2015-2016年江苏省连云港市灌云县七年级下学期期末数学试卷带解析答案
江苏省连云港市灌云县七年级(下)期末数学试卷
的解满足 x<y,则 a 的取值
范围是( )
A.a> B.a< C.a< D.a>
二、填空题(本题共 10 小题,每小题 3 分,共 30 分不需写出解答过程)
9.(3 分)计算:5x﹣3x=
.
10.(3 分)已知 a+b=3,a﹣b=2,则 a2﹣b2=
.
11.(3 分)计算 am•a3•
=a3m+3.
A.
B
.
C.
D.
6.(3 分)如图,将正方形 ABCD 的一角折叠,折痕为 AE,∠BAD 比大∠BAE 大 48°.设∠BAD 和∠BAE 的度数分别为 x、y,那么 x、y 所适合的一个方程组是 ()
பைடு நூலகம்
A.
B.
C.
D.
第 1 页 共 10 页
7.(3 分)如果 x2+ax+121 是两个数的和的平方的形式,那么 a 的值是( ) A.22 B.11 C.±22 D.±11 8.(3 分)老李到办公室后,他总要完成以下事情:烧开水 10 分钟,洗茶杯 1 分钟,准备茶叶和冲茶 1 分钟,打扫办公室 9 分钟,收听新闻 10 分钟,问老李 做好以上事情至少需要( )分钟. A.31 B.11 C.20 D.10
A B 上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A.
证明:∵DE∥AB,
∴∠FDE=∠
(
)
∵DF∥CA,
∴∠A=∠
(
)
∴∠FDE=∠A(
)
23.(6 分)用不等式解决问题:某电影院暑假向学生开放,每张门票 20 元.另 外还可以对外售出每张 50 元的普通门票 300 张,如果要保持每场次的票房收入 不低于 20000 元,那么每场次至少应出售多少张学生的优惠门票?
江苏省连云港市灌云县七年级数学下学期期末质量调研试
江苏省连云港市灌云县2015-2016学年七年级数学下学期期末质量调研试题七年级数学参 考 答 案一、选择题(每题3分,共24分,每题中只有一个正确选项) 序号 1 2 3 4 5 6 7 8 答案DCCCAAAC二、填空题(每题4分,10小题,共40分) 9.答案不唯一 10. 10104.3-⨯ 11. 29a 12. 五13. )2)(2(b a b a -+ 14. 锐角三角形是等边三角形 15. 1- 16.︒70 17. 6 18. 528 三、解答题(共86分)19.计算:(本题满分15分)每小题5分(1)3228)(a a a +÷ (2)0125)2()1(⨯-+--解:原式66a a +=…3分 解:原式=1211⨯-…3分 62a = …5分 =21…5分(3) )()(2b a a b a +-+解:原式=ab a b ab a --++2222 …3分 =ab b +2 …5分 20.(本题满分10分)解方程组 (1)⎩⎨⎧=+-=82332y x x y (2)⎩⎨⎧=+=+1737y x y x解:将32-=x y 代入823=+y x 得: 解:用②-①得:5=x ……3分 8)32(23=-+x x 将5=x 代入7=+y x 得: 解之得:2=x …3分 2=y将2=x 代入32-=x y 得:1=y ∴此方程组的解为⎩⎨⎧==25y x ……5分 ∴此方程组的解为⎩⎨⎧==12y x …5分21.(本题满分10分) (1)解不等式83)1(2->-x x ;8322->-x x 2分 x 510> 3分 2<x ……5分(2)解不等式组⎪⎩⎪⎨⎧-<-≥+xx x x 81223由①得 x x 23≥+,x >3 2分由②得 3<x 4分 所以不等式组的解集为 3<x ……5分 22.(本题满分8分)用不等式解决问题(算术方法不给分) 解:设这个学生答对x 题,成绩才能不低于60分根据题意得: 60)16(26≥--x x ……5分 解之得: 892≥x 答:这个学生至少答对12题,成绩才能不低于60分。
学15—16学年下学期七年级期末考试数学试题(附答案)
2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。
江苏省连云港市七年级下学期数学期末考试试卷
江苏省连云港市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)绝对值不小于1,而小于4的所有的整数有()A . ±1,±2,±3,±4B . ±2,±3C . ±1,±2,±3D . ±2,±3,±42. (2分) (2020八上·浦北期末) 将用科学记数法表示为()A .B .C .D .3. (2分) (2019七下·郑州开学考) 下列计算正确的是()A . a3·a3=2a3B . (−3a2)3=−9a6C . (−2)−2=D . a2+a3=a54. (2分)(2017·南岸模拟) 下列调查中,最适合用普查方式的是()A . 了解全市高三年级学生的睡眠质量B . 了解我校同学对国家设立雄安新区的看法C . 对端午出游旅客上飞机前的安全检查D . 对电影“摔跤吧,爸爸”收视率的调查5. (2分)下列等式从左到右的变形,属于因式分解的是()A . m2+n2=(m+n)2B . x2﹣1=x(x﹣)C . a2﹣2a﹣1=(a﹣1)2﹣2D . x2﹣4y2=(x﹣2y)(x+2y)6. (2分)(2019·保定模拟) 某工厂六台机床第一天和第二天生产的零件数分别如图7-1和图7-2所示,则与第一天相比,这六台机床第二天生产零件数的平均数与方差的变化是()A . 平均数变大,方差不变B . 平均数变小,方差变大C . 平均数不变,方差变小D . 平均数不变,方差变大7. (2分) (2015七下·龙口期中) 下列命题是真命题的是()A . 和为180°的两个角是邻补角B . 一条直线的垂线有且只有一条C . 点到直线的距离是指这点到直线的垂线段D . 两条直线被第三条直线所截,如内错角相等,则同位角必相等8. (2分)设a是最小的正整数,b是最大负整数的相反数,c是绝对值最小的有理数,则a,b,c三数之和为()A . -1B . 0C . 1D . 2二、填空题 (共8题;共8分)9. (1分)把多项式2x2y﹣4xy2+2y3分解因式的结果是________10. (1分) (2019七下·韶关期末) 如图,若要,需增加条件________.(填一个即可)11. (1分)(-x+2y)(-x-2y)等于________;12. (1分) (2019九下·温州竞赛) 命题“同旁内角互补”的逆命题是________.13. (1分)在一组数据中,最小值是12,最大值为92,若取组距为9,则可将这些数据分成________组.14. (1分)(2016·高邮模拟) 如图,三个全等的小矩形沿“橫﹣竖﹣橫”排列在一个大矩形中,若这个大矩形的周长为2016cm,则一个小矩形的周长等于________ cm.15. (1分)已知关于x、y的方程组的解是一对异号的数,则k的取值范围是________ .16. (1分)某班为了奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲,乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则可根据题意可列方程组为________ .三、综合题 (共9题;共68分)17. (5分)(2018·乌鲁木齐模拟) 计算:()﹣2+| ﹣2|﹣2cos30+ .18. (5分)(2017·东城模拟) 解不等式组,并把解集在数轴上表示出来.19. (5分) (2019七下·侯马期中) 解方程(组):(1)=1(2)20. (5分) (2019八上·武威月考) 先化简,再求值:(a2b-2ab2-b3)÷b-(a+b)(a-b),其中a=0.5,b=-1.21. (1分) (2019八上·长兴期中) 如图,AD是△ABC的高线,AE是角平分线,若∠BAC:∠B:∠C=6:3:1,求∠DAE的度数。
2015-2016学年第二学期7下数学期末试题与答案
七年级数学试题与答案 第1页(共2页)2015—2016学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本大题共10个小题,每小题3分,计30分. 1.下列命题中是假命题的是A.对顶角相等B.邻补角是互补的角C.同旁内角互补D.垂线段最短2.23的算术平方根是A.3B. ±3.已知点A (a +3,a -2)位于第四象限,则a 的取值范围是 A .a <-3B .a > 2C .-3<a <2D .-2<a <34.在平面直角坐标系中,将点P (-2,1)向左平移3个单位长度,再向上平移4个单位长度得到点P ′的坐标是A .(1,5)B .(-5,5)C .(1,-3)D .(-5,-3) 5.若x >y ,则下列式子错误的是A. x ﹣3>y ﹣3B.﹣3x >﹣3yC. x +3>y +3D. 3x >3y6.若a b +=3,a b -=7,则22a b +的值是A.5B.21C.29D. 857.下列调查:①调查某批次汽车的抗撞击能力;②了解某班学生的身高情况;③调查春节联欢晚会收视率;④选出某校短跑最快的学生参加全市比赛.其中适宜抽样调查的是A. ①②B. ①③ 错误!未找到引用源。
C. ②③错误!未找到引用源。
2015年江苏省连云港市七年级(下)期末数学试卷与参考答案PDF
2014-2015学年江苏省连云港市七年级(下)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,有且只有一项是符合题目要求的选项)1.(3分)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C.D.﹣3x>﹣3y2.(3分)下列计算正确的是()A.a2•a3=a6 B.a6÷a3=a2C.(a2)3=a6D.(2a)3=6a33.(3分)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.5 B.7 C.9 D.104.(3分)把不等式组的解集在数轴上表示,正确的是()A. B.C. D.5.(3分)用加减法解方程组,下列解法错误的是()A.①×3﹣②×2,消去x B.①×2﹣②×3,消去yC.①×(﹣3)+②×2,消去x D.①×2﹣②×(﹣3),消去y6.(3分)下说法:①“画线段AB=CD”是命题;②定理是真命题;③原命题是真命题,则逆命题是假命题;④要证明一个命题是假命题,只要举一个反例,即举一个具备命题的条件,而不具备命题结论的命题即可,以上说法正确的个数为()A.1个 B.2个 C.3个 D.4个7.(3分)如图,下列判断中错误的是()A.∠A+∠ADC=180°→AB∥CD B.AD∥BC→∠3=∠4C.AB∥CD→∠ABC+∠C=180°D.∠1=∠2→AD∥BC8.(3分)甲、乙两人分别从相距40千米的两地同时出发,若同向而行,则5小时后,快者追上慢者;若相向而行,则2小时后,两人相遇,那么快者速度和慢者速度(单位:千米/小时)分别是()A.14和6 B.24和16 C.28和12 D.30和10二、填空题(每小题3分,满分30分)9.(3分)下列现象:①升国旗;②荡秋千;③手拉抽屉,属于平移的是(填序号)10.(3分)某种细胞可以近似地看成球体,它的半径是0.000005m.0.000005用科学记数法表示为.11.(3分)某多边形的内角和与外角和相等,这个多边形的边数是.12.(3分)已知是方程ax﹣y=3的解,a的值是.13.(3分)写出一个无解的一元一次不等式组为.14.(3分)命题:“同角的余角相等”的逆命题是.15.(3分)将一个宽度相等的纸条按如图所示方式折叠,如果∠1=138°,那么∠2=.16.(3分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.17.(3分)若方程组的解满足x+y>0,则m的取值范围是.18.(3分)有一条长度为359mm的铜管料,把它锯成长度分别为59mm和39mm 两种不同规格的小铜管(要求没有余料),每锯一次损耗1mm的铜管料,为了使铜管料的损耗最少,应分别锯成59mm的小铜管段,39mm的小铜管段.三、解答题(满分96分)19.(9分)将下列各式分解因式:(1)25a2﹣36b2(2)﹣3a2b+6ab﹣3b.20.(11分)计算下列各题(1)(﹣5)0﹣()﹣2+(﹣)﹣1(2)先化简,再求值:(a+2b)(a﹣2b)+(a+2b)2﹣2a(a+3b),其中a=1,b=﹣2.21.(11分)解下列方程组:(1)(2).22.(11分)解下列不等式(组):(1)2x﹣1≥(2).23.(9分)如图,已知DF∥AC,∠C=∠D,证明:CE∥BD.24.(9分)在一次“人与自然”知识竞赛中,竞赛试题共有25道题,每道题都给出4个答案,其中只有一个答案正确,要求学生把正确答案选出来,每道题选对得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中的得分不低于60分,那么他至少选对几道题?25.(11分)某地区从2015年1月起试行峰谷用电(即用电分段收费),每天8:00到22:00时段按峰电价格收费,每千瓦时0.56元,22:00到次日8:00按峰电价格收费,每千瓦时0.28元,不实行峰谷用电时电价均为每千瓦时0.53元.(1)某同学家用峰谷电后,月付95.2元,比不实行峰谷用电时电价少10.8元,问当月峰电、谷电各用多少千瓦时?(2)当用户用峰电不超过每月总电量的百分之几时比不实行峰谷用电时电价合算?(百分号前保留整数)26.(11分)对x,y定义了一种新运算T,规定T(x,y)=(其中a,b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=,已知T(1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组恰好有3个整数解,求p的取值范围.27.(14分)如图1,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,(1)分别计算出当∠A为70°,80°时∠A1的度数;(2)根据(1)中的计算结果写出∠A与∠A1之间等量关系;(3)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与∠A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A8与∠A的数量关系;(4)如图,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.2014-2015学年江苏省连云港市七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,有且只有一项是符合题目要求的选项)1.(3分)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C.D.﹣3x>﹣3y【解答】解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号的方向不变,故B正确;C、不等式的两边都乘以,不等号的方向不变,故C正确;D、不等式的两边都乘以﹣3,不等号的方向改变,故D错误;故选:D.2.(3分)下列计算正确的是()A.a2•a3=a6 B.a6÷a3=a2C.(a2)3=a6D.(2a)3=6a3【解答】解:A、a2•a3=a5,错误;B、a6÷a3=a3,错误;C、(a2)3=a6,正确;D、(2a)3=8a3,错误;故选:C.3.(3分)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.5 B.7 C.9 D.10【解答】解:设第三边为x,由题意得:4﹣3<x<4+3,1<x<7,故选:A.4.(3分)把不等式组的解集在数轴上表示,正确的是()A. B.C. D.【解答】解:由,得x>3,故选:B.5.(3分)用加减法解方程组,下列解法错误的是()A.①×3﹣②×2,消去x B.①×2﹣②×3,消去yC.①×(﹣3)+②×2,消去x D.①×2﹣②×(﹣3),消去y【解答】解:A、①×3﹣②×2,可消去x,故不合题意;B、①×2﹣②×3,可消去y,故不合题意;C、①×(﹣3)+②×2,可消去x,故不合题意;D、①×2﹣②×(﹣3),得13x﹣12y=31,不能消去y,符合题意.故选:D.6.(3分)下说法:①“画线段AB=CD”是命题;②定理是真命题;③原命题是真命题,则逆命题是假命题;④要证明一个命题是假命题,只要举一个反例,即举一个具备命题的条件,而不具备命题结论的命题即可,以上说法正确的个数为()A.1个 B.2个 C.3个 D.4个【解答】解:“画线段AB=CD”不是命题,所以①错误;定理是真命题,所以②正确;原命题是真命题,则逆命题不一定是假命题,所以③错误;要证明一个命题是假命题,只要举一个反例,即举一个具备命题的条件,而不具备命题结论的命题即可,所以④正确.故选:B.7.(3分)如图,下列判断中错误的是()A.∠A+∠ADC=180°→AB∥CD B.AD∥BC→∠3=∠4C.AB∥CD→∠ABC+∠C=180°D.∠1=∠2→AD∥BC【解答】解:A、∠A+∠ADC=180°﹣→AB∥CD,根据同旁内角互补,两直线平行,故A正确;B、∠3与∠4不是平行线AD、BC被BD所截得到的内错角,所以结论不成立,故B错误;C、AB∥CD﹣→∠ABC+∠C=180°,根据两直线平行,同旁内角互补,故C正确;D、∠1=∠2﹣→AD∥BC,根据内错角相等,两直线平行,故D正确.该题是选错误的,故选:B.8.(3分)甲、乙两人分别从相距40千米的两地同时出发,若同向而行,则5小时后,快者追上慢者;若相向而行,则2小时后,两人相遇,那么快者速度和慢者速度(单位:千米/小时)分别是()A.14和6 B.24和16 C.28和12 D.30和10【解答】解:设快者速度和慢者速度分别是x,y,则,解得,故选:A.二、填空题(每小题3分,满分30分)9.(3分)下列现象:①升国旗;②荡秋千;③手拉抽屉,属于平移的是①③(填序号)【解答】解:①升国旗是平移;②荡秋,运动过程中改变了方向,不符合平移的性质;③手拉抽屉是平移;故答案为:①③.10.(3分)某种细胞可以近似地看成球体,它的半径是0.000005m.0.000005用科学记数法表示为5×10﹣6.【解答】解:0.000 005用科学记数法表示为5×10﹣6.故答案为:5×10﹣6.11.(3分)某多边形的内角和与外角和相等,这个多边形的边数是四.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=360°,解得n=4.故答案为:四.12.(3分)已知是方程ax﹣y=3的解,a的值是﹣2.【解答】解:把代入方程ax﹣y=3,得﹣2a﹣1=3.解得a=﹣2,故答案为:﹣2.13.(3分)写出一个无解的一元一次不等式组为.【解答】解:根据不等式组解集的口诀:大大小小找不到(无解),可写x≤2,x≥3,即.14.(3分)命题:“同角的余角相等”的逆命题是如果两个角相等,那么这两个角是同一个角的余角.【解答】解:“同角的余角相等”的逆命题为“如果两个角相等,那么这两个角是同一个角的余角”.故答案为:如果两个角相等,那么这两个角是同一个角的余角.15.(3分)将一个宽度相等的纸条按如图所示方式折叠,如果∠1=138°,那么∠2=111°.【解答】解:∵∠1=138°,纸条的边互相平行,∴∠3=180°﹣∠1=180°﹣138°=42°,根据翻折的性质,∠4=(180°﹣∠3)=(180°﹣42°)=69°,∴∠2=180°﹣∠4=180°﹣69°=111°.故答案为:111°.16.(3分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为2m+4.【解答】解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.17.(3分)若方程组的解满足x+y>0,则m的取值范围是m>﹣3.【解答】解:①+②得:3x+3y=6+2m,x+y=,∵方程组的解满足x+y>0,∴>0,解得:m>﹣3,故答案为:m>﹣3.18.(3分)有一条长度为359mm的铜管料,把它锯成长度分别为59mm和39mm 两种不同规格的小铜管(要求没有余料),每锯一次损耗1mm的铜管料,为了使铜管料的损耗最少,应分别锯成59mm的小铜管4段,39mm的小铜管3段.【解答】解:设应分别锯成59mm的小铜管x段,39mm的小铜管y段.