2019-2020年高中数学 3.5.2:等比数列《教学与测试》第40、41课 新人教A版必修1
2019-2020年高中数学 2.4等比数例教学案 新人教版必修5
2019-2020年高中数学 2.4等比数例教学案新人教版必修5教学目标知识与技能目标1.等比数列的定义;2.等比数列的通项公式.过程与能力目标1.明确等比数列的定义;2.掌握等比数列的通项公式,会解决知道,,,n中的三个,求另一个的问题.教学重点1.等比数列概念的理解与掌握;2.等比数列的通项公式的推导及应用.教学难点等差数列"等比"的理解、把握和应用.教学过程一、情境导入:下面我们来看这样几个数列,看其又有何共同特点?(教材上的P48面)1,2,4,8,16,…,263; ①1,,,,…;②1,,…;③......1098.1,1098.1,0198.132④对于数列①,= ; =2(n≥2).对于数列②,=;(n≥2).对于数列③,= ; =20(n≥2).共同特点:从第二项起,第一项与前一项的比都等于同一个常数.二、检查预习1.等比数列的定义.2.等比数列的通项公式:,,3.{an}成等比数列4.求下面等比数列的第4项与第5项:(1)5,-15,45,……;(2)1.2,2.4,4.8,……;(3),…….三、合作探究(1)等比数列中有为0的项吗?(2)公比为1的数列是什么数列?(3)既是等差数列又是等比数列的数列存在吗?(4)常数列都是等比数列吗?四交流展示等比数列的定义:一般地,若一个数列从第二项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列.这个常数叫等比数列的公比,用字母q表示(q≠0),即:=q(q ≠0)注:(1)“从第二项起”与“前一项”之比为常数q;{}成等比数列=q(,q≠0.)(2) 隐含:任一项(3) q=1时,{an}为常数数列.(4).既是等差又是等比数列的数列:非零常数列.2.等比数列的通项公式1:)0,(111均不为q a q a a n n -⋅=观察法:由等比数列的定义,有:; ;312134)(q a q q a q a a ===;… … … … … … … )0(1111≠⋅==--q a q a q a a n n n ,.迭乘法:由等比数列的定义,有:;;;…; 所以,即 等比数列的通项公式2:)0(≠⋅=-q a q a a m m n m n ,五精讲精练例1.一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项.解:.316328,832122132=⨯===⨯==∴q a a q a a点评:考察等比数列项和通项公式的理解变式训练一:教材第52页第1例2.求下列各等比数列的通项公式: nn a a a 32,5 )2(11-==+且解:(1)24213±=⇒=⇒=q q q a a nn n n n n a a )2()2)(2(22)2(11-=--=-=-=∴--或(2)111)23(5523-+-⨯=∴=-==n n n n a a a a q 又:点评:求通项时,求首项和公比 变式训练二 :教材第52页第2 例3.教材P50面的例1。
2019-2020年高中数学 3.4.2:等比数列 新人教A版必修1
2019-2020年高中数学 3.4.2:等比数列 新人教A 版必修1目的:在熟悉等比数列有关概念的基础上,要求学生进一步熟悉等比数列的有关性质,并系统了解判断一个数列是否成等比数列的方法。
重点:等比数列的性质.若数列{a n }是公比为q 的等比数列,则(1) 当q>1,a 1>0或0<q<1,a 1<0时, {a n }是递增数列;当q>1, a 1<0,或0<q<1,a 1>0时, {a n }是递减数列;当q=1时, {a n }是常数列;当q<0时, {a n }是摆动数列;(2) a n ≠0,且a n a n+2>0(3) a n =a m q n-m (n,m ∈N *).(4) 当n+m=p+q(n,m,p,q ∈N *)时,有a n a m =a p a q ,(5) 当{a n }是有穷数列时,屯首末两项等距离的两项的积都相等,且等于首末两项的积(6) 数列{λa n }(λ为不等于零的常数)仍是公比为q 的等比数列.(7) 若{b n }是公比为q ′的等比数列,则数列{a n • b n }是公比为qq ′的等比数列.(8) 数列是公比为的等比数列.(9) 在{a n }中,每隔k(k ∈N *)项取出一项,按原来顺序排列,所得的新数列仍为等比数列,且公比为q k+1.(10) 若m 、n 、p(m 、n 、p ∈N *)成等差数列时,a m ,a n ,a p 成等比数列。
