Confinement- Deconfinement Phase Transition in Hot and Dense QCD at Large N_c
二维XY模型的BKT相变.doc
二维XY 模型的BKT 相变ZHENG WEI1. 二维XY 模型考察二维正方晶格上的XY 模型,其哈密顿量为:,i j ijH J S S其中 cos ,sin i i i q q S 是单位长度的二维经典自旋。
因此配分函数可以写为:,cos ,,2i Si j iijd Ze S K K J pp q q q b p下面我们来考察其高温和低温情况下关联函数的行为:在高温的情况下0K ,因此我们可以将配分函数中的指数按照K 来展开(高温展开):01exp cos cos ,!l i j i j ij l ij K K l q q q q由此我们来做路径积分。
我们已知:2122122313cos 0,21cos cos cos ,22d d pp p p q q q p q q q q q q q p可见只有首尾相连的项才有贡献。
于是在配分函数中,只有回路结构才会有贡献。
而对于关联函数 cos i j q q ,一定要连接i q 和j q 的项才不为零。
并且我们看到:22122221223131cos ,221cos cos cos ,24d K K d K K pp p p q q q p q q q q q q q p那么我们的关联函数一定有如下形式:其中从这里我们看到在高温的时候关联函数是指数衰减的。
并且温度越高,关联长度越小。
(这里我们忽略了两个问题,第一是因子!l ;第二是连接i q 和j q 的路劲并非唯一,需要对这个路径求和。
但是这个两个问题都不会影响关联函数的指数衰减的行为,最多是修正关联长度)。
这个高温下指数衰减的结论实际上对任意的自旋和任意的维度都成立。
下面考察低温的情况。
在低温时自旋涨落比较小,因此我们可以XY 模型连续化:221,,2S Z D e S K d r q q那么关联函数为:这里由于是高斯积分,因此累积量展开是严格的。
而我们知道在动量空间:2222111()(),()(),22d k S K K q q q q pk k k k k k 经过傅里叶变换我们就得到(其就是二维拉普拉斯算子的格林函数):因此我们就得到:由此可见在低温时,关联函数是代数衰减的。
高效液相色谱法常用英语词汇
高效液相色谱法词汇高效液相色谱法高效液相色谱法:high performance liquid chromatography,HPLC高速液相色谱法:high speed LC,HSLC高压液相色谱法:high pressure LC,HPLC高分辨液相色谱法:high resolution LC,HRLC液固吸附色谱法(液固色谱法):liquid-solid adsorption chromatography,LSC 液液色谱法:liquid-liquid chromatography,LLC正相:normal phase,NP反相:reversed phase,RP化学键合相色谱法:bonded phase chromatography,BPC十八烷基:octadecylselyl,ODS离子对色谱法:paired ion chromatography,PIC反相离子对色谱法:RPIC离子抑制色谱法:ion suppression chromatography,ISC离子色谱法:ion chromatography,IC手性色谱法:chiral chromatography,CC环糊精色谱法:cyclodextrin chromatography,CDC胶束色谱法:micellar chromatography,MC亲和色谱法:affinity chromatography,AC固定相:stationary phase化学键合相:chemically bonde phase封尾、封顶、遮盖:end capping手性固定相:chiral stationary phase,CSP恒组成溶剂洗脱:isocraic elution梯度洗脱:gradient elution紫外检测器:ultraviolet detector,UVD荧光检测器:fluorophotomeric detector,FD电化学检测器:ECD示差折光检测器:RID光电二极管检测器:photodiode array detector ,DAD三维光谱-波谱图:3D-spectrochromatogram蒸发光散射检测器:evaporative light scattering detector,ELSD安培检测器:ampere detector,AD高效毛细管电泳法:high performance capillary electrophoresis,HPCE淌度:mobility电泳:electrophoresis电渗:electroosmosis动力进样:hydrodynamic injection电动进样:electrokinetic injection毛细管区带电泳法:capillary zone electrophoresis,CZE胶束电动毛细管色谱:micellar electrokinetic capillary chromatography,MECC 毛细管凝胶电泳:capillary gel electrophoresis,CGE筛分:sieving。
药剂学英文名词解释
药剂学英文名词解释Pharmaceutics:药剂学,是研究药物制剂的基本理论、处方设计、制备工艺、质量控制和合理使用等内容的综合性应用技术科学。
Pharmacopoeia:药典,是一个国家记载药品标准、规格的法典,一般由国家药典委员会组织编纂、出版,并由政府颁布、执行,具有法律约束力。
Dosage form:药物剂型,是适合于疾病的诊断、治疗或预防的需要而制备的不同给药形式,简称剂型。
OTC:是over the counter的简称,意思是‘在柜台上可以买到的药物’,也就是指那些不需凭借执业医师或执业助理医师的处方,消费者可以自行购买和使用的药品。
pharmaceutical preparations:药物制剂,系指各种剂型中的具体药品。
介电常数:溶剂将相反电荷在溶液中分开的能力,它能反映溶剂分子的极性大小。
溶解度参数:同种分子间的内聚力,也是表示分子极性大小的一种量度。
Intrinsic solubility:特性溶解度,又称固有溶解度,药物不含任何杂质,在溶剂中不发生解离或缔合,也不发生相互作用所形成的饱和溶液的浓度,是药物的重要物理参数之一,尤其对新化合物而言更有意义。
Apparent solubility,表观溶解度,(或equilibrium solubility,平衡溶解度)药物的溶解度数值多为平衡溶解度或称表观溶解度,即在一定温度及压力下,在一定量溶剂中达饱和时溶剂的最大药量。
Cosolvency,潜溶,在混合溶剂中各溶剂在某一比例时,药物的溶解度比在各单纯溶剂中的溶解度大,且出现极大值,这种现象称为潜溶。
Hydrotropy:助溶,难溶性药物与加入的第三种物质在溶剂中形成可溶性络合物,复盐或缔合物等,以增加药物在溶剂中的溶解度。
Solubilization:增溶,某些难溶性药物在表面活性剂的作用下,在溶剂中溶解度增大并形成澄清溶液的过程。
具有增溶能力的表面活性剂称增溶剂,被增溶的物质称为增溶质。
妇科常用名词缩写
妇科常用名词缩写A androstenedione 雄烯二酮Ab antibody 抗体ACA anticardiolipin antibody 抗心磷脂抗体ACTH adrenocortieotropic hormone 促肾上腺皮质激素ADH antidiuretic hormone 抗利尿激素AFE amniotic fluid embolism 羊水栓塞AFP alpha fetoprotein 甲胎蛋白Ag antigen 抗原AID artificial insemination with donor''''''''s semen 供精者精液授精AD autoimmune disease 自身免疫病AIDS acquired immuno-deficiency syndrome 获得性免疫缺陷综合症(艾滋病)AIH artificial insemination with husband''''''''s semen 丈夫精液授精AKP alkline phosphatase 碱性磷酸酶AMPS acid mucopolysaccharide 酸性粘多糖AR autosome recessive 常染色体隐性遗传ARDS adult respiratory distress syndrome 成人呼吸窘迫综合症ART assisted remproductive technique 辅助生育技术ARV AIDS-related virus AIDS 相关病毒AS Arias-Stella reaction A-S 反应(阿-斯反应)A TP adenosine triphosphate 三磷酸腺苷BBT basal body temperature 基础体温BCG bacille Calmette-Guerin 卡介苗BFHR baseline fetal heart rate 胎心率基线BMR basal metabolic rate 基础代谢率BMD bone mineral density 骨密度BMI body mass index 体块指数BPD biparietal diameter 双顶径BSP bromsulphalein 磺溴酞钠(测肝功能)BV bacterial vaginosis 细菌性阴道病CAH Congenital adrenal hyperplasia 先天性肾上原皮质增生cAMP cyclic adenosine monophosphate 环磷酸腺苷CBG corticosteroid binding globulin 皮质甾类结合球蛋白CC clomiphene citrate 氯米酚(克罗米酚)CC choriocarcinoma 绒毛膜癌CCT chorionic corticotropin 绒毛膜促性腺激素CEA carcinoma embryonic antigen 癌胚抗原CEE conjugated equine estradiol 结合孕马雌激素CEE 3 cyclopentyl-17-ethinyl estradiol ether 炔雌醇-环戊醚CES cumulative embryo score 累积胚胎评分CF chemotactic factor 趋化因子CHM complete hydatidiform mole 完全性葡萄胎CIN cervical intraepithelial neoplasia 宫颈上皮内瘤样病变CIS carcinoma in situ 原位癌CMV eytomegalovirus 巨细胞病毒CPD cephalopelvic disproportion 头盆不称CR corona radiata 放射冠CRF corticotropin releasing factor 促肾上腺皮质激素释放因子CRH corticotropin releasing hormone 促肾上腺皮质素释放激素CRP c-reaction protein C-反应蛋白CSA cell surface antigen 细胞表面抗原CST contraction stress test 宫缩应激试验CT chlamydia trachomatis 沙眼衣原体CT chorionic thyrotropin 绒毛膜促甲状腺素CT computerized tomography 电子计算机X线断层照相术CVP central venous pressure 中心静脉压DC diagonal conjugate 对角径Del deletion 染色体缺失D&C dilatation and curettage 刮宫术DES diethylstilbestrol 己烯雌酚(乙菧酚)DHA dehydroepiandrosterone脱氢表雄酮DHAS dehydroepiandrosterone sulfate 硫酸脱氢表雄酮DHEA dehydro-epiandrosterone 去氧表雄酮DIFI direct intra-follicular insemination 直接卵泡内受精DIPI direct intra-peritoneal insemination 直接腹腔内受精DIC disseminated intravascular coagulation 弥漫性血管内凝血DNA deoxyribonucleic acid 脱氧核糖核酸DNase deoxyribonuclease 脱氧核糖核酸酶El estrone 雌酮E2 estradiol 雌二醇E3 estriol 雌三醇EC external conjugate 骶耻外径E/C E3/creatinine 雌三醇/肌酐ED early deceleration 早期减速EDC expected date of confinement 预产期EDRFs endothelinum-derived relaxing factor 血管内皮细胞舒张因子EE ethinyl estradiol 炔雌醇EI eosinophilic index 嗜伊红细胞指数EIA enzyme-immunoassay酶免疫分析EIN endometrial intraepithelial neoplasia 子宫内膜上皮内瘤样病变ELISA enzyme-linked immunosorbent assay 酶联免疫吸附试验EM estrogen receptor 子宫内膜异位症ER estrogen recepto 雌激素受体ERT estrogen replacement therapy 雌激素替代疗法ESR erythrocyte sedimentation rate 红细胞沉降率ET endothelin 内皮素ETFA early timed follicular aspiration 一侧卵巢早期抽吸FAD fetal activity acceleration determination 胎儿活动加速测定FDP fibrinogen degradation product 纤维蛋白原降解产物FECG fetal electrocardiography 胎儿心电图FHR fetal heart rate 胎心率FIGO Federation International of Gynecology and Obstetrics 国际妇产科协会FM fetal movement胎动FSH follicle stimulating hormone 卵泡刺激素FSH-RH follicle stimulating hormone releasing hormone 卵泡刺激素释放激素FTA-ABS fluorescent treponemal antibody absorption 荧光密螺旋体抗体吸收试验GFR glomerular filtration rate 肾小球滤过率GH growth hormone 生长激素GHRIH growth …… 生长激素释放抑制激素GIFT gamete intra-fallopian transfer 配子输卵管内移植GIUT gamete intra-uterine transfer 配子子宫内移植Gn-RH gonadotropin releasing hormone 促性腺激素释放激素Gn-RH-a gonadotropin releasing hormone agonist促性腺素释放激素激动剂Gn-SIF gonadotropin surge-inhibiting factor 促性腺激素峰抑制因子GTD gestational trophoblastic disease 妊娠滋养细胞疾病GTT estational trophoblastic tumor 妊娠滋养细胞肿瘤Gy grayunit 辐射吸收剂量单位,1Gy=100radsHAIR hemoagglutination inhibition reaction血凝抑制反应HA V hepatitis A virus 甲型肝炎病毒HBV hepatitis B virus 乙型肝炎病毒HBsAg hepatitis B antigen 乙型肝炎抗原HBc Ag hepatitis B core antigen 乙型肝炎核心抗原HBeAg hepatitis B e antigen 乙型肝炎核心相关抗原HBIG hepatitis B immunoglobulin 乙型肝炎免疫球蛋白HbsAg hepatitis B surface antigen 乙型肝炎表面抗原HCV hepatitis C virus 丙型肝炎病毒HDV hepatitis D virus 丁型肝炎病毒HEV hepatitis E virus 戊型肝炎病毒HCG human chorionic gonadotropin (人)绒毛膜促性腺激素HCT human chorionic thyrotropin (人)绒毛膜促甲状腺激素HDN hemolytic disease of newborn 新生儿溶血性疾病HELLP syndrome hemolytic anemia,elevated liver function and low platelet count syndrome 溶血,肝酶升高及血小板减少综合征(HELLP综合征)HGG human gammaglobulin (人)丙种球蛋白HGH human growth hormone (人)生长激素HIV human immunodeficiency virus (人)免疫缺陷病毒HLA human leukocyte antigen (人)白细胞抗原HM hydatidiform mole 葡萄胎HMG human menopausal gonadotropin (人)绝经期促性腺激素HPG human pituitary gonadotropin (人)垂体促性腺激素HPF high power field 高倍视野HPL human placental lactogen (人)胎盘生乳素HPV human papilloma virus 人乳头状瘤病毒HSAP heat stable alkaline phosphatase 耐热性碱性磷酸酶HSG hysterosalpingography 子宫输卵管造影HTLv human T lymphotrophic virus type (人)嗜T细胞病毒重型HSV herpes simplex virus 单纯疱疹病毒H-Y antigen histocompatibility Y antigen 组织相容性Y抗原i isochrmosm 等臂染色体IC intercristal diameter 髂嵴间径ICP intrahepatic eholestasis of pregnancy 妊娠肝内胆汁淤积症IFN interferon 干扰素Ig immunoglobulin免疫球蛋白IHM invasive hydatidiform mole 侵蚀性葡萄胎IL interleukin 白细胞介素inv inversion (染色体)倒位IP3 inositol triphosphate 肌醇三磷盐IRDS idiopathic respiratory distress syndrome 特发性呼吸窘迫综合征IS interspinal diameter 髂棘间径IT intertrochanteric diameter 粗隆间径IU iu international unit 国际单位IUD intrauterine device 宫内节育器IUI intra-uterine insemination 子宫腔内受精IUGR Intrauterine growth retardation 宫内发育迟缓IVF-ET in vitro fertilization and embryo transfer 体外受精与胚胎移植iv gtt intravenously guttae 静脉滴注LAC lupus anticoaulant 狼疮抗凝因子LAK lymphokine activated killer cell 淋巴因子激活的杀伤细胞LA V lymphadenopathy associated virus 淋巴腺病相关病毒LD late deceleration 晚期减速LDL low density lipoprotejn 低密度脂蛋白LD50 median lethal dose 半数致死量LDH lactin dehydrogenase 乳酸脱氢酶LGA large for gestational age 大于孕龄LGC large granular cell 大颗粒细胞LH luteinizing hormone 黄体生成激素LH-RH luteinizing hormone releasing hormone 黄体生成激素释放激素LIF leukemia inhibiting factor 白血病抑制因子LPD luteal phase defect 黄体期缺陷LMA left mento anterior颏左前LMP left mento posterior 颏左后last menstrual period末次月经日期LMT left mento transverse 颏左横LOA left occipito anterior 枕左前LOP left occipito posterior 枕左后LOT left occipito transverse 枕左横LRF luteinizing hormone releasing factor 黄体生成激素释放因子(即LH-RH) LSA left sacro anterior 骶左前LSP left sacro-posterior骶左后LST left sacro-transverse骶左横LScA left scapulo-anterior 肩左前LScP left scapulo-osterior 肩左后L/S lecithin/sphingomyelin 卵磷脂/鞘磷脂LUFS luteinized unruptured follicle syndrome 黄素化未破裂卵泡综合征MALT mucosa associated lynmphoid tissue 黏膜相关淋巴组织MAR mixed antiglopulin reaction 混合性抗球蛋白反应MHC major histocmpatible complex 组织相容性抗原mABP mean arterial blood pressure平均动脉压MI maturation index 成熟指数M.genitalium 抗生殖器支原体M.hominis 人型支原体MIS Mullerian inhibiting substance 米勒管抑制因子MSHRF melatonin stimulating hormone releasing factor 降黑素刺激激素释放因子mol mole 摩尔,"物质的量"单位mRNA messenger RNA信使核糖核酸mμg millimicrogram 毫微克McAb monoclonal antibody单克隆抗体MRI magnetic resonance imaging磁共振成相MSH melanocyte stimulating hormone 促黑素细胞激素NG 淋病双球菌NK natural killer cell 自然杀伤细胞nm nometer 毫微米NST on-stress test无应激试验OA TS oligo-atheno-terato-spermia 少、弱、畸精症OC oxytocin 催产素OCCC oocyte-corona-cumulus complex 卵-冠-丘复合物OHSS ovarian hyperstimulation syndrome 卵巢过度刺激综合征OMI ovarian maturation inhibitor 卵巢成熟抑制因子OCT llenge test 催产素激惹试验OT d tuberculin 旧结核菌素OD tical density difference吸光度差P progesterone 黄体酮、孕酮PA plasminogen activator 血纤维蛋白溶酶原活化素PAI plasminogen activatorinhibitor 纤维蛋白溶酶活化素抑制素PBI protein bound iodine 蛋白结合碘PCOS polycystic ovary syndrome 多囊卵巢综合征PCR polymerase chain reaction 聚合酶链反应PCWP pulmonary capillary wedge pressure 肺毛细血管楔压pg picogram 微微克PDGF pletelet-dericed growth factor 血小板生长因子PG prostaglandin 前列腺素PGF 前列腺素FPGE 前列腺素EPGI2 prostacyclin 前列环素PHM partial hydatidiform mole 部份性葡萄胎PID pelvic inflammatory disease 盆腔炎PIH pregnancy induced hypertension syndrome 妊娠高血压综合征prolact ininhibitory hormone 催乳激素抑制激素PIF prolactin inhibiting factor 泌乳素释放抑制因子PIGD preimplantation genetic diagnosis 着床前或种植前遗传学诊断PKC protein kinase C 蛋白激酶CPMP previous menstrual period 前次月经日期POMC pro-opio-melanto-cortin 前阿片降黑皮素PP14 pregnant protein 妊娠蛋白POP plasma oncotic pressure 血浆胶体渗透压PR progestogen receptor 孕激素受体PRL prolactin 催乳激素PROST pronuclei stage transfer 原核期移植PSβ1G pregnancy specific β1-glycoprotein 妊娠特异β1糖蛋白PSTT placental-site trophoblastic tumor 胎盘部位滋养细胞肿瘤PVP polyvinyl-pyrrolidone 聚乙烯吡咯烷酮PZD partial zona dissection 部分透明带解剖RAAS rennin-angiotension-aldosterone system 肾素-血管紧张素-醛固酮系统rad 拉德,辐射吸收剂量单位Rh