2020高考数学课标二轮(天津专用)训练题:专题能力训练1 集合与常用逻辑用语 Word版含解析
2020版高考数学(天津专用)大一轮精准复习精练:1.1 集合的概念及运算 含解析
专题一集合与常用逻辑用语【真题典例】1.1集合的概念及运算挖命题【考情探究】2.深刻理解、掌握交、并、补集的概念,熟练掌握集合的交、并、补的运算和性质,能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.破考点【考点集训】考点一集合的含义与表示1.(2018课标Ⅱ,2,5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.4答案 A2.(2012课标全国,1,5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()A.3B.6C.8D.10答案 D考点二集合间的基本关系3.已知集合A={0,a},B={x|-1<x<2},且A⊆B,则a可以是()A.-1B.0C.1D.2答案 C4.若集合A={x|0<x<1},B={x|x2-2x<0},则下列结论中正确的是()A.A∩B=⌀B.A∪B=RC.A⊆BD.B⊆A答案 C考点三集合的基本运算5.已知全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则(∁U A)∩B=()A.{1}B.{3,5}C.{1,6}D.{1,3,5,6}答案 B6.若集合A={x|-3<x<1},B={x|x<-1或x>2},则A∩B=()A.{x|-3<x<2}B.{x|-3<x<-1}C.{x|-1<x<1}D.{x|1<x<2}答案 B7.设全集U={x|x<5},集合A={x|x-2≤0},则∁U A=()A.{x|x≤2}B.{x|x>2}C.{x|2<x<5}D.{x|2≤x<5}答案 C8.(2016北京,1,5分)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=()A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}答案 C炼技法【方法集训】方法1利用数轴和韦恩(Venn)图解决集合问题的方法1.(2014大纲全国,2,5分)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4)C.[-1,0)D.(-1,0]答案 B2.(2014重庆,11,5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=.答案{7,9}方法2集合间的基本关系的解题方法3.已知集合M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},则集合M与集合N的关系是()A.M=NB.M∩N=NC.M∪N=ND.M∩N=⌀答案 B方法3解决与集合有关的新定义问题的方法4.S(A)表示集合A中所有元素的和,且A⊆{1,2,3,4,5},若S(A)能被3整除,则符合条件的非空集合A的个数是()A.10B.11C.12D.13答案 B过专题【五年高考】A组自主命题·天津卷题组1.(2018天津,1,5分)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}答案 B2.(2018天津文,1,5分)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=()A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}答案 C3.(2017天津,1,5分)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}答案 B4.(2016天津,1,5分)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}答案 D5.(2015天津,1,5分)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}答案 AB组统一命题、省(区、市)卷题组1.(2015重庆,1,5分)已知集合A={1,2,3},B={2,3},则()A.A=BB.A∩B=⌀C.A⫋BD.B⫋A答案 D2.(2017课标Ⅰ,1,5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=⌀答案 A3.(2017课标Ⅲ,1,5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3B.2C.1D.0答案 B4.