新高考版高考数学专题复习 §3.1 函数的概念
高考函数详细知识点总结
高考函数详细知识点总结高考数学中,函数是一个重要的概念,几乎涉及到每年的数学必考内容。
函数作为一种数学工具,在解决实际问题、分析数学关系等方面具有重要意义。
本文将对高考函数的详细知识点进行总结,以便帮助考生更好地掌握高考数学知识。
一、函数的定义和性质1. 函数的定义:函数是一个对应关系,将自变量的每一个值对应到唯一的因变量上。
2. 定义域和值域:函数的定义域是自变量的取值范围,值域是函数结果的取值范围。
3. 奇偶性:函数的奇偶性与函数图像的对称性相关,奇函数关于原点对称,偶函数关于y轴对称。
4. 单调性:函数的单调性描述了函数图像的增减变化趋势,分为递增和递减两种情况。
二、函数的表示和分类1. 显式表示和隐式表示:函数可以通过显式表达式(y=f(x))或隐式方程表示。
2. 基本初等函数:包括常数函数、幂函数、指数函数、对数函数、三角函数等,这些函数在高考数学中经常出现。
3. 复合函数:由一个函数的输出作为另一个函数的输入所得到的函数。
三、函数的图像和性质1. 函数的图像:函数的图像是函数在平面直角坐标系上的几何表示,通过观察函数图像可以了解函数的性质。
2. 函数的对称性:函数可能存在关于y轴、x轴或原点的对称性。
3. 函数的周期性:若存在正数T,使得对于函数中的任意x值,都有f(x+T)=f(x),则称函数是周期函数。
四、函数的运算和变换1. 函数的四则运算:函数可以进行加减乘除运算,不同函数之间的运算法则与数的运算法则类似。
2. 函数的平移变换:将函数图像在平面上上下左右平移得到新的函数图像。
3. 函数的伸缩变换:改变函数图像的纵坐标和/或横坐标,使其更陡峭或扁平。
五、函数的极限和连续性1. 函数的极限:极限可以用于描述函数在某个点附近的变化趋势,重要的极限有左极限和右极限。
2. 函数的连续性:函数在一个区间上的无间断性,重要的连续性概念有间断点、可去间断点、跳跃间断点和第一类间断点等。
六、函数的导数和应用1. 导数的定义:导数是函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。
【新高考】高三数学一轮复习知识点讲解3-1 函数的概念及其表示
专题3.1 函数的概念及其表示【考纲解读与核心素养】1.了解函数的概念,会求简单的函数的定义域和值域.2.理解函数的三种表示法:解析法、图象法和列表法.3.了解简单的分段函数,会用分段函数解决简单的问题.4.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等. 5.高考预测:(1)分段函数的应用,要求不但要理解分段函数的概念,更要掌握基本初等函数的图象和性质.(2)函数的概念,经常与函数的图象和性质结合考查.6.备考重点:(1)理解函数的概念、函数的定义域、值域、函数的表示方法;(2)以分段函数为背景考查函数的相关性质问题.【知识清单】1.函数的概念2.函数的定义域、值域(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【典例剖析】高频考点一 函数的概念【典例1】(2020·洪洞县第一中学高三期中(文))下面各组函数中是同一函数的是( ) A .32y x =-与2y x x =- B .()2y x =与y x =C .11y x x =+⋅-与()()11y x x =+-D .()221f x x x =--与()221g t t t =-- 【答案】D 【解析】因为选项A 中,对应关系不同,选项B 中定义域不同,对应关系不同,选项C 中,定义域不同,选项D 中定义域和对应法则相同,故选D.【典例2】在下列图形中,表示y 是x 的函数关系的是________.【答案】①②【解析】由函数定义可知,自变量x 对应唯一的y 值,所以③④错误,①②正确. 【规律方法】函数的三要素中,若定义域和对应关系相同,则值域一定相同.因此判断两个函数是否相同,只需判断定义域、对应关系是否分别相同. 【变式探究】1.x R ∈,则()f x 与()g x 表示同一函数的是( ) A. ()2f x x =, ()2g x x =B. ()1f x =, ()()01g x x =-C.()()2x f x x=, ()()2xg x x= D. ()293x f x x -=+, ()3g x x =-【答案】C【解析】A 中: ()2g x x =2x x =≠;B 中: ()()()0110g x x x =-=≠;C 中:, ()()2x f x x=1,0{1,0x x >=-< , ()()2xg x x =1,0{ 1,0x x >=-<;D 中: ()()29333x f x x x x -==-≠-+,因此选C.2.(2018届江西省检测考试(二))设,,函数的定义域为,值域为,则的图象可以是( )A. B.C. D.【答案】B【解析】因为定义域为,所以舍去A;因为值域为,所以舍去D;因为对于定义域内每一个x 有且只有一个y 值,所以去掉C ;选B. 【易混辨析】1.判断两个函数是否为相同函数,注意把握两点,一看定义域是否相等,二看对应法则是否相同.2.从图象看,直线x=a 与图象最多有一个交点. 高频考点二:求函数的定义域【典例3】(2019·江苏高考真题)函数276y x x =+-_____. 【答案】[1,7]-. 【解析】由已知得2760x x +-≥, 即2670x x --≤解得17x -≤≤, 故函数的定义域为[1,7]-.【典例4】(2020·河南省郑州一中高二期中(文))已知函数(1)y f x =+定义域是[2,3]- ,则(21)y f x =-的定义域是( ) A .[0,52] B .[1,4]- C .[5,5]- D .[3,7]-【答案】A 【解析】因为函数(1)y f x =+定义域是[2,3]- 所以114x -≤+≤所以1214x -≤-≤,解得:502x ≤≤ 故函数(21)y f x =-的定义域是[0,52] 故选:A【典例5】(2019·邵阳市第十一中学高一期中)已知函数(31)f x -的定义域是[]0,2,则函数()f x 的定义域是( ) A.[]0,2 B.1[1]3,C.[-15],D.无法确定【答案】C 【解析】由已知02x ≤≤,1315x ∴-≤-≤,即函数()f x 的定义域是[-15],, 故选:C . 【规律方法】1.已知函数的具体解析式求定义域的方法(1)若f (x )是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集. (2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 2.抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 【变式探究】1.(2019·山东省章丘四中高三月考)函数1()lg(1)f x x =++ )A .[2,2]-B .[2,0)(0,2]-C .(1,0)(0,2]-⋃D .(-1,2]【答案】C 【解析】1011()lg(1)00(1,0)(0,2]lg(1)202x x f x x x x x x x +>⇒>-⎧⎪=++≠⇒≠⇒∈-⋃⎨+⎪-≥⇒≤⎩故答案选C2.(2020·福建省福州第一中学高三)已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为( )A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,4 【答案】C 【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠ .所以10022x x -≠⎧⎨≤≤⎩ 解得01x ≤< 故答案为C 【特别提醒】求函数的定义域,往往要解不等式或不等式组,因此,要熟练掌握一元一次不等式、一元二次不等式的解法、牢记不等式的性质,学会利用数形结合思想,借助数轴解题.另外,函数的定义域、值域都是集合,要用适当的表示方法加以表达或依据题目的要求予以表达. 高频考点三:求函数的解析式【典例6】(2019·天津南开中学高一期中)设函数()f x 满足1()11xf x x-=++,则()f x 的表达式为( )A .2211x x-+ B .221x + C .21x + D .11x x -+ 【答案】C 【解析】 设11x t x -=+,则11t x t -=+,所以12()111t f t t t -=+=++,所以2()1f x x=+,故选C .【典例7】(2019·安徽省毛坦厂中学高三月考(理))已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式;(2)求()f x 在区间[]1,2-上的最大值;(3)若函数()f x 在区间[],1a a +上单调,求实数a 的取值范围. 【答案】(1)()222f x x x =-+;(2)5;(3)(][),01,-∞⋃+∞.【解析】(1)由()02f =,得2c =,由()()121f x f x x +-=-,得221ax a b x ++=-,故221a a b =⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩, 所以()222f x x x =-+.(2)由(1)得:()()222211f x x x x =-+=-+, 则()f x 的图象的对称轴方程为1x =, 又()15f -=,()22f =,所以当1x =-时()f x 在区间[]1,2-上取最大值为5. (3)由于函数()f x 在区间[],1a a +上单调, 因为()f x 的图象的对称轴方程为1x =, 所以1a ≥或11a +≤,解得:0a ≤或1a ≥,因此a 的取值范围为:(][),01,-∞⋃+∞. 【规律方法】1.已知函数类型,用待定系数法求解析式.2.已知函数图象,用待定系数法求解析式,如果图象是分段的,要用分段函数表示.3.已知()f x 求[()]f g x ,或已知[()]f g x 求()f x ,用代入法、换元法或配凑法.4.若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解. 5.应用题求解析式可用待定系数法求解. 【变式探究】1.(2018届安徽省安庆市第一中学)已知单调函数,对任意的都有,则( )A. 2B. 4C. 6D. 8 【答案】C 【解析】 设,则,且,令,则,解得,∴,∴.故选C .2.(2020·江苏省高三专题练习)已知2()(1)()2f x f x f x +=+,(1)1f =,(x N +∈),()f x =__________.【答案】21x + 【解析】()()()212f x f x f x +=+11111111(1)1(1)(1)()2()(1)222x x x f x f x f x f +⇒=+⇒=+-⨯=+-⨯=⇒+ ()21f x x =+高频考点四:求函数的值域【典例8】(2019·浙江省镇海中学高一期中)函数()()10f x x x x=+<的值域为( )A .[)2,+∞B .(][),22,-∞+∞ C .(],2-∞-D .R【答案】C 【解析】当0x <时,0x ->,()12f x x x ⎛⎫∴=---≤-=- ⎪⎝⎭(当且仅当1x x -=-,即1x =-时取等号),()f x ∴的值域为(],2-∞-.故选:C .【典例9】(2020·甘肃省武威十八中高三期末(理))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.54-=-,[]2.12=,已知函数()112x xe f x e =-+,则函数()y f x ⎡⎤=⎣⎦的值域是__________ 【答案】{}1,0- 【解析】依题意()111111221x x xe f x e e +-=-=-++,由于11xe +>,故11112212x e -<-<+,即()f x 的值域为11,22⎛⎫- ⎪⎝⎭,所以函数()y f x ⎡⎤=⎣⎦的值域是{}1,0-. 故填:{}1,0-.【典例10】(2020·辽河油田第二高级中学高二月考)函数()f x x =的值域是________________. 【答案】1,2⎡⎫-+∞⎪⎢⎣⎭【解析】函数()f x x ,令0t t =≥则21122x t =-, 则()2211112222f t t t t t =+-=+-()21112t =+-,0t ≥. 由二次函数性质可知,在[)0,t ∈+∞内单调递增,所以当0t =即12x =-时取得最小值,最小值为12-,因而()1,2x f ⎡⎫∈-+∞⎪⎢⎣⎭, 故答案为:1,2⎡⎫-+∞⎪⎢⎣⎭. 【规律方法】函数值域的常见求法: (1)配方法配方法是求“二次函数型函数”值域的基本方法,形如F (x )=a [f (x )]2+bf (x )+c (a ≠0)的函数的值域问题,均可使用配方法. (2)数形结合法若函数的解析式的几何意义较明显,如距离、斜率等,可用数与形结合的方法. (3)基本不等式法:要注意条件“一正,二定,三相等”.(可见上一专题) (4)利用函数的单调性①单调函数的图象是一直上升或一直下降的,因此若单调函数在端点处有定义,则该函数在端点处取最值,即若y =f (x )在[a ,b ]上单调递增,则y 最小=f (a ),y 最大=f (b ); 若y =f (x )在[a ,b ]上单调递减,则y 最小=f (b ),y 最大=f (a ).②形如y =ax +b +dx +c 的函数,若ad >0,则用单调性求值域;若ad <0,则用换元法.③形如y =x +k x (k >0)的函数,若不能用基本不等式,则可考虑用函数的单调性,当x >0时,函数y =x +kx (k >0)的单调减区间为(0,k ],单调增区间为[k ,+∞).一般地,把函数y =x +kx (k >0,x >0)叫做对勾函数,其图象的转折点为(k ,2k ),至于x <0的情况,可根据函数的奇偶性解决. *(5)导数法利用导函数求出最值,从而确定值域.高频考点五:分段函数及其应用【典例11】(2019·永济中学高一月考)已知5,6()(2),6x xf xf x x-≥⎧=⎨+<⎩,则(3)f为()A.2 B.3 C.4 D.5【答案】A【解析】(3)(32)(52)752f f f=+=+=-=故选:A【典例12】(2018届湖北省5月)设函数,若,则实数的值为()A. B. C. 或 D.【答案】B【解析】因为,所以所以选B.【典例13】(2018年新课标I卷文)设函数,则满足的x的取值范围是()A. B. C. D.【答案】D【解析】将函数的图象画出来,观察图象可知会有,解得,所以满足的x的取值范围是,故选D.【典例14】(2020·上海高三)若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.【答案】(]1,2【解析】 由于函数()()6,2{0,13log ,2a x x f x a a x x -+≤=>≠+>的值域是[)4,+∞,故当2x ≤时,满足()64f x x =-≥,当2x >时,由()3log 4a f x x =+≥,所以log 1a x ≥,所以log 2112a a ≥⇒<<,所以实数a 的取值范围12a <≤.【总结提升】1.“分段求解”是处理分段函数问题解的基本原则;2.数形结合往往是解答选择、填空题的“捷径”.【变式探究】1.(2020·辽宁省高三二模(理))设函数21log (2),1(),1x x x f x e x +-<⎧=⎨≥⎩,则(2)(ln 6)f f -+=( ) A .3B .6C .9D .12 【答案】C【解析】 由题意,函数21log (2),1(),1x x x f x e x +-<⎧=⎨≥⎩, 则ln 62(2)(ln 6)1log [2(2)]1269f f e -+=+--+=++=.2.(2020·浙江省高三二模)已知函数()231,0,2,0,x x f x x x x ⎧-≥=⎨--<⎩若存在唯一的整数x ,使得()()0x f x a ⋅-<成立,则实数a 的取值范围是( )A .12a ≤≤B .01a ≤<或28a <≤C .28a <≤D .11a -<<或28a <≤ 【答案】B【解析】如图所示,画出函数()f x 图像,当0x >时,()()0x f x a ⋅-<,即()f x a <,故()()12f a f <≤,即23131a -<≤-,即28a <≤;当0x =时,易知不满足;当0x <时,()()0x f x a ⋅-<,即()f x a >,故()01a f ≤<-,即()011a f ≤<-=.综上所述:01a ≤<或28a <≤.故选:B.3.(2018届河北省唐山市三模)设函数则使得成立的得取值范围是__________. 【答案】.由,得或, 得或,即得取值范围是, 故答案为. 4.(2020·江苏省高三月考)已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是_____.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得 22(2)8a a a +=-++,解得1a =, 则21(1)112f f a ⎛⎫==+= ⎪⎝⎭. 故答案为:2.【易错提醒】因为分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值时,一定要注意自变量的值所在子集,再代入相应的解析式求值.。
