浙江高考基本不等式小题狂练
基本不等式题型练习含答案
基本不等式题型练习含答案题目1:解不等式2x + 5 > 9。
解答1: 2x + 5 > 9 首先,将不等式两边都减去5。
2x > 4 然后,将不等式两边都除以2。
x > 2 所以,不等式的解集为x > 2。
题目2:解不等式3 - 2x ≤ 7。
解答2: 3 - 2x ≤ 7 首先,将不等式两边都减去3。
-2x ≤ 4 然后,将不等式两边都除以-2。
注意,因为除以负数会改变不等号的方向,所以需要将不等号反转。
x ≥ -2 所以,不等式的解集为x ≥ -2。
题目3:解不等式4x + 3 < 19。
解答3: 4x + 3 < 19 首先,将不等式两边都减去3。
4x < 16 然后,将不等式两边都除以4。
x < 4 所以,不等式的解集为x < 4。
题目4:解不等式5 - 3x > 8。
解答4: 5 - 3x > 8 首先,将不等式两边都减去5。
-3x > 3 然后,将不等式两边都除以-3。
注意,因为除以负数会改变不等号的方向,所以需要将不等号反转。
x < -1 所以,不等式的解集为x < -1。
题目5:解不等式2x - 1 ≤ 5x + 3。
解答5: 2x - 1 ≤ 5x + 3 首先,将不等式两边都减去2x。
-1 ≤ 3x + 3 然后,将不等式两边都减去3。
-4 ≤ 3x 最后,将不等式两边都除以3。
-4/3 ≤ x 所以,不等式的解集为x ≥ -4/3。
题目6:解不等式4 - 2x ≥ 10 - 3x。
解答6: 4 - 2x ≥ 10 - 3x 首先,将不等式两边都加上3x。
4 + x ≥ 10 然后,将不等式两边都减去4。
x ≥ 6 所以,不等式的解集为x ≥ 6。
题目7:解不等式2(3x + 1) > 4x + 6。
解答7: 2(3x + 1) > 4x + 6 首先,将不等式两边都展开。
高三复习基本不等式练习题
高三复习基本不等式练习题不等式作为高中数学中的一个重要内容,占据了复习的重要一部分。
本文将提供一些基本不等式的练习题,供高三学生复习使用。
练习题1:解不等式组:{x+2>0, x-3<0}练习题2:求解不等式:(x+1)(x-3)<0练习题3:解不等式组:{x^2 - 4>0, x-1<0}练习题4:求解不等式:x^2 - 5x + 6>0练习题5:解不等式组:{x^2-4x+3>0, x^2+6x+8>0}练习题6:求解不等式:(x-2)(x+3)(x-7)<0练习题7:解不等式组:{x^3-9x^2+20x-12>0, x^2-4x+4>0}练习题8:求解不等式:(x-2)^2(x+4)>0练习题9:解不等式组:{x^3-x^2+4x-4>0, x^2 + 3x + 2>0}练习题10:求解不等式:(x-1)^3+8>0以上是关于高三复习基本不等式的一些练习题。
希望同学们能够认真思考,按照正确的解题步骤解答。
复习不等式时,应重点掌握不等式的基本性质和解不等式的方法,如辨别二次不等式的判别式、区间法等。
在解题过程中,也要注意进行化简和因式分解,以便于对不等式进行分类讨论。
基本不等式是高中数学中一个重要的内容,对于加深对不等式的理解和掌握不等式的解法有着重要的意义。
因此,同学们要多进行基本不等式的练习,理解和掌握不等式的性质和方法,为高考做好充分准备。
希望以上的练习题能够帮助到高三的同学们,祝大家能够在高三阶段取得优异的成绩!。
基本不等式50练(答案)
基本不等式(答案)【习题1】已知实数0,>y x 且2=xy ,则8482233+++y x y x 的最小值是 .【答案】1【习题2】若实数0>y ,x 且1=xy ,则y x 2+的最小值是 ,yx y x 2422++的最小值是 .【答案】 22,2【习题3】已知,x y 满足方程210x y --=,当x >353712x y x y m x y +-+-=+--的最小值为_______. 【答案】8【习题4】已知y x ,为实数,且1)2)((=-+y x y x ,则222y x +的最小值为_______.【答案】3322+【习题5】已知a b ∈R ,,45222=+-b ab a ,则a b +的取值范围为 .【答案】]22,22[-【习题6】已知a b ∈R ,,45222=+-b ab a ,则ab 的最小值为 .【答案】12【习题7】若实数y x ,满足02422=+++y y x x ,则y x +2的范围是 . 【答案】]0,2[-【习题8】ABC ∆的三边,,a b c 成等差,且22221a b c ,则b 的取值范围是 .【答案】]7,6(【习题9】已知,a b <二次不等式20ax bx c ++≥对任意实数x 恒成立,则24a b cM b a++=-的最小值为___________ 【答案】8【习题10】实数,x y 满足224545x xy y -+=,设22S x y =+,则maxmin11S S += .【答案】85【习题11】非零向量,a b 夹角为60,且1a b -=,则a b +的取值范围为 . 【答案】]3,1(【习题12】已知0,0<>b a ,且9)12)(14(-=+-b a ,若06)2(2≥---abx x b a 总成立,则正实数x的取值范围是_______. 【答案】),1[+∞【习题13】正实数y x ,满足111=+yx ,则2210x y xy +-的最小值为 . 【答案】36-【习题14】已知实数y x ,满足,32,0,0=+>>y x y x 则xyyx +3的最小值为 ,xy y x ++224 的最小值为 . 【答案】3627+;845【习题15】已知直线21ax by +=(其中0ab ≠)与圆221x y +=相交于A 、B 两点,O 为坐标原点,且0120AOB ∠=,则2212a b +的最小值为 . 【答案】2【习题16】设R b a ∈,,满足43=+-ab b a ,则33-+b a 的最小值是______. 【答案】332-【习题17】已知正实数a ,b 满足:1a b +=,则222a ba b a b +++的最大值是 . 【答案】3332+ 【习题18】已知正数y x ,满足1≤xy ,则yx M 21111+++=的最小值为________. 【答案】222-【习题19】已知0>a ,0>b ,且12122=+++ba a ,则b a +的最小值是_______,此时=a _______. 【答案】212+;2【习题20】已知0,0a b >>,且1a b +=,则1122a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是 ;221ab a +的最大值是 . 【答案】16;413- 【习题21】已知实数x ,y 满足3xy x y -+=,且1x >,则(8)y x +的最小值是 ( ) A .33 B .26 C .25 D .21 【答案】C【习题22】若实数,x y 满足2x y xy -+≥,则x y +的最小值是 . 【答案】2【习题23】已知实数a ,b 满足:1,2a b R ≥∈,且||1a b +≤,则12b a +的取值范围是 . 【答案】]23,12[-【习题24】实数y x ,满足22222=+-y xy x ,则222y x +的最小值是________.【答案】224-【习题25】已知实数R b a ∈,,若322=+-b ab a ,则1)1(222+++b a ab 的值域为 .【答案】]716,0[【习题26】设b a ,为正实数,则ba bb a a +++2的最小值为 . 【答案】222-【习题27】若正数,x y 满足35x y xy +=,则34x y +的最小值是 . 【答案】5【习题28】若存在正实数y ,使得yx x y xy 451+=-,则实数x 的最大值为_________. 【答案】51 【习题29】若0x >,0y >,则xyy x x ++2的最小值为___________.【答案】212-【习题30】已知正数y x ,满足yx yx xy 3+-=,则y 的最大值为__________,当且仅当___________.【答案】31;1=x 【习题31】已知,1,0=+>>b a b a 则bb a 214+-的最小值等于 . 【答案】9【习题32】已知)0,0(24122<<-+=y x xy y x ,则y x 2+的取值范围为__________.【答案】)1,2[--【习题33】已知实数y x ,满足322=++y xy x ,则xy 的最小值为________,22y xy x +-的最小值为_______. 【答案】3-,1【习题34】已知实数b a ,满足122=+-b ab a ,则)(|2|b a b a +-的取值范围是________.【答案】]3,3[-【习题35】已知0>a ,0>b ,且满足ab a b a +=+23,则b a +2的最小值为________.【答案】223+【习题36】已知非负实数y x ,满足92422222=+++y x y xy x ,则xy y x ++)(22的最大值为 .【答案】241+【习题37】若164622=++xy y x ,R y x ∈,,则22y x -的最大值为_______.【答案】51【习题38】设正实数y x ,,则21||y xy x ++-的最小值为( ) A. 47B. 2233C. 2D.32【答案】A【习题39】已知b a ,均为正数,且1=+b a ,1>c ,则12)121(2-+⋅-+c c ab a 的最小值为_________. 【答案】23【习题40】设实数0,0>>y x 且满足k y x =+,则使不等式2)22()1)(1(kk y y x x +≥++恒成立的k 的最大值为______. 