆盖范围、信号质量和通信性能,满足人们对移动通信的需求。

射频各项测试指标

射频各项测试指标

双频段GSM/DCS移动电话射频指标分析2003-7-14[摘要]本文对GSM移动电话的射频指标进行了分析,并讨论了改进办法。

其中一些测试及提高射频指标的方法是从实践经验中总结出来的,有一定的参考价值。

第一部分对各射频指标作了简要介绍。

第二部分介绍了射频指标的测试方法。

第三部分介绍了一些提高射频指标的设计和改进方法。

1 射频(RF)指标的定义和要求1.1 接收灵敏度(Rx sensitivity)(1)定义接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。

衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。

这里只介绍用残余误比特率(RBER)来测量接收灵敏度。

残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。

(2)技术要求●对于GSM900MHz频段接收灵敏度要求:当RF输入电平为-102dBm(分贝)时,RBER不超过2%。

测量时可测试实际灵敏度指标。

根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09~-l07dBm,则接收灵敏度为优;若RF输入电平为-l07~l05dBm,则接收灵敏度为良好;若RF输入电平为-105~-l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。

●对于DCSl800MHz频段接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。

测量时可测试实际灵敏度指标。

根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l08~-105dBm,则接收灵敏度为优;若RF输入电平为-105~ -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03~ -100dBm,则接收灵敏度为一般;若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。

1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS(1)定义测量发射信号的频率和相位误差是检验发信机调制信号的质量。

射频指标测试介绍

射频指标测试介绍

射频指标测试介绍
1.发射功率测试:此测试用于测量射频发送器的输出功率。

它可以确
定发送器是否能够产生足够的功率来传输信号,并且可以评估发送器的功
率调制性能。

2.接收灵敏度测试:此测试用于测量接收器的输入灵敏度。

它可以确
定接收器能够在低信号强度环境下正确接收和解调信号的能力。

接收灵敏
度测试也可以检测和识别接收机中的任何感知性能问题。

3.频率响应测试:此测试用于测量电路对不同频率信号的响应情况。

它可以确定电路的传输带宽和谐振频率,以及其对不同频率信号的衰减和
失真情况。

4.相位噪声测试:此测试用于测量信号生成器或接收器的相位噪声水平。

它可以评估设备的时钟稳定性,并确定设备对相位噪声的敏感性。

5.频谱分析测试:此测试用于测量信号的功率分布和频率分量。

它可
以分析信号的频谱特性,识别不同频率成分的信号干扰,并检测频率偏移
和固有噪声等问题。

7.动态范围测试:此测试用于测量设备的最小可测量信号和最大可测
量信号的范围。

它可以判断设备对弱信号和强信号的处理能力,评估设备
的动态范围性能。

在实际应用中,射频指标测试主要用于电信、无线通信、广播电视、
雷达、航空航天等领域,用于评估和提升射频设备和系统的性能和可靠性。

射频指标测试结果可以用于优化射频电路和系统设计、提高通信质量和传
输速率、优化系统抗干扰能力等。

总之,射频指标测试是一种重要的射频设备和系统性能评估方法,通过测量和分析射频信号的传输特性、幅度、频率、谐振、带宽等指标,可以评估设备和系统的质量和性能,从而优化设计和提升性能。

常用射频指标测试大纲

常用射频指标测试大纲

常用射频指标测试大纲射频指标测试是对射频电路或系统进行性能评估和验证的关键步骤之一、本文将介绍一个常用的射频指标测试大纲,以帮助读者了解射频指标测试的一般流程和要点。