rheus 猕(指人红细胞某种物质与猕红细胞相似)RIA radioimmunoassay放射免疫测定RMA right mento-anterior 颏右前RMP right mento-posterior 颏右后RMT right mento-transverse 颏右横RNA ribonucleic acid 核糖核酸ROA right occipito-anterior 枕右前Rob robertsonian traaslocation 罗伯逊移位ROP right occipito-posterior 枕右后ROT right occipito-transverse枕右横roll over test 翻身试验RPF renal plasma flow 肾血流量RPR 快速血浆反应素环状卡片试验,筛查梅毒的一种血清学试验RSA right sacro-anterior 骶右前RSP right sacro-posterior 骶右后RST right sacro-transverse 骶右横RscA right scapulo-anterior 肩右前RScP right scapulo-posterior 肩右后RU rat unit 大鼠单位SCJ squamo-columnar junction鳞柱交接部A/D systolic/diastolic 收缩压/舒张压SGA fetus small-for gestational age fetus 小于孕龄儿SGOT serum glutamic-oxaloacetic transaminase 血清谷草转氨酶SGPT serum glutamic-pyruvic transaminase 血清谷丙转氨酶(又称ALT) SHBG sex hormone binding globulin 性激素结合球蛋白SIFT sperm intra-fallopian transfer 精子输卵管内移植Sm-c somatomedin 促生长因子SRY sex determining region of Y Y性别决定区域SUZI subzonai insemination 透明带下授精SOD superoxide dismutase 超氧化物歧化酶STD sexually transmitted disease 性传播疾病T testosterone 睾酮t translocation (染色体)易位T3 triiodothyronine 三碘甲状腺原氨酸T4 thyroxine 甲状腺素TBG thyroxine-bindlng globulin 甲状腺素结合球蛋白TBPA thyroxin binding prealbumin 甲状腺激素结合前蛋白TDF testicular determining factor 睾丸决定因子TET tubal embryo transfer 胚胎输卵管内移植TGF-βtransforming growth factor β 转化生长因子TLX trphoblast ymphocyte cross-reactive antigen 滋养层淋巴细胞交叉反应抗原TeBG testoterone estrogen binding globulin 睾酮雌激素结合球蛋白TF transfer factor 转移因子TNF tumor necrosis factor 肿瘤坏死因子TO transverse outlct 出口横径TPHA treponema pallidum haemagglutination assay 梅毒螺旋体血凝试验TRH thyrotropin releasing hormone 促甲状腺素释放激素TRNA transfer RNA转运核糖核酸TSH thyroid stlmulating hormone 促甲状腺激素TVTI transvaginal intra-tubal insemination 经阴道输卵管授精TXA2 thromboxane A2 血栓素A2UA uterine aggregate 子宫凝集素UPA urease plasminogen activator 尿激酶纤维蛋白溶酶活素μg microgram 微克USR unheated serum reagm test 不加热血清反应素试验VDRL V enereal Disease Research Laboratory Test 性病研究实验室试验VD variable deceleratlon 变异减速VP vasopressin 加压素UU ureaplasma urealyticum 解脲支原体VSM vasculo-syncytial membrane 血管合体膜VIN vulvar intraepithelial neoplasia 外阴上皮内瘤样病变WHO world health organization 世界卫生组织XXGD XX pure gonadal dysgenesis XX单纯性性腺发育不良XYGD XY pure gonadal dysgenesis XY单纯性性腺发育不良ZIFT zygote intra-fallopian transfer 合子输卵管内移植ZP zona pellucida 透明带α2 α2-pregnancy-associated endometrial globulin α2妊娠相关内膜球蛋白β-End β-endorphin β-内诽肽β-LPT β-lipotropin β-促脂解激素。
丝氨酸衍生方法测hplc
丝氨酸衍生方法测hplc英文回答:HPLC (High Performance Liquid Chromatography) is a commonly used analytical technique for the separation and quantification of compounds in a mixture. When it comes to analyzing serine derivatives, there are several methods that can be employed for HPLC analysis.One method for the analysis of serine derivatives by HPLC involves the use of a reverse-phase column. In this method, the mobile phase is typically a mixture of water and organic solvent, such as acetonitrile or methanol. The composition of the mobile phase is optimized to achieve good separation of the serine derivatives. Additionally, the pH of the mobile phase can be adjusted to further improve the separation.Another method for the analysis of serine derivatives by HPLC is the pre-column derivatization technique. Thismethod involves the derivatization of the serinederivatives with a suitable reagent prior to injection onto the HPLC column. The derivatization reaction typically involves the formation of a fluorescent or UV-absorbing derivative, which enhances the detection sensitivity of the serine derivatives.In both methods, it is important to optimize the HPLC conditions, including the composition of the mobile phase, the flow rate, the column temperature, and the detection wavelength. Additionally, the use of a suitable internal standard can aid in the quantification of the serine derivatives.Overall, there are multiple methods available for the HPLC analysis of serine derivatives, and the choice of method depends on the specific requirements of the analysis, such as sensitivity, selectivity, and ease of use.中文回答:HPLC(高效液相色谱)是一种常用的分析技术,用于混合物中化合物的分离和定量。
读书笔记-聚乙二醇接枝诱导水凝胶的薄片层-胶束转变
读书笔记-聚乙二醇接枝诱导水凝胶的薄片层-胶束转变聚乙二醇接枝诱导水凝胶的薄片层-胶束转变首先,我们证实了一个基于层状-胶束转变的水凝胶体积性质的明显改变。
这种水凝胶由成千上万个双层聚十二烷基丙三衣康酸盐(PDGI)膜的周期堆积而成,里面是一个稀释的聚丙烯酰胺网络。
沿着一个明亮结构色,水凝胶的体积性质表现出强烈的各向异性。
通过接枝一个短链聚十二烷基乙醚(C12EO23)高分子类质到双层膜中,在一个窄的C12EO23浓度变化范围内,我们能观察到明亮颜色的结构发生形状改变,如水凝胶的胀大及各种模量的变化。
这些改变归咎于单筹的薄层相到PDGI的多域胶束相的结构转变,而这种结构转变是由聚乙二醇(PEG)的二维接枝的排除体积效应诱导而导致的。
通过控制在结构转变期间形成的水渗透纳米通道,我们可以证实一个具体分子的扩散和识别。
这种薄片双层水凝胶会是一个新的视野进入到脂质双分子层体系中,进而通过水凝胶的体积行为研究生物膜的性质。
前沿脂质体主要由磷脂组成,例如磷脂酰胆碱, 它基于双层磷脂的自组装在纳米尺度下形成了大量的单薄层囊泡【】。
空间稳定的脂质由于它们在血液中的长循环次数而广泛被研究作为药物的传输系统。
空间的稳定性由脂质双层成分,例如胆固醇,以及双亲分子PEG共价结合到脂质来完成的。
PEG是一种惰性的水溶性高分子,它已经广泛应用于静脉注射脂质体药物载体;因为它能适应不同的构象并且通过接枝到双层膜表面调控结构来控制膜的性能。
例如,在脂质体双层表面接枝PEG引起空间的相互作用而使脂双分子层稳定而抵制蛋白质及细胞膜的靠近,并因此增加脂质体对渗漏和降解的抵抗能力。
PEG接枝到双分子层表面的许多尝试已经研究了双分子膜的结构和性能。
然而,目前的大部分这些研究仅限于纳米尺度,这是因为脂质双层膜在大尺度下不稳定。
最近,我们成功地在一个柔软的稀释高分子网络水凝胶体系中制备了稳定的具有宏观大尺寸的薄片状双分子层结构。
这种类似薄板的薄片层,成千上万个双分子层膜堆积在一个单域内,是由一个类脂质的高分子表面活性剂—聚十二烷基丙三衣康酸盐(PDGI)的自组装形成的。
分子生物化学常用词汇之四
分子生物化学常用词汇之四GC box|GC框[真核生物结构基因上游的顺式作用元件] GC clamp|GC封条GC content|GC含量GC tailing|gc对GC value|GC值,GC百分比GDP dissociation inhibitor|GDP解离抑制因子[一种G蛋白调节蛋白] GDP dissociation stimulator|GDP解离刺激因子[一种G蛋白调节蛋白] gegenion|反离子,反荷离子Geiger counter|盖革计数器gel|凝胶gel casting|凝胶灌制gel mobility shift assay|凝胶迁移率变动分析,凝胶移位分析[DNA结合蛋白的电泳分析技术之一,在该试验中标记核酸因与蛋白质结合而导致迁移率变动(下降),相应的条带发生位移(滞后)] gel mold|(凝)胶模gel mould|(凝)胶膜gelatin|明胶gelatin liquefaction|明胶液化gelatinous precipitate|胶状沉淀gelation|凝胶作用geldanamycin|格尔德霉素gelsolin|[肌动蛋白]凝溶胶蛋白[可使肌动蛋白从凝胶状编委溶胶状] geminivirus|双粒病毒组[一组植物病毒] gemma|芽胞[从真菌菌丝上长出的一种适于在不良环境下生存的厚壁孢子];胞芽genBank nucleotide sequence database|GenBank核酸序列资料库gender determination|性别决定gender difference|性别差异gene|基因gene flow|基因流[一个随机交配群体,由于合子或配子的散布而造成基因流动,从而引起等位基因频率的改变] gene redundancy|基因丰余[因所编码的RNA或蛋白质用量很大,故基因的份数很多] genealogical tree|系统树general initiation factor|通用起始因子GeneScreen|[商]基因筛[是NEN Dupont公司的商标,一种用于杂交筛选的特制尼龙膜] genetic drift|遗传漂变[由于遗传群体大小有限造成基因频率的随机波动] genetic extinction|遗传绝灭,遗传死亡[由于突变使某基因型的适合度降低,并使有关个体的繁殖力降低或不育,从而导致某等位基因从基因库中消失] genetic fingerprint|基因指纹,遗传指纹[例如不同个体的DNA表现不同的限制性片段长度多态性,即可将这种限制酶切片段的电泳带型作为基因指纹] genetic immunization|基因免疫接种[采用基因疫苗进行接种] genetic imprinting|遗传印记genetic polarity|遗传极性[上游基因翻译终止,使下游基因表达下降] genetic system|遗传体系[主要指生物的交配方式,如自交、异交,或两者兼具] genetic transformation|遗传转化[例如一个品系的生物吸收另一品系生物的遗传物质,并获得后一品系某些遗传性状] genetic typing|遗传分型[例如根据人白细胞抗原(HLA)基因的限制性片段长度多态性对个体进行分型] Geneticin|[商]遗传霉素[一种氨基糖苷类抗生素,Life Technologies公司(GIBCO)的商标] genistein|染料木黄酮,4,5,7-三羟异黄酮genital cell|生殖细胞genocopy|拟基因型genome|基因组,染色体组genomic imprinting|基因组印记[配子发生过程中基因的选择性差异表达] genomic walking|基因组步查,基因组步移genonema|基因线,基因带genophore|基因线,基因带genotoxicity|基因毒性[DNA损伤] genotype|基因型gentamycin|庆大霉素,艮他霉素gentianose|龙胆三糖gentiobiose|龙胆二糖geometric mean|几何均数geosmin|[放线菌]土臭味素geotropism|向地性geraniol|牻牛儿糖geranyl|牻牛儿基,香叶基geranylpyrophosphate|牻牛儿焦磷酸germ|胚芽;胚;微生物,(细)菌germ band|胚带germ cell|生殖细胞germ layer|胚层germ line|种系germ nucleus|生殖核germicide|杀菌剂germinal center|生发中心germinal disc|胚盘germinal vesicle|生发泡[初级卵母细胞的细胞核] germplasm|种质[经生殖细胞传递的遗传物质];生殖质[决定性细胞分化的卵质成分] gestagen|孕激素ghost|血影,空(细)胞;菌蜕[例如丧失胞质仅余胞壁空壳的细菌光学显微图像];假峰ghost band|假带,鬼带ghost cell|血影细胞ghost peak|假峰,鬼峰giant colony|巨大菌落[可用于观察微生物形态] giant nicelle|巨胶束gibberellic acid|赤霉酸gibberellin|赤霉素Gibbs adsorption equation|吉布斯吸附公式Gibbs free energy|吉布斯自由能Gibbs free energy of activation|活化吉布斯自由能Giemsa band|吉姆萨带,G带[中期染色体带] Giemsa banding|吉姆萨带,G显带Giemsa stain|吉姆萨染液gigaseal|吉伽(欧)封口,千兆(欧)封口[见于膜片箝术,在膜片与吸液管间形成] ginsengenin|人参皂苷配基,人参皂苷元ginsenoside|人参皂苷glacial acetic acid|冰乙酸,冰醋酸gland|腺体Glasgow Minimum Essential Medium|格拉斯哥极限必需培养基GlcNAc|N-乙酰葡糖胺glia|(神经)胶质glial fibrillary acidic protein|胶质(细胞)原纤维酸性蛋白glial filament acidic protein|胶质(细胞)纤丝酸性蛋白glial growth factor|胶质(细胞)生长因子gliding|滑行,滑移[可指滑行细菌和蓝细菌与固体表面接触时的运动方式,通常很缓慢,并有分泌粘液的轨迹] gliding growth|滑过生长[见于植物] gliotoxin|胶霉毒素global alignment|总体(序列)对比global regulation|全局调节[例如多个分属不同代谢途径的操纵子受控于同一调节物] global regulation circuit|全局调节回路global regulon|全局调节子globin|珠蛋白globoside|红细胞糖苷globular protein|球状蛋白质globulin|球蛋白glomerulus|小球glucagon|胰高血糖素glucan|葡聚糖glucanase|葡聚糖酶glucoamylase|葡糖淀粉酶glucocerebrosidase|葡糖脑苷脂酶glucocerebroside|葡糖脑苷脂glucocorticoid|糖皮质(激)素glucocorticosteroid|糖皮质类固醇glucogenesis|糖生成(作用)glucogenic amino acid|生糖氨基酸glucokinase|葡糖激酶glucomannan|葡甘露聚糖gluconeogenesis|糖异生(作用)gluconic acid|葡糖酸gluconolactone|葡糖酸内酯glucosamine|葡糖胺,氨基葡糖glucosaminoglycan|葡糖胺聚糖glucosan|葡聚糖glucose|葡萄糖[简称或在复合词中可用葡糖] glucosidase|葡糖苷酶glucoside|葡糖苷glucosylation|葡糖基化glucosylceramidase|葡糖神经酰胺酶glucosylceramide|葡糖神经酰胺glucoxyltransferase|葡糖基转移酶glucurnic acid|葡糖醛酸glucuronidase|葡糖醛酸酶glucuronolactone|葡糖醛酸内酯glucuronyl|葡糖醛酸基glutaconate|戊烯二酸;戊烯二酸根、酯、盐glutaconic acid|戊烯二酸glutamate|谷氨酸;谷氨酸盐、酯、根glutamic acid|谷氨酸glutamic semialdehyde|谷氨酸半醛glutaminase|谷氨酰胺酶glutamine|谷氨酰胺glutaraldehyde|戊二醛glutaredoxin|谷氧还蛋白glutathion|谷胱甘肽glutathion peroxidase|谷胱甘肽过氧化物酶glutelin|谷蛋白glutenin|麦谷蛋白glycan|聚糖glycation|糖化,加糖(作用)glyceollin|大豆抗毒素glyceraldehyde|甘油醛glyceride|甘油酯glycerol facilitator|甘油易化蛋白[见于细菌,与甘油的转运有关] glycerol shock|甘油休克glycinamide|甘氨酰胺glycinergic synapse|甘氨酸能突触glycinin|大豆球蛋白glycobiology|糖生物学glycocalyx|糖萼,多糖包被[如见于细菌细胞壁外] glycocholic acid|甘氨胆酸glycoconjugate|糖缀合物,缀合糖,复合糖glycogen|糖原glycogenesis|糖原生成glycogenolysis|糖原分解glycoglyceride|糖基甘油酯glycolipid|糖脂glycolysis|糖酵解glycopeptidase|糖肽酶glycopeptide|糖肽glycophorin|血型糖蛋白glycoprotein|糖蛋白glycosaminoglycan|糖胺聚糖glycosidase|糖苷酶glycoside|(糖)苷glycosphingolipid|鞘糖脂glycosyl|糖基glycosylated|糖基化的glycosylation|糖基化glycosylsphingolipid|鞘糖脂glycosyltransferase|糖基转移酶glycyrrhizin|甘草皂苷glyoxal|乙二醛glyoxaline|咪唑glyoxysome|乙醛酸循环体glypiation|糖基磷脂酰肌醇化[在蛋白质的近C端加上G-PI锚] glypican|磷脂酰肌醇(蛋白)聚糖[带有G-PI锚的蛋白聚糖] gnotobiology|悉生生物学gnotobiote|悉生生物[在其体内外生存的微生物均属已知] goblet cell|杯状细胞Golgi apparatus|高尔基体Golgi body|高尔基体Golgi complex|高尔基复合体Golgi membrane|高尔基体膜Golgi network|高尔基体网络Golgi protease|高尔基体蛋白酶gonad|性腺gonadoliberin|促性腺素释放素gonadotrophic hormone|促性腺激素gonadotrophin|促性腺素gonadotropin|促性腺素[为促滤泡素及促黄体素的统称] gonidium|微生子gonium|性原细胞gonococcus|淋球菌gonocyte|性原细胞gonoplasm|精原质gossypol|棉酚gougerotin|谷氏菌素Graafian follicle|囊状滤泡,格拉夫卵泡gracilicute|薄壁(细)菌[胞壁由薄层肽聚糖和脂多糖构成的细菌(一般为革兰氏阴性)] graft hybrid|嫁接杂种Gram stain|革兰氏染液gramicidin|短杆菌肽grana|(复)基粒grana lamella|基粒片层granule|颗粒体[杆状病毒的包含体];粒,颗粒granuliberin|颗粒释放肽[一种蛙皮肽] granulin|颗粒体蛋白granulocrine|颗粒性分泌granulocyte|粒细胞granulocyte chemotactic peptide|粒细胞趋化肽[即白细胞介素-8] granulocyte colony stimulating factor|粒细胞集落刺激因子granulopoiesis|粒细胞生成granulose|细菌淀粉粒granulosis virus|颗粒性病毒granum|基粒granzyme|粒酶[由细胞毒性T细胞及大颗粒淋巴细胞通过颗粒胞吞的方式分泌的丝氨酸蛋白酶] gratuitous inducer|义务诱导物,安慰诱导物[能诱导酶的合成但不能作为该酶的底物,如IPTG就是beta半乳糖苷酶的义务诱导物] grisein|灰霉素GTPase|GTP酶guanase|鸟嘌呤酶guanidine hydrochloride|盐酸胍guanidinium isothiocyanate|异硫氰酸胍guanylin|鸟苷蛋白[从肠中分离的鸟苷酸环化酶配体] guanylyl|鸟苷酰基guessmer|猜测体[用于基因克隆的低简并性寡核苷酸探针,其序列按已知的氨基酸序列推导,但仅采纳据猜测最可能与目前的基因配对的密码子] guest|客体guide RNA|指导RNA[RNA编辑的模板] guide sequence|指导序列[如见于RNA编辑或RNA 剪接] gusducin|味(转)导素[见于味蕾的一种转导素(G蛋白)] gustin|味肽,味多肽gut hormone|胃肠激素guttation|吐水gymnoplast|裸质体gynandromorph|雌雄嵌合体gynandromorphism|雌雄嵌合体gynoecium|雌蕊群gynogenesis|雌核发育,单雌生殖gynomerogony|雌核卵块发育gynospore|雌孢子gynostemium|合蕊柱gynotermone|雌性决定素gyplure|类舞毒蛾醇gyrase|回旋酶,促旋酶[大肠杆菌的II类拓扑异构酶,可在DNA中引入负超螺旋] H antigen|H抗原,鞭毛抗原haem|血红素hairpin|发夹(序列),发夹(结构)hairpin loop|发夹环hairpin structure|发夹结构half site|半位点halophyte|盐生植物halorhodopsin|盐细菌视紫红质hammerhead ribozyme|锤头状核酶Hantaan virus|汉坦病毒[引起流行性出血热的病原体,属布尼亚病毒科] hantavirus|汉坦病毒haploidy|单倍性haplotype|单元性[一条染色体或一条DNA分子的基因型] hapten|半抗原hapteron|菌索茎haptoglobin|触珠蛋白Hartig net|哈氏网[见于真菌] HAT medium|HAT培养基[含次黄嘌呤(H)、氨基蝶呤(A)和胸苷(T)] haustorium|吸器[见于植物] HDEL receptor|HDEL受体[C端含有HDEL 四肽,酵母的一种内质网可溶性蛋白] head growth|头增长[如用于描述聚合酶作用机理] HeLa cell|HeLa细胞,海拉细胞[最初来自美国女子Henrietta Lacks子宫颈癌组织的细胞株] helicase|解旋酶helicity|螺旋度helicorubin|蠕虫血红蛋白Heliothis virescens|烟芽夜蛾,绿棉铃虫Heliothis virescens nuclear polyhedrosis virus|烟芽夜蛾核型多角体病毒Heliothis