那么损耗的钢管料应是1×(x+y﹣1)=x+y﹣1(mm).根据题意得:59x+39y+x+y﹣1=359,x=6﹣y.由于x、y都必须是正整数,因此x=4,y=3,x+y﹣1=6;x=2,y=6,x+y﹣1=7;因此据此4段59mm的小钢管最省.三、解答题(满分96分)19.(9分)将下列各式分解因式:(1)25a2﹣36b2(2)﹣3a2b+6ab﹣3b.【解答】解:(1)原式=(5a+6b)(5a﹣6b);(2)原式=﹣3b(a2﹣2a+1)=﹣3b(a﹣1)2.20.(11分)计算下列各题(1)(﹣5)0﹣()﹣2+(﹣)﹣1(2)先化简,再求值:(a+2b)(a﹣2b)+(a+2b)2﹣2a(a+3b),其中a=1,b=﹣2.【解答】解:(1)原式=1﹣9﹣2=﹣10;(2)原式=a2﹣4b2+a2+4ab+4b2﹣2a2﹣6ab=﹣2ab,当a=1,b=﹣2时,原式=4.21.(11分)解下列方程组:(1)(2).【解答】解:(1),把②代入①得:2﹣2y+4y=5,即y=,把y=代入②得:x=﹣,则方程组的解为;(2)方程组整理得:,①×3﹣②×2得:5x=﹣20,即x=﹣4,把x=﹣4代入①得:y=12,则方程组的解为.22.(11分)解下列不等式(组):(1)2x﹣1≥(2).【解答】解:(1)去分母得:12x﹣6≥10x+1,12x﹣10x≥1+6,2x≥7,x≥;(2)∵解不等式①得:x<3,解不等式②得:x<﹣6,∴不等式组的解集为x<﹣6.23.(9分)如图,已知DF∥AC,∠C=∠D,证明:CE∥BD.【解答】解:∵DF∥AC,∴∠D=∠ABD∵∠C=∠D,∴∠ABD=∠ACE∴CE∥BD(同位角相等,两直线平行).24.(9分)在一次“人与自然”知识竞赛中,竞赛试题共有25道题,每道题都给出4个答案,其中只有一个答案正确,要求学生把正确答案选出来,每道题选对得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中的得分不低于60分,那么他至少选对几道题?【解答】解:设他至少选对了x道题,则不选或选错的题为(25﹣x)道,依题意得:4x﹣2(25﹣x)≥60,解得:x≥18,∵x为正整数,∴x=19,即他至少选对19道题.答:他至少选对19道题.25.(11分)某地区从2015年1月起试行峰谷用电(即用电分段收费),每天8:00到22:00时段按峰电价格收费,每千瓦时0.56元,22:00到次日8:00按峰电价格收费,每千瓦时0.28元,不实行峰谷用电时电价均为每千瓦时0.53元.(1)某同学家用峰谷电后,月付95.2元,比不实行峰谷用电时电价少10.8元,问当月峰电、谷电各用多少千瓦时?(2)当用户用峰电不超过每月总电量的百分之几时比不实行峰谷用电时电价合算?(百分号前保留整数)【解答】解:(1)设这位同学家用了峰电x度,谷电y度.则解得.答:这位同学家用了峰电140度,谷电60度;(2)设每月总用电量为1,用峰电为a.则用谷电(1﹣a),那么0.56a+0.28(1﹣a)<0.53×1解得a<0.89∴×100%=89%答:当用户用峰电不超过每月总电量的89%时合算.26.(11分)对x,y定义了一种新运算T,规定T(x,y)=(其中a,b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=,已知T(1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组恰好有3个整数解,求p的取值范围.【解答】解:(1)根据题意得:,①+②得:3a=3,即a=1,把a=1代入①得:b=3;(2)根据题意得:,由①得:m≥﹣;由②得:m<,∴不等式组的解集为﹣≤m<,∵不等式组恰好有3个整数解,集m=0,1,2,∴2<≤3,解得:﹣2≤p<﹣.27.(14分)如图1,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,(1)分别计算出当∠A为70°,80°时∠A1的度数;(2)根据(1)中的计算结果写出∠A与∠A 1之间等量关系∠A1=∠A;(3)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与∠A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A8与∠A的数量关系∠A8=∠A;(4)如图,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.【解答】解:(1)∵A1C、A1B分别是∠ACD、∠ABC的角平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD;由三角形的外角性质知:∠A=∠ACD﹣∠ABC,∠A1=∠A1CD﹣∠A1BC,即:∠A1=(∠ACD﹣∠ABC)=∠A;当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°.(2)由(1)知:∠A1=∠A.(3)同(1)可求得:∠A2=∠A1=∠A,∠A3=∠A2=∠A,…依此类推,∠A n=∠A;当n=8时,∠A8=∠A.(4)△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°﹣∠Q),化简得:∠A1+∠Q=180°,因此①的结论是正确的,且这个定值为180°.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.ODABCEAODCB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
2015—2016学年度第二学期期末考试七年级数学试题带答案
2015—2016学年度第二学期期末考试七年级数学试题是正确的,请将正确选项的代号填在题后的括号内.) 1.下列实数是无理数的是( ) (A (B )3.14 (C )227(D 分析:考查实数的分类,简单题,选A . 2.下列运算正确的是( )(A )222(3)6mn m n -=- (B )4444426x x x x ++=(C )2()()xy xy xy ÷-=- (D )22()()a b a b a b ---=-分析:考查整式的运算,简单题,选C . 3.不等式组21024x x +>⎧⎨<⎩的整数解的个数是( )(A )1 (B )2 (C )3 (D )4 分析:考查不等式组的解集,简单题,选B . 4.如图,BC ∥DE ,AB ∥CD ,∠B =40°,则∠D 的度数是( )(A )40° (B )100° (C )120° (D )140°分析:考查平行线的性质,简单题,选D . 5.若m n >,下列不等式不一定...成立的是( ) (A )22m n ->- (B )22m n > (C )22m n> (D )22m n > 分析:考查不等式的性质,简单题,选D .6.若2(8)(1)x x x mx n +-=++对任意x 都成立,则m n +=( ) (A )8- (B )1- (C )1 (D )8 分析:考查多项式乘法运算,简单题,选B .EDCBA(第4题图)7.有旅客m 人,若每n 个人住一间客房,还有一个人无房间住,则客房的间数为( ) (A )1m n + (B)1m n + (C )1m n - (D )1m n- 分析:考查分式的知识,简单题,选D . 8.如图,在数轴上标注了四段范围,则表示的点落在( )(A )段① (B )段② (C )段③ (D )段④分析:考查无理数的近似值,简单题,选C .9.如图,直线AC ∥BD , AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为( ) (A )互余 (B )相等 (C )互补 (D )不等分析:考查平行线的性质、角平分线、互余的知识,简单题,选A .10.已知3a b -=,2ab =,则22a b +的值为( ) (A )13(B )9 (C )5 (D )4分析:考查完全平方公式的应用,中等题,选A .二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上) 11.64-的立方根是 . 分析:考查立方根,简单题,答案:4-. 12.不等式组12010x x ->⎧⎨+≤⎩的解集为 .分析:考查解不等式组,简单题,答案:1x ≤-. 13.分解因式:282x -= __________.分析:考查因式分解,简单题,答案:2(2)(2)x x -+ .14.规定:[]x 表示不超过x 的最大整数,例如:[3.69]3=,[ 3.69]4-=-,1=. 计算:1-= .分析:考查实数知识,简单题,答案:2.15.如图,将长方形纸片ABCD 折叠,使边AB ,CB 均落(第8题图)(第9题图) FEDCBA在BD 上,得折痕BE 、BF ,则∠EBF = °. 分析:考查角平分线知识的应用,简单题,答案:45.16.从一个边长为2a b +的大正方形中剪出一个边长为b 的小正方形,剩余的正好能剪拼成四个宽为a 的长方形,那么这个长方形的长为 . 分析:考查整式运算的应用,中等题,答案:a b +.17.如图,AB ∥EF ∥CD ,∠ABC=46°,∠CEF=154°,则∠BCE= °.分析:考查角平分线的性质及角的运算,简单题,答案:20°.18.若关于x 的方程2222x mx x++=--的解为正数,则m 的取值范围是 . 分析:考查分式方程及不等式的应用,中等题,答案:6m <且0m ≠. 三、解答题(本大题共6小题,共46分) 19.(本题共6分)计算:(1)2237.512.5- (2)2(2)(2)x a a a x ---解:(1)原式(37.512.5)(37.512.5)=-+………………………2分25501250=⨯=………………………3分(2)原式222442x ax a a ax =-+-+………………………5分 2232x ax a =-+………………………6分分析:(1)考查利用因式分解进行简便运算,简单题;(2)整式乘法的应用,简单题.20.(本题共8分)解不等式:135432y y +--≥,并将其解集在数轴上表示出来.解:去分母,得:2(1)3(35)24y y +--≥………………………4分 去括号,得: 2291524y y +-+≥, 移项、合并同类项,得:77y -≥,系数化为1,得:1y ≤-………………………6分FE DCBA(第17题图)在数轴上表示不等式的解集为:……………………8分分析:考查解一元一次不等式,简单题.21.(本题共8分)先化简,再求值:235(2)236m m m m m -÷+---,其中23m =. 解:原式323(2)(3)(3)m m m m m m --=⋅-+- ……………………3分13(3)m m =+ ………………………6分当23m =时,原式322= ……………………………8分分析:考查分式的化简、求值,简单题.22.(本题共8分)如图,直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,交CD 于点G ,若∠EFG =72°,求∠MEG 的度数. 解:因为AB ∥CD所以∠MEB =∠EFG =72°(两直线平行,同位角相等),∠FEB +∠EFG =180°(两直线平行,同旁内角互补),即∠FEB =108°…………………………4分 而EG 平分∠BEF ,所以∠GEB =12∠FEB =54°(角平分线定义)…………………………6分故∠MEG =∠GEB +∠MEB =54°+72°=126°…………………………8分 说明:括号中的理由可以不写.分析:考查平行线的性质、角平分线及角的计算,简单题.23.(本题共8分)某商家预测一种衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.G F EMNDCBA-4 -3 -2 -1 0 1 2 3 4(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,如果两批衬衫全部售完利润率不低于30%(不考虑其它因素),那么每件衬衫的标价至少是多少元?(结果保留整数)解:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件, 由题意可得:2880013200102x x-=,……………………2分 解得120x =,经检验120x =是原方程的根.……………………3分 答:该商家购进的第一批衬衫是120件.…………………………4分(2)设每件衬衫的标价至少是a 元,由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:28800240120÷=(元/件).…………5分由题意可得:120(110)1202(120)30%(2880013200)a a -+⨯-≥⨯+……7分 解得21513a ≥,即每件衬衫的标价至少是152元.………………8分分析:(1)考查列分式方程解应用题,简单题;(2)考查列一元一次不等式解应用题,中等题.24.(本题共8分)如图是用总长为8米的篱笆围成的区域.此区域由面积均相等的三块长方形①②③拼成的,若FC =EB=x 米. (1)用含x 的代数式表示AB 、BC 的长;(2)用含x 的代数式表示长方形ABCD 的面积(要求化简). 解:(1)由题意得,AE=DF=HG=2x ,DH=HA=GE=FG ,所以AB=23x x x +=(米)……3分 BC=AD=EF=83328833x x x x----=(米)…………6分(2)8833ABCD xS AB BC x -=⨯=⨯………………………7分 2(88)88x x x x =-=-(平方米)………………………8分 分析:考查列代数式,及整式的应用,较难题.x区域③②区域①区域A BCEFHGD。
【苏科版】2015—2016学年初一下数学期末考试试卷及答案
第二学期期终教学质量调研测试初一 数学本试卷由填空题、选择题和解答题三大题组成 ,共29题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将由己的考试号、学校、姓名、班级用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,井认真核对;2.答选择题须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题,必须答在答题纸上,保持答题纸清洁,不要折叠,不要弄破,答在试卷和草稿纸上无效。
一. 选择题(本大题共10小题,每小题3分,共30分,请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上) 1.下列运算正确的是A. 326a a a ⋅=B. 224()a a ==C. 33(3)9a a -=-D. 459a a a +=2.不等式组24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为A B C D 3.下列算式能用平方差公式计算的是A .(2)(2b )a b a +- B. 11(1)(1)22x x +-- C. (3)(3)x y x y --+ D. ()()m n m n ---+4.下列各组线段能组成一个三角形的是A .4cm ,6cm ,11cm B.4cm ,5cm ,1cm C.3cm ,4cm ,5cm D.2cm ,3cm ,6cm5. 若实数a ,b ,c 在数轴上对应点的位置如图所示,则下列不等式成立的是( ) A. ac bc > B. ab cb >C. a c b c +>+D. a b c b +>+6.下列从左到右的变形,属于 分解因式的是A .2(3)(3)9a a a -+=- B. 25(1)5x x x x +-=+-C. 2(1)a a a a +=+D. 32x y x x y =⋅⋅7.一个多边形的内角和是1080°,这个多边形的边数是 A . 6 B. 7 C. 8 D. 9 8.如图,Rt △ABC 中,∠ACB=90°,DE 过点C 且平行于AB ,若∠BCE=35°,则∠A 的度数为A.35°B.45°C.55°D.65°9.下列命题:①同旁内角互补;②若21,10n n <-<则;③直角都相等; ④相等的角是对顶角.A .1个B .2个C .3个D .4个10.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为 A.4002cm B.5002cm C.6002cm D.3002cm二.填空题(本大题共8小题,每小题3分,共24分) 11.53x x ÷=________.12.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076克,用科学记数法表示是__________克. 13.已知5,3,m n mn +==则22m n mn +=_________14.若三角形三条边长分别是1、a 、5(其中a 为整数),则a 的取值为________.15.如图,在△ABC 中,A ∠=60°,若剪去A ∠得到四边形BCDE ,则12______∠+∠=°16.已知2a b ab >=,且22+b =5a ,则______a b -=17.甲乙两队进行篮球对抗赛,比赛规定每队胜一场得3分,平一场得1分,负一场得0分.甲队与乙队一共比赛了10场,甲队保持了不败记录,得分不低于24分,甲队至少胜了_________场.18.现有若干张边长为a 的正方形A 型纸片,边长为b 的正方形B 型纸片,长宽为a 、b 的长方形C 型纸片,小明同学选取了2张A 型纸片,3张B 型纸片,7张C 型纸片拼成了一个长方形,则此长方形的周长为______.(用a 、b 代数式表示)三、解答题(本大题共10小题,满分76分,应写出必要的计算过程,推理步骤或文字说明) 19.(本题满分9分,每小题3分)将下列各式分解因式:(1)22363x xy y ++ (2)22()()a x y b x y ---(3)4234a a +-20.(本题满分5分)先化简,再求值:22(2)5()(3)a b a a b a b +++--,其中23,3a b ==-21.(本题满分8分,每小题4分)解下列方程组:(1)3423x y x y -=-⎧⎨-=-⎩ (2)26293418x y z x y z x y z +-=⎧⎪++=⎨⎪++=⎩22.(本题满分8分,(1)3分,(2)5分)解不等式(组):(1) 322;x x +≤- (2)2135342145x x x x --⎧>⎪⎪⎨+⎪->⎪⎩ 并把不等式组的解集在数轴上表示出来。
连云港市七年级下学期数学期末考试试卷
