Lateral organization in mixed lipid bilayers supported on a geometrically patterned substra
替罗非班在急性进展性脑梗死中应用
现代医学Modern Medical Journal2020,Aug ;48(8):966-970[收稿日期]2020-03-23[修回日期]2020-08-11[作者简介]尹其舵(1982-),男,安徽巢湖人,主治医师。
E -mail :Yqd19820815@163.com[通信作者]吴清阳E -mail :qingyangwumd@163.com[引文格式]尹其舵,李正侠,耿万杰,等.替罗非班在急性进展性脑梗死中应用[J ].现代医学,2020,48(8):966-970.·论著·替罗非班在急性进展性脑梗死中应用尹其舵1,李正侠1,耿万杰1,吴清阳2(1.安徽省阜阳市太和县人民医院神经内科,安徽阜阳236600;2.南京医科大学附属无锡市人民医院影像科,江苏无锡214023)[摘要]目的:探讨替罗非班联合阿司匹林、氯吡格雷对急性进展性脑梗死患者的临床疗效、生活质量ADL 评分、神经功能缺损NIHSS 评分的影响。
方法:前瞻性分析90例急性进展性脑梗死患者,随机分为观察组和对照组,各45例。
对照组给予服用阿司匹林、氯吡格雷治疗,观察组在经替罗非班联合治疗(24 72)h 后贯续服用阿司匹林及氯吡格雷。
比较2组患者治疗后临床疗效、NIHSS 评分(24h 、72h 、7d 及14d )、ADL 评分及不良反应发生率。
结果:观察组总有效率为88.99%,高于对照组的71.11%(P <0.05);观察组治疗后NIHSS 评分低于对照组,且观察组治疗后与治疗前ADL 评分差值高于对照组(P <0.05);不良反应发生率:观察组为13.85%,对照组为7.69%(P >0.05)。
结论:替罗非班联合阿司匹林、氯吡格雷能有效地改善急性进展性脑梗死患者脑组织血流,提高患者生活质量,改善神经功能,安全性较好。
[关键词]急性进展性脑梗死;替罗非班;NIHSS 评分;生活质量[中图分类号]R743.3[文献标识码]A[文章编号]1671-7562(2020)08-0966-05doi :10.3969/j.issn.1671-7562.2020.08.006Effect of tirofiban in patients with acute cerebral infarctionYIN Qiduo 1,LI Zhengxia 1,GENG Wanjie 1,WU Qingyang 2(1.Department of Neurology ,Taihe County People 's Hospital ,Fuyang 236600,China ;2.Department of Radiology ,the Affiliated Wuxi People 's Hospital of Nanjing Medical University ,Wuxi 214023,China )[Abstract ]Objective :To study the clinical efficacy of tirofiban combined with aspirin and clopidogrel on scores ofDaily Living Ability Scale (ADL )and National Institute of Health Stroke Scale (NIHSS )in patients with acute pro-gressive cerebral infarction.Methods :90patients with acute progressive cerebral infarction admitted to our hospi-tal from July 2018to July 2019were randomly divided into observation group and control group (45cases ).The control group was treated with aspirin and clopidogrel ,on top of which the observation group was given tirofiban.The clinical efficacy ,ADL ,NIHSS and adverse reactions between the two groups were statistically analyzed.Results :The total effective rate was 88.89%in the observation group ,71.11%in the control group (P <0.05).In the observation group ,the NIHSS were lower than those during the time of 24h ,72h ,7d and 14d ,respectively (P <0.05)and meanwhile ,the differentials of ADL between post treatment and prior treatment were high than those in the control group (P <0.05).The incidence of adverse reactions was 13.85%in the observation group ,7.69%in the control group (P >0.05).Conclusion :Tirofiban combined with aspirin and clopidogrel has a cura-tive effect in acute progressive cerebral infarction ,improving the brain microcirculation blood flow and nerve func-tion ,enhancing life quality of patients ,and ensuring the safety of the therapy.[Key words ]acute progressive stroke ;tirofiban ;score of NIHSS ;quality of life·669·急性脑梗死是临床常见的一种脑血管疾病,病理生理学基础为脑血供突然中断,可导致脑组织坏死,神经元细胞、星形胶质细胞、胶质细胞不同程度损伤,是出现致残、致死的严重脑血管疾病之一。
四联疗法配合消化内镜治疗消化性溃疡出血的效果及对凝血指标的影响
- 128 -①岑溪市人民医院 广西 岑溪 543200四联疗法配合消化内镜治疗消化性溃疡出血的效果及对凝血指标的影响玉晓锋①【摘要】 目的:探讨四联疗法配合消化内镜治疗消化性溃疡出血(PUB)的效果及对凝血指标的影响。
方法:选取2022年6月—2023年5月岑溪市人民医院收治的76例PUB 患者,根据不同治疗方案分为联合组与常规组,各38例。
常规组予以四联疗法治疗,联合组在四联疗法基础上予以消化内镜治疗,比较两组治疗效果。
结果:联合组出血量少于常规组,止血时间、溃疡愈合时间早于常规组,差异有统计学意义(P <0.05)。
治疗后,两组凝血酶时间(TT)、凝血酶原时间(PT)、D-二聚体(D-D)、国际标准化比值(INR)均低于治疗前,且联合组均低于常规组,差异有统计学意义(P <0.05)。
治疗前,两组胃泌素-17水平比较,差异无统计学意义(P >0.05);治疗后,两组胃泌素-17水平均高于治疗前,且联合组明显高于常规组,差异有统计学意义(P <0.05)。
联合组不良反应总发生率低于常规组,差异有统计学意义(P <0.05)。
结论:四联疗法联合消化内镜治疗PUB 的效果确切,可有效改善机体凝血功能,快速止血以减少出血量,不良反应发生率低,安全性较高。
【关键词】 消化性溃疡出血 消化内镜治疗 四联疗法 凝血指标 doi:10.14033/ki.cfmr.2024.07.032 文献标识码 B 文章编号 1674-6805(2024)07-0128-04 Effect of Quadruple Therapy Combined with Digestive Endoscopy on Peptic Ulcer Bleeding and Its Influence on Coagulation Index/YU Xiaofeng. //Chinese and Foreign Medical Research, 2024, 22(7): 128-131 [Abstract] Objective: To investigate the effect of quadruple therapy combined with digestive endoscopy in the treatment of peptic ulcer bleeding (PUB) and its influence on coagulation index. Method: A total of 76 PUB patients admitted to Cenxi People's Hospital from June 2022 to May 2023 were selected and divided into combined group and conventional group according to different treatment plans, with 38 cases in each group. The conventional group was treated with quadruple therapy, and the combined group was treated with digestive endoscopy on the basis of quadruple therapy. The therapeutic effect of the two groups was compared. Result: The amount of blood loss in the combined group was less than that in the conventional group, and the time of hemostasis and ulcer healing were earlier than those in the conventional group, the differences were statistically significant (P <0.05). After treatment, the thrombin time (TT), prothrombin time (PT), D-dimer (D-D) and international normalized ratio (INR) in the two groups were all lower than those before treatment, and the indexes in the combined group were lower than those in the conventional group, the differences were statistically significant (P <0.05). Before treatment, there was no significant difference in gastrin-17 level between the two groups (P >0.05). After treatment, the levels of gastrin-17 in both groups were higher than those before treatment, and the combined group was significantly higher than that in the conventional group, the differences were statistically significant (P <0.05). The total incidence of adverse reactions in combined group was lower than that in conventional group, and the difference was statistically significant (P <0.05). Conclusion: The effect of quadruple therapy combined with digestive endoscopy in the treatment of PUB is exact, which can effectively improve the body's coagulation function, rapidly stop bleeding to reduce the amount of blood loss, low incidence of adverse reactions, and high safety. [Key word] Peptic ulcer bleeding Digestive endoscopic therapy Quadruple therapy Coagulation index First-author's address: Cenxi People's Hospital, Cenxi 543200, China 消化性溃疡出血(PUB)是消化系统高发疾病,主要发生在胃和十二指肠,其发病可能与幽门螺旋杆菌(Hp)感染、胃酸-胃蛋白酶消化作用、胃黏膜保护能力下降、胃酸分泌过多等因素有关[1]。
the inner life of the cell
While red blood cells are carried away at a high velocity by a strong blood flow, leukocytes roll sowly on endothelial cells.P-selectins on endothelial cells interact with PSGL-1, a glycoprotein on leukocyte microvilli.Leukocytes pushed by the blood flow adhere and roll on endothelial cells because the existing interactions are broken while new ones are formed.These interaction are possible because the extended extracellular domains of both proteins immerge from extracellular matrix,which cover the surface of both cell types.The outer leaflet of the lipid bilayer is rich in single lipids and phosphotidylcholine.Single lipid rich raft raised about the rest of the rafts recuse specified membrane proteins.Rafts rigidity caused by the tight packing of cholesterol molecules against the straight single lipid hydrocarbon chain.Outside the raft, kinks unsaturated chains and lower cholesterol concentration result in increase fluidity.At sights of inflammation, secreted chemokines bind to heparan sulfate proteoglycan endothelial cells are presented to leukocyte's seven transmembrane receptors.The binding stimulates leukocytes and triggers an intraccllular cascade of signaling reactions. #当红细胞被强有力的血流高速运输时,白细胞则@在血管壁的内皮细胞上缓慢滚动。
右旋糖酐铁联合五维赖氨酸治疗婴儿营养性缺铁性贫血的综合疗效
现代医学Modern Medical Journal2020,Aug ;48(8):1020-1024[收稿日期]2019-02-22[修回日期]2020-07-28[作者简介]陈杰超(1986-),女,山东临沂人,主治医师。
E -mail :zzzzqu@163.com[引文格式]陈杰超,赵忠全,邢德强,等.右旋糖酐铁联合五维赖氨酸治疗婴儿营养性缺铁性贫血的综合疗效[J ].现代医学,2020,48(8):1020-1024.·论著·右旋糖酐铁联合五维赖氨酸治疗婴儿营养性缺铁性贫血的综合疗效陈杰超1,赵忠全2,邢德强1,蒋妍1,杜瑞1(1.聊城市东昌府区妇幼保健院儿保科,山东聊城252000;2.聊城市第三人民医院骨科,山东聊城252000)[摘要]目的:研究右旋糖酐铁联合五维赖氨酸颗粒对婴儿营养性缺铁性贫血的血红蛋白水平以及发育商的影响。
方法:124例门诊患儿随机分为研究组(63例)和对照组(61例),对照组给予右旋糖酐铁口服液配合口服维生素C 片辅助治疗,研究组在此基础上加用五维赖氨酸颗粒,统一治疗8周。
比较两组间血红蛋白水平和发育商数值的变化。
结果:研究组患儿Hb 增长幅度明显大于对照组(P <0.01);研究组的DQ 数值增幅明显高于对照组(P <0.01);研究组的总有效率(95.24%)大于对照组的总有效率(81.97%),P <0.05;研究组的不良反应率(4.76%)小于对照组的不良反应率(16.39%),P <0.05。
结论:与单用铁剂相比较,右旋糖酐铁联合五维赖氨酸颗粒治疗婴儿营养性缺铁性贫血,能较快提升血红蛋白水平以及发育商数值,可进一步提高疗效。
