普通高等学校招生全国统一考试数学理试题精品解析(上
普通高等学校招生全国统一考试数学理试题(山东卷)(含解析)
(山东卷)理科数学全解全析第I 卷一、选择题:本大题共12小题,每小题5分,共60分。
(1)满足M ⊆{}1234,,,a a a a 且{}{}12312,,,M a a a a a ⋂=的集合M 的个数是().1A ().2B ().3C ().4D2.设z 的共轭复数是z ,若4z z +=,8z z ⋅=,则zz等于 ().A i ().B i - ().1C ± ().D i ±【标准答案】:D 。
【试题分析】 可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±【高考考点】: 共轭复数的概念、复数的运算。
【易错提醒】: 可能在以下两个方面出错:一是不能依据共轭复数条件设2z bi =+简化运算;二是由248b +=只求得 2.b =【学科网备考提示】: 理解复数基本概念并进行复数代数形式的四则运算是复数内容的基本要求,另外待定系数法、分母实数化等解题技巧也要引起足够重视。
3函数ln cos ()22y x x ππ=-<<的图象是5.已知4cos()sin 365παα-+=7sin()6πα+的值是 3().5A -3().5B 4().5C - 4().5D 【标准答案】:C 。
【试题分析】:334cos()sin cos sin 36225παααα-+=+=,134cos 225αα+=, 7314sin()sin()cos .66225ππαααα⎛⎫+=-+=-+=- ⎪ ⎪⎝⎭【高考考点】: 三角函数变换与求值。
【易错提醒】: 不能由334cos()sin sin 3625παααα-+=+=得到134cos 225αα+=是思考受阻的重要体现。
【学科网备考提示】:三角变换与求值主要考查诱导公式、和差公式的熟练应用,其间会涉及一些计算技巧,如本题中的为需而变。
普通高等学校招生全国统一考试数学理科试题(上海卷)真题解析
2010年普通高等学校招生全国统一考试(上海卷)数学(理科)答案及解析考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码.2.本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、 不等式042>+-x x的解集为_______________; 【解析】20(4)(2)0(4)(2)0424xx x x x x x->⇔+->⇔+-<⇔-<<+,故答案为:)2,4(-.或由2020404x xx x ->⎧->⇔⎨+>+⎩或2040x x -<⎧⎨+<⎩,解得42x -<<,故答案为:)2,4(-. 【点评】本题考查分式不等式的解法,常规方法是化为整式不等式或不等式组求解. 2、 若复数12z i =-(i 为虚数单位),则=+⋅z z z _____________;【解析】∵12z i =-,∴(12)(12)1251262z z z i i i i i ⋅+=-++-=+-=-,故答案为:i 26-【点评】本题考查复数的基本概念与运算,属基础概念题.3、 若动点P 到点F (2,0)的距离与它到直线02=+x 的距离相等,则点P 的轨迹方程为_____________; 【解析】由抛物线定义知:P 的轨迹为抛物线,易知焦参数4p =,所以点P 的轨迹方程为x y 82=.【点评】本题考查抛物线定义和轨迹方程的求法之——直接法,属基础概念题.4、 行列式6cos3sin6sin 3cosππππ的值为_______________;【解析】cossin 36coscossinsincos()cos 03636362sincos36πππππππππππ=-=+==,答案为:0.【点评】本题考查二阶行列式的计算方法与和角的余弦公式以及特殊角的三角函数值,符合在知识交汇处命题原则,属基础题.5、 圆C :044222=+--+y x y x 的圆心到直线l :3440x y ++=的距离=d ________;【解析】由044222=+--+y x y x ,得22(1)(2)1x y -+-=,则圆心为(1,2),故22334d ==+,答案为:3.【点评】本题考查圆的标准方程、点到直线的距离公式以及计算能力,是课本习题的变式题.6、 随机变量ξ的概率分布率由下图给出:x 7 8 9 10 P(x =ξ)0.30.350.20.15则随机变量ξ的均值是__________;【解析】70.380.3590.2100.158.2E ξ=⨯+⨯+⨯+⨯=,故答案为:8.2. 【点评】本题考查随机变量ξ的概率分布和均值(期望)的计算,属常规题,无难度. 7、2010年上海世博会园区每天9:00开园,20:00停止入园。
2020年普通高等学校招生全国统一考试数学理试题(新课标I卷,解析版1)
2020年高考理科数学试题解析(课标Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、 选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( ) A 、A∩B=∅ B 、A ∪B=R C 、B ⊆A D 、A ⊆B【命题意图】本题主要考查一元二次不等式解法、集合运算及集合间关系,是容易题. 【解析】A=(-∞,0)∪(2,+∞), ∴A ∪B=R,故选B.2、若复数z 满足 (3-4i)z =|4+3i |,则z 的虚部为 ( ) A 、-4(B )-45(C )4(D )45【命题意图】本题主要考查复数的概念、运算及复数模的计算,是容易题.【解析】由题知z =|43|34i i +-=4)(34)(34)i i i +-+=3455i +,故z 的虚部为45,故选D.3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( )A 、简单随机抽样B 、按性别分层抽样C 、按学段分层抽样D 、系统抽样 【命题意图】本题主要考查分层抽样方法,是容易题.【解析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C.4、已知双曲线C :22221x y a b-=(0,0a b >>C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =± D .y x =±【命题意图】本题主要考查双曲线的几何性质,是简单题.【解析】由题知,2c a =,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C . 5、运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]【命题意图】本题主要考查程序框图及分段函数值域求法,是简单题.【解析】有题意知,当[1,1)t ∈-时,3s t =[3,3)∈-,当[1,3]t ∈时,24s t t =-[3,4]∈, ∴输出s 属于[-3,4],故选A .6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 3【命题意图】本题主要考查球的截面圆性质、球的体积公式,是容易题.【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则222(2)4R R =-+,解得R=5,∴球的体积为3453π⨯=500π33cm ,故选A. 7、设等差数列{a n }的前n 项和为S n ,1m S -=-2,m S =0,1m S +=3,则m = ( ) A 、3 B 、4 C 、5 D 、6【命题意图】本题主要考查等差数列的前n 项和公式及通项公式,考查方程思想,是容易题. 【解析】有题意知m S =1()2m m a a +=0,∴1a =-m a =-(m S -1m S -)=-2, 1m a += 1m S +-m S =3,∴公差d =1m a +-m a =1,∴3=1m a +=-2m +,∴m =5,故选C.8、某几何体的三视图如图所示,则该几何体的体积为 A .168π+ B .88π+ C .1616π+ D .816π+【命题意图】本题主要考查简单组合体的三视图及简单组合体体积公式,是中档题.【解析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为21244222π⨯⨯+⨯⨯ =168π+,故选A . 9、设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若13a =7b ,则m = ( ) A 、5 B 、6 C 、7 D 、8【命题意图】本题主要考查二项式系数最大值及组合数公式,考查方程思想,是容易题. 【解析】由题知a =2mm C ,b =121m m C ++,∴132mm C =7121m m C ++,即13(2)!!!m m m ⨯=7(21)!(1)!!m m m ⨯++, 解得m =6,故选B.10、已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点。
精品解析:2023年高考全国甲卷数学(理)真题(解析版)
2023年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题1. 设集合,U 为整数集,( )A. B. C. D. 【答案】A 【解析】【分析】根据整数集的分类,以及补集的运算即可解出.【详解】因为整数集,,所以,.故选:A .2. 若复数,则( )A. -1 B. 0 · C. 1 D. 2【答案】C 【解析】【分析】根据复数的代数运算以及复数相等即可解出.【详解】因为,所以,解得:.故选:C.3. 执行下面的程序框遇,输出的( ){31,},{32,}A xx k k Z B x x k k Z ==+∈==+∈∣∣()A B =U ð{|3,}x x k k =∈Z {31,}xx k k Z =-∈∣{32,}xx k k Z =-∈∣∅{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z Z Z U Z =(){}|3,U A B x x k k ==∈Z ð()()i 1i 2,R a a a +-=∈=a ()()()22i 1i i i 21i 2a a a a a a a+-=-++=+-=22210a a =⎧⎨-=⎩1a =B =A. 21B. 34C. 55D. 89【答案】B 【解析】【分析】根据程序框图模拟运行,即可解出.【详解】当时,判断框条件满足,第一次执行循环体,,,;当时,判断框条件满足,第二次执行循环体,,,;当时,判断框条件满足,第三次执行循环体,,,;当时,判断框条件不满足,跳出循环体,输出.故选:B.4.向量,且,则()A. B. C.D.【答案】D 【解析】【分析】作出图形,根据几何意义求解.【详解】因为,所以,即,即,所以.如图,设,1n =123A =+=325B =+=112n =+=2n =358A =+=8513B =+=213n =+=3n =81321A =+=211334B =+=314n =+=4n =34B =1,a b c === 0a b c ++= cos ,a c b c 〈--〉= 15-25-25450a b c ++=a b c +=-rrr2222a b a b c ++⋅=1122a b ++⋅=rr 0a b ⋅=,,OA a OB b OC c ===由题知,是等腰直角三角形,AB 边上的高,所以,,.故选:D.5. 已知正项等比数列中,为前n 项和,,则( )A 7B. 9C. 15D. 30【答案】C 【解析】【分析】根据题意列出关于的方程,计算出,即可求出.【详解】由题知,即,即,即.由题知,所以.所以.故选:C.6. 有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球.1,OA OB OC OAB === OD AD ==CD CO OD =+=+=1tan ,cos 3AD ACD ACD CD ∠==∠=2cos ,cos cos 22cos 1a cbc ACB ACD ACD 〈--〉=∠=∠=∠-24215=⨯-={}n a 11,n a S ={}n a 5354S S =-4S =q q 4S ()23421514q q q q q q++++=++-34244q q q q +=+32440q q q +--=(2)(1)(2)0q q q -++=0q >2q =4124815S =+++=俱乐部,则其报乒乓球俱乐部的概率为( )A. 0.8 B. 0.4C. 0.2D. 0.1【答案】A 【解析】【分析】先算出报名两个俱乐部的人数,从而得出某人报足球俱乐部的概率和报两个俱乐部的概率,利用条件概率的知识求解.【详解】报名两个俱乐部的人数为,记“某人报足球俱乐部”为事件,记“某人报兵乓球俱乐部”为事件,则,所以.故选:.7. “”是“”的( )A. 充分条件但不是必要条件 B. 必要条件但不是充分条件C. 充要条件 D. 既不是充分条件也不是必要条件【答案】B 【解析】【分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解.【详解】当时,例如但,即推不出;当时,,即能推出.综上可知,是成立的必要不充分条件.故选:B8. 已知双曲线交于A ,B两点,则( )50607040+-=A B 505404(),()707707P A P AB ====4()7()0.85()7P AB P B A P A ===∣A 22sin sin 1αβ+=sin cos 0αβ+=22sin sin 1αβ+=π,02αβ==sin cos 0αβ+≠22sin sin 1αβ+=sin cos 0αβ+=sin cos 0αβ+=2222sin sin (cos )sin 1αβββ+=-+=sin cos 0αβ+=22sin sin 1αβ+=22sin sin 1αβ+=sin cos 0αβ+=22221(0,0)x y a b a b -=>>22(2)(3)1x y -+-=||AB =A.B.C.D.【答案】D 【解析】【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.【详解】由,则,解得,所以双曲线的一条渐近线不妨取,则圆心到渐近线距离所以弦长.故选:D9. 有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务的选择种数为( )A. 120 B. 60C. 40D. 30【答案】B 【解析】【分析】利用分类加法原理,分类讨论五名志愿者连续参加两天社区服务的情况,即可得解.【详解】不妨记五名志愿者为,假设连续参加了两天社区服务,再从剩余的4人抽取2人各参加星期六与星期天的社区服务,共有种方法,同理:连续参加了两天社区服务,也各有种方法,所以恰有1人连续参加了两天社区服务的选择种数有种.故选:B.10. 已知为函数向左平移个单位所得函数,则与的交点个数为( )的15e =222222215c a b b a a a+==+=2ba=2y x =(2,3)d ==||AB ===,,,,a b c d e a 24A 12=,,,b c d e 1251260⨯=()f x πcos 26y x ⎛⎫=+ ⎪⎝⎭π6()y f x =1122y x =-A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】先利用三角函数平移的性质求得,再作出与的部分大致图像,考虑特殊点处与的大小关系,从而精确图像,由此得解.【详解】因为向左平移个单位所得函数为,所以,而显然过与两点,作出与的部分大致图像如下,考虑,即处与的大小关系,当时,,;当时,,;当时,,;所以由图可知,与的交点个数为.故选:C.11. 在四棱锥中,底面为正方形,,则的面积为( )A. B. C. D. ()sin 2f x x =-()fx 1122y x=-()f x1122y x =-πcos 26y x ⎛⎫=+ ⎪⎝⎭π6πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()sin 2f x x =-1122y x =-10,2⎛⎫- ⎪⎝⎭()1,0()f x 1122y x =-3π3π7π2,2,2222x x x =-==3π3π7π,,444x x x =-==()f x 1122y x =-3π4x =-3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭3π4x =3π3πsin 142f ⎛⎫=-= ⎪⎝⎭13π13π412428y -=⨯-=<7π4x =7π7πsin 142f ⎛⎫=-= ⎪⎝⎭17π17π412428y -=⨯-=>()f x 1122y x =-3P ABCD -ABCD 4,3,45AB PC PD PCA ===∠=︒PBC【答案】C 【解析】【分析】法一:利用全等三角形的证明方法依次证得,,从而得到,再在中利用余弦定理求得,从而求得中利用余弦定理与三角形面积公式即可得解;法二:先在中利用余弦定理求得,,从而求得,再利用空间向量的数量积运算与余弦定理得到关于的方程组,从而求得由此在中利用余弦定理与三角形面积公式即可得解.【详解】法一:连结交于,连结,则为的中点,如图,因为底面为正方形,,所以,又,,所以,则,又,,则,在中,,则由余弦定理可得,故,则,故在中,,所以,又,所以,PDO PCO ≅ PDB PCA ≅ PA PB =PAC △PA =PB =PBC PAC△PA=1cos 3PCB ∠=3PA PC ⋅=- ,PB BPD ∠PB =PBC ,AC BD O PO O ,AC BD ABCD 4AB =AC BD ==DO CO ==3PC PD ==PO OP =PDO PCO ≅ PDO PCO ∠=∠3PC PD ==AC BD ==PDB PCA ≅ PA PB =PAC △3,45PC AC PCA ==∠=︒2222cos 3292317PA AC PC AC PC PCA =+-⋅∠=+-⨯=PA =PB =PBC 43,P PB C C B ===222916171cos 22343PC BC PB PCB PC BC +-+-∠===⋅⨯⨯0πPCB <∠<sin PCB ∠==所以的面积为法二:连结交于,连结,则为的中点,如图,因为底面为正方形,,所以在中,,则由余弦定理可得,故,所以,不妨记,因为,所以,即,则,整理得①,又在中,,即,则②,两式相加得,故,故在中,,PBC 11sin 3422S PC BC PCB =⋅∠=⨯⨯=,AC BD O PO O ,AC BD ABCD 4AB =AC BD ==PAC △3,45PC PCA =∠=︒2222cos 3292317PA AC PC AC PC PCA =+-⋅∠=+-⨯=PA =222cos 2PA PC AC APC PA PC +-∠===⋅cos 33PA PC PA PC APC ⎛⋅=∠=⨯=- ⎝ ,PB m BPD θ=∠=()()1122PO PAPC PB PD =+=+()()22PA PC PB PD +=+222222PA PC PA PC PB PD PB PD ++⋅=++⋅ ()217923923cos m m θ++⨯-=++⨯⨯26cos 110m m θ+-=PBD △2222cos BD PB PD PB PD BPD =+-⋅∠23296cos m m θ=+-26cos 230m m θ--=22340m -=PB m ==PBC 43,P PB C C B ===所以,又,所以,所以的面积为故选:C.12. 己知椭圆,为两个焦点,O 为原点,P 为椭圆上一点,,则( )A.B.C.D.【答案】B 【解析】【分析】方法一:根据焦点三角形面积公式求出的面积,即可得到点的坐标,从而得出的值;方法二:利用椭圆的定义以及余弦定理求出,再结合中线的向量公式以及数量积即可求出;方法三:利用椭圆的定义以及余弦定理求出,即可根据中线定理求出.【详解】方法一:设,所以,由,解得:,由椭圆方程可知,,所以,,解得:,即,因此.故选:B.方法二:因为①,,222916171cos 22343PC BC PB PCB PC BC +-+-∠===⋅⨯⨯0πPCB <∠<sin PCB ∠==PBC 11sin 3422S PC BC PCB =⋅∠=⨯⨯=22196x y +=12,F F 123cos 5F PF ∠=||PO =253512PF F △P OP 221212,PF PF PF PF +2212PF PF +12π2,02F PF θθ∠=<<122212tantan 2PF F F PF S b b θ∠== 22212222cos sin 1tan 3cos cos 2cos +sin 1tan 5F PF θθθθθθθ--∠====+1tan 2θ=222229,6,3a b c a b ===-=12121116222PF F p S F F y =⨯⨯=⨯⨯ 23p y =2399162p x ⎛⎫=⨯-= ⎪⎝⎭OP ===1226PF PF a +==222121212122PF PF PF PF F PF F F +-∠=即②,联立①②,解得:,而,所以,即.故选:B .方法三:因为①,,即②,联立①②,解得:,由中线定理可知,,易知,解得:故选:B .【点睛】本题根据求解目标可以选择利用椭圆中的二级结论焦点三角形的面积公式快速解出,也可以常规利用定义结合余弦定理,以及向量的数量积解决中线问题的方式解决,还可以直接用中线定理解决,难度不是很大.二、填空题13. 若为偶函数,则________.【答案】2【解析】【分析】利用偶函数的性质得到,从而求得,再检验即可得解.【详解】因为为偶函数,定义域为,所以,即,则,故,此时,的2212126125PF PF PF PF +-=22121215,212PF PF PF PF =+=()1212PO PF PF =+ 1212OP PO PF PF ==+1212PO PF PF =+==1226PF PF a +==222121212122PF PF PF PF F PF F F +-∠=2212126125PF PF PF PF +-=221221PF PF +=()()222212122242OP F F PF PF +=+=12F F=OP =2π(1)sin 2y x ax x ⎛⎫=-+++ ⎪⎝⎭=a ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭2a =()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==-+++=-++ ⎪⎝⎭R ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭22ππππππ222222s 1co 1cos a a ⎛⎫⎛⎫⎛⎫-+=-+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝2a =()()2212cos 1cos f x x x x x x =-++=++所以,又定义域为,故为偶函数,所以.故答案为:2.14. 设x ,y 满足约束条件,设,则z 的最大值为____________.【答案】15【解析】【分析】由约束条件作出可行域,根据线性规划求最值即可.【详解】作出可行域,如图,由图可知,当目标函数过点时,有最大值,由可得,即,所以.故答案为:1515. 在正方体中,E ,F 分别为CD ,的中点,则以EF 为直径的球面与正方体每条棱的交点总数为____________.【答案】12【解析】【分析】根据正方体的对称性,可知球心到各棱距离相等,故可得解.【详解】不妨设正方体棱长为2,中点为,取,中点,侧面的中心为,连接,如图,()()()()221cos s 1co f x x x x x f x -=-++++-==R ()f x 2a =2333231x y x y x y -+≤⎧⎪-≤⎨⎪+≥⎩32z x y =+322zy x =-+A z 233323x y x y -+=⎧⎨-=⎩33x y =⎧⎨=⎩(3,3)A max 332315z =⨯+⨯=1111ABCD A B C D -11A B EF O AB 1BB ,G M 11BB C C N ,,,,FG EG OM ON MN由题意可知,为球心,在正方体中,,即,则球心到的距离为,所以球与棱相切,球面与棱只有1个交点,同理,根据正方体的对称性知,其余各棱和球面也只有1个交点,所以以EF 为直径的球面与正方体每条棱的交点总数为12.