连云港市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)下列调查中,适宜采用全面调查(普查)方式的是()A . 对全国中学生心理健康现状的调查B . 对市场上的冰淇林质量的调查C . 对我市市民实施低碳生活情况的调查D . 对我国首架大型民用直升机各零部件的检查2. (2分)(2020·红花岗模拟) 如图,已知l1∥l2∥l3 ,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sina的值是()A .B .C .D .3. (2分) (2016七下·恩施期末) 如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是()A . (3,3)B . (﹣3,3)C . (0,3)D . (3,﹣3)4. (2分)下列说法:①在1和3之间的无理数有且只有,,,这4个;②近似数7.30所表示的准确数a的范围是:7.295≤a<7.305;③一个数的绝对值必大于这个数的相反数;④大于-2.5而小于π的整数共有6个;⑤平方根是本身的数是1和0;⑥有理数可以分为正数和负数;⑦的值是3或-3.其中正确的是()A . 5个B . 4个C . 3个D . 2个5. (2分)下列方程组中,与方程组的解不同的方程组是()A .B .C .D .6. (2分)如图是某月的月历,竖着取连续的三个数字,它们的和可能是()A . 21B . 34C . 72D . 78二、填空题 (共6题;共6分)7. (1分) (2019七下·淮滨月考) 已知,z是16的算术平方根,则2x+y-5z的值为________.8. (1分) (2019七下·邱县期末) 如图,点O是直线AB上一点,OC⊥OD,OM是∠BOD的角平分线,ON是∠AOC 的角平分线,则∠MON的度数是________°.9. (1分) (2020七下·襄州期末) 不等式组的最小整数解为________.10. (1分)方程组,则点P(a,b)在第________象限.11. (1分)(2011·宿迁) 某校为鼓励学生课外阅读,制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如图所示的扇形统计图.若该校有1000名学生,则赞成该方案的学生约有________人.12. (1分)(2019·道真模拟) 如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(-3,0),B (0,6)分别在x轴,y轴上,反比例函数y= (x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为________.三、解答题 (共11题;共97分)13. (5分)(2019·河池模拟) 计算: .14. (5分) (2016七下·随县期末)15. (5分) (2017七下·抚宁期末) 如图所示,已知∠1=∠2,∠3=∠4,∠5=∠C,求证:DE//BF16. (15分)已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点,点P在直线AB上运动(不与A、B两点重合).(1)如图1,当点P在线段AB上运动时,总有:∠CPD=∠PCA+∠PDB,请说明理由;(2)如图2,当点P在线段AB的延长线上运动时,∠CPD、∠PCA、∠PDB之间有怎样的数量关系,并说明理由;(3)如图3,当点P在线段BA的延长线上运动时,∠CPD、∠PCA、∠PDB之间又有怎样的数量关系(只需直接给出结论)?17. (15分) (2017八上·西安期末) 一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)在(2)的条件下,若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图象.18. (5分)(2020·盐城) 解不等式组: .19. (5分) (2016七下·房山期中) 已知关于x、y的方程组的解x、y的值的和等于6,求k的值.20. (7分)(2017·成都) 随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有________人,估计该校1200名学生中“不了解”的人数是________人;(2)“非常了解”的4人有A1 , A2两名男生,B1 , B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.21. (10分)哈尔滨市为了中学生能吃上放心的午餐,要求学校周边不允许有“三无”的午餐叫卖,三月份,某一餐饮公司向学生推荐甲、乙两种午餐可供选择,甲种午餐每盒25元,乙种午餐每盒20元.某校七年一班的学生一天中午,共花费了1000元订购了该餐饮公司的午餐48盒.(1)试问七年一班甲、乙两种午餐各订了多少盒.(2)由于这个餐饮公司的午餐深受七年一班学生的好评,所以七年二班的学生也想在四月份订购该餐饮公司的午餐,若七年二班订购的乙种午餐比甲种午餐盒数的多5盒,他们准备了850元,试问七年二班最多能买几盒甲种午餐?22. (10分)△ABC与△A'B'C'在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A'________; B'________;C'________;(2)说明△A'B'C'由△ABC经过怎样的平移得到?________.(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为________;(4)求△ABC的面积.23. (15分)(2014·宿迁) 如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE 的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共6题;共6分)7-1、8-1、9-1、10-1、11-1、12-1、三、解答题 (共11题;共97分)13-1、14-1、15-1、16-1、16-2、16-3、17-1、17-2、17-3、18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、22-4、23-1、23-2、23-3、。
连云港市灌云县2015-2016年七年级下期末数学试卷含答案解析
2015-2016学年江苏省连云港市灌云县七年级(下)期末数学试卷一、选择题(共8小题,每小题3分,满分24分,每小题只有一个正确选项)1.2015年2月1日宿迁市最高气温是8℃,最低气温是﹣2℃,则当天宿迁市气温变化范围t(℃)是()A.t>8 B.t<2 C.﹣2<t<8 D.﹣2≤t≤82.下列命题中,假命题的是()A.两条直线平行,同位角相等B.对顶角相等C.同位角相等D.直角都相等3.下列算式中,正确的是()A.x3•x3=2x3B.x2+x2=x4C.a4•a2=a6 D.﹣(a3)4=a124.对多项式3x2﹣3x因式分解,提取的公因式为()A.3 B.x C.3x D.3x25.下列式子中,计算结果为x2+2x﹣3的是()A.(x﹣1)(x+3)B.(x+1)(x﹣3)C.(x﹣1)(x﹣3)D.(x+1)(x+3)6.不等式组的解集在数轴上表示正确的是()A.B. C.D.7.如图,AD是△ABC的外角∠CAE的平分线,∠B=40°,∠DAE=55°,则∠ACB 的度数是()A.70°B.80°C.100° D.110°8.将一张面值20元的人民币,兑换成5元或10元的零钱,那么兑换方案共有()A.1种 B.2种 C.3种 D.4种二、填空题(共10小题,每小题4分,满分40分)9.写出一个解的二元一次方程组.10.随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯使现在世界上最薄的纳米材料,其理论厚度应是0.00000000034m,用科学记数法表示是.11.计算:(3a)2=.12.一个多边形的内角和为540°,则这个多边形的边数是.13.因式分解4m2﹣n2=.14.“等边三角形是锐角三角形”的逆命题是.15.不等式﹣3x<6的负整数解是.16.如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°,∠BDE=60°,则∠CDB的度数等于.17.如图,边长为4cm的正方形ABCD先向右平移1cm,再向上平移2cm,得到正方形A′B′C′D′,则阴影部分的面积为cm2.18.华润苏果的账目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天以同样的价格卖出同样的52支牙刷和28盒牙膏,收入应该是元.三、解答题(共8小题,满分86分)19.(15分)计算:(1)a8÷a2+(a2)3(2)(﹣1)2+(﹣2)﹣1×50(3)(a+b)2﹣a(a+b)20.(10分)解方程组:(1)(2).21.(10分)(1)解不等式2(1﹣x)>3x﹣8(2)解不等式组.22.(8分)用不等式解决问题(算术方法不给分)某次数学竞赛共有16道选择题,评分办法:答对一题得6分,答错一题扣2分.某学生没有题未答,这个学生至少答对多少题,成绩才能不低于60分?23.(12分)某灾区急需大量帐篷,某服装厂原有4条成衣生产线和5条童装生产线,工厂决定转产,计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷110顶;若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷185顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?24.(8分)已知:如图所示,AB∥CD,∠B+∠D=180°.求证:BC∥DE证明:∵AB∥CD 已知∴∠B=∠()∵∠B+∠D=180°已知∴=180°(等量代换)∴BC∥DE()25.(10分)问题1:填表:计算代数式的值.a…﹣﹣2﹣1012……12.251…a2﹣2a+1问题2:你可以再换几个数再试试(不需要写出来),先观察表格再归纳,你发现a2﹣2a+1的值有什么规律?把它写出来,并说明理由.26.(13分)问题解决(1)如图1,△ABC中,经过点A的中线AD把△ABC分成△ASD和△ACD,则△ABD的面积S1等于△ACD的面积S2,请你说明理由:问题应用(2)如图2,△ABC中,D是BC的中点,F是AD的中点,△ABC的面积12,则△ABF的面积;问题拓展(3)如图3,四边形ABCD中,O是内部任意一点,点E、F、G、H分别是AD、AB、BC、CD边的中点,四边形AFOE的面积为3,四边形BGOF的面积为5,四边形CHOG的面积为4.求四边形DEOH的面积;(4)如图4,边长为2正方形ABED与边长为2等腰直角三角形ABC拼合在一起.请你画出过点A作一条直线把四边形ADEC的面积分成相等的两部分.2015-2016学年江苏省连云港市灌云县七年级(下)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分,每小题只有一个正确选项)1.2015年2月1日宿迁市最高气温是8℃,最低气温是﹣2℃,则当天宿迁市气温变化范围t(℃)是()A.t>8 B.t<2 C.﹣2<t<8 D.﹣2≤t≤8【考点】不等式的定义.【分析】利用不等式的性质求解即可.【解答】解:由题意得﹣2≤t≤8.故选:D.【点评】本题主要考查了不等式的定义,解题的关键是理解题意.2.下列命题中,假命题的是()A.两条直线平行,同位角相等B.对顶角相等C.同位角相等D.直角都相等【考点】命题与定理.【分析】根据真命题与假命题的定义分别进行判断即可求出答案;正确的命题叫真命题,错误的命题叫做假命题.【解答】解:A、两直线平行,同位角相等是真命题,不符合题意;B、对顶角相等是真命题,不符合题意;C、两直线平行,同位角才相等,所以同位角相等是假命题,符合题意;D、直角都相等是真命题,不符合题意;故选C.【点评】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.下列算式中,正确的是()A.x3•x3=2x3B.x2+x2=x4C.a4•a2=a6 D.﹣(a3)4=a12【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法,可判断A、C,根据合并同类项,可判断B,根据幂的乘方,可判断D.【解答】解:A 底数不变指数相加,故A错误;B 字母部分不变,系数相加,故B错误;C底数不变指数相加,故C正确;D 幂的乘方的相反数,故D错误;故选:C.【点评】本题考查了幂的乘方与积得乘方,注意D是幂的乘方的相反数.4.对多项式3x2﹣3x因式分解,提取的公因式为()A.3 B.x C.3x D.3x2【考点】因式分解-提公因式法;公因式.【分析】原式利用提公因式法分解得到结果,即可作出判断.【解答】解:3x2﹣3x=3x(x﹣1),则对多项式3x2﹣3x因式分解,提取的公因式为3x,故选C【点评】此题考查了因式分解﹣提公因式法,以及公因式,熟练掌握提取公因式的方法是解本题的关键.5.下列式子中,计算结果为x2+2x﹣3的是()A.(x﹣1)(x+3)B.(x+1)(x﹣3)C.(x﹣1)(x﹣3)D.(x+1)(x+3)【考点】多项式乘多项式.【分析】根据多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加分别进行计算即可.【解答】解:A、(x﹣1)(x+3)=x2+2x﹣3,故此选项正确;B、(x+1)(x﹣3)=x2﹣2x﹣3,故此选项错误;C、(x﹣1)(x﹣3)=x2﹣4x+3,故此选项错误;D、(x+1)(x+3)=x2+4x+3,故此选项错误;故选:A.【点评】此题主要考查了多项式乘以多项式,关键是掌握计算法则.6.不等式组的解集在数轴上表示正确的是()A.B. C.D.【考点】在数轴上表示不等式的解集;不等式的解集.【分析】根据同大取大可得不等式组的解集,然后把不等式的解集表示在数轴上即可.【解答】解:不等式组的解集为x≥3,在数轴上表示为:故选:A.【点评】考查了不等式组的解集,在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.如图,AD是△ABC的外角∠CAE的平分线,∠B=40°,∠DAE=55°,则∠ACB 的度数是()A.70°B.80°C.100° D.110°【考点】三角形的外角性质.【分析】根据角平分线的定义求出∠CAE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AD是△ABC的外角∠CAE的平分线,∴∠CAE=2∠DAE=2×55°=110°,由三角形的外角性质得,∠ACB=∠CAE﹣∠B=110°﹣40°=70°.故选A.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质是解题的关键.8.将一张面值20元的人民币,兑换成5元或10元的零钱,那么兑换方案共有()A.1种 B.2种 C.3种 D.4种【考点】二元一次方程的应用.【分析】设兑换成5元x张,10元的零钱y元,根据题意可得等量关系:5x+10y=20元,求整数解即可.【解答】解:设兑换成5元x张,10元的零钱y元,由题意得:5x+10y=20,整理得:x+2y=4,方程的整数解为:或或,因此兑换方案有3种,故选:C.【点评】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,求出整数解,属于中考常考题型.二、填空题(共10小题,每小题4分,满分40分)9.写出一个解的二元一次方程组.【考点】二元一次方程组的解.【分析】首先写出两个x,y的计算的式子,即可写出方程组,答案不唯一.【解答】解:根据题意,只要保证方程组中的每个方程都满足即可,∴(答案不唯一)将代入验证,符合要求.故答案为:(答案不唯一).【点评】本题主要考查了二元一次方程组的解的定义,正确理解定义是解题的关键.10.随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯使现在世界上最薄的纳米材料,其理论厚度应是0.00000000034m,用科学记数法表示是 3.4×10﹣10.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000000034=3.4×10﹣10,故答案为:3.4×10﹣10【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.计算:(3a)2=9a2.【考点】幂的乘方与积的乘方.【分析】利用积的乘方的性质求解即可求得答案.【解答】解:(3a)2=9a2.故答案为:9a2.【点评】此题考查了积的乘方.此题比较简单,注意掌握积的乘方的性质的应用是解题的关键.12.一个多边形的内角和为540°,则这个多边形的边数是5.【考点】多边形内角与外角.【分析】n边形的内角和公式为(n﹣2)•180°,由此列方程求n.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:5.【点评】本题考查了多边形外角与内角.此题比较简单,只要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.13.因式分解4m2﹣n2=(2m+n)(2m﹣n).【考点】因式分解-运用公式法.【分析】原式利用平方差公式分解即可.【解答】解:原式=(2m+n)(2m﹣n).故答案为:(2m+n)(2m﹣n)【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.14.“等边三角形是锐角三角形”的逆命题是锐角三角形是等边三角形.【考点】命题与定理.【分析】将原命题的条件与结论互换即可.【解答】解:其逆命题是:锐角三角形是等边三角形.【点评】此题主要考查学生对逆命题的掌握情况.15.不等式﹣3x<6的负整数解是x>﹣2.【考点】一元一次不等式的整数解.【分析】不等式两边同时除以﹣3,把不等式中未知数的系数化成1即可求解.【解答】解:不等式两边同时除以﹣3,得:x>﹣2.故答案是:x>﹣2.【点评】本题考查了不等式的解法,注意不等式两边同时除以一个负数,不等号的方向需要改变.16.如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°,∠BDE=60°,则∠CDB的度数等于110°.【考点】平行线的性质.【分析】先根据平行线的性质得出∠CDE的度数,再由∠BDE=60°即可得出结论.【解答】解:∵DE∥AC,∠C=50°,∴∠CDE=∠C=50°,∵∠BDE=60°,∴∠CDB=∠CDE+∠BDE=50°+60°=110°.故答案为:110°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.17.如图,边长为4cm的正方形ABCD先向右平移1cm,再向上平移2cm,得到正方形A′B′C′D′,则阴影部分的面积为6cm2.【考点】平移的性质.【分析】先根据平移的性质求出B′E及DE的长,再由矩形的面积公式求解即可.【解答】解:∵正方形ABCD的边长为4cm,∴先向右平移1cm,再向上平移2cm可知B′E=3cm,DE=2cm,2=6cm2.∴S阴影=3×故答案为:6.【点评】本题考查的是平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.18.华润苏果的账目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天以同样的价格卖出同样的52支牙刷和28盒牙膏,收入应该是528元.【考点】二元一次方程的应用.【分析】设一支牙刷收入x元,一盒牙膏收入y元,根据39支牙刷和21盒牙膏,收入396元建立方程通过变形就可以求出52x+28y的值.【解答】解:设一支牙刷收入x元,一盒牙膏收入y元,由题意,得39x+21y=396,∴13x+7y=132,∴52x+28y=528,故答案为:528.【点评】本题考查了列二元一次方程解实际问题的运用,整体数学思想在解实际问题的运用,解答时表示出卖出39支牙刷和21盒牙膏的收入为396元是关键.三、解答题(共8小题,满分86分)19.(15分)(2016春•灌云县期末)计算:(1)a8÷a2+(a2)3(2)(﹣1)2+(﹣2)﹣1×50(3)(a+b)2﹣a(a+b)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)先算除法和乘方,再合并同类项即可;(2)先算乘方,再算乘法,最后合并即可;(3)先根据完全平方公式和单项式乘以多项式法则算乘法,再合并即可.【解答】解:(1)原式=a6+a6=2a6;(2)原式=1﹣=;(3)原式=a2+2ab+b2﹣a2﹣ab=ab+b2.【点评】本题考查了有理数的混合运算和整式的混合运算的应用,能熟记运算法则的内容是解此题的关键,注意运算顺序.20.(10分)(2016春•灌云县期末)解方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:3x+2(2x﹣3)=8,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2),②﹣①得:2x=10,即x=5,把x=5代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(10分)(2016春•灌云县期末)(1)解不等式2(1﹣x)>3x﹣8(2)解不等式组.【考点】解一元一次不等式组;解一元一次不等式.【分析】(1)利用解一元一次不等式的一般步骤解出不等式即可.(2)根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】(1)解不等式2(1﹣x)>3x﹣8,去括号,得2﹣2x>3x﹣8,移项,得﹣2x﹣3x>﹣8﹣2,合并同类项,得﹣5x>﹣10,系数化为1,得x<2;(2),由①得,x+3≥2x,解得,x≤3,由②得,3x<9,解得,x<3,所以不等式组的解集为:x<3.