[关键词]营养性缺铁性贫血;五维赖氨酸颗粒;血红蛋白;发育商[中图分类号]R556.3[文献标识码]A[文章编号]1671-7562(2020)08-1020-05doi :10.3969/j.issn.1671-7562.2020.08.016Comprehensive efficacy of nutritional iron deficiency anemia in infants treated with iron dextran and five -dimensional lysineCHEN Jiechao 1,ZHAO Zhongquan 2,XING Deqiang 1,JIANG Yan 1,DU Rui 1(1.Department of Child Protection ,Maternal and Child Health Hospital ,Dongchangfu District ,Liaocheng 252000,China ;2.Department of Orthopedics ,Liaocheng Third People 's Hospital ,Liaocheng 252000,China )[Abstract ]Objective :To investigate the effects of iron dextran and five -dimensional lysine granules on hemoglo-bin levels and developmental quotients in infants with nutritional iron deficiency anemia.Methods :124outpatients were randomly divided into study group (63cases )and control group (61cases ).The control group was given iron dextran oral solution combined with oral vitamin C tablets for adjuvant treatment ,on top of which ,the study group-was given five -dimensional lysine granules for 8weeks.The changes in hemoglobin levels and developmental quo-tient values were compared between the two groups.Results :The growth rate of Hb in the study group was signifi-cantly higher than that in the control group (P <0.01).The DQ value of the study group was significantly higher than that of the control group (P <0.01).The total effective rate of the study group (95.24%)was greater than the total effective rate of the control group (81.97%),P <0.05.The adverse reaction rate of the study group (4.76%)was lower than that of the control group (16.39%),P <0.05.Conclusion :Compared with iron alone ,iron dextran combined with five -dimensional lysine granules can improve hemoglobin levels and developmen-·0201·tal quotient values in infants with nutritional iron deficiency anemia.At the same time,this method can further im-prove the curative effect.[Key words]nutritional iron deficiency anemia;five-dimensional lysine granules;hemoglobin;development quo-tient营养性缺铁性贫血(nutritional iron deficiency anemia,NIDA)是常见的贫血类型,发病率最高的群体是6个月 1岁的婴幼儿,具有极大危害。
生物物理化学英语词汇
生物物理化学英语词汇生物物理化学英语词汇生物物理化学英语词汇生物物理学biophysics分子生物物理学molecular biophysics生物物理化学biophysical chemistry分子动力学molecular dynamics柔性flexibility指生物大分子,如蛋白多肽链和磷脂脂肪酸链活动程度的大小。
如需转载,请注明来自:fane『翻译中国』序参数order parameter一级结构primary structure二级结构secondary structure三级结构tertiary structure四级结构quaternary structure螺旋结构helical structureα螺旋α-helixβ折叠β-pleated sheet蛋白质二级结构中的一种构象,其多肽链在空间的走向发生180°的转变。
链间氢键interchain hydrogen bond链内氢键intrachain hydrogen bondβ转角β-bend, β-turn蛋白质折叠protein folding解折叠unfolding解旋unwinding内旋转internal rotation三股螺旋triple helix, triplex螺旋度helicity分子肺molecular lung血红蛋白随氧的得失,其四级结构和亚基间距离发生显著变化,这种一张一合的情况与肺的呼吸类似,可理解为分子肺。
双螺旋duplex, double helix碱基堆积base stacking扭结kink水结构water structure结合水bound water生物能学bioenergetics[离子]近层水primary water离子与水作用,使分子沿着离子造成的电场排列,在离子周围形成结合较紧密、有序性较高的水层。
全反构型all transconfiguration扭曲构象guache conformation寻靶作用targetting二色性dichroism荧光团fluorophore荧光标记fluorescence labelling荧光探剂fluorescence probe荧光偏振fluorescence polarization荧光寿命fluorescence lifetime活性氧active oxygen超氧阴离子superoxide anion笼形结构cage structure非极性分子与水分子相互作用,使水的有序性加强;非极性分子在水中形成空穴,这种非极性分子周围的水分子形成笼形样结构。
海马的结构及功能
• ( 3 ) 杏 仁 被 盖 束 amygdalo-tegmental tract:终止于下丘脑外侧区,黑质、蓝斑等。
• ( 4 ) 杏 仁 皮 质 投 射 amygdalo-cortical projection:投射至眶额回、颞上、中、下回。
• 根据细胞形态,不同皮质区发育旳差别以 及 多 种 纤 维 通 路 旳 不 同 , Lorente do No{1934}把海马又提成CA1、CA2、CA3、 CA4 四 个 扇 形 区 。 CA4 位 于 齿 状 回 门 内,CA3区内有最大旳锥体细胞,CA3区由 大锥体细胞构成, CA1区是邻近下托旳部 分,由小锥体细胞构成,CA2区是移行区, 由大和小锥体细胞构成。
核等。外侧隔核接受大量从海马经穹窿来旳传
入纤维。
• 1.传入纤维
•
〈1〉发自海马旳纤维经穹隆止于外侧隔
核。
•
〈2〉发自杏仁体旳纤维经斜角带或终纹
止于隔核。
• 〈3〉发自中脑网状构造,黑质、蓝斑、中 缝核与下丘脑核旳纤维终止于内侧隔核。
• 〈4〉前穿质发纤维经内侧嗅纹至隔。
• (5)额叶新皮质和扣带回发纤维至隔。
• 3.海马构造旳纤维联络
•
〈1〉传入
•
①丰富旳传入来自内嗅区。
•
②扣带回发纤维经扣带束直接终止
于海马和或经内嗅区中继后发纤维维(胆碱能纤维)经穹
窿、海马伞,终止于海马和齿状回。
•
• ④一侧海马发纤维经同侧海马伞、穹窿 脚,经过海马连合至对侧穹窿脚与海马伞, 终止于对侧海马和齿状回。
电子自旋标记于两种共存的磷脂质相态中的不对称分布
电子自旋标记于两种共存的磷脂质相态中的不对称分布赖奕丞;江昀纬【摘要】该文探讨自旋标记于不同磷脂质相中不对称分布的分子机制.透过电子自旋共振(ESR)波谱技术以及理论波谱分析, 探究两种在磷脂质不同烷基位点上的自旋标记(16-PC & 5-PC)于两种明显不同物理性质的磷脂质 (DPPC & DLPC) 所构成的细胞膜两相共存区域具有不对称分布情形.根据实验结果, 如果自旋探针平均分布在两相之间, 则其波谱将能根据杠杆法则(lever rule) 来拟合波谱的结果, 而自旋探针的分布反映了该探针周围环境的脂质所给予的立体障碍, 而这个不对称的情形可以合理的解释成自旋标记的表面自由面积所造成.根据结果, 16-PC会平均分布在两个不同的相区域, 而5-PC则会有不对称分布的情形.【期刊名称】《波谱学杂志》【年(卷),期】2010(027)003【总页数】15页(P470-484)【关键词】电子自旋共振;分子有续参数;杠杆法则;相共存【作者】赖奕丞;江昀纬【作者单位】清华大学,化学系,台湾,新竹,30013;清华大学,化学系,台湾,新竹,30013【正文语种】中文【中图分类】O482.53IntroductionNitroxide spin label has been extensively used to determine the phase separations in lipid mixtures[1-4]. These diagrams indicated lateral phase separations of lipids into do mains being different compositions, molecular ordering, and fluidity, based on the quantitative descriptions derived from the spectral analysis of electron spin resonance (ESR) data. Thus far, however, the asymmetric partitioning of spin label has been rarely discussed.In membrane biophysics, partitioning of probe molecules into the various thermodynamic phases has been an important issue, because membrane is characterized by complex structures, which are largely heterogeneous[5]. Ge et al.[6] used five spin labels (5-PC, 7-PC, 10-PC, 16-PC and spin-labeled cholestane) to study the phase coexistence of plasma membrane vesicles prepared from RBL-2H3 mast cells. Moreover, spin label approach has also been used to investigate the coexistence of membrane phases in five different cell lines[7]. It was found that in the coexistence phases of liquid-ordered and liquid-disordered the partitioning of different spin label varies with respect to the attached position of spin label on the lipid acyl chains. Since lipids consist of acyl-chains and polar head moieties, their physico-chemical properties are dependent upon the length and degree of unsaturations of acyl-chains, and a variety of polar heads[8, 9]. Similar results were also observed in 250 GHz high-field ESR application[10]. Thus selection of probe molecule is the most crucial matter in the dynamicstudies of biomembranes. The phase fraction in a multi-phase coexisting region would never be correctly studied unless the partitioning coefficient of spin label is adequately evaluated in advance.Interactions between membranes and polypeptides or any solute molecule inserting into membranes are a central issue regarding the insertion and folding of peptides in membrane. Although the mechanism of protein-membrane interactions involves numerous processes, they all must undergo, at an early stage, solutes partitioning between water and lipids and among coexistence phases in membranes. Some rigorous discussions on chain packing theories for micelles and bilayers can be found in early 1980s[11, 12]. Since then, many concerns have been raised that the lipid bilayers and vesicles have been commonly, but incorrectly, viewed as a slab of bulk hydrocarbon liquid and treated with solubility-diffusion theory[13-16]. It was found that the partitioning of solutes between water and lipid membranes is affected by the free-surface-area at which solutes reside in the lipid membranes, as well as the size differences of solutes and membrane molecules. In studying various model phospholipids (DPPC, DLPC, DMPC and n-alkanes) with molecular dynamics simulations[14, 17-21] and experimental measurements[15, 16, 21, 22], it was demonstrated that the partitioning of solutes into membranes is molecule-size dependent requiring the Flory-Huggins theory to correct the value of transfer free energies of solutes, which is originally calculated from general solubility-diffusion model. In other words, the partitioning of solutes is affected by the local environment where it resides at, and the molecularsize differences of solutes and solvents. This issue has not been discussed in the field of the spin-label ESR.In the present report, we describe the asymmetric partitioning of the spin labels, 5-PC and 16-PC, found in lipid phases. This finding is to be manifested by ESR spectral simulations and further confirmed by linear combination of ESR experimental spectra, which is based on the lever rule, a thermodynamics principle. Relevant data for the asymmetric partitioning of 16-PC was previously reported[4, 7]. However, the mechanism of the spin labels partitioning into lipid membranes has never been discussed. Our aims therefore are to i) report the asymmetric partitioning of 5-PC and 16-PC spin labels in the DPPC-rich (Lβ) and DLPC-rich (Lα) coexistence phases and ii) examine the feasibility of applying the existing theories, which were originally used to study solutes partitioning between water and lipid bilayers, to our current system of two-phase coexistence.1 Experimental section1.1 MaterialsPhospholipids and spin labels, 1-palmitoyl-2- (16-doxyl stearoyl) phosphatidylcholine (16-PC) and 1-palmitoyl-2-(5-doxyl stearoyl) phosphatidylcholine (5-PC) were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL). All materials were used without further purification.1.2 Sample preparation and ESR spectroscopyThe sample preparation was previously described in detail. In particular, the spectra of 