高三数学所有函数知识点
高三数学所有函数知识点函数是数学中一个重要的概念,它在高三数学中占据着重要的地位。
函数可以描述数学中的关系,帮助解决各种实际问题。
下面将详细介绍高三数学中所有函数的知识点。
一、函数的基本概念函数是一种对应关系,如果存在一对元素,使得对于每一个自变量(输入)都对应唯一的因变量(输出),则称这种对应关系为函数。
函数可以用数学符号表示为:y = f(x),其中x为自变量,y为因变量。
二、函数的性质1. 定义域和值域:定义域是指所有自变量的取值范围,值域是指所有因变量的取值范围。
2. 单调性:函数的单调性描述了函数在定义域内的变化趋势,可以分为增函数和减函数。
3. 奇偶性:函数的奇偶性描述了函数在定义域内的对称性,可以分为奇函数和偶函数。
4. 周期性:周期函数是指函数在一定区间内以相同的规律重复的函数。
5. 对称轴和最值:函数的对称轴指的是函数的图像关于某条直线对称,最值是函数在定义域内取得的最大值和最小值。
6. 渐近线:渐近线是指函数的图像无限靠近但不与某直线相交的特殊直线。
三、常见函数类型1. 一次函数:y = kx + b,其中k和b为常数,k表示斜率,b 表示截距。
2. 二次函数:y = ax^2 + bx + c,其中a、b和c为常数,a不为0。
3. 反比例函数:y = k/x,其中k为常数,x不为0。
4. 幂函数:y = x^a,其中a为实数,x大于0。
四、函数的图像与性质1. 一次函数的图像是一条直线,斜率k决定了线的倾斜程度,截距b决定了线与y轴的交点。
2. 二次函数的图像是一条抛物线,开口向上或向下取决于二次项系数的正负。
3. 反比例函数的图像是一条由坐标原点发出的双曲线。
4. 幂函数的图像根据指数a的正负来决定曲线在第一象限和第四象限的开口方向。
五、复合函数和反函数1. 复合函数是指将一个函数代入到另一个函数中的运算,常用符号为g(f(x))。
2. 反函数是指函数的逆运算,将函数的输入和输出互换得到的函数。
高中函数概念知识点总结
高中函数概念知识点总结一、函数的概念1. 函数的定义函数是一个非常基本的概念,它可以表达变量之间的依赖关系。
在代数或数学分析中,函数是一种特殊的关系,即每个自变量的值都对应着唯一的因变量的值。
用符号表示为:y=f(x),其中x为自变量,y为因变量,f为函数关系。
在实际应用中,函数可以描述抽象的关系,也可以表示具体的物理、经济、生活等现象。
2. 函数的图像函数的图像是函数在坐标系中的几何表示,用曲线或者折线表示。
它可以帮助我们直观地了解函数的性质,如增减性、奇偶性、周期性等。
3. 函数的定义域和值域函数的定义域即自变量的取值范围,值域即因变量的取值范围。
了解函数的定义域和值域可以帮助我们更好地理解函数的性质和特点。
4. 函数的解析式函数的解析式表示函数之间的依赖关系,可以用代数式、分段函数、组合函数等形式表示。
掌握函数的解析式有利于我们对函数进行分析和运算。
5. 常见函数常见函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。
了解这些常见函数的性质和特点有助于我们更好地理解和运用函数。
二、函数的基本性质1. 函数的奇偶性函数的奇偶性是函数的一个重要性质,它可以帮助我们简化函数的图形和运算。
奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
2. 函数的增减性函数的增减性描述了函数图像在定义域上的上升或下降趋势。
通过研究函数的增减性,我们可以得到函数在不同区间上的性质。
3. 函数的最值和极值函数的最值即函数在定义域上的最大值和最小值,极值指的是函数在某个点上的最大值和最小值。
研究函数的最值和极值有助于我们理解函数的局部性质。
4. 函数的周期性周期函数是指函数具有周期性变化的特点,即在一定区间内具有重复的性质。
掌握周期函数的性质对于我们理解函数的变化规律和应用具有重要意义。
5. 复合函数复合函数是由两个或多个函数组合而成的新函数,它可以描述多个变量之间的复杂关系。
掌握复合函数的运算和性质有助于我们应用函数解决实际问题。
高考函数知识点总结全面
高考函数总结一、函数的概念与表示 1、函数 1函数的定义①原始定义:设在某变化过程中有两个变量x 、y,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫作自变量;②近代定义:设A 、B 都是非空的数的集合,f :x →y 是从A 到B 的一个对应法则,那么从A 到B 的映射f :A →B 就叫做函数,记作y=fx,其中B y A x ∈∈,,原象集合A 叫做函数的定义域,象集合C 叫做函数的值域;B C⊆2构成函数概念的三要素 ①定义域 ②对应法则 ③值域 3、函数的表示方法 ①解析法 ②列表法 ③图象法 注意:强调分段函数与复合函数的表示形式; 二、函数的解析式与定义域1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连结而成的式子叫解析式, 求函数解析式的方法:(1) 定义法 2变量代换法 3待定系数法 4函数方程法 5参数法 6实际问题2、函数的定义域:要使函数有意义的自变量x 的取值的集合;求函数定义域的主要依据: 1分式的分母不为零;2偶次方根的被开方数不小于零,零取零次方没有意义; 3对数函数的真数必须大于零;4指数函数和对数函数的底数必须大于零且不等于1;如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集; 3;复合函数定义域:已知fx 的定义域为[]b a x ,∈,其复合函数[])(x g f 的定义域应由不等式b x g a ≤≤)(解出;三、函数的值域 1.函数的值域的定义在函数y=fx 中,与自变量x 的值对应的y 的值叫做函数值,函数值的集合叫做函数的值域;2.确定函数的值域的原则①当函数y=fx 用表格给出时,函数的值域是指表格中实数y 的集合;②当函数y=fx 用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数y=fx 用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=fx 由实际问题给出时,函数的值域由问题的实际意义确定; 3.求函数值域的方法①直接法:从自变量x 的范围出发,推出y=fx 的取值范围; ②二次函数法:利用换元法将函数转化为二次函数求值域; ③反函数法:将求函数的值域转化为求它的反函数的值域;④判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围; ⑤单调性法:利用函数的单调性求值域; ⑥不等式法:利用不等式的性质求值域;⑦图象法:当一个函数图象可作时,通过图象可求其值域; ⑧几何意义法:由数形结合,转化距离等求值域; 四.函数的奇偶性1.定义: 设y=fx,x ∈A,如果对于任意x ∈A,都有()()f x f x -=,则称y=fx 为偶函数;设y=fx,x ∈A,如果对于任意x ∈A,都有()()f x f x -=-,则称y=fx 为奇函数;如果函数()f x 是奇函数或偶函数,则称函数y=()f x 具有奇偶性;2.性质:①函数具有奇偶性的必要条件是其定义域关于原点对称, ②y=fx 是偶函数⇔y=fx 的图象关于y 轴对称, y=fx 是奇函数⇔y=fx 的图象关于原点对称,③偶函数在定义域内关于原点对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同,④偶函数无反函数,奇函数的反函数还是奇函数,⑤若函数fx 的定义域关于原点对称,则它可表示为一个奇函数与一个偶函数之和)]()([21)]()([21)(x f x f x f x f x f --+-+=⑥奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称 ⑦对于Fx=fgx :若gx 是偶函数,则Fx 是偶函数若gx 是奇函数且fx 是奇函数,则Fx 是奇函数 若gx 是奇函数且fx 是偶函数,则Fx 是偶函数3.奇偶性的判断①看定义域是否关于原点对称 ②看fx 与f-x 的关系 五、函数的单调性 1、函数单调性的定义一般地,设一连续函数 fx 的定义域为D ,则• 如果对于属于定义域D 内某个区间上的任意两个自变量的值x 1,x 2∈D 且x 1>x 2,都有f x 1 >f x 2,即在D 上具有单调性且单调增加,那么就说f x 在这个区间上是增函数;•相反地,如果对于属于定义域D 内某个区间上的任意两个自变量的值x 1,x 2∈D 且x 1>x 2,都有fx 1 <fx 2,即在D 上具有单调性且单调减少,那么就说 f x 在这个区间上是减函数;则增函数和减函数统称单调函数; 2、判断函数单调性求单调区间的方法:1从定义入手,2从图象入手,3从函数运算入手,4从熟悉的函数入手 5从复合函数的单调性规律入手 注:函数的定义域优先3、函数单调性的证明:定义法“取值—作差—变形—定号—结论”;4、一般规律1若fx,gx 均为增函数,则fx+gx 仍为增函数; 2若fx 为增函数,则-fx 为减函数; 3互为反函数的两个函数有相同的单调性;4设()[]x g f y =是定义在M 上的函数,若fx 与gx 的单调性相反,则()[]x g f y =在M 上是减函数;若fx 与gx 的单调性相同,则()[]x g f y =在M 上是增函数;六、反函数 1、反函数的概念:设函数y=fx 的定义域为A,值域为C,由y=fx 求出()y xϕ=,若对于C 中的每一个值y,在A 中都有唯一的一个值和它对应,那么()y x ϕ=叫以y 为自变量的函数,这个函数()y xϕ=叫函数y=fx 的反函数,记作()y fx1-=,通常情况下,一般用x 表示自变量,所以记作()x fy 1-=;注:在理解反函数的概念时应注意下列问题;1只有从定义域到值域上一一映射所确定的函数才有反函数; 2反函数的定义域和值域分别为原函数的值域和定义域; 2、求反函数的步骤1解关于x 的方程y=fx,达到以y 表示x 的目的; 2把第一步得到的式子中的x 换成y,y 换成x ; 3求出并说明反函数的定义域即函数y=fx 的值域; 3、关于反函数的性质1y=fx 和y=f -1x 的图象关于直线y=x 对称; 2y=fx 和y=f -1x 具有相同的单调性;3y=fx 和x=f -1y 互为反函数,但对同一坐标系下它们的图象相同; 4已知y=fx,求f -1a,可利用fx=a,从中求出x,即是f -1a ; 5f -1fx=x;6若点Pa,b 在y=fx 的图象上,又在y=f -1x 的图象上,则Pb,a 在y=fx 的图象上; 7证明y=fx 的图象关于直线y=x 对称,只需证得y=fx 反函数和y=fx 相同; 七.二次函数1.二次函数的解析式的三种形式1一般式:fx=ax 2+bx+ca ≠0,其中a 是开口方向与大小,c 是Y 轴上的截距,而ab2-是对称轴; 2顶点式配方式:fx=ax-h 2+k 其中h,k 是抛物线的顶点坐标;3两根式因式分解:fx=ax-x 1x-x 2,其中x 1,x 2是抛物线与x 轴两交点的坐标;求一个二次函数的解析式需三个独立条件,如:已知抛物线过三点,已知对称轴和两点,已知顶点和对称 轴;又如,已知fx=ax 2+bx+ca ≠0,方程fx-x=0的两根为21,x x ,则可设 fx-x=()()(),21x x x x a x x f --=-或()()()x x x x x a x f +--=21;2.二次函数fx=ax 2+bx+ca ≠0的图象是一条抛物线,对称轴ab x 2-=,顶点坐标)44,2(2a b ac a b --1a>0时,抛物线开口向上,函数在]2,(a b --∞上单调递减,在),2[+∞-a b 上单调递增,ab x 2-=时,ab ac x f 44)(2m in-= 2a<0时,抛物线开口向下,函数在]2,(a b --∞上单调递增,在),2[+∞-a b 上单调递减,abx 2-=时,ab ac x f 44)(2m ax -=3.二次函数fx=ax 2+bx+ca ≠0当042>-=∆ac b 时图象与x 轴有两个交点M 1x 1,0,M 2x 2,0ax x x x x x M M ∆=-+=-=2122121214)( 4.二次函数与一元二次方程关系 方程)0(02≠=++a c bx ax的根为二次函数fx=ax 2+bx+ca ≠00=y 的x 的取值;二次函数与一元二次不等式的关系一元二次不等式)0(02<>++c bx ax 的解集为二次函数fx=ax 2+bx+ca ≠0)0(0<>y 的x 的取值范围;二次函数 △情况 一元二次方程 一元二次不等式解集Y=ax 2+bx+c a>0△=b 2-4acax 2+bx+c=0 a>0ax 2+bx+c>0 a>0ax 2+bx+c<0 a>0图象与解△>0a b x a b x 2221∆+-=∆--={}21x x x x x ><或{}21x x xx <<△=0abx x 221-=={}0x x x ≠Φ△<0 方程无解 RΦ八.指数式与对数式 1.幂的有关概念1正整数指数幂)(*∈⋅⋅⋅⋅=N n a a a a a n n个,2零指数幂)0(10≠=a a3负整数指数幂()10,nn aa n N a-*=≠∈4正分数指数幂)0,,,1mn m n a a a m n N n *=>∈>; 5负分数指数幂)10,,,1m nm nmnaa m n N n a a-*==>∈>60的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质()()10,,r s r s a a a a r s Q +=>∈()()()20,,sr rs a a a r s Q =>∈()()()30,0,rr r ab a b a b r Q =>>∈3.根式1根式的定义:一般地,如果a xn=,那么x 叫做a 的n 次方根,其中()*∈>N n n ,1,n a 叫做根式,n 叫做根指数,a 叫被开方数;2根式的性质: ①当n 是奇数,则a a nn =;当n 是偶数,则⎩⎨⎧<-≥==00a aa aa a n n②负数没有偶次方根, ③零的任何次方根都是零4.