zea|玉米夜蛾,美洲棉铃虫helix wheel|螺旋轮helper virus|辅助病毒[能对缺损病毒基因组起互补作用,使之成为有复制能力的病毒] hemacytometer|血细胞计数器hemadsorption|血细胞吸附,血吸(现象或试验)hemagglutination|血(细胞)凝(集),血凝(现象或试验)hemagglutination ingibition|血凝抑制(现象或试验)hemagglutinin|血凝素hematimeter|血细胞计数器hematine|(羟)高铁血红素hematocrit|血细胞比容hematopoiesis|血细胞生成hematopoietin|血细胞生成素hematoxylin|苏木精heme|血红素hemerythrin|蚯蚓血红蛋白hemidesmosome|半桥粒hemikaryon|单倍核hemiketal|半缩酮hemimethylated|半甲基化的hemimethylation|半甲基化hemin|氯高铁血红素,氯高铁原卟啉hemiterpene|半萜hemizygote|半合子hemizygous gene|半合基因hemochromoprotein|血色蛋白hemocyanin|血蓝蛋白hemocytometer|血细胞计hemoflavoprotein|血红素黄素蛋白hemoglobinopathy|血红蛋白病hemolysin|溶血素hemolysis|溶血(作用)hemopexin|血色素结合蛋白hemophilia|血友病hemophilus|嗜血杆菌属hemophilus influenzae|流感嗜血杆菌hemopoiesis|血细胞生成hemopoietin|血细胞生成素hemoporphyrin|血卟啉hemoprotein|血红素蛋白hemorheology|血液流变学hemorrhage|出血hemorrhagic fever|出血热hemosiderin|血铁黄素蛋白hemostasis|止血hepadnavirus|嗜肝DNA病毒heparan|类肝素,乙酰肝素heparin|肝素hepatoalbumin|肝白蛋白,肝清蛋白hepatocrinin|促肝泌素hepatocyte|肝细胞hepatoglobulin|肝球蛋白hepatoma|肝癌hepatotoxin|肝脏毒素hepatovirus|肝病毒属[模式成员是甲型肝炎病毒] heptoglobin|七珠蛋白heptose|庚糖herbicidin|除莠菌素herbimycin|除莠霉素herpesvirus|疱疹病毒heteroallel|异点等位基因heterobifunctional agent|异(基)双功能试剂,双异官能团试剂heterobrachial inversion|异臂倒位heterochain polymer|杂链聚合物heterochromatin|异染色体heterochromatinization|异染色质化heterochromosome|异染色体heterocyst|异形(囊)胞heterocytotropic antibody|嗜异种细胞抗体heterodimer|异(源)二聚体,异源双体heteroduplex|异源双链(体)heteroecism|转主寄生(现象)heterofermentation|异型发酵heterogamete|异形配子heterogamy|异配生殖heterogeneity|不均一性heterograft|异种移植物heterokaryon|异核体heterokaryosis|异核现象,异核性heterokinesis|异化分裂heterologous|异源性heterology|异源性heterolysis|异裂heteromorphism|异态性,异形性;多晶现象heterophylly|异形叶性heterophyte|异养生物heteroplasmy|异质性[如指线粒体DNA 长度的可变性] heteroploid|异倍体heteroploidy|异倍性heteropolyacid|杂多酸heteropolybase|杂多碱heteropolymer|杂聚物heteropolysaccharide|杂多糖heteropyknosis|异固缩heterosis|杂种优势heterospore|异形孢子heterospory|孢子异型heterostyly|花柱异长heterothallic yeast|异宗配合酵母(菌)heterothallism|异宗配合heterotrimer|异(源)三聚体,异源三体heterotristyle|三式花柱式heteroxeny|转主寄生(现象)heterozygosis|杂合(现象)heterozygote|杂合子,异形合子hexagonal closs packing|六方密堆积hexonmer|六邻粒[见于腺病毒] hexosaminidase|氨基己糖苷酶Hill plotting|希尔作图法[如用于酶动力反应] hirudin|水蛭素hisactophilin|富组亲动蛋白[富含组氨酸的膜周边蛋白,可促进肌动蛋白的聚合] histaminase|组(织)胺酶histamine|组(织)胺histidinal|组氨醛histidinol|组氨醇histocompatibility|组织相容性histocyte|组织细胞,间质细胞histogen|组织原[用于植物] histone|组蛋白histopine|章鱼组氨酸,组氨章鱼碱histoplasmin|组织胞质菌素histotope|组(织)位[抗原呈递中,II类主要组织相容性复合体与T细胞抗原受体相互作用的部位] histotroph|组织营养素holandric ingeritance|限雄遗传Holliday structure|霍利迪结构[重组时两个DNA双链体以四股DNA在连结点交换配对而在电镜下所呈现的十字形结构] holocrine|全(质分)泌holoenzyme|全酶hologynic ingeritance|限雌遗传holomycin|全霉素holoprotein|全蛋白holozygote|全合子homeobox|同源(异型)框[最初发现于果蝇、爪蟾形态发生调节蛋白的一种DNA结合区] homeodomain|同源(异型)域homeoprotein|同源异型蛋白(质)homeostasis|(体内)稳态homoacetogenic bacteria|同型(产)乙酸(细)菌[在厌氧条件下可从1mol六碳糖产生3mol乙酸] homoallele|同点等位基因homoarginine|高精氨酸homochromatography|同系层析homocitrate|高柠檬酸homocopolymer|同型共聚物homocysteine|高半胱氨酸homocystine|高胱氨酸homocytotropic antibody|嗜同种细胞抗体homodimer|同(源)二聚体,同源双体homoduplex|同源双链(体)homofermentation|同型发酵homogametic sex|同配性别homogamy|同配生殖;雌雄(蕊)同熟homogenate|匀浆(物),匀浆(液)homogeneous EIA|均相酶免疫测定homogony|花蕊同长homograft|同种移植homoiothermy|温血,恒温homoisoleucine|高异亮氨酸homokaryon|同核体homolog|同系物homologous|同源的homology|同源性homolysis|均裂homomorph|全型[真菌中包括有性、无性孢子的生活史各阶段都已知类型] homomultimeric protein|同(聚)多亚基蛋白homophilic adhesion|同嗜性粘着[同种细胞(或分子)间的粘着] homoploid|同倍体homopolymer|同聚物,同聚体homopolymeric tailing|同聚物加尾(反应)homopolymerization|同聚(反应),均聚(反应)homopolypeptide|同聚多肽homopolysaccharide|同多糖homoserine|高丝氨酸homoserinelactone|高丝氨酸内酯homostyle|花柱同长homothallic yeast|同宗配合酵母homothallism|同宗配合homotopic|等位的[在分子整体中,碳原子上完全等同的原子、基团或面] homotrimer|同(源)三聚体,同源三体homotropic effect|同促效应homotype|同型homozygote|纯合子homozygote typing cell|纯合子分型细胞homozygous sex|纯合性别honeycomb support|蜂窝状载体hopping library|跳查文库hordein|大麦醇溶蛋白hordeivirus|大麦病毒[一组植物病毒,模式成员是大麦条纹花叶病毒] horizontal transmission|水平传递[通过质粒、转座子而进行遗传物质传递];水平传播[病原体在宿主不同个体间的传播] hormesis|刺激作用hormogonian|[蓝细菌]连锁体horseradish peroxidase|辣根过氧化物酶hot phenol method|热酚法[提取细胞总RNA的一种方法] hot spot|热点[基因或蛋白质中突变率特别高的位点] HU protein|细菌组蛋白Hughes press|Hughes压碎器[一种利用冷冻挤压原理制成的高压匀浆器] human chorionic gonadotropin|人绒毛膜促性腺素humanization|人源化humanized antibody|人源化抗体humics|腐殖质humulone|葎草酮humus|腐殖土、腐殖质hyaloplasm|透明质hyaluronidase|透明质酸酶Hybond membrane|Hybond膜,杂交膜[Amersham公司的商标] hybrid depletion method|杂交体耗竭法[用于cDNA克隆] hybridoma|杂交瘤hydantoin|乙内酰脲hydathode|排水器[见于植物] hydratase|水合酶hydrazide|酰肼hydrazine|肼hydrazone|腙hydrocortisone|氢化可的松,皮质醇hydrogel|水凝胶hydrogenase|氢化酶hydrogenogen|产氢菌hydrogenolysis|氢解hydrolase|水解酶hydrolysate|水解(产)物,水解液hydrolysis|水解(作用),水解(反应)hydropathy|亲水性hydropathy profile|亲水性分布图hydroperoxide|氢过氧化物hydrophily|水媒hydrophobic collapse|疏水折拢[由疏水作用而引起肽链的折叠] hydrophobic labeling|疏水标记[例如通过非极性相互作用对蛋白质的内核进行光标记] hydrophobicity|疏水性hydrophobin|疏水蛋白[见于真菌孢子的疏水鞘] hydrophyte|水生植物hydroponics|水培hydroquinone|氢醌hydrosol|水溶胶hydrotaxis|趋水性hydrotropism|向水性hydroxocobalamin|羟钴胺素hydroxyacetylneuraminic acid|羟乙酰神经氨酸hydroxyalkylation|羟烷基化hydroxyallysine|羟赖氨醛hydroxyallysine aldol|羟赖氨醇hydroxyapatite|羟(基)磷灰石hydroxybenzotriazole|羟基苯并三唑hydroxycholecalciferol|羟胆钙化(固)醇hydroxycorticosteroid|羟(基)皮质醇hydroxylation|羟化hydroxylysine|羟赖氨酸hydroxymethylcytosine|羟甲基胞嘧啶hydroxynervonic acid|羟神经酸,2-羟基-顺-15二十四碳单烯酸hydroxyproline|羟脯氨酸hydroxyquinoline|羟基喹啉hydroxysuccinimide eater|羟基琥珀酰亚胺酯hydroxytryptamine|羟色胺hydroxytryptophan|羟色氨酸hydroxyurea|羟(基)脲hygromycin|潮霉素hylambatin|援木蛙肽hymenium|子实层[见于真菌] hymenophore|子实层体hyoscytamine|天仙子胺hypercholesterolemia|高胆固醇血症hyperchromic effect|增色效应hyperchromicity|增色性hyperchromism|增色性hyperdiploid|超二倍体hyperfiltration|超滤hyperfunction|技能亢进hyperimmunization|超免疫hypermutation|高变,超变hypermutator state|超增变状态hyperploid|超倍体hyperploidy|超倍性hyperpolarization|超极化hyperreiterated DNA|高度重复DNA hypersensitive site|超敏(感)位点,高敏位点[类似热点或高变区中的位点] hypersensitivity|超敏(反应),过敏性hypertrophy|过度生长hypervariable|高变的,变异度高的hypha|[真菌]菌丝hypholytic action|菌溶丝作用hypnospore|休眠孢子hypo|海波hypochromicity|减色性hypochromism|减色性hypocotyl|下胚轴hypodermics|皮下组织hypofunction|机能减退hypophase|低相,下相hypophasic|低相性的[趋向于留存于低相的] hypophysin|垂体后叶激素hypoploid|亚倍体hypoploidy|亚倍性hypostatic gene|下位基因hypothalamus|下丘脑hypoxanthine|次黄嘌呤hypoxanthine riboside|次黄(嘌呤核)苷hysteresis|滞后(现象)ibotenic acid|鹅膏蕈氨酸iceberg structure|冰山结构ichthulin|鱼卵磷蛋白ichthylepidin|鱼鳞硬蛋白ichthyltoxin|鱼卵毒素ichthyoacanthotoxin|鱼刺毒素ichthyocholaotoxin|鱼胆毒素icosahedral capsid|二十面体外壳idiochromosome|性染色体idiogamy|自身受精[见于原生动物] idiogram|核型模式图idioplasm|种质idiotope|独特位idiotroph|特需营养要求型[一类合成抗生素的微生物变异株,只有存在前体时才合成该抗生素] idiotype|独特型idling reaction|空载反应[未负载tRNA位于A部位时,核糖体产生pppGpp和ppGpp,触发严紧型反应] ilamycin|岛霉素ilarvirus|等轴不稳定环斑病毒组illegitimate recombination|非常规重组imago|成虫imbibant|吸涨体imbibition|吸涨(作用)imipramine|丙咪唑immediate early gene|立即早期基因[有时特指病毒] Immobiline|[商]固定化电解质[pharmacia公司商标,为丙烯酰胺衍生物,带有官能团,可在凝胶上自动形成固定的pH梯度] immortalization|无限增殖化,永生化[使细胞长期不断维持增殖状态] immunoadhesin|免疫粘附素immunoadjuvant|免疫佐剂immunoadsorbent|免疫吸附剂immunoadsorption|免疫吸附immunoassay|免疫测定immunobiology|免疫生物学immunoblot|免疫印迹immunoblotting|免疫印迹(法)immunocapture|免疫捕捉,免疫捕获immunochemiluminescence|免疫化学发光immunochemiluminometry|免疫化学发光分析(法)immunochemistry|免疫化学immunocompetent|免疫活性的,具有免疫能力的immunoconglutination|免疫共凝集(作用)immunoconglutinin|免疫共凝集素immunocytochemistry|免疫细胞化学immunodeficiency|免疫缺损,免疫缺陷immunodepletion|免疫耗竭immunodepressant|免疫抑制剂immunodepression|免疫抑制immunodetection|免疫检测immunodiagnosis|免疫诊断immunodiffusion|免疫扩散immunodominance|免疫优势immunodominant epitope|优势免疫表位immunodotting|免疫斑点(试验),免疫打点(试验)immunoelectronmicroscopy|免疫电镜术immunoelectrophoresis|免疫电泳immunoferritin technique|免疫铁蛋白技术immunofixation|免疫固定immunofluorescence|免疫荧光immunogen|免疫原immunogenic|免疫原性的immunogenicity|免疫原性immunoglobulin|免疫球蛋白[包括免疫球蛋白G、A、M、D、E等五类] immunohistochemistry|免疫组织化学immunoincompetent|无免疫活性的,无免疫能力的immunoliposome|免疫脂质体immunolocalization|免疫定位immunological|免疫学的,免疫的immunoluminescence|免疫发光immunoluminescent|免疫发光的immunomodifier|免疫调节剂immunomodulation|免疫调节,免疫调制immunomodulator|免疫调制剂immunomodulatory protein|免疫调制蛋白immunopathogenesis|免疫病理immunopathology|免疫病理学immunopharmacology|免疫药物学,免疫药理学immunophilin|亲免素,亲免蛋白[可与免疫抑制剂结合的蛋白,如亲环素] immunopotentiation|免疫增强immunopotentiator|免疫增强剂immunoprecipitate|免疫沉淀物immunoprecipitation|免疫沉淀(法)immunoprecipitin|免疫沉淀素immunoprophylaxis|免疫预防immunoradiometric assay|免疫放射分析immunoreactive protein|免疫反应性蛋白,免疫活性蛋白(质)immunoreactivity|免疫反应性immunoregulation|免疫调节immunoregulator|免疫调节剂immunoregulatory|免疫调节的immunoscreening|免疫筛选immunoselection|免疫选择immunosensor|免疫传感器immunosome|免疫(脂质)体immunosorbent|免疫吸附剂immunospecific|免疫专一的,具有特异免疫反应性的immunostaining|免疫染色immunostimulant|免疫刺激剂immunostimulation|免疫刺激immunosuppressant|免疫抑制剂immunosuppression|免疫抑制immunosurveillance|免疫监视immunotherapy|免疫治疗immunotoxin|免疫毒素impedin|阻抗素imperfect fungi|半知菌impermeability|不透性implantation|植入[受精卵进入子宫内膜] imprinting|印记[如指基因或染色体保留其配子的某些特征并进行选择性差异表达] in line|线内,线上,流线in situ|原位in utero|在子宫内in vitro|在体外inaccessible antigen|隐蔽抗原inborn errors of metabolism|先天性代谢缺损,先天性代谢缺陷inbred line|近交系inbred strain|近交品系inbreeding|近交incineration|烧灼灭菌inclusion body|包涵体;包含体incompatible termini|不匹配末端incretin|肠降血糖素indene|茚index case|先证者India ink|印度墨水,黑墨水[可用于蛋白质SDS-聚丙烯酰胺凝胶的染色] indicator|指示剂,指示菌,指示基因[例如专指可反映所在环境的某种特性的菌类] indigenous flora|土著菌群,土著区系indolemycin|吲哚霉素inducer|诱导物inducible expression|诱导型表达influenza virus|流感病毒[分甲、乙、丙三型] informosome|信息体infrastructure|基础截,基本结构infundibulum|漏斗[见于脑垂体] inhibin|抑制素[由垂体合成并由睾丸和卵巢分泌的性激素] inhibition|抑制(作用)inhibitor|抑制剂inic acid|亚叶酸,甲酰四氢叶酸inifer|引发转移剂iniferter|引发-转移-终止剂initiator|起始密码子;起始子[启动子中的调节序列];起始区;起始因子,起始剂,引发剂innervation|神经支配inoculant|接种inoculation|接种[将种子培养物转移到新培养基的任何操作;免疫接种] inoculum|接种物,种菌,种子培养物inosinate|肌苷酸inosine|肌苷,次黄嘌呤核苷,次黄苷inositol|肌醇inovirus|丝状病毒[一类噬菌体] insect larvae|(昆虫)幼虫insertin|插入蛋白[是张力蛋白的一部分,可插入肌动蛋白丝中] insertion sequence|插入序列[有时特指细菌中最小的一种仅含转座酶的转座因子] instar|龄(虫)intasome|整合体[与gama噬菌体整合有关的DNA-蛋白质复合体] integrin|整联蛋白integron|整合子[气肿含有59bp交换位点及整合酶编码序列] integument|珠被interaction cloning|相互作用克隆(法)[采用标记的核因子来筛选cDNA表达文库,以克隆与之相互作用的蛋白质的编码序列] interallelic complementation|等位基因间互补interband|间带intercalated disk|闰盘,闰板[见于心肌] intercalating dye|嵌入燃料[如嵌入DNA的溴化乙锭] intercalation|嵌入,插层(反应)intercalator|嵌入剂,插层剂interceptor|内感受器intercistronic region|顺反子间区[多顺反子转录单位中一个基因的终止密码子与下一个基因的起始密码子之间区域] interenin|肾上腺皮质素提取物interesterification|酯交换(反应)interferon|干扰素[主要亚型有徕闳謁intergrant|整合体intergrase|整合酶intergration|整合、整联interimage|内影像,内造影interkinesis|分裂间期interleukin|白细胞介素,白介素interlinking|互连intermediate gene|中期基因[见于部分病毒,如某些痘病毒的复制] intermedin|(垂体)中间叶激素internal autocrine|内部自分泌[内源性生长因子的羧基端加上特定序列使之不再分泌于细胞外而依然保持生物活性] interneron|中间神经元internode|节间;结间节interphase|分裂间期intine|(花粉)内壁;(芽胞)内膜intron|内含子[分为三类,其中自我剪接类的内含子又可分为I组与II组] inulin|菊粉,菊糖invagination|内陷invasin|侵染素invasion|侵染invasiveness|侵染力inversion|倒位invertase|转化酶[即-呋喃果糖苷酶] involurin|外皮蛋白involution|内卷iodimetry|碘量法[用碘滴定的方法;用滴定的方法测量碘] iodoacetamide|碘乙酰胺[可用作蛋白酶抑制剂] iodometry|碘量法iodopsin|视青素iodotyrosine|碘化酪氨酸iodouracil|碘尿嘧啶ionomycin|离子霉素[可与钙离子结合的聚醚] ionone|芷香酮,紫罗酮ionophore|离子载体,离子导体ionophoresis|离子(电)泳iontophoresis|离子电渗(疗法)ipecacuanhin|吐根苷ipecamine|吐根碱ipso position|本位iridoid|环烯醚萜类化合物iridovirus|虹彩病毒irradiation|扩散[用于神经系统];照射irregular dominance|不规则显性irritability|应激性,感应性irritant|刺激性的;刺激物island of Langerhans|胰岛islandicum|岛青霉素islanditoxin|岛青霉素isoacceptor|同工tRNA isoacceptor tRNA|同工tRNA[接受同种氨基酸并由同种氨酰tRNA合成酶识别的几种tRNA] isoagglutination|同族凝集反应isoagglutinin|同族凝集素isoamylase|异淀粉酶isoantigen|(同种)异体抗原isobestic point|等消光点isobutyl|异丁基isocamphane|异莰烷isocaudarner|同尾酶isochromosome|等臂染色体isocratic elution|等度洗脱,无梯度洗脱isodesmosine|异锁链素isoenzyme|同工酶isofernane|异羊齿烷isoflavone|异黄酮isoform|同种型,同等型,同工型isogamete|同型配子isogamy|同配生殖isogenic|同基因的isogenous|同源的isograft|同系移植物isohopane|异何帕烷isohormone|同工激素isohydric principle|等氢离子原理[如特指血浆中的氢离子不论来自何种酸,均可被任一对缓冲剂的负离子所中和] isoimmunization|同种免疫接种isoinhibitor|同工抑制剂、同效抑制剂isoionic