故答案为:1216. 在中,,D 为BC 上一点,AD 为的平分线,则_________.【答案】【解析】【分析】方法一:利用余弦定理求出,再根据等面积法求出;方法二:利用余弦定理求出,再根据正弦定理求出,即可根据三角形的特征求出.【详解】如图所示:记,方法一:由余弦定理可得,,因为,解得:由可得,O EF ===R =O 1BB OM ===O 1BB 1BB ABC 2AB =60,BAC BC ∠=︒=BAC ∠AD =2AC AD AC ,B C ,,AB c AC b BC a ===22222cos 606b b +-⨯⨯⨯= 0b >1b =+ABC ABD ACD S S S =+,解得:.故答案为:.方法二:由余弦定理可得,,因为,解得:,解得:,,因为,,又,所以,即.故答案为:.【点睛】本题压轴相对比较简单,既可以利用三角形的面积公式解决角平分线问题,也可以用角平分定义结合正弦定理、余弦定理求解,知识技能考查常规.三、解答题17. 已知数列中,,设为前n 项和,.(1)求的通项公式;(2)求数列的前n 项和.【答案】(1)(2)【解析】分析】(1)根据即可求出;(2)根据错位相减法即可解出.【小问1详解】因为,当时,,即;【1112sin 602sin 30sin 30222b AD AD b ⨯⨯⨯=⨯⨯⨯+⨯⨯⨯ 2AD ===222222cos 606b b +-⨯⨯⨯= 0b >1b =2sin sin b B C==sin B =sin C =1+>>45C = 180604575B =--= 30BAD ∠=o 75ADB ∠= 2AD AB ==2{}n a 21a =n S {}n a 2n n S na ={}n a 12n n a +⎧⎫⎨⎬⎩⎭n T 1n a n =-()1222nn T n ⎛⎫=-+ ⎪⎝⎭11,1,2n nn S n a S S n -=⎧=⎨-≥⎩2n n S na =1n =112a a =10a =当时,,即,当时,,所以,化简得:,当时,,即,当时都满足上式,所以.【小问2详解】因为,所以,,两式相减得,,,即,.18. 在三棱柱中,,底面ABC ,,到平面的距离为1.(1)求证:;(2)若直线与距离为2,求与平面所成角的正弦值.【答案】(1)证明见解析 (2【解析】3n =()33213a a +=32a =2n ≥()1121n n S n a --=-()()11221n n n n n S S a na n a ---==--()()121n n n a n a --=-3n ≥131122n n a a an n -====-- 1n a n =-1,2,3n =()*1N n a n n =-∈122n n n a n +=12311111232222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 2311111112(1)22222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭123111111111222222111222211n n nn n n n T ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+-⎝=-⎭⨯-⨯ 11122n n ⎛⎫⎛⎫=-+ ⎪⎪⎝⎭⎝⎭()1222nn T n ⎛⎫=-+ ⎪⎝⎭*N n ∈111ABC A B C -12AA =1A C ⊥90ACB ∠=︒1A 11BCC B 1AC A C =1AA 1BB 1AB 11BCC B【分析】(1)根据线面垂直,面面垂直的判定与性质定理可得平面,再由勾股定理求出为中点,即可得证;(2)利用直角三角形求出的长及点到面的距离,根据线面角定义直接可得正弦值.【小问1详解】如图,底面,面,,又,平面,,平面ACC 1A 1,又平面,平面平面,过作交于,又平面平面,平面,平面到平面的距离为1,,在中,,设,则,为直角三角形,且,,,,,解得,1A O ⊥11BCC B O 1AB A 1AC ⊥ ABC BC ⊂ABC 1A C BC ∴⊥BC AC ⊥1,A C AC ⊂11ACC A 1AC AC C ⋂=BC ∴⊥BC ⊂11BCC B ∴11ACC A ⊥11BCC B 1A 11A O CC ⊥1CC O 11ACC A 111BCC B CC =1A O ⊂11ACC A 1A O ∴⊥11BCC B 1A 11BCC B 11∴=A O 11Rt A CC △111112,AC AC CC AA ⊥==CO x =12C O x =-11111,,A OC A OC A CC △△△12CC =22211CO A O A C +=2221111A O OC C A +=2221111A C A C C C +=2211(2)4x x ∴+++-=1x =111AC A C A C ∴===1AC A C∴=【小问2详解】,,过B 作,交于D ,则为中点,由直线与距离为2,所以,,在,,延长,使,连接,由知四边形为平行四边形,,平面,又平面,则在中,,,在中,,又到平面距离也为1,所以与平面19. 为探究某药物对小鼠的生长抑制作用,将40只小鼠均分为两组,分别为对照组(不加药物)和实验组(加药物).(1)设其中两只小鼠中对照组小鼠数目为,求的分布列和数学期望;(2)测得40只小鼠体重如下(单位:g ):(已按从小到大排好)对照组:17.3 18.4 20.1 20.4 21.5 23.2 24.6 24.8 25.0 25.426.1 26.3 26.4 26.5 26.8 27.0 27.4 27.5 27.6 28.3实验组:5.4 6.6 6.8 6.9 7.8 8.2 9.4 10.0 10.4 11.214.4 17.3 19.2 20.2 23.6 23.8 24.5 25.1 25.2 26.0111,,AC A C BC A C BC AC =⊥⊥ 1Rt Rt ACB A CB ∴△≌△1BA BA ∴=1BD AA ⊥1AA D 1AA 1AA 1BB 2BD =11A D = 2BD =1A B AB ∴==Rt ABC △BC ∴==AC AC CM =1C M 1111,CM A C CM A C =∥11A CMC 11C M A C ∴∥1C M ∴⊥ABC AM ⊂ABC 1C M AM∴⊥1Rt AC M △112,AM AC C M AC ==1AC ∴=11Rt AB C △1AC =11B C BC ==1AB ∴==A 11BCC B 1AB 11BCC B =X X(i )求40只小鼠体重的中位数m ,并完成下面2×2列联表:对照组实验组(ii )根据2×2列联表,能否有95%的把握认为药物对小鼠生长有抑制作用.参考数据:0.100.050.0102.7063.841 6.635【答案】(1)分布列见解析, (2)(i );列联表见解析,(ii )能【解析】【分析】(1)利用超几何分布的知识即可求得分布列及数学期望;(2)(i )根据中位数的定义即可求得,从而求得列联表;(ii )利用独立性检验的卡方计算进行检验,即可得解.【小问1详解】依题意,的可能取值为,则,,,所以的分布列为:故.【小问2详解】(i )依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数m<m≥0k ()20P k k ≥()1E X =23.4m =23.4m =X 0,1,2022020240C C 19(0)C 78P X ===120224010C C 20(1)C 39P X ===202020240C C 19(2)C 78P X ===X X12P197820391978192019()0121783978E X =⨯+⨯+⨯=据的平均数,由于原数据已经排好,所以我们只需要观察对照组第一排数据与实验组第二排数据即可,可得第11位数据为,后续依次为,故第20位为,第21位数据为,所以,故列联表为:合计对照组61420实验组14620合计202040(ii )由(i )可得,,所以能有的把握认为药物对小鼠生长有抑制作用.20. 已知直线与抛物线交于两点,且.(1)求;(2)设C 的焦点为F ,M ,N 为C 上两点,,求面积的最小值.【答案】(1) (2)【解析】【分析】(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出;(2)设直线:,利用,找到的关系,以及的面积表达式,再结合函数的性质即可求出其最小值.【小问1详解】设,由可得,,所以,14.417.3,17.3,18.4,19.2,20.1,20.2,20.4,21.5,23.2,23.6, 23.223.623.223.623.42m +==m<m≥240(661414) 6.400 3.84120202020K ⨯⨯-⨯==>⨯⨯⨯95%210x y -+=2:2(0)C y px p =>,A B ||AB =p 0MF NF ⋅=MNF 2p =12-p MN x my n =+()()1122,,,,M x y N x y 0MF NF ⋅=,m n MNF ()(),,,A A B B A x y B x y 22102x y y px-+=⎧⎨=⎩2420y py p -+=4,2A B A B y y p y y p +==所以即,因为,解得:.【小问2详解】因为,显然直线的斜率不可能为零,设直线:,,由可得,,所以,,,因为,所以,即,亦即,将代入得,,,所以,且,解得或.设点到直线的距离为,所以,所以的面积,而或,所以,当时,的面积【点睛】本题解题关键是根据向量的数量积为零找到的关系,一是为了减元,二是通过相互的制约关系找到各自的范围,为得到的三角形面积公式提供定义域支持,从而求出面积的最小值.21. 已知B AB y ==-==2260p p --=0p >2p =()1,0F MN MN x my n =+()()1122,,,M x y N x y 24y x x my n⎧=⎨=+⎩2440y my n --=12124,4y y m y y n +==-22161600m n m n ∆=+>⇒+>0MF NF ⋅=()()1212110x x y y --+=()()1212110my n my n y y +-+-+=()()()()2212121110m y y m n y y n ++-++-=12124,4y y m y y n +==-22461m n n =-+()()22410m n n +=->1n ≠2610n n -+≥3n ≥+3n ≤-F MN d d 2MN y ==-=1==-MNF ()2111122S MN d n =⨯⨯=-=-3n ≥+3n ≤-3n =-MNF (2min 212S =-=-,m n 3sin π(),0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭(1)若,讨论的单调性;(2)若恒成立,求a 的取值范围.【答案】(1)答案见解析. (2)【解析】【分析】(1)求导,然后令,讨论导数的符号即可;(2)构造,计算的最大值,然后与0比较大小,得出的分界点,再对讨论即可.【小问1详解】令,则则当当,即.当,即.所以在上单调递增,在上单调递减【小问2详解】设设8a =()f x ()sin 2f x x <(,3]-∞2cos t x =()()sin 2g x f x x =-()g x 'a a 326cos cos 3sin cos sin ()cos x x x x x f x a x'+=-22244cos 3sin 32cos cos cos x x x a a x x+-=-=-2cos x t =(0,1)t ∈2223223()()t at t f x g t a t t '-+-==-=222823(21)(43)8,()()t t t t a f x g t t t '+--+====10,2t ⎛⎫∈ ⎪⎝⎭ππ,,()042x f x '⎛⎫∈< ⎪⎝⎭1,12t ⎛⎫∈⎪⎝⎭π0,,()04x f x '⎛⎫∈> ⎪⎝⎭()f x π0,4⎛⎫ ⎪⎝⎭ππ,42⎛⎫⎪⎝⎭()()sin 2g x f x x=-()22222323()()2cos 2()22cos 12(21)24at t g x f x x g t x t a t t t t ''+-=-=--=--=+-+-223()24t a t t t ϕ=+-+-所以.若,即在上单调递减,所以.所以当,符合题意.若当,所以..所以,使得,即,使得.当,即当单调递增.所以当,不合题意.综上,的取值范围为.【点睛】关键点点睛:本题采取了换元,注意复合函数的单调性在定义域内是减函数,若,当,对应当.四、选做题22. 已知,直线(t 为参数),为的倾斜角,l 与x 轴,y 轴正半轴交于A ,B 两点,.(1)求的值;(2)以原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.【答案】(1) (2)【解析】322333264262(1)(22+3)()40t t t t t t t t t t ϕ'--+-+=--+==->()(1)3t a ϕϕ<=-1︒(,3]a ∈-∞()()30g x t a ϕ'=<-≤()g x 0,2π⎛⎫ ⎪⎝⎭()(0)0g x g <=(,3],()sin 2a f x x ∈-∞<2︒(3,)a ∈+∞22231110,333t t t t ⎛⎫→-=--+→-∞ ⎪⎝⎭()t ϕ→-∞(1)30a ϕ=->0(0,1)t ∃∈()00t ϕ=00,2x π⎛⎫∃∈ ⎪⎝⎭()00g x '=()0,1,()0t t t ϕ∈>()00,,()0,()x x g x g x '∈>()00,,()(0)0x x g x g ∈>=a (,3]-∞cos t x =00cos t x =()0,1,()0t t t ϕ∈>()00,,()0x x g x '∈>(2,1)P 2cos :1sin x t l y t αα=+⎧⎨=+⎩αl ||||4PA PB ⋅=α3π4cos sin 30ραρα+-=【分析】(1)根据的几何意义即可解出;(2)求出直线的普通方程,再根据直角坐标和极坐标互化公式即可解出.【小问1详解】因为与轴,轴正半轴交于两点,所以,令,,令,,所以,所以,即,解得,因为,所以.【小问2详解】由(1)可知,直线的斜率为,且过点,所以直线的普通方程为:,即,由可得直线的极坐标方程为.23. 已知.(1)求不等式的解集;(2)若曲线与坐标轴所围成的图形的面积为2,求.【答案】(1) (2【解析】【分析】(1)分和讨论即可;(2)写出分段函数,画出草图,表达面积解方程即可.【小问1详解】若,则,即,解得,即,t l l x y ,A B ππ2α<<0x =12cos t α=-0y =21sin t α=-21244sin cos sin 2PA PB t t ααα====sin 21α=±π2π2k α=+π1π,42k k α=+∈Z ππ2α<<3π4α=l tan 1α=-()2,1l ()12y x -=--30x y +-=cos ,sin x y ραρα==l cos sin 30ραρα+-=()2,0f x x a a a =-->()f x x <()y f x =a ,33a a ⎛⎫ ⎪⎝⎭x a ≤x a >x a ≤()22f x a x a x =--<3x a >3a x >3a x a <≤若,则,解得,即,综上,不等式的解集为.小问2详解】.画出的草图,则与坐标轴围成与的高为,所以所以,解得【x a >()22f x x a a x =--<3x a <3a x a <<,33a a ⎛⎫ ⎪⎝⎭2,()23,x a x a f x x a x a -+≤⎧=⎨->⎩()f x ()f x ADO △ABCABC 3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭||=AB a 21132224OAD ABC S S OA a AB a a +=⋅+⋅==a =三人行教育资源。
普通高等学校招生全国统一考试数学理试题(课标卷,解析版)
2020 年一般高等学校招生全国一致考试理科数学注息事项 :1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷 ( 非选择题 ) 两部分。
答卷前,考生务势必自己的姓名、准考据号填写在本试卷和答题卡相应地点上。
2.问答第Ⅰ卷时。
选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需变动 . 用橡皮擦洁净后,再选涂其余答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上. 写在本试卷上无效·4.考试结束后 . 将本试卷和答且卡一并交回。
第一卷一.选择题:本大题共12 小题,每题 5 分,在每题给同的四个选项中,只有一项为哪一项切合题目要求的。
( 1)已知会合A{1,2,3,4,5}, B{( x, y) x A, y A, x y A} ;,则 B 中所含元素的个数为()(A) 3(B) 6(C)(D)【分析】选Dx 5, y 1,2,3,4 , x 4, y 1,2,3 , x 3, y 1,2 , x 2, y1 共10个( 2)将2名教师,4名学生疏成 2 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由 1名教师和 2 名学生构成,不一样的安排方案共有()( A) 12种( B) 10种(C) 种(D) 种【分析】选 A甲地由 1名教师和 2 名学生:C21C4212 种2( 3)下边是对于复数z的四个命题:此中的真命题为()1 i 1p2: z22i p3: z1ip4 : z1p : z 2的共轭复数为的虚部为( A) p2 , p3(B)p1 , p2(C ) p , p(D ) p , p【分析】选 C22(1i)1izi ( 1i)( 1 i )1p1 : z 2 ,p2: z22i , p3 : z 的共轭复数为1i ,p4: z的虚部为1( 4)设F F是椭圆E :x2y21(a b 0) 的左、右焦点,P为直线3a上一点,1 22b2xa2F 2 PF 1 是底角为 30o 的等腰三角形,则 E 的离心率为( )(A)1( B) 2(C )(D )23【分析】选 CF 2 PF 1 是底角为 30o的等腰三角形PF 2F 2 F 1 2( 3a c) 2cec32 a4( 5)已知 a n为等比数列, a 4a 7 2 , a 5a 68 ,则 a 1a10()(A) 7(B)5(C )( D )【分析】选 Da 4 a 7 2,a 5a 6a 4 a 78 a 44, a 72或a 42, a 7 4a 4 4, a 7 2 a 1 8, a 10 1 a 1 a 107a 42, a 74a10 8, a 11a 1a107( 6)假如履行右侧的程序框图,输入正整数N ( N 2) 和实数 a 1 ,a 2 ,..., a n ,输出 A, B ,则()( A) A B 为 a 1 , a 2 ,..., a n 的和(B) AB为 a 1 , a 2 ,..., a n 的算术均匀数2(C ) A 和 B 分别是 a 1, a 2 ,..., a n 中最大的数和最小的数(D ) A 和 B 分别是 a 1, a 2 ,..., a n 中最小的数和最大的数【分析】选 C( 7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()( A) 6(B) 9 (C) (D)【分析】选 B该几何体是三棱锥,底面是俯视图,高为 3此几何体的体积为1 1 V63393 2( 8)等轴双曲线C 的中心在原点,焦点在 x 轴上, C 与抛物线 y 216 x 的准线交于 A, B两点, AB4 3 ;则 C 的实轴长为()(A) 2( B) 2 2(C )( D )【分析】选 C设 C : x 2 y 2 a 2 (a 0) 交 y 2 16x 的准线 l : x4于 A( 4,2 3)B(4,23)得: a 2( 4) 2(2 3) 2 4a 22a 4( 9)已知0 ,函数 f ( x)sin( x) 在 ( , ) 上单一递减。
普通高等学校招生全国统一考试数学理(卷,解析版)
2009年普通高等学校招生全国统一考试数学理(上海卷,解析版)考生注意:1. 答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码 .2. 本试卷共有23道试题,满分150分 .考试时间20分钟 .一.真空题 (本大题满分56分)本大题有14题,考生应在答题纸相应编号的空格内直接写结果,每个空格填对得4分,否则一律得零分 .1. 若复数 z 满足z (1+i) =1-i (I 是虚数单位),则其共轭复数z =__________________ . 1.【答案】i【解析】设z =a +bi ,则(a +bi )(1+i) =1-i ,即a -b +(a +b )i =1-i ,由⎩⎨⎧-=+=-11b a b a ,解得a =0,b =-1,所以z =-i ,z =i2. 已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是______________________ . 2.【答案】a ≤1【解析】因为A ∪B=R ,画数轴可知,实数a 必须在点1上或在1的左边,所以,有a ≤1。
3. 若行列式417 5 xx 3 8 9中,元素4的代数余子式大于0,则x 满足的条件是________________________ . 3.【答案】83x >【解析】依题意,得: (-1)2×(9x-24)>0,解得:83x >4.某算法的程序框如右图所示,则输出量y 与输入量x满足的关系式是____________________________ .4.【答案】2,12,1x x y x x ⎧<=⎨->⎩【解析】当x >1时,有y =x -2,当x <1时有y =x 2,所以,有分段函数。
5.如图,若正四棱柱1111ABCD A B C D -的底面连长为2,高 为4,则异面直线1BD 与AD 所成角的大小是______________(结果用反三角函数表示). 5.【答案】arctan 5【解析】因为AD ∥A 1D 1,异面直线BD 1与AD 所成角就是BD 1与A 1D 1所在角,即∠A 1D 1B , 由勾股定理,得A 1B =25,tan ∠A 1D 1B =5,所以,∠A 1D 1B =arctan 5。
精品解析:2023年高考全国乙卷数学(理)真题(解析版)