对数1对数的概念 如果)1,0(≠>=a a N ab,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a2对数的性质:①零与负数没有对数 ②01log =a ③1log =a a3对数的运算性质N M MN ①a a a log log log +=N M NM②a a alog log log -= M n M ③a n a log log =其中a>0,a ≠0,M>0,N>04对数换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a且且5对数的降幂公式:)10,0(log log≠>>=a a N N mnN a n a m且 九.指数函数与对数函数1、 指数函数y=a x 与对数函数y=log a x a>0 , a ≠1互为反函数,从概念、图象、性质去理解它们的区别和联系 名称 指数函数 对数函数 一般形式 Y=a x a>0且a ≠1y=log a x a>0 , a ≠1定义域 -∞,+ ∞ 0,+ ∞ 值域 0,+ ∞ -∞,+ ∞ 过定点 0,1 1,0图象指数函数y=a x 与对数函数y=log a x a>0 , a ≠1图象关于y=x 对称单调性a> 1,在-∞,+ ∞上为增函数 0<a<1, 在-∞,+ ∞上为减函数a>1,在0,+ ∞上为增函数 0<a<1, 在0,+ ∞上为减函数值分布y>1 y<1y>0 y<0比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系对数式比较大小同理 记住下列特殊值为底数的函数图象:3、 研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、 指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的复合问题,讨论复合函数的单调性是解决问题的重要途径; 十.函数的图象1、作函数图象的基本方法有两种:(1) 描点法:1、先确定函数定义域,讨论函数的性质奇偶性,单调性,周期性2、列表注意特殊点,如:零点,最大最小,与轴的交点 3、描点,连线 如:作出函数xx y 1+=的图象. (2) 图象变换法:利用基本初等函数变换作图① 平移变换:左正右负,上正下负即kx f y x f y h x f y x f y k k h h +=−−−−−→−=+=−−−−−→−=><><)()()()(,0;,0,0;,0上移下移左移右移 ② 对称变换:对称谁,谁不变,对称原点都要变)()()()()()()()()()()()(1x f y x f y x f y x f y x fy x f y x f y x f y x f y x f y x f y x f y x x y xy y x =−−−−−−−−−→−==−−−−−−−−−−→−==−−→−=--=−−→−=-=−→−=-=−→−=-=轴下方图上翻轴上方图,将保留边部分的对称图轴右边不变,左边为右原点轴轴③ 伸缩变换:)()()()(1x Af y x f y x f y x f y A =−−−−−−−−→−==−−−−−−−−−→−=⎪⎭⎫⎝⎛倍来的仍一点的纵坐标变为原倍来的仍一点的横坐标变为原ϖϖ导数与积分1.导数的概念函数y=fx,如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=fx 0+x ∆-fx 0,比值x y∆∆叫做函数y=fx 在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00;如果当0→∆x 时,x y∆∆有极限,我们就说函数y=fx 在点x 0处可导,并把这个极限叫做fx 在点x 0处的导数,记作f’x 0或y’|0x x =;即fx 0=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00;2.导数的几何意义函数y=fx 在点x 0处的导数的几何意义是曲线y=fx 在点px 0,fx 0处的切线的斜率;也就是说,曲线y=fx 在点px 0,fx 0处的切线的斜率是f’x 0;相应地,切线方程为y -y 0=f`x 0x -x 0; 3.几种常见函数的导数:①0;C '= ②()1;nn x nx-'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();xxe e '= ⑥()ln xxa a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x ex '=.4.两个函数的和、差、积的求导法则.)'''v u v u ±=± .)('''uv v u uv +=⎪⎭⎫ ⎝⎛v u ‘=2''v uv v u -v ≠0;复合函数的导数:单调区间:一般地,设函数)(x f y =在某个区间可导,如果'f )(x 0>,则)(x f 为增函数; 如果'f 0)(<x ,则)(x f 为减函数;如果在某区间内恒有'f 0)(=x ,则)(x f 为常数;2.极点与极值:曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正; 3.最值:一般地,在区间a,b 上连续的函数f )(x 在a,b 上必有最大值与最小值;①求函数ƒ)(x 在a,b 内的极值; ②求函数ƒ)(x 在区间端点的值ƒa 、ƒb ;③将函数ƒ )(x 的各极值与ƒa 、ƒb 比较,其中最大的是最大值,其中最小的是最小值;4.定积分1概念:设函数fx 在区间a,b 上连续,用分点a =x0<x1<…<xi -1<xi<…xn =b 把区间a,b 等分成n 个小区间,在每个小区间xi -1,xi 上取任一点ξii =1,2,…n 作和式In =∑ni f1=ξi △x 其中△x 为小区间长度,把n→∞即△x→0时,和式In 的极限叫做函数fx 在区间a,b 上的定积分,记作:⎰badxx f )(,即⎰badxx f )(=∑=∞→ni n f1lim ξi △x;这里,a 与b 分别叫做积分下限与积分上限,区间a,b 叫做积分区间,函数fx 叫做被积函数,x 叫做积分变量,fxdx 叫做被积式; 基本的积分公式:⎰dx 0=C ;⎰dx x m=111++m xm +Cm ∈Q, m≠-1;⎰x 1dx =ln x +C ; ⎰dx e x =x e +C ;⎰dx a x =a a x ln +C ;⎰xdx cos =sinx +C ; ⎰xdx sin =-cosx +C 表中C 均为常数;2定积分的性质 ①⎰⎰=ba badxx f k dx x kf )()(k 为常数;②⎰⎰⎰±=±ba b ab adx x g dx x f dx x g x f )()()()(;③⎰⎰⎰+=bacabcdxx f dx x f dx x f )()()(其中a <c <b );3定积分求曲边梯形面积由三条直线x =a,x =ba<b,x 轴及一条曲线y =fxfx≥0围成的曲边梯的面积⎰=badxx f S )(;如果图形由曲线y1=f1x,y2=f2x 不妨设f1x≥f2x≥0,及直线x =a,x =ba<b 围成,那么所求图形的面积S =S 曲边梯形AMNB -S 曲边梯形DMNC =⎰⎰-babadxx f dx x f )()(21;。
高中数学函数概念
高中数学函数概念在高中数学课程中,函数是一个非常重要的概念。
函数是数学中的基础概念之一,也是更高级数学知识的基础。
通过学习函数的相关知识,不仅可以增进对数学的理解,还可以培养逻辑思维和解决问题的能力。
接下来我们就来详细了解高中数学函数的相关概念。
1. 函数的定义在数学中,函数是一种将一个集合中的元素映射到另一个集合的规则。
一个函数通常表示为 f(x),其中 x 是自变量,f(x) 是因变量。
函数f 定义域内的每个元素 x 都对应唯一的函数值 f(x),即不同的自变量对应不同的因变量。
2. 函数的图像函数可以通过绘制图像来描述。
函数的图像通常采用直角坐标系来表示,自变量 x 沿 x 轴,因变量 f(x) 沿 y 轴。
通过观察函数的图像,可以直观地了解函数的性质,如增减性、奇偶性、周期性等。
3. 基本函数在高中数学中,常见的基本函数包括线性函数、二次函数、指数函数、对数函数和三角函数等。
这些函数在数学中有着重要的地位,也是其他函数的基础。
- 线性函数:线性函数的图像是一条直线,通常表示为 y = kx + b,其中 k 和 b 分别为斜率和截距。
- 二次函数:二次函数的图像是抛物线,通常表示为 y = ax^2 + bx + c,其中 a、b、c 是常数。
- 指数函数:指数函数的表示形式为 y = a^x,其中 a 为底数,x 为指数。
- 对数函数:对数函数的表示形式为 y = loga(x),其中 a 为底数,x 为真数。
- 三角函数:三角函数包括正弦函数、余弦函数、正切函数等,是研究三角学中常见的函数。
4. 函数的性质函数具有多种性质,如奇偶性、周期性、单调性等。
了解函数的性质可以帮助我们更好地理解函数的变化规律,进而解决相关问题。
- 奇偶性:函数 f(x) 的奇偶性取决于 f(-x) 与 f(x) 的关系。
如果 f(-x) = f(x),则函数是偶函数;如果 f(-x) = -f(x),则函数是奇函数。
新高考函数知识点总结大全
新高考函数知识点总结大全引言:近年来,新高考已经成为了我们每个学生必须面对的一个重要考试。
其中,数学作为一门基础科目,对于考生来说尤为重要。
而在数学中,函数作为一种重要的数学概念和工具,在高考中占据了相当大的比重。
因此,掌握函数的基本概念和相关知识点,对于顺利通过高考具有重要的意义。
本文将对新高考中的函数知识点进行详细的总结和解析,以帮助考生更全面、深入地掌握函数知识。
一、函数的基本概念1. 函数的定义:函数是一种特殊的关系,它将一个集合的元素对应到另一个集合的元素上,并且对于集合中的每个元素,有且只有一个对应的元素。
2. 定义域和值域:函数的定义域表示自变量的取值范围,值域表示函数的所有可能取值的集合。
3. 函数的表示方法:函数可以用各种不同的表示方法来表示,包括显式表示、隐式表示和参数表示等。
4. 函数的特性:函数可以是奇函数或偶函数,也可以是周期函数或单调函数等。
二、函数的分类和性质1. 基本初等函数:常见的函数包括常函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。
它们构成了函数的基本分类。
2. 函数的运算:函数之间可以进行加减乘除、复合、反函数等运算,通过运算可以得到新的函数。
3. 函数的性质:函数可以有极限、导数和积分等性质,这些性质在研究函数的变化规律和相关问题时发挥着重要作用。
三、函数的图像和特征1. 函数的图像:函数可以通过绘制它的图像来帮助我们理解和分析函数的特征。
图像可以反映函数的增减性、单调性和对称性等。
2. 函数的拐点和极值:函数的拐点是函数图像曲线由凹转凸或由凸转凹的点,而函数的极值是函数在定义域内取得的最大值或最小值。
3. 函数的奇点和间断点:函数的奇点是指函数在某些点上无定义或不连续的点,而间断点是函数图像上出现断裂的点。
四、函数的应用领域1. 函数在几何中的应用:函数可以帮助我们研究图形的性质和变化规律,如直线、曲线、圆等。
2. 函数在物理中的应用:函数可以用来描述物理量之间的关系,如速度、加速度、功率等。
高考数学一轮复习讲练测(新教材新高考)专题3-1函数的概念及其表示-学生版
专题3.1函数的概念及其表示练基础1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =()A .1-B .1C .13-D .132.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩则(3)f =()A .7B .2C .10D .123.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为()A .16B .18C .21D .244.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =()A .1B .3C .3-D .1或35.(上海高考真题)若是的最小值,则的取值范围为().A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]6.(广东高考真题)函数()f x x=的定义域是______.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________.10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.练提升1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则()A .t 没有最小值B .t 51-C .t 的最小值为43D .t 的最小值为17122.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是()A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有()A .865y x =+B .225y x x =--+C .y =D .11y x=-4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x+-,则f (x )满足的关系有()A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭=()f x -C .1f x ⎛⎫⎪⎝⎭=f (x )D .1(()f f x x-=-5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是()A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f xg x ≤6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,则()A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则()A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.9.(2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)10.(2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-.(1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.练真题1.(山东高考真题)设=s 0<<12−1,≥1,若=+1,则=()A.2B.4C.6D.82.(2018上海卷)设是含数1的有限实数集,是定义在上的函数,若的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,1的可能取值只能是()A.3D.03.(2018年新课标I 卷文)设函数=2−,≤01,>0,则满足+1<2的x 的取值范围是()A.−∞,−1B.0,+∞C.−1,0D.−∞,04.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦,()f x 的最小值是.5.(2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.。
新高考数学章节知识点总结
新高考数学章节知识点总结随着改革开放以来我国教育体制的不断完善,新高考成为了高中生们备战大学入学的重要考试。
作为新高考中不可或缺的一科,数学的学习对于每一个学生来说都是至关重要的。
下面,我将为大家总结一下新高考数学章节知识点,帮助同学们更好地应对数学考试。