16-PC were investigated previously to determine the phase diagram of ternary phase diagram[4]. It is briefly summarized below. Asystem of binary lipid mixtures, DPPC and DLPC, was studied. Measured stock solutions of the lipids, and 16-PC and 5-PC in chloroform were mixed in a glass tube. The concentration of spin label was 0.25 mol% of the lipids. The ratio of lipid composition was varied in the range of χDPPC=0.0~1.0. Multibilayer samples were prepared by the method of Rapid Solvent Exchange[23] in a buffer of Pipes/KCl/EDTA=5 mmolL-1/200 mmolL-1/1 mmolL-1 at pH 7.0. Samples were then pelleted using a desktop centrifuge, and transferred to microcapillaries with excess buffer and sealed with paraffin.ESR spectra were obtained on a Bruker Instruments EMX ESR spectrometer at a frequency of 9.55 GHz at a room temperature. In the present study, the recorded ESR spectra were normalized with the double integration of a first-derivative spectrum method and aligned with central peak in prior to the fitting procedure.1.3 ESR spectral simulationsNonlinear least-squares (NLLS) fitting program based on the stochastic Liouville equation (SLE) was used to analyze the spectra from spin labels attached to the acyl chains of the lipids[24]. The dynamic parameters used in the fitting program are rotational diffusion rates (R⊥) and the order parameter (S0) whose molecular axis systems and definitions have been well defined for spectral simulations of membranes[9]. The MOMD model, which stands for microscopic order and macroscopic disorder, was used in the simulation[25] .1.4 Determination of partition coefficient by linear combination of ESRspectraThe bottom line (χChol=0%) of the DPPC-DLPC-Cholesterol ternary phase diagram is known as a tie line[4, 26]. The compositions of the components along the tie line can be predicted from lever rule, which is equivalently, to construct the spectra of the samples in the two-phase coexistence phase by linearly combining two basis spectra on the boundaries[26]. The underlying idea of using linear combination of ESR experimental spectra to determine the partition coefficient Kp is based on Eq. (1) and (2), where vectors A and B represent the two basis set of spectra at a boundary.Here γ represents the component ratio that best fit the samples in the two-phase coexistence region. The spectrum, which is simulated by linear combining the two boundary spectra, is represented as the vector Φ, shown in Eq. (1). The partition coefficient Kp is given by Eq. (2), where μ is a prediction ratio of A component by the lever rule, and γ is the best-fit ratio of A component. The γ value can be determined either by spectral simulation or linear combination of experimental spectra, providing a comparison for the simulations and experiments. Details are given in Result. In other word, the first part of Eq. (2) is the mole percentage ratio of the phases, which is predicted by the lever rule. The second part is the mole faction ratio of the spin label being in each phase. If the spin label partitions into each coexisting phase equally Kp yields unity; whereas, if Kp value is greater than unity it indicates spin label favors of the phase of A component. In principle, Kp values obtained from fitting samples along atie line must be an invariant. Based on this criterion, we may combine Eq.(1) and (2) to obtain Eq. (3).(3)We then performed the least squares fitting procedure to determine Kp values from ESR experimental spectra. Since the vector Ф is the combination of spectra A and B, the problem is then to find the Kp that best fits Φ(Kp) with the experimental ESR spectra according to the minimum in the squared differences or χ2 values between the data. Note that the underlying principle of the procedure can be further applied to determine tie-lines from trail lines[26].2 ResultsFig.1 shows the phase diagram of a lipid mixture of DPPC and DLPC as determined by fluorescence spectroscopy[5] and ESR measurements[4] that t here are two phase boundaries locating at χDPPC=0.3 and 0.85, dividing the system into three regions, which are DLPC-rich liquid-disordered phase (Lα) region, DPPC-rich gel phase (Lβ) region, and a region where DLPC-rich and DPPC-rich phases coexist. To reveal the partitioning parameter of a spin label in the two-phase coexisting region, we first fit the spectra in one phase region to obtain two sets of parameters locating in the nearest neighborhood of two boundaries, i.e., the samples at χDPPC=0.3 and 0.85. Based on the thermodynamic principle that the physical property of each component is an invariant along a tie line, dynamic parameters of each boundary component werefixed while the component ratio was varying in the simulations for the spectra within two-phase region.Phase diagram of DPPC-DLPC lipid mixturesFig.1 The phase diagram of DPPC and DLPC mixtures (χDPPC+χDLPC=1.0). The region χDPPC=0~0.3 is Lα phase, which is the DLPC-rich fluid lamellar phase, and the region χDPPC=0.85~1.0 is Lβ phase, whi ch is the DPPC-rich ordered phase. These two phases (Lα and Lβ) coexist in the regionχDPPC=0.35~0.82.1 Dynamic parameters in the Lα and Lβ coexistence phaseThe ESR spectral simulations of 5-PC and 16-PC from the well-defined coexistence phase, DPPC-rich and DLPC-rich phases, were performed using the NLLS fitting program. We first analyze the boundary spectra using NLLS. The 5-PC spin label intrinsically has more constraint on its motion than does the 16-PC. This was manifested by our simulation results, which show that the axial rotational diffusion rate R⊥ of 16-PC is greater than that of 5-PC while the S0 of 16-PC is less than that of 5-PC. The R⊥ and S0 for 16-PC in the DPPC-rich component are 7×107 s-1 and 0.15, respectively, while those for 5-PC in the same phase component are4.1×107 s-1 and 0.38, respectively. This is consistent with the general consensus that the 16-PC has less constraint on the local environment than 5-PC due to the different position on the acyl chain. Same observations were obtained for the other coexisting component, DLPC-rich, that the R⊥ and S0 for 16-PC are 17.7×107 s-1 and 0.02, respectively; while those for 5-PC are5.9×107 s-1 and 0.29. These dynamic parametersare consistent with the general assignments of Lα and Lβ phase s.Fig.2(a) shows the fitting results for the ESR spectra from 16-PC in the DPPC-rich and DLPC-rich coexistence region, where the solid and dashed lines represent the experimental and simulated spectra, respectively. The spectra in the region were simulated to fit the experimental data by two seed spectra of lipid vesicles right outside the two-phase coexistence region. The component ratio was varied to fit the experimental spectra, while the dynamic parameters were fixed in the two-phase coexistence region. NLLS fitting program returns the best fitting spectra with minimal chi squared value, χ2. Fig.2(b) shows the fitting results of 5-PC in the DPPC-rich and DLPC-rich coexistence region. All fitting procedures are the same as those of 16-PC.Fig.2 ESR spectra from (a) 16-PC and (b) 5-PC in multilamellar vesicle of DPPC and DLPC mixtures at room temperature. The mole fraction of DPPC (χDPPC) is indicated. Solid and dashed lines represent experimental data and simulations, respectively2.2 Partition coefficients by ESR spectral simulationsTo estimate the partitioning condition of different spin label in the two-phase coexistence region, the partition coefficient Kp, defined in Eq. (2), is used to reveal the ratio of the two coexisting phases (Lβ & Lα). The uni ty of Kp indicates the equal partition of the applied spin label. In the present report, Kp>1 denotes that spin label favors of Lα phase. The estimated values of Kp for 5-PC and 16-PC in the two-phase coexistence region are summarized in Table 1. The first column represents the componentpercentage of DPPC in the mixture of DPPC and DLPC. The second column indicates the phase percentage of Lα, predicted from lever rule, in the Lα and Lβ coexistence region. The simulation results are shown in the succeeding columns. The average Kp values for 5-PC and 16-PC are 3.65 and 0.88, respectively; the standard deviations (σ) of which are ca. 1.63 and 0.24.Fig.3 shows correlation plots for 16-PC and 5-PC in the DPPC-rich and DLPC-rich coexistence region. According to the lever rule, the theoretical correlation plot yields a linear diagonal line (solid line with asterisk points), assuming the symmetric partition of the probe molecule. The simulation data derived from