难点:等比数列性质的应用。
过程:一、复习:1、等比数列的定义,通项公式,中项。
2、处理课本P128练习,重点是第三题。
例1:1、在等比数列,已知,,求。
解:∵,∴2、在等比数列中,,求该数列前七项之积。
解:()()()45362717654321b b b b b b b b b b b b b b =∵,∴前七项之积3、在等比数列中,,,求,解:145825454255358-=-⨯=⋅==a a a q a a 另解:∵是与的等比中项,∴∴三、判断一个数列是否成GP 的方法:1、定义法,2、中项法,3、通项公式法例2:已知无穷数列 ,10,10,10,1051525150-n ,求证:(1)这个数列成GP(2)这个数列中的任一项是它后面第五项的,(3)这个数列的任意两项的积仍在这个数列中。
高三数学等比数列知识点
高三数学等比数列知识点数学在高中阶段是一个重要的学科,其中等比数列也是其中的一个重要知识点。
等比数列是数学中常见的数列类型之一,它的每一项与前一项的比值都相等。
在高三数学中,学生需要掌握等比数列的基本概念、性质和应用。
本文将分为以下几个部分介绍高三数学等比数列的相关知识。
一、等比数列的基本概念等比数列是指一个数列中的每一项与其前一项的比值相等。
具体而言,对于一个等比数列a₁, a₂, a₃, ...,相邻的两项之间满足如下关系:a₂ / a₁ = a₃ / a₂ = a₄ / a₃ = ...这个比值称为等比数列的公比,通常用字母q表示。
此外,等比数列的第一项a₁和公比q也是等比数列的两个重要要素。
二、等比数列的性质1. 等比数列的通项公式等比数列的通项公式可以通过观察数列的规律得到。
对于一个等比数列a₁, a₂, a₃, ...,其中a₁为首项,q为公比,数列的通项公式为:aₙ = a₁ * q^(n-1)其中,aₙ表示数列的第n项。
这个公式可以方便地计算数列中任意一项的值。
2. 等比数列的前n项和等比数列的前n项和是指数列中前n项的和值。
对于一个等比数列a₁, a₂, a₃, ...,其前n项和Sₙ的计算公式为:Sₙ = a₁ * (1 - q^n) / (1 - q)这个公式是通过数列的首项、公比和项数来计算前n项和的值。
3. 等比数列的性质等比数列具有一些重要的性质,包括:(1)等比数列中,任意两项的比值都是相等的。
(2)等比数列当公比q大于1时,数列会呈现出递增的规律;当公比q小于1且大于0时,数列会呈现出递减的规律。
(3)等比数列中,如果首项a₁大于0且公比q大于1,数列会趋向无穷大;如果首项a₁大于0且公比q小于1且大于0,数列会趋向0。
(4)等比数列中,相邻两项之间的比值等于公比的平方。
三、等比数列的应用1. 等比数列在实际生活中的应用等比数列在现实生活中有许多应用。
例如,财务领域中的利息计算、人口增长的模型、物理领域的衰减和增长模型等都可以用等比数列来进行建模和计算。
大纲版高中高一数学全套教案:数列
第三章 数列 第一教时教材:数列、数列的通项公式目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。
过程:一、从实例引入(P110)1.堆放的钢管 4,5,6,7,8,9,102.正整数的倒数 51,41,31,21,13. ,,,,的不足近似值,,精确到414.141.14.11001.01.012 4.-1的正整数次幂:-1,1,-1,1,… 5.无穷多个数排成一列数:1,1,1,1,… 二、提出课题:数列1.数列的定义:按一定次序排列的一列数(数列的有序性) 2.名称:项,序号,一般公式n a a a ,,,21 ,表示法{}n a 3.通项公式:n a 与n 之间的函数关系式如 数列1: 3+=n a n 数列2:na n 1=数列4:*,)1(N n a n n ∈-= 4.分类:递增数列、递减数列;常数列;摆动数列; 有穷数列、无穷数列。
5.实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集 N*(或它的有限子集{1,2,…,n })的函数,当自变量从小到大依 次取值时对应的一列函数值,通项公式即相应的函数解析式。