一、函数函数是数学中一个非常重要的概念,它在新高考数学中也拥有着重要的地位。
同学们需要掌握函数的定义、函数的性质以及函数的应用等方面的知识。
1. 函数的定义函数是数学中描述输入和输出之间关系的工具。
它包括自变量、因变量和一个定义域,其中自变量和定义域一一对应,而因变量则由自变量和定义域确定。
2. 函数的性质函数有着多种性质,如单调性、奇偶性、周期性等。
同学们需要学会如何通过函数的图像来判断函数的这些性质,并能够应用这些性质解决实际问题。
3. 函数的应用函数在实际问题中的应用非常广泛,学生需要学会将具体问题转换为函数的形式,利用函数的性质解决问题。
例如,在经济学中,函数可以用来描述收入与支出之间的关系。
二、数列与数列极限数列是一系列有序的数按一定规律排列的集合,数列极限则是数列在趋向于无穷时的特殊值。
同学们需要掌握数列的定义、数列的分类以及数列极限的求解方法等内容。
1. 数列的定义数列由一列有序的数按照一定的规律排列组成,其中每一个数被称为数列的项。
2. 数列的分类数列可以分为等差数列、等比数列、等差数列的经验性求和公式等多种类型。
每一种类型的数列都有其特定的规律,同学们需要能够确定数列的类型,并掌握相应的求和公式。
3. 数列极限的求解方法数列极限是指数列在趋向于无穷时的特殊值。
同学们需要学会使用极限的方法求解数列极限,并能够应用数列极限解决实际问题。
三、三角函数与三角恒等式三角函数在数学中有着广泛的应用,同学们需要掌握三角函数的定义、性质以及三角恒等式的推导和应用等知识。
1. 三角函数的定义和性质三角函数包括正弦函数、余弦函数、正切函数等。
学生们需要掌握每种三角函数的定义,以及它们的周期性和奇偶性等重要性质。
新高考函数知识点归纳总结
新高考函数知识点归纳总结函数是数学中的重要概念,也是高中数学中的核心内容之一。
在新高考中,函数知识点的掌握程度将直接影响学生的数学成绩。
本文将对新高考中函数相关的知识点进行归纳总结,以帮助学生更好地理解和掌握这些内容。
一、函数的概念及性质函数是一种特殊的关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素。
函数可以通过数学表达式、图像、映射关系等形式进行表示。
函数的性质包括定义域、值域、单调性、奇偶性、周期性等。
学生需要掌握函数的基本定义及其性质,并能够应用这些知识进行问题求解。
二、函数的图像与性质分析函数的图像是对函数关系进行可视化的表达方式。
学生需要熟练掌握通过函数表达式来确定函数图像的方法,并能够分析函数图像的性质。
例如,学生需要能够判断图像是否关于某个轴对称,是否具有最值点,是否具有拐点等。
这些性质的分析对于解题是非常重要的。
三、函数的运算函数可以进行加减乘除的运算,学生需要熟练掌握函数的加减乘除规则,并能够应用这些规则进行函数的化简和运算。
此外,学生还需要了解复合函数的概念及其运算规则,能够解决涉及复合函数的问题。
四、函数的初等函数和基本图像初等函数是一类常见的函数,包括常数函数、幂函数、指数函数、对数函数、三角函数等。
学生需要对初等函数的性质有所了解,掌握它们的图像及其变换规律。
基本图像是指初等函数的基本形态,学生需要能够根据图像的变换规律来绘制和分析初等函数的图像。
五、函数方程的解法函数方程是指含有未知函数的方程,解函数方程是解决函数问题的关键一步。
学生需要熟练掌握函数方程的解法,包括韦达定理、因式分解、配方法、换元法等,并能够应用这些解法解决各类函数方程。
六、函数的应用函数在实际问题中有广泛的应用,学生需要能够将实际问题转化为数学函数问题,并能够利用函数的性质和运算方法解决实际问题。
例如,学生需要能够应用函数图像来分析物体的运动规律,应用函数方程解决实际工程问题等。
总结:函数是新高考数学中的重要内容,对于高中生来说掌握函数知识点是提高数学成绩的关键。
新高考函数知识点总结归纳
新高考函数知识点总结归纳函数是数学中的基本概念,广泛应用于学科的各个领域。
在新高考中,函数是数学科目的重要内容,考察的知识点较多,涉及到函数的定义、性质、图像、变换等方面。
本文将对新高考函数的知识点进行总结归纳,以帮助同学们更好地掌握和应用这一内容。
1. 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素。
函数可以用多种方式表示,包括显式函数、隐式函数、参数方程等。
2. 函数的性质函数具有一些重要的性质,如定义域、值域、奇偶性、周期性等。
其中,定义域是指函数的输入值的集合,值域是函数的输出值的集合。
奇偶性指函数的对称性,周期性指函数图像的重复性。
3. 常见函数及其图像常见的函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。
每种函数都有特定的图像特征,通过了解函数的图像可以更好地理解函数的性质和变化规律。
4. 函数的变换函数的变换包括平移、伸缩、翻转等。
平移是指将函数图像沿着横轴或纵轴平行移动,伸缩是指将函数图像沿着横轴或纵轴方向进行拉伸或压缩,翻转是指将函数图像沿着横轴或纵轴进行对称。
5. 复合函数与反函数复合函数是指将一个函数的输出作为另一个函数的输入,反函数是指原函数和复合函数互为逆运算。
复合函数和反函数在解决实际问题时具有重要应用,如函数的复合、函数的复合对称性等。
6. 不等式与函数不等式和函数的关系密切,可以通过函数的图像来解决不等式问题。
特别是二次函数和绝对值函数,在解决不等式时常常会用到。
7. 函数的应用函数在实际问题中有广泛应用,如最值问题、函数的应用题、函数的建模等。
通过函数的应用,可以解决各种与实际问题相关的数学问题,提高数学解决问题的能力。
总之,函数是新高考数学中的重要知识点,掌握函数的定义、性质、图像、变换等内容对于学习高中数学以及应对新高考具有重要意义。
通过本文对新高考函数知识点的总结归纳,相信同学们能更好地掌握这一内容。
希望同学们加强对函数知识的学习和理解,在实际问题中灵活应用函数解决问题,为新高考的数学考试取得好成绩打下坚实基础。
新高考数学公式知识点总结
新高考数学公式知识点总结一、函数1. 函数的概念及性质(1)函数的定义及表示法函数是一个独特的对应关系,通俗地说,就是通过某种规则,对于一个集合中的每一个元素,都有且只有一个元素与之对应。
数学上用数学式子或图象表示函数。
(2)函数的性质① 单调性函数的单调性指的是函数在定义域内的自变量的增减变化和函数值的增减变化的关系。
② 奇偶性函数的奇偶性指的是函数的对称性质,即关于原点对称的函数为奇函数,关于y轴对称的函数为偶函数。
③ 周期性周期函数是指当自变量增加(或减少)一个周期T时,函数值不发生变化。
2. 基本函数(1)常数函数f(x)=c其中c为常数。
(2)线性函数f(x)=kx+b其中k和b都是常数,k称为斜率,b称为截距。
(3)二次函数f(x)=ax^2+bx+c其中a、b、c均为常数,a≠0。
(4)指数函数f(x)=a^x其中a为底数,a>0且a≠1。
(5)对数函数f(x)=loga(x)其中a为底数,a>0且a≠1。
(6)幂函数f(x)=x^a其中a为常数。
(7)三角函数f(x)=sinx, cosx, tanx, cotx, secx, cscx这里, sin(x) 表示正弦值, cos(x) 表示余弦值, tan(x) 表示正切值, cot(x) 表示余切值, sec(x) 表示正割值, csc(x) 表示余割值。
3. 复合函数和反函数(1)复合函数若有两个函数f(x)和g(x),则f(g(x))称为复合函数。
(2)反函数若函数f(x)的定义域为D,值域为R,满足对任意y∈R,存在一个唯一的x∈D,使得f(x)=y,则称函数f(x)是定义在D上的反函数。
二、导数1. 导数的概念导数是用来描述函数在某一点上的变化率,并且可以用来求函数的极值和图像的性质。
通俗地说,导数就是函数在某一点上的斜率。
2. 导数的计算(1)导数的定义f'(x)=lim(h→0) (f(x+h)-f(x))/h(2)常见函数的导数① 常数函数:f(x)=c,f'(x)=0② 幂函数:f(x)=x^n,f'(x)=nx^(n-1)③ 指数函数:f(x)=a^x,f'(x)=a^xlna④ 对数函数:f(x)=loga(x),f'(x)=1/(xlna)⑤ 三角函数:f(x)=sinx, cosx, tanx,f'(x)=cosx, -sinx, sec^2x(3)导数的四则运算① 导数的加法和减法若f(x)和g(x)都可导,则(f+g)'=f'+g',(f-g)'=f'-g'② 导数的乘法若f(x)和g(x)都可导,则(fg)'=f'g+fg'③ 导数的除法若f(x)和g(x)都可导,且g(x)≠0,则(f/g)'=(f'g-fg')/g^23. 导数的应用(1)函数的单调性若f'(x)>0,则函数f(x)在(x, x+δ)上单调递增;若f'(x)<0,则函数f(x)在(x, x+δ)上单调递减。
2024年高考数学一轮复习课件(新高考版) 第3章 §3.1 导数的概念及其意义、导数的运算
2024年高考数学一轮复习课件(新高考版)第三章 一元函数的导数及其应用§3.1 导数的概念及其意义、导数的运算考试要求1.了解导数的概念、掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数 (形如f(ax+b))的导数.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.导数的概念f′(x0)y′| (1)函数y=f(x)在x=x0处的导数记作或 .0x x=(2)函数y=f(x)的导函数(简称导数)2.导数的几何意义函数y=f(x)在x=x0处的导数的几何意义就是曲线y=f(x)在点P(x0,f(x0))斜率y-f(x0)=f′(x0)(x-x0)处的切线的,相应的切线方程为 .3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=__f (x )=x α(α∈R ,且α≠0)f ′(x )=______f (x )=sin xf ′(x )=_____f (x )=cos xf ′(x )=______f (x )=a x (a >0,且a ≠1)f ′(x )=______f (x )=e x f ′(x )=___0αx α-1cos x -sin x a x ln a e x知识梳理f(x)=log a x(a>0,且a≠1)f′(x)=_____ f(x)=ln x f′(x)=___4.导数的运算法则若f ′(x ),g ′(x )存在,则有[f (x )±g (x )]′= ;[f (x )g (x )]′= ;[cf (x )]′= .f ′(x )±g ′(x )f ′(x )g (x )+f (x )g ′(x )cf ′(x )5.复合函数的定义及其导数复合函数y=f(g(x))的导数与函数y=f(u),u=g(x)的导数间的关系为y u′·u x′y x′=,即y对x的导数等于y对u的导数与u对x的导数的乘积.常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条.(2)过点处的切线,该点不一定是切点,切线至少有一条.判断下列结论是否正确(请在括号中打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)与曲线只有一个公共点的直线一定是曲线的切线.( )(3)f ′(x 0)=[f (x 0)]′.( )(4)(cos 2x ) ′=-2sin 2x .( )×××√1.若函数f(x)=3x+sin 2x,则√因为函数f(x)=3x+sin 2x,所以f′(x)=3x ln 3+2cos 2x.y=(e-1)x+2又∵f(1)=e+1,∴切点为(1,e+1),切线斜率k=f′(1)=e-1,即切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.3.已知函数f(x)=x ln x+ax2+2,若f′(e)=0,则a= .由题意得f′(x)=1+ln x+2ax,第二部分√√√对于A,[(3x+5)3]′=3(3x+5)2(3x+5)′=9(3x+5)2,故A正确;对于B,(x3ln x)′=(x3)′ln x+x3(ln x)′=3x2ln x+x2,故B正确;对于D,(2x+cos x)′=(2x)′+(cos x)′=2x ln 2-sin x,故D正确.(2)已知函数f(x)的导函数为f′(x),且满足f(x)=x3+x2f′(1)+2x-1,则f′(2)等于√A.1B.-9C.-6D.4因为f(x)=x3+x2f′(1)+2x-1,所以f′(x)=3x2+2xf′(1)+2,把x=1代入f′(x),得f′(1)=3×12+2f′(1)+2,解得f′(1)=-5,所以f′(x)=3x2-10x+2,所以f′(2)=-6.思维升华(1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解.(3)复合函数求导,应由外到内逐层求导,必要时要进行换元.√√√f(x)=sin(2x+3),f′(x)=cos(2x+3)·(2x+3)′=2cos(2x+3),故A 正确;f(x)=e-2x+1,则f′(x)=-2e-2x+1,故B错误;f(x)=x ln x,f′(x)=(x)′ln x+x(ln x)′=ln x+1,故D正确.命题点1 求切线方程例2 (1)(2023·大同模拟)已知函数f(x)=2e2ln x+x2,则曲线y=f(x)在点(e,f(e))处的切线方程为√A.4e x-y+e2=0B.4e x-y-e2=0C.4e x+y+e2=0D.4e x+y-e2=0所以f(e)=2e2ln e+e2=3e2,f′(e)=4e,所以曲线y=f(x)在点(e,f(e))处的切线方程为y-3e2=4e(x-e),即4e x-y-e2=0.(2)(2022·新高考全国Ⅱ)曲线y=ln|x|过坐标原点的两条切线的方程为_______,_________.先求当x>0时,曲线y=ln x过原点的切线方程,设切点为(x0,y0),解得y0=1,代入y=ln x,得x0=e,命题点2 求参数的值(范围)例3 (1)(2022·重庆模拟)已知a为非零实数,直线y=x+1与曲线y=ea ln(x+1)相切,则a=_____.(2)(2022·新高考全国Ⅰ)若曲线y=(x+a)e x有两条过坐标原点的切线,(-∞,-4)∪(0,+∞)则a的取值范围是 .因为y =(x +a )e x ,所以y ′=(x +a +1)e x .设切点为A (x 0,(x 0+a ) ),O 为坐标原点,0e x 0e x 0x x =000()ex x a x 因为曲线y =(x +a )e x 有两条过坐标原点的切线,所以Δ=a 2+4a >0,解得a <-4或a >0,所以a 的取值范围是(-∞,-4)∪(0,+∞).思维升华(1)处理与切线有关的问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.(2)注意区分“在点P处的切线”与“过点P的切线”.跟踪训练2 (1)曲线f(x)=在(0,f(0))处的切线方程为√A.y=3x-2B.y=3x+2C.y=-3x-2D.y=-3x+2所以f′(0)=3,f(0)=-2,所以曲线f(x)在(0,f(0))处的切线方程为y-(-2)=3(x-0),即y=3x-2.√例4 (1)若直线l:y=kx+b(k>1)为曲线f(x)=e x-1与曲线g(x)=eln x的公切线,则l的纵截距b等于A.0B.1√C.eD.-e设l 与f (x )的切点为(x 1,y 1),则由f ′(x )=e x -1,得l :y = +(1-x 1) .同理,设l 与g (x )的切点为(x 2,y 2),11e x x -11e x -11e x -11e x -因为k >1,所以l :y =x 不成立,故b =-e.