一、测试目的和背景(约100字)在这一部分,需要明确测试的目的和背景。

例如,测试电路或系统的发射功率、接收灵敏度、频率稳定性等性能指标,以确保其满足设计或规范要求。

同时,需要介绍相关的射频电路和系统的基本原理和特点。

二、测试设备和测试环境(约200字)这一部分需要列出所需的测试设备和测试环境。

例如,测试设备可以包括信号源、功率计、频谱分析仪、示波器等。

测试环境可以包括射频屏蔽室、信号源控制软件等。

同时,需要说明测试设备的特点、性能和使用方法。

三、测试流程和步骤(约500字)在这一部分,需要详细介绍测试的具体流程和步骤。

例如,对于发射功率的测试,可以包括以下步骤:1.准备测试设备和测试环境,确保其正常工作和校准。

2.设置测试信号源的频率和幅度,并连接至待测电路或系统。

3.使用功率计或频谱分析仪测量发射功率,并记录数据。

4.分析和比较测量结果与设计或规范要求,评估性能是否满足要求。

5.如有需要,可进行进一步的优化和调整,再次进行测试。

四、测试数据的处理和分析(约200字)在这一部分,需要介绍测试数据的处理和分析方法。

例如,可以使用统计方法对多次重复测试的数据进行平均和标准差计算,以提高测试结果的可靠性。

同时,可以使用图表、图形等方式展示和比较测试结果,以便更直观地了解性能指标的变化和趋势。

五、测试结果的评估和总结(约200字)在这一部分,需要对测试结果进行评估和总结。

例如,可以根据测试结果判断性能指标是否满足设计或规范要求,并给出相应的结论。

同时,可以指出存在的问题和改进的方向,以提高性能和可靠性。

六、测试安全和质量控制(约100字)在这一部分,需要强调测试过程中的安全性和质量控制。

例如,需要确保测试过程中的电源和信号源的稳定和可靠性,避免对待测电路或系统的损坏。

射频各项测试指标

射频各项测试指标

射频各项测试指标射频(Radio Frequency,简称RF)是指在无线通信、遥感、雷达等领域内,将电能转换为电磁波进行无线传输和接收的一种技术。

射频技术在现代通信领域中应用广泛,所以对射频性能的测试和评估至关重要。

下面将介绍一些射频测试中的重要指标:1. 带宽(Bandwidth):带宽是指信号通过系统或设备时所能传送的最高频率范围。

频率越高,传输的信息量就越大。

带宽的单位通常为赫兹(Hz),常见的射频带宽有10 MHz、20 MHz、40 MHz等。

2. 中心频率(Center Frequency):中心频率是指系统或设备工作的主导频率。

在射频通信中,根据具体的通信需求,可以选择不同的中心频率来传送信号。

3. 信号功率(Signal Power):信号功率是指射频信号的强度,单位为分贝毫瓦(dBm)。

信号功率的大小可以影响射频传输的距离以及信号的质量。

4. 敏感度(Sensitivity):敏感度是指接收器能够识别和接收的最小射频信号强度。

敏感度越高,接收器就能够接收到较弱的信号,从而提高通信质量和距离。

5. 动态范围(Dynamic Range):动态范围是指接收器能够同时识别和接收的最大和最小射频信号强度之间的范围。

动态范围越大,接收器在接收强信号时仍能保持高灵敏度。

6. 带内泄漏(In-Band Leakage):带内泄漏是指在接收机输出频谱范围内的其他信号干扰。

带内泄漏较大会导致接收到的信号质量下降。

7. 反射损耗(Return Loss):反射损耗是指由于不完美的匹配而产生的信号反射所引起的能量损耗。

较高的反射损耗表示较好的匹配,能够减少信号的干扰和损耗。

8. 杂散(Spurious):杂散是指在希望频带之外的其他频率范围内的无用信号或噪声。

杂散越小,接收到的信号质量越好。

9. 相位噪声(Phase Noise):相位噪声是指射频信号相位的随机波动,通常以分贝/赫兹(dBc/Hz)为单位。