6.用图象表示:— 是一群孤立的点 例一 (P111 例一 略)三、关于数列的通项公式1.不是每一个数列都能写出其通项公式 (如数列3)2.数列的通项公式不唯一 如 数列4可写成 n n a )1(-=和⎩⎨⎧-=11n a *,2*,12N k k n N k k n ∈=∈-=3.已知通项公式可写出数列的任一项,因此通项公式十分重要 例二 (P111 例二)略四、补充例题:写出下面数列的一个通项公式,使它的前n 项分别是下列 各数:1.1,0,1,0 *,2)1(11N n a n n ∈-+=+ 2.32-,83,154-,245,356- 1)1(1)1(2-++⋅-=n n a n n 3.7,77,777,7777 )110(97-⨯=n n a 4.-1,7,-13,19,-25,31 )56()1(--=n a n n5.23,45,169,2561712212-+=n n n a五、小结:1.数列的有关概念 2.观察法求数列的通项公式六、作业: 练习 P112 习题 3.1(P114)1、2 《课课练》中例题推荐2 练习 7、8第二教时教材:数列的递推关系目的:要求学生进一步熟悉数列及其通项公式的概念;了解数列递推公式的意义,会根据给出的递推公式写出数列的前n 项。
2019-2020年高一数学等比数列说课教案 人教版
2019-2020年高一数学等比数列说课教案人教版说课内容:一、教材分析二、教法与学法分析三、教学程序设计一、教材分析1.教材的地位、作用数列是刻画离散现象的函数,是一种重要的数学模型,它起着承前启后的作用。
一方面,初中数学的许多内容,在解决数列的某些问题中,得到了充分运用,数列与前面学习的函数等知识有密切联系;另一方面,学习数列又为进一步学习数列的极限等内容作好准备,而等比数列是数列的重要组成部分,它有着广泛的实际应用,如产品规格设计的某些问题要用到等比数列的原理,再如储蓄、分期付款的有关计算也要用到等比数列的一些知识。
掌握了等比数列及其通项公式有利于进一步研究某些等比数列的性质及前n项和公式的推导以及应用,从而极大地提高学生利用数列知识解决实际问题的能力。
同时,本节的教学内容和教学过程对进一步培养学生观察、分析和归纳问题的能力具有重要的意义。
2.教学目标知识目标:使学生掌握等比数列的定义及通项公式,发现等比数列的一些简单性质,并能运用定义及通项公式解决一些实际问题。
能力目标:培养运用归纳类比的方法发现问题并解决问题的能力及运用方程的思想的计算能力。
德育目标:培养积极动脑的学习作风,在数学观念上增强应用意识,在个性品质上培养学习兴趣。
3.教学重点、难点本节的重点是等比数列的定义、通项公式及其简单应用,其解决办法是归纳、类比。
本节难点是对等比数列定义及通项公式的深刻理解,突破难点的关键在于紧扣定义,另外,灵活应用定义、公式、性质解决一些相关问题也是一个难点。
二、教法与学法分析为了突出重点、突破难点,本节课主要采用观察、分析、类比、归纳的方法,让学生参与学习,将学生置于主体位置,发挥学生的主观能动性,将知识的形成过程转化为学生亲自探索类比归纳的过程,使学生获得发现的成就感。
在这个过程中,力求把握好以下几点:①通过实例,让学生发现规律。
让学生在问题情景中,经历知识的形成和发展,力求使学生学会用类比的思想去看待问题。
2019-2020学年人教A版必修五 等比数列 教案
等比数列(一)学习目标1、正确叙述等比数列的定义,准确表述公比的意义。
2、理解通项公式的推导过程,并会用此公式解题,并能用方程的思想,根据条件解决有关问题。
学习重点:对等比数列的理解及通项公式的应用。
难点:正确运用等比数列的通项公式。
学习过程一、导入观察下面的数列说出各自的特点。
① 1,2,4,8,……,2 63 ② 5,25,125,625,……③ 1,-21,41,-81,…… ④ 31,91,271,811,…… 二、新课1、定义:①语言描述 ②式子描述:Ⅰ、12a a =23a a =34a a =45a a =……=nn a a 1+=……= q Ⅱ、21a a q =,32a a q =,43a a q =,54a a q =,……,1n n a a q +=,2、通项公式:11n n a a q -=推导:3、通项公式的应用:例1:等比数列{n a }中,①n a =1104n ⋅,求1a 及q 。
②2n n a = ;求1a 及q 。
例2:①等比数列{n a }中,已知3a = 45,q =-3,求5a②一个等比数列的第三项与第四项分别是12与18,求它的第一项和第二项。