2023年普通高等学校招生全国统一考试(全国乙卷)理科数学一、选择题1.设252i1i i z +=++,则z =()A.12i -B.12i+ C.2i- D.2i+【答案】B 【解析】【分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+.故选:B.2.设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=()A.()U M N ðB.U N M ðC.()U M N ðD.U M N⋃ð【答案】A 【解析】【分析】由题意逐一考查所给的选项运算结果是否为{}|2x x ≥即可.【详解】由题意可得{}|2M N x x =< ,则(){}|2U M N x x =≥ ð,选项A 正确;{}|1U M x x =≥ð,则{}|1U N M x x =>- ð,选项B 错误;{}|11M N x x =-<< ,则(){|1U M N x x ⋂=≤-ð或}1x ≥,选项C 错误;{|1U N x x =≤-ð或}2x ≥,则U M N = ð{|1x x <或}2x ≥,选项D 错误;故选:A.3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D 【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【详解】如图所示,在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D -去掉长方体11ONIC LMHB -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:()()()22242321130⨯⨯+⨯⨯-⨯⨯=.故选:D.4.已知e ()e 1x ax x f x =-是偶函数,则=a ()A.2-B.1- C.1D.2【答案】D 【解析】【分析】根据偶函数的定义运算求解.【详解】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax ax x x x f x f x ---⎡⎤--⎣⎦--=-==---,又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=,则()1x a x =-,即11a =-,解得2a =.故选:D.5.设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点,记该点为A ,则直线OA的倾斜角不大于π4的概率为()A.18 B.16C.14D.12【答案】C 【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=,结合对称性可得所求概率13π143π4P ⨯==.故选:C.6.已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条相邻对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A.32B.12-C.12D.2【答案】D 【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入5π12x =-即可得到答案.【详解】因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,所以2πππ2362T =-=,且0ω>,则πT =,2π2w T ==,当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈,则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5πsin 1232f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故选:D.7.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种【答案】C 【解析】【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分步乘法公式则共有1265C A 120⋅=种,故选:C.8.已知圆锥PO 的底面半径为O 为底面圆心,PA ,PB 为圆锥的母线,120AOB ∠=︒,若PAB 的面积等于4,则该圆锥的体积为()A.πB.C.3πD.【答案】B【解析】【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在AOB 中,120AOB ∠=o ,而OA OB ==,取AB 中点C ,连接,OC PC ,有,OC AB PC AB ⊥⊥,如图,30ABO = ∠,,232OC AB BC ===,由PAB 的面积为4,得1324PC ⨯⨯=,解得2PC =,于是PO ===,所以圆锥的体积2211ππ33V OA PO =⨯⨯=⨯=.故选:B9.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D --为150︒,则直线CD 与平面ABC 所成角的正切值为()A.15B.25 C.35D.25【答案】C 【解析】【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取AB 的中点E ,连接,CE DE ,因为ABC 是等腰直角三角形,且AB 为斜边,则有CEAB ⊥,又ABD △是等边三角形,则DE AB ⊥,从而CED ∠为二面角C AB D --的平面角,即150CED ∠= ,显然,,CE DE E CE DE ⋂=⊂平面CDE ,于是AB ⊥平面CDE ,又AB ⊂平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ⋂平面ABC CE =,直线CD ⊂平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而DCE ∠为直线CD 与平面ABC 所成的角,令2AB =,则1,3CE DE ==,在CDE 中,由余弦定理得:2232cos 13213()72CD CE DE CE DE CED =+-⋅∠=+-⨯⨯⨯-=由正弦定理得sin sin DE CDDCE CED=∠∠,即3sin1503sin 727DCE ∠=,显然DCE ∠是锐角,2235cos 1sin 1()2727DCE DCE ∠=-∠-,所以直线CD 与平面ABC 所成的角的正切为35.故选:C10.已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A.-1B.12-C.0D.12【答案】B 【解析】【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.【详解】依题意,等差数列{}n a 中,112π2π2π(1)(333n a a n n a =+-⋅=+-,显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=,于是有2πcos cos(3θθ=+,即有2π(2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈,所以Z k ∈,2ππ4πππ1cos(πcos[(π]cos(πcos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B11.设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1B.()1,2- C.()1,3 D.()1,4--【答案】D 【解析】【分析】根据点差法分析可得9AB k k ⋅=,对于A 、B 、D :通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【详解】设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫ ⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +-+===+-+,因为,A B 在双曲线上,则221122221919y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得()2222121209y y x x ---=,所以221222129AB y y k k x x -⋅==-.对于选项A :可得1,9AB k k ==,则:98AB y x =-,联立方程229819y x y x =-⎧⎪⎨-=⎪⎩,消去y 得272272730x x -⨯+=,此时()2272472732880∆=-⨯-⨯⨯=-<,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得92,2AB k k =-=-,则95:22AB y x =--,联立方程22952219y x y x ⎧=--⎪⎪⎨⎪-=⎪⎩,消去y 得245245610x x +⨯+=,此时()224544561445160∆=⨯-⨯⨯=-⨯⨯<,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得3,3AB k k ==,则:3AB y x=由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :94,4AB k k ==,则97:44AB y x =-,联立方程22974419y x y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消去y 得2631261930x x +-=,此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;故选:D.12.已知O 的半径为1,直线PA 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC 的中点,若PO =PA PD ⋅的最大值为()A.12B.12+C.1D.2【答案】A 【解析】【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得PA PD ⋅ 12sin 2224πα⎛⎫=-- ⎪⎝⎭,或PA PD ⋅ 12sin 2224πα⎛⎫=++ ⎪⎝⎭然后结合三角函数的性质即可确定PA PD ⋅的最大值.【详解】如图所示,1,2OA OP ==,则由题意可知:45APO ∠= ,由勾股定理可得221PA OP OA =-=当点,A D 位于直线PO 异侧时,设=,04OPC παα∠≤≤,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅+ ⎪⎝⎭ 12cos 4παα⎛⎫=+ ⎪⎝⎭222cos sin 22ααα⎛⎫=- ⎪ ⎪⎝⎭2cos sin cos ααα=-1cos 21sin 222αα+=-12sin 2224πα⎛⎫=-- ⎪⎝⎭04πα≤≤,则2444πππα-≤-≤∴当ππ244α-=-时,PA PD ⋅ 有最大值1.当点,A D 位于直线PO 同侧时,设=,04OPC παα∠≤≤,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅- ⎪⎝⎭1cos 4παα⎛⎫=- ⎪⎝⎭22cos 22ααα⎛⎫=+ ⎪ ⎪⎝⎭2cos sin cos ααα=+1cos 21sin 222αα+=+1sin 2224πα⎛⎫=++ ⎪⎝⎭04πα≤≤,则2442πππα≤+≤∴当242ππα+=时,PA PD ⋅ 有最大值122.综上可得,PA PD ⋅的最大值为12.故选:A.【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.【答案】94【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为54x =-,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【详解】由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =-,点A 到C 的准线的距离为59144⎛⎫--= ⎪⎝⎭.故答案为:94.14.若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.【答案】8【解析】【分析】作出可行域,转化为截距最值讨论即可.【详解】作出可行域如下图所示:2z x y =-,移项得2y x z =-,联立有3129x y x y -=-⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距z -最小,则z 最大,代入得8z =,故答案为:8.15.已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =______.【答案】2-【解析】【分析】根据等比数列公式对24536a a a a a =化简得11a q =,联立9108a a =-求出32q =-,最后得55712a a q q q =⋅==-.【详解】设{}n a 的公比为()0q q ≠,则3252456a q a a q a a a a ==⋅,显然0n a ≠,则24a q =,即321a q q =,则11a q =,因为9108a a =-,则89118a q a q ⋅=-,则()()3315582q q ==-=-,则32q =-,则55712a a q q q =⋅==-,故答案为:2-.16.设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是______.【答案】1,12⎫-⎪⎪⎣⎭【解析】【分析】原问题等价于()()()ln 1ln 10xx f x a a a a '=+++≥恒成立,据此将所得的不等式进行恒等变形,可得()1ln ln 1xa a a a +⎛⎫≥- ⎪+⎝⎭,由右侧函数的单调性可得实数a 的二次不等式,求解二次不等式后可确定实数a 的取值范围.【详解】由函数的解析式可得()()()ln 1ln 10xx f x a a a a '=+++≥在区间()0,∞+上恒成立,则()()1ln 1ln xxa a a a ++≥-,即()1ln ln 1xa a a a +⎛⎫≥- ⎪+⎝⎭在区间()0,∞+上恒成立,故()01ln 1ln 1a a a a +⎛⎫=≥- ⎪+⎝⎭,而()11,2a +∈,故()ln 10a +>,故()ln 1ln 01a a a ⎧+≥-⎨<<⎩即()1101a a a ⎧+≥⎨<<⎩,故5112a ≤<,结合题意可得实数a 的取值范围是51,12⎫-⎪⎪⎣⎭.故答案为:1,12⎫-⎪⎪⎣⎭.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记()1,2,,10i i i z x y i =-=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s .(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)【答案】(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【解析】【分析】(1)直接利用平均数公式即可计算出,x y ,再得到所有的i z 值,最后计算出方差即可;(2)根据公式计算出的值,和z 比较大小即可.【小问1详解】545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =-=-=,i i i z x y =-的值分别为:9,6,8,8,15,11,19,18,20,12-,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s -+-+-+--+-++-+-+-+-==【小问2详解】由(1)知:11z =,==,故有z ≥所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.18.在ABC 中,已知120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.【答案】(1)14;(2)310.【解析】【分析】(1)首先由余弦定理求得边长BC的值为BC =57cos 14B =,最后由同角三角函数基本关系可得21sin 14B =;(2)由题意可得4ABD ACD S S =△△,则15ACD ABC S S =△△,据此即可求得ADC △的面积.【小问1详解】由余弦定理可得:22222cos BC a b c bc A==+-41221cos1207=+-⨯⨯⨯= ,则BC =22257cos 214a c b B ac +-==,21sin 14B ===.【小问2详解】由三角形面积公式可得1sin 90241sin 302ABD ACDAB AD S S AC AD ⨯⨯⨯==⨯⨯⨯ △△,则111321sin12055210ACD ABC S S ⎛⎫==⨯⨯⨯⨯=⎪⎝⎭ △△.19.如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==BP ,AP ,BC 的中点分别为D ,E ,O,AD =,点F 在AC 上,BF AO ⊥.(1)证明://EF 平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角D AO C --的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)22.【解析】【分析】(1)根据给定条件,证明四边形ODEF 为平行四边形,再利用线面平行的判定推理作答.(2)由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.(3)由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.【小问1详解】连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=-+ ,12AO BA BC =-+,BF AO ⊥,则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=-+⋅-+=-+=-+= ,解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =,则四边形ODEF 为平行四边形,//,EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO .【小问2详解】由(1)可知//EF OD ,则66,2AO DO ==,得3052AD DO ==,因此222152OD AO AD +==,则OD AO ⊥,有EF AO ⊥,又,AO BF BF EF F ⊥= ,,BF EF ⊂平面BEF ,则有AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面B EF .【小问3详解】过点O 作//OH BF 交AC 于点H ,设AD BE G = ,由AO BF ⊥,得HO AO ⊥,且13FH AH =,又由(2)知,OD AO ⊥,则DOH ∠为二面角D AO C --的平面角,因为,D E 分别为,PB PA 的中点,因此G 为PAB 的重心,即有11,33DG AD GE BE ==,又13FH AH =,即有32DH GF =,231544622cos 6226222ABD +-∠==⨯⨯⨯⨯14PA =,同理得62BE =,于是2223BE EF BF +==,即有BE EF ⊥,则22216653223GF ⎛⎛=⨯+= ⎝⎭⎝⎭,从而153GF =,31515232DH =⨯=,在DOH △中,13615,,2222OH BF OD DH ====,于是63152444cos 26322DOH +-∠=-,2sin 2DOH ∠==,所以二面角D AO C --的正弦值为2.20.已知椭圆2222:1(0)C b b x a a y +>>=的离心率是53,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【答案】(1)22194y x +=(2)证明见详解【解析】【分析】(1)根据题意列式求解,,a b c ,进而可得结果;(2)设直线PQ 的方程,进而可求点,M N 的坐标,结合韦达定理验证2M Ny y +为定值即可.【小问1详解】由题意可得22223b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.【小问2详解】由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+-++=->,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=-=++,因为()2,0A -,则直线()11:22y AP y x x =++,令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++-++++===++-+++,所以线段MN 的中点是定点()0,3.【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.已知函数1()ln(1)f x a x x ⎛⎫=++⎪⎝⎭.(1)当1a =-时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)是否存在a ,b ,使得曲线1y f x ⎛⎫= ⎪⎝⎭关于直线x b =对称,若存在,求a ,b 的值,若不存在,说明理由.(3)若()f x 在()0,∞+存在极值,求a 的取值范围.【答案】(1)()ln 2ln 20x y +-=;(2)存在11,22a b ==-满足题意,理由见解析.(3)10,2⎛⎫⎪⎝⎭.【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得函数的定义域,由函数的定义域可确定实数b 的值,进一步结合函数的对称性利用特殊值法可得关于实数a 的方程,解方程可得实数a 的值,最后检验所得的,a b 是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数()()()2=1ln 1g x ax x x x +-++,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论0a ≤,12a ≥和102a <<三中情况即可求得实数a 的取值范围.【小问1详解】当1a =-时,()()11ln 1f x x x ⎛⎫=-+⎪⎝⎭,则()()2111ln 111x f x x x x ⎛⎫'=-⨯++-⨯ ⎪+⎝⎭,据此可得()()10,1ln 2f f '==-,函数在()()1,1f 处的切线方程为()0ln 21y x -=--,即()ln 2ln 20x y +-=.【小问2详解】由函数的解析式可得()11ln 1f x a x x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,函数的定义域满足1110x x x ++=>,即函数的定义域为()(),10,-∞-⋃+∞,定义域关于直线12x =-对称,由题意可得12b =-,由对称性可知111222f m f m m ⎛⎫⎛⎫⎛⎫-+=--> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,取32m =可得()()12f f =-,即()()11ln 22ln 2a a +=-,则12a a +=-,解得12a =,经检验11,22a b ==-满足题意,故11,22a b ==-.即存在11,22a b ==-满足题意.【小问3详解】由函数的解析式可得()()2111ln 11f x x a x x x ⎛⎫⎛⎫=-+'++ ⎪ ⎪+⎝⎭⎝⎭,由()f x 在区间()0,∞+存在极值点,则()f x '在区间()0,∞+上存在变号零点;令()2111ln 101x a x x x ⎛⎫⎛⎫-+++= ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax-++++=,令()()()2=1ln 1g x ax x x x +-++,()f x 在区间()0,∞+存在极值点,等价于()g x 在区间()0,∞+上存在变号零点,()()()12ln 1,21g x ax x g x a x '=''=-+-+当0a ≤时,()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,()g x 在区间()0,∞+上无零点,不合题意;当12a ≥,21a ≥时,由于111x <+,所以()()0,g x g x '''>在区间()0,∞+上单调递增,所以()()00g x g ''>=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,所以()g x 在区间()0,∞+上无零点,不符合题意;当102a <<时,由()1201g x a x ''=-=+可得1=12x a -,当10,12x a ⎛⎫∈- ⎪⎝⎭时,()0g x ''<,()g x '单调递减,当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x ''>,()g x '单调递增,故()g x '的最小值为1112ln 22g a a a ⎛⎫-=-+ ⎪⎝⎭',令()()1ln 01m x x x x =-+<<,则()10x m x x -+'=>,函数()m x 在定义域内单调递增,()()10m x m <=,据此可得1ln 0x x -+<恒成立,则1112ln 202g a a a ⎛⎫-=-+< ⎪'⎝⎭,令()()2ln 0h x x x x x =-+>,则()221x x h x x -++'=,当()0,1x ∈时,()()0,h x h x '>单调递增,当()1,x ∈+∞时,()()0,h x h x '<单调递减,故()()10h x h ≤=,即2ln x x x ≤-(取等条件为1x =),所以()()()()()222ln 12112g x ax x ax x x ax x x ⎡⎤=-+>-+-+=-+⎣⎦',()()()()22122121210g a a a a a ⎡⎤->---+-=⎣⎦',且注意到()00g '=,根据零点存在性定理可知:()g x '在区间()0,∞+上存在唯一零点0x .