(2)(2023·晋中模拟)若两曲线y=ln x-1与y=ax2存在公切线,则正实数a 的取值范围是√设公切线与曲线y=ln x-1和y=ax2的切点分别为(x1,ln x1-1),(x2,ax),其中x1>0,令g (x )=2x 2-x 2ln x ,则g ′(x )=3x -2x ln x =x (3-2ln x ),令g ′(x )=0,得x = ,32e 当x ∈(0, )时,g ′(x )>0,g (x )单调递增;32e当x ∈(,+∞)时,g ′(x )<0,g (x )单调递减,32e 32e思维升华公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3 (1)已知定义在(0,+∞)上的函数f(x)=x2-m,h(x)=6ln x -4x,设两曲线y=f(x)与y=h(x)在公共点处的切线相同,则m等于A.-3 B.1√C.3D.5依题意,设曲线y=f(x)与y=h(x)在公共点(x0,y0)处的切线相同.∵f(x)=x2-m,h(x)=6ln x-4x,∵x0>0,∴x0=1,m=5.(2)已知f(x)=e x-1,g(x)=ln x+1,则f(x)与g(x)的公切线有A.0条B.1条√C.2条D.3条根据题意,设直线l与f(x)=e x-1相切于点(m,e m-1) ,与g(x)相切于点(n,ln n+1)(n>0),对于f(x)=e x-1,f′(x)=e x,则k1=e m,则直线l的方程为y+1-e m=e m(x-m) ,即y=e m x+e m(1-m)-1,可得(1-m)(e m-1)=0,即m=0或m=1,则切线方程为y=e x-1 或y=x,故f(x)与g(x)的公切线有两条.第三部分1.(2023·广州模拟)曲线y=x3+1在点(-1,a)处的切线方程为√A.y=3x+3B.y=3x+1C.y=-3x-1D.y=-3x-3因为f′(x)=3x2,所以f′(-1)=3,又当x=-1时,a=(-1)3+1=0,所以y=x3+1在点(-1,a)处的切线方程为y=3(x+1),即y=3x+3.2.记函数f(x)的导函数为f′(x).若f(x)=e x sin 2x,则f′(0)等于√A.2B.1C.0D.-1因为f(x)=e x sin 2x,则f′(x)=e x(sin 2x+2cos 2x),所以f′(0)=e0(sin 0+2cos 0)=2.3.(2022·广西三市联考)设函数f(x)在R上存在导函数f′(x),f(x)的图象在点M(1,f(1))处的切线方程为y=+2,那么f(1)+f′(1)等于√A.1B.2C.3D.44.已知函数f(x)=x ln x,若直线l过点(0,-e),且与曲线y=f(x)相切,则直线l的斜率为√A.-2B.2C.-eD.e设切点坐标为(t,t ln t),∵f(x)=x ln x,∴f′(x)=ln x+1,直线l的斜率为f′(t)=ln t+1,∴直线l的方程为y-t ln t=(ln t+1)(x-t),将点(0,-e)的坐标代入直线l的方程得-e-t ln t=-t(ln t+1),解得t=e,∴直线l的斜率为f′(e)=2.。
函数概念与基本初等函数高中数学知识点总结
函数概念与基本初等函数高中数学知识点总结函数是数学中一种重要的概念,它描述了一种特定的关系,将一个集合的元素映射到另一个集合的元素。
函数在高中数学中占据了重要的地位,是数学学习的基础。
在这篇文章中,我们将总结函数的概念以及一些基本的初等函数的知识点。
一、函数的概念函数是一种特定的关系,它将一个集合的元素映射到另一个集合的元素。
通常用字母f表示函数,例如f(x)。
其中x是函数的自变量,f(x)是函数的值或因变量。
函数的定义域是自变量可能取值的集合,值域是函数可能取值的集合。
函数可以用图像、表格或公式来表示。
函数有一些重要的特点:1.单值性:对于定义域中的每个自变量值,函数只能有一个对应的值。
2.定义域:函数的自变量可能取值的集合。
3.值域:函数的值可能取值的集合。
4.对称性:函数可能具有一些对称性质,例如奇函数和偶函数。
5.增减性:函数可能随着自变量的增大或减小而增加或减少。
初等函数是一类经过常见运算(加法、减法、乘法、除法、乘方、开方等)和函数复合(如求和、求积、复合函数等)得到的函数。
下面是一些常见的初等函数及其特点和知识点:1.幂函数:幂函数的表达式是y=x^m,其中m是实数。
幂函数的图像可能是一条直线、二次曲线、指数曲线等。
幂函数的正负性、单调性和奇偶性与指数m的关系密切。
2.指数函数:指数函数的表达式是y=a^x,其中a是大于0且不等于1的实数。
指数函数的图像是一个递增的曲线。
指数函数的性质包括连续性、正负性、单调性和极限等。
3.对数函数:对数函数的表达式是 y = log_a(x),其中 a 是大于 0 且不等于 1 的实数。
对数函数是指数函数的反函数,其图像是对数曲线。
对数函数的性质包括连续性、正负性、单调性和极限等。
4.三角函数:三角函数包括正弦函数、余弦函数、正切函数等。
它们的图像是周期性的波浪曲线。
三角函数的性质包括周期性、奇偶性、单调性和求导等。
5.反三角函数:反三角函数是指正弦函数、余弦函数、正切函数的反函数,用sin^(-1)(x)、cos^(-1)(x)、tan^(-1)(x) 表示。
高考数学函数知识点大全
高考数学函数知识点大全数学作为一门学科,对于高中生来说是必修科目之一,而在高中数学中,函数是一个非常重要的知识点。
函数作为数学中的一个概念,是描述自变量和因变量之间关系的工具。
在高考中,函数涉及到的知识点非常丰富,掌握这些知识点对于学生取得优异的成绩至关重要。
下面将介绍一些高考数学函数知识点的大全,帮助学生们更好地备考。
一、基本概念1. 函数的定义:函数是一个有输入输出的对应关系,通常用f(x)表示。
2. 函数的定义域:函数的定义域是指能够使函数有意义的变量取值范围。
3. 函数的值域:函数的值域是指函数输出的所有可能值的集合。
4. 函数的图象:函数的图象是指函数在坐标系中的表示。
5. 函数的性质:包括奇偶性、单调性、周期性等。
6. 一次函数:一次函数又称为线性函数,是一个变量与常数相乘再加上常数的运算。
二、基本函数1. 幂函数:幂函数是指以自变量为底数,指数为指数的函数。
2. 指数函数:指数函数是以常数e为底数,自变量为指数的函数。
3. 对数函数:对数函数是指以常数为底数,函数值为指数的函数。
4. 三角函数:包括正弦、余弦、正切、余切等。
三、函数的性质和基本变形1. 函数的奇偶性:奇函数和偶函数是函数的基本性质,可以利用函数的奇偶性简化计算。
2. 函数的单调性:函数的单调性是指函数在定义域上的变化趋势,包括递增和递减。
3. 函数的周期性:周期函数是指函数在某个范围内的值具有重复性。
4. 函数的对称性:对称函数是指函数在某个轴上具有对称性。
5. 函数的函数值和自变量的关系:研究函数值和自变量之间的关系,包括最大值和最小值等。
四、函数的应用1. 函数的综合应用:函数在实际问题中的应用,如最优化问题、最值问题、几何问题等。
2. 函数的图象和方程的关系:通过函数的图象来求解方程及图象的性质。
以上只是高考数学函数知识点的一个简单介绍,实际上还有很多相关内容。
在备考过程中,学生们应该熟悉相关定义和性质,掌握函数的基本类型和应用,灵活运用函数的变形和相关知识解决问题。
【新高考】高三数学一轮基础复习讲义:第三章 3.1导数的概念-(学生版+教师版)
导数的概念第一课时判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)f ′(x 0)与[f (x 0)]′表示的意义相同.( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( )题型一 导数的计算 例1 求下列函数的导数.(1)y =x 2sin x ;(2)y =ln x +1x ;(3)y =cos xe x ;(4)y =sin(2x +π3);(5)y =ln(2x -5).(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0等于( )A .e 2B .1C .ln 2D .e(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .0题型二 导数的几何意义 命题点1 求切线方程例2 (1)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A .x +y -1=0 B .x -y -1=0 C .x +y +1=0 D .x -y +1=0 命题点2 求参数的值例3 函数y =e x 的切线方程为y =mx ,则m =________.(2)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m 等于( ) A .-1 B .-3 C .-4 D .-2 命题点3 导数与函数图象的关系例4 如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的( )(1)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1 D.12(2)设曲线y =1+cos x sin x 在点(π2,1)处的切线与直线x -ay +1=0平行,则实数a 等于( )A .-1 B.12 C .-2 D .2阶段重难点梳理1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0Δy Δx =lim Δx →0f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx. (2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间内的导函数.记作f ′(x )或y ′. 2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即k =f′(x0).3.基本初等函数的导数公式4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)[f(x)g(x)]′=f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).5.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y对x的导数等于y对u的导数与u对x的导数的乘积.【知识拓展】(1)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.(2)[1f(x)]′=-f′(x)[f(x)]2(f(x)≠0).(3)[af(x)+bg(x)]′=af′(x)+bg′(x).(4)函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.典例若存在过点O(0,0)的直线l与曲线y=x3-3x2+2x和y=x2+a都相切,求a的值.1.若f(x)=x·e x,则f′(1)等于()A.0 B.e C.2e D.e22.如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是() 重点题型训练3.设函数f (x )的导数为f ′(x ),且f (x )=f′(π2)sin x +cos x ,则f ′(π4)=________.4.曲线y =-5e x +3在点(0,-2)处的切线方程是________________.1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( ) A .2 B .0 C .-2 D .-42.若曲线f (x )=x 4-x 在点P 处的切线平行于直线3x -y =0,则点P 的坐标为( ) A .(-1,2) B .(1,-3) C .(1,0)D .(1,5)3.若直线y =x 是曲线y =x 3-3x 2+px 的切线,则实数p 的值为( ) A .1 B .2 C.134 D .1或1344.已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e5.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )作业布置A .-1B .0C .2D .46.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为( )A.14B.12C .1D .4 7.已知函数f (x )满足f (x )=f ′(1)e x -1-f (0)x +12x 2.那么f (x )的解析式为________.8.曲线y =log 2x 在点(1,0)处的切线与坐标轴所围成三角形的面积等于________. 9.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.*10.已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为________. 11.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.12.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.*13.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.导数的概念第一课时判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)f ′(x 0)与[f (x 0)]′表示的意义相同.( × ) (3)曲线的切线不一定与曲线只有一个公共点.( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( × )阶段训练题型一 导数的计算 例1 求下列函数的导数.(1)y =x 2sin x ;(2)y =ln x +1x ;(3)y =cos xe x ;(4)y =sin(2x +π3);(5)y =ln(2x -5).解 (1)y ′=(x 2)′·sin x +x 2·(sin x )′ =2x sin x +x 2cos x .(2)y ′=(ln x +1x )′=(ln x )′+(1x )′=1x -1x 2. (3)y ′=(cos xe x )′=(cos x )′·e x -cos x (e x )′(e x )2=-sin x +cos x e x.(4)设u =2x +π3,则y =sin u ,则y ′=(sin u )′·u ′=cos(2x +π3)·2∴y ′=2cos(2x +π3).(5)令u =2x -5,则y =ln u , 则y ′=(ln u )′·u ′=12x -5·2=22x -5,即y ′=22x -5.思维升华 (1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0等于( )A .e 2B .1C .ln 2D .e(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .0答案 (1)B (2)B解析 (1)f ′(x )=2 016+ln x +x ×1x =2 017+ln x ,故由f ′(x 0)=2 017,得2 017+ln x 0=2 017,则ln x 0=0,解得x 0=1. (2)f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 题型二 导数的几何意义 命题点1 求切线方程例2 (1)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A .x +y -1=0 B .x -y -1=0 C .x +y +1=0D .x -y +1=0答案 (1)2x +y +1=0 (2)B解析 (1)设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x -3,f ′(1)=-2,切线方程为y =-2x -1,即2x +y +1=0. (2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.