【答案】522+【习题41】若1≥≥≥z y x ,且4=xyz ,则222222)(log )(log )(log z y x ++的取值范围是______.【答案】]4,34[【习题42】已知正实数y x ,满足4232=++y x xy ,则y x xy 45++的最小值为________. 【答案】55【习题43】已知实数y x ,满足yxyx9933+=+,则yx yx 332727++的取值范围是_________. 【答案】9[1,]8【习题44】已知实数b a ,满足1=ab ,且32≥>b a ,则22ba ba +-的最大值为___________. 【答案】3097【习题45】若正数b a ,满足111a b +=,则1911a b +--的最小值为( ) A .1 B .6 C .9 D .16【答案】B【习题46】若正实数,x y 满足244x y xy ++=,且不等式2(2)22340x y a a xy +++-≥恒成立,则实数a 的取值范围是 . 【答案】(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭【习题47】已知y x ,为正实数,若12=+y x ,则xyxy x ++22的最小值为 .【答案】222+【习题48】若正数y x ,满足12422=+++y x y x ,则xy 的最大值为_________.【答案】432- 【习题49】若实数a 和b 满足132923242++=⨯+⋅-⨯babbaa, 则ba 32+的取值范围为__________________. 【答案】]2,1(【习题50】设+∈R b a ,,4222=-+b a b a ,则ba 11+的最小值是 【答案】24。
高考数学《基本不等式》真题练习含答案
高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。
高考数学解不等式基本训练题及参考答案
高考数学解不等式基本训练题及参考答案一、选择题(1)不等式6x 2+5x <4的解集为( ) A (-∞,-34)∪(21,+∞) B (- 34,21) C (- 21,43) D (-∞,-21)∪(34,+∞) (2)a >0,b >0,不等式a >x1>-b 的解集为( ) A -b 1 <x <0或0<x <a 1 B - a 1<x <b1 C x <-b 1或x >a 1 D - a 1<x <0或0<x <b 1 (3)不等式11+x (x -1)(x -2)2(x -3)<0的解集是( ) A (-1,1)∪(2,3) B (-∞,-1)∪(1,3)C (-∞,-1)∪(2,3)D R(4)若a >0,且不等式ax 2+bx +c <0无解,则左边的二次三项式的判别式()A Δ<0B Δ=0C Δ≤0D Δ>0(5)A={x |x 2+(p +2)x +1=0,x ∈R },且R *∩A=∅,则有( )A p >-2B p ≥0C -4<p <0D p >-4(6)θ在第二象限,cos θ=524+-m m ,sin θ=53-+m m ,则m 满足( ) A m <-5或m >3 B 3<m <9 C m =0或m =8 D m =8(7)已知不等式l o g a (x 2-x -2)>l o g a (-x 2+2x +3)在x =49时成立,则不等式的解集为 A {x |1<x <2} B {x |2<x <25} C {x |1<x <25} D {x |2<x <5} (8)设0<b <21,下列不等式恒成立的是( ) A b 3>b 21B l o g b (1-b )>1 C cos(1+b )>cos(1-b ) D (1-b )n <b n ,n ∈N (9)若不等式x 2-l o g a x <0在(0,21)内恒成立,则a 满足( ) A 16≤a <1 B 16<a <1 C 0<a ≤161 D 0<a <161 (10)不等式112+<-x x 的解集是( )A [0,1]B [0,+∞]C (1,+∞)D -1,1] (11)不等式112)21(--<x x 的解集是( ) A B (1,2) C (2,+∞) D (1,+∞) (12)不等式(x -1)2+x ≥0的解集是( ) A {x |x >1} B {x |x ≥1或x =-2} C {x |x ≥1} D {x |x ≥-2且x ≠1}(13)函数f (x )=822--x x 的定义域为A ,函数g(x )=a x --11的定义域为B ,则使A ∩B=∅,实数a 的取值范围是( ) A {a |-1<a <3} B {a |-2<a <4}C {a -2≤a ≤4}D {a |-1≤a ≤3}(14)关于x 的不等式22x a -<2x +a (a >0)的解集为( ) A (0,a ) B (0,a ] C ∞)∪(-∞,-54 a ) D ∅ 二.填空题(15)不等式1≤|x -2|≤7的解集是(16)不等式x1>a 的解集是 (17)不等式lg|x -4|<-1的解集是(18)不等式xb c -<a (a >0,b >0,c >0)的解集是 (19)若不等式43)1(22+++--x x a ax x <0的解为-1<x <5,则a = (20)不等式1lg -x <3-lg x 的解集是(21)函数f (x )=l o g 2(x 2-4),g(x )=2k x 2-(k <-1),则f (x )g(x )的定义域为 三、解答题(22)解下列不等式(1)(x +4)(x +5)2>(3x -2)(x +5)2;(2)1)3()4)(1(2+---x x x x ≤0;(3)45820422+-+-x x x x ≥3(23)设不等式(2x -1)>m (x 2-1)对满足|m |≤2的一切实数m 的值都成立,求x 的取值范围解不等式练习题参考答案:1.B 2.C 3.B 4.C 5.B 6.D 7.B8.C 9.A 10.A 11.D 12.B 13.D 14.B15.[-5,1]∪[3,9]16.a =0时x >0;a >0时,0<x <a 1;a <0时,x <a 1或x >0 17.{x |4<x <1041或1039<x <4} 18.{x |x <b 或x >b -ac } 19.4 20.10≤x <100 21.[2k -2)∪(2,+∞) 22.解:(1)当x ≠-5时,(x +5)2>0,两边同除以(x +5)2得x +4>3x -2, 即x <3且x ≠-5;∴x ∈(-∞,-5)∪(-5,3)(2)当x ≠4时,原不等式⇔(x -1)(x -3)(x +1)≤0(x ≠-1) ⇔1≤x ≤3或x <-1,当x =4时,显然左边=0,不等式成立故原不等式的解集为{x |1≤x ≤3或x <-1或x =4}(3)原不等式可化为451820422+-+-x x x x -3≥00456522≥+-+-⇔x x x x 0)4)(1()3)(2(≥----⇔x x x x ∴x ∈(-∞,1)∪[2,3]∪(4,+∞) 23.解:①若x 2-1=0,即x =±1,且2x -1>0,即x >21时,此时x =1,原不等式对|m |≤2恒成立;②若x 2-1>0,要使1122--x x >m ,对|m |≤2恒成立,只要1122--x x >2,即 ⎩⎨⎧->->-22120122x x x 得1<x 23 ③若x 2-1<0时,要使1122--x x <m ,对|m |≤2恒成立,只要1122--x x <-2,即 ⎩⎨⎧+->-<-22120122x x x 得271+-<x <1 综合①②③得,所求x 的范围为271+-<x 23。
基本不等式专题练习(含参考答案)
数学 基本不等式[基础题组练]1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥22.若正实数x ,y 满足x +y =2,且1xy ≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .43.设x >0,则函数y =x +22x +1-32的最小值为( )A .0 B.12 C .1D.32 4.已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12D .165.已知x >0,y >0,2x +y =3,则xy 的最大值为________. 6.(2017·高考江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.7.函数y =x 2x +1(x >-1)的最小值为________.8.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.[综合题组练]1.若a >0,b >0,a +b =1a +1b ,则3a +81b 的最小值为( ) A .6 B .9 C .18D .242.不等式x 2+x <a b +ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(1,+∞)C .(-2,1)D .(-∞,-4)∪(2,+∞)3.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________. 4.已知正实数a ,b 满足a +b =4,则1a +1+1b +3的最小值为________.【参考答案】[基础题组练]1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b≥2 解析:选D.因为a 2+b 2-2ab =(a -b )2≥0,所以A 错误.