当()00,x x ∈时,()0g x '<,()g x 单调减,当()0,x x ∈+∞时,()0g x '>,()g x 单调递增,所以()()000g x g <=.令()ln n x x =,则()122n x x x=-=',则函数()ln n x x =-()0,4上单调递增,在()4,+∞上单调递减,所以()()4ln 420n x n ≤=-<,所以ln x <,所以2222244441=11ln 12141a g a a a a a a a ⎡⎤⎢⎥-⎛⎫⎛⎫⎛⎫⎛⎫++-+--+⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥+⎣⎦22444>1ln 1121a a a a a a ⎡⎤⎛⎫⎛⎫++-++--+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦222444441ln 11a a a a a ⎛⎡⎤⎛⎫⎛⎫⎛⎫=+-+>+ ⎪ ⎪ ⎪⎢⎥ ⎝⎭⎝⎭⎝⎭⎣⎦⎝22222164121144110a a a a a ---⎛⎛>+=+> ⎝⎝,所以函数()g x 在区间()0,∞+上存在变号零点,符合题意.综合上面可知:实数a 得取值范围是10,2⎛⎫ ⎪⎝⎭.【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为ππ2sin 42⎛⎫=≤≤ ⎪⎝⎭ρθθ,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【答案】(1)()[][]2211,0,1,1,2x y x y +-=∈∈(2)()(),0-∞+∞【解析】【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意,x y 的取值范围;(2)根据曲线12,C C 的方程,结合图形通过平移直线y x m =+分析相应的临界位置,结合点到直线的距离公式运算求解即可.【小问1详解】因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=,整理得()2211x y +-=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======-ρθθθθρθθθ,且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=-∈θθ,故()[][]221:11,0,1,1,2C x y x y +-=∈∈.【小问2详解】因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧,如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m -+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C均没有公共点,则m >或0m <,即实数m 的取值范围()(),0-∞+∞ .【点睛】【选修4-5】(10分)23.已知()22f x x x =+-.(1)求不等式()6f x x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ≤⎧⎨+-≤⎩所确定的平面区域的面积.【答案】(1)[2,2]-;(2)8.【解析】【分析】(1)分段去绝对值符号求解不等式作答.(2)作出不等式组表示的平面区域,再求出面积作答.【小问1详解】依题意,32,2()2,0232,0x x f x x x x x ->⎧⎪=+≤≤⎨⎪-+<⎩,不等式()6f x x ≤-化为:2326x x x >⎧⎨-≤-⎩或0226x x x ≤≤⎧⎨+≤-⎩或0326x x x <⎧⎨-+≤-⎩,解2326x x x >⎧⎨-≤-⎩,得无解;解0226x x x ≤≤⎧⎨+≤-⎩,得02x ≤≤,解0326x x x <⎧⎨-+≤-⎩,得20x -≤<,因此22x -≤≤,所以原不等式的解集为:[2,2]-【小问2详解】作出不等式组()60f x y x y ≤⎧⎨+-≤⎩表示的平面区域,如图中阴影ABC ,由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -,由26y x x y =+⎧⎨+=⎩,解得(2,4)C ,又(0,2),(0,6)B D ,所以ABC 的面积11|||62||2(2)|822ABC C A S BD x x =⨯-=-⨯--= .。
2019-2020普通高等学校招生全国统一考试数学理解析版
绝密★启用前普通高等学校招生全国统一考试数学理试题解析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷第3至6页。
第Ⅱ卷第21题为选考题,其他题为必考题。
满分150分。
注意事项: 1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3. 考试结束,考生必须将试题卷和答题卡一并交回。
参考公式:样本数据x 1,x 2,…,x a 的标准差 锥体体积公式])()()[(122221x x x x x x n S n -++-+-=13V S h = 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式 V=Sh 2344,3S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 是虚数单位,若集合S=}{1.0.1-,则A.i S ∈B.2i S ∈ C. 3i S ∈ D.2S i∈ 解析:由21i S =-∈得选项B 正确。
2.若a ∈R ,则a=2是(a-1)(a-2)=0的A.充分而不必要条件 B 必要而不充分条件 C.充要条件 C.既不充分又不必要条件 解析:由a=2可得(a-1)(a-2)=0成立,反之不一定成立,故选A.3.若tan α=3,则2sin 2cos aα的值等于A.2B.3C.4D.6解析:2sin 22tan 6cos aαα==,选D 。
4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A.14B.13C.12D.23解析:12ABE ABCD S P S ∆==,选C 。
招生国统一考试数学理试题,解析试题1
卜人入州八九几市潮王学校2021年普通高等招生全国统一考试数学理试题〔卷,解析〕第I 卷一、选择题:本大题一一共12小题,每一小题5分,在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的。
(1)复数212ii+-的一共轭复数是 〔A 〕35i -〔B 〕35i 〔C 〕i -〔D 〕i 解析:212i i+-=(2)(12),5i i i ++=一共轭复数为C 〔2〕以下函数中,既是偶函数又在+∞(0,)单调递增的函数是 〔A 〕3y x =(B)1y x =+〔C 〕21y x =-+(D)2xy -=解析:由图像知选B〔3〕执行右面的程序框图,假设输入的N 是6,那么输出的p 是 〔A 〕120 〔B 〕720 〔C 〕1440 〔D 〕5040 解析:框图表示1n n a n a -=⋅,且11a =所求6a =720选B〔4〕有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性一样,那么这两位同学参加同一个兴趣小组的概率为〔A 〕13〔B 〕12〔C 〕23〔D 〕34解析;每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=选A 〔5〕角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,那么cos 2θ=解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++选B 〔A 〕45-〔B 〕35-〔C 〕35〔D 〕45〔6〕在一个几何体的三视图中,正视图和俯视图如右图所示, 那么相应的侧视图可以为解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的局部与底面为半径为r 的圆锥沿对称轴截出的局部构成的。
应选D〔7〕设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB为C 的实轴长的2倍,那么C 的离心率为〔A 〕2〔B 3〔C 〕2〔D 〕3解析:通径|AB|=222b a a=得2222222b a a c a =⇒-=,选B〔8〕512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,那么该展开式中常数项为〔A 〕-40〔B 〕-20〔C 〕20〔D 〕40解析 1.令x=1得a=1.故原式=511()(2)x x x x+-。
招生国统一考试数学理试题精品解析卷试题
卜人入州八九几市潮王学校2021年高考卷理数试题解析〔精编〕〔解析〕一、填空题:本大题一一共5小题,每一小题5分,一共25分. 1、设全集U R =.假设集合{}1,2,3,4A =,{}23x x B =≤≤,那么UAB =.【答案】{}1,4【解析】因为{|32}U C B x x x =><或,所以{4,1}U A C B =【考点定位】集合运算 2、假设复数z 满足31z z i +=+,其中i 为虚数单位,那么z =.【答案】1142i + 3、假设线性方程组的增广矩阵为122301c c ⎛⎫⎪⎝⎭、解为35x y =⎧⎨=⎩,那么12c c -=. 【答案】16【解析】由题意得:121223233521,05,21516.c x y c x y c c =+=⨯+⨯==⋅+=-=-= 【考点定位】线性方程组的增广矩阵4、假设正三棱柱的所有棱长均为a,且其体积为a =.【答案】4 5、抛物线22y px =〔0p >〕上的动点Q 到焦点的间隔的最小值为1,那么p =.【答案】26、假设圆锥的侧面积与过轴的截面面积之比为2π,那么其母线与轴的夹角的大小为. 【答案】3π【解析】由题意得:1:(2)222rl h r l h ππ⋅=⇒=⇒母线与轴的夹角为3π 【考点定位】圆锥轴截面7、方程()()1122log 95log 322x x ---=-+的解为.【答案】2 【解析】设13,(0)x t t -=>,那么2222log (5)log (2)254(2)0t t t t -=-+⇒-=->【考点定位】解指对数不等式8、在报名的3名男老师和6名女老师中,选取5人参加义务献血,要求男、女老师都有,那么不同的选取方式的种数为〔结果用数值表示〕. 【答案】1209、点P 和Q 的横坐标一样,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .假设1C 的渐近线方程为y =,那么2C 的渐近线方程为.【答案】2y x =±【解析】由题意得:1C :223,(0)x y λλ-=≠,设(,)Q x y ,那么(,2)P x y ,所以2234x y λ-=,即2C 的渐近线方程为2y x =±【考点定位】双曲线渐近线 10、设()1f x -为()222x x f x -=+,[]0,2x ∈的反函数,那么()()1y f x f x -=+的最大值为. 【答案】411、在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为〔结果用数值表示〕.【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++ ⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 【考点定位】二项展开式12、HY 博有陷阱.某种HY 博每局的规那么是:HY 客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其HY 金〔单位:元〕;随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金〔单位:元〕.假设随机变量1ξ和2ξ分别表示HY 客在一局HY 博中的HY 金和奖金,那么12ξξE -E =〔元〕.【答案】0.2【解析】HY 金的分布列为所以11(12345)35E ξ=++++= 奖金的分布列为所以223111.4(1234)2.8510510E ξ=⨯⨯+⨯+⨯+⨯= 【考点定位】数学期望 13、函数()sin f x x =.假设存在1x ,2x ,⋅⋅⋅,m x 满足1206m x x x π≤<<⋅⋅⋅<≤,且()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=〔2m ≥,m *∈N 〕,那么m 的最小值 为. 【答案】8 【解析】因为()sin f x x=,所以()()max min ()()2m n f x f x f x f x -≤-=,因此要使得满足条件()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=的m 最小,须取123456783579110,,,,,,,6,222222x x x x x x x x πππππππ========即8.m = 【考点定位】三角函数性质14、在锐角三角形C AB 中,1tan 2A =,D 为边C B 上的点,D ∆AB 与CD ∆A 的面积分别为2和4.过D 作D E ⊥AB 于E ,DF C ⊥A 于F ,那么D DF E⋅=.【答案】1615-【解析】由题意得:1sin sin 242A A AB AC A AB AC =⋅⋅=+⇒⋅=,又112,43222AB DE AC DF AB DE AC DF DE DF ⋅=⋅=⇒⋅⨯⋅=⇒⋅=,因为DEAF 四点一共圆,因此D DF E⋅=16cos()(15DE DF A π⋅⋅-==-【考点定位】向量数量积,解三角形二、选择题:本大题一一共10小题,每一小题5分,一共50分,在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.15、设1z ,2C z ∈,那么“1z 、2z 中至少有一个数是虚数〞是“12z z -是虚数〞的〔〕 A .充分非必要条件B .必要非充分条件 C .充要条件D .既非充分又非必要条件 【答案】B16、点A 的坐标为(),将OA 绕坐标原点O 逆时针旋转3π至OB ,那么点B 的纵坐标为〔〕A C .112D .132【答案】D【解析】113(cossin ))()3322OB OA i i i ππ=⋅+=⋅=+,即点B 的纵坐标为132【考点定位】复数几何意义 17、记方程①:2110xa x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,以下选项里面,能推出方程③无实根的是〔〕 A .方程①有实根,且②有实根B .方程①有实根,且②无实根C .方程①无实根,且②有实根D .方程①无实根,且②无实根 【答案】B【解析】当方程①有实根,且②无实根时,22124,8a a ≥<,从而4222321816,4a a a =<=即方程③:2340x a x ++=无实根,选B.而A,D 由于不等式方向不一致,不可推;C 推出③有实根 【考点定位】不等式性质18、设(),nn n x y P 是直线21n x y n -=+〔n *∈N 〕与圆222x y +=在第一象限的交点,那么极限1lim 1n n n y x →∞-=-〔〕A .1-B .12-C .1D .2 【答案】A三、解答题:本大题一一共6小题,一共75分,解容许写出文字说明,证明过程或者演算步骤。
普通高等学校招生全国统一考试数学理试题精品解析(上海卷).docx
高中数学学习材料马鸣风萧萧*整理制作2015年高考上海卷理数试题解析(精编版)(解析版)一、填空题:本大题共5小题,每小题5分,共25分.1、设全集U R =.若集合{}1,2,3,4A =,{}23x x B =≤≤,则U A B =ð .【答案】{}1,4【解析】因为{|32}U C B x x x =><或,所以{4,1}U A C B = 【考点定位】集合运算2、若复数z 满足31z z i +=+,其中i 为虚数单位,则z = . 【答案】1142i +3、若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭、解为35x y =⎧⎨=⎩,则12c c -= . 【答案】16【解析】由题意得:121223233521,05,21516.c x y c x y c c =+=⨯+⨯==⋅+=-=-= 【考点定位】线性方程组的增广矩阵4、若正三棱柱的所有棱长均为a ,且其体积为163,则a = . 【答案】45、抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p = . 【答案】26、若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 . 【答案】3π 【解析】由题意得:1:(2)222rl h r l h ππ⋅=⇒=⇒母线与轴的夹角为3π【考点定位】圆锥轴截面7、方程()()1122log 95log 322x x ---=-+的解为 . 【答案】2【解析】设13,(0)x t t -=>,则2222log (5)log (2)254(2)0t t t t -=-+⇒-=-> 21430,5333112x t t t t x x -⇒-+=>⇒=⇒=⇒-=⇒=【考点定位】解指对数不等式8、在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 【答案】1209、已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C 的渐近线方程为3y x =±,则2C 的渐近线方程为 .【答案】32y x =±【解析】由题意得:1C :223,(0)x y λλ-=≠,设(,)Q x y ,则(,2)P x y ,所以2234x y λ-=,即2C 的渐近线方程为32y x =±【考点定位】双曲线渐近线10、设()1f x -为()222x xf x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为 . 【答案】411、在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示).【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 【考点定位】二项展开式12、赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12ξξE -E = (元).【答案】0.2【解析】赌金的分布列为1ξ1 2 3 4 5P15 15 15 15 15所以11(12345)35E ξ=++++=奖金的分布列为2ξ1.42.8 4.2 5.6 P25425C = 253310C =25215C = 251110C = 所以223111.4(1234)2.8510510E ξ=⨯⨯+⨯+⨯+⨯=12ξξE -E =0.2【考点定位】数学期望13、已知函数()sin f x x =.若存在1x ,2x ,⋅⋅⋅,m x 满足1206m x x x π≤<<⋅⋅⋅<≤,且()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=(2m ≥,m *∈N ),则m 的最小值 为 . 【答案】8 【解析】因为()sin fx x =,所以()()max min ()()2m n f x f x f x f x -≤-=,因此要使得满足条件()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=的m 最小,须取123456783579110,,,,,,,6,222222x x x x x x x x πππππππ========即8.m = 【考点定位】三角函数性质14、在锐角三角形C AB 中,1tan 2A =,D 为边C B 上的点,D ∆AB 与CD ∆A 的面积分别为2和4.过D 作D E ⊥AB 于E ,DF C ⊥A 于F ,则D DF E⋅= . 【答案】1615-【解析】由题意得:121sin ,cos ,sin 24125255A A AB AC A AB AC ==⋅⋅=+⇒⋅=,又11322,43222125AB DE AC DF AB DE AC DF DE DF ⋅=⋅=⇒⋅⨯⋅=⇒⋅=,因为DEAF 四点共圆,因此D DF E⋅=32216cos()()151255DE DF A π⋅⋅-=⨯-=-【考点定位】向量数量积,解三角形二、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.15、设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 【答案】B16、已知点A 的坐标为()43,1,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ) A .332 B .532 C .112 D .132【答案】D【解析】133313(cossin )(43)()332222OB OA i i i i ππ=⋅+=+⋅+=+,即点B 的纵坐标为132【考点定位】复数几何意义17、记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实根的是( ) A .方程①有实根,且②有实根 B .方程①有实根,且②无实根 C .方程①无实根,且②有实根 D .方程①无实根,且②无实根 【答案】B【解析】当方程①有实根,且②无实根时,22124,8a a ≥<,从而4222321816,4a a a =<=即方程③:2340x a x ++=无实根,选B.而A,D 由于不等式方向不一致,不可推;C 推出③有实根 【考点定位】不等式性质18、设(),n n n x y P 是直线21n x y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim 1nn n y x →∞-=-( )A .1-B .12- C .1 D .2 【答案】A三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。
普通高等学校招生国统一考试数学理试题卷,解析 试题_1_00001
2021年普通高等招生全国统一考试数学理试题〔卷,解析版〕历恰面 日 期: 2020年1月1日名师简评该套试卷整体上来说与往年相比,比拟平稳,试题中没有偏题和怪题,在考察了根底知识的根底上,还考察了同学们灵敏运用所学知识的解决问题的才能。
题目没有很多汉字的试题,都是比拟简约型的。
但是不乏也有几道创新试题,像选择题的第8题,填空题的13题,解答题第20题,另外别的试题保持了往年的风格,入题简单,比拟好下手,但是做出来并不是很容易。
整体上试题由梯度,由易到难,而且大局部试题合适同学们来解答表达了双基,考察了同学们的四大思想的运用,是一份比拟好的试卷。