【点评】本题考查的是一元一次不等式和一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.22.用不等式解决问题(算术方法不给分)某次数学竞赛共有16道选择题,评分办法:答对一题得6分,答错一题扣2分.某学生没有题未答,这个学生至少答对多少题,成绩才能不低于60分?【考点】一元一次不等式的应用.【分析】找到关键描述语,进而找到所求的量的等量关系.得到不等式6x﹣2(16﹣x)≥60,求解即可.【解答】解:设这个学生答对x题,成绩才能不低于60分,根据题意得:6x﹣2(16﹣x)≥60,解之得:x≥,答:这个学生至少答对12题,成绩才能不低于60分.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.23.(12分)(2016春•灌云县期末)某灾区急需大量帐篷,某服装厂原有4条成衣生产线和5条童装生产线,工厂决定转产,计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷110顶;若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷185顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?【考点】二元一次方程组的应用.【分析】(1)分别设每条成衣生产线和童装生产线平均每天生产帐篷各x、y顶,根据:用1条成衣生产线和2条童装生产线,一天可以生产帐篷110顶;若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷185顶.找到等量关系列方程组求解即可.(2)代入依题意得出的不等式可得.【解答】(1)解:设每条成衣生产线平均每天生产帐篷x顶,童装生产线平均每天生产帐篷y顶.根据题意得:,解之得:答:每条成衣生产线平均每天生产帐篷40顶,童装生产线平均每天生产帐篷35顶.(2)根据题意得:3×(4×40+5×35)=1005>1000答:工厂满负荷全面转产,可以如期完成任务;如果我是厂长,我会在如期完成任务的同时,注重产品的质量.【点评】解题关键是从题干中找准描述语:用1条成衣生产线和2条童装生产线,一天可以生产帐篷110顶;若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷185顶.根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.24.已知:如图所示,AB∥CD,∠B+∠D=180°.求证:BC∥DE证明:∵AB∥CD 已知∴∠B=∠C(两直线平行,内错角相等)∵∠B+∠D=180°已知∴∠C+∠D=180°(等量代换)∴BC∥DE(同旁内角互补,两直线平行)【考点】平行线的判定与性质.【分析】先用平行线的性质得到结论∠B=∠C,再用平行线的判定即可.【解答】证明:∵AB∥CD (已知),∴∠B=∠C(两直线平行,内错角相等),∵∠B+∠D=180°(已知),∴∠C+∠D=180°(等量代换),∴BC∥DE(同旁内角互补,两直线平行),故答案为:C,两直线平行,内错角相等,∠C+∠D=180°,同旁内角互补,两直线平行.【点评】此题是平行线的性质和判定,掌握平行线的性质和判定是解本题关键.是比较简单的一道常规题.25.(10分)(2016春•灌云县期末)问题1:填表:计算代数式的值.a…﹣﹣2﹣1012…a2﹣…12.2593101…2a+1问题2:你可以再换几个数再试试(不需要写出来),先观察表格再归纳,你发现a2﹣2a+1的值有什么规律?把它写出来,并说明理由.【考点】代数式求值.【分析】问题1:利用代入法把x的值代入代数式可得答案;问题2:首先把代数式变形为(a﹣1)2,根据非负数的性质可得(a﹣1)2≥0,进而得到a2﹣2a+1≥0.【解答】解:问题1:把a=﹣2代入a2﹣2a+1中得:4+4+1=9;把a=﹣1代入a2﹣2a+1中得:1+1+1=3;把a=0代入a2﹣2a+1中得:0+0+1=1;把a=1代入a2﹣2a+1中得:1﹣2+1=0;把x=1代入x2﹣2x+2中得:1﹣2+1=1;问题2:规律:结果是非负数.理由:a2﹣2a+1=(a﹣1)2≥0.故答案为:9,4,1,0.【点评】此题主要考查了代数式求值,完全平方公式的运用,非负数的性质,关键是掌握偶次幂具有非负性.26.(13分)(2016春•灌云县期末)问题解决(1)如图1,△ABC中,经过点A的中线AD把△ABC分成△ASD和△ACD,则△ABD的面积S1等于△ACD的面积S2,请你说明理由:问题应用(2)如图2,△ABC中,D是BC的中点,F是AD的中点,△ABC的面积12,则△ABF的面积3;问题拓展(3)如图3,四边形ABCD中,O是内部任意一点,点E、F、G、H分别是AD、AB、BC、CD边的中点,四边形AFOE的面积为3,四边形BGOF的面积为5,四边形CHOG的面积为4.求四边形DEOH的面积;(4)如图4,边长为2正方形ABED与边长为2等腰直角三角形ABC拼合在一起.请你画出过点A作一条直线把四边形ADEC的面积分成相等的两部分.【考点】三角形综合题.【分析】(1)过点A作AH⊥BC于点H;由三角形的面积公式得出△ABD的面积S1=BD•AH,△ACD的面积S2=CD•AH,由D为BC的中点得出BD=CD,即可得出结论;(2)由中点的性质得出△ABD的面积=△ABC的面积=6,△ABF的面积=△ABD 的面积=3即可;(3)连接OA、OB、OC、OD,设△AOE的面积为m,由中点的性质得出△AOE 的面积=△DOE的面积=m,△AOF的面积=△BOF的面积,△BOG的面积=△COG 的面积,△DOH的面积=△COH的面积,得出△AOF的面积=△BOF的面积=3﹣m,同理得:△BOG的面积=△COG的面积=2+m,△DOH的面积=△COH的面积=2﹣m,得出四边形DEOH的面积=△DOE的面积+△DOH的面积=2即可;(4)连接AE,由已知条件得出△ABC的面积=正方形ABED的面积=△ABE的面积=△ADE的面积,取BE的中点M,作直线AM,则△ABM的面积=△AEM的面积,∴△ACM的面积=四边形ADEM的面积即可.【解答】(1)证明:如图1,过点A作AH⊥BC于点H;∵△ABD的面积S1=BD•AH,△ACD的面积S2=CD•AH,又∵D为BC的中点,∴BD=CD,∴S1=S2;(2)解:∵D是BC的中点,F是AD的中点,△ABC的面积12,∴△ABD的面积=△ABC的面积=6,△ABF的面积=△ABD的面积=3;故答案为:3;(3)解:如图3,连接OA、OB、OC、OD,设△AOE的面积为m,∵E、F、G、H分别是AD、AB、BC、CD边的中点,∴△AOE的面积=△DOE的面积=m,△AOF的面积=△BOF的面积,△BOG的面积=△COG的面积,△DOH的面积=△COH的面积,又∵四边形AFOE的面积为3,四边形BGOF的面积为5,四边形CHOG的面积4∴△AOF的面积=△BOF的面积=3﹣m,同理得:△BOG的面积=△COG的面积=5﹣(3﹣m)=2+m,△DOH的面积=△COH 的面积=4﹣(2+m)=2﹣m,∴四边形DEOH的面积=△DOE的面积+△DOH的面积=m+2﹣m=2;(4)解:连接AE,边长为2正方形ABED与边长为2等腰直角三角形ABC拼合在一起.∴△ABC的面积=正方形ABED的面积=△ABE的面积=△ADE的面积,取BE的中点M,作直线AM,则△ABM的面积=△AEM的面积,∴△ACM的面积=四边形ADEM的面积,即直线AM把四边形ADEC的面积分成相等的两部分,如图4所示.【点评】本题是三角形综合题目,考查了三角形的中线性质、正方形的性质、等腰直角三角形的性质等知识;本题综合性强,有一定难度,熟记三角形的中线把三角形面积分成相等的两部分是解决问题的关键.sks;sd2011;。
连云港市七年级下册数学期末试卷(带答案)-百度文库
连云港市七年级下册数学期末试卷(带答案)-百度文库一、选择题1.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( ) A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b 2.以下列各组线段为边,能组成三角形的是( )A .2cm 、2cm 、4cmB .2cm 、6cm 、3cmC .8cm 、6cm 、3cmD .11cm 、4cm 、6cm 3.若a >b ,则下列结论错误的是( ) A .a −7>b −7 B .a+3>b+3 C .a 5>b 5 D .−3a>−3b 4.下列图形中,不能通过其中一个四边形平移得到的是( ) A . B . C . D .5.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°6.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( )A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣87.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .8.下列图形中,∠1和∠2是同位角的是( )A .B .C .D .9.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为( ) A .4B .5C .6D .8 10.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( )A .()1,3-B .()3,1-C .()1,3-D .()3,1-二、填空题11.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D '、C '的位置,ED '的延长线与BC 相交于点G ,若∠EFG =50°,则∠1=_______.12.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______.13.若多项式x 2-kx +25是一个完全平方式,则k 的值是______.14.计算24a a ⋅的结果等于__.15.二元一次方程7x+y =15的正整数解为_____.16.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.17.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.18.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________.19.一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.20.若长方形的长为a +3b ,宽为a +b ,则这个长方形的面积为_____.三、解答题21.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C =∠EFG ,∠CED =∠GHD .(1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由;(3)若∠EHF =80°,∠D =30°,求∠AEM 的度数.22.如图,在方格纸内将△ABC 经过一次平移得到A B C ''',图中标出了点B 的对应点B '.''';(1)在给定的方格纸中画出平移后的A B C(2)画出BC边上的高AE;(3)如果P点在格点上,且满足S△PAB=S△ABC(点P与点C不重合),满足这样条件的P 点有个.23.如图,D、E、F分别在ΔABC的三条边上,DE//AB,∠1+∠2=180º.(1)试说明:DF//AC;(2)若∠1=120º,DF平分∠BDE,则∠C=______º.24.如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC的度数.25.如图,已知AB∥CD,∠1=∠2,求证:AE∥DF.26.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.27.已知下列等式:①32-12=8,②52-32=16,③72-52=24,…(1)请仔细观察,写出第5个式子;(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立.28.定义:若实数x ,y 满足22x y t =+,22y x t =+,且x ≠y ,则称点M (x ,y )为“好点”.例如,点(0,-2)和 (-2,0)是“好点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(-3,1)两点中,点________________是“好点”.(2)若点P (m ,n )是“好点”,求m +n 的值.(3)若点P 是“好点”,用含t 的代数式表示mn ,并求t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解.【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=, ∴它们的大小关系是:b <a <d <c故选:C【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.2.C解析:C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∵2+2=4,∴ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm、6cm、3cm能组成三角形,故符合题意;D. ∵4+6<11,∴11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键. 3.D解析:D【解析】分析:根据不等式的基本性质对各选项进行逐一分析即可.详解:A.不等式两边同时减去7,不等号方向不变,故A选项正确;B.不等式两边同时加3,不等号方向不变,故B选项正确;C.不等式两边同时除以5,不等号方向不变,故C选项正确;D.不等式两边同时乘以-3,不等号方向改变,﹣3a<﹣3b,故D选项错误.故选D.点睛:本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.D解析:D【详解】解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.5.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.6.C解析:C【分析】用科学计数法将0.00000012表示为a×10-n即可.【详解】解:0.00000012=1.2×10﹣7,故选:C.【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.7.A解析:A【解析】【分析】利用平移的性质,结合轴对称、旋转变换和位似图形的定义判断得出即可.【详解】A、可以通过平移得到,故此选项正确;B、可以通过旋转得到,故此选项错误;C、是位似图形,故此选项错误;D、可以通过轴对称得到,故此选项错误;故选A.【点睛】本题考查了平移的性质以及轴对称、旋转变换和位似图形,正确把握定义是解题的关键.8.D解析:D【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】解:根据同位角定义观察图形可知A、B、C选项中的均不符合同位角的定义,只有选项D 中的图形符合,故选D.【点睛】本题考查同位角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.9.C解析:C【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【详解】解:设外角为x ,则相邻的内角为2x ,由题意得,2180x x +=︒,解得,60x =︒,多边形的边数为:360606÷︒=,故选:C .【点睛】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.10.B解析:B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.【详解】解:∵P 在第二象限,且点P 到x 轴、y 轴的距离分别是1,3,∴点P 的横坐标为-3,纵坐标为1,∴P 点的坐标为(-3,1).故选:B .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.二、填空题11.;【解析】分析:先根据平行线的性质得∠DEF=∠EFG=50°,∠1=∠GED,再根据折叠的性质得∠DEF=∠GEF=50°,则∠GED=100°,即可得到结论.详解:∵DE∥GC,∴∠DEF解析:100︒;【解析】分析:先根据平行线的性质得∠DEF =∠EFG =50°,∠1=∠GED ,再根据折叠的性质得∠DEF =∠GEF =50°,则∠GED =100°,即可得到结论.详解:∵DE ∥GC ,∴∠DEF =∠EFG =50°,∠1=∠GED .∵长方形纸片沿EF 折叠后,点D 、C 分别落在点D ′、C ′的位置,∴∠DEF =∠GEF =50°,即∠GED =100°,∴∠1=∠GED =100°.故答案为100.点睛:本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了折叠的性质.12.8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n ,则(n-2)•180°-360°=720°,解得n=8.故答案为解析:8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n ,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.13.±10【解析】【分析】根据完全平方公式,可知-kx=±2×5•x,求解即可.【详解】解:∵x2-kx+25是一个完全平方式,∴-kx=±2×5•x,解得k=±10.故答案为±1解析:±10【解析】【分析】根据完全平方公式()2222a b a ab b ±=±+,可知-kx=±2×5•x ,求解即可.【详解】解:∵x 2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±10【点睛】本题考查了完全平方公式,熟练掌握相关公式是解题关键.14..【分析】直接利用同底数幂的乘法运算法则求出答案.【详解】原式.故答案为:.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键. 解析:6a .【分析】直接利用同底数幂的乘法运算法则求出答案.【详解】原式246a a +==.故答案为:6a .【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.15.或【分析】将x 看做已知数求出y ,即可确定出正整数解.【详解】解:方程7x+y =15,解得:y =﹣7x+15,x =1,y =8;x =2,y =1,则方程的正整数解为或.故答案为:或.【点解析:18x y =⎧⎨=⎩或21x y =⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.16.210-7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决解析:2⨯10-7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000 0002=2×10-7,故答案为:2⨯10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解解析:65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.18.【分析】首先求得方程的解,然后将代入到方程中,即可求得.【详解】解:,移项,得,合并同类项,得,系数化为1,得,∵两方程同解,那么将代入方程,得,移项,得,系数化为1,得.