故选B. 命题点2 求参数的值例3 函数y =e x 的切线方程为y =mx ,则m =________.(2)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m 等于( ) A .-1 B .-3 C .-4 D .-2 答案 (1)e (2)D解析 (1)设切点坐标为P (x 0,y 0),由y ′=e x ,得y ′|x =x 0=0x e ,从而切线方程为y -0x e =0x e (x -x 0),又切线过定点(0,0),从而-0x e =0x e (-x 0), 解得x 0=1,则m =e. (2)∵f ′(x )=1x,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, 于是解得m =-2.故选D. 命题点3 导数与函数图象的关系例4 如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的( )答案 D解析 函数的定义域为[0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图象是上升的且图象是下凸的;当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图象是上升的且图象是上凸的;当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.(1)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1 D.12(2)设曲线y =1+cos x sin x 在点(π2,1)处的切线与直线x -ay +1=0平行,则实数a 等于( )A .-1 B.12 C .-2 D .2答案 (1)A (2)A解析 (1)设切点的横坐标为x 0,∵曲线y =x 24-3ln x 的一条切线的斜率为12,∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意), 即切点的横坐标为3. (2)∵y ′=-1-cos xsin 2x,∴2'x y π==-1.由条件知1a =-1,∴a =-1.1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0Δy Δx =lim Δx →0f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx. 第3课时阶段重难点梳理(2)如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数y=f(x)在开区间内的导函数.记作f′(x)或y′.2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即k =f′(x0).3.基本初等函数的导数公式4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)[f(x)g(x)]′=f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 【知识拓展】(1)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. (2)[1f (x )]′=-f ′(x )[f (x )]2(f (x )≠0). (3)[af (x )+bg (x )]′=af ′(x )+bg ′(x ).(4)函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.典例 若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 错解展示现场纠错解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上.重点题型训练(1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,k =0'x x y ==3x 20-6x 0+2, ①又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.纠错心得 求曲线过一点的切线方程,要考虑已知点是切点和已知点不是切点两种情况.1.若f (x )=x ·e x ,则f ′(1)等于( ) A .0 B .e C .2e D .e 2 答案 C解析 f ′(x )=e x +x ·e x ,∴f ′(1)=2e.2.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )答案 D解析 由y =f ′(x )的图象知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________.答案 - 2解析 因为f (x )=f ′(π2)sin x +cos x ,所以f ′(x )=f ′(π2)cos x -sin x ,所以f ′(π2)=f ′(π2)cos π2-sin π2,即f ′(π2)=-1,所以f (x )=-sin x +cos x .f ′(x )=-cos x -sin x .故f ′(π4)=-cos π4-sin π4=- 2.4.曲线y =-5e x +3在点(0,-2)处的切线方程是________________. 答案 5x +y +2=0解析 因为y ′|x =0=-5e 0=-5,所以曲线在点(0,-2)处的切线方程为y -(-2)=-5(x -0),即5x +y +2=0.1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( ) A .2 B .0 C .-2 D .-4 答案 D解析 f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2, 所以f ′(0)=2f ′(1)+0=-4.2.若曲线f (x )=x 4-x 在点P 处的切线平行于直线3x -y =0,则点P 的坐标为( ) A .(-1,2) B .(1,-3) C .(1,0) D .(1,5)答案 C作业布置解析 设点P 的坐标为(x 0,y 0),因为f ′(x )=4x 3-1, 所以f ′(x 0)=4x 30-1=3,即x 0=1. 把x 0=1代入函数f (x )=x 4-x ,得y 0=0, 所以点P 的坐标为(1,0).3.若直线y =x 是曲线y =x 3-3x 2+px 的切线,则实数p 的值为( ) A .1 B .2 C.134 D .1或134答案 D解析 ∵y ′=3x 2-6x +p ,设切点为P (x 0,y 0),∴⎩⎪⎨⎪⎧3x 20-6x 0+p =1,x 30-3x 20+px 0=x 0,解得⎩⎪⎨⎪⎧x 0=0,p =1或⎩⎨⎧x 0=32,p =134.4.已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e答案 C解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1e.5.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×(-13)=0.6.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为( )A.14B.12 C .1 D .4 答案 A解析 由题意可知f ′(x )=1212x ,g ′(x )=a x ,由f ′(14)=g ′(14),得12×121()4=a 14,可得a =14,经检验,a =14满足题意.7.已知函数f (x )满足f (x )=f ′(1)e x -1-f (0)x +12x 2.那么f (x )的解析式为________.答案 f (x )=e x -x +12x 2解析 由已知得f ′(x )=f ′(1)e x -1-f (0)+x , 所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1,所以f ′(1)=e. 从而f (x )=e x -x +12x 2.8.曲线y =log 2x 在点(1,0)处的切线与坐标轴所围成三角形的面积等于________. 答案12ln 2解析 y ′=1x ln 2,∴k =1ln 2,∴切线方程为y =1ln 2(x -1).∴三角形面积S =12×1×1ln 2=12ln 2.9.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x.∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点, 即x +1x -a =0有解,∴a =x +1x≥2.*10.已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为________. 答案 -1解析 f ′(x )=(n +1)x n ,k =f ′(1)=n +1, 点P (1,1)处的切线方程为y -1=(n +1)(x -1), 令y =0,得x =1-1n +1=n n +1,即x n =n n +1,∴x 1·x 2·…·x 2 015=12×23×34×…×2 0142 015×2 0152 016=12 016, 则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015 =log 2 016(x 1x 2…x 2 015)=-1. 11.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,y ′=x 2,∴在点P (2,4)处的切线的斜率为y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A (x 0,13x 30+43),则切线的斜率为0'x x y =x 0=x 20.∴切线方程为y -(13x 30+43)=x 20(x -x 0), 即y =x 20·x -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43, 即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0, 解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0. 12.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围. 解 (1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k , 则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k≥-1, 解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).*13.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x2,知曲线在点P (x 0,y 0)处的切线方程为y -y 0=203(1)x +(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=203(1)x +(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值且此定值为6.导数的概念第一课时判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)f ′(x 0)与[f (x 0)]′表示的意义相同.( × ) (3)曲线的切线不一定与曲线只有一个公共点.( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( × )阶段训练题型一 导数的计算 例1 求下列函数的导数.(1)y =x 2sin x ;(2)y =ln x +1x ;(3)y =cos xex ;(4)y =sin(2x +π3);(5)y =ln(2x -5).解 (1)y ′=(x 2)′·sin x +x 2·(sin x )′ =2x sin x +x 2cos x .(2)y ′=(ln x +1x )′=(ln x )′+(1x )′=1x -1x 2. (3)y ′=(cos xe x )′=(cos x )′·e x -cos x (e x )′(e x )2=-sin x +cos x e x.(4)设u =2x +π3,则y =sin u ,则y ′=(sin u )′·u ′=cos(2x +π3)·2∴y ′=2cos(2x +π3).(5)令u =2x -5,则y =ln u , 则y ′=(ln u )′·u ′=12x -5·2=22x -5, 即y ′=22x -5.思维升华 (1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0等于( )A .e 2B .1C .ln 2D .e(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .0答案 (1)B (2)B解析 (1)f ′(x )=2 016+ln x +x ×1x =2 017+ln x ,故由f ′(x 0)=2 017,得2 017+ln x 0=2 017,则ln x 0=0,解得x 0=1. (2)f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 题型二 导数的几何意义 命题点1 求切线方程例2 (1)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A .x +y -1=0 B .x -y -1=0 C .x +y +1=0D .x -y +1=0 答案 (1)2x +y +1=0 (2)B解析 (1)设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x -3,f ′(1)=-2,切线方程为y =-2x -1,即2x +y +1=0. (2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.故选B. 命题点2 求参数的值例3 函数y =e x 的切线方程为y =mx ,则m =________.(2)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m 等于( ) A .-1 B .-3 C .-4 D .-2 答案 (1)e (2)D解析 (1)设切点坐标为P (x 0,y 0),由y ′=e x , 得y ′|x =x 0=0x e ,从而切线方程为y -0x e =0x e (x -x 0),又切线过定点(0,0),从而-0x e =0x e (-x 0), 解得x 0=1,则m =e.(2)∵f ′(x )=1x,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, 于是解得m =-2.故选D. 