对于B ,C ,当a <0,b <0时,明显错误.对于D ,因为ab >0, 所以b a +a b≥2b a ·ab=2. 2.(2019·安徽省六校联考)若正实数x ,y 满足x +y =2,且1xy ≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .4解析:选A.因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1;又1xy≥M 恒成立, 所以M ≤1,即M 的最大值为1.3.设x >0,则函数y =x +22x +1-32的最小值为( )A .0 B.12 C .1D.32解析:选A.y =x +22x +1-32=⎝⎛⎭⎫x +12+1x +12-2≥2⎝⎛⎭⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数的最小值为0.故选A. 4.(2019·长春市质量检测(一))已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12D .16解析:选B.由4x +y =xy 得4y +1x =1,则x +y =(x +y )⎝⎛⎭⎫4y +1x =4x y +y x +1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=”,故选B.5.已知x >0,y >0,2x +y =3,则xy 的最大值为________.解析:xy =2xy 2=12×2xy ≤12×⎝ ⎛⎭⎪⎫2x +y 22=98,当且仅当2x =y =32时取等号. 答案:986.(2017·高考江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:307.函数y =x 2x +1(x >-1)的最小值为________.解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2,x >-1,所以y ≥21-2=0,当且仅当x =0时,等号成立. 答案:08.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. 解:(1)由2x +8y -xy =0, 得8x +2y =1, 又x >0,y >0, 则1=8x +2y ≥28x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y =1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y ) =10+2x y +8yx≥10+22x y ·8yx=18. 当且仅当x =12且y =6时等号成立, 所以x +y 的最小值为18.[综合题组练]1.若a >0,b >0,a +b =1a +1b ,则3a +81b 的最小值为( )A .6B .9C .18D .24解析:选C.因为a >0,b >0,a +b =1a +1b ,所以ab (a +b )=a +b >0,所以ab =1.则3a +81b ≥23a ·34b =23a +4b ≥232a ·4b=18,当且仅当a =4b =2时取等号.所以3a +81b 的最小值为18.故选C.2.不等式x 2+x <a b +ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(1,+∞)C .(-2,1)D .(-∞,-4)∪(2,+∞)解析:选C.根据题意,由于不等式x 2+x <a b +ba对任意a ,b ∈(0,+∞)恒成立,则x 2+x <⎝⎛⎭⎫a b +b a min ,因为a b +b a ≥2 a b ·ba=2,当且仅当a =b 时等号成立,所以x 2+x <2,求解此一元二次不等式可知-2<x <1,所以x 的取值范围是(-2,1).3.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________.解析:令t =x +2y ,则2x +4y +xy =1可化为1=2x +4y +xy ≤2(x +2y )+12⎝ ⎛⎭⎪⎫x +2y 22=2t+t 28.因为x >0,y >0,所以x +2y >0,即t >0,t 2+16t -8≥0,解得t ≥62-8.即x +2y 的最小值是62-8.答案:62-84.已知正实数a ,b 满足a +b =4,则1a +1+1b +3的最小值为________. 解析:因为a +b =4,所以a +1+b +3=8,所以1a +1+1b +3=18[(a +1)+(b +3)]⎝ ⎛⎭⎪⎫1a +1+1b +3=18⎝ ⎛⎭⎪⎫2+b +3a +1+a +1b +3≥18(2+2)=12,当且仅当a +1=b +3,即a =3,b =1时取等号,所以1a +1+1b +3的最小值为12.答案:12。
基本不等式练习题带答案
06
基本不等式的扩展 知识
基本不等式的推广形式
单击此处添加标题
平方和与平方差形式:a²+b² ≥ 2ab 和 a²-b² ≥ 2ab
• 题目:已知 x > 0,y > 0,且 xy = 4,则下列结论正确的是 ( ) A. x + y ≥ 4 B. x + y ≤ 4 C. x + y ≥ 8 D. x + y ≤ 8 答案: A
• A. x + y ≥ 4 B. x + y ≤ 4 • C. x + y ≥ 8 D. x + y ≤ 8 • 答案:A
基本不等式的应用:在数学、物 理、工程等领域有广泛的应用, 用于解决最优化问题、估计值域 和解决一些数学竞赛问题等。
添加标题
添加标题
添加标题
添加标题
基本不等式的形式:常见的形式 有AM-GM不等式、CauchySchwarz不等式和Holder不等式 等。
基本不等式的证明方法:可以通 过代数、几何和概率统计等方法 证明基本不等式。
• 题目:若 a > b > c,且 a + b + c = 1,则下列结论正确的是 ( ) A. ac + bc ≥ ab B. ac + bc ≤ ab C. ac + bc > ab D. ac + bc < ab 答案:B
• A. ac + bc ≥ ab B. ac + bc ≤ ab • C. ac + bc > ab D. ac + bc < ab
基本不等式练习题(含答案)
基本不等式11 .函数y=x+ -(x>0)的值域为().XA. 2] U [2,+x)B. (0,+x)C. [2 ,+x) D . (2,+x)a +b i2. 下列不等式:①a2+ 1>2a;②- -<2;③/ +三 > 1,其中正确的个数是p ab x 十3().A. 0 B . 1 C. 2 D . 33. 若a>0, b>0,且a + 2b — 2 = 0,则ab的最大值为().1B. 1C. 2D. 414. (2011重庆)若函数f(x) = x+ (x>2)在x= a处取最小值,则a=( ).X —2A. 1+ 2B. 1+ 3C. 3D. 4t2—4t+ 15. 已知t>0,则函数y= t 的最小值为利用基本不等式求最值1 1【例1】?(1)已知x>0, y>0,且2x+y= 1,则x + y的最小值为X y2x2(2)已知0v x v 5,贝U y= 2x—5x2的最大值为________ .⑶若x, y€ (0,+x)且2x+ 8y—xy= 0,贝U x+ y的最小值为_________ .利用基本不等式证明不等式【例2] ?已知a>0, b>0, c>0,求证:bC+ 学+ ab>a+ b+ c.a b c3 1(2010四川)设a>b>0,贝U a2+ + 的最小值是().ab a a—bC. 3⑵当x>0时,贝U f(x)= x2+ 1的最大值为1【训练1】(1)已知x> 1,则f(x) = x+一的最小值为_____________x—I【训练2】已知a>0, b>0, c>0,且a+ b+ c= 1.1 1 1 求证:一+匚+ 9.a b c利用基本不等式解决恒成立问题x【例3】?(2010 山东)若对任意x>0, x2+3x+[三a恒成立,则a的取值范围是 3 1【训练3】(2011宿州模拟)已知x>0, y>0, xy= x+ 2y,若xy>m—2恒成立, 则实数m的最大值是________ .考向三利用基本不等式解实际问题【例3】?某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为 5 800元,如果墙高为3m,且不计房屋背面的费用•当侧面的长度为多少时,总造价最低?双基自测1.答案 C1 12•解析 ①②不正确,③正确,/ +孑亍二(x 2+ 1) + 齐1 — 1>2—1二1.答案 B13. 解析 v a >0, b >0, a + 2b = 2,二 a + 2b = 2>2.2ab ,即 ab <㊁.答案 A4. 解析 当 x >2 时,x — 2>0, f(x)= (x — 2) + x-—2 + 2>2 寸 x — 2 X ^—^+ 21二4,当且仅当x — 2二严(x >2),即x = 3时取等号,即当f(x)取得最小值时,xx ——2 =3,即a = 3.答案 C t 2—4t + 1 15.解析 v t >0,二 y = t = t +1 — 4>2 — 4= — 2,当且仅当t = 1 时取等 号.答案 —2【例 1】解析(1) v x >0, y >0,且 2x +y = 1,••」+J4 + 4= 3 + y +生3+ 2頁.当且仅当匕空时,取等号.x y x y x y x y2x 2 2 12x十w 2= 1,当且仅当x = J 即x = 1时取等号.答 x +x案(1)3+ 2 2 (2)1 1【训练 1].