GSM手机射频指标及测试

GSM手机射频指标及测试

GSM手机射频指标及测试GSM(全球系统移动通信)手机是一种移动通信技术标准,它使用数字的、无线的通信方式,能够在全球范围内进行通信。

在实际应用中,GSM手机需要满足一定的射频指标,同时需要进行相应的测试来保证其正常运行。

本文将详细介绍GSM手机的射频指标以及相关测试。

GSM手机的射频指标包括发送功率、接收灵敏度、频谱纯净度、误码率等。

首先是发送功率,它指的是GSM手机在通话时发射的电功率。

根据GSM标准,GSM手机的最大发送功率应不超过2瓦,并且根据不同的环境需求可以进行相应的调整。

发送功率的测量主要通过功率传感器和功率计等设备进行。

接收灵敏度是指GSM手机在接收信号时所能接收到的最小电磁信号强度。

较高的接收灵敏度表明GSM手机可以在弱信号环境下保持通话质量,这对于用户在较远距离或信号不佳的地方使用手机非常重要。

接收灵敏度的测试主要依靠网路分析仪等专业仪器进行。

频谱纯净度是指GSM手机在发射信号时所产生的杂散频率、谐波等对其他无线设备造成的干扰程度。

频谱纯净度的测试是通过频谱分析仪等设备进行的,主要目的是确保GSM手机的发射信号不会对其他设备造成干扰,同时保证通信的稳定性。

误码率是指GSM手机在通信过程中所产生的误码比率。

误码率反映了GSM手机通话质量的稳定性,通常用10的负次方来表示。

误码率的测试主要使用误码率仪等设备进行,它们通过对接收到的信号进行分析,可以精确测量误码率。

为了确保GSM手机符合射频指标,需要进行一系列的测试。

这些测试主要包括发射功率、接收灵敏度、频谱纯净度、误码率等方面。

测试过程中需要使用到多种专业仪器,如功率传感器、功率计、网路分析仪、频谱分析仪、误码率仪等。

同时,测试应该覆盖不同的频率、功率、通话质量等条件。

根据测试结果,可以对GSM手机的射频性能进行评估,并根据需要进行相应的调整和改进。

总而言之,GSM手机的射频指标及测试是保证手机正常工作的重要环节。

通过对发送功率、接收灵敏度、频谱纯净度、误码率等指标进行测试,可以评估手机的性能,并依据测试结果进行相应的调整和改进。

射频部分的测试项目及指标

射频部分的测试项目及指标

PHS 生产交接的内容提要(讲座部分)(注:测试线上的操作要点或内容提要遗漏处在本周完成后再形成书面报告)一.射频部分收发信机的测试项目及指标发射部分:1)载频频率、载频误差及飘移:仅测量载频误差,要求值为+/-3PPM2)调制精度(RMS及峰值矢量误差、幅度及相位误差,初始偏移):调制精度仅测量RMS及峰值矢量误差,即EVM,要求值为6%---7%。

幅度及相位误差在测试线上为提高测量速度不测,一般EVM符合要求,幅度及相位误差也差不多,其具体要求为,幅度误差,3%;相位误差,4DEG(度)。

3)发射功率:PEAK POWER为10mW,标准为10mW4)发射功率之突发模板测试:在测试线上为提高测量速度不测,仅测发射功率即可。

一般没有实际意义。

但在R&D 时,该项要测试。

具体要求为,BURST POWER RAMP 要在TEMPLATE(模板)之内。

5)占用带宽(OBW):占用带宽平均为288KHZ。

标准为300KHZ6)邻道泄漏功率ACP:+/-600K失谐:200nW以下(标准为800nW及以下)+/-900K失谐:100nW以下(标准为250nW及以下)7)带内及带外的杂散辐射:带内(IN BAND):30nW ----300 nW (标准为250nW及以下)带外(OUT OF BAND):(标准为2.5uW及以下)8)天线焊接及测试:在CABLE 测试完毕,焊接RF 板上的RF CONNECTOR 至天线的传输线短接焊盘,并焊接天线或接上天线金属触片。