the 16-PC spectra (open square) were distributed in the vicinity of the line predicted by the lever rule. The average Kp accounts for more exactly that the 16-PC partitions in DPPC-rich and DLPC-rich phases with a ratio of 1∶0.9. The asymmetric partitioning of 5-PC in the coexistence region is clearly displayed in the correlation plot (Fig.3). The data of 5-PC distributed far from the line of equal partition and yielded the partitioning ratio of DPPC-rich to DLPC-rich by 1∶3.6 ratio.Table 1 The partition coefficients (Kp), determined from ESR simulations, for 5-PC and 16-PC as incorporated in DPPC/DLPC multilamellar vesiclesχDPPCDPPC-rich on the Tie-line (%)5-PC16-PCDPPC-rich (%) (simulation)KpDPPC-rich (%)(simulation)Kp0.890.973.13.7093.30.720.7581.857.63.3386.20.730.772.749.7 2.7074.40.920.6563.634.63.3364.60.960.654.515.16.6762.50.720.5545.5--47.30.930.536.411.14.5440.80.830.4527.38.74.0020.51.450.418.219.40.93--0.359.1--13.60.64Avg:3.65σ:1.63Avg:0.88σ:0.24Fig.3 The correlation plot between the partition ratios for 16-PC (open square) and 5-PC (open circle) in the DPPC-rich and DLPC-rich coexisting region. Sold line with asterisk represents the lever rule predictions with an equal partitioning of the spin labels. The respective average partition coefficients for 16-PC and 5-PC are ca. 0.88 and 3.652.3 Partition coefficients determined by the spectral linear combination methodThe analysis results of the partition coefficients of 16-PC and 5-PC using linear combination of experimental spectra are summarized below. Each spectrum in the two-phase region was fit with a Kp. Thus, the Kp and the standard deviation σKp is shown in average sense instead of using one single Kp to fit all spectra along a tie line. Theoretically, Kp must remain invariant along a tie line. This is the original idea proposed for the determination of partition coefficients using spectral combination. However, we found that fitting all spectra with a single Kp is impractical since the inaccuracy is always promoted by un-anticipated experimental errors. In other words, tiny experimental inac curacy will blur the χ2 values of hypothetical lines and increase ambiguity in χ2 values. Therefore, by fitting each spectrum with one single Kp and observing the result of σKp, we can take the error bar for the Kp values into consideration and exclude some spectra, which result in abnormal values of Kp, from the analysis. The partition coefficients for 16-PC and 5-PC were, therefore, finally determined to be 0.92 and 3.66, respectively. The respective standarddeviations are 0.35 and 1.28. Two abnormal values were observed(Kp<0.01 for χDPPC=0.8 in the 16-PC series and Kp>15 for χDPPC=0.6 in the 5-PC series) and, therefore, excluded from the analysis. These abnormal deviations of Kp were mainly caused by the fluctuations in experimental preparations. The partition coefficients determined by spectral combination (Kp,16-PC=0.92 and Kp, 5-PC=3.66) are well consistent with those obtained from NLLS spectral simulations (Kp, 16-PC=0.88 and Kp, 5-PC=3.65, shown in Table 1).3 Discussion3.1 Fluorescent spectroscopic evidences of asymmetric partitioning Asymmetric partitioning has been reported for various fluorescent probes[27]. Fluorescence quenching measurements on indolyl-labeled lipids have shown that indole ring as attached to 16 acyl-chain cannot partition into the lipid membranes. However, the 18 acyl-chain with indole can partition into the lipid membranes[28, 29]. Using the fluorescence resonance energy transfer (FRET) method, an asymmetric partitioning has been found in the fluorescent probes located in the gel, fluid phases, and the gel/fluid interphase[30]. It was found that a fluorescent dye molecule with acyl chains of 12 carbons prefers a fluid phase, i.e., Lα phase, whereas a dye molecule with 18 carbon acyl chains mainly partitions to the Lβ gel-phase. The study of solubility of two fluorescent lipid amphiphiles with comparable apolar structures and different polar head groups, NBDhexadecylamine and RG-tetradecylamine (or -octadecylamine), shows that short, fully saturated chains (C12:0) and long chains with a c/s-unsaturation partitioned preferentially into disordered phase domains; whereas long fully saturated chains showed no phase preference[31]. The periphery of acyl chains is more randomly distributed in different phases. These findings show some relevance with the asymmetric partitioning of 5-PC in the present report. It infers that asymmetry may exist in the partition coefficients of lipid spin labels.3.2 Molecular basis of the asymmetric partitioningOur spectral simulation and experimental data combination results indicated that 5-PC prefers to DLPC-rich phase, which is characterized by higher fluidity in acyl chains than in DPPC-rich phase, with a ration of3.66∶1. On the other hand, 16-PC has (almost) no preference between the two coexistence phases. The hydrocarbon chains in such amphiphilic mesophases, such as lipid bilayers or multilamellar membranes vesicle, are highly ordered near the interfacial plane of the polar head groups. The order of acyl chains decreases with distance from the interface. This is the so-called gradient of disorder and has been confirmed by studying the packing of short-chain (15-carbon fatty acid chain) molecules in monolayers and bilayer membranes using the theory of lattice model[18] and the theoretical simulations of molecular dynamics and statistical mechanics for lipid membranes[32, 33]. The lattice model was further used to show that the configurations of the hydrocarbon chains in micelles and vesicles are severely constrained by the space-filling requirements of the chain segments and by the continuity of the chains[19]. The gradient of disordering was thus rationalized in terms of surface density and chainlength of the phospholipids. A question raised from these theoretical studies was whether the solubility-diffusion free energy (ΔG=-RTlnKm, where Km is the mole fraction ratio of solute in bulk phase), used for studying solute partitioning between bulk phases, could possibly fail in predicting solutes partitioning among lipid membrane phases. This issue was not clarified until De Young and Dill measured the membrane/water partition coefficients of benzene into lipid bilayers (DLPC, DPPC and DMPC) as a function of the surface density of the phospholipid chains using 2H NMR. It showed that i) increasing surface density of phospholipids chains dramatically leads to solute exclusion; ii) the partitioning of solutes into bilayer membranes is of a fundamentally different nature from partitioning into bulk phases[15]. These findings are consistent with the ESR studies showing that the ordering of spin labels decreases with increased chain length of attached spin labels[9, 10]. Thus the solute uptake increases significantly with the increased chain length of lipid bilayers. In order to determine the relative contributions to partitioning from chain ordering and surface density, the partition coefficients for benzene between an aqueous solvent and phospholipids bilayer membranes were measured as a function of the surface density of the bilayer chains. It has been found that the partition coefficients for benzene between water and n-alkanes (from C8 to C16) were independent of alkane length only if Flory-Huggins (FH) theory, which is more appropriate for a polymer-like system, was used to correct for the molecular size differences of solutes and solvents[16]. This provided supporting evidence for that i) the molecular size (solventand solute) affects mole-fraction-based solubility-diffusion free energies between chain hydrocarbons and water; ii) with the application of FH theory that corrects free energy of solute with solute volume unit, the free energy that determines the partitioning would become independent of chain length. In addition of experimental measurements, there have also been a several theoretical studies. Based upon mean-field model and Monte Carlo simulations, FH theory has been proven useful for evaluating the partitioning for solutes of arbitrary shapes, as long as the solvent is chain-like[17, 20, 34].The same conclusion, that the permeability of solutes across lipid bilayers is dependent on lipid chain packing, was also drawn by studying the Lα and the Lβ phases of DPPC bilayers (with cholesterol variation). This was confirmed by NMR and dynamic light scattering studies[22, 35]. These studies addressed that a scaling factor must be applied to the