故 解析:12【分析】首先求得方程23x x =-的解x ,然后将x 代入到方程4232x m x -=+中,即可求得m .【详解】解:23x x =-,移项,得23x x -=-,合并同类项,得3x -=-,系数化为1,得=3x ,∵两方程同解,那么将=3x 代入方程4232x m x -=+,得12211m -=,移项,得21m -=-,系数化为1,得12m =. 故12m =. 【点睛】 本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.19.84【分析】设原两位数的个位上的数字为x ,则十位上的数字为2x ,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x ,则十位上的数字为2x ,由题意,得 解析:84【分析】设原两位数的个位上的数字为x ,则十位上的数字为2x ,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x ,则十位上的数字为2x ,由题意,得10×2x+x-(10x+2x )=36,解得:x=4,则十位数字为:2×4=8,则原两位数为84.故答案为:84.【点睛】本题考查了一元一次方程的应用-数字问题,考查了百位数字×100+十位上的数字×10+个位数字的运用,解答时根据数位问题的数量关系建立方程式是关键.20.a2+4ab +3b2【分析】根据长方形面积公式可得长方形的面积为(a +3b )(a +b ),计算即可.【详解】解:由题意得,长方形的面积:(a +3b )(a +b )=a2+4ab +3b2.故答案为解析:a2+4ab+3b2【分析】根据长方形面积公式可得长方形的面积为(a+3b)(a+b),计算即可.【详解】解:由题意得,长方形的面积:(a+3b)(a+b)=a2+4ab+3b2.故答案为:a2+4ab+3b2.【点睛】本题考查长方形的面积公式和多项式乘法,熟练掌握多项式乘法计算法则是解题的关键.三、解答题21.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD=∠EFG,进而判定AB∥CD,即可得出∠AED+∠D=180°;(3)依据已知条件求得∠CGF的度数,进而利用平行线的性质得出∠CEF的度数,依据对顶角相等即可得到∠AEM的度数.【详解】(1)∵∠CED=∠GHD,∴CB∥GF;(2)∠AED+∠D=180°;理由:∵CB∥GF,∴∠C=∠FGD,又∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠GHD=∠EHF=80°,∠D=30°,∴∠CGF=80°+30°=110°,又∵CE∥GF,∴∠C=180°﹣110°=70°,又∵AB∥CD,∴∠AEC=∠C=70°,∴∠AEM=180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.22.(1)见解析;(2)见解析;(3)8【分析】(1)由点B及其对应点B′的位置得出平移的方向和距离,据此作出点A、C平移后的对应点,再首尾顺次连接即可得;(2)根据三角形高线的概念作图即可;(3)由S△PAB=S△ABC知两个三角形共底、等高,据此可知点P在如图所示的直线m、n上,再结合图形可得答案.【详解】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,垂线段AE即为所求;(3)如图所示,满足这样条件的点P有8个,故答案为:8.【点睛】本题主要考查作图-平移变换,解题的关键是掌握平移变换的定义和性质,据此得出变换后的对应点及三角形高线的概念、共底等高的三角形面积问题.23.(1)见解析;(2)60.【分析】(1)根据平行线的性质得出∠A=∠2,求出∠1+∠A=180°,根据平行线的判定得出即可.(2)根据平行线的性质解答即可.【详解】证明:(1)∵DE∥AB,∵∠1+∠2=180°.∴∠1+∠A=180°,∴DF∥AC;(2)∵DE∥AB,∠1=120°,∴∠FDE=60°,∵DF平分∠BDE,∴∠FDB=60°,∵DF∥AC,∴∠C=∠FDB=60°【点睛】本题考查了平行线的性质和判定定理,解题的关键是能灵活运用平行线的判定和性质定理进行推理.24.131°【解析】【分析】先根据∠A=65°,∠ACB=72°得出∠ABC的度数,再由∠ABD=30°得出∠CBD的度数,根据CE平分∠ACB得出∠BCE的度数,根据∠BEC=180°-∠BCE-∠CBD即可得出结论【详解】在△ABC中,∵∠A=65°,∠ACB=72°∴∠ABC=43°∵∠ABD=30°∴∠CBD=∠ABC﹣∠ABD=13°∵CE平分∠ACB∴∠BCE=∠ACB=36°∴在△BCE中,∠BEC=180°﹣13°﹣36°=131°.【点睛】本题考察了三角形内角和定理,在两个三角形中,三个角之间的关系是解决此题的关键25.见解析.【分析】首先根据直线平行得到∠CDA=∠DAB,结合题干条件得到∠FDA=∠DAE,进而得到结论.【详解】证明:∵AB∥CD,∴∠CDA=∠DAB,∵∠1=∠2,∴∠CDA﹣∠1=∠DAB﹣∠2,∴∠FDA=∠DAE,【点睛】本题主要考查了平行线的判断与性质,解题的关键是掌握两直线平行,内错角相等,此题比较简单.26.(1)①40°;②30°;(2)50°,130°,10°【解析】试题分析:(1)①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE=12∠ABC=40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD=180°-∠ACB=140°,根据角平分线的定义得到∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,根据三角形的外角的性质即可得到结论;(2)①如图1,当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.试题解析:(1)①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=12∠ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°-∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,∴∠BEC=∠ECD-∠CBE=30°;(2)①如图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-40°-40°-90°=10°.【点睛】本题考查了平行线的性质,角平分线的定义,垂直的定义,三角形的内角和,三角形的外角的性质,正确的画出图形是解题的关键.27.(1) 112-92=40; (2) (2n+1)2-(2n -1)2=8n ,证明详见解析【分析】(1)根据所给式子可知:()()22223121121181-⨯+⨯-⨯-==,()()22225322122182-⨯+⨯-⨯-==,()()22227523123183-⨯+⨯-⨯-==,由此可知第5个式子;(2)根据题(1)的推理可得第n 个式子,利用完全平方公式可证得结果;【详解】(1)∵第1个式子为: ()()22223121121181-⨯+⨯-⨯-==第2个式子为: ()()22225322122182-⨯+⨯-⨯-==第3个式子为: ()()22227523123183-⨯+⨯-⨯-==∴第5个式子为: ()()222225125111940⨯+-⨯-=-=即第5个式子为:2211940-=(2)根据题(1)的推理可得:第n 个式子: ()()2221218n n n +--=∵左边=224414418n n n n n +-++-==右边∴等式成立.【点睛】本题考查数式规律的探索,解题的关键仔细观察所给的式子,正确找出式子的规律.28.(1)2P ;(2)2-;(3)3t >【分析】(1)将P 1(3,1)和P 2(-3,1)分别代入等式即可得出结果;(2)将点P (m ,n )代入等式即可得出m+n 的值;(3)根据“好点”的定义,将P 点代入即可得到关于m 和n 的等式,将两个等式结合即可得出结果.【详解】解:(1)对于1(3,1)P ,2321,7t t =⨯+=,2123,5t t =⨯+=-对于2(3,1)P -,2(3)21,7t t -=⨯+=,212(3),7t t =⨯-+=,所以2P 是“好点” (2)∵点(,)P m n 是好点,∴222,2m n t n m t =+=+, 222()m n n m -=-,∴2m n +=-(3)∵222,2m n t n m t =+=+,2222m n n t m t -=+--①,2222m n m t n t +=+++②,得()()2()0m n m n m n -++-=,即()(2)0m n m n -++=,由题知,,2m n m n ≠∴+=-,由②得2()22()2m n mn m n t +-=++,∴4242,4mn t mn t -=-+=-,∵m n ≠,∴2()0m n ->,∴2()40m n mn +->,∴44(4)0t -->,所以3t >,【点睛】本题主要考查的是新定义“好点”,正确的掌握整式的乘法解题的关键.。
连云港市七年级下册数学期末试卷(含答案)
(2)在图中画出△ABC的AB边上的高CH;
(3)△ABC的面积为_______.
22.解二元一次方程组:
(1) (2)
23.已知关于 、 的二元一次方程组 (k为常数).
(1)求这个二元一次方程组的解(用含k的代数式表示);
(2)若 ,求k的值;
(3)若 ,设 ,且m为正整数,求m的值.
A.4xyB.- 4xyC.8xyD.-8xy
7.下列图形中,不能通过其中一个四边形平移得到的是()
A. B. C. D.
8.在 中, ,则 是()
A.钝角三角形B.直角三角形C.锐角三角形D.无法确定
9.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( )
A. B. C. D.
10.下列各式中,不能够用平方差公式计算的是( )
C.∵∠BCD+∠ADC=180°,∴AD//BCD.∵∠CBA+∠C=180°,∴BC//AD
4.如图,能判定EB∥AC的条件是( )
A.∠C=∠1B.∠A=∠2
C.∠C=∠3D.∠A=∠1
5.下列从左到右的变形,是因式分解的是
A. B.
C. D.
6.若(x-2y)2=(x+2y)2+M,则M= ( )
3.C
解析:C
【分析】
根据平行线的判定方法一一判断即可.
【详解】
A、错误.由∠1=∠4应该推出AB∥CD.
B、错误.由∠2=∠3,应该推出BC//AD.
C、正确.
D、错误.由∠CBA+∠C=180°,应该推出AB∥CD,
故选:C.
【点睛】
本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考基础题.
江苏省连云港市七年级下学期末数学试卷
江苏省连云港市七年级下学期末数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2016·孝义模拟) 下列计算正确的是()A . (﹣2)3=8B . =±2C . =﹣2D . |﹣2|=﹣22. (2分) (2017七上·宜兴期末) 下列关于单项式﹣的说法中,正确的是()A . 系数是﹣,次数是4B . 系数是﹣,次数是3C . 系数是﹣2,次数是4D . 系数是﹣2,次数是33. (2分)一个直棱柱有8个面,则它的棱的条数为()A . 12B . 14C . 18D . 224. (2分) (2018七上·锦州期末) 如图,是从上面看得到的用8个相同小正方体搭成几何体的形状图,那么从左面看这个几何体的形状图一定不是()A .B .C .D .5. (2分) (2017七上·黄冈期中) 据统计,截止5月31日上海世博会累计入园人数为803万.这个数字用科学记数法表示为()A . 8×106B . 8.03×106C . 8.03×107D . 803×1046. (2分)恩格尔系数表示家庭日常饮食开支占家庭经济总收入的比例,它反映了居民家庭的实际生活水平,各种类型家庭的恩格尔系数n如下表所示:家庭类型贫困家庭温饱家庭小康家庭发达国家家庭最富裕国家家庭恩格尔系数(n)75%以上50%~75%40%~49%20%~39%不到20%用含n的不等式表示温饱家庭的恩格尔系数为()A . 50%<n<75%B . 50%<n≤75%C . 50%≤n<75%D . 50%≤n≤75%7. (2分) (2016七下·迁安期中) 下列式子中,计算正确的是()A . ﹣ =﹣0.6B . =﹣13C . =±6D . ﹣ =﹣38. (2分)根据下列表述,能确定位置的是()A . 开江电影院左侧第12排B . 甲位于乙北偏东30°方向上C . 开江清河广场D . 某地位于东经107.8°,北纬30.5°9. (2分) (2019八上·江川期末) 下列基本图形中,经过平移、旋转或轴对称变换后,不能得到如图的是()A .B .C .D .10. (2分) (2019八上·德清期末) 人字梯中间一般会设计一”拉杆”,这样做的道理是().A . 两点之间,线段最短B . 垂线段最短C . 两直线平行,内错角相等D . 三角形具有稳定性11. (2分)已知是方程kx-y=3的一个解,那么k的值是()A . 2B . -2C . 1D . -112. (2分) (2017八下·西城期中) 如图,将平行四边形ABCD沿翻折,使点恰好落在上的点处,则下列结论不一定成立的是()A .B .C .D .二、填空题 (共8题;共12分)13. (5分) (2020七下·交城期末) 如图,两个直角三角形的直角顶点重合,∠AOC=40°,求∠BOD的度数.结合图形,完成填空:解:因为∠AOC+∠COB=________°,∠COB+∠BOD=________ ①所以∠AOC=________.②因为∠AOC=40°,所以∠BOD=________°.在上面①到②的推导过程中,理由依据是:________.14. (1分) (2017七上·江门月考) 若一个数的绝对值等于它本身,则这个数是________.15. (1分) (2019八下·谢家集期中) 如图3,在□ABCD中,AB=5,AD=8,DE平分∠ADC,则BE=________16. (1分)(2019·邹平模拟) 如图,在直角坐标系中,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时,反射角等于入射角,当小球第1次碰到矩形的边时的点为P1 ,第2次碰到矩形的边时的点为P2 ,…,第n次碰到矩形的边时的点为Pn,则点P2019的坐标是________.17. (1分) (2015七下·双峰期中) 如果单项式﹣3x4a﹣by2与 x3ya+b是同类项,那么这两个单项式的积是________.18. (1分)如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F,为圆心,大于长为半径作圆弧,两弧交于点G,作射线BG交CD于点H。
连云港市人教版七年级下册数学期末试卷及答案.doc
连云港市人教版七年级下册数学期末试卷及答案.doc一、选择题1.下列各式从左到右的变形中,是因式分解的是( ) A .2(3)(3)9a a a +-=- B .2323(2)a a a a a--=-- C .245(4)5a a a a --=--D .22()()a b a b a b -=+-2.如图,把一块含45°角的三角板的直角顶点靠在长尺(两边a ∥b )的一边b 上,若∠1=30°,则三角板的斜边与长尺的另一边a 的夹角∠2的度数为( )A .10°B .15°C .30°D .35°3.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +4.将一张长方形纸片按如图所示折叠后,再展开.如果∠1=56°,那么∠2等于( )A .56°B .62°C .66°D .68°5.下列计算错误的是( )A .2a 3•3a =6a 4B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0)6.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .147.如图,下列结论中不正确的是( )A .若∠1=∠2,则AD ∥BCB .若AE ∥CD ,则∠1+∠3=180°C .若∠2=∠C ,则AE ∥CD D .若AD ∥BC ,则∠1=∠B8.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A .ab 2B .a +b 2C .a 2b 3D .a 2+b 3 9.下列运算正确的是( )A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=110.如图所示的四个图形中,∠1和∠2是同位角...的是( )A .②③B .①②③C .①②④D .①④二、填空题11.计算:m 2•m 5=_____.12.如图,将边长为6cm 的正方形ABCD 先向下平移2cm ,再向左平移1cm ,得到正方形A 'B 'C 'D ',则这两个正方形重叠部分的面积为______cm 2.13.如果()()2x 1x 4ax a +-+的乘积中不含2x 项,则a 为______ .14.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____.15.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____.16.计算:5-2=(____________) 17.若(x ﹣2)x =1,则x =___.18.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.19.一个n边形的内角和为1080°,则n=________.20.已知x2a+y b﹣1=3是关于x、y的二元一次方程,则ab=_____.三、解答题21.解不等式(组)(1)解不等式114136x xx+-+≤-,并把解集在数轴上....表示出来.(2)解不等式835113x xxx->⎧⎪+⎨≥-⎪⎩,并写出它的所有整数解.22.解下列方程组(1)29321x yx y+=⎧⎨-=-⎩.(2)34332(1)11x yx y⎧+=⎪⎨⎪--=⎩.23.已知在△ABC中,试说明:∠A+∠B+∠C=180°方法一:过点A作DE∥BC. 则(填空)∠B=∠,∠C=∠∵ ∠DAB+∠BAC+ ∠CAE=180°∴∠A+∠B+∠C=180°方法二:过BC上任意一点D作DE∥AC,DF∥AB分别交AB、AC于E、F(补全说理过程)24.(知识生成)通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式.(1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是 (知识应用)(2)根据(1)中的结论,若74,4x y xy +==,则x y -= (知识迁移)类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是 (4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.25.解不等式-3+3+121-3-18-x x x x ⎧≥⎪⎨⎪<⎩()26.先化简,再求值:4(x ﹣1)2﹣(2x +3)(2x ﹣3),其中x =﹣1.27.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台?28.如图所示,A (2,0),点 B 在 y 轴上,将三角形 OAB 沿 x 轴负方向平移,平移后的图形为三角形 DEC ,且点 C 的坐标为(-6,4) . (1)直接写出点 E 的坐标 ;(2)在四边形 ABCD 中,点 P 从点 B 出发,沿“BC →CD ”移动.若点 P 的速度为每秒 2 个单位长度, 运动时间为 t 秒,回答下列问题:①求点 P 在运动过程中的坐标,(用含 t 的式子表示,写出过程);②当 3 秒<t <5 秒时,设∠CBP =x °,∠PAD =y °,∠BPA =z °,试问 x ,y ,z 之间的数量关系能否确定?