采用感应方式测试,主要测试发射功率POWER LEVEL及调制精度EVM。

测试要求接收部分:1)接收灵敏度或误码率测试:灵敏度或误码率条件为:TEST PATTERN: PN9TESTED OBJECT: PS-TCH在输入电平为15dBuV的前提下,BER 应小于或等于0.5%.二.射频模块及基带的调试及较正方法1)调制精度、发射功率的微调:H99: 调制精度的微调主要由SFR102(TRIMMER RES(可调电位器))来调整,但SFR102要与SFR101(TRIMMER RES)配合调整,因为在SFR101与SFR102的组合调整下方可调整到理想的调制精度及发射功率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发射信号的相位误差定义为:发射机发射信号的 相位与理论上最好信号的相位之差。理论上的相 位轨迹可根据一个己知的伪随机比特流通过GMSK 脉冲成形滤波器得到。相位误差是GSM中用来表 示调制精确度的参数之一。相位误差较大通常 表示发射机电路中的I/Q基带发生器、滤波器、 调制器或者放大器存在问题。
2006-05-26
2006-05-26
CMS BU
9
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
2006-05-26
CMS BU
10
深圳中宇元一数码科技有限公司 DCS1800 发射机功率之不同级別
A-MAX Technology(China) Ltd
2006-05-26
CMS BU
2006-05-26
CMS BU
12
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
2006-05-26
CMS BU
13
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
(*)GSM 900 话机
-4dBc,功率控制位准为16时 -2dBc,功率控制位准为17时 -1dBc,功率控制位准为18及19时 -4dBc,功率控制位准为11时 -2dBc,功率控制位准为12时 -1dBc,功率控制位准为13,14及15时 -30dBc或 -17dBm,选其中较大者 -30dBc或 -20dBm,选其中较大者
11
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
注意: 1.于相同频率所測量的兩个相邻的功率控 制位准的发射机输出功率的差异不可小于 0.5dB及不可大於3.5dB。 2.在正常及极限测试状况的任一组合,及 在每个功率控制位准测量下,其功率/时间 之关系,应如下图限制的范围內。
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
2006-05-26
CMS BU
8
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
功率
MS最大输出功率和最小输出功率控制水准,相应于它的级别,如下表 所示 (注:对于所有功率等级的MS,GSM900最小标准输出功率为 5dBm,DCS1800为0dBm,容许度:一般/±2,极限/±2.5。)
2006-05-26
CMS BU
31
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
3.相位误差有效值 若RMS phase error<2.5deg,则相位误差有效 值为优; 若2.5deg≤RMS phase error≤4deg,则相位误 差有效值为良好; 若4deg≤RMS phase error≤5deg,则相位误差 有效值为一般; 若RMS phase error>5deg,则这项指标为不合 格。
A-MAX Technology(China) Ltd
2006-05-26
CMS BU
21
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
注意: 1. 当GSM 900在指配频道时,话机发射的功率, 在935MHz到960MHz的频帶不超过-79dBm,在 925MHz到935MHz的频帶不超过-67dBm,除在 925MHz到960MHz的频帶中5个测量可达到36dBm是被允许的。 2. 当DCS 1800在指配频道时,话机发射的功率, 在1805MHz到1880MHz的频帶不超过-71dBm, 除在1805MHz到1880MHz的频帶中5个测量可达 到-36dBm是被允许的。
CMS BU
27
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
频率误差定义为考虑了调制和相位误差的影响以 后,发射信号的频率与该绝对射频频道号(ARFCH) 对应的标称频率之间的差。它通过相应误差做线 性回归,计算该回归线的斜率即可得到频率误差 (因为ω=θ/t)相位误差峰值是离该回归线最远 的值。频率误差表示频率合成器或锁相环的性能 不够好(例如,在两次发射信号之间频率切换时 合成器不能够很快的稳定下来)。在GSM系统 中,糟糕的频率误差可能使目标接收机不能锁定 发射信号,同时发射机也可能给其他用户造成干 扰。