predictions from solubility-diffusion theory to correct for chain ordering from NMR data. Based on experiments of a variety of membranes, including DLPC, DMPC, DPPC and DSPC, with varying cholesterol concentration and temperature using seven short-chain monocarboxylic acids as permeants, they have satisfactorily explained the chain-length-dependent partitioning of solutes with a free-surface-area theory using FH theory.The most commonly employed model, solubility-diffusions model, for describing the passive transport of permeants across different bulk phases is thus inappropriate for manifesting the chain-length-dependent partitioning of solutes found in the lipid membranes studies. The FHtheory corrects the transfer free energy calculated from solubility-diffusions model by introducing a molecular-size-based volume ratio, so that the volume-ratio-based free energy is independent of chain length after the correction. Similarly, the free-surface-area theory is to account for the decrease in permeability coefficient, which is predicted from a bulk solubility-diffusion model, by introducing a scaling factor for the permeability decrement term. The FH theory and the free-surface-area theory provided the most reliable rationale for explaining the results of the present report that i) the portioning of the spin labels into different phases is dependent on the local free-surface-area where the spin label is attached on the hydrocarbon chains; ii) the partitioning dramatically decreases with decreased free-surface-area of the local environment, which is quantitatively consistent with the trend of the order parameter variation extracted from ESR spectral simulations.3.3 Relation between the free-surface-area and the order parameterMost of the previous studies of investigating solutes partitioning into membranes were based on observation of the surface density variations extracted from 2H NMR studies. The surface density is defined as A0/A, where A is the area occupied per phospholipids molecule and A0 is the area in the crystal. This surface density varies from 0 to 1; the value of 1 represents the completely ordered crystalline state. In the experiments of hexane partitioning into n-alkanes solution, they have observed hexane partitioning decreases by a factor of 9 as the surface density of the bilayer chains increase from 0.5 to 0.9[16]. Similar results have been found inmany studies of membrane systems[15, 22, 35]. They have shown that partitioning increases dramatically in the range from 0.5 to 0.9 of surface density; whereas partitioning is almost independent of solute molecular size and local free-surface-area of acyl chains as the surface density decreases below 0.5[15, 16, 22]. These results are consistent with the present study in terms of order parameter; i.e. the partition coefficient for 5-PC is over 3 (ratio of Lα to Lβ) as order parameter of Lα and Lβ phases is 0.29 and 0.38 respectively; whereas, the partition coefficient of 16-PC is about unity although the order parameter is 0.02 in Lα phase and 0.15 in Lβ phase. This indicated that the local free-surface-area of 16-PC either in Lα or Lβ phases has been large enough to accommodate a nitroxide spin label independently of the solute molecule size, while the local environment of 5-PC, however, is still being in high surface density (high ordering) and has great influence on partitioning of spin labels. This factor plays an important role in preventing 5-PC from partitioning into Lβ phase, resulting in the partition co efficient of 3.66 with favoring of Lα phase. Fig.4 Order parameters Smol (for 2H NMR) and S0 (for ESR) as a function of the labeled position on lipid acyl chain. Open triangle (△) and open circle (○) are 2H NMR data of Seelig[36], and represents POPC and D PPC being in Lα phase respectively. Square represents S0 obtained from ESR simulation in Lα phase (open square) and in Lβ phase (shaded square) respectively. The surface density converted from S0 is shown in parenthesesA comparison between the order parameters of various positions on acylchain obtained from 2H NMR (Smol) and CW-ESR (S0) is shown in Fig.4. The open triangle and open circle are order parameters obtained from 2H NMR[36], and represent POPC and DPPC in Lα phase, respectively. The open and shaded square boxes are order parameters obtained in the present study, and represent spin labels being in Lα and Lβ phases, respectively. The trends of order parameter variations from NMR and ESR data are consistent with each other. The numbers shown in parentheses in Fig.4 are the surface density (σS) converted from ESR order parameters using Eq.(4), which was originally derived in NMR[15]. The partitioning is dramatically decreased by a factor of 3.66 as the surface density is varied from 0.53 in Lα phase to 0.59 in Lβ phase, while it is hardly changed as the surface density is below 0.5 either in Lα phase or Lβ phase. This shows the partitioning of spin label is influenced by surface density as the same way as that for 2H NMR studies. Note that there is no direct conversion between the order parameters obtained from 2H NMR and ESR data, although they possess the same physical meaning in terms of angular fluctuations of chain segments. The main reason for the difference is due to operating frequencies in NMR and ESR experiments, resulting in detecting different time windows of the molecular dynamic.(4)3.4 ESR simulation method for the determination of the asymmetric partitionThe simulations were carried out to evaluate dynamic parameters, R⊥ and。
大肠杆菌翻译后修饰蛋白组分析
大肠杆菌翻译后修饰蛋白组分析大肠杆菌( Escherichia coli)是广泛存在于自然界中的一种革兰氏阴性细菌,它不仅是人类肠道中的重要组成部分,还在生物技术、微生物学和遗传学等领域中有着广泛的应用。
由于其生长迅速且容易操作,大肠杆菌成为了众多实验的首选模型生物,对生物技术领域有着举足轻重的地位。
从表达异源蛋白、生产生物制品,到为功能性基因研究提供关键模型,大肠杆菌都是重要的实验工具。
然而,为了真正理解和利用这些细菌,我们需要对其蛋白质组有深入的认识。
翻译后修饰(PTM)是蛋白质合成完成后,其一种或多种氨基酸残基经过酶促反应或非酶促反应而发生的化学变化。
这一过程对于蛋白质的功能、稳定性及其与其他分子的相互作用起到至关重要的调控作用。
百泰派克生物科技凭借强大的质谱技术平台,推出了大肠杆菌翻译后修饰蛋白组分析技术,以满足广大科研工作者和产业界的需求。
优势1:全面覆盖翻译后修饰类型针对大肠杆菌,我们的技术能够同时检测多种翻译后修饰,包括磷酸化、泛素化、乙酰化等,确保用户获得全面而详细的蛋白质修饰信息。
优势2:高效分离和鉴定利用先进的液相色谱系统进行蛋白质分离,结合串联质谱技术进行准确的修饰位点鉴定,实验周期大大缩短,提高了实验的效率。
优势3:精确定量采用同位素标记技术,确保蛋白质修饰的定量数据准确可靠。
与此同时,多重反应监测(MRM)扫描模式进一步保证了分析的准确性。
优势4:高级质控管理严格执行质量控制标准,包括线性、回收率、准确度、精密度等,确保每一次实验结果都是可信赖的。
应用范围1.大肠杆菌的生理代谢与功能研究。
2.翻译后修饰在大肠杆菌应激反应中的角色。
3.大肠杆菌中翻译后修饰与人类疾病的相关性。
4.基于翻译后修饰的大肠杆菌新药物开发。
随着研究的深入,人们越来越意识到翻译后修饰在细菌生理、代谢及与宿主互作中的重要性。
百泰派克生物科技采用Thermo Fisher的Q ExactiveHF质谱平台,Orbitrap Fusion质谱平台,Orbitrap Fusion Lumos质谱平台结合Nano-LC,为广大科研工作者提供磷酸化/糖基化/泛素化/乙酰化/甲基化/二硫键/亚硝基化等翻译后修饰鉴定。
《生物专业英语》核心词汇
《生物专业英语》专业词汇1.electron microscopy 电子显微镜2.chloroplast 叶绿体3.mitochondria 线粒体4.phospholipid 磷脂5.lipid bilayer 脂双层6.plasma membrane 质膜7.extracellular 细胞外的8.cellulose纤维素9.polysaccharides多糖10.vacuole液泡11.chromatin 染色质12.eukaryotic 真核的13.prokaryotic 原核的14.ribosomes核糖体15.thylakoids类囊体16.peroxisomes, 过氧物酶体17.hydrolytic enzyme 水解酶18.cytoskeleton 细胞骨架19.Chlorophyll 叶绿素20.Chromosome 染色体21.Glycolysis醣酵解22.Microtubule微管anelle细胞器24.Prokaryotic cell 原核细胞25.apoptosis细胞凋亡26.endocytosis 细胞内吞作用27.graminaceous plant禾本科植物28.Pharmacology 药理学29.morphology形态学30.anatomy解剖学31.taxonomy 分类学32.binary nomenclature 双名法33.ontogenesis个体发生34.phylogenesis系统发生35.nanometer 纳米36.micrometer 微米limeter 毫米38.centimeter 厘米39.decimeter分米40.flora植物志,植物群落41.homologous同源的42.plasmodesmata [植]胞间连丝43.plasmolysis质壁分离44.tonoplast液泡膜45.hydrodynamics流体力学, 水动力学46.leucoplast 白色体47.Proplastid 前质体, 原质体48.carotinoid 类胡萝卜素49.saprophytic腐生的50.parasitic寄生的51.endosperm 胚乳52.concentric同中心的53.eccentric偏心的,偏轴的,离心的54.vascular tissue维管组织55.lignin 木质素,56.Chromoplast 有色体57.Amyloplast 淀粉体58.Epidermis 表皮59.Saprophy 腐生60.histology 组织学61.cytology 细胞学62.bacteriology细菌学63.prototype原型64.tobacco mosaic virus (TMV)烟草花叶病毒65.The Transmission Electron Microscope (TEM)透射电子显微镜66.The scanning electron microscope (SEM)扫描电子显微镜67.solid phase 固相68.gas phase 气相69.liquid phase 液相70.ultraviolet light紫外光71.wave length 波长72.subcellular structure 亚细胞结构73.endoplasmic reticulum 内质网74.lipophilic亲脂性的75.assimilation tissue同化组织76.xylem木质部77.phloem韧皮部78.Meristem 分生组织79.embryogenesis胚胎发生80.symmetric对称的81.inflorescence 花, 花序82.apical meristem 顶端分生组织teral meristem侧生分生组织84.intercalary meristem居间分生组织85.apical dominance[植]顶端优势86.gymnosperm 裸子植物87.angiosperm被子植物88.vascular cambium维管形成层89.cork cambium木栓形成层90.annual rings年轮91.internode节间92.morphogenesis形态发生,形态建成,93.differentiate 分化94.dedifferentiate 去分化,反分化95.totipotency 全能, 全能性96.root cap根冠.97.leaf vein叶脉98.radical apex 根尖99.Procambium原始形成层100.cross-section横截面101.parenchyma 薄壁组织102.ornamental plant观赏植物103.Isodiametric等直径的, 等轴的104.lignify木质化105.parasite寄生虫106.xerophyte旱生植物107.Aquatic plant水生植物108.shade plant阴生植物109.guard cell 保卫细胞110.intercellular space细胞间隙111.photosynthesis 光合作用112.anaerobic厌氧的113.infrared light 红外光114.redox氧化还原作用115.cofactor辅助因素116.photosystem 光系统117.cytochrome细胞色素118.ATP (adenosine triphosphate) 三磷酸腺苷119.carboxylase羧化酶120.oxygenase 加氧酶121.photorespiration 光呼吸122.Carbohydrate 糖;碳水化合物123.Mesophyll 叶肉124.Photoinhibition n. 