本套试卷分为第I 卷〔选择题〉和第二卷(非选择题)两局部,一共150分,考试用时120分钟 第I 卷一、选择题:在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.〔1〕i 是虚数单位,复数7=3i z i -+=〔A 〕2i + 〔B〕2i - 〔C〕2i -+ 〔D〕2i -- 1.B【命题意图】本试题主要考察了复数的概念以及复数的加、减、乘、除四那么运算.【解析】7=3i z i -+=(7)(3)(3)(3)i i i i --+-=2173110i i ---=2i -〔2〕设R ϕ∈,那么“=0ϕ〞是“()=cos (+)f x x ϕ()x R ∈为偶函数〞的 〔A 〕充分而不必要条件 〔B〕必要而不充分条件〔C〕充分必要条件 〔D〕既不充分也不必要条件 2.A【命题意图】本试题主要考察了三角函数的奇偶性的断定以及充分条件与必要条件的断定. 【解析】∵=0ϕ⇒()=cos (+)f x x ϕ()x R ∈为偶函数,反之不成立,∴“=0ϕ〞是“()=cos (+)f x x ϕ()x R ∈为偶函数〞的充分而不必要条件.〔3〕阅读右边的程序框图,运行相应的程序,当输入x 的值是25-时,输出x 的值是〔A 〕1- 〔B〕1 〔C〕3 〔D〕9 3.C【命题意图】本试题主要考察了算法框图的读取,并能根据已给的算法程序进展运算.【解析】根据图给的算法程序可知:第一次=4x ,第二次=1x ,那么输出=21+1=3x ⨯.〔4〕函数3()=2+2x f x x -在区间(0,1)内的零点个数是 〔A 〕0 〔B〕1 〔C〕2 〔D〕3 4.B【命题意图】本试题主要考察了函数与方程思想,函数的零点的概念,零点存在定理以及作图与用图的数学才能.【解析】解法1:因为(0)=1+02=1f --,3(1)=2+22=8f -,即(0)(1)<0f f ⋅且函数()f x 在(0,1)内连续不断,故()f x 在(0,1)内的零点个数是1.解法2:设1=2x y ,32=2y x -,在同一坐标系中作出两函数的图像如下图:可知B 正确.【命题意图】本试题主要考察了二项式定理中的通项公式的运用,并借助于通项公式分析项的系数.【解析】∵25-1+15=(2)()r r r r T C x x -⋅-=5-10-352(1)r r r r C x -,∴103=1r -,即=3r ,∴x 的系数为40-.〔6〕在△ABC 中,内角A ,B ,C 所对的边分别是,,a b c ,8=5b c ,=2C B ,那么cosC=〔A 〕725 〔B〕725- 〔C〕725±〔D〕24256.A【命题意图】本试题主要考察了正弦定理、三角函数中的二倍角公式. 考察学生分析、转化与计算等才能.【解析】∵8=5b c ,由正弦定理得8sin =5sin B C ,又∵=2C B ,∴8sin =5sin 2B B ,所以8sin =10sin cos B B B ,易知sin 0B ≠,∴4cos =5B ,2cos =cos 2=2cos 1C B B -=725. 〔7〕△ABC 为等边三角形,=2AB ,设点P ,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,假设3=2BQ CP ⋅-,那么=λ〔A 〕127.A【命题意图】本试题以等边三角形为载体,主要考察了向量加减法的几何意义,平面向量根本定理,一共线向量定理及其数量积的综合运用.【解析】∵=BQ AQ AB -=(1)AC AB λ--,=CP AP AC -=AB AC λ-,又∵3=2BQ CP ⋅-,且||=||=2AB AC ,0<,>=60AB AC ,0=||||cos 60=2AB AC AB AC ⋅⋅,∴3[(1)]()=2AC AB AB AC λλ----,2223||+(1)+(1)||=2AB AB AC AC λλλλ--⋅-,所以234+2(1)+4(1)=2λλλλ---,解得1=2λ.CBAPQ〔8〕设m ,n R ∈,假设直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,那么+m n 的取值范围是〔A〕[1- 〔B〕(,1[1+3,+)-∞∞〔C〕[2-〔D〕(,2[2+22,+)-∞-∞ 8.D【命题意图】本试题主要考察了直线与圆的位置关系,点到直线的间隔 公式,重要不等式,一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的才能.【解析】∵直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,∴圆心(1,1)到直线的间隔 为22|(1)+(1)2|==1(1)+(1)m n d m n ++-++,所以21()2m n mn m n +=++≤,设=t m n +,那么21+14t t ≥,解得(,222][2+22,+)t ∈-∞-∞.二、填空题:本大题一一共6小题,每一小题5分,一共30分.〔9〕某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些中抽取30所对学生进展视力调査,应从小学中抽取 所,中学中抽取 所. 9.18,9【命题意图】本试题主要考察了统计中的分层抽样的概念以及样本获取的方法与计算. 【解析】∵分层抽样也叫按比例抽样,由题知总数为250所,所以应从小学中抽取15030=18250⨯,中学中抽取7530=9250⨯.〔10〕―个几何体的三视图如下图(单位:m ),那么该几何体的体积为 3m .10.18+9π【命题意图】本试题主要考察了简单组合体的三视图的画法与体积的计算以及空间想象才能.【解析】由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为:343=361+2()32V π⨯⨯⨯⨯=18+9π3m . 〔11〕集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)A B n -,那么=m ,=n .11.1-,1【命题意图】本试题主要考察了集合的交集的运算及其运算性质,同时考察绝对值不等式与一元二次不等式的解法以及分类讨论思想.【解析】∵={||+2|<3}A x R x ∈={||5<<1}x x -,又∵=(1,)AB n -,画数轴可知=1m -,=1n .〔12〕己知抛物线的参数方程为2=2,=2,x pt y pt ⎧⎨⎩〔t为参数〕,其中>0p ,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,假设||=||EF MF ,点M 的横坐标是3,那么=p . 12.2【命题意图】本试题主要考察了参数方程及其参数的几何意义,抛物线的定义及其几何性质.【解析】∵2=2,=2,x pt y pt ⎧⎨⎩可得抛物线的HY 方程为2=2y px (>0)p ,∴焦点(,0)2p F ,∵点M的横坐标是3,那么(3,6)M p ±,所以点(,6)2p E p -±,222=()+(06)22p pEF p -由抛物线得几何性质得=+32p MF ,∵=EF MF ,∴221+6=+3+94p p p p ,解得=2p .〔13〕如图,AB 和AC 是圆的两条弦.过点B 作圆的切线与AC 的延长线相交于点D,过点C作BD 的平行线与圆相交于点E,与AB 相交于点F ,=3AF ,=1FB ,3=2EF ,那么线段CD的长为 .13.43【命题意图】本试题主要考察了平面几何中直线与圆的位置关系,相交弦定理,切割线定理,相似三角形的概念、断定与性质.【解析】∵=3AF ,=1FB ,3=2EF ,由相交弦定理得=AF FB EF FC ⋅⋅,所以=2FC ,又∵BD ∥CE ,∴=AF FC AB BD ,4==23AB BD FC AF ⋅⨯=83,设=CD x ,那么=4AD x ,再由切割线定理得2=BD CD AD ⋅,即284=()3x x ⋅,解得4=3x ,故4=3CD . 〔14〕函数2|1|=1x y x --的图象与函数=2y kx -的图象恰有两个交点,那么实数k 的取值范围是 . 14.(0,1)(1,4)【命题意图】本试题主要考察了函数的图像及其性质,利用函数图像确定两函数的交点,从而确定参数的取值范围.【解析】∵函数=2y kx -的图像直线恒过定点B(0,2)-,且(1,2)A -,(1,0)C -,(1,2)D ,2+2==410-,由图像可知(0,1)(1,4)k ∈. 分. 解容许写出文字说明,证明过程或者演算2(2+)+sin(2)+2cos 133x x x ππ--,x R ∈.(Ⅰ)求函数()f x 的最小正周期;〔Ⅱ〕求函数()f x 在区间[,]44ππ-上的最大值和最小值.【命题意图】本试题主要考察了 【参考答案】【点评】该试题关键在于将的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进展解题即可.〔16〕〔本小题满分是13分〕现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加兴趣性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加个游戏,掷出点数为1或者2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. 〔Ⅰ〕求这4个人中恰有2人去参加甲游戏的概率:〔Ⅱ〕求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率:〔Ⅲ〕用,X Y 分别表示这4个人中去参加甲、乙游戏的人数,记=||X Y ξ-,求随机变量ξ的分布列与数学期望E ξ. 【命题意图】本试题主要考察了 【参考答案】【点评】应用性问题是高考命题的一个重要考点,近年来都通过概率问题来考察,且常考常新,对于此类考题,要注意认真审题,从数学与实际生活两个角度来理解问题的本质,将问题成功转化为古典概型,HY 事件、互斥事件等概率模型求解,因此对概率型应用性问题,理解是根底,转化是关键.〔17〕〔本小题满分是13分〕如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,AC 丄AD ,AB 丄BC ,=45ABC ∠,==2PA AD ,=1AC .(Ⅰ)证明PC 丄AD ;〔Ⅱ〕求二面角A PC D --的正弦值;〔Ⅲ〕设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为030,求AE 的长. 【命题意图】本试题主要考察了 【参考答案】【点评】试题从命题的角度来看,整体上题目与我们平时练习的试题相似,但底面是非特殊 的四边形,一直线垂直于底面的四棱锥问题,那么创新的地方就是第三问中点E 的位置是不确定的,需要学生根据条件进展确定,如此说来就有难度,因此最好使用空间直角坐标系解决该问题为好.〔18〕(本小题满分是13分〕{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b ,44=10S b -.(Ⅰ)求数列{n a }与{n b }的通项公式;(Ⅱ)记1121=+++n n n n T a b a b a b -,+n N ∈,证明+12=2+10n n n T a b -+()n N ∈.【命题意图】本试题主要考察了 【参考答案】【点评】该试题命制比拟直接,没有什么隐含的条件,就是等比与等差数列的综合应用,但方法多样,第二问可以用错位相减法求解证明,也可用数学归纳法证明,给学生思维空间留有余地,符合高考命题选拔性的原那么.〔19〕〔本小题满分是14分〕设椭圆2222+=1x y a b (>>0)a b 的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.〔Ⅰ〕假设直线AP与BP的斜率之积为12-,求椭圆的离心率;〔Ⅱ〕假设||=||AP OA,证明直线OP的斜率k满足|k【命题意图】本试题主要考察了【参考答案】【点评】〔20〕〔本小题满分是14分〕函数()=ln(+)f x x x a-的最小值为0,其中>0a.〔Ⅰ〕求a的值;〔Ⅱ〕假设对任意的[0,+)x∈∞,有2()f x kx≤成立,务实数k的最小值;〔Ⅲ〕证明=12ln(2+1)<2 21nin i--∑*()n N∈.【命题意图】本试题主要考察了【参考答案】【点评】试题分为三问,题面比拟简单,给出的函数比拟常规,因此入手对于同学们来说没有难度,第二问中,解含参数的不等式时,要注意题中参数的讨论所有的限制条件,从而做到不重不漏;第三问中,证明不等式,应借助于导数证不等式的方法进展.历恰面日期:2020年1月1日。
全国普通高等学校招生统一考试理科数学带解析
全国普通高等学校招生统一考试理科数学(带解析)一、选择题1.已知集合A={-1,0,1},B={x|-1≤x <1},则A∩B= ( ) A.{0} B.{-1,0} C.{0,1} D.{-1,0,1} 【难度】1【考点】集合的运算 【答案】B【解析】因为1,0,1,B B B -∈∈∉所以{}1,0AB =-.2.在复平面内,复数(2-i)2对应的点位于( ) A.第一象限 B. 第二象限 C.第三象限 D. 第四象限 【难度】1【考点】复数综合运算 【答案】D【解析】因为2(2i)44134i i =--=--,在复平面内对应的点的坐标是()3,4-,在第四象限.3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的” () A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【难度】1【考点】充分条件与必要条件 【答案】A【解析】当φ=π时,y=sin(2x +φ)= sin(2x +π)= sin2x , 过原点,当φ=2π也满足题意,故答案为充分不必要条件. 4.执行如图所示的程序框图,输出的S 值为()A.1B.23 C.1321D.610987 【难度】1【考点】算法和程序框图 【答案】C【解析】第一次执行循环:1122113S+==⨯+,1i =;第二次执行循环:221133221213S ⎛⎫+ ⎪⎝⎭==⨯+,2i =,满足i ≥2,结束循环,输出1321S=. 5.函数f(x)的图象向右平移一个单位长度,所得图象与y=ex 关于y 轴对称,则f(x)=() A.1ex + B. 1ex - C. 1ex -+ D. 1ex --【难度】2 【考点】函数图象 【答案】D【解析】把变换过程逆过去即可.与函数y=ex 的图象关于y 轴对称的函数的解析式为x y e -=,该函数图象向左平移一个单位长度,得f(x)的图象,即f(x) =1e x --.6.若双曲线22221x y a b-=的离心率为3A.y=±2xB.y=C.12y x =±D.y x =【难度】2 【考点】双曲线 【答案】B【解析】双曲线的离心率为a=, 渐进性方程为b y x a =±,计算得ba=,故渐进性方程为y =.7.直线l 过抛物线C: x2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于()A.43 B.2 C.83D.3【难度】2 【考点】抛物线 【答案】C【解析】直线l 的方程为1y =,由24,1x y y ⎧=⎨=⎩得交点坐标()2,1-,()2,1,故l 与C 所围成的图形的面积为2322228881|2241212123x x dx x --⎛⎫⎛⎫⎛⎫-=-=---+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰. 8.设关于x,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P(x0,y0)满足x0-2y0=2,求得m 的取值范围是 A.4,3⎛⎫-∞-⎪⎝⎭ B. 1,3⎛⎫-∞ ⎪⎝⎭ C. 2,3⎛⎫-∞- ⎪⎝⎭ D. 5,3⎛⎫-∞- ⎪⎝⎭ 【难度】2 【考点】线性规划 【答案】C【解析】要使线性约束条件表示的平面区域内存在点P(x0,y0)满足x0-2y0=2, 即该平面区域和直线22x y -=有交点,而直线,x m y m =-⎧⎨=⎩的交点(),m m -在直线y x =-上移动,由,22,y x x y =-⎧⎨-=⎩得交点坐标为22,33⎛⎫- ⎪⎝⎭,当23m ->即23m <-时,才会交点.二、填空题9.在极坐标系中,点(2,6π)到直线ρsinθ=2的距离等于 【难度】1【考点】柱坐标系与球坐标系 【答案】1【解析】极坐标中的点(2,6π)对应直角坐标系中的点)3,1,直线ρsinθ=2的普通方程为2y =, 因为()3,1到直线2y =的距离是1,所以点(2,6π)到直线ρsinθ=2的距离等于1. 10.若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=;前n 项和Sn=. 【难度】1 【考点】等比数列 【答案】2,122n +-【解析】 公比352440220a a q a a +===+,()()3324112220a a a q q a +=+=+=,解得12a =,故该等比数列的前n 项和为()12122212n n n S +-==--.11.如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,PA=3,916PD DB =,则PD=,AB=.【难度】1 【考点】圆【答案】95,4 【解析】因为916PD DB =,故可设9,16PD a DP a ==, 由切割线定理,得22PA PD PB =⋅,即()239916a a a =+,解得15a=,故95PD =,1252555PB a ==⨯=, 又PA=3,由勾股定理,得4AB =.12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是. 【难度】2【考点】排列和排列数 【答案】96【解析】连号的情况有1,2,2,3,3,4,4,5,共四种,比如把连号1,2,3,4,5全部分给4人,每人至少一张,则有44A 种, 故不同的分法种数是44496A =种.13.向量a ,b ,c 在正方形网格中的位置如图所示,若c=λa +μb(λ,μ∈R),则λμ=.【难度】2【考点】平面向量坐标运算 【答案】4【解析】以向量a ,b 的交点为原点,建立直角坐标系, 则a=(1,1), b=(6,2), c= (1,3),由c=λa +μb , 得()()()1,31,16,2λμ--=-+,即61,23,λμλμ-+=-⎧⎨+=-⎩解得12,2λμ=-=-,4λμ=.14.如图,在棱长为2的正方体ABCDA1B1C1D1中,E 为BC 的中点,点P 在线段D1E 上,点P 到直线CC1的距离的最小值为.【难度】2 【考点】距离25【解析】过E 作1EE ⊥11B C 于1E , 连接11D E ,过P 作PQ ⊥11D E 于Q , 在同一个平面EE1D1内,1EE ⊥E1D1,PQ ⊥11D E ,则1//PQ EE ,又11//EE CC ,故1//PQ CC ,点P 到直线CC1的距离就等于点Q 到直线CC1的距离, 当11C Q C C ⊥,距离最小,此时,11111115C D C E C Q E D ⨯===. 三、解答题15.在△ABC 中,a=3,,∠B=2∠A.(I)求cosA 的值, (II)求c 的值 【难度】3【考点】三角函数综合 【答案】(I) cos 3A = (II) sin 5sin a C c A== 【解析】 ⑴由正弦定理,sin sin a b A B=,因为a=3,,∠B=2∠A,所以3sin sin 22sin cos A A A A ==,解得cos 3A =. ⑵由⑴知,cos A =,所以sin A ==. 又因为∠B=2∠A ,所以21cos 2cos13B A =-=.所以sin 3B ==. 在ABC ∆中,()sin sin sin cos cos sin C A B A B A B =+=+=, 所以sin 5sin a Cc A==. 16.下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气重度污染的概率(Ⅱ)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望. (Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 【难度】3 【考点】概率综合 【答案】(Ⅰ)()()()()5858213P B P A A P A P A ==+=(Ⅱ)见解析(Ⅲ)从3月5日开始连续三天的空气质量指数方差最大 【解析】设i A 表示事件“此人于3月i 日到达该市”,()1,2,3,,13i =⋅⋅⋅,根据题意,()113i P A =,且()i j A A i j =∅≠.(Ⅰ)设B 为事件“此人到达当日空气重度污染”,则B=A5∪A8,所以()()()()5858213P B P A A P A P A ==+=. (Ⅱ)由题意知,X 的所有可能取的值为0,1,2, 且()()367111PX P A A A A ==()()()()36711413P A P A P A P A =+++=; ()()()()()()1212131212134213P X P A A A A P A P A P A P A ===+++=;()()()5011213P X P X P X ==-=-==,所以X 的分布列为X 01 2P413 413 513X 的期望为5441201213131313EX =⨯+⨯+⨯=. (Ⅲ)从3月5日开始连续三天的空气质量指数方差最大.17.如图,在三棱柱ABCA1B1C1中,AA1C1C 是边长为4的正方形.平面ABC ⊥平面AA1C1C ,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC ; (Ⅱ)求二面角A1BC1B1的余弦值;(Ⅲ)证明:在线段BC1存在点D ,使得AD ⊥A1B ,并求1BDBC 的值. 【难度】3【考点】立体几何综合 【答案】(Ⅰ)见解析(Ⅱ)1625(Ⅲ)1925BD BC λ==【解析】(Ⅰ)因为11AAC C 为正方形,所以1AA AC ⊥.因为平面ABC ⊥平面AA1C1C , 且平面ABC平面AA1C1C AC =,所以1AA ⊥平面ABC.(Ⅱ)由(Ⅰ)知,1AA ⊥AC, 1AA ⊥AB. 由题意知3,5,4AB BC AC ===,所以AB AC ⊥.如图,以A 为原点建立空间直角坐标系A xyz -, 则()()()()1110,3,0,0,0,4,0,3,4,4,0,4BA B C .设平面11A BC 的法向量为(),,n x y z =,则1110,0.n A B n A C ⎧⋅=⎪⎨⋅=⎪⎩即340,40,y z x -=⎧⎨=⎩令3z =,则0,4x y ==,所以()0,4,3n =. 同理可得,平面11B BC 的法向量为()3,4,0m =.所以16cos ,25||||m n m n m n ⋅<>==⋅.由题知二面角A1BC1B1为锐角,所以二面角A1BC1B1的余弦值为1625. zy(Ⅲ)设(),,D x y z 是直线1BC 上的一点,且1BD BC λ=.所以()(),3,4,3,4x y z λ-=-,解得4,33,4x y z λλλ==-=,所以()4,33,4AD λλλ=-.由10AD A B ⋅=,即9250λ-=,解得925λ=. 因为[]90,125∈,所以在线段1BC 上存在点D , 使得1AD A B ⊥,此时1925BD BC λ==. 18.设l 为曲线C :ln xy x=在点(1,0)处的切线. (I)求l 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线l 的下方 【难度】4【考点】导数的综合应用 【答案】(I) 1y x =- (II)见解析 【解析】 (I)设()ln x f x x =,则()21ln 'xf x x -=, 所以()'11f =,所以l 的方程为1y x =-.(II)令()()1gx x f x =--,除切点外,曲线C 在直线l 的下方等价于0x ∀>且1x ≠,()0gx >.()g x 满足()10g =,且()()221ln '1'x xg x f x x -+=-=. 当01x <<时,210,ln 0x x -<<,所以()'0g x <,故()g x 单调递减.