若能,请用含 x ,y 的式子表示 z ,写出过程;若不能,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据因式分解的定义,需要将式子变形为几个整式相乘的形式,据此可判断.【详解】A、C不是几个式子相乘的形式,错误;B中,32aa--不是整式,错误;D是正确的故选:D.【点睛】本题考查因式分解的定义,注意一定要化成多个整式相乘的形式才叫因式分解.2.B解析:B【解析】∠1与它的同位角相等,它的同位角+∠2=45°所以∠2=45°-30°=15°,故选B3.D解析:D【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a2+8a+16)-(a2+2a+1)=a2+8a+16-a2-2a-1=6a+15.故选D.4.D解析:D【解析】【分析】两直线平行,同旁内角互补;另外折叠前后两个角相等.根据这两条性质即可解答.【详解】根据题意知:折叠所重合的两个角相等.再根据两条直线平行,同旁内角互补,得:2∠1+∠2=180°,解得:∠2=180°﹣2∠1=68°.故选D.【点睛】注意此类折叠题,所重合的两个角相等,再根据平行线的性质得到∠1和∠2的关系,即可求解.5.C解析:C【分析】A.根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A进行判断B.根据幂的乘方运算法则对B进行判断C.根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C进行判断D.根据同底数幂除法运算法则对D进行判断【详解】A.2a3•3a=6a4,故A正确,不符合题意B.(﹣2y3)2=4y6,故B正确,不符合题意C.3a2+a,不能合并同类项,无法计算,故C错误,符合题意D.a5÷a3=a2(a≠0),故D正确,不符合题意故选:C【点睛】本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.6.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.7.D解析:D【分析】由平行线的性质和判定解答即可.【详解】解:A、∵∠1=∠2,∴AD∥BC,原结论正确,故此选项不符合题意;B、∵AE∥CD,∴∠1+∠3=180°,原结论正确,故此选项不符合题意;C、∵∠2=∠C,∴AE∥CD,原结论正确,故此选项不符合题意;D、∵AD∥BC,∴∠1=∠2,原结论不正确,故此选项符合题意;故选:D.【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题的关键,注意它们之间的区别.8.A解析:A【分析】将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.【详解】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.9.D解析:D 【分析】通过幂的运算公式进行计算即可得到结果. 【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误;C .()23326a a a ⨯==,故C 错误;D .5501a a a ÷==,故D 正确;故选:D . 【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.10.C解析:C 【分析】根据同位角的定义逐一判断即得答案. 【详解】解:图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.... 故选:C . 【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.二、填空题 11.m7 【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可. 【详解】解:m2•m5=m2+5=m7. 故答案为:m7. 【点睛】本题考查了同底数幂的乘法,熟练掌握同解析:m 7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m7.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则是解答本题的关键.12.20【分析】如图,向下平移2cm,即AE=2,再向左平移1cm,即CF=1,由重叠部分为矩形的面积为DE•DF,即可求两个正方形重叠部分的面积【详解】解:如图,向下平移2cm,即AE=2,解析:20【分析】如图,向下平移2cm,即AE=2,再向左平移1cm,即CF=1,由重叠部分为矩形的面积为DE•DF,即可求两个正方形重叠部分的面积【详解】解:如图,向下平移2cm,即AE=2,则DE=AD-AE=6-2=4cm向左平移1cm,即CF=1,则DF=DC-CF=6-1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为20【点睛】此题主要考查正方形的性质,平移的性质,关键在理解平移后,图形的位置变化.13.【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出,求出即可;【详解】解:,的乘积中不含项, , 解得:. 故答案为:. 【点睛】本题考查了多项式乘以多项式法则和解一元解析:14【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出4a 10-+=,求出即可; 【详解】解:()()2x 1x 4ax a +-+322x 4ax ax x 4ax a =-++-+()32x 4a 1x 3ax a =+-+-+,()()2x 1x 4ax a +-+的乘积中不含2x 项,4a 10∴-+=,解得:1a 4=.故答案为:14.【点睛】本题考查了多项式乘以多项式法则和解一元一次方程,掌握多项式乘以多项式法则是解此题的关键.14.5 【分析】方程组两方程左右两边相加即可求出所求. 【详解】 解:, ①②得:, 则,故答案为:5. 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:2728x y x y +=⎧⎨+=⎩①②, ①+②得:3315x y +=,则5x y +=,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:故答案为【点睛】此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 解析:1.3- 【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:()20202019133⎛⎫-⋅- ⎪⎝⎭()2019201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭ ()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 1.3=-故答案为1.3-【点睛】此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 16.【分析】直接根据负整数指数幂的运算法则求解即可.【详解】,故答案为:.【点睛】本题考查了负整数指数幂的运算法则,比较简单. 解析:125【分析】直接根据负整数指数幂的运算法则求解即可.【详解】22115525-==, 故答案为:125. 【点睛】本题考查了负整数指数幂的运算法则,比较简单.17.0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x ﹣2)x =1,∴x =0时,(0﹣2)0=1,当x =3时,(3﹣2)3=1,则x =0或3.解析:0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x ﹣2)x =1,∴x =0时,(0﹣2)0=1,当x =3时,(3﹣2)3=1,则x =0或3.故答案为:0或3.【点睛】此题主要考查了零指数幂以及有理数的乘方运算,正确掌握运算法则是解题关键. 18.15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM 的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM 再转动t 秒时,射线AM 、射线BQ 互相平行,如图,射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,分两种情况:①当9<t <18时,如图,∠QBQ '=t °,∠M 'AM"=5t °,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=5t-45°,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=5t-45°,解得t=15;②当18<t<27时,如图∠QBQ'=t°,∠NAM"=5t°-90°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM"=45°-(5t°-90°)=135°-5t°,当∠ABQ'=∠BAM"时,BQ'//AM",此时,45°-t°=135°-5t,解得t=22.5;综上所述,射线AM再转动15秒或22.5秒时,射线AM射线BQ互相平行.故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.19.8【分析】直接根据内角和公式计算即可求解.【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.解析:8【分析】n-⋅︒计算即可求解.直接根据内角和公式()2180【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】n-⋅︒.主要考查了多边形的内角和公式.多边形内角和公式:()218020.1【分析】根据题意可知该式是二元一次方程组,所以x、y的指数均为1,这样就可以分别求出a、b的值,代入计算即可.【详解】解:∵是关于x、y的二元一次方程,所以x、y的指数均为1∴2a=1,解析:1【分析】根据题意可知该式是二元一次方程组,所以x、y的指数均为1,这样就可以分别求出a、b 的值,代入计算即可.【详解】解:∵2a b-1x +y =3是关于x 、y 的二元一次方程,所以x 、y 的指数均为1∴2a =1,b-1=1,解得a =12,b =2, 则ab =122⨯=1, 故答案为:1.【点睛】该题考查了二元一次方程的定义,即含有两个未知量,且未知量的指数为1,将其代数式进行求解,即可求出答案.三、解答题21.(1)x ≤2,图见详解;(2)22x -≤<;-2、-1、0、1.【分析】(1)由题意直接根据解不等式的步骤逐步进行计算求解,并把解集在数轴上表示出来即可.(2)根据题意分别解出两个不等式,取公共部分得出其解集从而写出它的所有整数解即可.【详解】解:(1)去分母,得 6x+2(x+1)≤6-(x-14),去括号,得 6x+2x+2≤6-x+14,移项,合并同类项,得 9x ≤18,两边都除以9,得 x ≤2.解集在数轴上表示如下:(2)835113x x x x ->⎧⎪⎨+≥-⎪⎩①② 解①得:2x <,解②得:2x ≥-,则不等式组的解集是:22x -≤<.它的所有整数解有:-2、-1、0、1.【点睛】本题考查的是一元一次不等式(组)的解法,注意掌握求不等式(组)的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.(1)272x y =⎧⎪⎨=⎪⎩;(2)692x y =⎧⎪⎨=⎪⎩【分析】(1)根据加减消元法,即可求解;(2)先去分母,去括号,移项,合并同类项,再通过加减消元法,即可求解.【详解】(1)29321x y x y +=⎧⎨-=-⎩①②, +①②得:48x =.解得:2x =,把2x =代入①得:229y +=,解得:72y =, ∴方程组的解为272x y =⎧⎪⎨=⎪⎩; (2)原方程可化为3436329x y x y +=⎧⎨-=⎩①②, ①-②得:627y =,解得:92y =, 把92y =代入②得:399x -=,解得:6x =, ∴方程组的解为692x y =⎧⎪⎨=⎪⎩. 【点睛】本题主要考查解二元一次方程组,掌握加减消元法,是解题的关键.23.DAB ,CAE ;见解析【分析】方法一:根据平行线的性质:两直线平行,内错角相等解答;方法二:根据平行线的性质:两直线平行、同位角相等解答.【详解】方法一:∵DE ∥BC,∴∠B=∠DAB ,∠C=∠CAE ,故答案为:DAB ,CAE ;方法二:∵DE ∥AC ,∴∠A =∠BED ,∠C =∠BDE ,∵DF ∥AB ,∴∠EDF =∠BED ,∠B =∠CDF ,∵∠CDF +∠EDF +∠BDE =180°,∴∠A +∠B +∠C =180°.【点睛】此题考查平行线的性质,三角形内角和定理的证明过程,解题的关键是熟记平行线的性质并运用于解题.24.(1)22()4()a b ab a b +-=-.(2)3x y -= .(3)33322()33a b a b a b ab +=+++.(4)54.【分析】(1)根据两种面积的求法的结果相等,即可得到答案;(2)根据第(1)问中已知的等式,将数值分别代入,即可求得答案.(3)根据正方体的体积公式,正方体的边长的立方就是正方体的体积;2个正方体和6个长方体的体积和就是大长方体的体积,则可得到等式;(4)结合4a b +=,1ab =,根据(3)中的公式,变形进行求解即可.【详解】(1)22()4()a b ab a b +-=-.(2)4x y +=,74xy =,()()22274441679.4x y x y xy -=+-=-⨯=-= 故3x y -= . (3)33322()33a b a b a b ab +=+++ .(4)由4a b +=,1ab =,根据第(3)得到的公式可得()()()()333322333641254a b a b a b ab a b ab a b +=+-+=+-+=-=.【点睛】本题考查完全平方公式以及立方公式的几何背景,从整体和局部两种情况分析并写出面积以及体积的表达式是解题的关键.25.﹣2<x≤1.【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可. 试题解析:331(1)213(1)8(2)x x x x -⎧++⎪⎨⎪--<-⎩, ∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.26.化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x 2-2 x +1)-(4x 2-9) =4x 2-8 x +4-4x 2+9=-8 x +13当x =-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.27.(1)电脑0.5万元,电子白板1.5万元;(2)14台【分析】(1)设每台电脑x 元,每台电子白板y 元,根据题意列出方程组,解方程组即可;(2)设购进电子白板m 台,则购进电脑()31m -台,根据总费用不超过30万元,列出不等式,根据m 实际意义即可求解.【详解】(1)设每台电脑x 元,每台电子白板y 元,则2 3.52 2.5x y x y +=⎧⎨+=⎩,解得0.51.5x y =⎧⎨=⎩故每台电脑0.5万元,每台电子白板1.5万元;(2)设购进电子白板m 台,则购进电脑()31m -台,由题意得1.50.5(31)30m m +-≤解得14.5m ≤,又因为m 是正整数,则14m ≤,故至多购买电子白板14台.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用,综合性较强,难度不大,根据题意列出二元一次方程组、一元一次不等式是解题关键.28.(1)()4,0- (2)1)点P 在线段BC 上时, (),4P t -,2)点P 在线段CD 上时, ()6,10P t --; (3)能确定,z x y =+,证明见解析【分析】(1)根据平移的性质即可得到结论;(2)①分两种情况:1)点P 在线段BC 上时,2)点P 在线段CD 上时;②如图,作P 作//PE BC 交于AB 于E ,则//PE AD ,根据平行线的性质即可得到结论.【详解】(1)∵点B 的横坐标为0,点C 的横坐标为-6,∴将A (2,0)向左平移6个单位长度得到点E∴()4,0E -;(2)①∵6,4BC CD ==∴1)点P 在线段BC 上时,PB t =(),4P t -;2)点P 在线段CD 上时,()4610PD t t =--=-()6,10P t --;②能确定如图,作P 作//PE BC 交于AB 于E ,则//PE AD∴1,2CBP x DAP y ==︒==︒∠∠∠∠ ∴1+2BPA x y z ==︒+︒=︒∠∠∠ ∴z x y =+.【点睛】本题考查了平行线的问题,掌握平移的性质、代数式的用法、平行线的性质以及判定定理是解题的关键.。
连云港市七年级下学期数学期末考试试卷
连云港市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)下列运算中正确的是()A . 2x+3y=5xyB . a3﹣a2=aC . (a﹣1)(a﹣2)=a2+a﹣2D . (a﹣ab)÷a=1﹣b2. (2分) (2018八上·仙桃期末) 以下列各组长度的线段为边,能构成三角形的是()A . 3,4,8B . 5,6,10C . 5,6,11D . 5,9,153. (2分)(2014·内江) 一种微粒的半径是0.00004米,这个数据用科学记数法表示为()A . 4×106B . 4×10﹣6C . 4×10﹣5D . 4×1054. (2分)(2019·汽开区模拟) 使不等式2x﹣4≥0成立的最小整数是()A . ﹣2B . 0C . 2D . 35. (2分)以方程组的解为坐标的点(x,y)位于()A . x轴的正半轴B . x轴的负半轴C . y轴的正半轴D . y轴的负半轴6. (2分)如图,小正方形边长为1,连结小正方形的三个顶点,可得△ABC,则AC边上的高是()A .B .C .D .7. (2分)下列运算正确的是()A . 3x﹣2x=1B . ﹣2x﹣2=﹣C . (﹣a)2•a3=a6D . (﹣a2)3=﹣a68. (2分)若关于x,y的方程组的解满足0<x+y<1,则k的取值范围是()A . -4<k<0B . -1<k<0C . 0<k<8D . k>-49. (2分) (2016七下·临沭期中) 如图,若AB∥EF,那么∠BCE=()A . ∠1+∠2B . ∠2﹣∠1C . 180°﹣∠1+∠2D . 180°﹣∠2+∠110. (2分)若0<n<m,m2+n2=10,mn=3,则m2-n2的值是()A . 7B . 8C . 16D . 2311. (2分)二元一次方程组的解满足2x-ky=10,则k的值等于()A . 4B . -4C . 8D . -812. (2分) (2017八上·台州期末) 下列各式中,计算正确的是()A . x(2x-1)=2x2-1B .C . (a+2)2=a2+4D . (x+2)(x-3)=x2+x-613. (2分)下列命题中,假命题的是()A . 四边形的外角和等于内角和B . 所有的矩形都相似C . 对角线相等的菱形是正方形D . 对角线互相垂直的平行四边形是菱形14. (2分) (2020八上·长兴期末) 如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A . 35°B . 40°C . 45°D . 50°15. (2分)利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2 .你根据图乙能得到的数学公式是()A . a2- b2= (a-b)2B . (a+b)2= a2+2ab+b2C . (a-b)2= a2-2ab+b2D . a2- b2=(a+b)(a-b)16. (2分)如图,将长方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大18°.设∠BAE和∠BAD的度数分别为x,y,那么x,y所适合的一个方程组是(A .B .C .D .