解析(1) V x > 1,二 f(x)= (x — 1) + — + 1>2+ 1 = 3 当且仅当 xx — 12 1=2 时取等号.(2)y = 2x — 5X 2= x(2 - 5x) = 55x(2 — 5X),5x + 2 一 5x 1—5x >0,.°. 5x(2 — 5x) < 2= 1 ,• y <5 当且仅当 5x = 2— 5x ,2 511 2 8即 x =5时,y max = 5.(3)由 2x + 8y — xy = 0,得 2x + 8y =xy ,「.~ + ~ = 1, 8 2 8y 2x 4y x /4y x• x + y = (x + y) + = 10+ +—= 10 + 2 +_ > 10+ 2X 2X = 18,x y x y x y . x y , 当且仅当 4y = x,即 x = 2y 时取等号,又 2x + 8y — xy = 0,「. x = 12, y = 6, xy•••当 x = 12, y = 6 时,x + y 取最小值 18.答案 (1)3 (2# (3)18【例 2】证明■/a >0, b >0, c >0, • bc + 甲》2 bcca= 2c ; bc + ab >2a b \ a b a c:加2b ; -+瞥2 - Ob - 2a.以上三式相加得:2齐?+学>2(abc ca ab , + b + c),即 + , + 》a + b + c. ’ a b c111a + b + c 【训练2] 证明 ■/ a >0, b >0, c >0,且 a + b + c = 1,二一+乙+一= +a b c a a+七+a+± 二 3+b +c +b +?+a +」3+ ?+a +a +a + e +b b c a a b b c c a b a c b c⑵ v x >0,「. f(x) = x 2+ 2一••• 5x v 2,21> 3+ 2+ 2+ 2= 9,当且仅当a = b = c =3时,取等号. X X 解析 若对任意x > 0x 2+ 3x + [ w a 恒成立,只需求得 尸x 2 + 3x +〔的最大值即 1 ■ x x 1 5当且仅当 可,因为 x > 0,所以 y =x 2+ 3x + 1 = —口W x +—+3 2 x1 1 等号,所以a 的取值范围是5,+^答案 5,+^ 【训练3】解析 由x >0,y >0,xy = x + 2y >2 - 2xy,得 xy > 8,于是由 恒成立,得m — 2<8, m < 10,故m 的最大值为10.答案 10 一 12 【例3.解 由题意可得,造价y = 3(2x X 150+ — X400)+ 5 800= 900 x x = 1时取 m — 2< xy x +16 + 5 x 16 800(0< x < 5),贝U y = 900 x +丁 + 5 800>900X 2入x =号,即x =4时取等号.故当侧面的长度为4米时,总造价最低.正解 Ta >0,b >0, 且 a + b = 1, 1,2 b 2a b 2a a + b (a +b )=1+ 2 + a + 3 + 2 aF = 3 + 22・a +b =1, b = 2a a = b ,当且仅当 【示例】. 1 2 •••_+==a b当且仅当 x X16+ 5 800= 13 000(元),a = 2—1, 1 2即b =2—2时,a +b 的最小值为3+2 2.1 1 1 1 【试一试】 尝试解答]a2 +1 + ~ = a 2 — ab + ab +1 + ~ = a(a — b)+ aba a —b ab a a — b —+ ab+W >2 气 /a a — b •+ 2、/ab^= 2+ 2= 4.当且仅当 a(a — a a — b ab . a a — b ;ab ' 1 1b)=—且ab = ab ,即a = 2b 时,等号成立.答案 D a a — b ab。
历届浙江高考不等式小题汇编
1 1 (B) ab (C) a 2 b 2 2 (D) a 2 b 2 3 2 2 2010(15)若正实数 x,y 满足 2x+y+6=xy,则 xy 的最小值是
(A) abΒιβλιοθήκη .2011 (16) 若实数 x, y 满足 x2 y 2 xy 1 , 则 x y 的最大值是___________________________。 2012(9) .若正数 x,y 满足 x 3 y 5xy, 则3x 4 y 的最小值是
A.
24 5
B.
的最小值为(
)
5.已知 a,b 都是正实数,且满足 log4(2a+b)=log2 ������������,则 2a+b 的最小值为( (A)12 (B)10 (C)8 (D)6 6.已知正实数 x,y 满足 xy+2x+y=4,则 x+y 的最小值为 7.已知 2a=3b=6c,k∈Z,不等式
������ +������ ������
28 5
C. 5
D. 6
2013(16).设 a , b ∈R,若 x 0 时恒有 0 x4 x3 ax b ( x2 1)2 ,则 ab 等于______________. 2014(16) .已知实数 a,b,c 满足 a+b+c=0,a2+b2+c2=1,则 a 的最大值是________. 练习: 1.若不等式������ >m 的解集是{x︱0<x<2},则实数 m 的值为( (A)2 (A)6
高中数学基本不等式习题专练
高中数学基本不等式习题专练(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高中数学基本不等式专题训练1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. )b a R b ,a ()2b a (ab ab 2b a 2时等号成立当且仅当和变形式=∈+≤≥++: 2.重要的不等式:a 2+b 2≥2ab (a ,b ∈R );常用式:),()()(2222时等号成立当且当b a R b a b a b a =∈+≥+),,(222时等号成立当且当c b a R c b a ac bc ab c b a ==∈++≥++),,()()(32222时等号成立当且当c b a R c b a c b a c b a ==∈++≥++3.两个不等式链(1)a 2+b 22≥(a +b2)2≥ab (a ,b ∈R ,当且仅当a =b 时取等号); (2) a 2+b 22≥a +b2≥ab ≥21a +1b(a >0,b >0,当且仅当a =b 时取等号). 4.利用基本不等式求最值已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 应用一:求最值 题型一:基本不等式直接运用用1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .C .D .2.下列结论正确的是( )A .当x >0且x ≠1时,lgx+≥2B .当x >0时,+≥2C .当x ≥2时,x+的最小值为2D .当0<x ≤2时,x ﹣无最大值3.若x >0,则x+的最小值为 .4.已知x ,y ∈R +,且x+4y=1,则xy 的最大值为 .5.设实数x ,y 满足x 2+y 2=1,则x+y 的最大值为 . 6.若实数a ,b 满足+=,则ab 的最小值为( ) A . B .2 C .2 D .47.已知t >0,则函数的最小值为 . 8.若数列{n a }的通项公式是281n n a n =+则数列{n a }中最大项 9.若b 为实数,且a+b=2,则3a +3b 的最小值为( )A .18B .6C .2D .2 10.不等式)10)(1(<<-=x x x y 的最大值是 ,此时x=_____ .11.若a >b >1,P=,Q=(lga+lgb ),R=lg,则( ) A .R <P <QB .P <Q <RC .Q <P <RD .P <R <Q 12.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 .题型二: 拼凑或拆项之后使用基本不等式1. 当1x >时,函数11y x x =+-的最小值为_____ ,此时x=_____ 2.函数 12,33y x x x =+>-的最小值是_____ ,此时x=_____ 3. 函数2710(1)1x x y x x ++=>-+的最小值是_____ ,此时x=_____ 的最小值为函数1x 2x y 22++= ,此时x=_____5.若x<0,则2 + x + 4x的最大值是 ,此时x=_____ 6.若x >4,则函数x x y -+=-41 ( )A 有最大值—6 B 有最小值6 C 有最大值—2 D 有最小值27. 当时,求(82)y x x =-的最大值 ,此时x=_____8.已知,x y R +∈,且满足134xy +=,则xy 的最大值为 题型三: 连续使用基本不等式1.已知a >0,b >0,则的最小值是( )A2 B C4 D5 2.若x ,y 是正数,则+的最小值是( )A .3B .C .4D . 3.若a ,b ∈R ,ab >0,则的最小值为 . 4.设x ,y 为正数,则(x+y )(+)的最小值为( )5. 设a >0,b >0.若是3a 与3b 的等比中项,则的最小值为() D.6.若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是( )7.设x ,y 满足约束条件,若目标函数z=ax+by (a >0,b >0)的值是最大值为12,则的最小值为( ) A . B . C .D .4 8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC=120°,∠ABC 的平分线交AC 于点D ,且BD=1,则4a+c 的最小值为 .题型四:基本不等式与一元二次不等式结合求最值1.已知,x y 是正实数,3=--y x xy ,则y x +的最小值为_________。