当1x >时,210,ln 0xx ->>,所以()'0g x >,故()g x 单调递增.所以,对0x ∀>且1x ≠,()()10gx g >=.所以除切点外,曲线C 在直线l 的下方.19.已知A 、B 、C 是椭圆W :2214x y +=上的三个点,O 是坐标原点. (I)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积. (II)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 【难度】4【考点】圆锥曲线综合 【答案】(I) 11||||22||22OB AC m ⨯=⨯⨯⨯=不可能是菱形 【解析】(I) 椭圆W :2214x y +=的右顶点()2,0B , 因为四边形OABC 为菱形,所以AC 和OB 互相垂直平分. 所以可设()1,Am ,代入椭圆方程得2114m +=,解得2m =.所以菱形OABC的面积为11||||22||22OB AC m ⨯=⨯⨯⨯= (II)假设四边形OABC 为菱形.因为点B 不是W 的顶点,且直线AC 不过原点, 所以可设AC 的方程为y=kx+m,k≠0,m≠0..由22,14y kx m x y =+⎧⎪⎨+=⎪⎩消去y 并整理得()222148440k x kmx m +++-=.设()()1122,,,Ax y C x y ,则1224214x x km k +=-+,121222214y y x x mk m k ++=⨯+=+, 所以AC 的中点224(,)1414km mM k k -++. 因为M 为AC 和OB 的交点,所以直线OB 的斜率为14k-.因为1()14k k⨯-≠-,所以AC 和OB 不垂直. 所以四边形OABC 不是菱形,与假设矛盾.所以当B 不是W 的顶点,四边形OABC 不可能是菱形.20.已知{an}是由非负整数组成的无穷数列,该数列前n 项的最大值记为An ,第n 项之后各项1n a +,2n a +…的最小值记为Bn ,dn=An -Bn.(1)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n ∈N*,4n n a a +=),写出d1,d2,d3,d4的值;(2)设d 为非负整数,证明:dn=-d(n=1,2,3…)的充分必要条件为{an}为公差为d 的等差数列; (3)证明:若a1=2,dn=1(n=1,2,3…),则{an}的项只能是1或2,且有无穷多项为1. 【难度】5 【考点】数列综合【答案】(1)121d d ==,343d d ==. (2)见解析 (3)见解析【解析】充分利用题目所给信息进行反复推理论证.要证明充要条件, 需要充分性和必要性两个方面叙述. (1)121d d ==,343d d ==. (2)充分性:因为{}n a 是公差为d 的等差数列,且0d≥,所以12n a a a ≤≤⋅⋅⋅≤≤⋅⋅⋅,因此1,n n n n A a B a +==,1(1,2,3)n n n d a a d n +=-=-=⋅⋅⋅. 必要性:因为0(1,2,3)n d d n =-≤=⋅⋅⋅,所以n n n n A B d B =+≤. 又因为1,n n n n a A a B +≤≥,所以1n n a a +≤. 于是1,n n n n A a B a +==.因此,1n n n n n a a B A d d +-=-=-=,即{}n a 是公差为d 的等差数列.(3)因为a1=2,dn=1,所以11=2A a =,111=-1B A d =,故对任意1n ≥,11n a B ≥=. 假设{}n a (2)n ≥,中存在大于2的项,设m 为满足2m a >的的最小正整数, 则2m ≥,并且对任意1,2k k m a ≤<≤, 又因为a1=2,所以12m A -=,且2m m A a =>. 于是{}1211,min ,2mm m m m m B A d B a B -=->-==≥.故111220m m m d A B ---=-≤-=,与11m d -=矛盾. 所以对于任意1n ≥,都有2n a ≤, 即非负整数数列{}n a 的各项只能为1或2,.因为对任意1n ≥,12n a a ≤=, 所以2n A =.故21 1.n n n B A d =-=-=因此,对于任意正整数n ,存在m 满足m n >,且1m a =,即数列{an}有无穷多项为1.高考数学(文)一轮:一课双测A+B精练(四十八) 直线与圆、圆与圆的位置关系1.(·人大附中月考)设m>0,则直线2(x+y)+1+m=0与圆x2+y2=m的位置关系为( )A.相切B.相交C.相切或相离D.相交或相切2.(·福建高考)直线x+3y-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于( )A.25B.23C.3D.13.(·安徽高考)若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是( )A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)4.过圆x2+y2=1上一点作圆的切线与x轴,y轴的正半轴交于A,B两点,则|AB|的最小值为( )A.2B.3C.2D.35.(·兰州模拟)若圆x2+y2=r2(r>0)上仅有4个点到直线x-y-2=0的距离为1,则实数r的取值范围为( )A.(2+1,+∞) B.(2-1, 2+1)C.(0, 2-1) D.(0, 2+1)6.(·临沂模拟)已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2-2y=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为( )A.2B.21 2C.22D.27.(·朝阳高三期末)设直线x-my-1=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为23,则实数m的值是________.8.(·东北三校联考)若a,b,c是直角三角形ABC三边的长(c为斜边),则圆C:x2+y2=4被直线l:ax+by+c=0所截得的弦长为________.9.(·江西高考)过直线x +y -22=0上点P 作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.10.(·福州调研)已知⊙M :x2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB|=423,求|MQ|及直线MQ 的方程;(2)求证:直线AB 恒过定点.11.已知以点C ⎝ ⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM|=|ON|,求圆C 的方程. 12.在平面直角坐标系xOy 中,已知圆x2+y2-12x +32=0的圆心为Q ,过点P(0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B.(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ ―→共线?如果存在,求k 值;如果不存在,请说明理由.1.已知两圆x2+y2-10x -10y =0,x2+y2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.2.(·上海模拟)已知圆的方程为x2+y2-6x -8y =0,a1,a2,…,a11是该圆过点(3,5)的11条弦的长,若数列a1,a2,…,a11成等差数列,则该等差数列公差的最大值是________.3.(·江西六校联考)已知抛物线C :y2=2px(p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO|=|BO|=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ―→,·PF ―→,的最小值;(3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.[答 题 栏] A 级1._________2._________3._________4._________5B 级1.______2.______.__________6._________7.__________8.__________9.__________答 案高考数学(文)一轮:一课双测A+B 精练(四十八)A 级1.C2.B3.C4.C5.选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l1,l2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l2的距离2+1.6.选D 圆心C(0,1)到l 的距离 d =5k2+1,所以四边形面积的最小值为2×⎝ ⎛⎭⎪⎫12×1×d2-1=2, 解得k2=4,即k =±2. 又k >0,即k =2.7.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1, 即|1-2m -1|1+m2=1,解得m =±33.答案:±338.解析:由题意可知圆C :x2+y2=4被直线l :ax +by +c =0所截得的弦长为24-⎝⎛⎭⎪⎫c a2+b22,由于a2+b2=c2,所以所求弦长为2 3.答案:239.解析:∵点P 在直线x +y -22=0上,∴可设点P(x0,-x0+22),且其中一个切点为M.∵两条切线的夹角为60°, ∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x20+-x0+222=2,解得x0= 2.故点P 的坐标是( 2,2).答案:( 2, 2)10.解:(1)设直线MQ 交AB 于点P ,则|AP|=223,又|AM|=1,AP ⊥MQ ,AM ⊥AQ ,得|MP|=12-89=13,又∵|MQ|=|MA|2|MP|,∴|MQ|=3.设Q(x,0),而点M(0,2),由x2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q(q,0),由几何性质,可知A ,B 两点在以Q M 为直径的圆上,此圆的方程为x(x -q)+y(y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx -2y +3=0,所以直线AB 恒过定点⎝ ⎛⎭⎪⎫0,32. 11.解:(1)证明:由题设知,圆C 的方程为 (x -t)2+⎝ ⎛⎭⎪⎫y -2t 2=t2+4t2, 化简得x2-2tx +y2-4t y =0,当y =0时,x =0或2t ,则A(2t,0); 当x =0时,y =0或4t ,则B ⎝ ⎛⎭⎪⎫0,4t , 所以S △AOB =12|OA|·|OB|=12|2t|·⎪⎪⎪⎪⎪⎪4t =4为定值.(2)∵|OM|=|ON|,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN , ∴C 、H 、O 三点共线,则直线OC 的斜率 k =2t t =2t2=12,∴t =2或t =-2. ∴圆心为C(2,1)或C(-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.解:(1)圆的方程可写成(x -6)2+y2=4,所以圆心为Q(6,0).过P(0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x2+(kx +2)2-12x +32=0,整理得(1+k2)x2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k2)=42(-8k2-6k)>0,解得-34<k<0,即k 的取值范围为⎝ ⎛⎭⎪⎫-34,0. (2)设A(x1,y1)、B(x2,y2) 则OA +OB =(x1+x2,y1+y2), 由方程①得x1+x2=-4k -31+k2.②又y1+y2=k(x1+x2)+4.③因P(0,2)、Q(6,0),PQ =(6,-2),所以OA +OB 与PQ 共线等价于-2(x1+x2)=6(y1+y2),将②③代入上式, 解得k =-34.而由(1)知k ∈⎝ ⎛⎭⎪⎫-34,0,故没有符合题意的常数k. B 级1.解析:由两圆的方程x2+y2-10x -10y =0,x2+y2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230.答案:2x +y -5=02302.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.解:(1)易得B(1,3),A(-1,-3),设圆M 的方程为(x -a)2+y2=a2(a >0),将点B(1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y2=4,因为点A(-1,-3)在准线l 上,所以p2=1,p =2,所以抛物线C 的方程为y2=4x.(2)由(1)得,M(2,0),F(1,0),设点P(x ,y),则PM ,=(2-x ,-y),PF ,=(1-x ,-y),又点P 在抛物线y2=4x 上,所以PM ,·PF ,=(2-x)(1-x)+y2=x2-3x +2+4x =x2+x +2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF ,的最小值为2.(3)证明:设点Q(-1,m),则|QS|=|QT|=m2+5,以Q 为圆心,m2+5为半径的圆的方程为(x +1)2+(y -m)2=m2+5,即x2+y2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y2=4,即x2+y2-4x =0,② 由①②两式相减即得直线ST 的方程3x -my -2=0,显然直线ST 恒过定点⎝ ⎛⎭⎪⎫23,0.高考数学(文)一轮:一课双测A+B精练(四十)空间几何体的结构特征及三视图和直观图1.(·青岛摸底)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是( )A.②③④B.①②③C.①③④D.①②④2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A.1B.2C.3D.43.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是( )5.如图△A′B′C′是△ABC的直观图,那么△ABC是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形6.(·东北三校一模)一个几何体的三视图如图所示,则侧视图的面积为( )A.2+3B.1+3C.2+23D.4+37.(·昆明一中二模)一个几何体的正视图和侧视图都是边长为1的正方形,且体积为1,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号) 2①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆8.(·安徽名校模拟)一个几何体的三视图如图所示,则该几何体的体积为________.9.正四棱锥的底面边长为2,侧棱长均为3,其正视图(主视图)和侧视图(左视图)是全等的等腰三角形,则正视图的周长为________.10.已知:图1是截去一个角的长方体,试按图示的方向画出其三视图;图2是某几何体的三视图,试说明该几何体的构成.11.(·银川调研)正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少?12.(·四平模拟)已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.1.(·江西八所重点高中模拟)底面水平放置的正三棱柱的所有棱长均为2,当其正视图有最大面积时,其侧视图的面积为( )A.23B.3C.3D.42.(·深圳模拟)如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=3,且当规定正视方向垂直平面ABCD时,该几何体的侧视图的面积为22.若M,N分别是线段DE,CE上的动点,则AM+MN+NB的最小值为________.3.一个多面体的直观图、正视图、侧视图如图1和2所示,其中正视图、侧视图均为边长为a的正方形.(1)请在图2指定的框内画出多面体的俯视图;(2)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;(3)求该多面体的表面积.[答题栏]A级1._________2._________3._________4._________5._________6._________B级 1.______2.______ 7.__________8.__________9.__________答案高考数学(文)一轮:一课双测A+B精练(四十)A级1.A2.A3.C4.B5.选B由斜二测画法知B正确.6.选D依题意得,该几何体的侧视图的面积等于22+12×2×3=4+ 3.7.解析:如图1所示,直三棱柱ABE-A1B1E1符合题设要求,此时俯视图△A BE是锐角三角形;如图2所示,直三棱柱ABC-A1B1C1符合题设要求,此时俯视图△ABC是直角三角形;如图3所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱ABCD-A1B1C1D1符合题设要求,此时俯视图(四边形ABCD)是正方形;若俯视图是扇形或圆,体积中会含有π,故排除④⑤.答案:①②③8.解析:结合三视图可知,该几何体为底面边长为2、高为2的正三棱柱除去上面的一个高为1的三棱锥后剩下的部分,其直观图如图所示,故该几何体的体积为12×2×2sin60°×2-13×12×2×2sin60°×1=533.答案:5339.解析:由题意知,正视图就是如图所示的截面PEF ,其中E 、F 分别是AD 、BC 的中点,连接AO ,易得AO =2,而PA =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2.答案:2+2210.解:图1几何体的三视图为:图2所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体. 11.解:如图所示,正四棱锥S -ABCD 中, 高OS =3,侧棱SA =SB =SC =SD =7, 在Rt △SOA 中,OA =SA2-OS2=2,∴AC =4. ∴AB =BC =CD =DA =2 2. 作OE ⊥AB 于E ,则E 为AB 中点. 连接SE ,则SE 即为斜高, 在Rt △SOE 中,∵OE =12BC =2,SO =3,∴SE =5,即侧面上的斜高为 5.12.解:(1)三棱锥的直观图如图所示. (2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=12=23,∴S △VBC =12×23×23=6.B 级1.选A 当正视图的面积达最大时可知其为正三棱柱某个侧面的面积,可以按如图所示位置放置,此时侧视图的面积为2 3.2.解析:依题意得,点E 到直线AB 的距离等于32-⎝ ⎛⎭⎪⎫222=2,因为该几何体的左(侧)视图的面积为12·BC ×2=22,所以BC =1,DE =EC =DC =2.所以△DEC 是正三角形,∠DEC =60°,tan ∠DEA =AD AE =33,∠DEA =∠CEB =30°.把△DAE ,△DEC 与△CEB 展在同一平面上,此时连接AB ,AE =BE =3,∠AEB =∠DEA +∠DEC +∠CEB =120°,AB2=AE2+BE2-2AE ·BEcos120°=9,即AB =3,即AM +MN +NB 的最小值为3.答案:33.解:(1)根据多面体的直观图、正视图、侧视图,得到俯视图如下:(2)证明:如图,连接AC ,BD ,交于O 点,连接OE. ∵E 为AA1的中点,O 为AC 的中点, ∴在△AA1C 中,OE 为△AA1C 的中位线. ∴OE ∥A1C.∵OE ⊄平面A1C1C ,A1C ⊂平面A1C1C , ∴OE ∥平面A1C1C.(3)多面体表面共包括10个面,SABCD =a2, SA1B1C1D1=a22,S △ABA1=S △B1BC =S △C 1DC =S △ADD1=a22,S △AA1D1=S △B1A1B =S △C1B1C =S △DC1D1 =12×2a 2×32a 4=3a28, ∴该多面体的表面积S =a2+a22+4×a22+4×3a28=5a2.。
普通高等学校招生国统一考试数学理试题卷,解析
卜人入州八九几市潮王学校2021年普通高等招生全国统一考试数学理试题〔卷,解析〕一、选择题:本大题一一共10小题,每一小题5分,一共50分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的. 1.方程26130x x ++=的一个根是 A .32i -+B .32i +C .23i -+D .23i +考点分析:此题考察复数的一元二次方程求根. 难易度:★解析:根据复数求根公式:x 32i ==-±,所以方程的一个根为32i -+答案为A. 20x ∃∈RQ ,30x ∈Q 〞的否认是A .0x ∃∉RQ ,30x ∈QB .0x ∃∈RQ ,30x ∉QC .x ∀∉RQ ,3x ∈QD .x ∀∈RQ ,3x ∉Q考点分析:难易度:★ 解析:3.二次函数()y f x =的图象如下列图,那么它与x 轴所围图形的面积为侧视图正视图A .2π5 B .43C .32D .π2考点分析:此题考察利用定积分求面积. 难易度:★解析:根据图像可得:2()1y f x x ==-+,再由定积分的几何意义,可求得面积为12311114(1)()33S x dx x x --=-+=-+=⎰. 4.某几何体的三视图如下列图,那么该几 何体的体积为 A .8π3B .3πC .10π3D .6π考点分析:此题考察空间几何体的三视图. 难易度:★解析:显然有三视图我们易知原几何体为一个圆柱体的一局部,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,那么知所求几何体体积为原体积的一半为3π.选B. 5.设a ∈Z ,且013a ≤<,假设201251a +能被13整除,那么a = A .0B .1C .11D .12考点分析:此题考察二项展开式的系数.难易度:★解析:由于51=52-1,152...5252)152(1201120122011120122012020122012+-+-=-C C C ,又由于13|52,所以只需13|1+a ,0≤a<13,所以a=12选D. 6.设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,那么a b cx y z++=++A .14B .13C .12D .34考点分析:此题主要考察了柯西不等式的使用以及其取等条件. 难易度:★★解析:由于222222)())((2cz by ax z y x c b a ++≥++++等号成立当且仅当,t zc y b x a ===那么a=txb=tyc=tz ,10)(2222=++z y x t所以由题知2/1=t ,又2/1,==++++++++===t zy x c b a z y x c b a z c y b x a 所以,答案选C. 7.定义在(,0)(0,)-∞+∞上的函数()f x ,假设对于任意给定的等比数列{}n a ,{()}n f a 仍是等比数列,那么称()f x 为“保等比数列函数〞.现有定义在(,0)(0,)-∞+∞上的如下函数:①2()f x x =;②()2xf x =;③()f x =;④()ln ||f x x =. 那么其中是“保等比数列函数〞的()f x 的序号为A .①②B .③④C .①③D .②④考点分析:此题考察等比数列性质及函数计算. 难易度:★解析:等比数列性质,212++=n n n a a a ,①()()()()122212222++++===n n n n n n a f a a a a f a f ;②()()()12221222222+++=≠==+++n a a a a a n n a f a f a f n n n n n ;③()()()122122++++===n n n n n n a f a a a a f a f ;④()()()()122122ln ln ln ++++=≠=n n n n n n a f a a a a f a f .选C8.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB内随机取一点,那么此点取自阴影局部的概率是 A .21π- B .112π- C .2π D .1π考点分析:此题考察几何概型及平面图形面积求法. 难易度:★解析:令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,那么过C 点。