解:① ②例3:某中细菌在培养过程中,每20分中分裂一次,(一次分裂为2个)经过331小时,这种细菌由1个可繁殖几个?作业:1、下列各选项中,不是一个等比数列的前三项的是( )A 、2、4、8;B 、–2、–4、–8 ;C 、–2、4、–8D 、 2、–4、82、在等比数列{}n a 中,已知127a =-,公比13q =-,那么6a 的值是( ) A 、13- B 、13 C 、19- D 、1934,中的第( )项A 、10;B 、11 ;C 、12D 、 134、在等比数列{}n a 中,已知首项为98,末项为13,公比为23,则此等比数列的项数是( ) A 、6; B 、5 ; C 、4 D 、35、等比数列,22,33,x x x ++中的第4项为( )A 、272-B 、272C 、27-D 、27 6、在等比数列{}n a 中①2418,8 a a ==,则 1_____,_____a q ==②、574, 6 a a ==,则 9_____a =③514215, 6 a a a a -=-=,则 3_____a =7、在8与5832之间插入5个数,使它们组成以8为首项的等比数列,则这个数列的第5项 是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高中数学 3.5.2:等比数列《教学与测试》第40、41课 新人教A 版必修1目的:通过处理有关习题以达到复习、巩固等比数列的有关知识与概念的目的。
过程:一、复习:等比数列的有关概念,等比数列前n 项和的公式二、处理《教学与测试》第40课:例一、(P83)先要求x ,还要检验(等比数列中任一项a n 0, q 0) 例二、(P83)注意讲: 1“设”的技巧2 区别“计划增产台数”与“实际生产台数”例三、(P83)涉及字母比较多(5个),要注意消去a 2, a 4 例四、(备用题)已知等比数列{a n }的通项公式且:,求证:{b n }成GP 证:∵∴132********)21(3)21(3)21(3-----++=++=n n n n n n n a a a b 3333)21(421)41211()21(3--=++=n n∴ ∴{b n }成GP三、处理《教学与测试》第41课:例1、(P85)可利用等比数列性质a 1a n = a 2 a n 1, 再结合韦达定理求出a 1与a n(两解),再求解。
例2、(P85)考虑由前项求通项,得出数列{a n },再得出数列{},再求和——注意:从第二项起....是公比为的GP 例3、(P85)应用题:先弄清:资金数=上年资金×(1+50%)消费基金。
然后逐一推算,用数列观点写出a 5,再用求和公式代入求解。
例4、 (备用题)已知数列{a n }中,a 1=2且a n+1=S n ,求a n ,S n 解:∵a n+1=S n 又∵a n+1=S n+1 S n ∴S n+1=2S n∴{S n }是公比为2的等比数列,其首项为S 1= a 1=2, ∴S 1= a 1×2n 1= 2n∴当n ≥2时, a n =S n S n 1=2n 1∴例5、 (备用题)是否存在数列{a n },其前项和S n 组成的数列{S n }也是等比数列,且公比相同?解:设等比数列{a n }的公比为q ,如果{S n }是公比为q 的等比数列,则:⎪⎩⎪⎨⎧≠--====--11)1(1111111q qq a q na S q a q S S n n n n n 而∴)(111)1(,1111111矛盾得即:时n n q nn na a n S S na q a S q n n n n =+==+=+====+-)(11111,111111矛盾即:)(时=⇒=--=--==≠++-q q qq S S q q a qa S q nn n n nn n 所以,这样的等比数列不存在。
四、作业:《教学与测试》P84、P86 练习题2019-2020年高中数学 3.6 指数函数、幂函数、对数函数增长的比较名师考点精讲北师大版必修1[读教材·填要点]1.三种函数的增长特点(1)当a>1时,指数函数y=a x是增函数,并且当a越大时,其函数值的增长就越快.(2)当a>1时,对数函数y=log a x是增函数,并且当a越小时,其函数值的增长就越快.(3)当x>0,n>1时,幂函数y=x n显然也是增函数,并且当x>1时,n越大其函数值的增长就越快.2.