(浙江专用)高考数学第七章不等式4第4讲基本不等式高效演练分层突破
第4讲基本不等式[基础题组练] 1.当x >0时,函数f (x )=22x有( )x +1A .最小值1B .最大值1C .最小值2D .最大值22 1≤ 2=1. 分析:选B.f (x )=x +x2x · 1x1当且仅当x =x ,x >0即x =1时取等号.所以f (x )有最大值1.22ab2.设非零实数a ,b ,则“a +b ≥2ab ”是“b +a ≥2”成立的( )A .充分不用要条件B .必需不充分条件C .充要条件D .既不充分也不用要条件22222ab分析:选B.因为a ,b ∈R 时,都有a +b -2ab =(a -b )≥0,即a +b ≥2ab ,而b +a22ab≥2?ab >0,所以“a +b ≥2ab ”是“b +a ≥2”的必需不充分条件.3.(2020·嘉兴期中)若正实数x ,y 满足x +2y +2xy -8=0,则x +2y 的最小值为()A .3B .4 9 11 C.2D.2分析:选B.因为正实数x ,y 满足x +2y +2xy -8=0,所以x+2+x +2y 2-8≥0,y2设x +2y =t >0,12所以t +4t -8≥0,所以t 2+4t -32≥0, 即(t +8)(t -4)≥0, 所以t ≥4,故x +2y 的最小值为4. 4.若log 4 (3 a +4)=log 2ab ,则 a + b 的最小值是( )bA .6+2 3B .7+2 3C .6+43D .7+4 3分析:选D.由题意得ab >0, a >0, 3+4>0,所以b >0.ab又log(3a +4b )=log2ab ,4所以log 4(3a +4b )=log 4(ab ),4 3 即3a +4b =ab ,故a +b =1.所以+=(+) 4 33a 4b+b =7++a bab aba3 a 4≥7+2b ·a =7+43.3a 4bD.当且仅当b =a 时取等号.应选2a b5.不等式x+x <b +a 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是()A .(-2,0)B .(-∞,-2)∪(1,+∞)C .(-2,1)D .(-∞,-4)∪(2,+∞)2ab2分析:选C.依据题意,因为不等式x +x <b +a 对任意a ,b ∈(0,+∞)恒成立,则xa ba ba b2+x <b +a min ,因为b +a ≥2 b ·a =2,当且仅当a =b 时等号成立,所以x +x <2,求解此一元二次不等式可知-2<x <1,所以x 的取值范围是(-2,1).6.(2020·绍兴市高三教课质量议论1 221)若正数a ,b 满足: + =1,则-1+-2的最a bab小值为()3 2 A .2B.2C. 5D .1+3224122a2 1分析:选A.由a ,b 为正数,且a +b =1,得b =a -1>0,所以a -1>0,所以a -1+b -22+1= 2+ a -12 · a -1 2 a -112 同=a - 2 ≥2a - =2,当且仅当 = 2 和+=1 a -12a11 2a -1 ab-1-2a时成立,即a =b =3时等号成立,所以21a -1+b -2的最小值为2,应选A.7.已知a ,b ∈(0,+∞),若ab =1,则a +b 的最小值为________;若a +b =1,则 ab 的最大值为________.分析:由基本不等式得 a +b ≥2ab =2,当且仅当a =b =1时取到等号;ab ≤a +b2=2114,当且仅当a =b =2时取到等号.1 答案:2458.(2020·嘉兴期中)已知0<x <4,则x (5-4x )的最大值是________.5 分析:因为0<x <4, 所以0<5-4x <5,114+5- 4 x 2 255所以x (5-4x )=4·4x (5-4x )≤4·2=16,当且仅当x =8时取等号,故最25大值为16.25答案:16xy9.(2020·温州市瑞安市高考模拟 )若x >0,y >0,则x +2y +x 的最小值为________.分析:设 y =t >0,则 x + y 1 +t =1 1 1 1 1+2t x x +2y x = 2t 1+2t +(2 t +1)-≥2 1+2t ×1+ 2 2 2 112-1y-2= 2-2,当且仅当t =2 =x 时取等号.答案:2-12a 2+110.(2020·宁波十校联考)已知a ,b 均为正数,且a +b =1,c >1,则(2ab -1)·c2+ c -1的最小值为________.分析:因为a +b =1,a 2+1a 2+(a +b )2所以2ab -1=2ab-1=a +b≥2a ·b =2,b 2ab 2a当且仅当a= b 即 a = 2-1,=2-2时取等号,b 2aba 2+122 1所以(2ab -1)·c +c -1≥ 2c +c -1=2(c -1+c -1+1)≥3 2,当且仅当 c =2时取等号.答案:3 211.已知x >0, >0,且2+8 y - xy =0,求y x(1) xy 的最小值;(2) x +y 的最小值.8 2解:(1)由2x +8y -xy =0,得x +y =1,82 828又x >0,y >0,则 1=x +y ≥2 x ·y =xy.得xy ≥64,当且仅当x =16,y =4时,等号成立.所以xy 的最小值为64.8 2(2) 由2x +8y -xy =0,得x +y =1,8 2则x +y =x +y ·(x +y )2x8y 2x 8y =10+y + x ≥10+2 y ·x =18.当且仅当x =12且y =6时等号成立, 所以x +y 的最小值为18.12. 行驶中的汽车,在刹车时因为惯性作用,要连续往前滑行一段 距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽 车的刹车距离s (m)与汽车的车速 v (km/h)满足以下关系:nvv 2=+s 100 4006<s 1<8, (n 为常数,且n ∈N),做了两次刹车试验,有关试验数据以以下图,此中14<s 2<17.(1) 求n 的值;(2) 要使刹车距离不超出12.6m ,则行驶的最大速度是多少? 解:(1)由试验数据知,1= 2 +4, 2= 7 + 49 ,s5ns10n426<n +4<8,5所以49714<10n +4<17,5<n <10,解得5 95 .2<n <14 又n ∈N ,所以n =6.(2)由(1) 知,s = 3v +v 2,v ≥0.50 400 3vv 2依题意,s =+≤12.6,50 400即v 2+24v -5040≤0,解得-84≤v ≤60. 因为v ≥0,所以0≤v ≤60. 故行驶的最大速度为60km/h.[综合题组练]1. 以以下图,已知点G 是△ABC 的重心,过点G 作直线与AB ,AC两边分别交于 M ,N → → → →两点,且AM =xAB ,AN =yAC ,则x +2y 的最小值 为()1A .2B.33+2 23C.3D.4→21→→ 1→1→1→ 1→分析:选 C.由已知可得AG =3×2(AB +AC )=3AB +3AC =3x AM +3y AN ,又M 、G 、N 三点1 1 11 11 112yx 3+22 共线,故3+3 y =1,所以+=3,则x +2y =(x +2y )·x +y ·3=3 3+x +y ≥ 3xxy (当且仅当x = 2y 时取等号).应选C.2.已知 x >0,>0,2+=1,若4 2+ y 2+ xy -<0恒成立,则的取值范围是( )yx yxmmA .(-1,0)∪17B. 17,+∞,+∞16161717C. 16,2D. 1,16分析:选 B.4x 2+y 2+xy -m <0恒成立,即 m >4x 2+y 2+ xy 恒成立.因为x >0,y >0,212x +y =1,所以1=2x +y ≥22xy ,所以0<xy ≤4 (当且仅当 2x =y =2时,等号成立).因为4x 2+y 2+ xy =(2x +y )2-4xy +xy =1-4xy +xy =-4xy -1 2 +17,所以 4x 2+y 28 1617 17+ xy 的最大值为16,故m >16,选B.3.(2020·杭州学军中学考试 )已知a <b ,若二次不等式ax 2+bx +c ≥0对任意实数x恒成立,则M =a+2+4 c 的最小值为________.bb -a分析:由条件知a >0, b->0.由题意得= 2-4ac ≤0,解得c≥b 2,所以=ab4aMb 2a +2b +4c a +2b +4·4aa 2+2ab +b 2 [2a +(b -a )]2(b -a )2+4a (b -a )+4a 2 b -a≥b -a=a (b -a )=a (b -a )=a (b -a )b -a4ab -a4a= a +b -a +4≥2a ·b -a +4=4+4=8,当且仅当b =3a 时等号成立,所以M 的最小值为8.答案:8a 2+2b 24.(2020·浙江省名校联考)已知a >0,b >-1,且a +b =1,则a +b +1的最小值 为____________.