精品解析:2022年全国新高考I卷数学试题(解析版)
2022年普通高等学校招生全国统一考试一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{4},{31}M x N x x =<=≥∣,则M N = ()A.{}02x x ≤< B.123xx ⎧⎫≤<⎨⎬⎩⎭C.{}316x x ≤< D.1163xx ⎧⎫≤<⎨⎬⎩⎭【答案】D 【解析】【分析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D2.若i(1)1z -=,则z z +=()A.2-B.1- C.1D.2【答案】D 【解析】【分析】利用复数的除法可求z ,从而可求z z +.【详解】由题设有21i1i i i z -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D3.在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB=()A.32m n -B.23m n-+C.32m n+D.23m n+【答案】B 【解析】【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=- ,所以CB =3232CD CA n m -=-23m n =-+.故选:B .4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,增加的水量约为2.65≈)()A.931.010m ⨯B.931.210m ⨯ C.931.410m ⨯ D.931.610m ⨯【答案】C 【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V .棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =++=⨯⨯⨯+⨯'(()679933320109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D 【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种,故所求概率2172213P -==.故选:D.6.记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭()A.1B.32C.52D.3【答案】A 【解析】【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<,又因为函数图象关于点3,22π⎛⎫⎪⎝⎭对称,所以3,24k k Z ππωπ+=∈,且2b =,所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭.故选:A7.设0.110.1e ,ln 0.99a b c ===-,则()A.a b c <<B.c b a<< C.c a b<< D.a c b<<【答案】C 【解析】【分析】构造函数()ln(1)f x x x =+-,导数判断其单调性,由此确定,,a b c 的大小.【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++,当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增,所以1((0)09f f <=,所以101ln099-<,故110ln ln 0.999>=-,即b c >,所以1((0)010f f -<=,所以91ln+01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x x x g x x x x -+'=+=--,令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<-时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增,又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)xg x x x =+-单调递增,所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c >故选:C.8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤,则该正四棱锥体积的取值范围是()A.8118,4⎡⎤⎢⎥⎣⎦ B.2781,44⎡⎤⎢⎥⎣⎦ C.2764,43⎡⎤⎢⎥⎣⎦D.[18,27]【答案】C 【解析】【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l <≤时,0V '<,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知正方体1111ABCD A B C D -,则()A.直线1BC 与1DA 所成的角为90︒B.直线1BC 与1CA 所成的角为90︒C.直线1BC 与平面11BB D D 所成的角为45︒D.直线1BC 与平面ABCD 所成的角为45︒【答案】ABD 【解析】【分析】数形结合,依次对所给选项进行判断即可.【详解】如图,连接1B C 、1BC ,因为11//DA B C ,所以直线1BC 与1B C 所成的角即为直线1BC 与1DA 所成的角,因为四边形11BB C C 为正方形,则1B C ⊥1BC ,故直线1BC 与1DA 所成的角为90︒,A 正确;连接1AC ,因为11A B ⊥平面11BB C C ,1BC ⊂平面11BB C C ,则111A B BC ⊥,因为1B C ⊥1BC ,1111A B B C B = ,所以1BC ⊥平面11A B C ,又1AC ⊂平面11A B C ,所以11BC CA ⊥,故B 正确;连接11A C ,设1111A C B D O = ,连接BO ,因为1BB ⊥平面1111D C B A ,1C O ⊂平面1111D C B A ,则11C O B B ⊥,因为111C O B D ⊥,1111B D B B B ⋂=,所以1C O ⊥平面11BB D D ,所以1C BO ∠为直线1BC 与平面11BB D D 所成的角,设正方体棱长为1,则122C O =,1BC =,1111sin 2C O C BO BC ∠==,所以,直线1BC 与平面11BB D D 所成的角为30 ,故C 错误;因为1C C ⊥平面ABCD ,所以1C BC ∠为直线1BC 与平面ABCD 所成的角,易得145C BC ∠=,故D 正确.故选:ABD10.已知函数3()1f x x x =-+,则()A.()f x 有两个极值点B.()f x 有三个零点C.点(0,1)是曲线()y f x =的对称中心D.直线2y x =是曲线()y f x =的切线【答案】AC 【解析】【分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D.【详解】由题,()231f x x '=-,令()0f x '>得33x >或33x <-,令()0f x '<得3333x -<<,所以()f x在(,33-上单调递减,在(,3-∞-,,)3+∞上单调递增,所以33x =±是极值点,故A 正确;因323(1039f -=+>,3231039f =->,()250f -=-<,所以,函数()f x 在3,3⎛-∞-⎝⎭上有一个零点,当3x ≥时,()303f x f ⎛≥> ⎝⎭,即函数()f x 在33⎛⎫∞ ⎪ ⎪⎝⎭上无零点,综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 的对称中心,将()h x 的图象向上移动一个单位得到()f x 的图象,所以点(0,1)是曲线()y f x =的对称中心,故C 正确;令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+,故D 错误.故选:AC.11.已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则()A.C 的准线为1y =-B.直线AB 与C 相切C.2|OP OQ OA ⋅> D.2||||||BP BQ BA ⋅>【答案】BCD 【解析】【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C 、D.【详解】将点A 的代入抛物线方程得12p =,所以抛物线方程为2x y =,故准线方程为14y =-,A 错误;1(1)210AB k --==-,所以直线AB 的方程为21y x =-,联立221y x x y=-⎧⎨=⎩,可得2210x x -+=,解得1x =,故B 正确;设过B 的直线为l ,若直线l 与y 轴重合,则直线l 与抛物线C 只有一个交点,所以,直线l 的斜率存在,设其方程为1y kx =-,1122(,),(,)P x y Q x y ,联立21y kx x y=-⎧⎨=⎩,得210x kx -+=,所以21212Δ401k x x k x x ⎧=->⎪+=⎨⎪=⎩,所以2k >或2k <-,21212()1y y x x ==,又||OP ==,||OQ ==,所以2||||||2||OP OQ k OA ⋅==>=,故C 正确;因为1||||BP x =,2||||BQ x =,所以2212||||(1)||15BP BQ k x x k ⋅=+=+>,而2||5BA =,故D 正确.故选:BCD12.已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A.(0)0f =B.102g ⎛⎫-= ⎪⎝⎭C.(1)(4)f f -=D.(1)(2)g g -=【答案】BC 【解析】【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】因为322f x ⎛⎫-⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=-⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【点睛】关键点点睛:解决本题的关键是转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解.三、填空题:本题共4小题,每小题5分,共20分.13.81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答).【答案】-28【解析】【分析】()81y x y x ⎛⎫-+ ⎪⎝⎭可化为()()88y x y x y x +-+,结合二项式展开式的通项公式求解.【详解】因为()()()8881=y y x y x y x y x x⎛⎫-++-+ ⎪⎝⎭,所以()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中含26x y 的项为6265352688C 28y x y C x y x y x-=-,()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为-28故答案为:-2814.写出与圆221x y +=和22(3)(4)16x y -+-=都相切的一条直线的方程________________.【答案】3544y x =-+或7252424y x =-或1x =-【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14⎧=⎪⎪=,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为1x =-,故答案为:3544y x =-+或7252424y x =-或1x =-.15.若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.【答案】()(),40,∞∞--⋃+【解析】【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围.【详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e xk x a =++,切线方程为:()()()00000e 1e x x y x a x a x x -+=++-,∵切线过原点,∴()()()00000e1e x x x a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a =+> ,解得4a <-或0a >,∴a 的取值范围是()(),40,∞∞--⋃+,故答案为:()(),40,∞∞--⋃+16.已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE 的周长是________________.【答案】13【解析】【分析】利用离心率得到椭圆的方程为222222213412043x y x y c c c+=+-=,即,根据离心率得到直线2AF的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,利用弦长公式求得138c =,得1324a c ==,根据对称性将ADE 的周长转化为2F DE △的周长,利用椭圆的定义得到周长为413a =.【详解】∵椭圆的离心率为12c e a ==,∴2a c =,∴22223b a c c =-=,∴椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ===,,,∴23AF O π∠=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE 的斜率为33,直线DE的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,判别式()22224139616c c =+⨯⨯=⨯⨯ ,∴12226461313c CD y y =-=⨯=⨯⨯⨯= ,∴138c =,得1324a c ==,∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为222211*********DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==.故答案为:13.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .【答案】(1)()12n n n a +=(2)见解析【解析】【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23n n n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=;(2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭ ,进而证得.【小问1详解】∵11a =,∴111S a ==,∴111S a =,又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=,∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+,即111n n a n a n -+=-,∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341123212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立,∴{}n a 的通项公式()12n n n a +=;【小问2详解】()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++ 1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦18.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A B A B=++.(1)若23C π=,求B ;(2)求222a b c+的最小值.【答案】(1)π6;(2)5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A B A B=++化成()cos sin A B B +=,再结合π02B <<,即可求出;(2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c+化成2224cos 5cos B B+-,然后利用基本不等式即可解出.【小问1详解】因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B===++,即()1sin cos cos sin sin cos cos 2B A B A B A B C =-=+=-=,而π02B <<,所以π6B =;【小问2详解】由(1)知,sin cos 0BC =->,所以πππ,022C B <<<<,而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-.所以222222222sin sin cos 21cos sin cos a b A B B B c C B +++-==()2222222cos 11cos 24cos 555cos cos B BB BB -+-==+-≥-=-.当且仅当22cos 2B =时取等号,所以222a b c +的最小值为5-.19.如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】(1(2)32【解析】【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面11ABB A ,建立空间直角坐标系,利用空间向量法即可得解.【小问1详解】在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则1111111111433333A A BC A A ABC A ABC A B BC C C B V S h h V S A A V ---=⋅===⋅== ,解得h =,所以点A 到平面1A BC 的距离为;【小问2详解】取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥,又平面1A BC ⊥平面11ABB A ,平面1A BC 平面111ABB A A B =,且AE ⊂平面11ABB A ,所以AE ⊥平面1A BC ,在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B为原点,建立空间直角坐标系,如图,由(1)得AE =12AA AB ==,1A B =2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D ,则()1,1,1BD = ,()()0,2,0,2,0,0BA BC == ,设平面ABD 的一个法向量(),,m x y z = ,则020m BD x y z m BA y ⎧⋅=++=⎪⎨⋅==⎪⎩ ,可取()1,0,1m =- ,设平面BDC 的一个法向量(),,n a b c = ,则020m BD a b c m BC a ⎧⋅=++=⎪⎨⋅==⎪⎩ ,可取()0,1,1n =-r,则1cos ,2m n m n m n ⋅===⋅ ,所以二面角A BD C --2=.20.一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:(|)(|)(|)(|)P A B P A B R P A B P A B =⋅;(ⅱ)利用该调查数据,给出(|),(|)P A B P A B 的估计值,并利用(ⅰ)的结果给出R 的估计值.附22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k ≥0.0500.0100.001k 3.841 6.63510.828【答案】(1)答案见解析(2)(i )证明见解析;(ii)6R =;【解析】【分析】(1)由所给数据结合公式求出2K 的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i)根据定义结合条件概率公式即可完成证明;(ii)根据(i )结合已知数据求R .【小问1详解】由已知222()200(40906010)=24()()()()50150100100n ad bc K a b c d a c b d -⨯-⨯==++++⨯⨯⨯,又2( 6.635)=0.01P K ≥,24 6.635>,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.【小问2详解】(i)因为(|)(|)()()()()=(|)(|)()()()()P B A P B A P AB P A P AB P A R P B A P B A P A P AB P A P AB =⋅⋅⋅⋅,所以()()()()()()()()P AB P B P AB P B R P B P AB P B P AB =⋅⋅⋅所以(|)(|)(|)(|)P A B P A B R P A B P A B =⋅,(ii)由已知40(|)100P A B =,10(|)100P A B =,又60(|)100P A B =,90(|100P A B =,所以(|)(|)=6(|)(|)P A B P A B R P A B P A B =⋅21.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=,求PAQ △的面积.【答案】(1)1-;(2)1629.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ 的倾斜角互补,再根据tan PAQ ∠=即可求出直线,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.【小问1详解】因为点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.【小问2详解】不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=tan 2α=-,2tan 0αα-=,解得tan α=,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以10423P x -=,P y =4253-,同理可得,10423Q x +=,Q y =4253--.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d ==,故PAQ △的面积为116221622339⨯⨯=.22.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【答案】(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.【小问1详解】()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,+∞,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫ ⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==-⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11ln ln a a a a -=-,整理得到1ln 1a a a-=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,+∞上的减函数,而()10=,故()0g a =的唯一解为1a =,故1ln 1a a a-=+的解为1a =.综上,1a =.【小问2详解】由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e x S x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0-∞上为减函数,在()0,+∞上为增函数,所以()()min 010S x S b ==-<,而()e0b S b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20b u b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x ¢<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()e e 0b b T --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2x h x x'=+-,设()e 1x s x x =--,0x >,则()e 10x s x '=->,故()s x 在()0,+∞上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,+∞上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,+∞上有且只有一个零点0x ,0311e x <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e x x b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44e x b x -=即()44e 0x b x b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.。