三种函数的增长比较在区间(0,+∞)上,尽管函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,幂函数y=x n(n>0),指数函数y=a x(a>1)增长的快慢交替出现,随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.一般地,若a>1,n>0,那么当x足够大时,一定有a x>x n>log a x.[小问题·大思维]1.2x>log2x,x2>log2x,在(0,+∞)上一定成立吗?提示:结合图像知一定成立.2.2x>x2在(0,+∞)上一定成立吗?提示:不一定,当0<x<2和x>4时成立,而当2<x<4时,2x<x2.[研一题][例1] 四个变量y1,y2,y3,y4随变量x变化的数据如下表:关于x呈指数型函数变化的变量是________.[自主解答] 以爆炸式增长的变量是呈指数型函数变化的.从表格可以看出,四个变量y1,y2,y3,y4均是从5开始变化,变量y4越来越小,但是减小的速度很慢,则变量y4关于x不呈指数型函数变化;而变量y1,y2,y3都是越来越大,但是增大的速度不同,其中变量y2的增长最快,画出图像可知变量y2关于x呈指数型函数变化.[答案] y2[悟一法]解决该类问题的关键是根据所给出的数据或图像的增长的快慢情况,结合指数函数、幂函数、对数函数增长的差异,从中作出判断.[通一类]1.下面是f(x)随x的增大而得到的函数值列表:试问:(1)随着x的增大,各函数的函数值有什么共同的变化趋势?(2)各函数增长的快慢有什么不同?解:(1)随x的增大,各函数的函数值都在增大;(2)由图表可以看出,各函数增长的快慢不同,其中f(x)=2x增长最快,而且越来越快;增长最慢的是f(x)=log2x,而且增长的幅度越来越小.[研一题][例2] 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?[自主解答] 设第x天所得回报是y元.由题意,方案一:y=40(x∈N+);方案二:y=10x(x∈N+);方案三:y=0.4×2x-1(x∈N+).作出三个函数的图像如图:由图可以看出,从每天回报看,在第一天到第三天,方案一最多,在第四天,方案一,二一样多,方案三最少,在第五天到第八天,方案二最多,第九天开始,方案三比其他两个方案所得回报多得多,经验证到第三十天,所得回报已超过2亿元,∴若是短期投资可选择方案一或方案二,长期的投资则选择方案三.通过计算器计算列出三种方案的累积收入表.∴投资一天到六天,应选方案一,投资七天方案一,二均可,投资八天到十天应选方案二,投资十一天及其以上,应选方案三.[悟一法](1)解决应用问题的关键是将应用问题转化成数学问题解决,结合函数图像有助于直观认识函数值在不同范围的大小关系.(2)一般地:指数函数增长模型适合于描述增长速度快的变化规律;对数函数增长模型适合于描述增长速度平缓的变化规律;而幂函数增长模型介于两者之间,适合于描述增长速度一般的变化规律.[通一类]2.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/102 kg)与上市时间t(单位:天)的数据如下表:(1)根据表中数据,从下列函数中选取一个函数,描述西红柿种植成本Q 与上市时间t 的变化关系;Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t .(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本. 解:(1)由表中数据知,当时间t 变化时,种植成本并不是单调的,故只能选择Q =at 2+bt +c .即⎩⎪⎨⎪⎧150=a ×502+b ×50+c ,108=a ×1102+b ×110+c ,150=a ×2502+b ×250+c . 解得Q =1200t 2-32t +4252;(2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, ∴当t =150天时,西红柿的种植成本最低,为100元/102kg.若x 2<log m x 在x ∈(0,12)内恒成立,求实数m 的取值范围.[巧思] 将不等式恒成立问题转化为两个函数图像在(0,12)内的上下位置关系,再构建不等式求解.[妙解] 设y 1=x 2,y 2=log m x ,作出符合题意的两函数的大致图像(如图),可知0<m <1.当x =12时,y 1=14,若两函数在x =12处相交,则y 2=14.由14=log m 12得m =116,又x 2<log m x 在x ∈(0,12)内恒成立,因此,实数m 的取值范围为116≤m <1.1.