光抑制125.Plastoquinone 质体醌126.antioxidant 抗氧化剂127.decarboxylation脱羧128.autotrophic organisms自养生物129.thermodynamic热力学的130.biodiversity 生物多样性131.symbiotic relationship共生关系132.endosymbiosis内共生133.hydrophobic疏水的134.hydrophilic亲水的135.nanotechnology纳米技术136.biomedical生物医学的137.fluorescent荧光的, 莹光的138.pharmaceutical医药品139.nutraceutical营养品140.promoter启动子141.bioremediation生物补救,生物修复142.biological breakdown生物降解143.interdisciplinary学科间的144.entomology昆虫学145.weed science草业科学146.ecosystem生态系统147.Taxonomy分类学pound eyes复眼149.Fungi真菌150.invasivespecies入侵种151.ScienceCitation Index科学引文索引152.the National Institutes of Health(美国)全国卫生研究所153.Neuroscience.神经系统科学154.ISSN(international standard serial number)国际标准期刊编号155.Semimonthly半月的156.Bimonthly双月的157.Quarterly季度的,三月的158.Engineering Index (EI)工程(技术资料)索引159.dissertation(学位)论文160.Biophysics生物物理学161.Immunology免疫学162.Pathology病理学163.Physiology生理学164.Virology病毒学165.Systematic Biology系统生物学166.antibiotic抗生素167.Genomics基因组学168.pesticide杀虫剂ctic-acid乳酸170.recombinant重组体171.allergic过敏的,患过敏症的172.insulin胰岛素173.identical twins同卵双生174.Dolly the Sheep多利羊175.zygote合子,受精卵176.reproductive cell生殖细胞177.Somatic cell体细胞178.Somatic cell nuclear transfer (SCNT)体细胞核移植179.Artificial embryo twinning人工胚胎双生180.surrogate mother替身母亲181.trial-and-error反复试验182.Implantation移植,培植183.Telomeric端粒的184.telomere端粒185.lifespan寿命186.infertility不育187.in vitro体外,在生物体外188.in vivo在活的有机体内189.genotype基因型190.phenotype表现型,表型191.germination萌芽,发生192.Growth regulator生长调节剂193.auxin生长素194.cytokinin细胞分裂素195.metabolite代谢物196.micropropagation微繁197.disinfection消毒,灭菌198.autoclave高压灭菌器199.explant外植体200.Vector载体201.cancerous tissue癌组织的202.Vaccine疫苗203.Embryonic tissue胚性组织204.homogenize均质化205.bacteriophage噬菌体206.sticky end粘性末端207.blunt end平末端208.ligase连接酶209.codon密码子210.bovine牛的211.transgenic转基因的212.pathogen病菌,病原体213.glucose isomerase葡萄糖异构酶214.starch saccharification淀粉糖基化215.restriction endonuclease限制性内切核酸酶216.rate-determining step限速步骤217.enzymic catalysis酶学催化反应218.specificity特异性219.hydrogen bond氢键220.thermostability热稳定性221.Mutant突变异种,突变体222.Penicillin青霉素223.biosensor生物传感器224.optical isomers光学异构体225.hydrolysis水解226.hexokinase己糖激酶227.hexose己醣228.fructose果糖229.noncovalent非共价键的230.coenzyme辅酶231.Oxidoreductase氧化还原酶232.dehydrogenases脱氢酶233.oxidase氧化酶234.oxygenase加氧酶235.peroxidase过氧(化)物酶236.Transferase转移酶237.Hydrolase水解酶238.esterase酯酶239.glycosidase糖苷酶240.lipase脂肪酶241.protease蛋白酶242.dehydratase脱水酶243.pectinase果胶酶244.Isomerase异构酶245.isomerisation异构化246.epimerase差向(异构)酶247.synthetase合成酶248.pancreas胰腺249.intestine肠250.receptor受体251.Terminator终止子252.anticodon反密码子253.peptide bond肽键254.detoxification解毒,脱毒255.soybean大豆256.trans反式257.cis顺式258.cardiovascular disease心血管疾病259.homogeneous同类的,相似的,均一的260.heterogeneous不同种类的261.carcinogenic致癌物(质)的262.bioethics生物伦理学263.multidisciplinary多学科的264.pesticide杀虫剂265.bioreactor生物反应器266.the Royal Society(英国)皇家学会267.FAO=Food and Agriculture Organization (of the United Nations)(联合国)粮食及农业组织268.broad sense广义的269.narrow sense狭义的270.genetically modified organisms (GMOs)遗传修饰生物271.fishery渔业272.forestry林业273.Marker-assisted selection标记辅助选择274.DNA fingerprintingDNA指纹275.quantitative trait loci数量性状位点276.allergenic引起过敏的277.cultivar栽培品种278.Biosafety生物研究安全性279.Amino acid氨基酸280.Autofluorescence自发荧光281.Base pair碱基对282.Biodiversity生物多样性283.Carotinoid类胡萝卜素284.Centromere着丝点,着丝粒285.Cytoplasm细胞质286.Differentiation分化287.Embryo胚胎,胎儿,胚芽288.Entomology昆虫学289.Genome基因组/染色体组290.Glycosylate使糖基化291.Hybridization杂交,杂种培植,配种292.Inheritance遗传293.Kidney肾脏294.Lysosome溶酶体295.Mammalian哺乳动物296.Meiosis减数分裂297.Micronutrient微量元素298.Mitosis有丝分裂299.Monocotyledon单子叶植物300.dicotyledon双子叶植物301.Mutation突变302.Nucleotide核苷303.Phospholipid磷脂304.Polymerase聚合酶305.Polypeptide多肽306.polymorphism多态性,多型性1.界Kingdom2.门Phylum3.纲class4.目Order5.科family6.属genus7.种Species8.品种variety专业英语单词整理haplo,mono,uni:单,一,独 haploid 单倍体; monoxide 一氧化物bi,di,dipl,twi,du: 二,双,两,偶 dichromatic 双色的;diplobacillus 双杆菌tri: 三,丙 triangle 三角;triacylglycerol 三酰甘油quadri,quadru,quart,tetr,tetra:四 quadruped 四足动物;tetracycline 四环素pent,penta,quique: 五 pentose 戊糖;pentane 戊烷hex,hexa,sex: 六 hexose 已糖 hexapod 六足动物;hexamer 六聚体hepta,sept(i): 七 heptane 庚烷 heptose 庚糖 heptoglobin 七珠蛋白oct: 八octopus 章鱼 octagon 八角形 octane 辛烷 octase 辛糖ennea,nona: 九 nonapeptide 九肽 enneahedron 九面体deca,deka: 十decapod 十足目动物 decahedron 十面体 decagram 十克demi-,hemi-,semi-: 半hemicerebrum 大脑半球;semiopaque 半透明holo-: 全,整体,完全 holoenzyme 全酶;holocrine 全分泌mega-: 巨大,兆,百万 megaspore 大孢子;megakaryocyte 巨核细胞macro-: 大,巨大,多 macrophage 巨噬细胞;macromolecular 大分子的poly-,multi-,mult-: 多,复合 polyacrylate 聚丙烯酸酯;polymerase 聚合酶ab- 去,离开 abarticular 关节外的;abaxial 离轴的acro- 顶,向顶 acrosome 顶体;acrospire 顶芽,初生叶Ambi-, amb-, ambo- 两侧,二,复 ambiopia 复视;ambosexual 两性的amphi- 二,两,双 amphibia 两栖类;amphinucleoli 双核仁pan- 完全 panagglutination 全凝集;panarthritis 全关节炎-ase 酶 protease 蛋白酶;polymerase 聚合酶-ate 盐,酯 phosphate 磷酸盐;sebacate 奎二酸酯-gen 原,剂 antigen 抗原;mutagen 诱变剂-ose 糖 heptose 庚糖,lactose 乳糖-some 体,粒 chromosome 染色体;idiosome 核旁体-phil 亲,嗜,喜 acidophil 嗜酸的,aerophil 好气的-derm 皮,皮层;derma- blastoderm 胚层;dermadrone 内病性皮疹-lemma 皮,壳,鞘膜 basilemma 基底膜;lemmatoxin 鞘毒素-nema 丝,线 amphinema 偶线;chromonema 染色线;nemacicide 杀线虫剂-osic 病,症;-itis acalcicosis缺钙症;hepatitis 肝炎Bacteri(o): 细菌 bacteriocin 细菌素;bacteriophage 嗜菌体Biosis: 生命 anhydrobiosis 脱水生活;dysbiosis 生态失调Carbo: 碳carbocyclic 碳环的;carbonate 碳酸盐Carcin(o): 癌 carcinogen 致癌物;carcinocidin 消癌菌素Caryo: 核 eucaryotic 真核的,caryogenesis 核发生Chemo: 化学 chemotherapy 化学疗法; chemoautotrophy 化能自养(生物) Chlor(o): 绿,氯 chlorophilline 叶绿素;chlorophore 载绿体;chloride 氯化物Chondri(o): 软骨,颗,粒chondriglucose 软骨葡萄糖;chondriosome 线粒体Eryth(ro): 红 erythromycin 红霉素;erythrocyte 红血球Embryo: 胚胎embryogenesis 胚胎发生;embryoblast 成胚细胞Dys-: 不良,异常,障碍 dys-cyclia 循环障碍;dysembryoma 畸胎瘤Eu-: 常,真,好 eucaryote 真核生物;eubacteria 真细菌Exo-: 外 exon 外显子;exonuclease 核酸外切酶Idio-: 独有,特异 idiobiology 个体生物学;idioblast 异细胞Iso-: 等,同,异 isozyme 同功酶;isotropic 各向同性的;isopropanol 异丙醇Hetero-: 异,杂,不同 heterocyclic 杂环的; heterochromosome 异染色体Homeo-: 同祖,(部分)同源homeoallele 部分同源等位基因;homeotransplant 同种移植Homo-: 同,同源,高homocaryon 同核体;homocysteine 高半胱氨酸;homothermal 恒温的Hyalo-: 玻璃、透明hyaloplasm 透明质;hyalospore 无色孢子Cardia(o): 心amyocardia 心肌无力;angiocardiopathy 心血管病;bradycardia 心动过缓Cryo: 冷,冻 cryoadhesion 冷冻粘结;cryoalgae 冰雪藻类Feti(o): 胎feticide 堕胎;fetoscopy 胎镜Fibr(o): 纤维 fibroblast 成纤维细胞;fibrocarcinoma 纤维癌Flav:黄flavoprotein黄素蛋白;thioflavin硫磺素Lip(o)-:脂(的)lipophilic亲脂的;lipoadenoma脂肪腺瘤Lys(o)-:溶、解、分、离lysozyme溶菌酶;lysate溶解产物;lysophagosome吞噬溶酶体Leuc(o)-:无色、白、白细胞leucoagglutinin白细胞凝集素;leucogenenol促白细胞生成素Melan(o)-:黑melanophore载黑素细胞;melanocarcinoma黑素细胞癌Telo-:端,末尾telophase有丝分裂末期;telomerase端粒酶Morpho:形、形态amorphous无定形的;morphogenesis形态发生Myo:肌肉myoglobin肌球蛋白;myoadenofibroma肌腺纤维瘤Neuro:神经neuroangiomatosis神经血管瘤病;neuroepidermal神经表皮的Meso:中、介mesoderm中胚层;mesozoic中生代的Meta:异、变、偏、次、后、中、转metachrome异染色体;metamorphosis变形Organ(o):器官,有机organacidia有机酸症organelle细胞器Ion:离子anion阴离子;zwitterion两性离子Reticul(o):网reticulocyte网织红细胞;reticuloendothelial网状内皮的Vacuo:空,泡,管vacuoplast液泡体;vacuolus液泡Tox:毒toxin毒素;toxemia毒血症Fluor(o):氟,荧光fluorochrome荧光染料;fluorescence荧光Gam:性,婚配、gamete配子;gamic受精的Geno:遗传,基因,种族,生殖genotype基因型;genopathy遗传病Glyc(o),Gluc(o):甜、糖glycoside糖苷;glucohemia糖血症Gyno:雌性gynogamone雌配素;gynospore雌孢子H(a)emo:血haemoglobin血红蛋白;hemocyanin血蓝蛋白Helio:太阳、光heliophilous喜阳的;heliosis中暑Hist(o):组织histocompatibility组织相容性;histidine组氨酸;histone组蛋白Immuno:免疫immunoautoradiography免疫放射自显影Kine(to):动kinetin激动蛋白;kinetochore动粒,着丝点Onco肿瘤,癌oncogene,致癌基因;oncolysis溶癌作用;oncovirus致癌病毒O(v)o卵,蛋oocyte卵母细胞, oocyan卵清蛋白, ovogenesis卵子发生Patho病pathotoxins疾病毒素, pathobolism病理代谢Peri周,围pericardial,心周的;perikaryon核周体Phospho磷酸phosphodiester磷酸二酯Phyto植物phytokinase,植物激酶phytoferritin植物铁蛋白Proto原,初protofibril,原纤维protolignin原木质素Pseudo假,拟pseudoembryo,假胚胎pseudodominance拟显性Vertebrate脊椎动物Rodent啮齿动物Reptile爬行动物Amphibian两栖动物Protozoan原生动物Primate灵长类动物homo sapiens人类abdomen 腹部gall bladder胆囊pancreas胰腺spleen脾duodenum十二指肠small intestine小肠large intestine大肠 blind gut盲肠vermiform appendix阑尾 rectum直肠anus肛门hip臀部joint关节vein静脉capillary毛细血管windpipe气管gullet食管。
猪繁殖与呼吸综合病毒结构蛋白2b研究进展
位点 , 4 在 9和 5 4核 苷酸处 包含 两 个半 胱氨 酸残基 ,
O 5 OR 6 O 7 其 中 OR 2 RF 、 F 、 RF , F ~OR 7编码 病 毒 F 结 构蛋 白, RF a和 OR l O l F b编 码 具 有 聚合 酶 和 解 旋 酶活性 的非 结构蛋 白。Wu H F等n 发 现 了一 个
中图 分 类 号 : 8 2 6 9 6 ¥ 5 . 5 .