point|等电点isolectin|同工凝集素isoleucine|异亮氨酸isoliquiritigenin|异甘草根亭配基,2'4'4'-三羟基查耳酮isomerase|异构酶isomerism|异构现象isomerization|异构化isometric|等的,等角的;同质异能的,同组异序的isomorph|同形体isomorphism|类质同晶;同形(现象)isoniazide|异烟肼isoosmotic|等渗的isophil antibody|同嗜性抗体isoplyacid|同多酸isopolybase|同多碱isoprotein|同工蛋白质isopsoralen|异补骨脂素,异补骨脂内酯isopycnic|等偏微比容的,等密度的isoquinoline|异喹啉isoracemization|等消旋isoschizomer|同裂酶,同切点酶,同切口酶isospory|孢子同型isotachophoresis|等速电泳isothiocyanate|异硫氰酸盐isothreonine|异苏氨酸isotonic|等渗的isotope|同种位;同位素isotropic|各向同性的isotropy|各向同性[物理参数不随方向的改变而变化] isotype|同种型isoxzzole|异恶唑isozyme|同工酶istamycin|天神霉素iteration|重复iteron|重复区,重复子[可与质粒复制蛋白相互作用的同向重复序列] ivermectin|双氢除虫菌素,伊佛霉素J chain|J 链[见于IgA分子,与J基因区段无关] jacobine|千言光碱jasmonic|茉莉酸jejunum|空肠jenseniin|詹氏(丙酸)杆菌素joining gene|J基因[为连接区(J区)编码的基因] joining region|连接区,J区[位于免疫球蛋白等分子的V区与C区之间] josamycin|交沙霉素juglone|胡桃醌,5-羟-1,4-萘醌jumping library|跳查文库junk DNA|无用DNA,无功能DNA[基因组中未发现任何功能的DNA] justacrine|邻分泌,并分泌[由膜锚定型配体作用于相应受体而传导刺激信号] juxtaposing protein|并列蛋白[如见于腺病毒及某些线性质粒] juxtaposition|并列kafirin|高粱醇溶蛋白kainic acid|红藻氨酸[即2-羧甲基-3-异丙烯脯氨酸] kalinin|缰蛋白[上皮细胞基底膜的一种粘着蛋白] kallidin|胰激肽,赖氨酸缓激肽,血管舒张素kallidinogen|胰激肽原kallikrein|激肽释放酶kanamycin|卡那霉素Kaposi sarcoma|卡波西肉瘤kappa particle|卡巴粒子[放毒性草履虫细胞质中共生粒子中的一种] karyoaster stage|核星期karyogamy|核配karyogram|核型图karyokinesis|核分裂karyology|(细胞)核学karyolymph|核液karyolysis|核溶解karyomixis|核融合karyoplasm|核质karyoplast|核体karyopyknosis|核固缩karyoskeleton|核骨架karyosphere|核球karyote|有核细胞karyotype|核型,染色体组型karyotyping|核型分析kassinin|肛褶蛙肽kasugamycin|春日霉素katal|开特[每秒转化1mol底物所需酶量,1酶单位=16.67*E-9 Kat] katanin|剑蛋白[一种ATP酶,可使微管切断并解聚] KDEL receptor|KDEL受体[哺乳动物细胞内质网的一种可溶性蛋白,C端有KDEL四肽信号]Kel-F [商]聚三氟氯乙烯[3M公司的商标] kelthane|三氯杀螨醇kemptide|肯普肽,激酶底物肽[可作为蛋白激酶的底物,得名于发现者Kemp] kenotoxin|疲劳毒素kentsin|肯特(四)肽,避孕四肽[得名于发现者Kent] keratan sulfate|硫酸角质素keratin|角蛋白keratinase|角蛋白酶keratinization|角质化keratinocyte|角质形成细胞ketal|缩酮ketene|乙烯酮ketimine|酮亚胺ketogenesis|生酮作用ketoimine|酮亚胺ketose|酮糖ketosteroid|类固醇,甾酮killer cell|杀伤细胞,K细胞killer particle|致死颗粒kilobase|千碱基kilodalton|千道尔顿Kimwipes|[商]Kimwipes纸巾[一种实验室用薄纸巾] kinase|激酶kinesin|驱动蛋白kinetin|细胞分裂素kinetochore|动粒[细胞分裂中期联接着丝粒微管并提供动力的盘状蛋白质复合体] kinetoplasm|动质kinetoplast|动质体kinin|细胞分裂素;激肽kininase|激肽酶kininogen|激肽原kininogenase|激肽酶原kirromycin|黄色霉素kissing|相吻[如用于描述核苷酸的配对] kistrin|蝮蛇毒素kit|试剂盒Kjeldahl determination|凯氏定氮(法)Kjeldahl method|凯氏(定氮)法klebsiella|克雷伯(氏)杆菌属Klenow enzyme|克列诺酶Klenow fragment|[大肠杆菌DNA聚合酶I的]克列诺片段,大片段(酶)Kluyveromyces|克鲁维酵母菌属Knop solution|克诺普溶液koji|日本酒曲krebs cycles|Krebs循环,三羧酸循环kreotoxin|肉毒素Kringle domain|Kringle结构域[见于组织纤溶酶原激活物等蛋白,含有三对二硫键,因其序列的书写形式酷似一种丹麦面糕而得名] Kringle sequence|Kringle 序列krupple gene|Krupple 基因[果蝇分节基因] Krupple protein|Krupple 蛋白kunkel method|Kunkel(定位诱变)法[通过筛选含尿嘧啶的模板进行寡核苷酸介导的定位诱变的方法] Kupffer cell|枯氏细胞[肝脏的巨噬细胞] lac operon|乳糖操纵子laccase|漆酶lacmus|石蕊lactalbumin|乳白蛋白,乳清蛋白lactam|内酰胺lactamase|内酰胺酶lactase|乳糖酶lactate|乳酸;乳酸盐、酯、根lactenin|乳抑菌素lacticifer|[植物]乳汁器lacticin|乳链球菌素lactoalbumin|乳白蛋白lactobacillus|乳杆菌属lactobionic acid|乳糖酸lactococcin|乳球菌素lactococcus|乳球菌属lactoferritin|乳铁蛋白[一种金属结合蛋白] lactogen|催乳素lactoglobulin|乳球蛋白lactol|内半缩醛lactone|内酯。
正相色谱和反相色谱的英文
正相色谱和反相色谱的英文全文共四篇示例,供读者参考第一篇示例:IntroductionChromatography is a widely used technique in the field of chemistry for separating and analyzing mixtures of chemicals. Two of the most common types of chromatography are reverse phase chromatography and normal phase chromatography. In this article, we will discuss the principles and applications of these two techniques.第二篇示例:Reverse phase chromatography (RPC) and normal phase chromatography (NPC) are two common techniques used in chromatography for the separation and analysis of compounds. Both methods involve the use of a stationary phase and a mobile phase to separate compounds based on their interactions with the stationary phase.第三篇示例:Normal phase chromatography and reversed-phase chromatography are two commonly used techniques in the field of chromatography. Both techniques involve the separation of components in a sample based on their interactions with a stationary phase and a mobile phase. In this article, we will discuss the principles, differences, and applications of these two chromatographic techniques.第四篇示例:The choice between normal phase and reverse phase chromatography depends on the physicochemical properties of the compounds to be separated. In general, non-polar compounds are better separated using reverse phase chromatography, while polar compounds are better separated using normal phase chromatography. However, there are exceptions to this rule, and the choice of chromatography type should be based on the specific characteristics of the compounds under investigation.。
生化习题集 核酸化学
核酸化学 (一)名词解释1.反密码子(anticodon)2.顺反子(cistron)3.核酸的变性(denaturation)与复性(renaturation)4.退火(annealing)5.增色效应(hyper chromic effect)6.减色效应(hypo chromic effect)7.噬菌体(phage)8.发夹结构(hairpin structure)9. DNA的熔解温度(melting temperature T m)10.分子杂交(molecular hybridization)11.环化核苷酸(cyclic nucleotide)12.碱基堆积力(base stacking force)13.ε(P)14.限制性内切酶(restriction endonuclease)15.回文结构(palindrome)16.单核苷酸(mononucleotide)17.磷酸二酯键(phosphodiester bonds)18.环化核苷酸(cyclic nucleotide)19.碱基互补规律(complementary base pairing) 20. Chargaff定律(Chargaff principle)21. DNA的二级结构22.核酸的变性与复性(denaturation、renaturation)23.转录 transcription24.翻译25.冈崎片段Okazaki fragment26.复制叉Replication fork27.半保留复制 semiconservative replication 28.基因gene29.内含子(intron)与外显子exon30.启动子promotor31.操纵子operon32.操纵基因operator33.密码子(codon)与反密码子(anticodon)34.核酶ribozyme35.逆转录reverse transcription36.中心法则(central dogma)37.锌指结构Zinc finger38.反式作用因子trans-acting factor39.顺式作用元件cis-acting element40.分子伴侣(molecular chaperone)41. PCR技术(polymerase chain reaction)42.分子杂交(molecular hybridization)(二)填空题1.DNA双螺旋结构模型是_________于____年提出的。
分子生物学名词解释英文
1.DNA Denaturation(变性) When duplex DNA molecules are subjected to conditions of pH ,temperature,or ionic strength that disrupt base-paring interactions, the DNA molecule has lost its’native conformation, and double helix DNA is separated to single strand DNA as individual randome coils.That is, the DNA is denatured.2.Renaturation(复性)Removing the denaturation factors slowly or in proper conditions, the denaturedDNA (ssDNA) restore native structure (dsDNA) and functions. This process is dependent on both DNA concentration and time.3.Hybridization (核酸分子杂交)when heterogeneous DNA or RNA are put together, they will become toheteroduplex via the base-pairing rules during renaturation if they are complementary in parts (not completely). This is called molecular hybridization.4.Hyperchromic effect (增色效应)The absorbance at 260 nm of a DNA solution increases when thedouble helix is separated into single strands because of the bases unstack.5.Ribozyme (核酶)are the RNA molecules with catalytic activity. The activity of these ribozymes ofteninvolves the cleavage of a nucleic acid.6.De novo synthesis (从头合成)De novo synthesis of nucleotides begins with their metabolic precursors:amino acids, ribose-5-phosphate, one carbon units, CO2. mostly in liver.7.Salvage pathways (补救合成)Salvage pathways recycle the free bases and nucleosides released fromnucleic acid breakdown. Mostly in brain and marrow.8.Semi-conservative replication (半保留复制)DNA is synthesized by separation of the strands of aparental duplex, each then acting as a template for synthesis of a complementary strand based on the base-paring rule. Each daughter molecule has one parental strand and one newly synthesized strand. 9.Telomere(端粒):Specialized structure at the end of a linear eukaryotic chromosome, which consists ofproteins and DNA, tandem repeats of a short G-rich sequence on the 3 ' ending strand and its complementary sequence on the 5' ending strand, allows replication of the extreme 5' ends of the DNAwithout loss of genetic information and maintains the stability of eukaryote chromosome.10.Telomerase(端粒酶)An RNA-containing reverse transcriptase that using the RNA as a template, addsnucleotides to the 3 ' ending strand and thus prevents progressive shortening of eukaryotic linear DNA molecules during replication.11.Reverse transcription (逆转录)Synthesis of a double-strand DNA from an RNA template.12.Reverse transcriptase (逆转录酶)A DNA polymerase that uses RNA as its template.activity: RNA-dependent DNA polymerase; RNAse H;DNA-dependent DNA polymerase13.The central dogma (中心法则)It described that the flow of genetic information is from DNA to RNA andthen to protein. According to the central dogma, DNA directs the synthesis of RNA, and RNA then directs the synthesis of proteins.14.asymmetric transcription(不对称转录)1..Transcription generally involves only short segments of aDNA molecule, and within those segments only one of the two DNA strands serves as a template.2.The template strand of different genes is not always on the same strand of DNA. That is, in anychromosome, different genes may use different strands as template.15.template strand (模板链)The DNA strand that serves as a template for transcription. (The relationshipbetween template and transcript is base paring and anti-parallel)16.non-template strand (or coding strand)(编码连)The DNA strand that opposites to the templatestrand.(Note that it has the same sequence as the synthesized RNA, except for the replacement of U with T )17.promoter i s the DNA sequence at which RNA polymerase binds to initiate transcription. It is alwayslocated on the upstream of a gene.18.Split genes (断裂基因)Split genes are those in which regions that are represented in mature mRNAs orstructural RNAs (exons) are separated by regions that are transcribed along with exons in the primary RNA products of genes, but are removed from within the primary RNA molecule during RNA processingsteps (introns).19.Exon(外显子) can be expressed in primary transcript and are the sequences that are represented inmature RNA molecules, it encompasses not only protein-coding genes but also the genes for various RNA (such as tRNAs or rRNAs)20.Intron(内含子)can be expressed and be the intervening nucleotide sequences that are removed fromthe primary transcript when it is processed into a mature RNA.21.Spliceosome(剪切体)A multicomponent complex contains proteins and snRNAs that are involved inmRNA splicing.22.Translation(翻译)The process of protein synthesis in which the genetic information present in anmRNA molecule (transcribed from DNA) determines the sequence of amino acids by the genetic codons.Translation occurs on ribosomes.23.genetic codon(密码子)The genetic code is a triplet code read continuously from a fixed starting pointin each mRNA, also called triplet. Genetic code defines the relationship between the base sequence of mRNA and the amino acid sequence of polypeptide.24.Degeneracy of code(密码子简并性)One codon encodes only one amino acid;More than 2 codons can encode the same amino acid;Most codons that encode the same amino acid have the difference in the third base of the codon.25.ORF(开放阅读框架)The nucleotideacids sequences in mRNA molecule from 5’AUG to 3’stop codon(UAA UAG UGA). It consists of a group of contiguous nonoverlapping genetic codons encoding a whole protein. Usually, it includes more than 500 genetic codons.26.Shine-Dalgarno sequence(SD)is a sequence upstream the start codon in prokaryotic mRNA that canbase pairs to a •UCCU•sequence at or very near the 3' end of 16S rRNA, thereby binding the mRNA and small ribosomal subunit by each other.27.Polyribosome(多聚核糖体)Ribosomes(10~100) are tandemly arranged on one mRNA and move in thedirection of 5’to 3’.Such a complex of one mRNA and a number ofribosomes is called polyribosome.28.signal peptide(信号肽)It is a short conservative amino terminal sequence (13~36AA) that exists ona newly synthesized secretory protein. It can direct this protein to a specific locationwithin the cell. It is subsequently cleaved away by signal peptidase; also called signal sequence and targeting sequence.29.Operon(操纵子): Bacteria