下面对函数f (x )=log 12x 与g (x )=(12)x在区间(0,+∞)上的增减情况的说法中正确的是( )A .f (x )的增减速度越来越慢,g (x )的增减速度越来越快B .f (x )的增减速度越来越快,g (x )的增减速度越来越慢C .f (x )的增减速度越来越慢,g (x )的增减速度越来越慢D .f (x )的增减速度越来越快,g (x )的增减速度越来越快解析:在同一坐标下分别作出函数y =log 12x 和y =(12)x的图像,由图像知C 正确.答案:C2.下列所给函数,增长最快的是( )A .y =5xB .y =x 5C .y =log 5xD .y =5x答案:D3.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷,0.4万公顷和0.76万公顷,则沙漠增加数y 关于年数x 的函数关系较为近似的是( )A .y =0.2xB .y =110(x 2+2x )C .y =2x10D .y =0.2+log 16x解析:当x =1时,否定B ;当x =2时,否定D ;当x =3时,否定A. 答案:C4.已知函数f (x )=3x,g (x )=2x ,当x ∈R 时,f (x )与g (x )的大小关系为________. 解析:在同一直角坐标系中画出函数f (x )=3x,g (x )=2x 的图像,如图所示,由于函数f(x)=3x的图像在函数g(x)=2x图像的上方,则f(x)>g(x).答案:f(x)>g(x)5.据报道,青海湖水在最近50年内减少了10%,如果按此规律,设xx年的湖水量为m,从xx年起,过x年后湖水量y与x的函数关系是________.解析:设湖水量每年为上年的q%,则(q%)50=0.9,∴q%=0.9150,∴x年后湖水量y=m·(q%)x=m·0.9x50.答案:y=0.9x50·m6.函数f(x)=lg x,g(x)=0.3x-1的图像如图所示.(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)比较两函数的增长差异(以两图像交点为分界点,对f(x),g(x)的大小进行比较).解:(1)C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lg x;(2)当x<x1时,g(x)>f(x);当x1<x<x2时,f(x)>g(x);当x>x2时,g(x)>f(x).一、选择题1.当x越来越大时,下列函数中,增长速度最快的应该是( )A.y=10x B.y=lg xC.y=x10D.y=10x解析:由于指数型函数的增长是爆炸式增长,则当x越来越大时,函数y=10x的增长速度最快.答案:D2.某山区为加强环境保护,绿色植被的面积每年都比上一年增长10.4%,那么,经过x 年,绿色植被的面积可增长为原来的y倍,则函数y=f(x)的大致图像为( )解析:y=f(x)=(1+10.4%)x=1.104x是指数型函数,定义域为{0,1,2,3,4…},由单调性,结合图像知选D.答案:D3.函数y =2x -x 2的图像大致是( )解析:由图像可知,y =2x 与y =x 2的交点有3个,说明函数y =2x -x 2与x 轴的交点有3个,故排除B 、C 选项,当x <x 0时,有x 2>2x成立,即y <0,故排除D.答案:A4.当0<x <1时,f (x )=x 2,g (x )=x 12,h (x )=x -2的大小关系是( )A .h (x )<g (x )<f (x )B .h (x )<f (x )<g (x )C .g (x )<h (x )<f (x )D .f (x )<g (x )<h (x )解析:在同一坐标下作出函数f (x )=x 2,g (x )=x 12,h (x )=x -2的图像,由图像知,D 正确.答案:D 二、填空题5.近几年由于北京房价的上涨,引起了二手房市场交易的火爆.房子没有什么变化,但价格却上涨了,小张在xx 年以15万元的价格购得一所新房子,假设这10年来价格年膨胀率不变,那么到xx 年,这所房子的价格y (万元)与价格年膨胀率x 之间的函数关系式是________.解析:1年后,y =15(1+x );2年后,y =15(1+x )2;3年后,y =15(1+x )3,…,10年后,y =15(1+x )10.答案:y =15(1+x )106.