(2017课标Ⅱ,2,5分)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C.{1,3}D.{1,5}答案 C5.(2016课标Ⅰ,1,5分)设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=()A.--B.-C.D.答案 D6.(2016课标Ⅱ,2,5分)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}答案 C7.(2015课标Ⅱ,1,5分)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}答案 A8.(2014课标Ⅱ,1,5分)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}答案 D9.(2014课标Ⅰ,1,5分)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)答案 A10.(2018北京,20,14分)设n为正整数,集合A={α|α=(t1,t2,…,t n),t k∈{0,1},k=1,2,…,n}.对于集合A中的任意元素α=(x1,x2,…,x n)和β=(y1,y2,…,y n),记M(α,β)=[(x1+y1-|x1-y1|)+(x2+y2-|x2-y2|)+…+(x n+y n-|x n-y n|)].(1)当n=3时,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值;(2)当n=4时,设B是A的子集,且满足:对于B中的任意元素α,β,当α,β相同时,M(α,β)是奇数;当α,β不同时,M(α,β)是偶数.求集合B中元素个数的最大值;(3)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素α,β,M(α,β)=0.写出一个集合B,使其元素个数最多,并说明理由.解析(1)因为α=(1,1,0),β=(0,1,1),所以M(α,α)=[(1+1-|1-1|)+(1+1-|1-1|)+(0+0-|0-0|)]=2,M(α,β)=[(1+0-|1-0|)+(1+1-|1-1|)+(0+1-|0-1|)]=1.(2)设α=(x1,x2,x3,x4)∈B,则M(α,α)=x1+x2+x3+x4.由题意知x1,x2,x3,x4∈{0,1},且M(α,α)为奇数,所以x1,x2,x3,x4中1的个数为1或3.所以B⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M(α,β)=1.所以每组中的两个元素不可能同时是集合B的元素.所以集合B中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B中元素个数的最大值为4.(3)设S k={(x1,x2,…,x n)|(x1,x2,…,x n)∈A,x k=1,x1=x2=…=x k-1=0}(k=1,2,…,n),S n+1={(x1,x2,…,x n)|x1=x2=…=x n=0},所以A=S1∪S2∪…∪S n+1.对于S k(k=1,2,…,n-1)中的不同元素α,β,经验证,M(α,β)≥1.所以S k(k=1,2,…,n-1)中的两个元素不可能同时是集合B的元素.所以B中元素的个数不超过n+1.取e k=(x1,x2,…,x n)∈S k且x k+1=…=x n=0(k=1,2,…,n-1).令B={e1,e2,…,e n-1}∪S n∪S n+1,则集合B的元素个数为n+1,且满足条件.故B是一个满足条件且元素个数最多的集合.C组教师专用题组1.(2018北京,1,5分)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=()A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}答案 A2.(2017北京,1,5分)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1}D.{x|1<x<3}答案 A3.(2017浙江,1,4分)已知集合P={x|-1<x<1},Q={x|0<x<2},则P∪Q=()A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)答案 A4.(2016四川,1,5分)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是()A.3B.4C.5D.6答案 C5.