命题点3 导数与函数图象的关系例4 如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的( )答案 D解析 函数的定义域为[0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图象是上升的且图象是下凸的;当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图象是上升的且图象是上凸的;当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.(1)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1 D.12(2)设曲线y =1+cos x sin x 在点(π2,1)处的切线与直线x -ay +1=0平行,则实数a 等于( )A .-1 B.12 C .-2 D .2答案 (1)A (2)A解析 (1)设切点的横坐标为x 0,∵曲线y =x 24-3ln x 的一条切线的斜率为12,∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意), 即切点的横坐标为3. (2)∵y ′=-1-cos xsin 2x,∴2'x y π==-1.由条件知1a =-1,∴a =-1.阶段重难点梳理1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0Δy Δx =lim Δx →0f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx. (2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间内的导函数.记作f ′(x )或y ′. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0).3.基本初等函数的导数公式基本初等函数 导函数 f (x )=c (c 为常数)f ′(x )=0第3课时4.导数的运算法则若f ′(x ),g ′(x )存在,则有 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 【知识拓展】(1)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. (2)[1f (x )]′=-f ′(x )[f (x )]2(f (x )≠0). (3)[af (x )+bg (x )]′=af ′(x )+bg ′(x ).(4)函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.典例 若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 错解展示现场纠错解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,重点题型训练k =0'x x y ==3x 20-6x 0+2, ①又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.纠错心得 求曲线过一点的切线方程,要考虑已知点是切点和已知点不是切点两种情况.1.若f (x )=x ·e x ,则f ′(1)等于( ) A .0 B .e C .2e D .e 2 答案 C解析 f ′(x )=e x +x ·e x ,∴f ′(1)=2e.2.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )答案 D解析 由y =f ′(x )的图象知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________.答案 - 2解析 因为f (x )=f ′(π2)sin x +cos x ,所以f ′(x )=f ′(π2)cos x -sin x ,所以f ′(π2)=f ′(π2)cos π2-sin π2,即f ′(π2)=-1,所以f (x )=-sin x +cos x .f ′(x )=-cos x -sin x .故f ′(π4)=-cos π4-sin π4=- 2.4.曲线y =-5e x +3在点(0,-2)处的切线方程是________________. 答案 5x +y +2=0解析 因为y ′|x =0=-5e 0=-5,所以曲线在点(0,-2)处的切线方程为y -(-2)=-5(x -0),即5x +y +2=0.1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( ) A .2 B .0 C .-2 D .-4 答案 D解析 f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2, 所以f ′(0)=2f ′(1)+0=-4.2.若曲线f (x )=x 4-x 在点P 处的切线平行于直线3x -y =0,则点P 的坐标为( ) A .(-1,2) B .(1,-3) C .(1,0) D .(1,5)答案 C解析 设点P 的坐标为(x 0,y 0),因为f ′(x )=4x 3-1, 所以f ′(x 0)=4x 30-1=3,即x 0=1. 把x 0=1代入函数f (x )=x 4-x ,得y 0=0, 所以点P 的坐标为(1,0).3.若直线y =x 是曲线y =x 3-3x 2+px 的切线,则实数p 的值为( ) A .1 B .2 C.134 D .1或134作业布置答案 D解析 ∵y ′=3x 2-6x +p ,设切点为P (x 0,y 0),∴⎩⎪⎨⎪⎧3x 20-6x 0+p =1,x 30-3x 20+px 0=x 0,解得⎩⎪⎨⎪⎧x 0=0,p =1或⎩⎨⎧x 0=32,p =134.4.已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e答案 C解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.5.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×(-13)=0.6.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为( )A.14B.12 C .1 D .4 答案 A解析 由题意可知f ′(x )=1212x -,g ′(x )=a x ,由f ′(14)=g ′(14),得12×121()4-=a 14,可得a =14,经检验,a =14满足题意.7.已知函数f (x )满足f (x )=f ′(1)e x -1-f (0)x +12x 2.那么f (x )的解析式为________.答案 f (x )=e x -x +12x 2解析 由已知得f ′(x )=f ′(1)e x -1-f (0)+x ,所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1,所以f ′(1)=e. 从而f (x )=e x -x +12x 2.8.曲线y =log 2x 在点(1,0)处的切线与坐标轴所围成三角形的面积等于________. 答案12ln 2解析 y ′=1x ln 2,∴k =1ln 2,∴切线方程为y =1ln 2(x -1).∴三角形面积S =12×1×1ln 2=12ln 2.9.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x.∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点, 即x +1x -a =0有解,∴a =x +1x≥2.*10.已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为________. 答案 -1解析 f ′(x )=(n +1)x n ,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1), 令y =0,得x =1-1n +1=n n +1,即x n =nn +1,∴x 1·x 2·…·x 2 015=12×23×34×…×2 0142 015×2 0152 016=12 016, 则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015 =log 2 016(x 1x 2…x 2 015)=-1. 11.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,y ′=x 2,∴在点P (2,4)处的切线的斜率为y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A (x 0,13x 30+43),则切线的斜率为0'x x y =x 0=x 20.∴切线方程为y -(13x 30+43)=x 20(x -x 0), 即y =x 20·x -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43, 即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0, ∴(x 0+1)(x 0-2)2=0, 解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0. 12.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围. 解 (1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k , 则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k≥-1, 解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).*13.设函数f (x )=ax -bx,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x2,知曲线在点P (x 0,y 0)处的切线方程为y -y 0=203(1)x +(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=203(1)x +(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值且此定值为6.。
高考数学总复习:函数的概念与性质
高考数学总复习:函数的概念与性质知识网络目标认知考试大纲要求:1. 了解映射的概念,了解构成函数的要素,会求一些简单函数的定义域和值域;2. 在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3. 了解简单的分段函数,并能简单应用.4. 理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义.5. 会运用函数图象理解和研究函数的性质.重点:会求一些简单函数的定义域和值域,理解分段函数及其简单应用,会运用函数图象理解和研究函数的性质。
难点:分段函数及其简单应用;运用函数图象理解和研究函数的性质.知识要点梳理知识点一:函数的概念1.映射设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A、B及集合A到集合B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。
理解:(1)映射是从集合A到集合B的“一对一”或“多对一”两种特殊的对应.(2)映射中的两个集合可以是数集,点集或其它集合.(3)集合A到集合B的映射f:A→B是一个整体,具有方向性;f:A→B 与f:B→A 一般情况下是不同的映射.(4)给定一个集合A到集合B的映射f:A→B,且a∈A,b∈B,如果在此映射之下元素a和元素b对应,则将元素b叫做元素a的象,元素a叫做元素b的原象.即如果在给定映射下有f:a→b,则b叫做a的象,a叫做b的原象.(5)映射允许集合B中的元素在集合A中没有原象.2.函数的定义(1)传统定义:设在某一变化过程中有两个变量x和y,如果对于某一X围内x 的每一个值,y都有唯一的值和它对应,那么就说y是x的函数,x叫做自变量,y叫做因变量(函数).(2)现代定义:设A、B是两个非空数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x ,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值X围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合C={f(x)|x∈A}叫做函数的值域.理解:①集合A、B是两个非空数集;②f表示对应法则;③f:A→B为从集合A到集合B的一个映射;④值域C B。
高中函数必考知识点总结
高中函数必考知识点总结一、函数的概念与性质1. 函数的概念函数是一种特殊的关系,它是一个或多个自变量和因变量之间的对应关系。
在数学中,通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
函数也可以用y表示,即y=f(x)。
函数的定义域为自变量能取得的值的集合,值域为函数在定义域内所有可能取得的值的集合。
2. 函数的性质(1)定义域和值域:一个函数的定义域和值域是描述这个函数在横坐标和纵坐标上的取值范围。
(2)奇函数与偶函数:奇函数的图像对称于原点,即f(-x)=-f(x);偶函数的图像对称于y 轴,即f(-x)=f(x)。
(3)周期函数:周期函数是指满足f(x+T)=f(x)的函数,其中T为函数的周期。
(4)单调性:函数在定义域上的单调性分为递增和递减两种情况。
二、函数的图像与性质1. 一次函数(1)一次函数的图像是一条直线,其表达式一般为y=kx+b,其中k为斜率,b为截距。
(2)一次函数的图像是一条直线,斜率k表示了直线的斜率,而截距b表示了直线与y 轴的交点。
2. 二次函数(1)二次函数的图像是一个抛物线,其表达式一般为y=ax^2+bx+c,其中a不为0。
(2)二次函数的顶点坐标为(-b/2a,c-b^2/4a),对称轴方程为x=-b/2a,开口向上或开口向下取决于a的正负。
3. 指数函数(1)指数函数的图像是一条过点(0,1)的递增曲线,其表达式一般为y=a^x,其中a为底数,a>0且a≠1。
(2)指数函数的性质:具有底数为正数,且大于1时函数递增;具有底数为0到1之间的数时函数递减。
(3)指数函数的图像在x轴上没有横截点,y轴上有一个横截点(0,1)。
4. 对数函数(1)对数函数的图像是一条过点(1,0)的递增曲线,其表达式一般为y=loga(x),其中a为底数,a>0且a≠1。
(2)对数函数的性质:具有底数为正数,且大于1时函数递增;具有底数为0到1之间的数时函数递减。
高考数学基础函数知识点汇总
高考数学基础函数知识点汇总函数是高考数学中的重要内容,也是数学学习中的基础和核心。
掌握好函数的相关知识,对于解决数学问题、提高数学素养至关重要。
下面为大家详细汇总高考数学中基础函数的知识点。
一、函数的定义函数是一种特殊的对应关系,设集合 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
其中,集合 A 叫做函数的定义域,集合{f(x)|x∈A}叫做函数的值域。
需要注意的是,定义域、值域和对应关系是函数的三要素,当且仅当定义域、对应关系都相同时,两个函数才是相同的函数。
二、函数的表示方法1、解析法:用数学表达式表示两个变量之间的对应关系,如 y =f(x)。
2、列表法:通过列出表格来表示两个变量之间的对应关系。