分析: a 2+2 b 2 2 (b +1)2-2(b +1)+1 2 1+ =a ++ b + 1 =a ++b +1-2+,又a + a b + 1 a ab +1 2 1 2 12 1 a +13 b +1 =1,>0,+1>0,所以 a = + +++1-2+ =+ + a + 2=+ b abab +1a b 1b +122 a b+2( a 3 b +1 a 3+22 b +1 a +1)≥2+2 a · 2(+1)=2 ,当且仅当= 2( +1)即a =4-bbab2 2,b =22-3时取等号,所以a 2+2b 23+2 2+的最小值为2.ab +1答案:3+2 225.已知x >0,y >0,且2x +5y =20. 求:(1)u =lg x +lg y 的最大值;11(2) x +y 的最小值. 解:(1)因为x >0,y >0,所以由基本不等式,得2x +5y ≥210xy .因为2x +5y =20,所以210xy ≤20,xy ≤10, 当且仅当2x =5y 时,等号成立.2x +5y =20,x =5,所以有解得2x =5y ,y =2,此时xy 有最大值10.所以u =lg x +lg y =lg(xy )≤lg10=1.所以当x =5,y =2时,u =lg x +lg y 有最大值1. (2) 因为x >0,y >0,11 11 2x +5y 1 5y 2x 所以x +y =x +y · 20 =207+x +y ≥15y 2x 7+210 207+2x ·y= 20.5y 2x当且仅当x =y 时,等号成立.2x +5y =20,x = 1010-203 ,由 5 y 2解得= x,20-410 x yy =3.1 17+2 10所以x +y 的最小值为 20 .6. (2020·义乌模拟)如图,某生态园将一三角形地块ABC的一角APQ 开拓为水果园种植桃树,已知角A 为 120°,AB ,AC 的长度均大于200米,此刻界限 AP ,AQ 处建围墙,在 PQ 处围篱笆笆.(1)若围墙AP ,AQ 总长度为 200米,如何围可使得三角形地块 APQ 的面积最大?(2)已知AP 段围墙高1米,AQ 段围墙高 1.5米,造价均为每平方米 100元.若围围墙用了20000元,问如何围可使篱笆笆用料最省?解:设 = x 米, = 米.APAQy1 33 x +y2(1)则x +y =200,△APQ 的面积S =2xy ·sin120°= 4xy .所以S ≤42 =2500 3.x =y ,当且仅当x +y =200,即x =y =100时取“=”.(2) 由题意得100×(x +1.5y )=20000,即x +1.5y =200.要使篱笆笆用料最省,只需222 2 2 2 2-其长度PQ 最短,所以PQ =x+y -2xy cos120 °=x +y +xy =(200-1.5y ) +y +(200= 2+ =8002120000400 ,当 = 800 时, 有1.5y )y 1.75y1.75y 400y 400007737PQ最小值 200 212007 ,此时x =.7。
08-19年浙江高考数学基本不等式所有试题
08-19年浙江高考所有基本不等式题均值不等式练习1(08年浙江高考文科第5题):已知0≥a ,0≥b ,且2=+b a ,则()A .21≤ab B .21≥ab C .222≥+b a D .322≤+b a解:2a b +≤KEY:C 练习3(14年高考浙江卷文科倒数第二道填空题):已知实数a 、b 、c 满足0=++c b a ,1222=++c b a ,则a 的最大值为______________。
(方法一简单)解:方法一:利用:2b c +-≤0>a ,0<+c b ),∴22212423a a a -≤⇒≤。
方法二(消元):a b c =--代入得:22222212()12b c bc b c bc ++=⇒+=+≤2()12b c ++⇒22()[()[3b c b c a b c +≤⇒+∈⇒=-+∈-。
KEY:3求什么保留什么练习1.3(10年浙江高考文科):已知正实数x ,y 满足26x y xy ++=,则xy 的最小值为______________。
(方法一简单)解:方法一:⇒≥+-⇒-≤⇒-=+≤⋅03620)()6(84)6(4)2(22222xy xy xy xy xy y x y x 18≥xy 或2≤xy (266x y xy ++=>)∴18≥xy 。
方法二:由基本不等式得266x y xy ++=≥,设0t =>,则260t --≥⇒(t t -+0t ≥⇒≥或t ≤。
∴18xy ≥,验证等号可取到。
KEY:18平方法练习1.1(11年浙江高考文科):已知实数x ,y 满足221x y xy ++=,则x y +的最大值是_____________。
解:12)(222+=++=+xy xy y x y x (即可理解为对条件配方也可理解为对所求式子平方),而221133x y xy xy xy ++=≥⇒≤。
∴34)(2≤+y x 。
高考数学专题专练(浙江版)(基本不等式汇编)
班级:姓名:时间:专练主题:多元变量最值问题总第练基础部分:1.已知正数,x y 满足21x y +=,则11xy+的最小值为;2.已知正数,x y 满足21x y +=,则1x x y +的最小值为;3.已知正数,x y 满足1x y +=,则49+1+2x y +的最小值为;4.已知正数,x y 满足0x y >>且2x y +=,则21+3y x x y+-的最小值为;5.已知正数,x y ,则2+y x+2x y x y+的最大值为;+2y 2x+x y x y+的最小值为;6.已知正数,x y 满足24xy x y ++=,则x y +的最小值为;7.已知正数,x y 满足2+6x y xy +=,则xy 的最小值为;解题笔记:9.已知正数,x y 满足221x y +=,则2241+2+1x y +的最小值为;10.已知3030x y x y >><<或,则()()2423x y y x y -+-的最小值为;11.在锐角三角形ABC 中,角,,A B C 的对边分别为,,a b c ,若已知224sin()6b c bc A π+=+,则tan tan tan A B C ++的最小值是;12.若,,x y z 均为正实数,且满足1xyz =,则()()()111x y z +++的最小值为;13.若已知0,,>c b a ,则bcab c b a 2222+++的最小值为;14.设,,x y z 是正实数,则2221010x y z xy yz zx++++的最小值为;15.设正实数,,x y z 满足22340x xy y z -+-=,则当xy z 取得最大值时,212x y z+-的最大值为;解题笔记:22.已知,且,则的最小值为;23.已知A,B,C是平面上任意三点,BC=a,CA=b,AB=c,则y=ca+b+bc的最小值是________;24.已知函数f(x)=3x+a与函数g(x)=3x+2a在区间(b,c)上都有零点,则a2+2ab+2ac+4bcb2-2bc+c2的最小值为________;25.设二次函数f(x)=ax2+bx+c(a、b、c为常数)的导函数为f′(x).对任意x∈R,不等式f(x)≥f′(x)恒成立,则b2a2+c2的最大值为____________.解题笔记:。
(最新整理)基本不等式练习题(带答案)
(完整)基本不等式练习题(带答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)基本不等式练习题(带答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)基本不等式练习题(带答案)的全部内容。
基本不等式1. 若a ∈R ,下列不等式恒成立的是 ( )A .21a a +>B .2111a <+ C .296a a +> D .2lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( )A.12B.22a b + C.2ab D.a 3。
设x 〉0,则133y x x=--的最大值为 ( )A.3 B.3- C.3- D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( )A 。
10B 。
。
。
5. 若x , y 是正数,且141xy+=,则xy 有 ( )A.最大值16 B.最小值116 C.最小值16 D.最大值1166。
若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( )A .2222a b c ++≥B .2()3a b c ++≥C .111a b c++≥.a b c ++≤7. 若x 〉0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A .114x y ≤+ B .111x y +≥ C 2 D .11xy≥8. a ,b 是正数,则2,2a baba b++三个数的大小顺序是 ( ) A.22a b ab a b +≤+ 22a b aba b +≤+ C.22ab a ba b +≤+ D.22ab a ba b +≤≤+ 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( )A.2p q x +=B.2p q x +< C.2p q x +≤ D.2p qx +≥ 10。
浙江新高考数学理一轮复习限时集训:6.4基本不等式(含答案详析)