(2016浙江,1,5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)答案 B6.(2015福建,1,5分)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B等于()A.{-1}B.{1}C.{1,-1}D.⌀答案 C7.(2015山东,1,5分)已知集合A={x|x2-4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)答案 C8.(2014浙江,1,5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.⌀B.{2}C.{5}D.{2,5}答案 B9.(2014四川,1,5分)已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=()A.{-1,0,1,2}B.{-2,-1,0,1}C.{0,1}D.{-1,0}答案 A10.(2014辽宁,1,5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D11.(2018江苏,1,5分)已知集合A={0,1,2,8},B={-1,1,6,8},那么A∩B=.答案{1,8}12.(2014重庆,11,5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=. 答案{7,9}【三年模拟】一、选择题(每小题5分,共30分)1.(2018天津河北一模,1)已知集合U={-2,-1,0,1,2},A={1,2},B={-2,-1,2},则A∪(∁U B)=()A.{1}B.{2}C.{1,2}D.{0,1,2}答案 D2.(2018天津十二区县模拟,1)设集合A={x∈N||x|≤2},B={y|y=1-x2},则A∩B=()A.[-2,1]B.{0,1}C.{1,2}D.[0,1]答案 B3.(2019届天津一中月考,1)已知集合A={x|0<x≤3,x∈N},B={x|y=-},则集合A∩(∁R B)=()A.{1,2}B.(0,3]C.{1,2,3}D.(0,3)答案 A4.(2018天津和平三模,1)已知集合A={x|(x2-1)(x-2)=0},B=x x∈N*,且∈N*,则A∪B等于()A.{1,2}B.{-1,4}C.{-1,1,2,4}D.{-1,1,2,3,4}答案 C5.(2018天津耀华中学月考,9)已知集合A={x|x2-x<0},B={x|x<a},若A∩B=A,则实数a的取值范围是()A.(-∞,1]B.(-∞,1)C.[1,+∞)D.(1,+∞)答案 C6.(2017天津南开模拟,1)设集合A={-1,0,2},集合B={-x|x∈A,且2-x∉A},则B=()A.{1}B.{-2}C.{-1,-2}D.{-1,0}答案 A二、填空题(每小题5分,共15分)7.(2019届天津耀华中学月考,9)若集合A={x||2x-1|<3},B=x≤0,则A∩B=.答案--8.(2018天津耀华中学二模,10)已知集合A={x|x2+2x-3≤0},集合B={x||x-1|<1},则A∩B=.答案(0,1]9.(2017天津河西二模,9)设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁U A)∩B=⌀,则m=. 答案1或2。
2024年新高考版数学专题1_1.2 常用逻辑用语(分层集训)
2.(2023届福建龙岩一中月考,3)下列命题中,错误的命题是 ( ) A.函数f(x)=x与g(x)=( x )2不是同一个函数 B.命题“∃x∈[0,1],x2+x≥1”的否定为“∀x∈[0,1],x2+x<1”
C.设函数f(x)=
2x 2x , x
2,
x 0,
0,
则f(x)在R上单调递增
2.(2022福建龙岩一模,1)已知a∈R,若集合M={1,a},N={-1,0,1},则“M ⊆N”是“a=0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 B
3.(2020天津,2,5分)设a∈R,则“a>1”是“a2>a”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 A
A.∀x∈R,∃n∈N*,使得n<x2 B.∀x∈R,∀n∈N*,使得n<x2 C.∃x∈R,∃n∈N*,使得n<x2 D.∃x∈R,∀n∈N*,使得n<x2 答案 D