have a simple general mechanism for coordinating the regulation of geneswhose products are involved in related processes: the genes are clustered on the chromosome and transcribed together. Most prokaryotic mRNAs are polycistronic. The single promoter requi red to initiate transcription of the cluster is the point where expression of all of the genes is regulated. The gene cluster, the promoter, and additional sequences that function in regulation are together called an operon. Operons that include 2 to 6 genes transcribed as a unit are common; some operons contain 20 or more genes.30.Housekeeping gene(管家基因)Genes that are expressed at a fairly consistent level throughout the cellcycle and from tissue to tissue. Usually involved in routine cellular metabolism. Often used for comparison when studying expression of other genes of interest.31.Trans-acting factors(反式作用因子):Usually considered to be proteins, that bind to the cis-actingsequences to control gene expression. The properties of different trans-acting factors:subunits of RNA polymerasebind to RNA Polymerase to stabilize the initiation complexbind to all promoters at specific sequences but not to RNA Polymerase (TFIID factor which binds to the TATA box)bind to a few promoters and are required for transcription initiation32.Cis-acting elements(顺式作用元件):DNA sequences in the vicinity of the structural portion of a genethat are required for gene expression. The properties of different cis-acting elements:contain short consensus sequencesmodules are related but not identicalnot fixed in location but usually within 200 bp upstream of the transcription start sitea single element is usually sufficient to confer a regulatory responsecan be located in a promoter or an enhancerassumed that a specific protein binds to the element and the presence of that protein is developmentally regulated33.Southern blotting:Genomic DNA (from tissues or cells) are cut by RE, separated by gelelectrophoresis and denatured in solution, then transferred to a nitrocellulose membrane for detecting specific DNA sequence by hybridization to a labeled probe. It can be used to quantitative and qualitative analyze genomic DNA, or analyze the recombinant plasmid and bacteriophage (screening DNA library).34.Northern blotting: RNA samples (from tissues or cells) are separated by gel electrophoresis anddenatured in solution, then transferred to a nitrocellulose membrane for detecting specific sequence by hybridization to a labeled probe. It can be used to detect the level of specific mRNA in some tissues (cells) and to compare the level of same gene expression in different tissues (cells) or at different development period.35.Western blotting:rotein samples are separated by PAGE electrophoresis, then electro-transferred to NCmembrane. The proteins on NC membrane hybridize with a specific antibody (1st antibody ), then the target protein binding with antibody is detected with a labeled secondary antibody (2nd antibody).Also called immunoblotting. It can be used to detect the specific protein, semi-quantify specific protein, etc.36.PBlotting technique(印迹):Transfer (blot) biological macromolecules separated in the gel and fix themto nitrocellulose/nylon membrane by diffusion, electro-transferring or vacuum absorption, then detectit.37.Nucleic acid probe(探针):DNA or RNA fragment labeled with radioisotope, biotin orfluorescent, is used to detect specific nucleic acid sequences by hybridization38.PCR: PCR is a technique for amplifying a specific DNA segment in vitro. The reaction system includeDNA template, T aq DNA pol, dNTP,short oligonucleotide primers, buffer containing Mg2+. The process including 3 steps: denature, annealing, extension39.DNA coloning(克隆):T o clone a piece of DNA, DNA is cut into fragments using restriction enzymes. Thefragments are pasted into vectors that have been cut by the same restriction enzyme to form recombinant DNA. The recombinant DNA are needed to transfer and maintain DNA in a host cell. This serial process and related technique are called DNA coloning or genetic engineering.40.Genomic DNA library(基因组DNA文库) A genomic library is a set of clones that together representsthe entire genome of a given organism. The number of clones that constitute a genomic library depends on (1) the size of the genome in question and (2) the insert size tolerated by the particular cloning vector system. For most practical purposes, the tissue source of the genomic DNA is unimportant because each cell of the body contains virtually identical DNA (with some exceptions).41.cDNA library(cDNA文库):A cDNA library represents a sample of the mRNA purified from a particularsource (either a collection of cells, a particular tissue, or an entire organism), which has been converted back to a DNA template by the use of the enzyme reverse transcriptase. It thus represents the genes that were being actively transcribed in that particular source under the physiological, developmental, or environmental conditions that existed when the mRNA was purified.42.α-complementation(α互补):Some plasmid vectors such as pUC19 carry the alpha fragment of the lacZ gene. The alpha fragment is the amino-terminus of the beta-galactosidase. Typically, the mutant E. coli host strain only carry the omega fragment, which is the carboxy-terminus of the protein. Either omegaor alpha fragment alone is nonfunctional. When the vector containing lac Z introduced into mutant E.coli, both the alpha and omega fragments are present there is an interaction and a functionally intact beta-galactosidase protein can be produced. This interaction is called alpha complementation.43.Secondary messenger(第二信使) are some small signal molecules that are generated in the cell inresponse to extracellular signals. They can activate many other downstream components. The most important second messengers are: Ca2+, cAMP, cGMP, DAG, IP3, Cer, AA and its derivatives, etc.44.Adaptor protein(衔接蛋白)A specialized protein that links protein components of the signalingpathway, These proteins tend to lack any intrinsic enzymatic activity themselves but instead mediate specific protein-protein interaction that drive the formation of protein complexes.45.Scaffolding protein(支架蛋白)A protein that assembles interacting signaling proteins intomultimolecular, it recruits downstream effectors in a pathway and enhances specificity of the signal. 46.Oncogene(癌基因)A gene whose product is involved either in transforming cells in culture or ininducing cancer in animals including virus oncogene(v-onc)and cellular-oncogene(c-onc )。
醇和醚
醇的物理性质、 第四节 醇的物理性质、光谱特征 一 物理性质
醇分子之间能形成氢键。 醇分子之间能形成氢键。 固态,缔合较为牢固。液态, 固态,缔合较为牢固。液态,形成氢键和氢键的解离 均存在。气态或在非极性溶剂的稀溶液中,醇分子可以单 均存在。气态或在非极性溶剂的稀溶液中, 独存在。 独存在。 由于醇分子之间能形成氢键, 由于醇分子之间能形成氢键,沸点较相应分子量的烷 烃高。 烃高。 由于醇分子与水分子之间能形成氢键, 由于醇分子与水分子之间能形成氢键,三个碳的醇和 叔丁醇能与水混溶。 叔丁醇能与水混溶。
光谱特征(参见第八章) 二 光谱特征(参见第八章)
醇化物(结晶醇) 三 醇化物(结晶醇)
低级醇与一些无机盐形成的结晶状分子化合物称之为结晶 低级醇与一些无机盐形成的结晶状分子化合物称之为结晶 也称之为醇化物 醇化物。 醇,也称之为醇化物。 MgCl2 6CH3OH 注意 许多无机盐 不能作为醇 的干燥剂。 的干燥剂。 CaCl2 4C2H5OH 工业乙醚常杂有 少量乙醇, 少量乙醇,加入 CaCl2可使醇从 乙醚中沉淀下来。 乙醚中沉淀下来。
HOCH2CHCH2OH OH
HOCH2CH2OH
二
R C R'
OH OH
-H2O
R R'
C O
RCH
OH OH
-H2O
RCHO
OH R C OH OH
-H2O
RCOOH
第二节 醇的命名 衍生物命名法(看作甲醇的衍生物) 一 衍生物命名法(看作甲醇的衍生物)
CH3 (CH3)2CHCHOH
甲基异丙基甲醇 甲基异丙基甲醇
CH3
HBr
H H
Br Br CH3
(dl) ) H+
ffpe修复试剂盒原理
ffpe修复试剂盒原理标题:FFPE修复试剂盒原理与应用引言:FFPE(Formalin-fixed, Paraffin-embedded)是病理学中常用的一种组织处理方法,其通过固定和包埋的方式,使组织得以长期保存。
然而,这种处理方式会使得DNA、RNA等生物分子发生交联反应,影响后续的分子生物学实验。
因此,需要使用FFPE修复试剂盒进行修复。
本文将详细阐述FFPE修复试剂盒的工作原理及其在科研中的重要应用。
一、FFPE修复试剂盒原理FFPE修复试剂盒主要通过两种方式进行修复:酶解法和热解法。
1. 酶解法:这种方法主要是利用酶的作用来切割DNA的交联键。
常用的酶包括尿素酶、蛋白酶K等。
这些酶能够特异性地识别并切割DNA上的交联键,从而恢复DNA的正常结构。
然而,酶解法的缺点是效率较低,且可能对DNA造成额外的损伤。
2. 热解法:这种方法主要是利用高温来打破DNA的交联键。
通常情况下,将FFPE样本置于90-95℃的水中加热,可以有效地破坏DNA的交联键。
然而,热解法的缺点是可能导致DNA的降解,尤其是在高温下长时间处理时。
二、FFPE修复试剂盒的应用FFPE修复试剂盒在科研中的应用非常广泛,主要包括以下几个方面:1. 基因测序:基因测序是研究基因功能的重要手段,但FFPE处理后的样本由于DNA的交联反应,无法直接用于基因测序。
通过FFPE修复试剂盒进行修复后,可以有效地恢复DNA的正常结构,从而实现基因测序。
2. 蛋白质组学:蛋白质组学是研究蛋白质功能的重要手段,但FFPE处理后的样本由于蛋白质的交联反应,无法直接用于蛋白质组学研究。
通过FFPE修复试剂盒进行修复后,可以有效地恢复蛋白质的正常结构,从而实现蛋白质组学研究。
3. 免疫组化:免疫组化是研究蛋白质表达的重要手段,但FFPE处理后的样本由于蛋白质的交联反应,无法直接用于免疫组化。
通过FFPE修复试剂盒进行修复后,可以有效地恢复蛋白质的正常结构,从而实现免疫组化。
药物分析常用英语词汇
药物分析专业英语词汇表Aabsorbance 吸收度absorbance ratio 吸收度比值absorption 吸收absorption curve 吸收曲线absorption coefficient 吸收系数accurate value 准确值Acid—dye colormcty 酸性染料比色法acidimcty 酸量法acidity 酸度activity 活度adjusted retention time 调整保留时间absorbent 吸收剂absorption吸附alkalinity 碱度alumina 氧化铝,矾土ambient temperature 室温ammonium thiocyanate 硫氰酸铵analytical quality control 分析质量控制anhydrous substance 干燥品antioxidant 抗氧剂application of sample 点样area normalization method 面积归一法arsenic砷arsenic sport 砷斑assay 含量测定assay tolerance 含量限度attenuation 衰减acid burette 酸式滴定管alkali burette 碱式滴定管a mortar 研钵Bback extraction 反萃取band absorption 谱带吸收batch 批batch number 批号Benttendorlf method 白田道夫法between day precision 日间密度精biotransformation 生物转化blank test 空白试验boiling range 沸程British Pharmacopeia 英国药典bromate titration 溴酸盐滴定法bromine method 溴量法bromothymol blue 溴麝香酚蓝bulk drug 原料药by—product 副产物breaker 烧杯burette glass bead nozzle 滴定管brown acid burette 棕色酸式滴定管Ccalibration curve 校正曲线calomel electrode 甘汞电极calorimetry 量热分析capacity factor 容量因子capillary gas chromatography 毛细管气相色谱法carrier gas 载气characteristics description 性状chelate compound 螯合物chemical equivalent 化学当量Chinese pharmacopeia 中国药典Chinese material medicine 中成药Chinese material midical preparation 中药制剂chiral 手性的chiral carbon atom 手性碳原子chromatogram 色谱图chromatography 色谱法chromatographic column 色谱柱chromatographic condition 色谱条件clarity 澄清度coefficient of distribution 分配系数coefficient of variation 变异系数color change interval 变色范围color reaction 显色反应colormetry 比色法column efficiency 柱效column temperature 柱温comparative test 比较试验completeness of solution 溶液的澄清度conjugate 缀合物concentration—time curve 浓度时间曲线confidence interval 置信区间confidence level 置信水平controlled trial 对照试验correlation coefficient 相关系数contrast test 对照试验congealing point 凝点content unifarmity装量差异controlled trial 对照试验correlation coefficient 相关系数contrast test 对照试验counter ion 反离子cresal red 甲酚红cuvette cell 比色池cyanide氰化物casserole small 勺皿Ddead—stop titration 永定滴定法dead time 死时间deflection 偏差deflection point 拐点degassing 脱气deionized water 去离子水deliquescence 潮解depressor substances test 降压物质检查法desiccant 干燥剂detection 检查developing reagent 展开剂developing chamber 展开室deviation 偏差dextrose 右旋糖diastereoisomer 非对映异构体diazotization 重氮化differential thermal analysis 差示热分析法differential scanning calorimetry 差示扫描热法Gutzeit 古蔡day to day precision 日间精密度dissolution 溶出度direct injection 直接进样2,6-dichlorindophenol titration 2,6-二氯靛酚滴定法digestion 消化diphastic titration 双向滴定disintegration test 崩解试验dispersion 分散度dissolubility 溶解度dissolution test 溶解度检查distilling range 滴程distribution chromatography 分配色谱dose 剂量drug quality control 药品质量控制drying to constant weight 干燥至恒重duplicate test 重复试验disk method water method 压片法Eeffective constituent 有效成分effective plate number 有效板数effective of column 柱效electrophoresis 电泳elimination 消除eluate 洗脱液elution 洗脱enamtiomer 对映体end absorption 末端吸收endogenous substances 内源性物质enzyme drug 酶类药物enzyme induction 酶诱导enzyme inhibition 酶抑制epimer 差向异构体equilibrium constant 平衡常数error in volumetric analysis 容量分析误差exclusion chromatography 排阻色谱法expiration date 失效期external standard method 外标法extract 提取物extration gravimetry 提取重量法extraction titration 提取容量法extrapolated method外插法Erlenmeyer flask 锥形瓶evaporating dish small 蒸发皿elongated bulb 胖肚electronic balance MettlerAL204 MettlerAL204电子天平Ffactor 系数fehling’s reaction 斐林实验filter 过滤fineness of the particles 颗粒细度flow rate 流速fluorescent agent 荧光剂fluorescence spectrophotometry 荧光分光光度法fluorescence detection 荧光检测器fluorescence analysis 荧光分析法foreign pigment 有色杂质formulary 处方集free 