在直角坐标系中,横、纵坐标均为整数的点叫格点.若函数y =f (x )的图像恰好经过k 个格点,则称函数y =f (x )为k 阶格点函数,则下列函数中为一阶格点函数的序号是________.①y =x 2;②y =x -1;③y =e x-1;④y =log 2x .解析:这是一道新概念题,重点考查函数值的变化情况.显然①④都有无数个格点;②有两个格点(1,1),(-1,-1);而③y =e x-1除了(0,0)外,其余点的坐标都与e 有关,所以不是整点,故③符合.答案:③7.若a =(35)x ,b =x 3,c =log 35x ,则当x >1时,a ,b ,c 的大小关系是________.解析:∵x >1,∴a =(35)x ∈(0,1),b =x 3∈(1,+∞),c =log 35x ∈(-∞,0).∴c <a <b .答案:c <a <b8.已知a >0,a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是________.解析:当a >1时,作出函数y 1=x 2,y 2=a x的图像:要使x ∈(-1,1)时,均有f (x )<12,只要当x =-1时,有(-1)2-a -1≤12,解得a ≤2,∴1<a ≤2.当0<a <1时,同理,只需12-a 1≤12,即a ≥12.∴12≤a <1. 综上所述,a 的取值范围是[12,1)∪(1,2].答案:[12,1)∪(1,2]三、解答题9.一个叫迈克的百万富翁碰到一件奇怪的事.一个叫吉米的人对他说:“我想和你订立个合同,在整整一个月中,我每天给你10万元,而你第一天只需要给我1分钱,以后每天给我的钱数是前一天的两倍”.迈克非常高兴,他同意订立这样的合同.试通过计算说明,谁将在合同中获利?解:在一个月(按31天计算)的时间里,迈克每天得到10万元,增长的方式是直线增长,经过31天后,共得到31×10=310(万元).而吉米,第一天得到1分,第二天得到2分,第三天得到4分,第四天得到8分,第20天得到219分,……第31天得到230分,使用计算器计算可得1+2+4+8+16+…+230=2 147 483 647分≈214 7.48(万元).所以在这份合同中吉米纯获利2 147.48-310=1 837.48(万元).所以吉米将在合同中获利.10.某公司为了实现1 000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,开始按销售利润进行奖励,奖金y(万元)随销售利润x(万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求?解:借助计算器或计算机作出函数y=5,y=0.25x,y=log7x+1,y=1.002x的图像(如图),观察图像发现,在区间[10,1 000]上,模型y=0.25x,y=1.002x的图像都有一部分在直线y=5的上方,只有模型y=log7x+1的图像始终在y=5的下方,这说明只有按模型y=log7x+1进行奖励时才符合公司的要求,下面通过计算确认上述判断.首先计算哪个模型的奖金总数不超过5万.对于模型y=0.25x,它在区间[10,1 000]上单调递增,当x∈(20,1 000)时,y>5,因此该模型不符合要求;对于模型y=1.002x,由函数图像,并利用计算器,可知在区间(805,806)内有一个点x0满足1.002x0=5,由于它在区间[10,1 000]上单调递增,因此当x>x0时,y>5,因此该模型也不符合要求;对于模型y=log7x+1,它在区间[10,1 000]上单调递增,而且当x=1 000时,y=log71 000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.再计算按模型y =log 7x +1奖励时,奖金是否不超过利润的25%,即当x ∈[10,1 000]时,是否有y x =log 7x +1x≤0.25成立. 令f (x )=log 7x +1-0.25x ,x ∈[10,1 000]. 利用计算器或计算机作出函数f (x )的图像(如图),由图像可知它是单调递减的,因此f (x )<f (10)≈-0.316 7<0,log 7x +1<0.25x .所以,当x ∈[10,1 000]时,log 7x +1x<0.25. 说明按模型y =log 7x +1奖励,奖金不会超过利润的25%. 综上所述,模型y =log 7x +1确实能符合公司要求.。