2.(2015课标Ⅰ,3,5分)设命题p:∃n∈N,n2>2n,则¬p为 ( ) A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 答案 C
4.(2021山东淄博模拟,5)已知a,b∈R,则“ab≠0”的一个必要条件是
()
A.a+b≠0 B.a2+b2≠0
C.a3+b3≠0 答案 B
D. 1 + 1 ≠0
ab
5.(多选)(2021辽宁省实验中学二模,4)下列四个选项中,q是p的充分必要 条件的是 ( )
A.p:
2020高考数学课标二轮(天津专用)综合能力训练+Word版含解析
综合能力训练综合能力训练第63页第Ⅰ卷(选择题,共40分)一、选择题(本大题共8小题,每小题5分,共40分) 1.设集合A={x|x 2-2x<0},B={x |1x -1>0},则A ∩B=( ) A.(-∞,1) B.(2,+∞) C.R D.(1,2)答案:D解析:∵A={x|x 2-2x<0}={x|0<x<2}=(0,2), B={x |1x -1>0}={x|x-1>0}=(1,+∞),∴A ∩B=(1,2).故选D .2.已知直线x+y=1与抛物线y 2=2px (p>0)交于A ,B 两点.若OA ⊥OB ,则△OAB 的面积为( ) A .1B .√52C .√5D .2答案:B解析:设A (x 1,y 1),B (x 2,y 2),由x+y=1与抛物线y 2=2px ,得y 2+2py-2p=0,解得y 1=-p+√p 2+2p ,x 1=1+p-√p 2+2p ,y 2=-p-√p 2+2p ,x 2=1+p+√p 2+2p .由OA ⊥OB 得,x 1x 2+y 1y 2=0,即[(1+p )2-(p 2+2p )]+[p 2-(p 2+2p )]=0,化简得2p=1, 从而A (3-√52,-1+√52),B (3+√52,-1-√52),|OA|2=x 12+y 12=5-2√5,|OB|2=x 22+y 22=5+2√5,△OAB的面积S=12|OA||OB|=√52.故选B .3.已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a=g (-log 25.1),b=g (20.8),c=g (3),则a ,b ,c 的大小关系为( ) A.a<b<c B.c<b<a C.b<a<c D.b<c<a 答案:C解析:∵f (x )是R 上的奇函数,∴g (x )=xf (x )是R 上的偶函数. ∴g (-log 25.1)=g (log 25.1).∵奇函数f (x )在R 上是增函数, ∴当x>0时,f (x )>0,f'(x )>0.∴当x>0时,g'(x )=f (x )+xf'(x )>0恒成立, ∴g (x )在区间(0,+∞)内单调递增.∵2<log 25.1<3,1<20.8<2,∴20.8<log 25.1<3. 结合函数g (x )的性质得b<a<c.故选C .4.若函数f (x )=sin (ωx -π6)(ω>0)在区间[0,π]上的值域为[-12,1],则ω的最小值为( ) A.23 B.34C.43D.32答案:A解析:∵0≤x ≤π,∴-π6≤ωx-π6≤ωπ-π6.∵f (x )在区间[0,π]上的值域为[-12,1], f (0)=sin (-π6)=-12,∴2k π+π2≤ωπ-π6≤2k π+5π6,k ∈Z , 整理得2k+23≤ω<2k+1,k ∈Z .∵ω>0,∴ω最小值为23,故选A .5.某地实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指从物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有( ) A.8种 B.12种 C.16种 D.20种 答案:C解析:若这名学生只选物理和历史中的一门,则有C 21C 42=12种组合;若这名学生物理和历史都选,则有C 41=4种组合; 因此共有12+4=16种组合.故选C .6.已知双曲线x 2a 2−y 2b 2=1(a>0,b>0)被斜率为1的直线截得的弦的中点为(4,1),则该双曲线离心率是( ) A .√52 B .√62C .√103D .2答案:A解析:设直线l 与双曲线交于点A (x 1,y 1),B (x 2,y 2),则(x 1+x 2)(x 1-x 2)a 2−(y 1+y 2)(y 1-y 2)b 2=0,即y 1-y2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2).由弦的中点为(4,1),直线的斜率为1可知,x 1+x 2=8,y 1+y 2=2,y 1-y 2x 1-x 2=1,∴b 2a 2=14,e 2=1+b 2a =54.∴e=√52.