2021年一般高等学校招生全国统一考试数学理试题(全国卷,解析版)(1)
绝密★启用前2021年一般高等学校招生全国统一考试数学(理科)一、选择题:本大题共12小题,每题5分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的. (1)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )6(2)()3=(A )8- (B )8 (C )8i - (D )8i (3)已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则(A )4- (B )-3 (C )2- (D )-1 (4)已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭【答案】B【解析】由题意可知 1210,x -<+<,那么112x -<<-。
应选B (5)函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> 【答案】A【解析】由题意知1112(0)21y y x y x +=⇒=<-, 因此,应选A(6)已知数列{}n a 知足{}12430,,103n n n a a a a ++==-则的前项和等于(A )()-10-61-3 (B )()-1011-39(C )()-1031-3 (D )()-1031+3 (7)()()342211+x y x y +的展开式中的系数是(A )56 (B )84 (C )112 (D )168(8)椭圆22122:1,,46x y C A A P C PA +=的左、右顶点分别为点在上且直线斜率的取值范围是[]12,1,PA --那么直线斜率的取值范围是(A )1324⎡⎤⎢⎥⎣⎦, (B )3384⎡⎤⎢⎥⎣⎦, (C )112⎡⎤⎢⎥⎣⎦, (D )314⎡⎤⎢⎥⎣⎦, (9)假设函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是 (A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+ (10)已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于(A )23 (B )33 (C )23 (D )13【】A【解析】如以下图,连接AC 交BD 于点O ,连接1C O ,过C 作1CH C O ⊥于H (11)已知抛物线()2:82,2,C C y x M k C =-与点过的焦点,且斜率为的直线与交于(A )12(B 2 (C 2 (D )2【】D【解析】由题意知抛物线C 的核心坐标为,那么直线AB 的方程为y=K (x-2), ∴ 1122(2,2)(2,2)0x y x y +-•+-=因此:121212122()2()80x x x x y y y y +++-++= ④ 由①②③④解得K=2,应选D(12)已知函数()=cos sin 2,f x x x 下列结论中正确的是(A )()(),0y f x π=的图像关于中心对称 (B )()2y f x x π==的图像关于对称(C )()f x (D )()f x 既是奇函数,又是周期函数 二、填空题:本大题共4小题,每题5分.(13)已知1sin ,cot 3a a a =-=是第三象限角,则 .(14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答) 【】480【解析】 先排除甲、乙外的4人,方式有44A 再将甲、乙插入这4人形成的5个距离中,有25A 的排法,因此甲、乙不相邻的不同排法有4245A A =480(15)记不等式组0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为.D 假设直线()1y a x D a =+与有公共点,则的取值范围是 .(16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =,且圆与圆所在的平面所成角为,那么球O 的表面积等于 .三、解答题:解许诺写出文字说明、证明进程或演算步骤. 17.(本小题总分值10分)等差数列{}n a 的前n 项和为232124.=,,,n S S a S S S 已知且成等比数列,求{}n a 的通项式.18.(本小题总分值12分)设()(),,,,,.ABC A B C a b c a b c a b c ac ∆++-+=的内角的对边分别为(I )求;B(II )假设31sin sin , C.4A C -=求19.(本小题总分值12分)如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆中,,与都是等边三角形.(I )证明:;PB CD ⊥(II )求二面角.A PD C --的大小 20.(本小题总分值12分)甲、乙、丙三人进行羽毛球练习赛,其中两人竞赛,另一人当裁判,每局竞赛终止时,负的一方在下一局当裁判,设各局中两边获胜的概率均为1,2各局竞赛的结果都彼此独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(II )X 表示前4局中乙当裁判的次数,求X 的数学期望. 21.(本小题总分值12分)已知双曲线()221222:10,0x y C a b F F a b -=>>的左、右焦点分别为,,离心率为3,直线2 6.y C =与的两个交点间的距离为(I )求,;a b ;(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF -证明:22.AF AB BF 、、成等比数列22.(本小题总分值12分) 已知函数()()()1=ln 1.1x x f x x xλ++-+(I )假设()0,0,x f x λ≥≤时求的最小值;; (II )设数列{}211111,ln 2.234n n n n a a a a n n=+++⋅⋅⋅+-+>的通项证明:。
普通高等学校招生全国统一考试数学理科试题(课标全国I卷)全解析
2010年普通高等学校招生全国统一考试理科数学本试卷分第I卷(选择题)和第II卷(非选择题)两部分,其中第II卷第(22)-(24)题为选考题,其他题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1、答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2、选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。
3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4、保持卷面清洁,不折叠,不破损。
5、做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。
参考公式:(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为(A )100 (B )200 (C )300 (D )400 解析:选B(7)如果执行右面的框图,输入5N ,则输出的数等于(9)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- (A) 12-(B) 12(C) 2 (D) -2解析:选A(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2a π (B) 273a π(C)2113a π (D) 25a π 解析:选B(11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc的取值范围是(A) (1,10)(B) (5,6)(C) (10,12)(D) (20,24)解析:选C(12)已知双曲线E的中心为原点,(3,0)P是E的焦点,过F的直线l与E相交于A,B 两点,且AB的中点为(12,15)N--,则E的方程式为(A)22136x y-= (B)22145x y-=(C)22163x y-=(D)22154x y-=解析:选B第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年高考上海卷理数试题解析(精编版)(解析版)一、填空题:本大题共5小题,每小题5分,共25分.1、设全集U R =.若集合{}1,2,3,4A =,{}23x x B =≤≤,则U A B =ð .【答案】{}1,4【解析】因为{|32}U C B x x x =><或,所以{4,1}U A C B = 【考点定位】集合运算2、若复数z 满足31z z i +=+,其中i 为虚数单位,则z = . 【答案】1142i +3、若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭、解为35x y =⎧⎨=⎩,则12c c -= . 【答案】16【解析】由题意得:121223233521,05,21516.c x y c x y c c =+=⨯+⨯==⋅+=-=-= 【考点定位】线性方程组的增广矩阵4、若正三棱柱的所有棱长均为a ,且其体积为a = . 【答案】45、抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p = .【答案】26、若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 . 【答案】3π 【解析】由题意得:1:(2)222rl h r l h ππ⋅=⇒=⇒母线与轴的夹角为3π【考点定位】圆锥轴截面7、方程()()1122log 95log 322x x ---=-+的解为 .【答案】2【解析】设13,(0)x t t -=>,则2222log (5)log (2)254(2)0t t t t -=-+⇒-=->21430,333112x t t t t x x -⇒-+=>=⇒=⇒-=⇒=【考点定位】解指对数不等式8、在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 【答案】1209、已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C 的渐近线方程为y =,则2C 的渐近线方程为 .【答案】y x = 【解析】由题意得:1C :223,(0)x y λλ-=≠,设(,)Q x y ,则(,2)P x y ,所以2234x y λ-=,即2C 的渐近线方程为y x = 【考点定位】双曲线渐近线10、设()1f x -为()222x xf x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为 . 【答案】411、在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示).【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 【考点定位】二项展开式12、赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12ξξE -E = (元). 【答案】0.2【解析】赌金的分布列为所以11(12345)35E ξ=++++=奖金的分布列为所以223111.4(1234)2.8510510E ξ=⨯⨯+⨯+⨯+⨯=12ξξE -E =0.2【考点定位】数学期望13、已知函数()sin f x x =.若存在1x ,2x ,⋅⋅⋅,m x 满足1206m x x x π≤<<⋅⋅⋅<≤,且()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=(2m ≥,m *∈N ),则m 的最小值为 . 【答案】8 【解析】因为()sin fx x =,所以()()max min ()()2m n f x f x f x f x -≤-=,因此要使得满足条件()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=的m 最小,须取123456783579110,,,,,,,6,222222x x x x x x x x πππππππ========即8.m = 【考点定位】三角函数性质14、在锐角三角形C AB 中,1tan 2A =,D 为边C B 上的点,D ∆AB 与CD ∆A 的面积分别为2和4.过D 作D E ⊥AB 于E ,DF C ⊥A 于F ,则D DF E⋅= . 【答案】1615-【解析】由题意得:1sin sin 242A A AB AC A AB AC ==⋅⋅=+⇒⋅=,又1122,43222AB DE AC DF AB DE AC DF DE DF ⋅=⋅=⇒⋅⨯⋅=⇒⋅=,因为DEAF 四点共圆,因此D DF E⋅=16cos()(15DE DF A π⋅⋅-=- 【考点定位】向量数量积,解三角形二、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.15、设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 【答案】B16、已知点A 的坐标为(),将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( )A C .112 D .132【答案】D【解析】113(cossin ))()3322OB OA i i i ππ=⋅+=⋅+=,即点B 的纵坐标为132【考点定位】复数几何意义17、记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实根的是( ) A .方程①有实根,且②有实根 B .方程①有实根,且②无实根 C .方程①无实根,且②有实根 D .方程①无实根,且②无实根 【答案】B【解析】当方程①有实根,且②无实根时,22124,8a a ≥<,从而4222321816,4a a a =<=即方程③:2340x a x ++=无实根,选B.而A,D 由于不等式方向不一致,不可推;C 推出③有实根 【考点定位】不等式性质18、设(),n n n x y P 是直线21n x y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim 1n n ny x →∞-=-( )A .1-B .12- C .1 D .2 【答案】A三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。
19、(本题满分12分)如图,在长方体1111CD C D AB -A B 中,11AA =,D 2AB =A =,E 、F 分别是AB 、C B 的中点.证明1A 、1C 、F 、E 四点共面,并求直线1CD 与平面11C F A E 所成的角的大小.【答案】1515arcsin因此直线1CD 与平面FE C A 11所成的角的大小为1515arcsin . 【考点定位】空间向量求线面角20、(本题满分14分)本题共有2小题,第小题满分6分,第小题满分8分如图,A ,B ,C 三地有直道相通,5AB =千米,C 3A =千米,C 4B =千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为()f t (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是C A B ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地. (1)求1t 与()1f t 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11t t ≤≤时,求()f t 的表达式,并判断()f t 在[]1,1t 上得最大值是否超过3?说明理由.【答案】(1)138t =,()1f t =2)⎪⎪⎩⎪⎪⎨⎧≤<-≤≤+-=187,558783,184225)(2t t t t t t f ,不超过3.(2)甲到达B 用时1小时;乙到达C 用时38小时,从A 到B 总用时78小时. 当13788t t =≤≤时, ()f t == 当718t ≤≤时,()55f t t =-. 所以⎪⎪⎩⎪⎪⎨⎧≤<-≤≤+-=187,558783,184225)(2t t t t t t f .因为()f t 在37,88⎡⎤⎢⎥⎣⎦上的最大值是38f ⎛⎫= ⎪⎝⎭()f t 在7,18⎡⎤⎢⎥⎣⎦上的最大值是7588f ⎛⎫= ⎪⎝⎭,所以()f t 在3,18⎡⎤⎢⎥⎣⎦上的最大值是8,不超过3. 【考点定位】余弦定理21、(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别于椭圆交于A 、B 和C 、D ,记得到的平行四边形CD AB 的面积为S .(1)设()11,x y A ,()22C ,x y ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明11212S x y x y =-; (2)设1l 与2l 的斜率之积为12-,求面积S 的值. 【答案】(1)详见解析(2)S =由()1,2121221211221222x x k S x y x y x kx x x k k⋅+=-=+⋅=⋅=, 整理得S .【考点定位】直线与椭圆位置关系22、(本题满分16分)本题共有3个小题.第1小题满分4分,第2小题满分6分,第3小题满分6分. 已知数列{}n a 与{}n b 满足()112n n n n a a b b ++-=-,n *∈N .(1)若35n b n =+,且11a =,求数列{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0n n a a >(n *∈N ),求证:数列{}n b 的第0n 项是最大项;(3)设10a λ=<,n n b λ=(n *∈N ),求λ的取值范围,使得{}n a 有最大值M 与最小值m ,且()2,2mM∈-. 【答案】(1)65n a n =-(2)详见解析(3)1,02⎛⎫-⎪⎝⎭因为0n n a a ≥,n *∈N ,所以011112222n n b a b b a b +-≥+-,即0n n b b ≥. 故{}n b 的第0n 项是最大项.解:(3)因为n n b λ=,所以()112n nn n a a λλ++-=-,当2n ≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋅⋅⋅+-+()()()1122222n n n n λλλλλλλ---=-+-+⋅⋅⋅+-+ 2nλλ=-. 当1n =时,1a λ=,符合上式.所以2n n a λλ=-. 因为0λ>,所以222nn a λλλ=->-,21212n n a λλλ--=-<-.①当1λ<-时,由指数函数的单调性知,{}n a 不存在最大、最小值; ②当1λ=-时,{}n a 的最大值为3,最小值为1-,而()32,21∉--; ③当10λ-<<时,由指数函数的单调性知,{}n a 的最大值222a λλM ==-,最小值1m a λ==,由2222λλλ--<<及10λ-<<,得102λ-<<.综上,λ的取值范围是1,02⎛⎫-⎪⎝⎭. 【考点定位】等差数列,数列单调性23、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 对于定义域为R 的函数()g x ,若存在正常数T ,使得()cos g x 是以T 为周期的函数,则称()g x 为余弦周期函数,且称T 为其余弦周期.已知()f x 是以T 为余弦周期的余弦周期函数,其值域为R .设()f x 单调递增,()00f =,()4f πT =. (1)验证()sin3xh x x =+是以π6为周期的余弦周期函数; (2)设b a <.证明对任意()(),c f a f b ∈⎡⎤⎣⎦,存在[]0,x a b ∈,使得()0f x c =;(3)证明:“0u 为方程()cos 1f x =在[]0,T 上得解”的充要条件是“0u +T 为方程()cos 1f x =在[],2T T 上有解”,并证明对任意[]0,x ∈T 都有()()()f x f x f +T =+T . 【答案】(1)详见解析(2)详见解析(3)详见解析(2)由于()f x 的值域为R ,所以对任意()(),c f a f b ∈⎡⎤⎣⎦,c 都是一个函数值,即有0R x ∈,使得()0f x c =.若0x a <,则由()f x 单调递增得到()()0c f x f a =<,与()(),c f a f b ∈⎡⎤⎣⎦矛盾,所以0x a ≥.同理可证0x b ≤.故存在[]0,x a b ∈使得()0f x c =.(3)若0u 为()cos 1f x =在[]0,T 上的解,则()0cos 1f u =,且[]0,2u +T∈T T ,()()00cos cos 1f u f u +T ==,即0u +T 为方程()cos 1f x =在[],2T T 上的解.同理,若0u +T 为方程()cos 1f x =在[],2T T 上的解,则0u 为该方程在[]0,T 上的解. 以下证明最后一部分结论.由(2)所证知存在012340x x x x x =<<<<=T ,使得()i f x i π=,0i =,1,2,3,4.而()()cos cos f x f x +T =,故()()()()4f x f x f x f π+T =+=+T . 类似地,当[]1,i i x x x +∈,1i =,2,3时,有()()()f x f x f +T =+T . 结论成立.【考点定位】新定义问题质.。