文献标识码 : A
文 章编 号 :0 75 3 ( 0 0 i — 0 90 1 0 — 0 8 2 1 ) 00 9 — 3
猪 繁 殖 与 呼 吸综 合 征 病 毒 ( ocn e rd c 码 子 下 游 的两 个 核 苷 酸 。与 E P rierp o u— AV E基 因相 似 , 对
摘 要 : 猪繁 殖 与呼吸 综合征 ( R S 是 由猪繁 殖与 呼 吸 综合 征病 毒 ( RR V) P R ) P S 引起 的母 猪 繁 殖 障碍 和 新生仔 猪 呼吸道 症状 并导致 高死 亡率 的传染 病 , 近年 来 国 内外 学者对病 原进 行 了更 广泛 深入 的研 究。2 b蛋 白是新 发现 的 小结构蛋 白, 分子质 量 约 1 u 能 够诱 导产 生 中和 抗体 , OR 2的优 势蛋 白, 究发现 其是 0k , 是 F 研
促进有益微生物群生长的益生菌和人乳寡糖的合益素组合[发明专利]
专利名称:促进有益微生物群生长的益生菌和人乳寡糖的合益素组合
专利类型:发明专利
发明人:J.周,R.巴克
申请号:CN201180068703.2
申请日:20111222
公开号:CN103763940A
公开日:
20140430
专利内容由知识产权出版社提供
摘要:公开了包括人乳寡糖的营养组合物,其可给予包括早产儿、婴儿、幼儿和儿童的个体以改善胃肠功能和耐受性以及有益微生物群的生长。
也公开了使用包括人乳寡糖的营养组合物的适合的其他方法。
申请人:雅培制药有限公司
地址:美国伊利诺伊州
国籍:US
代理机构:中国专利代理(香港)有限公司
更多信息请下载全文后查看。
创新型实验脂肪组织石蜡切片制作过程中常见问题分析
Vol.5 No.6Dec. 2019生物化工Biological Chemical Engineering第 5 卷 第 6 期2019 年 12 月创新型实验脂肪组织石蜡切片制作过程中 常见问题分析陈文婧,郝兴霞,张东泽(内蒙古医科大学,内蒙古呼和浩特010021)摘 要:脂肪组织由于其结构的特殊性,无法通过常规的石蜡切片和冰冻切片得到较完整、美观的切片,因此被列为不易应用术中快速活检的范围。
基于此,通过实验分析脂肪组织石蜡切片制作中存在的问题,优化制片步骤,旨在得到完整的脂肪组织切片,为今后的教学和临床工作提供方便。
关键词:脂肪组织;石蜡切片;常见问题中图分类号:R361.2 文献标志码:AAnalysis of Common Problems in Paraffin Section Making of Innovative Experimental Adipose TissueChen Wen-jing, Hao Xing-xia, Zhang Dong-ze(Inner Mongolia Medical University, Inner Mongolia Hohhot 010021)Abstract: The particularity of adipose tissue structure, whether conventional paraffin section or frozen section, is difficult to obtain complete and beautiful section. As a result, adipose tissue is listed as an area where rapidintraoperative biopsies are not easy to apply. By analyzing the problems existing in the preparation of paraffin sections of adipose tissue and optimizing the steps of making adipose tissue, this experiment aims to obtain complete adipose tissue slices and provide convenience for teaching and clinical work in the future.Keywords:Fat tissue; Paraffin sections; Frequently Asked Questions脂肪组织可以分成白色脂肪组织和棕色脂肪组织。
大分子结合修饰名词解释
大分子结合修饰名词解释大分子结合修饰是一种生物学术语,它是指天然高分子在生物体内与其他分子相互作用的过程。
这个过程会在高分子的化学结构或功能上引起变化,从而导致细胞、组织或个体的生物学特征、生理行为的变化。
大分子结合修饰是细胞控制信号转导和代谢途径的关键组成部分,并且也影响着疾病的发展。
大分子结合修饰主要是通过后翻译修饰(Post-translational modification,PTM)和转录后修饰(Post-transcriptional modification,PTTM)两种方法实现的。
一、后翻译修饰:后翻译修饰是指在蛋白质合成后,通过特定酶的作用,对蛋白质的化学结构进行改变。
后翻译修饰的细分类型包括:磷酸化、甲基化、糖基化、乙酰化、泛素化、锌指修饰、乳酸化、脂化等。
磷酸化是指在氨基酸残基上结合一种或多种磷酸基团的修饰作用,可以通过酪蛋白激酶(Casein Kinase)或蛋白激酶A、B、C(Protein kinase A、B、C)等多种酶类完成。
甲基化是指在蛋白质甲基转移酶的作用下,对特定氨基酸残基引入甲基化功能基团,从而改变蛋白质化学性质或功能的修饰作用。
乙酰化是指在蛋白质乙酰转移酶作用下,蛋白质中的赖氨酸残基上加入乙酰基(Acetyl),从而影响其结构和功能。
泛素化是指将泛素蛋白结合到蛋白质上,从而修饰蛋白质的特定氨基酸残基,使其参与蛋白质信号转导、蛋白降解、蛋白质定位等生物学过程。
锌指修饰是指将一个或多个锌离子结合到蛋白质上,使其收缩成一个三指结构,是蛋白质与DNA结合的关键。
二、转录后修饰:转录后修饰是指在RNA转录过程中,RNA序列发生改变的一种修饰方式。
物种中常见的RNA修饰包括:RNA剪切、RNA翻译和RNA编辑,这些修饰方式可以改变RNA分子的基序、稳定性、转录后修饰和配体结合等特征,从而影响蛋白质的合成和机能。
总之,大分子结合修饰是控制生物学过程和生命特征的重要机制,通过一些复杂多变的方式使得细胞能够适应生命环境的变化,保持生命的稳态。
1-萘酚诱导人血清白蛋白和牛血清白蛋白构象的变化
were 1 49 × 10 4 L / mol and 8 76 × 10 3 L / molꎬ respectively. The molecular docking method was
used to obtain the optimal binding sites of 1 ̄OHNap in HSA and BSAꎬ which were located at subdo ̄
orophore in HSA. Besidesꎬ the binding interaction with 1 ̄OHNap increased the polarity of the micro ̄
environment around Trp residues in BSA. Thenꎬ the CD spectra were used to obtain the changes in
Meanwhileꎬ the synchronous fluorescence spectra experimental results suggested that the binding in ̄
teractions with 1 ̄OHNap changed the polarity of the microenvironment of binding sites around the flu ̄
under the simulated physiological condition. The binding interactions between 1 ̄OHNap and two ser ̄
um albumin were investigated by steady ̄state fluorescence spectraꎬ synchronous fluorescence spectraꎬ
反式脂肪酸诱导的胰岛素抵抗大鼠脂肪组织巨噬细胞CD68的表达的开题报告
反式脂肪酸诱导的胰岛素抵抗大鼠脂肪组织巨噬细胞CD68
的表达的开题报告
研究背景:
反式脂肪酸(Trans fatty acids, TFA)是由天然植物油经过水解、氢化等反应而生成的一种具有不规则双键结构的不饱和脂肪酸。
由于其具有较高的氧化稳定性和烹饪稳定性,因此在食品加工中被广泛使用。
然而,TFA的过度摄入与多种疾病的发生相关联,比如心血管疾病、糖尿病、肥胖等。
研究目的:
本研究旨在探究TFA诱导的胰岛素抵抗在脂肪组织中是否与巨噬细胞CD68表达的变化相关。
研究方法:
选用40只雄性SD大鼠,随机分为对照组和TFA处理组。
对照组饲料含有正常比例的脂肪酸,TFA处理组饲料中添加TFA,摄入比例为总脂肪酸的7%。
连续16周后,采集大鼠脂肪组织样本,通过免疫组化、RT-qPCR等方法检测脂肪组织巨噬细胞CD68的表达情况,并测定大鼠血糖、胰岛素水平以及脂肪组织的炎症反应。
预期结果:
预期本研究能够得出以下结论:
1. TFA处理组大鼠相对于对照组大鼠表现出更严重的胰岛素抵抗现象。
2. TFA处理组大鼠脂肪组织的巨噬细胞CD68表达明显升高。
3. TFA处理组大鼠脂肪组织的炎症反应明显增强,与巨噬细胞CD68表达水平升高相关。
研究意义:
通过本研究能够深入了解TFA对脂肪组织内巨噬细胞CD68的影响机制,为进一步探究TFA致病机制提供了新的思路。
同时,本研究的结果也有助于人们在生活中更加注重对脂肪酸的选择和摄入量,减少TFA的过度摄入,从而降低相关疾病的发病风险。
高脂饮食下核因子κB调控自噬在小鼠溃疡性结肠炎中的作用及其机制
高脂饮食下核因子κB调控自噬在小鼠溃疡性结肠炎中的作用及其机制王钦;刘维新;李冬;张慧玲;袁琳琳;海双双;彭娜【期刊名称】《中国医科大学学报》【年(卷),期】2022(51)5【摘要】目的观察核因子κB(NF-κB)调控自噬在高脂饮食下葡聚糖硫酸钠(DSS)诱导的小鼠溃疡性结肠炎中的作用及其机制。
方法将小鼠分为正常对照组(Control 组)、高脂饮食组(HFD组)、DSS组、DSS+高脂饮食组(DSS+HFD组),每组12只。
采用体质量差值、疾病活动指数(DAI)和结肠组织病理学结果评估小鼠一般情况和结肠组织炎症程度,采用ELISA检测小鼠血清炎性细胞因子水平,采用实时PCR检测小鼠结肠组织中NF-κB和LC3 mRNA的表达情况。
结果DSS+HFD组体质量差值小于Control组和DSS组(均P<0.05)。
DSS+HFD组DAI、结肠组织病理学评分大于Control组和DSS组(均P<0.05)。
DSS+HFD组血清白细胞介素(IL)-6、肿瘤坏死因子-α(TNF-α)以及结肠组织NF-κB mRNA水平高于Control组和DSS 组(均P<0.05)。
DSS+HFD组结肠组织LC3 mRNA水平低于Control组和DSS组(均P<0.05)。
DSS+HFD组血清IL-10水平低于Control组(P<0.05)。
结论自噬在溃疡性结肠炎中起抗炎作用,高脂饮食下NF-κB抑制自噬的表达,加重结肠炎症反应。
【总页数】6页(P420-424)【作者】王钦;刘维新;李冬;张慧玲;袁琳琳;海双双;彭娜【作者单位】中国医科大学附属第一医院消化内科【正文语种】中文【中图分类】R574.62【相关文献】1.核因子-κB在高脂饮食诱导的大鼠胰腺损伤中的作用2.川芎嗪激活核因子相关因子-2(Nrf-2)抑制高脂饮食喂养的Apo-E基因敲除小鼠的动脉粥样硬化3.运动调控TSLP对高脂饮食下葡聚糖硫酸钠诱导的小鼠溃疡性结肠炎的作用及机制4.桑叶水提物对高脂饮食小鼠脂代谢的调控机制初探5.脂氧素A4受体激动剂及白介素-1β在Toll样受体2/髓样分化因子88/核因子-κB信号通路对哮喘小鼠气道炎症的调控作用因版权原因,仅展示原文概要,查看原文内容请购买。
经鼻给脂多糖对小鼠嗅觉和嗅球及内侧前额叶皮质轻链铁蛋白表达的影响
经鼻给脂多糖对小鼠嗅觉和嗅球及内侧前额叶皮质轻链铁蛋白表达的影响袁玉;马希珍;宋宁;谢俊霞【期刊名称】《青岛大学学报:医学版》【年(卷),期】2022(58)3【摘要】目的探讨鼻内滴注脂多糖(LPS)对小鼠嗅觉和嗅球及内侧前额叶皮质中轻链铁蛋白表达的影响。
方法8周龄雄性C57BL/6小鼠16只,随机分为对照组和LPS组,每组8只。
LPS组双侧鼻孔交替滴注1 g/L的LPS(每只10μL),对照组给予等体积的生理盐水,隔天1次,给药时长为3周。
3周后测试两组小鼠的嗅觉功能,采用免疫印迹法检测嗅球中酪氨酸羟化酶(TH)的表达,并检测嗅球及内侧前额叶皮质中轻链铁蛋白的表达。
结果与对照组相比,LPS组小鼠没有明显的嗅觉障碍;嗅球中TH表达无明显变化;嗅球中轻链铁蛋白表达升高87%,差异有统计学意义(t=4.486,P<0.05);内侧前额叶皮质中轻链铁蛋白水平升高84%,差异有统计学意义(t=2.391,P<0.05)。
结论经鼻给LPS能够引起嗅球及内侧前额叶皮质中铁含量上升,但没有造成明显的嗅觉障碍及嗅球内多巴胺能神经元损伤。
【总页数】4页(P317-320)【作者】袁玉;马希珍;宋宁;谢俊霞【作者单位】青岛大学脑科学与疾病研究院【正文语种】中文【中图分类】R338.2【相关文献】1.电针迎香穴对嗅觉障碍大鼠嗅粘膜 Ki-67、IGF-1R 及嗅球 IGF-1表达的影响2.嗅球注射甲苯对小鼠嗅觉辨识记忆和嗅球5-羟色胺能神经元的影响3.经鼻给枸橼酸铁铵对小鼠嗅觉、嗅球铁含量及TH蛋白表达影响4.不同程度嗅球切除对小鼠认知功能、内嗅皮质、海马体积及神经病理的影响5.慢性间歇性饮酒小鼠内侧前额叶皮质5-HT2C受体对5-CSRTT认知作用的影响因版权原因,仅展示原文概要,查看原文内容请购买。