故选A .7.已知函数f(x)={sin(πx2),-1<x<0,e x-1,x≥0.若f(1)+f(a)=2,则a的所有可能值为()A.1B.-√22C.1,-√22D.1,√22答案:C解析:∵f(1)=e1-1=1,∴f(a)=1.若a∈(-1,0),则sin(πa2)=1,∴a=-√22.若a∈[0,+∞),则e a-1=1,∴a=1.因此a=1或a=-√22.8.(2019山东济南一模)我国数学家祖暅提出了计算体积的祖暅原理:幂势既同,则积不容异.意思是:两个等高的几何体,若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.已知曲线C:y=f(x)=x2,直线l为曲线C在点(1,1)处的切线.如图所示,阴影部分为曲线C、直线l以及x轴所围成的平面图形,记该平面图形绕y轴旋转一周所得的几何体为T.给出以下四个几何体:①是底面直径和高均为1的圆锥;②是将底面直径和高均为1的圆柱挖掉一个与圆柱同底等高的倒置圆锥得到的几何体;③是底面边长和高均为1的正四棱锥;④是将上底面直径为2,下底面直径为1,高为1的圆台挖掉一个底面直径为2,高为1的倒置圆锥得到的几何体.根据祖暅原理,以上四个几何体的体积与T的体积相等的是()A.①B.②C.③D.④答案:A解析:∵几何体T是由题图中的阴影部分旋转得到,所以横截面为环形,且等高的时候,抛物线对应的点的横坐标为x1,切线对应的横坐标为x2.f(x)=x2,f'(x)=2x,∴k=f'(1)=2.切线方程为y-1=2(x-1),即y=2x-1.∴x12=y,x2=y+12,横截面面积S=πx22-πx12=π[(y+1)24-y]=π(y-12)2.①中圆锥的高为1,底面半径为12,可以看成由线段y=2x+1(-12≤x ≤0)、x 轴、y 轴围成的三角形绕y 轴旋转得到,横截面的面积为S=πx 2=π(y -12)2.所以几何体T 和①中的圆锥在所有等高处的水平截面的面积相等,所以两者体积相等,故选A .第Ⅱ卷(非选择题,共110分)二、填空题(本大题共6小题,每小题5分,共30分)9.已知a ,b ∈R ,i 是虚数单位.若(1+i)(1-b i)=a ,则ab 的值为 . 答案:2解析:(1+i)(1-b i)=1+b+(1-b )i =a ,则{1+b =a ,1-b =0,所以{a =2,b =1,即ab=2.故答案为2. 10.过点M (-1,0)引曲线C :y=2x 3+ax+a 的两条切线,这两条切线与y 轴分别交于A ,B 两点.若|MA|=|MB|,则a= . 答案:-274解析:设切点坐标为(t ,2t 3+at+a ).∵y'=6x 2+a ,∴6t 2+a=2t 3+at+at+1,即4t 3+6t 2=0,解得t=0或t=-32.∵|MA|=|MB|,∴两切线的斜率互为相反数, 即2a+6×(-32)2=0,解得a=-274.11.已知两球O 1和O 2在棱长为1的正方体ABCD-A 1B 1C 1D 1的内部,且互相外切.若球O 1与过点A 的正方体的三个面相切,球O 2与过点C 1的正方体的三个面相切,则球O 1和O 2的表面积之和的最小值为 . 答案:3(2-√3)π解析:设球O 1、球O 2的半径分别为R 1,R 2.∵AO 1=√3R 1,C 1O 2=√3R 2,O 1O 2=R 1+R 2, ∴(√3+1)(R 1+R 2)=√3,R 1+R 2=√3√3+1,球O 1和O 2的表面积之和为4π(R 12+R 22)≥4π·2(R 1+R 22)2=2π(R 1+R 2)2=3(2-√3)π.12.(2019山东济南3月模拟)在(1x -1)(√x +1)5的展开式中,x 的系数为 .(用数字作答) 答案:-5解析:要求x 的系数,则(√x +1)5展开式中x 2项与1x 相乘,x 项与-1相乘,所以展开式中x 2项为C 51(√x )4=5x 2,它与1x 相乘得5x ,展开式中x 项为C 53(√x )2=10x ,它与-1相乘得-10x ,所以x 的系数为-10+5=-5.13.已知双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的左焦点为F ,A ,B 分别是双曲线C 的左、右顶点,P 为C 上一点,且PF ⊥x 轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,直线BM与y 轴交于点N.若OE ⃗⃗⃗⃗⃗ =2NO ⃗⃗⃗⃗⃗⃗ (O 为坐标原点),则双曲线C 的离心率为 . 答案:3解析:因为PF ⊥x 轴,所以设M (-c ,t ).因为A (-a ,0),B (a ,0), 所以AE 的斜率k=ta -c , 则AE 的方程为y=t a -c (x+a ), 令x=0,得y=taa -c ,即E (0,ta a -c ).