游离freezing test 冻结试验fused silica 熔融石英filter paper 滤纸Ggas chromatography 气相色谱法gas-liquid chromatography 气液色谱法gas purifier 气体净化器General identification test 一般鉴别试验general notices 凡例General requirements (药典) 通则good clinical practices 药品临床管理规范good laboratory practices 药品实验室管理规范good manufacturing practices(GMP) 药品生产质量管理规范good supply practices(GSP) 药品供应管理规范gradient elution 梯度洗脱grating 光栅gravimetric method 重量法Gutzeit test 古蔡(检砷)法glass funnel long stem 玻璃漏斗grad cylinder 量筒glass rod 玻棒graduated pipettes 刻度吸管GC 气相色谱Hheavy metal 重金属half peak width 平峰宽heat conductivity 热导率height equivalent to a theoretical plate 理论塔板高度height of an effective plate 有效塔板高度high-performance liquid chromatography (HPLC)高效液相色谱法high-performance thin-layer chromatography (HPTLC)高效薄层色谱法hydrate 水合物hydrolysis 水解hydrophilicity 亲水性hydrophobicity 疏水性hydroxyl value 羟值hyperchromic effect 浓色效应hypochromic effect 淡色效应HHS-type constant temperature water bath HHS型恒温水锅HPLC 高效液相色谱法Iidentification 鉴别ignition to constant weight 灼烧至恒重immobile phase 固定相immunoassay 免疫测定impurity 杂质inactivation 失活index 索引indicator electrode 指示电极indicator 指示剂inhibitor 抑制剂injecting septum 进样隔膜胶垫instrumental analysis 仪器分析injection value 进样阀insulin assay 胰岛素生物检测法integrator 积分仪intercept 截距interface 接口internal standard substance 内标物质International unit 国际单位in vitro 体外in vivo 体内iodide 碘化物iodoform reation 碘仿反应iodometry 碘量法ion pair chromatography 离子对色谱ion suppression 离子抑制ion suppression 离子抑制ionic strength 离子强度ion-pairing agent 离子对试剂ionization 电离isoabsorptive point 等吸收点isocratic elution 等溶剂组成洗脱isoelectric point 等电点isoosmotic solution 等渗溶液irreversible indicator 不可逆指示剂irreversible potential 不可逆电位KKarl Fischer titration 卡尔-费舍尔滴定Kjeldahl method for nitrogen 凯氏定氮法Kober reagent 科伯试剂Kovats retention index 科瓦茨保留指数Llabelled amount 标示量leading peak 前延峰leveling effect 均化效应licensed pharmacist 执业药师limit control 限量控制limit of detection 检测限limit of quantitation 定量限limit test 杂质限度试验loss on drying 干燥失重low pressure gradient pump 氧压梯度泵linearity and range 线性及范围linearity scanning 线性扫描luminescence 发光litmus paper 石蕊试纸lyophilization 冷冻干燥Mmain constituent 主成分make-up gas 尾吹气maltol reaction 麦芽酚试验Marquis test 马奎斯试验mass analyzer detector 质量分析检测器mass spectrometric analysis 质谱分析mass spectrum 质谱图mean deviation 平均偏差melting point 熔点melting range 熔距metabolite 代谢物metastable ion 亚稳离子micellar chromatography 胶束色谱法microanalysis 微量分析microcrystal 微晶microdialysis 微透析migration time 迁移时间Millipore filtration 微孔过滤mobile phase 流动相molecular formula 分子式monitor 检测monochromator 单色器monographs 正文Nnatural product 天然产物Nessler’s reagent 碱性碘化汞试液neutralization 中和nitrogen content 总氮量nonaqueous acid-base titration 非水酸碱滴定nonprescription drug ,over the counter drugs 非处方药nonspecific impurity 一般杂质non-volatile matter 不挥发物normal phase 正相normalization 归一化法Nessler color comparison tube 纳氏比色管Onotice 凡例octadecyl silane bonded silicagel 十八烷基硅烷键合硅胶odorless 辛基硅烷odorless 无臭official name 法定名official test 法定试验on-column detector 柱上检测器on-column injection 柱头进样on the dried basis 按干燥品计opalescence 乳浊optical activity 光学活性optical isomerism 旋光异构optical purity 光学纯度organic volatile impurities 有机挥发性杂质orthogonal test 正交试验orthophenanthroline 邻二氮菲outlier 可疑数据overtones 倍频封oxidation-reduction titration 氧化还原滴定oxygen flask combustion 氧瓶燃烧Ppacked column 填充柱packing material 色谱柱填料palladium ion colorimetry 钯离子比色法parent ion 母离子particulate matter 不溶性微粒partition coefficient 分配系数pattern recognition(ppm)百万分之几peak symmetry 峰不对称性peak valley 峰谷peak width at half height 半峰宽percent transmittance 透光百分率pH indicator absorbance ratio method pH指示剂吸光度比值法pharmaceutical analysis 药物分析pharmacopeia 药典pharmacy 药学photometer 光度计polarimetry 旋光测定法polarity 极性polydextran gel 葡聚糖凝胶potentiometer 电位计potentiometric titration 电位滴定法precipitation form 沉淀形式precision 精密度preparation 制剂prescription drug 处方药pretreatment 预处理primary standard 基准物质principal component analysis 主成分分析prototype drug 原型药物purification 纯化purity 纯度pyrogen 热原pycnometer method 比重瓶法plastic wash bottle 洗瓶platform balance 天平pipette 移液管pyknowmeter flasks 容量瓶Qquality control 质量控制quality evaluation 质量评价quality standard 质量标准quantitative determination 定量测定quantitative analysis 定量分析quasi-molecular ion 准分子离子Rracemization 消旋化random sampling 随机抽样rational use of drug 合理用药readily carbonizable substance 易炭化物质reagent sprayer 试剂喷雾剂recovery 回收率reference electrode 参比电极related substance 相关物质relative density 相对密度relative intensity 相对强度repeatability 重复性replicate determination 平行测定reproducibility 重现性residual basic hydrolysis method 剩余碱水解法residual liquid junction potential 残余液接电位residual titration 剩余滴定residuce on ignition 炽灼残渣resolution 分辨率response time 响应时间retention 保留reversed phase chromatography 反相色谱法reverse osmosis 反渗透rinse 淋洗robustness 可靠性round 修约reagent bottles 试剂瓶round bottom flask 圆底烧瓶rubber suction bulb 洗耳球Ssafety 安全性Sakaguchi test 坂口试验salt bridge 盐桥salting out 盐析sample applicator 点样器sample application 点样sampling 取样saponification value 皂化值saturated calomel electrode 饱和甘汞电极selectivity 选择性significant difference 显著性水平significant testing 显著性检验silica get 硅胶silver chloride electrode 氯化银电极similarity 相似性sodium dodecylsulfate 十二基酸钠solid-phase extraction 固相萃取solubility 溶解度specific absorbance 吸收系数specification 规格specificity 专属性specific rotation 比旋度specific weight 比重spiked 加入标准的split injection 分流进样spray reagent 显色剂stability 稳定性standard color solution 标准比色液standard deviation 标准差standardization 标定standard substance 标准品statistical error 统计误差sterility test 无菌试验stock solution 储备液stoichiometric point 化学计量点storage 贮藏stray light 杂散光substrate 底物substituent 取代基sulfate 硫酸盐sulphated ash 硫酸盐灰分support 载体suspension 旋浊度swelling degree 膨胀度symmetry factor 对称因子systematic error 系统误差separating funnel 分液漏斗stopcock 玻璃活塞scissors 剪刀spirit lamp 酒精灯silica gel G thin layer 硅胶G薄层板Ttable 片剂tailing factor 拖尾因子tailing peak 拖尾峰test solution 试液thermal analysis 热分析法thermal conductivity detector 热导检测器thermogravimetric analysis 热重分析法The United States Pharmacopoeia 美国药典The Pharmacopoeia of Japan 日本药局方thin layer chromatography 薄层色谱thiochrome reaction 硫色素反应thymol 百里酚thymolphthalein 百里酚酞titer 滴定度three-dimensional chromatogram 三维色谱图titrant 滴定剂titration error 滴定误差titrimetric analysis 滴定分析法tolerance 容许限total ash 总灰分total quality control 全面质量控制traditional drugs 传统药traditional Chinese medicine 中药turbidance 浑浊turbidimetric assay 浊度测定法turbidimetry 比浊度turbidity 浊度Uultracentrifugation 超速离心ultraviolet irradiation 紫外线照射undue toxicity 异常毒性uniform design 均匀设计uniformity of dosage units 含量均匀度uniformity of volume 装量均匀性uniformity of weight 重量均匀性Vvalidity 可靠性variance 方差viscosity 粘度volatile oil determination apparatus 挥发油测定器volatilization 挥发性volumetric analysis 容量分析volumetric solution 滴定液volumetric flasks 比重瓶Wwave length 波长wave number 波数weighing bottle 称量瓶weighing form 称量形式well-closed container 密闭容器white board 白瓷板Xxylene cyanol blue FF 二甲苯蓝FF xylenol orange 二甲酚橙ZZigzag scanning 锯齿扫描zwitterions 两性离子Zymolysis 酶解作用zone electrophoresis 区带电泳。
医药行业生化重要概念解释
医药行业生化重要概念解释生化重要概念说明1 重要概念说明A Abundance (mRNA 丰度):指每个细胞中mRNA 分子的数目。
Abundant mRNA(高丰度mRNA):由少量不同种类mRNA组成,每一种在细胞中显现大量拷贝。
Acceptor splicing site (受体剪切位点):内含子右末端和相邻外显子左末端的边界。
Acentric fragment(无着丝粒片段):(由打断产生的)染色体无着丝粒片段缺少中心粒,从而在细胞分化中被丢失。
Active site(活性位点):蛋白质上一个底物结合的有限区域。
Allele(等位基因):在染色体上占据给定位点基因的不同形式。
Allelic exclusion(等位基因排斥):形容在专门淋巴细胞中只有一个等位基因来表达编码的免疫球蛋白质。
Allosteric control(别构调控):指蛋白质一个位点上的反应能够阻碍另一个位点活性的能力。
Alu-equivalent family(Alu 相当序列基因):哺乳动物基因组上一组序列,它们与人类Alu 家族相关。
Alu family (Alu 家族):人类基因组中一系列分散的相关序列,每个约300bp长。
每个成员其两端有Alu 切割位点(名字的由来)。
α-Amanitin(鹅膏覃碱):是来自毒蘑菇Amanita phalloides 二环八肽,能抑制真核RNA聚合酶,专门是聚合酶II 转录。
Amber codon (琥珀密码子):核苷酸三联体UAG,引起蛋白质合成终止的三个密码子之一。
Amber mutation (琥珀突变):指代表蛋白质中氨基酸密码子占据的位点上突变成琥珀密码子的任何DNA 改变。
Amber suppressors (琥珀抑制子):编码tRNA的基因突变使其反密码子被改变,从而能识别UAG 密码子和之前的密码子。
Aminoacyl-tRNA (氨酰-tRNA):是携带氨基酸的转运RNA,共价连接位在氨基酸的NH2 基团和tRNA 终止碱基的3¢或者2¢-OH 基团上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rX iv:808.1447v 1 [h e p -p h ] 11 A u g 2008Confinement-Deconfinement Phase Transition in Hot and Dense QCD at Large N cAriel R.ZhitnitskyDepartment of Physics and Astronomy,University of British Columbia,Vancouver,CanadaWe conjecture that the confinement-deconfinement phase transition in QCD at large numberof colors N and N f ≪N at T =0and µ=0is triggered by the drastic change in θbehavior.The conjecture is motivated by the holographic model of QCD where confinement -deconfinementphase transition indeed happens precisely at the value of temperature T =T c where θdependenceexperiences a sudden change in behavior[1].The conjecture is also supported by quantum field theoryarguments when the instanton calculations (which trigger the θdependence)are under completetheoretical control for T >T c ,suddenly break down immediately below T <T c with sharp changesin the θdependence.Finally,the conjecture is supported by a number of numerical lattice results.We employ this conjecture to study confinement -deconfinement phase transition of dense QCD atlarge µin large N limit by analyzing the θdependence.We find that the confinement-deconfinementphase transition at N f ≪N happens at very large quark chemical potential µc ∼√1See [9]and references therein for earlier discussions on the subject.calculations are justified which is obviously not the case for T <T c .Therefore,it is naturally to associate sharp changes in θbehavior with confinement-deconfinement transition,just as in the holographic model[1].There is a very narrow window of temperatures in deconfined phase,0<(T −T c )/T c ≤1/N when the instanton expansion is not valid.This vicinity of T c is extremely interesting,see our comments about physics in this region in conclusion.This region shrinks to a point at N =∞.The main goal of this paper is to apply this criteria to the region with large chemical potential at large N and N f ≪N and make a specific prediction on magnitude µc (T )for confinement-deconfinement transition line at large µand sufficiently small T ≪µ.The corresponding estimation of µc (T )is based on well-developed instanton calculus in deconfined phase where dilute gas approximation is justified.The plan of the paper is as follows.We start in Section II by reviewing recent work [1]on estimation T c using instanton calculus.We also present a picture explaining how and why two apparently different phenomena (sharp changes in θand confinement-deconfinement transition)may in fact be tightly linked.In section III we apply the same technique to argue that the confinement-deconfinement phase transition happens at very large quark chemical potential µc ∼√3ln πT3ln πT cT c ),1≫ T −T c3and T c (N =∞)≃0.53ΛQCD are estimated at one loop level.Such a behavior does imply that thedilute gas approximation is justified even in close vicinity of T c as long as T −T c N .Therefore,the θdependence,which is sensitive to the topological fluctuations is determined by (3)all the way down to the temperatures very close to the phase transition point from above,T =T c +O (1/N ).The topological susceptibility is order of one for T <T c in confined phase while it vanishes ∼e −γN →0for T >T c in deconfined phase.Non topological quantum fluctuations on the other hand could be quite large in this region,but they do not effect the structure of eq.(3).We do anticipate,of course,that the perturbative corrections in the instanton background may change our numerical estimate for T c and α.However,we do not expect that a qualitative picture of the phase transition may be affected as a result of these corrections.We note that the lattice numerical computations [4]-[8]do suggest that the topological fluctuations are strongly suppressed in deconfined phase immediately above T c ,and this suppression becomes more severe with increasing N starting from physically relevant case N =3.Holographic QCD also supports this picture[1].We do not expect any changes in the picture when small number of flavors N f ≪N are introduced into the system 2.There are three basic reasons for a generic structure (1,2,3)to emerge:1.The presence of the exponentially large “T−independent”contribution (e.g.e +1.86N in eq.