Ⅱ型胶原蛋白与弗氏佐剂诱导关节炎小鼠模型的建立
Ⅱ型胶原蛋白与弗氏佐剂诱导关节炎小鼠模型的建立周夏娟;应旭旻【期刊名称】《中国老年学杂志》【年(卷),期】2017(37)15【摘要】目的探讨成功建立胶原诱导关节炎(CIA)小鼠模型及如何提高建模成功率.方法选择8周龄的雄性DBA/1J小鼠20只,随机分为正常组(n=10),CIA实验组(n=10),100 μg牛Ⅱ型胶原蛋白溶于完全弗氏佐剂,在尾根部皮下注射,第21天再次注射50~100 μg.免疫后观察小鼠的关节改变,按小鼠关节疾病严重程度评分.结果正常组均未发病,实验组约4 w后开始第一个足趾出现肿胀,第7周发病率为50%,平均关节炎指数(MAI)为2.1,10 w后CIA小鼠模型的发病率为90%,MAI为7.1.结论选择近交系雄性的DBA/1J小鼠,且选择小鼠尾根部皮下注射Ⅱ型胶原蛋白与弗氏佐剂相对发病率较高.【总页数】2页(P3689-3690)【作者】周夏娟;应旭旻【作者单位】浙江中医药大学附属第一医院,浙江杭州 310006;杭州市急救中心【正文语种】中文【中图分类】R392【相关文献】1.空肠弯曲杆菌与弗氏完全佐剂诱导系统性红斑狼疮样小鼠模型的建立 [J], 刘文斌;杨秀敏;周宁;王月华;张海霞;任德成;杜冠华2.Ⅱ型胶原蛋白与弗氏完全佐剂大鼠关节炎模型的建立和比较 [J], 林红;贺永怀;黎燕;陆应麟;沈倍奋3.骨髓间充质干细胞来源的外泌体对弗氏完全佐剂诱导类风湿性关节炎大鼠的治疗作用 [J], 范爱玉;谢卫勇;骆芳茗;范爱霞4.木樨草素对弗氏佐剂诱导大鼠关节炎的改善作用及其机制 [J], 施凤超;朱文峰;朱宇伟;王成;周敦5.薯蓣皂苷对弗氏佐剂诱导类风湿关节炎大鼠的影响 [J], 刘佳钰;李锐;周威;张光伟;倪丹红;刘丹;李娟因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Qing Liang and Yu-qiang Ma∗
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China The organization of lipids in biological membranes is essential for cellular functions such as signal transduction and membrane trafficking. A major challenge is how to control lateral lipid composition in supported membranes which are crucial for the design of biosensors and investigation of cellular processes. Here, we undertake the first theoretical study of lateral organization of mixed lipids in bilayers induced by a geometrically patterned substrate, and examine the physical mechanism of patterned substrate-induced structural formation in the supported lipid bilayers. A rich variety of composition segregations of lipids are regulated, and the results can account well for most recent experimental works [Yoon, T. Y. et al. Nat. Mater. 5, 281(2006) and Parthasarathy, R. et al. Langmuir 22, 5095(2006)]. The present study provides a comprehensive understanding of mechanically controlling the spatial organization of membrane components by unifying these experimental evidences. Keywords: membrane organization; mixed lipid bilayer; patterned substrate
arXiv:cond-mat/0611076v1 [cond-mat.soft] 3 Nov Biomembranes are self-assembled bilayers of lipid molecules. Recently, supported membrane[1, 2] has attracted extensive interest, not only due to its importance in studying the properties and functions of biological membranes, but also due to its potential applications in design and fabrication of biological devices.[3, 4, 5, 6, 7] Supported bilayers can maintain the structural and dynamic properties of free bilayer such as the lateral fluidity, share many similarities with the natural membranes, and therefore are widely used as cell-surface models that connect biological and artificial materials.[1, 2] To realize the bio-functional supported membranes or design novelly biological devices, we usually need to manipulate the supported membranes in nanometer or micrometer scale.[6] For example, one can apply a lateral electric field to rearrange the distribution of lipids in a supported membrane for some related cellular processes.[8] Additionally, one can also separate a supported membrane into welldefined membrane domains by introducing some barriers into it, and micropattern it by the help of approaches of photolithographic patterning, microprinting, or microfluidic flow patterning.[9, 10] Supported membrane micropatterning has attracted tremendous attention in recent years because of its potential applications in the investigation of immunobiology, drug discovery, design of biosensors, etc.[2] Most recently, Lee and co-authors[11, 12, 13] presented an experimental approach to manipulate the lipid segregation in a mixed supported membrane by use of the geometrical property of substrate. They studied the lateral organization of lipids in a mixed membrane supported on a substrate with a groove,[11, 12] and found that, due
to different effective molecular shapes of mixed lipids, the two kinds of lipids spontaneously segregate, where the lipids with big spontaneous curvature are preferentially localized at the grooves. In a most recent experimental work, Yoon et al.[13] studied the effect of topographical substrate on the lipid raft formation in the supported membrane. In their system, the topography of the substrate is either nanocorrugated or nanosmooth, and the membrane supported on such a substrate will be curved at certain predetermined positions to follow the substrate structure. Because of large bending rigidity of sphingolipid/cholesterol-rich lo domains, there exists a large free energy when they stay in the curved regions. Thus, the macroscopic rafts which are coarsened by the nanorafts, can emerge in the nanosmooth regions of substrate, whereas there are only nanorafts in the nanocorrugated regions. On the other hand, Parthasarathy et al.[14] proposed a curvature-mediated modulation of phase-separated structures in membranes, and they found that, beyond a critical curvature of membrane geometry, the cholesterol-rich lipid-ordered lo domains stayed in the small-curvature regions, while the cholesterol-poor lipid-disordered ld domains were preferentially localized in the large-curvature regions due to their different rigidities. Besides the lipid domains in supported membrane systems, it was also found that membrane curvature can induce phase separation in the mixed giant unilamellar vesicles(GUVs) due to the different rigidities of different domains.[15, 16, 17] Further research will be needed to uncover and reveal all the possible lipid structures and physical mechanisms behind experimental evidence from lateral organization in supported membranes. As is well-known, it is still difficult to systematically probe and visualize the laterally heterogeneous structures of lipids from tens to hundreds of nanometers in size with current experimental technologies.[18] There is therefore an urgent need to gain greater theoretical insight into the physical picture of how membrane organization is governed. Here,