因为BN 的斜率为-ta+c ,所以BN 的方程为y=-ta+c (x-a ). 令x=0,则y=taa+c ,即N (0,taa+c ), 因为|OE|=2|ON|, 所以2·|taa+c |=|ta a -c |,即2(c-a )=c+a ,即c=3a ,则离心率e=ca =3.故答案为3.14.已知a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是.(填序号)答案:②③解析:由题意,AB是以AC为轴,BC为底面半径的圆锥的母线,由AC⊥a,AC⊥b,得AC⊥圆锥底面,在底面内可以过点B,作BD∥a,交底面圆C于点D,如图所示,连接DE,则DE⊥BD,∴DE∥b.连接AD,在等腰三角形ABD中,设AB=AD=√2,当直线AB与a成60°角时,∠ABD=60°,故BD=√2.又在Rt△BDE中,BE=2,∴DE=√2,过点B作BF∥DE,交圆C 于点F,连接AF,由圆的对称性可知BF=DE=√2,∴△ABF为等边三角形,∴∠ABF=60°,即AB与b成60°角,②正确,①错误.由最小角定理可知③正确;很明显,可以满足直线a⊥平面ABC,直线AB与a所成的最大角为90°,④错误.故正确的说法为②③.三、解答题(本大题共6小题,共80分)15.(13分)已知△ABC的内角A,B,C的对边分别为a,b,c,a=2√3,且(2√3+b)(sin A-sinB)=(c-b)sin C.(1)求角A的大小;(2)求△ABC的面积的最大值.解:(1)∵a=2√3,且(2√3+b)(sin A-sin B)=(c-b)sin C,∴(a+b)(sin A-sin B)=(c-b)sin C,利用正弦定理,得a2-b2=c2-bc,即cos A=b2+c2-a22bc =12.∵0<A<π,∴A=π3.(2)由于a=2√3,A=π3,∴a2=b2+c2-2bc cos A,即12=b2+c2-bc≥2bc-bc=bc,当且仅当b=c时,等号成立.∴S△ABC =12bc sin A≤12×12×√32=3√3.当且仅当b=c时,△ABC的面积取最大值3√3.16.(13分)设{a n}是等差数列,前n项和为S n(n∈N*),{b n}是等比数列,a1=-3,S5=5,b1=a4,b1+b3=3(b2+1).(1)求数列{a n}和数列{b n}的通项公式;(2)设c n =an b n,记T n =c 1+c 2+c 3+…+c n ,求T n .解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q. 由已知得S 5=5a 1+5×42d=5,即a 1+2d=1.又a 1=-3,所以d=2.所以a n =2n-5. 因为b 1=a 4=3,b 1+b 3=3(b 2+1), 所以3(1+q 2)=3(3q+1),即q=3(q=0不符合题意,舍去). 所以b n =3·3n-1=3n .所以{a n }和{b n }的通项公式分别为a n =2n-5,b n =3n . (2)由(1)知,c n =2n -53n,所以T n =-33+-132+133+…+2n -53n,13T n =-332+-133+…+2n -73n+2n -53n+1,上述两式相减,得23T n =-33+232+…+23n −2n -53n+1=-1+2·132-13n+11-13−2n -53n+1=-1+13−13n −2n -53n+1=-23−2n -23.故T n =-1-n -13.17.(13分)(2019天津和平区第二次质量调查)如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,AD ⊥CD ,AB ∥CD ,AB=AD=12CD=1,点M 在线段EC 上.(1)若点M 为EC 的中点,求证:BM ∥平面ADEF ;(2)求证:平面BDE ⊥平面BEC ;(3)当平面BDM 与平面ABF 所成二面角的余弦值为√66时,求AM 的长. (1)证明∵正方形ADEF 与梯形ABCD 所在的平面互相垂直,AD 为交线,∴ED ⊥平面ABCD ,由已知得DA ,DE ,DC 两两垂直, 建立如图所示的空间直角坐标系D-xyz ,可得D (0,0,0),A (1,0,0),B (1,1,0),C (0,2,0),E (0,0,1),F (1,0,1).由M 为EC 的中点,知M (0,1,12),故BM ⃗⃗⃗⃗⃗⃗ =(-1,0,12).易知平面ADEF 的法向量为DC ⃗⃗⃗⃗⃗ =(0,2,0). ∵BM ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ =0,∴BM ⃗⃗⃗⃗⃗⃗ ⊥DC ⃗⃗⃗⃗⃗ .