2006-05-26 CMS BU 18
深圳中宇元一数码科技有限公司
A-MAX பைடு நூலகம்echnology(China) Ltd
2006-05-26
CMS BU
19
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
2006-05-26
CMS BU
20
深圳中宇元一数码科技有限公司
2006-05-26
CMS BU
3
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
电磁兼容测试
Electromagnetic Compatibility 电磁兼容 EMC = 电磁骚扰 EMI + 电磁抗扰EMS EMI: Electromagnetic Interference (电磁骚扰)
2006-05-26
CMS BU
15
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
频谱
2006-05-26
CMS BU
16
深圳中宇元一数码科技有限公司
调变频谱(Spectrum due to the modulation) A-MAX Technology(China) Ltd
2006-05-26
CMS BU
24
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
对于DCSl800MHz频段 接收灵敏度要求:当RF输入电平为-l00dBm, RBER不超过2%。测量时可测试实际灵敏度指 标。根据多款移动电话的测试结果来看:当RBER =2%时,若RF输入电平为一l08一 -105dBm,则 接收灵敏度为优;若RF输入电平为一105-- l03dBm,则接收灵敏度为良好;若RF输入电平 为-l03一 -100dBm,则接收灵敏度为一般;若RF 输入电平为>-l00 dBm,则接收灵敏度为不合 格。
2006-05-26
CMS BU
17
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
上表中之值依以下原則修正: a)偏移载波600KHz以上到6MHz以下范围內之頻率, 其测量值最多可允许3個200KHz频宽之信号可 到-36 dBm,其200KHz频宽之中心频率为 200KHz的整数倍。 b)偏移载波6MHz以上之频率,其量测值最多可允 許12個200KHz频宽之信号可到-36 dBm,其 200KHz频宽之中心频率为200KHz的整数倍。 c)偏移载波600KHz以下,若上表之限制值低于36dBm时,可以-36dBm取代。此限制值於偏移 载波600KHz以上至1800KHz以下时,GSM900为51dBm,DCS1800為-56dBm。此限制值于偏移载 波1800KHz(含)以上时,GSM900为-46dBm, DCS1800为-51dBm。
2006-05-26
CMS BU
2
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
软件
RR(无线资源管理)测试:初次化规程、寻呼规 程 、 切换规程、呼叫重建。 MM(移动性管理)测试:鉴权、加密、位置更新。 CM(通讯管理)测试:呼叫控制、呼叫业务管 理、短信息。
格。
2006-05-26
CMS BU
30
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
2.相位误差峰值Peak phase error 若Peak phase error<7deg,则相位误差峰值为 优; 若7deg≤Peak phase error≤l0deg,则相位误 差峰值为良好; 若10deg≤Peak phase error≤20deg则相位误差 峰值为一般; 若Peak phase error>20deg,则这项指标为不 合格。
2006-05-26
CMS BU
22
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
接收灵敏度
接收灵敏度是指收信机在满足一定的误码率 性能条件下收信机输入端需输入的最小信号电 平。衡量收信机误码性能主要有帧删除率 (FER)、残余误比特率(RBER)和误比特率(BER)三 个参数。(BER是收到的错误的比特数与总比特数 之比。RBER是当帧被删除时,只测量剩余帧的 BER。FER是在观察的时间段里被删除的帧占总 传送帧数的百分比.)
2006-05-26
CMS BU
25
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
频率误差、相位误差峰值、相位误差有效值
测量发射信号的频率和相位误差是检 验发信机调制信号的质量。
2006-05-26
CMS BU
26
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
2006-05-26
CMS BU
5
深圳中宇元一数码科技有限公司
A-MAX Technology(China) Ltd
全频及三温三压测试
2006-05-26
CMS BU
6
深圳中宇元一数码科技有限公司
相关文档
最新文档