(1)).This term basically describes the entropy of the configuration.It is due to a number of contributions such as a number of embedding SU (2)into SU (N )etc;2.The presence of the “T −dependent”contribution to V inst (θ)which comes from n (ρ)dρintegration,see below(8).It is proportional toΛQCD 3N=exp −11ΛQCD .(4)3.The fermion related contributions such as a chiral condensate,diquark condensate or non-vanishing mass termenter the instanton density as follows ∼ ¯ψψ N f ∼e N ·(κln | ¯ψψ |).For κ≡N f 4Nπ2T 2c(µ=0) ,µ≪πT c ,N f ≪N.(5)As expected,µdependence goes away in large N limit in agreement with general large N arguments[10].This formula is in excellent agreement with numerical computations [11,12,13]which show very little changes of the critical temperature T c with µfor sufficiently small chemical potential.In particular,even for the case N f =2,N =3where the expression (5)is not expected to give a good numerical estimate,it still works amazingly well even for N =3.Indeed,the result quoted in [11]can be written asT c (µ)lat =T c (µ=0)lat 1−0.500(67)µ22µ2N ΛQCD .Innext section we confirm this expectation by a direct computations of µc (T =0)where we predict that the confinement -deconfinement phase transition happens at very large µc (T =0)≃√that one can redefine the fermi fields in the chiral limit such that θparameter completely disappears from the partition function.Our discussions of θdependence in this paper deals exclusively with the dynamics of gluons when light fermion degrees of freedom are frozen such that essentially we analyze the θdependence in gluodynamics rather than in full QCD.In different words,we assume a quenched approximation for N f ≪N even when chemical potential µis not zero.Precisely the θdependence in quenched approximation plays a crucial role in understanding of the dynamics of strongly interacting dynamics of gluons which are responsible for the phase transition.To be more precise,by studying the coefficient in front of cos θin deconfined phase we trigger the point of the phase transition when this coefficient is suddenly blows up–at this point the θdependence must drastically change.The sharp changes of this coefficient ∼V inst (θ)we identify with complete reconstruction of the ground state,drastic changes of the relevant gluon configurations,and finally,with confinement-deconfinement phase transition.One should also remark here that the assumption made in [1]on non-vanishing chiral condensate in vicinity T >T c as a holographic model of QCD suggests,is not crucial for our arguments to hold.This is because one can introduce a non-zero quark mass m q =0to avoid identical vanishing of V inst (θ).It does not effect any of our estimates as long as N f ≪N as all such changes lead to a sub leading 1/N corrections,see item 3.below.responsible for sharpθchanges must also play a significant role in confined phase at T<T c.On the other hand,at T>T c the dilute instantons completely determine theθdependence(3)while at T<T c the small size instantons obviously can not provide confinement[14].How can this be consistent with our conjecture that these two things must be linked?We note that quark confinement can not be described in the dilute gas approximation,when the instantons and anti-instantons are well separated and maintain their individual properties(sizes,positions,orientations),as it happens at large T>T c.However,in strongly coupled theories the instantons and anti-instantons lose their individual properties(instantons will“dissociate”)their sizes become very large and they overlap.The relevant description is that of instanton-quarks3,the quantum objects with fractional topological charges±1/N which become the dominant quasi-particles.The instanton quarks carry,along with fractional topological charges,the fractional1/N magnetic charges which are capable to propagate far away from instantons-parents being strongly correlated with each other. For such configurations the confinement is a possible outcome of the dynamics.It makes the instanton quarks to become the perfect candidates to serve as the dynamical magnetic monopoles,the crucial element of the standard ’t Hooft and Mandelstam picture for the confinement[17,18].This basically represents our proposal for the answer on the question formulated above.One should emphasize that our arguments(that the instantons dissociate into instanton quarks in confined phase)are not based on any semiclassical analysis performed in strongly coupled regime. Rather,they are based on the following observation.The dimensionality of the moduli space of the relevant statistical ensemble precisely coincides with the corresponding k instanton measure4Nk with k being integer.This“coincidense”holds for any gauge group G,not limited to SU(N)case[19].Similar picture on dissociation of the instantons into instanton quarks in confined phase has been also recently advocated in[20],[21],see our comments on these papers in[1].The main lesson of this section can be formulated as follows:we presented a number of arguments suggesting that our proposal(which relates two naively unrelated phenomena:confinement-deconfinement phase transition and drastic changes inθbehavior)is consistent with all previously known studies.In particular,it includes:•lattice computations of topological susceptibility in the vicinity of the phase transition[4,5,6,7,8];•lattice computations of the critical temperature T c(µ)as a function ofµat smallµ[11,12,13];•analysis of the holographic models of QCD in vicinity of the phase transition at nonzero temperature[1,22,23].In such circumstances when the outcome which follows from the basic conjectured principle agrees with all known results,one should naturally try to extend the corresponding analysis to the regions in the parametrical space which are presently not accessible for study by other means.To be more specific,we want to analyze the confinement-deconfinement phase transition at very large chemical potentialµ≥ΛQCD when available technique does not allow to perform the lattice computations.One should also note that presently available holographic models of QCD also can not address this question.With this motivation in mind we want to analyze confinement-deconfinement phase transition at large chemical potential and compare the obtained results with corresponding analysis[2,3]which is based on fundamentally different starting point.III.CONFINEMENT-DECONFINEMENT PHASE TRANSITION IN DENSE QCD AT LARGE N.In this section we estimate the value ofµc where the instanton expansion breaks down and therefore,theθdepen-dence should experiences a sharp change.According to our conjecture we should identify this place with the phase transition point.Similar arguments have been put forward previously[24]for numerical estimation ofµc for small N,N f=2,3,see also review talk on this subject[25].Our goal here is quite different:we want to understand an analytical dependence ofµc(N,N f)as a function of N,N f at very large N andfinite N f≪N in order to compare with results of refs.[2,3]where the authors presented a very strong argument suggesting a very largeµc∼√3Instanton quarks originally appeared in2d ly,using an exact accounting and resummation of the n-instanton solutions in2d CP N−1models,the original problem of a statistical instanton ensemble was mapped unto a2d-Coulomb Gas(CG)system of pseudo-particles with fractional topological charges∼1/N[15].This picture leads to the elegant explanation of the confinement phase and other important properties of the2d CP N−1models[15].Unfortunately,similar calculations in4d gauge theories is proven to be much more difficult to carry out[16].have any support from the lattice computations,nor from holographic models.Still,the basic governing principle remains the same.Therefore we identify the point where instanton expansion breaks down (and correspondingly a point where a simple cos θsharply changes to something else)with the point µc where the phase transition happens.In our estimates below we assume that the color superconducting phase isrealizedindeconfinedphaseforall N ,see e.g.recent review [26].It is known though that for extremely large N =∞one could expect that another phase is more energetically favorable[27].Still,for all reasonably large N the color superconducting phase prevails [28].In any case,the difference between the two options would lead to a sub-leading 1/N corrections as explained in item 3above.As we shall see below,the instanton density in deconfined phase has the following generic behavior,∼cos θexp [−Nγ(µ)],where γ(µ)∼const.+0(1/N )in large N limit.Such a behavior implies that for any small (but finite)positive γ>0the instanton density is exponentially suppressed and our calculations are under complete theoretical control.In contrast:at arbitrary small and negative γ<0the instanton expansion obviously breaks down,theoretical control is lost as an exponential growth ∼exp (|γ|N )for the instanton density makes no sense.The θbehavior must drastically change at this point.Therefore,the value of µc is determined by the following condition,γ(µ=µc )=0=⇒µc =c ΛQCD .(6)Our goal is to compute the coefficient c by approaching the critical point µc from deconfined side of phase boundary.Therefore,we will be interested in the instanton density in the dilute gas regime at µ>µc where analytical instanton calculations are under control.As we already mentioned in footnote 2,pg.2the θdependence goes away in full QCD in both phases:confined as well as deconfined in the presence of the massless chiral fermions.However we are interested in the magnitude of the instanton contribution ∼V inst (θ)in deconfined phase rather than in θdependence of full QCD.Precisely this coefficient triggers the point where the instanton expansion suddenly blows up.The sharp changes in V inst (θ)we identify with complete reconstruction of the ground state,drastic changes of the relevant gluon configurations,and finally,with confinement-deconfinement phase transition.To avoid identical vanishing of V inst (θ)in the presence of massless fermions one can assume a non zero chiral condensate in deconfined phase,as it has been done for hot matter in[1]with motivation from holographic model of QCD.Also,one can assume a non-vanishing masses m q =0for the fermions,or non-vanishing diquark condensate ψψ =0to avoid identical vanishing of V inst (θ)for dense matter at large µ.None of these assumptions effects any numerical estimates given below in the limit N →∞,N f ≪N ,as all these assumptions lead to a sub-leading effects ∼1/N which will be ignored in what follows.We shall see in section IV that such kind of assumptions indeed play a crucial role but only when N f ∼N .To be definite,we assume that the non-vanishing diquark condensate ψψ =0develops for µ>µc .A precise magnitude of the diquark condensate is not essential for our calculations as it effects only sub-leading terms ∼1/N which will be consistently ignored in what follows.The instanton-induced effective action for N f massless fermions can be easily constructed.In particular,for N f =2flavors,u,d the corresponding expression takes the following form,[29,30,31,32,33,34],L inst =e −iθdρn (ρ) 432 (¯u R λa u L )(¯dR λa d L )−33(2N +N f )π2T 2)ρ2],(8)whereC N =0.466e −1.679N 1.34N f 2blog 2βI (ρ)3N −23N 2−13N.This formula contains,of course,the standard instanton classical action exp(−8π2/g 2(ρ))∼exp[−βI (ρ)]which however is hidden as it is expressed in terms of ΛQCD rather than in terms of coupling constant g 2(ρ).The chemical potential µ=µB /N in this expression is already properly normalized quark chemical potential (rather than baryonchemical potential).By taking the average of eq.