3、图象法:用图象表示两个变量之间的对应关系,形象直观。
三、常见函数类型1、一次函数形如 y = kx + b(k,b 为常数,k≠0)的函数称为一次函数。
当 b = 0 时,y = kx 是正比例函数,其图象是过原点的直线。
一次函数的图象是一条直线,k 决定直线的倾斜程度,b 决定直线与 y 轴的交点位置。
2、二次函数一般式:y = ax²+ bx + c(a≠0)顶点式:y = a(x h)²+ k(a≠0,顶点坐标为(h, k))交点式:y = a(x x₁)(x x₂)(a≠0,x₁,x₂为函数与 x 轴交点的横坐标)二次函数的图象是一条抛物线,对称轴为 x = b/2a,顶点坐标为(b/2a, (4ac b²)/4a) 。
a 的正负决定抛物线的开口方向,a > 0 时开口向上,a < 0 时开口向下。
3、反比例函数形如 y = k/x(k 为常数,k≠0)的函数称为反比例函数,其图象是双曲线。
当 k > 0 时,图象在一、三象限;当 k < 0 时,图象在二、四象限。
新高考数学高一函数知识点
新高考数学高一函数知识点随着新高考改革的深入推进,作为一门重要的学科,数学在新高考中也有了一些变化。
在新高考数学中,函数是一个重要的考察内容。
函数在高一的学习中占据了很大的篇幅,学好函数知识对于后续的学习和考试至关重要。
本文将介绍一些高一函数知识点,帮助同学们更好地掌握函数的基本概念和方法。
1. 函数的定义与性质函数是数学中的一个基本概念,简单地说,函数就是两个数集之间的一种关系。
具体来说,如果对于集合A中的每一个元素x,都能唯一地对应一个集合B中的元素y,则我们称这种关系为函数。
函数一般用f(x)来表示,其中x是自变量,f(x)是因变量。
函数也有着一些基本的性质,如定义域、值域、单调性等。
2. 基本的函数类型在高一数学中,学习的函数类型有三种,分别是线性函数、二次函数和反比例函数。
线性函数是最简单的函数类型,它的图像是一条直线;二次函数是一种带有平方项的函数,它的图像通常是一个开口向上或向下的抛物线;反比例函数是一种形式为y=k/x的函数,其中k 是一个常数。
理解和熟练掌握这些函数类型的特点和性质,对于解题是非常有帮助的。
3. 函数的图像与性质函数的图像是通过绘制自变量和因变量之间的关系而得到的。
了解函数图像对于理解函数的性质和特点非常重要。
函数图像可以通过查找函数的定义域和值域、计算函数在特定点上的取值来绘制。
通过观察函数图像,我们可以了解函数的单调性、奇偶性、周期性等重要的性质。
掌握这些性质,可以帮助我们快速地判断一个函数的基本特点。
4. 函数的运算与复合函数在数学中,函数之间可以进行运算,如加法、减法、乘法和除法。
函数之间的运算有一些特殊的性质和规则,我们需要对这些规则进行深入地理解和掌握。
此外,当两个或多个函数进行复合时,我们得到的就是复合函数。
复合函数的性质和求值方法也是高一数学中重点学习的内容之一。
5. 常用函数的性质在高一数学中,我们还会学习一些常用函数的性质,如绝对值函数、幂函数和指数函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题三函数的概念、性质与基本初等函数【考情探究】课标解读考情分析备考指导主题内容一、函数的概念1.了解函数三要素及分段函数,会求简单函数的定义域、值域.2.会根据不同需要选择恰当方法表示函数.1.常以基本函数或由基本函数组合的函数为臷体,考查函数的定义域、值域,函数的表示方法及性质,图象.2.常与导数、不等式、方程知识交汇命题,考查数形结合、分类讨论、转化与化归,函数与方程思想方法.3.根据实际问题,建立函数模型或用已知模型解决实际问题,考查建模及应用能力.1.高考对本专题的考查依然是基础与能力并存,函数性质、零点问题是本专题的重点考查内容.2.以函数性质为主,常以指数函数、对数函数为载体,考查求函数值、比较大小,函数图象识辨及实际应用问题.二、函数的基本性质了解函数奇偶性、周期性的含义,理解函数单调性、最值及几何意义.三、二次函数与幂函数了解二次函数、幂函数的概念,理解二次函数图象并简单应用.四、指数与指数函数了解指数函数模型背景,实数指数幂的含义,理解有理指数幂的含义,指数函数的概念,单调性.掌握幂的运算,指数函数的图象.五、对数与对数函数理解对数的概念及运算性质,对数函数的概念及性质,掌握对数函数的图象经过的特殊点,会用换底公式.六、函数的图象理解描点法作图和图象变换.利用函数图象讨论函数性质.七、函数与方程了解函数零点与方程根的联系.八、函数模型及函数的综合应用了解函数模型的广泛应用,基本函数等不同函数类型的增长意义.【真题探秘】§3.1 函数的概念 基础篇固本夯基【基础集训】考点一 函数的有关概念1.设函数f(x)=lg(1-x),则函数f(f(x))的定义域为( ) A.(-9,+∞) B.(-9,1) C.[-9,+∞) D.[-9,1) 答案 B2.下列函数为同一函数的是( )A.y=x 2-2x 和y=t 2-2t B.y=x 0和y=1C.y=√(x +1)2和y=x+1D.y=lg x 2和y=2lg x答案 A 3.函数f(x)=12-|x|+√x 2-1+(x-4)0的定义域为 .答案 {x|x<-2或-2<x ≤-1或1≤x<2或2<x<4或x>4}4.已知函数f(2x-1)的定义域为(-1,2),则f(x)的定义域为 , f(2-3x)的定义域为 . 答案 (-3,3);(-13,53)考点二 函数的表示方法5.下列图象可以表示以M={x|0≤x ≤1}为定义域,以N={y|0≤y ≤1}为值域的函数是( )答案 C6.已知f(2x+1)=x 2-2x,则f(x)= , f(3)= . 答案14x 2-32x+54;-1 7.若函数f(x)={-x +8,x ≤2,log a x +5,x >2(a>0且a ≠1)的值域为[6,+∞),则实数a 的取值范围是 .答案 (1,2]8.设函数f(x)={x 2+2x +2,x ≤0,-x 2,x >0.若f(f(a))=2,则a= .综合篇知能转换【综合集训】考法一 函数定义域的求法1.函数y=√1-log 2x 的定义域是( )A.(-∞,2]B.(0,2]C.(-∞,1]D.[1,2] 答案 B2.函数f(x)=ln(x 2-x)的定义域为( ) A.(0,1) B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞) 答案 C3.已知函数y=f(x)的定义域是[0,2],那么g(x)=f(x 2)1+lg(x+1)的定义域是.答案 (-1,-910)∪(-910,√2] 考法二 函数解析式的求法4.(2018广东珠海期中,4)已知f(x 5)=lg x,则f(2)=( ) A.15lg 2 B.12lg 5 C.13lg 2 D.12lg 3 答案 A5.若二次函数g(x)满足g(1)=1,g(-1)=5,且图象过原点,则g(x)的解析式为( ) A.g(x)=2x 2-3x B.g(x)=3x 2-2x C.g(x)=3x 2+2x D.g(x)=-3x 2-2x 答案 B6.已知函数f(x)满足f(x)+2f(-x)=e x,则函数f(x)的解析式为 . 答案 f(x)=23e -x-13e x7.已知函数f(x)=axx -1,若f(x)+f (1x)=3,则f(x)+f(2-x)= .答案 68.(2018河南南阳第一中学第二次考试,16)已知f(1-cos x)=sin 2x,则f(x 2)的解析式为 . 答案 f(x 2)=-x 4+2x 2,x ∈[-√2,√2]考法三 分段函数问题的解题策略9.(2019山西太原三中模拟,10)设函数f(x)={x 2-1(x ≥2),log 2x(0<x <2),若f(m)=3,则实数m 的值为( )A.-2B.8C.1D.2 答案 D10.已知实数a ≠0,函数f(x)={2x +a,x <1,-x -2a,x ≥1,若f(1-a)=f(1+a),则a 的值为( )A.-34B.34C.-35D.3511.(2018安徽合肥一模,3)已知函数f(x)={x +1x -2,x >2,x 2+2,x ≤2,则f(f(1))=( ) A.-12B.2C.4D.11 答案 C12.已知函数f(x)={2x +1,x <1,x 2+ax,x ≥1,若f(f(0))=4a,则实数a 等于( )A.12B.45C.2D.9 答案 C13.(2018河南濮阳二模,5)若f(x)={2x -3,x >0,g(x),x <0是奇函数,则f(g(-2))的值为( )A.52B.-52C.1D.-1 答案 C14.(2018福建福州模拟,6)设函数f(x)={0,x ≤0,2x -2-x ,x >0,则满足f(x 2-2)>f(x)的x 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-√2)∪(√2,+∞)C.(-∞,-√2)∪(2,+∞)D.(-∞,-1)∪(√2,+∞) 答案 C【五年高考】考点一 函数的有关概念1.(2019江苏,4,5分)函数y=√7+6x -x 2的定义域是 . 答案 [-1,7]2.(2018江苏,5,5分)函数f(x)=√log 2x -1的定义域为 . 答案 [2,+∞)考点二 函数的表示方法3.(2015课标Ⅱ,5,5分)设函数f(x)={1+log 2(2-x), x <1,2x -1, x ≥1.则f(-2)+f(log 212)=( )A.3B.6C.9D.12 答案 C4.(2015山东,10,5分)设函数f(x)={3x -1,x <1,2x,x ≥1.则满足f(f(a))=2f(a)的a 的取值范围是( ) A.[23,1] B.[0,1] C.[23,+∞) D.[1,+∞) 答案 C5.(2017课标Ⅲ,15,5分)设函数f(x)={x +1,x ≤0,2x ,x >0,则满足f(x)+f (x -12)>1的x 的取值范围是 .答案 (-14,+∞)6.(2018江苏,9,5分)函数f(x)满足f(x+4)=f(x)(x ∈R ),且在区间(-2,2]上, f(x)={cos πx2,0<x ≤2,|x+12|,-2<x ≤0, 则f(f(15))的值为 . 答案√22教师专用题组考点一 函数的有关概念1.(2014山东,3,5分)函数f(x)=√(log 2x)-1的定义域为( )A.(0,12)B.(2,+∞)C.(0,12)∪(2,+∞) D.(0,12]∪[2,+∞) 答案 C2.(2014江西,3,5分)已知函数f(x)=5|x|,g(x)=ax 2-x(a ∈R ).若f[g(1)]=1,则a=( ) A.1 B.2 C.3 D.-1 答案 A3.(2013大纲全国,4,5分)已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为( ) A.(-1,1) B.(-1,-12) C.(-1,0) D.(12,1) 答案 B考点二 函数的表示方法4.(2014福建,7,5分)已知函数f(x)={x 2+1,x >0,cosx,x ≤0,则下列结论正确的是( )A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞) 答案 D5.(2015浙江,10,6分)已知函数f(x)={x +2x-3, x ≥1,lg(x 2+1), x <1,则f(f(-3))= , f(x)的最小值是 .答案 0;2√2-36.(2014浙江,15,4分)设函数f(x)={x 2+x, x <0,-x 2, x ≥0.若f(f(a))≤2,则实数a 的取值范围是 .答案 (-∞,√2]7.(2014四川,12,5分)设f(x)是定义在R 上的周期为2的函数,当x ∈[-1,1)时, f(x)={-4x 2+2,-1≤x <0,x,0≤x <1,则f (32)= . 答案 1【三年模拟】一、单项选择题(每题5分,共45分)1.(2019届山东单县五中10月月考,4)函数y=√-x 2-x+2lnx的定义域为( )A.(-2,1)B.[-2,1]C.(0,1)D.(0,1] 答案 C2.(2020届四川双流中学9月月考,3)设函数f(x)={4x -1,x ≤0,log 2x,x >0,则f(f(1))=( )A.0B.1C.2D.3 答案 A3.(2019届湖北“荆、荆、襄、宜四地七校考试联盟”联考,7)已知函数f(x)={(12)x -7,x <0,log 2(x +1),x ≥0,若f(a)<1,则实数a 的取值范围是( )A.(-∞,-3)∪[0,1)B.(-3,0)∪(0,1)C.(-3,1)D.(-∞,-3)∪(1,+∞) 答案 C4.(2019届山东枣庄八中10月月考,2)已知函数f(x)的图象如图所示,设集合A={x|f(x)>0},B={x|x 2<4},则A ∩B=( )A.(-2,-1)∪(0,2)B.(-1,1)C.(-2,-1)∪(1,2)D.(-∞,3) 答案 C5.(2020届河南南阳一中第一次月考,6)已知函数f(x)满足f (1x )+1xf(-x)=2x(x ≠0),则f(-2)=( ) A.-72 B.-92 C.72 D.92答案 C6.(2019山东菏泽模拟,5)已知函数f(x)=log 2x 的值域是[1,2],则函数φ(x)=f(2x)+f(x 2)的定义域为( ) A.[√2,2] B.[2,4] C.[4,8] D.[1,2] 答案 A7.(2019山东师范大学附中二模,3)已知函数f(x)={(1-2a)x +3a(x <1),lnx(x ≥1)的值域为R ,则实数a 的取值范围是( )A.(-∞,-1)B.[12,1] C.[-1,12) D.(0,12) 答案 C8.(2020届重庆万州第二高级中学第一次月考,10)若函数y=f(x)的值域是[1,3],则函数F(x)=1-f(x+3)的值域是( ) A.[-8,-3] B.[-5,-1] C.[-2,0] D.[1,3] 答案 C9.(2019安徽安庆模拟,4)若函数y=f(x)的图象的一部分如图(1)所示,则图(2)中的图象所对应的函数解析式可以是( )A.y=f (2x -12) B.y=f(2x-1) C.y=f (12x -12) D.y=f (12x -1) 答案 B二、多项选择题(每题5分,共15分)10.(改编题)设集合M={x|0≤x ≤2},N={y|0≤y ≤2},那么下面的4个图形中,能表示从集合M 到集合N 的函数关系的有( )答案 BC11.(改编题)下列各组函数中,不表示同一函数的是( ) A.f(x)=e ln x,g(x)=xB.f(x)=x 2-4x+2,g(x)=x-2 C.f(x)=sin2x2cosx,g(x)=sin xD.f(x)=|x|,g(x)=√x 2 答案 ABC12.(改编题)已知f(x)={log 3x,x >0,a x +b,x ≤0且f(0)=2, f(-1)=3,则( )A.a=12,b=1 B.f(f(-3))=2 C.a=1,b=12D.f(f(-3))=12答案 AB三、填空题(每题5分,共25分)13.(2019广东深圳期末,14)一次函数f(x)是减函数,且满足f[f(x)]=4x-1,则f(x)= . 答案 -2x+114.(2020届山西平遥中学月考,13)已知函数f(x)={log 2(1-x),x <1,3x -10,x ≥1,若f(x)=-1,则x= .答案12或215.(2019届四川高三第一次诊断性测试,15)已知函数f(x)={2-x -2,x ≤0,f(x -2)+1,x >0,则f(2 019)= .答案 1 01016.(2018河北石家庄月考,15)已知函数f(x)=2x+1与函数y=g(x)的图象关于直线x=2成轴对称图形,则函数y=g(x)的解析式为 .答案 g(x)=9-2x17.(改编题)已知函数f(x)={(lnx)2+alnx +b(x >0),e x +12(x ≤0).若f(e 2)=f(1), f(e)=43f(0),则a,b 的值为 , ;函数f(x)的值域为 . 答案 -2;3;(12,32]∪[2,+∞)。