限时集训 (三十五 )基本不等式(限时:50 分钟满分: 106 分 )一、选择题(本大题共8 个小题,每题5 分,共 40 分)1. (2012·建高考福 )以下不等式必定建立的是()A . lg( x 2+14) >lg x(x > 0)B . sin x + sin 1x ≥ 2(x ≠k π, k ∈ Z)C . x 2+ 1≥ 2|x|(x ∈ R)1D.x 2+ 1> 1(x ∈ R)2. (2012 陕·西高考 )小王从甲地到乙地来回的时速分别为a 和 b(a<b),其全程的均匀时速为 v ,则 ()A . a<v<ab B . v = aba + ba + bC. ab<v<2D . v = 21+ 1的最小值是 ()3.若 a>0 , b>0,且 ln(a + b)= 0,则 a b1A. 4 B . 1C . 4D . 84. (2013 宁·波模拟 )已知 a , b ∈R ,且 ab = 50,则 |a + 2b|的最小值是 () A . 20 B . 150C . 75D . 15102x + 25. (2013 淮·北模拟 )函数 y = x - 1 (x>1) 的最小值是 ( )A . 2 3+ 2B .2 3-2C . 2 3D . 21 1k≥ 0 恒建立,则实数 k 的最小值等于 ()6.设 a>0 , b>0,且不等式 a + b + a + b A . 0B . 4C .- 4D .- 27.已知 M 是△ ABC 内的一点,且AB ·AC = 2 3,∠ BAC = 30°,若△ MBC ,△ MCA和△ MAB 的面积分别为 1,x , y ,则 1+4的最小值是 ()2x yA . 20B . 18C . 16D . 198.若 a>b>0,则代数式 a2+1的最小值为 ()b a- bA. 2B. 3 C. 4D. 5二、填空题 (本大题共 6 个小题,每题 4 分,共 24分)19.设 x>0,则 y= 3- 2x-x的最大值为 ________.10. (2013 济·南模拟 )已知 x>0, y>0, lg 2 x+ lg 8 y= lg 2,则1+1的最小值为 ________.x 3y11.某企业租地建库房,每个月土地占用费y1与库房到车站的距离成反比,而每个月库存货物的运费y2与到车站的距离成正比,假如在距车站10 公里处建库房,这两项花费y1和 y2分别为 2 万元和 8 万元,那么要使这两项花费之和最小,库房应建在离车站______ 公里处.12.若 a>0,b>0 ,a+ b= 2,则以下不等式对全部知足条件的a,b 恒建立的是 ______(写出全部正确命题的编号).① ab≤1;②a+b≤2;③ a2+ b2≥ 2;④ a3+b3≥ 3;11⑤+≥2.13.已知 x>0,y>0, x+ 2y+ 2xy= 8,则 x+ 2y 的最小值是 ________.14.关于使- x2+2x≤ M 建立的全部常数 M 中,我们把 M 的最小值1叫做- x2+ 2x 的12“上确界”.若 a,b∈ (0,+∞ ),且 a+ b=1,则-2a-b的“上确界”为 ________.三、解答题 (本大题共 3 个小题,每题14 分,共42 分)15.已知 a>0, b>0, c>0, d>0.求证:ad+ bc+bc+ ad≥4.bd ac16.已知 x>0,y>0,且 2x+ 8y- xy= 0,求 (1)xy 的最小值; (2)x+ y 的最小值.17.提升过江大桥的车辆通行能力可改良整个城市的交通状况.在一般状况下,大桥上的车流速度 v(单位:千米 /小时 )是车流密度 x(单位:辆 /千米 )的函数,当桥上的车流密度达到 200 辆 /千米时,造成拥塞,此时车流速度为 0;当车流密度不超出 20 辆/ 千米时,车流速度为 60 千米 /小时.研究表示:当20≤ x≤200 时,车流速度v 是车流密度x 的一次函数.(1)当 0≤ x≤200 时,求函数v(x)的表达式;(2)当车流密度x 为多大时,车流量(单位时间内经过桥上某观察点的车辆数,单位:辆/小时 )f(x)= x·v(x)能够达到最大,并求出最大值( 精准到 1 辆 /小时 ).答案[ 限时集训 (三十五 )]1. C 2.A 3.C 4.A 5.A 6.C 7.B8.C9.分析:∵x>0,∴2x+1≥22,x1∴- 2x+x≤ -22,则 y≤3- 2 2.答案: 3- 2210.分析:由 lg 2x+ lg 8 y=(x+3y)lg2 =lg2 ,得 x+3y= 1,故1+1= (x+ 3y)1+1=2x3y x3y + 3yx+ 3yx≥ 4.答案: 411.分析:设 x 为库房与车站距离,由已知20y1= x ; y2= 0.8x 花费之和y= y1+y2= 0.8x+20x≥2020,即 x=5时“=”建立.20.8x·=8,当且仅当0.8x=x x答案: 5a+ b212.分析:两个正数,和为定值,积有最大值,即ab≤= 1,当且仅当 a= b 时4取等号,故①正确; ( a+ b)2= a+ b+ 2ab= 2+ 2ab≤4,当且仅当 a= b 时取等号,得 aa2+ b2a+ b 2a3+ b3= (a +b≤ 2,故②错误;因为≥= 1,故 a2+ b2≥ 2建立,故③正确;2 4+b)( a2+ b2- ab)= 2(a2+ b2- ab),∵ab≤ 1,2 2 2 23 31 11 1 a + b∴-ab ≥ - 1,又 a + b ≥ 2,∴a + b - ab ≥ 1,∴a +b ≥ 2,故④错误; a +b = a + b · 2= 1+ a b 2b +2a ≥1+ 1=2,当且仅当 a = b 时取等号,故⑤正确.答案: ①③⑤13. 分析: 依题意得 (x + 1)(2y + 1)= 9,(x + 1)+ (2y + 1)≥ 2x + 1 2y + 1 = 6,x + 2y ≥ 4,当且仅当 x + 1=2y + 1,即 x = 2,y= 1 时取等号,故 x + 2y 的最小值是 4.答案: 414. 分析: 由题意知,求- 121 22a - b 的 “ 上确界 ” 相当于求-2a - b 的最大值.∵-1- 2=- 1 + 2 1+ 2+ b+ 2a2a b2a b (a + b)=- 22ab≤ - 5 b 2a5- 22a·=- -22b29121 29=- 2(当且仅当 a = 3, b = 3时等号建立 ) ,∴-2a -b 的 “ 上确界 ” 为- 2.答案:-9215. 证明: ad +bc bc + ad+ = a + c +bdac b db + d = a + b +c + d≥ 2+ 2= 4(当且仅当 a = b , c = d 时,取 “ =” ),a cb a dc ad +bc bc + ad故 bd +≥ 4.ac16. 解: (1)∵x>0, y>0,∴xy = 2x + 8y ≥ 2 16xy ,即 xy ≥8 xy ,∴ xy ≥8,即 xy ≥64.当且仅当 2x = 8y ,即 x =16, y = 4 时, “ =” 建立. ∴xy 的最小值为 64.(2)∵x>0, y>0,且 2x +8y - xy = 0,∴2x+8y= xy,即2+8= 1. y x282x8y≥ 10+22x 8y= 18,∴x+ y= (x+ y) ·+x =10++x·y y y x2x8y当且仅当y=x,即 x= 2y= 12 时“=” 建立.∴x+ y 的最小值为 18.17.解: (1)由题意,当0≤ x≤20 时, v(x)= 60;当 20≤x≤ 200 时,设 v(x)= ax+ b,200a+ b= 0,则由已知得20a+ b= 60,1a=-3,解得200b=3 .故函数 v(x)的表达式为v(x)=60,0≤ x< 20,13 200- x , 20≤ x≤ 200.(2)依题意并由 (1)可得f(x)=60x,0≤ x< 20,13x 200- x , 20≤ x≤ 200.当 0≤x≤ 20 时, f(x)为增函数,故当 x= 20 时, f(x)获得最大值为60× 20= 1 200;当 20≤ x≤ 200 时,1f(x)=3x(200- x)≤1x+ 200- x2=10 000,323当且仅当 x= 200- x,即 x= 100 时,等号建立.10 000因此,当 x= 100 时, f(x)在区间 [20,200] 上获得最大值.10 000综上,当 x= 100 时, f(x)在区间 [0,200] 上获得最大值≈ 3 333,即当车流密度为100 辆 /千米时,车流量能够达到最大,最大值约为 3 333 辆 /小时.。
高三基本不等式练习题
高三基本不等式练习题在高中数学的学习中,不等式是一个重要的概念和工具。
而基本不等式是构建其他不等式的基础,对于高三学生来说,熟练掌握基本不等式的运用至关重要。
本文将为大家提供一些高三基本不等式的练习题,以帮助大家巩固相关知识。
1. 给定 a > b,证明 a + c > b + c。
解法:由于 a > b,我们可以得到 a - b > 0,同样我们可以得到 c > 0。
那么,将这两个不等式相加,得到 (a - b) + c > 0 + c,即 a + c > b + c。
2. 给定 a > b,证明 -a < -b。
解法:由于 a > b,我们可以得到 a - b > 0,同时我们可以得到 -1 < 0。
那么,将这两个不等式相乘,得到 (-1)(a - b) > 0(a - b),即 -a + b > 0,同理 -a < -b。
3. 给定 a > 0,证明 1/a > 0。
解法:由于 a > 0,我们可以得到 1 > 0。
那么,将这两个不等式相除,得到 1/a > 0。
4. 给定 a < b,证明 -b < -a。
解法:由于 a < b,我们可以得到 b - a > 0,同时我们可以得到 -1 < 0。
那么,将这两个不等式相乘,得到 (-1)(b - a) > 0(b - a),即 -b + a > 0,同理 -b < -a。
5. 给定 a < b,c > 0,证明 ac < bc。
解法:由于 a < b,我们可以得到 a - b < 0,同时我们可以得到 c > 0。