(7)overthestate withnonzero vacuum expectation value forthe diquark condensate ψψ =0as described in [24,35],integrating over ρ,and taking large N limit using the standard Stirling formulaΓ(N +1)=√12N+O (16ln N f ¯µ2N and neglected all powers N p in front of e −γN .The crucialdifference in comparison with similar computation at nonzero temperature (1)is emerging of parameter ¯µinstead of the original quark chemical potential µ≡√N because ¯µc ∼1,see below for numerical estimates.The origin for this phenomenon can be traced from eq.(8)where temperaturedependent factor in the instanton density is proportional to ∼N while chemical potential enters this expression with factor ∼N f ≪N .Therefore,a very large chemical potential µ∼√6ln N f ¯µ2NNN/N f MeV whichis our final numerical estimate for the critical chemical potential where deconfined phase transition is predicted for very large N .Few remarks are in order:a.The most important result of the present studies is the observation that the confinement-deconfinement phase transition according to (11)happens at very large µc ∼√N had been predicted.However,the technique of ref.[2]does not allow to answer the question whether the transition would be the first order or it would be a crossover.Within our framework at N ≫1and N f ≪N the entire phase transition line (which starts at T =T c ∼ΛQCD at µ=0and ends at µ=µc ∼√µc ),1µc ≪1,(13)whereαis11/3at one loop level,but the perturbative corrections could be large and they may considerably change this numerical coefficient.Such a behavior(13)does imply that the dilute gas approximation is justified even inclose vicinity ofµc as long asµ−µcN .In this case the diluteness parameter remains small.We can not rule out,of course,the possibility that the perturbative corrections may change our numerical estimate forµc.However,we expect that a qualitative picture of the phase transition advocated in this paper remains unaffected as a result of these perturbative corrections in dilute gas regime.c.In our estimate forµc we neglected(logρΛQCD)k in evaluating of the dρintegral.The corresponding correction changes our estimate(11)very slightly,and it will be ignored in what follows.Numerical smallness of correction is due to the strong cancellation between the second loop contribution in the exponent(term proportional to b′/b)and thefirst loop contribution in the pre-exponent in eq.(8).d.Onceµc isfixed one can compute the entire segment of the phase transition lineµc(T)for relatively small T. Indeed,in the dilute gas regime atµ>µc the T dependence of the instanton density is determined by a simple insertion∼exp[−2/3Nπ2T2ρ2]in the expression for the density(8).In the leading loop orderµc(T)varies as follows,µc(T)=µc(T=0) 1−Nπ2T2NT≪µc.(14) One should remark that a variation of the critical chemical potential∆µc(T)is very large∼√11·2m q)2−κ3735(πT c N∼1(15)where the fewfirst coefficients of the expansion1/(m qρ)k in the instanton background have been explicitly calculated long ago[36],see also recent paper[37].For our estimates(15)we replacedρ→(πT c)−1as a typical value ofρwhere the integral dρconverges.The expansion(15)can be trusted starting from(m qρ)∼m q/(πT c)>1.The fermion contribution is a sub leading effect∼1/N;it becomes of order one whenκ=N fstructure ofγ(T)function as defined in(1)remains the same while its coefficients would now depend on dimensionless parametersκand the value of the chiral condensate4.The numerical values of the critical temperature T c andcoefficientαwould change,however the sharp changes ofθdependence which is a consequence of a generic structure ofγ(T)remain the same.Therefore,we expect thefirst order phase transition to hold in this case in complete analogy to previously considered caseκ→0.However,we think it is very unlikely for the chiral condensate to remainfinite at T>T c whenκ≡N f/N∼1.It is much more likely that the chiral condensate vanishes at T>T c whenκ∼1.In this case our analysis based on the dilute instanton approximation(8)will be obscured due to the long range interactions between instantons and anti-instantons induced by massless quarks,[38,39].This induced interaction becomes crucial even when instantons are still far away from each other,and the instanton gas is still dilute.The corresponding estimations for T c and studying the properties of the transition in the caseκ∼1become very model dependent analysis,and we shall not elaborate on this issue in the present paper.We anticipate that the transition properties will be very sensitive to the quark’s masses as the instanton interactions drastically depend on the quark’s features in this case.Such a sensitivity is consistent with the lattice results which suggest that for vanishing quark masses there will befirst order phase transition while for physical masses it becomes a smooth crossover,see e.g.recent reviews[40,41].We should emphasize here that our basic principle which relates sharp changes inθdependence and transition properties still holds forκ∼1case.This principle is a simple reflection of the fact that the point where the confinement sets in corresponds to the regime where the instanton density suddenly blows up and the instantons dissociate into the instanton quarks as mentioned in chapter II and discussed in a more details in[1]and references therein.The large number of fermions whenκ∼1obscures a simple analysis when the critical point can be estimated by approaching from deconfined phase where the instanton density is parametrically suppressed(3)and the system remains under theoretical control up to a close vicinity of T c.In the case ofκ∼1the corresponding analysis becomes much more involved due to the reasons mentioned above.Therefore,the main lesson from estimates presented above is as follows.In the case when N f∼N we observe a great sensitivity of the transition properties on specific details of the system such as quark’s masses,magnitude of the chiral condensate,value ofκ.It is very difficult to make any solid predictions in this situation as they would largely depend on underlying assumptions.Such a sensitivity of the transition to quark’s properties atκ∼1is in ahuge contrast with our previous estimates when there is unambiguous prediction for thefirst order phase transition√at T∼1and small chemical potential(2,3,5)and very largeµ∼N which is consistent with fundamentally different arguments presented in ref.[2].Another important observation is the fact that thefirst order phase transition atχ≪1holds all the way down from T c∼1,µ=0toµc∼√4Indeed,in our previous analysis the chiral condensate enters the instanton density as follows∼ ¯ψψ N f∼e N·(κln| ¯ψψ |).Forκ= N fbut rather dissociate into fractionally charged constituents,the so-called instanton quarks.In this sense the phase transition can be understood as a phase transition between molecular phase(deconfined)and plasma phase(confined) of these fractionally charged constituents.The same arguments still hold for the entire phase transition line in(T,µ) plane.A similar conclusion on sharp changes inθbehavior at T=T c was also observed in ref.[23]where the authors studied the D2branes in confined and deconfined phases at T=0.The topological objects(sensitive toθ)were identified in ref.[23]as magnetic strings.Ourfinal remark here is as follows.If the picture advocating in the present work about the nature of the transition turns out to be correct,it would strongly suggest that fractionally charged constituents(which carry the magnetic charges as discussed in[1]and references therein)may play a very important role in dynamics in deconfined phase in close vicinity of the transition0<(T−T c)≤1/N.For large N this region shrinks to a point,however forfinite N it could be an extended region in temperatures.In this region the instantons are not formed yet,and our semiclassical analysis is not justified yet as eq.(3)suggests.However,the constituents in this region are already not in condensed form.Therefore they may become an important magnetic degrees of freedom which may contribute to the equation of state,similar to analysis on wrapped monopoles in ref.[42,43].The role of these fractional magnetic constituents could be even more profound if N f∼N where smooth crossover likely to take place[40,41].In this case the region of interests is order of one(T−T c)∼1inΛQCD units in contrast with a narrow region0<(T−T c)≤1/N if the first order phase transition takes place.The region above T c is also very interesting from phenomenological viewpoint as reviewed in[44].AcknowledgmentsI thank the FTPI,Minnesota for organizing the workshop”Continuous Advances in QCD May15-18,2008”.I also thank Larry McLerran for his presentation at this workshop which motivated/initiated this study[45].This work was supported,in part,by the Natural Sciences and Engineering Research Council of Canada.[1]A.Parnachev and A.Zhitnitsky,arXiv:0806.1736[hep-ph].[2]L.McLerran and R.D.Pisarski,Nucl.Phys.A796,83(2007)[arXiv:0706.2191[hep-ph]].[3]Y.Hidaka,L.D.McLerran and R.D.Pisarski,arXiv:0803.0279[hep-ph].[4]B.Alles,M.D’Elia and A.Di Giacomo,Nucl.Phys.B494,281(1997)[Erratum-ibid.B679,397(2004)][arXiv:hep-lat/9605013].[5]B.Lucini,M.Teper and U.Wenger,JHEP0401,061(2004)[arXiv:hep-lat/0307017].[6]B.Lucini,M.Teper and U.Wenger,Nucl.Phys.B715,461(2005)[arXiv:hep-lat/0401028].[7]L.Del Debbio,H.Panagopoulos and E.Vicari,JHEP0409,028(2004)[arXiv:hep-th/0407068].[8]B.Lucini,M.Teper and U.Wenger,JHEP0502,033(2005)[arXiv:hep-lat/0502003].[9]D.Kharzeev,R.D.Pisarski and M.H.G.Tytgat,Phys.Rev.Lett.81,512(1998)[arXiv:hep-ph/9804221].[10]D.Toublan,Phys.Lett.B621,145(2005)[arXiv:hep-th/0501069].[11]P.de Forcrand and O.Philipsen,Nucl.Phys.B642,290(2002)[arXiv:hep-lat/0205016].[12]P.de Forcrand and O.Philipsen,Nucl.Phys.B673,170(2003)[arXiv:hep-lat/0307020].[13]Z.Fodor and S.D.Katz,JHEP0404,050(2004)[arXiv:hep-lat/0402006].Z.Fodor,C.Guse,S.D.Katz and K.K.Szabo,PoS LATTICE2007,189(2006)[arXiv:0712.2702[hep-lat]].Z.Fodor,S.D.Katz and C.Schmidt,JHEP0703,121 (2007)[arXiv:hep-lat/0701022].[14]E.V.Shuryak,Nucl.Phys.B203,93(1982);D.Diakonov and V.Y.Petrov,Nucl.Phys.B245,259(1984);[15]V.Fateev et al,Nucl.Phys.B154(1979)1;B.Berg and M.Luscher,Commun.Math.Phys.69(1979)57.[16]A.Belavin et al,Phys.Lett.83B(1979)317.[17]G’t Hooft,in”Recent Developments in Gauge Theories”Charges1979,Plenum Press,NY1980;Nucl.Phys.B190(1981)455;S.Mandelstam,Phys.Rep.23(1976)245.[18]G’t Hooft,in Confinement,Duality and Nonperturbative Aspects of QCD,P.van Baal,Ed,NATO ASI Series,1998Plenum Press,NY1998;G’t Hooft,hep-th/9812204.[19]S.Jaimungal and A.R.Zhitnitsky,[hep-ph/9904377],[hep-ph/9905540],unpublished.[20]M.Unsal and L.G.Yaffe,arXiv:0803.0344[hep-th].[21]D.Diakonov and V.Petrov,Phys.Rev.D76,056001(2007)[arXiv:0704.3181[hep-th]].[22]O.Bergman and G.Lifschytz,JHEP0704,043(2007)[arXiv:hep-th/0612289].[23]A.Gorsky and V.Zakharov,Phys.Rev.D77,045017(2008)[arXiv:0707.1284[hep-th]].[24]D.Toublan and A.R.Zhitnitsky,Phys.Rev.D73,034009(2006)[arXiv:hep-ph/0503256].[25]A.R.Zhitnitsky,arXiv:hep-ph/0601057.[26]M.G.Alford,A.Schmitt,K.Rajagopal and T.Schafer,arXiv:0709.4635[hep-ph].[27]D.V.Deryagin,D.Y.Grigoriev and V.A.Rubakov,Int.J.Mod.Phys.A7,659(1992).。