二、填空题 (共3题;共3分)17. (1分)分解因式:3a2+6a+3=________18. (1分)不等式组的整数解为________.19. (1分)某程序如图,当输入x=5时,输出的值为________三、解答题 (共7题;共80分)20. (10分)解不等式或不等式组.(1)解不等式:﹣≤2(2)解不等式组并写出不等式组的整数解.21. (20分) (2017八上·云南月考) 计算:(1)(﹣5a3b2)•(﹣3ab2c)•(﹣7a2b)(2)(﹣2x3y2﹣3x2y)÷(﹣x2y)(3)(2a+3b)(2a﹣b)(4)102×98﹣992.22. (7分) (2017七下·红桥期末) 如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.求:∠DCE和∠DCA的度数.请将以下解答补充完整,解:因为∠DAB+∠D=180°所以DC∥AB(________)所以∠DCE=∠B(________)又因为∠B=95°,所以∠DCE=________°;因为AC平分∠DAB,∠CAD=25°,根据角平分线定义,所以∠CAB=________=________°,因为DC∥AB所以∠DCA=∠CAB,(________)所以∠DCA=________°.23. (10分)列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨若400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?24. (8分) (2017七下·新野期末) 综合题如图①,∠DCE=∠ECB=α,∠DAE=∠EAB=β,∠D=30°,∠B=40°(1)①用α或β表示∠CNA,∠MPA,∠CNA=________,∠MPA=________②求∠E的大小.________(2)如图②,∠BAD的平分线AE与∠BCD的平分线CE交于点E,则∠E与∠B,∠D之间是否存在某种等量关系?若存在,写出结论,说明理由;若不存在,说明理由.25. (10分) (2016七下·砚山期中) 用平方差公式或完全平方公式计算:(1) 1012(2)101×99.26. (15分) (2017八上·台州开学考) 某校的20年校庆举办了四个项目的比赛,现分别以A,B,C,D表示它们.要求每位同学必须参加且限报一项.以701班为样本进行统计,并将统计结果绘制如下两幅统计图,其中参加A项目的人数比参加C与D项目人数的总和多1人,参加D项目的人数比参加A项目的人数少11人.请你结合图中所给出的信息解答下列问题:(1)求出全班总人数;(2)求出扇形统计图中参加D项目比赛的学生所在的扇形圆心角的度数;(3)若该校7年级学生共有200人,请你估计这次活动中参加A和B项目的学生共有多少人?参考答案一、选择题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共3题;共3分)17-1、18-1、19-1、三、解答题 (共7题;共80分)20-1、20-2、21-1、21-2、21-3、21-4、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
江苏省连云港市七年级下学期期末数学试卷
江苏省连云港市七年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)如图,在所标识的角中,同位角是()A .B .C . ,D .2. (2分)下列说法中,为平行线特征的是()①两条直线平行,同旁内角互补;②同位角相等,两条直线平行;③内错角相等,两条直线平行;④垂直于同一条直线的两条直线平行。
A . ①B . ②③C . ④D . ②和④3. (2分)下列命题的逆命题不正确的是()A . 同旁内角互补,两直线平行B . 如果两个角是直角,那么它们相等C . 两个全等三角形的对应边相等D . 如果两个实数的平方相等,那么它们相等4. (2分)下列各数中没有平方根的是()A . 0B . ﹣82C .D . ﹣(﹣3)5. (2分)一个正方体的体积为28360立方厘米,正方体的棱长估计为()A . 22厘米B . 27厘米C . 30.5厘米D . 40厘米6. (2分) (2017八上·丹东期末) 一次函数y=kx﹣b的图像如图所示,那么点(﹣2k,b)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分)在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的大小为()A . 70°B . 110°C . 120°D . 141°8. (2分)某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为65;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()A .B .C .D .9. (2分) (2016七下·十堰期末) 若关于x的方程3m(x+1)+1=m(3﹣x)﹣5x的解是负数,则m的取值范围是()A . m>﹣B . m<﹣C . m>D . m<10. (2分)(2017·青浦模拟) 不等式组的解集在数轴上可表示为()A .B .C .D .11. (2分)为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计。
连云港市人教版七年级下册数学期末试卷及答案.doc
连云港市人教版七年级下册数学期末试卷及答案.doc 一、选择题1.已知关于x,y的方程组3210ax byax by+=⎧⎨-=⎩的解为21xy=⎧⎨=-⎩,则a,b的值是()A.12ab=⎧⎨=⎩B.21ab=⎧⎨=⎩C.12ab=-⎧⎨=-⎩D.21ab=⎧⎨=-⎩2.如图,能判定EB∥AC的条件是()A.∠C=∠1 B.∠A=∠2C.∠C=∠3 D.∠A=∠13.下列计算正确的是()A.a+a2=2a2B.a5•a2=a10C.(﹣2a4)4=16a8D.(a﹣1)2=a﹣24.x2•x3=()A.x5B.x6C.x8D.x95.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为()A.0.38×106B.3.8×106C.3.8×105D.38×1046.下列各式中,能用平方差公式计算的是()A.(p+q)(p+q)B.(p﹣q)(p﹣q)C.(p+q)(p﹣q)D.(p+q)(﹣p﹣q)7.下列运算中,正确的是()A.a8÷a2=a4B.(﹣m)2•(﹣m3)=﹣m5C.x3+x3=x6D.(a3)3=a68.如图,将四边形纸片ABCD沿MN折叠,若∠1+∠2=130°,则∠B+∠C=()A.115°B.130°C.135°D.150°9.下列方程组中,是二元一次方程组的为()A.1512nmmn⎧+=⎪⎪⎨⎪+=⎪⎩B.2311546a bb c-=⎧⎨-=⎩C.292xy x⎧=⎨=⎩D.xy=⎧⎨=⎩10.比较255、344、433的大小( )A .255<344<433B .433<344<255C .255<433<344D .344<433<255二、填空题11.分解因式:m 2﹣9=_____.12.已知:实数m,n 满足:m+n=3,mn=2.则(1+m)(1+n)的值等于____________.13.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 14.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.15.二元一次方程7x+y =15的正整数解为_____.16.计算:5-2=(____________)17.()a b -+(__________) =22a b -.18.将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若52EFG ∠=︒,则21∠-∠=_____________︒.19.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________.20.分解因式:ab ﹣ab 2=_____.三、解答题21.已知a +b =5,ab =-2.求下列代数式的值:(1)22a b +;(2)22232a ab b -+.22.若x ,y 为任意有理数,比较6xy 与229x y +的大小.23.解方程组(1)2431y x x y =-⎧⎨+=⎩(2)121632(1)13(2)x y x y --⎧-=⎪⎨⎪-=-+⎩.24.某公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量如表所示:(1)已知一批商品有A 、B 两种型号,体积一共是20m 3,质量一共是10.5吨,求A 、B 两种型号商品各有几件;(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m 3,其收费方式有以下两种:按车收费:每辆车运输货物到目的地收费900元;按吨收费:每吨货物运输到目的地收费300元.要将(1)中的商品一次或分批运输到目的地,该公司应如何选择运送方式,使所付运费最少,并求出该方式下的运费是多少元.25.已知a ,b ,c 是△ABC 的三边,若a ,b ,c 满足a 2+c 2=2ab +2bc -2b 2,请你判断△ABC 的形状,并说明理由.26.先化简,再求值:(2a +b )2﹣(2a +3b )(2a ﹣3b ),其中a =12,b =﹣2. 27.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?28.分解因式:(1)3222x x y xy -+;(2)2296(1)(1)x x y y -+++;(3)()214(1)m m m -+-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得到关于a ,b 的二元一次方程组,解之即可. 【详解】解:把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得: 2=06210a b a b -⎧⎨+=⎩, 解得:=1=2a b ⎧⎨⎩, 故选A.【点睛】本题考查了二元一次方程组的解,正确掌握代入法和解二元一次方程组的方法是解题的关键.2.D解析:D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A 、∠C=∠1不能判定任何直线平行,故本选项错误;B 、∠A=∠2不能判定任何直线平行,故本选项错误;C 、∠C=∠3不能判定任何直线平行,故本选项错误;D 、∵∠A=∠1,∴EB ∥AC ,故本选项正确.故选:D .【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.3.D解析:D【分析】根据负整数指数幂、合并同类项、幂的乘方与积的乘方、同底数幂的乘法等知识点进行作答.【详解】解:A 、a +a 2不是同类项不能合并,故本选项错误;B 、根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,∴a 5•a 2=a 7,故本选项错误;C 、根据幂的乘方法则:底数不变,指数相乘,(﹣2a 4)4=16a 16,故本选项错误;D 、(a ﹣1)2=a ﹣2,根据幂的乘方法则,故本选项正确;故选:D .【点睛】本题考查了合并同类项,同底数的幂的乘法,负整数指数幂,积的乘方等多个运算性质,需同学们熟练掌握.4.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x2•x3=x2+3=x5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.5.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:380000=3.8×105.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.C解析:C【分析】利用完全平方公式和平方差公式对各选项进行判断.【详解】(p+q)(p+q)=(p+q)2=p2+2pq+q2;(p﹣q)(p﹣q)=(p﹣q)2=p2﹣2pq+q2;(p+q)(p﹣q)=p2﹣q2;(p+q)(﹣p﹣q)=﹣(p+q)2=﹣p2﹣2pq﹣q2.故选:C.【点睛】本题考查了完全平方公式和平方差公式,熟练掌握公式的结构及其运用是解答的关键.7.B解析:B【分析】根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,分析判断后利用排除法求解.【详解】解:A、a8÷a2=a4不正确;B 、(-m )2·(-m 3)=-m 5 正确;C 、x 3+x 3=x 6合并得2x 3,故本选项错误;D 、(a 3)3=a 9,不正确.故选B .【点睛】本题主要考查了合并同类项及同底数幂的乘法、除法,熟练掌握运算性质和法则是解题的关键.8.A解析:A【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故选:A .【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.9.D解析:D【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】A 、属于分式方程,不符合题意;B 、有三个未知数,为三元一次方程组,不符合题意;C 、未知数x 是2次方,为二次方程,不符合题意;D 、符合二元一次方程组的定义,符合题意;故选:D .【点睛】考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.10.C解析:C【分析】根据幂的乘方的知识,可得255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,再比较底数的大小,即可得结论.【详解】解:∵255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,又∵32<64<81,∴255<433<344.故选C.【点睛】本题考查了幂的乘方,解题的关键是根据幂的乘方的公式,转化为底数相同的幂.二、填空题11.(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为解析:(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.12.6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.本题考查了多解析:6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m +n =3,mn =2,∴(1+m )(1+n )=1+n +m +mn =1+3+2=6.故答案为:6.【点睛】本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解答本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.13.5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:,①②得:,则,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:2728x y x y +=⎧⎨+=⎩①②, ①+②得:3315x y +=,则5x y +=,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.5×10-6绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.或【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18x y =⎧⎨=⎩或21x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.16.【分析】直接根据负整数指数幂的运算法则求解即可.【详解】,故答案为:.【点睛】本题考查了负整数指数幂的运算法则,比较简单. 解析:125【分析】直接根据负整数指数幂的运算法则求解即可.【详解】22115525-==, 故答案为:125. 【点睛】本题考查了负整数指数幂的运算法则,比较简单.17.【分析】根据平方差公式即可求出答案.【详解】解:,故答案为:.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.解析:a b --【分析】根据平方差公式即可求出答案.【详解】解:()2222()()a b a b a b a b -+--==---,故答案为:a b --.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.18.28°【分析】根据平行线的性质求出∠DEF的度数,然后根据折叠的性质算出∠GED的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52解析:28°【分析】根据平行线的性质求出∠DEF的度数,然后根据折叠的性质算出∠GED的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52°,∵EFNM是由EFCD折叠而来∴∠GEF=∠DEF=52°,即∠GED=104°,∴∠1=180°-104°=76°,∵∠2=∠GED=104°,∴∠2-∠1=104°-76°=28°.故答案为28°.【点睛】本题考查了平行线的性质和折叠的性质,解决本题的关键是正确理解题意,熟练掌握平行线的性质和折叠的性质,能够根据折叠的性质找到相等的角.19.【分析】首先求得方程的解,然后将代入到方程中,即可求得.【详解】解:,移项,得,合并同类项,得,系数化为1,得,∵两方程同解,那么将代入方程,得,移项,得,系数化为1,得.故解析:12【分析】首先求得方程23x x =-的解x ,然后将x 代入到方程4232x m x -=+中,即可求得m .【详解】解:23x x =-,移项,得23x x -=-,合并同类项,得3x -=-,系数化为1,得=3x ,∵两方程同解,那么将=3x 代入方程4232x m x -=+,得12211m -=,移项,得21m -=-,系数化为1,得12m =. 故12m =. 【点睛】 本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.20.ab (1﹣b )【分析】根据题意直接提取公因式ab ,进而分解因式即可得出答案.【详解】解:ab ﹣ab2=ab (1﹣b ).故答案为:ab (1﹣b ).【点睛】本题主要考查提取公因式法分解因式解析:ab (1﹣b )【分析】根据题意直接提取公因式ab ,进而分解因式即可得出答案.【详解】解:ab ﹣ab 2=ab (1﹣b ).故答案为:ab (1﹣b ).【点睛】本题主要考查提取公因式法分解因式,熟练掌握并正确找出公因式是解题的关键.三、解答题21.(1)29;(2)64.【分析】(1)根据完全平方公式得到()2222a b a b ab +=+-,然后整体代入计算即可; (2)根据完全平方公式得到()22223227a ab b a b ab -+=+-,然后整体代入计算即可.【详解】解:(1)()()2222252229a b a b b a =+-=-⨯-=+;(2)()()222222232242727257264a ab b a ab b ab a b ab -+=++-=+-=⨯-⨯-=.【点睛】本题考查了代数式求值,完全平方公式和整体代入的思想,熟练掌握完全平方公式是解题的关键. 22.2296x y xy +≥【分析】根据题意直接利用作差法对两个代数式进行大小比较即可.【详解】解:∵x ,y 为任意有理数,22296(3)0x y xy x y +-=-≥,∴2296x y xy +≥.【点睛】本题考查整式加减,注意掌握利用作差法对两个代数式进行大小比较以及配方法的应用是解题的关键.23.