那么,将这两个不等式相乘,得到 (a - b)c < 0c,即 ac - bc < 0,同理 ac < bc。
高考真题与模拟训练 专题14 基本不等式(试题版)
专题14 基本不等式第一部分真题分类1.(2021·江苏高考真题)已知奇函数()f x 是定义在R 上的单调函数,若正实数a ,b 满足()()240f a f b +-=则121a b++的最小值是() A .23B .43C .2D .42.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为() A .13B .12C .9D .63.(2021·浙江高考真题)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是() A .0B .1C .2D .34.(2021·全国高考真题(文))下列函数中最小值为4的是() A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+D .4ln ln y x x=+5.(2019·北京高考真题(理))数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A .①B .②C .①②D .①②③6.(2020·海南高考真题)已知a >0,b >0,且a +b =1,则()A .2212a b +≥B .122a b -> C .22log log 2a b +≥-D 2a b ≤7.(2021·天津高考真题)若0 , 0a b >>,则21a b ab ++的最小值为____________. 8.(2020·天津高考真题)已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 9.(2020·江苏高考真题)已知22451(,)x y y x y R +=∈,则22xy +的最小值是_______.10.(2019·天津高考真题(文))设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________.11.(2021·江苏高考真题)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y 万元与年产量x 吨之间的函数关系可以近似地表示为22420005x y x =-+,已知此生产线的年产量最小为60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.12.(2020·全国高考真题(文))设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }≥34.第二部分模拟训练一、单选题1.已知定义在R 上的函数()23y f x =+-是奇函数,当()2,x ∈+∞时,()142f x x x '≥+--,则不等式()()3ln 10f x x -+>⎡⎤⎣⎦的解集为() A .()2,+∞ B .()()1,0,e -⋃+∞ C .()()0,2,e ⋃+∞D .()()1,02,-⋃+∞2.已知椭圆方程为()222133y x a a +=>,,A B 是上、下顶点,P 为椭圆上的一个动点,且APB ∠的最大值为120°,若((6,0,6M N -,则14PM PN+的最小值为()A .9B .3C .53D .323.已知正数m ,n 满足482m n ⨯=,则32m n +的最小值为()A .24B .18C .16D .124.已知1F ,2F 为双曲线22221(0,0)x y a b a b-=>>的左右焦点,过1F 的直线l 与双曲线的左右两支分别交于A ,B 两点,若△2ABF 为等边三角形,则221b a +的最小值为() A .63B .663+C .626+D .265.已知平面向量a ,b 的夹角为3π,且·1a b =,则||a b +的最小值为() A .1B .2C .2D .66.设函数()()2ln 0,0f x a x bx a b =+>>,若函数()f x 的图象在1x =处的切线与直线2e 0x y +-=垂直,则11a b+的最小值为() A .1B .12C .322-D .322+7.已知ABC 三内角,,A B C 的对边分别为,,a b c ,且3cos sin 0c A a C +=,若角A 的平分线交BC 于D 点,且1AD =,则b c +的最小值为( ) A .2B .23C .4D .328.在梯形ABCD 中,//AB CD ,2AB CD =,3BC CD =,则ADB ∠的最大值为()A .4π B .3π C .2π D .23π 二、填空题9.设曲线()2ln 0y a x xa =+>上任意一点的切线为l ,若l 的倾斜角的取值范围是,42ππ⎡⎫⎪⎢⎣⎭,则实数a =______.10.对于任意的正实数a ,b ,则2222953a a b a b+++的取值范围为___________.11.已知向量||||||1a b c ===,若12a b ⋅=,且c xa yb =+,则x y +的最大值为____. 12.在正项等比数列{}n a 中,11a =,前三项的和为7,若存在*,m n ∈N 14m n a a a =,则11m n+的最小值为__________. 三、解答题13.已知函数()()32f x x x m m =-+->的最小值为1. (1)求不等式()2f x x m +->的解集﹔ (2)若2223232a b c m ++=,求2ac bc +的最大值.14.已知函数()221g x ax x b =-++,,a b ∈R ,且关于x 的不等式()0g x <的解集为{}|13x x -<<,设()()g xf x x=.(1)若存在[]01,3x ∈,使不等式()002f x x m -≥成立,求实数m 的取值范围;(2)若方程()2213021x xf k k -+⋅-=-有三个不同的实数解,求实数k 的取值范围.15.已知()34f x x x =-++. (1)求不等式()9f x ≤的解集;(2)若()f x 的最小值是k ,且222a b k +=,求22916a b +的最小值.16.设()()322f x x ax x x =+-∈R ,其中常数a ∈R .(1)判断函数()y f x =的奇偶性,并说明理由; (2)若不等式()332f x x >在区间1[,1]2上有解,求实数a 的取值范围;(3)已知:若对函数()y h x =定义域内的任意x ,都有()()22h x h m x n+-=,则函数()y h x =的图象有对称中心(),m n .利用以上结论探究:对于任意的实数a ,函数()y f x =是否都有对称中心?若是,求出对称中心的坐标(用a 表示);若不是,证明你的结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江高考基本不等式小题狂练
. ,0263,.12222的取值范围求满足已知y x y x x y x +=+-. ,3,0,0.2的最大值是则且设ab b a ab b a =++>>.,)0,0(1913.的最小值求已知y x y x y x +>>=+. 14,12,.422的最小值为则满足已知正实数ab b a b a b a ++=+ . 11)
[0,)(2)(.52的最小值为则的值域为二次函数a c c a R x c x ax x f ++++∞∈++=. 4,522122,.6的最小值是则满足已知正数y x y x y x y x +=+++
. 2,0,0,322.7的最小值为则已知b a b a ab b a +>>=++. 3)1(,1log ,8.1的最小值则满足已知正实数b b a b a b a ++-=+. 21111,1,.9的最小值为则满足已知正实数y x M xy y x +++=≤.,451.10的最大值为则实数使得若存在正实数x y x x y xy y +=-. 12)21(,11,0,0.112的最小值为则且已知-+⋅-+=+>>>c c ab a b a c b a . , 11.062,0,0.1222的值为此时的最小值是则设ab b a b a b a b a +=--+>>. 1
)(],1,0[)(,,.13的最大值为则满足对任意的函数为实数设ab x f x b ax x f b a ≤∈+=
. ,40,0.142
2的最小值为那么且已知实数b a b a ab b a -+-=>>. ,511,.15是的最大值与最小值之和则满足若正数y x y x y x y x +=+++ . 1
1,0lg lg .1622的最小值是的实数恒成立则满足不等式已知λλ≤+++=+b b a a b a . ,4,.1722的最大值为则满足实数xy y x y x y x -+=+. )4(2120,0.1822的最大值是则且若b a ab S b a b a +-==+>>
. 1
,,,.
3,2,.192
的最小值是则设已知中如图在三棱锥+===-=⋅=-ab c c CD b BC a AD AB ABC D
.
23,,.20=-=-===
∠===AOB 且设π. 2)12(,1,,.2122222的取值范围是则代数式为实数若ab b a b a a b a ---+++≤. 2.143,.2222的取值范围是则满足若正实数y x y xy x y x +=++.,1.232222的最大值和最小值求已知y x xy y x -==-+μ.11,,5454,24.min max 2222的值求
设满足实数S S y x S y xy x y x ++==+-。