(1)12x y =⎧⎨=-⎩;(2)53x y =⎧⎨=⎩ 【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)2431y x x y =-⎧⎨+=⎩①②, 把①代入②得:3x +2x ﹣4=1,解得:x =1,把x =1代入①得:y =﹣2,则方程组的解为12x y =⎧⎨=-⎩;(2)121632(1)13(2) x yx y--⎧-=⎪⎨⎪-=-+⎩方程组整理得:211 213x yx y+=⎧⎨+=⎩①②,①×2﹣②得:3y=9,解得:y=3,把y=3代入②得:x=5,则方程组的解为53 xy=⎧⎨=⎩.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,要根据方程特点选择合适的方法简化运算.24.(1)A种商品有5件,B种商品有8件;(2)先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元【分析】(1)设A、B两种型号商品各有x件和y件,根据体积一共是20m3,质量一共是10.5吨列出方程组再解即可;(2)分别计算出①按车收费的费用,②按吨收费的费用,③两种方式混合用的花费,进而可得答案.【详解】解:(1)设A、B两种型号商品各有x件和y件,由题意得,0.8220 0.510.5x yx y+=⎧⎨+=⎩,解得:58 xy=⎧⎨=⎩,答:A、B两种型号商品各有5件、8件;(2)①按车收费:10.5÷3.5=3(辆),但车辆的容积为:6×3=18<20,所以3辆车不够,需要4辆车,此时运费为:4×900=3600元;②按吨收费:300×10.5=3150元,③先用3辆车运送A商品5件,B商品7件,共18m3,按车付费3×900=2700(元).剩余1件B型产品,再运送,按吨付费300×1=300(元).共需付2700+300=3000(元).∵3000<3150<3600,∴先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.答:先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.【点睛】本题考查二元一次方程组的应用,关键是正确理解题意,找出题中的等量关系.25.△ABC 是等边三角形,理由见解析.【分析】运用完全平方公式将等式化简,可求a=b=c ,则△ABC 是等边三角形.【详解】解:△ABC 是等边三角形,理由如下:∵a 2+c 2=2ab +2bc -2b 2∴a 2-2ab+ b 2+ b 2- 2bc +c 2=0∴(a-b )2+(b-c )2=0∴a-b=0,b-c=0,∴a=b ,b=c ,∴a=b=c∴△ABC 是等边三角形.【点睛】本题考查了因式分解的应用,整式的混合运算,熟练运用完全平方公式解决问题是本题的关键.26.4ab+10b 2;36.【解析】【分析】先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,继而将a ,b 的值代入计算可得.【详解】原式=4a 2+4ab +b 2﹣(4a 2﹣9b 2)=4a 2+4ab +b 2﹣4a 2+9b 2=4ab +10b 2当a 12=,b =﹣2时,原式=412⨯⨯(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36. 【点睛】 本题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解答本题的关键.27.2辆大货车与1辆小货车可以一次运货11吨【分析】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,将其代入(2)x y +中即可求出结论.【详解】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨由题意得:32175429x y x y +=⎧⎨+=⎩解得:51x y =⎧⎨=⎩则225111x y +=⨯+=答:2辆大货车与1辆小货车可以一次运货11吨.【点睛】本题考查了二元一次方程组的实际应用,理解题意,正确列出方程组是解题关键.28.(1)x (x-y )2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).【分析】(1)首先提公因式x ,然后利用完全平方公式即可分解;(2)根据完全平方公式进行因式分解即可;(3)首先提公因式(m-1)然后利用平方差公式即可分解.【详解】解:(1)原式=x (x 2-2xy+y 2)=x (x-y )2;(2)原式=(3x )2-2×(3x )(y+1)+(y+1)2=(3x-y-1)2;(3)原式=(m-1)(m 2-4)=(m-1)(m+2)(m-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年江苏省连云港市灌云县七年级(下)期末数学试卷一、选择题(共8小题,每小题3分,满分24分,每小题只有一个正确选项)1.(3分)2015年2月1日宿迁市最高气温是8℃,最低气温是﹣2℃,则当天宿迁市气温变化范围t(℃)是()A.t>8 B.t<2 C.﹣2<t<8 D.﹣2≤t≤82.(3分)下列命题中,假命题的是()A.两条直线平行,同位角相等B.对顶角相等C.同位角相等D.直角都相等3.(3分)下列算式中,正确的是()A.x3•x3=2x3B.x2+x2=x4C.a4•a2=a6 D.﹣(a3)4=a124.(3分)对多项式3x2﹣3x因式分解,提取的公因式为()A.3 B.x C.3x D.3x25.(3分)下列式子中,计算结果为x2+2x﹣3的是()A.(x﹣1)(x+3)B.(x+1)(x﹣3)C.(x﹣1)(x﹣3) D.(x+1)(x+3)6.(3分)不等式组的解集在数轴上表示正确的是()A. B. C.D.7.(3分)如图,AD是△ABC的外角∠CAE的平分线,∠B=40°,∠DAE=55°,则∠ACB的度数是()A.70°B.80°C.100° D.110°8.(3分)将一张面值20元的人民币,兑换成5元或10元的零钱,那么兑换方案共有()A.1种 B.2种 C.3种 D.4种二、填空题(共10小题,每小题4分,满分40分)9.(4分)写出一个解的二元一次方程组.10.(4分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯使现在世界上最薄的纳米材料,其理论厚度应是0.00000000034m,用科学记数法表示是.11.(4分)计算:(3a)2=.12.(4分)一个多边形的内角和为540°,则这个多边形的边数是.13.(4分)因式分解4m2﹣n2=.14.(4分)“等边三角形是锐角三角形”的逆命题是.15.(4分)不等式﹣3x<6的负整数解是.16.(4分)如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°,∠BDE=60°,则∠CDB的度数等于.17.(4分)如图,边长为4cm的正方形ABCD先向右平移1cm,再向上平移2cm,得到正方形A′B′C′D′,则阴影部分的面积为cm2.18.(4分)华润苏果的账目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天以同样的价格卖出同样的52支牙刷和28盒牙膏,收入应该是元.三、解答题(共8小题,满分86分)19.(15分)计算:(1)a8÷a2+(a2)3(2)(﹣1)2+(﹣2)﹣1×50(3)(a+b)2﹣a(a+b)20.(10分)解方程组:(1)(2).21.(10分)(1)解不等式2(1﹣x)>3x﹣8(2)解不等式组.22.(8分)用不等式解决问题(算术方法不给分)某次数学竞赛共有16道选择题,评分办法:答对一题得6分,答错一题扣2分.某学生没有题未答,这个学生至少答对多少题,成绩才能不低于60分?23.(12分)某灾区急需大量帐篷,某服装厂原有4条成衣生产线和5条童装生产线,工厂决定转产,计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷110顶;若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷185顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?24.(8分)已知:如图所示,AB∥CD,∠B+∠D=180°.求证:BC∥DE证明:∵AB∥CD 已知∴∠B=∠()∵∠B+∠D=180°已知∴=180°(等量代换)∴BC∥DE()25.(10分)问题1:填表:计算代数式的值.a…﹣﹣2﹣1012……12.251…a2﹣2a+1问题2:你可以再换几个数再试试(不需要写出来),先观察表格再归纳,你发现a2﹣2a+1的值有什么规律?把它写出来,并说明理由.26.(13分)问题解决(1)如图1,△ABC中,经过点A的中线AD把△ABC分成△ASD和△ACD,则△ABD的面积S1等于△ACD的面积S2,请你说明理由:问题应用(2)如图2,△ABC中,D是BC的中点,F是AD的中点,△ABC的面积12,则△ABF的面积;问题拓展(3)如图3,四边形ABCD中,O是内部任意一点,点E、F、G、H分别是AD、AB、BC、CD边的中点,四边形AFOE的面积为3,四边形BGOF的面积为5,四边形CHOG的面积为4.求四边形DEOH的面积;(4)如图4,边长为2正方形ABED与边长为2等腰直角三角形ABC拼合在一起.请你画出过点A作一条直线把四边形ADEC的面积分成相等的两部分.2015-2016学年江苏省连云港市灌云县七年级(下)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分,每小题只有一个正确选项)1.(3分)2015年2月1日宿迁市最高气温是8℃,最低气温是﹣2℃,则当天宿迁市气温变化范围t(℃)是()A.t>8 B.t<2 C.﹣2<t<8 D.﹣2≤t≤8【解答】解:由题意得﹣2≤t≤8.故选:D.2.(3分)下列命题中,假命题的是()A.两条直线平行,同位角相等B.对顶角相等C.同位角相等D.直角都相等【解答】解:A、两直线平行,同位角相等是真命题,不符合题意;B、对顶角相等是真命题,不符合题意;C、两直线平行,同位角才相等,所以同位角相等是假命题,符合题意;D、直角都相等是真命题,不符合题意;故选:C.3.(3分)下列算式中,正确的是()A.x3•x3=2x3B.x2+x2=x4C.a4•a2=a6 D.﹣(a3)4=a12【解答】解:A 底数不变指数相加,故A错误;B 字母部分不变,系数相加,故B错误;C底数不变指数相加,故C正确;D 幂的乘方的相反数,故D错误;故选:C.4.(3分)对多项式3x2﹣3x因式分解,提取的公因式为()A.3 B.x C.3x D.3x2【解答】解:3x2﹣3x=3x(x﹣1),则对多项式3x2﹣3x因式分解,提取的公因式为3x,故选:C.5.(3分)下列式子中,计算结果为x2+2x﹣3的是()A.(x﹣1)(x+3)B.(x+1)(x﹣3)C.(x﹣1)(x﹣3) D.(x+1)(x+3)【解答】解:A、(x﹣1)(x+3)=x2+2x﹣3,故此选项正确;B、(x+1)(x﹣3)=x2﹣2x﹣3,故此选项错误;C、(x﹣1)(x﹣3)=x2﹣4x+3,故此选项错误;D、(x+1)(x+3)=x2+4x+3,故此选项错误;故选:A.6.(3分)不等式组的解集在数轴上表示正确的是()A. B. C.D.【解答】解:不等式组的解集为x≥3,在数轴上表示为:故选:A.7.(3分)如图,AD是△ABC的外角∠CAE的平分线,∠B=40°,∠DAE=55°,则∠ACB的度数是()A.70°B.80°C.100° D.110°【解答】解:∵AD是△ABC的外角∠CAE的平分线,∴∠CAE=2∠DAE=2×55°=110°,由三角形的外角性质得,∠ACB=∠CAE﹣∠B=110°﹣40°=70°.故选:A.8.(3分)将一张面值20元的人民币,兑换成5元或10元的零钱,那么兑换方案共有()A.1种 B.2种 C.3种 D.4种【解答】解:设兑换成5元x张,10元的零钱y元,由题意得:5x+10y=20,整理得:x+2y=4,方程的整数解为:或或,因此兑换方案有3种,故选:C.二、填空题(共10小题,每小题4分,满分40分)9.(4分)写出一个解的二元一次方程组.【解答】解:根据题意,只要保证方程组中的每个方程都满足即可,∴(答案不唯一)将代入验证,符合要求.故答案为:(答案不唯一).10.(4分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯使现在世界上最薄的纳米材料,其理论厚度应是0.00000000034m,用科学记数法表示是3.4×10﹣10.【解答】解:0.00000000034=3.4×10﹣10,故答案为:3.4×10﹣1011.(4分)计算:(3a)2=9a2.【解答】解:(3a)2=9a2.故答案为:9a2.12.(4分)一个多边形的内角和为540°,则这个多边形的边数是5.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:5.13.(4分)因式分解4m2﹣n2=(2m+n)(2m﹣n).【解答】解:原式=(2m+n)(2m﹣n).故答案为:(2m+n)(2m﹣n)14.(4分)“等边三角形是锐角三角形”的逆命题是锐角三角形是等边三角形.【解答】解:其逆命题是:锐角三角形是等边三角形.15.(4分)不等式﹣3x<6的负整数解是﹣1.【解答】解:不等式两边同时除以﹣3,得:x>﹣2.负整数解是﹣1.故答案是:﹣1.16.(4分)如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°,∠BDE=60°,则∠CDB的度数等于110°.【解答】解:∵DE∥AC,∠C=50°,∴∠CDE=∠C=50°,∵∠BDE=60°,∴∠CDB=∠CDE+∠BDE=50°+60°=110°.故答案为:110°.17.(4分)如图,边长为4cm的正方形ABCD先向右平移1cm,再向上平移2cm,得到正方形A′B′C′D′,则阴影部分的面积为6cm2.【解答】解:∵正方形ABCD的边长为4cm,∴先向右平移1cm,再向上平移2cm可知B′E=3cm,DE=2cm,=3×2=6cm2.∴S阴影故答案为:6.18.(4分)华润苏果的账目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天以同样的价格卖出同样的52支牙刷和28盒牙膏,收入应该是528元.【解答】解:设一支牙刷收入x元,一盒牙膏收入y元,由题意,得39x+21y=396,∴13x+7y=132,∴52x+28y=528,故答案为:528.三、解答题(共8小题,满分86分)19.(15分)计算:(1)a8÷a2+(a2)3(2)(﹣1)2+(﹣2)﹣1×50(3)(a+b)2﹣a(a+b)【解答】解:(1)原式=a6+a6=2a6;(2)原式=1﹣=;(3)原式=a2+2ab+b2﹣a2﹣ab=ab+b2.20.(10分)解方程组:(1)(2).【解答】解:(1),把①代入②得:3x+2(2x﹣3)=8,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2),②﹣①得:2x=10,即x=5,把x=5代入①得:y=2,则方程组的解为.21.(10分)(1)解不等式2(1﹣x)>3x﹣8(2)解不等式组.【解答】(1)解不等式2(1﹣x)>3x﹣8,去括号,得2﹣2x>3x﹣8,移项,得﹣2x﹣3x>﹣8﹣2,合并同类项,得﹣5x>﹣10,系数化为1,得x<2;(2),由①得,x+3≥2x,解得,x≤3,由②得,3x<9,解得,x<3,所以不等式组的解集为:x<3.22.(8分)用不等式解决问题(算术方法不给分)某次数学竞赛共有16道选择题,评分办法:答对一题得6分,答错一题扣2分.某学生没有题未答,这个学生至少答对多少题,成绩才能不低于60分?【解答】解:设这个学生答对x题,成绩才能不低于60分,根据题意得:6x﹣2(16﹣x)≥60,解之得:x≥,答:这个学生至少答对12题,成绩才能不低于60分.23.(12分)某灾区急需大量帐篷,某服装厂原有4条成衣生产线和5条童装生产线,工厂决定转产,计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷110顶;若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷185顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?【解答】(1)解:设每条成衣生产线平均每天生产帐篷x顶,童装生产线平均每天生产帐篷y顶.根据题意得:,解之得:答:每条成衣生产线平均每天生产帐篷40顶,童装生产线平均每天生产帐篷35顶.(2)根据题意得:3×(4×40+5×35)=1005>1000答:工厂满负荷全面转产,可以如期完成任务;如果我是厂长,我会在如期完成任务的同时,注重产品的质量.24.(8分)已知:如图所示,AB∥CD,∠B+∠D=180°.求证:BC∥DE证明:∵AB∥CD 已知∴∠B=∠C(两直线平行,内错角相等)∵∠B+∠D=180°已知∴∠C+∠D=180°(等量代换)∴BC∥DE(同旁内角互补,两直线平行)【解答】证明:∵AB∥CD (已知),∴∠B=∠C(两直线平行,内错角相等),∵∠B+∠D=180°(已知),∴∠C+∠D=180°(等量代换),∴BC∥DE(同旁内角互补,两直线平行),故答案为:C,两直线平行,内错角相等,∠C+∠D=180°,同旁内角互补,两直线平行.25.(10分)问题1:填表:计算代数式的值.a…﹣﹣2﹣1012……12.2593101…a2﹣2a+1问题2:你可以再换几个数再试试(不需要写出来),先观察表格再归纳,你发现a2﹣2a+1的值有什么规律?把它写出来,并说明理由.【解答】解:问题1:把a=﹣2代入a2﹣2a+1中得:4+4+1=9;把a=﹣1代入a2﹣2a+1中得:1+1+1=3;把a=0代入a2﹣2a+1中得:0+0+1=1;把a=1代入a2﹣2a+1中得:1﹣2+1=0;把x=1代入x2﹣2x+2中得:1﹣2+1=1;问题2:规律:结果是非负数.理由:a2﹣2a+1=(a﹣1)2≥0.故答案为:9,4,1,0.26.(13分)问题解决(1)如图1,△ABC中,经过点A的中线AD把△ABC分成△ASD和△ACD,则△ABD的面积S1等于△ACD的面积S2,请你说明理由:问题应用(2)如图2,△ABC中,D是BC的中点,F是AD的中点,△ABC的面积12,则△ABF的面积3;问题拓展(3)如图3,四边形ABCD中,O是内部任意一点,点E、F、G、H分别是AD、AB、BC、CD边的中点,四边形AFOE的面积为3,四边形BGOF的面积为5,四边形CHOG的面积为4.求四边形DEOH的面积;(4)如图4,边长为2正方形ABED与边长为2等腰直角三角形ABC拼合在一起.请你画出过点A作一条直线把四边形ADEC的面积分成相等的两部分.【解答】(1)证明:如图1,过点A作AH⊥BC于点H;∵△ABD的面积S1=BD•AH,△ACD的面积S2=CD•AH,又∵D为BC的中点,∴BD=CD,∴S1=S2;(2)解:∵D是BC的中点,F是AD的中点,△ABC的面积12,∴△ABD的面积=△ABC的面积=6,△ABF的面积=△ABD的面积=3;故答案为:3;(3)解:如图3,连接OA、OB、OC、OD,设△AOE的面积为m,∵E、F、G、H分别是AD、AB、BC、CD边的中点,∴△AOE的面积=△DOE的面积=m,△AOF的面积=△BOF的面积,△BOG的面积=△COG的面积,△DOH的面积=△COH的面积,又∵四边形AFOE的面积为3,四边形BGOF的面积为5,四边形CHOG的面积4∴△AOF的面积=△BOF的面积=3﹣m,同理得:△BOG的面积=△COG的面积=5﹣(3﹣m)=2+m,△DOH的面积=△COH 的面积=4﹣(2+m)=2﹣m,∴四边形DEOH的面积=△DOE的面积+△DOH的面积=m+2﹣m=2;(4)解:连接AE,边长为2正方形ABED与边长为2等腰直角三角形ABC拼合在一起.∴△ABC的面积=正方形ABED的面积=△ABE的面积=△ADE的面积,取BE的中点M,作直线AM,则△ABM的面积=△AEM的面积,∴△ACM的面积=四边形ADEM的面积,即直线AM把四边形ADEC的面积分成相等的两部分,如图4所示.。