∵BM ⊄平面ADEF ,∴BM ∥平面ADEF.(2)证明由(1)知BE ⃗⃗⃗⃗⃗ =(-1,-1,1),BC ⃗⃗⃗⃗⃗ =(-1,1,0),BD ⃗⃗⃗⃗⃗⃗ =(-1,-1,0). 设平面BDE 的法向量为m =(x 1,y 1,z 1), 平面BEC 的法向量为n =(x 2,y 2,z 2), 由{m ·BE ⃗⃗⃗⃗⃗ =-x 1-y 1+z 1=0,m ·BD ⃗⃗⃗⃗⃗⃗ =-x 1-y 1=0,得z 1=0.令x 1=1,得m =(1,-1,0). 由{n ·BE ⃗⃗⃗⃗⃗ =-x 2-y 2+z 2=0,n ·BC ⃗⃗⃗⃗⃗ =-x 2+y 2=0,令x 2=1,得n =(1,1,2).∵m ·n =1-1+0=0,故平面BDE ⊥平面BEC.(3)解设EM ⃗⃗⃗⃗⃗⃗ =λEC⃗⃗⃗⃗⃗ ,λ∈[0,1],设M (x ,y ,z ),计算可得M (0,2λ,1-λ), 则BM ⃗⃗⃗⃗⃗⃗ =(-1,2λ-1,1-λ),BD⃗⃗⃗⃗⃗⃗ =(-1,-1,0), 设平面BDM 的法向量为p =(x 3,y 3,z 3).由{p ·BD ⃗⃗⃗⃗⃗⃗ =-x 3-y 3=0,p ·BM ⃗⃗⃗⃗⃗⃗ =-x 3+(2λ-1)y 3+(1-λ)z 3=0,令x 3=1,得p =(1,-1,2λ1-λ).易知平面ABF 的法向量为DA ⃗⃗⃗⃗⃗ =(1,0,0),由已知得|cos <p ,DA ⃗⃗⃗⃗⃗ >|=|p ·DA ⃗⃗⃗⃗⃗⃗||p ||DA ⃗⃗⃗⃗⃗⃗ |=√2+(2λ1-λ)2×1=√66, 解得λ=12,此时M (0,1,12).∵AM ⃗⃗⃗⃗⃗⃗ =(-1,1,12),∴|AM ⃗⃗⃗⃗⃗⃗ |=√1+1+14=32, 即AM 的长为32.18.(13分)(2019湖南师大附中模拟)在湖南师大附中的校园歌手大赛决赛中,有6位参赛选手(1号至6号)登台演出,由现场的100位同学投票选出最受欢迎的歌手,各位同学须彼此独立地在投票器上选出3位候选人,其中甲同学是1号选手的同班同学,必选1号,另在2号至6号选手中随机选2名;乙同学不欣赏2号选手,必不选2号,在其他5位选手中随机选出3名;丙同学对6位选手的演唱没有偏爱,因此在1号至6号选手中随机选出3名.(1)求同学甲选中3号选手且同学乙未选中3号选手的概率;(2)设3号选手得到甲、乙、丙三位同学的票数之和为X ,求X 的分布列和数学期望. 解:设A 表示事件“甲同学选中3号选手”,B 表示事件“乙同学选中3号选手”,C 表示事件“丙同学选中3号选手”.(1)因为P (A )=C 41C 52=25,P (B )=C 42C 53=35,所以P (A B )=P (A )P (B )=25×(1-35)=425. (2)因为P (C )=C 52C 63=12,所以X 可能的取值为0,1,2,3,P (X=0)=P (ABC )=(1-25)×(1-35)×(1-12)=35×25×12=325,P (X=1)=P (A BC )+P (ABC )+P (AB C )=25×25×12+35×35×12+35×25×12=1950, P (X=2)=P (AB C )+P (A B C )+P (A BC )=25×35×12+25×25×12+35×35×12=1950, P (X=3)=P (ABC )=25×35×12=325. 所以X 的分布列为X 的数学期望E (X )=0×325+1×1950+2×1950+3×325=32.19.(14分)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点F 1,F 2与椭圆短轴的一个端点构成边长为4的正三角形. (1)求椭圆C 的标准方程;(2)过椭圆C 上任意一点P 作椭圆C 的切线与直线F 1P 的垂线F 1M 相交于点M ,求点M 的轨迹方程;(3)若切线MP 与直线x=-2交于点N ,求证:|NF 1||MF 1|为定值.(1)解∵2c=a=4,∴c=2,b=2√3.∴椭圆C 的标准方程为x 216+y 212=1. (2)解由(1)知F 1(-2,0),设P (x 0,y 0),M (x ,y ),过椭圆C 上点P 的切线方程为x 0x16+y 0y 12=1,①直线F 1P 的斜率k F 1P =y 0x0+2, 则直线MF 1的斜率k MF 1=-x 0+2y 0,直线MF 1的方程为y=-x 0+2y 0(x+2),即yy 0=-(x 0+2)(x+2),② ①②联立,解得x=-8,故点M 的轨迹方程为x=-8.(3)证明依题意及(2),知点M ,N 的坐标可表示为M (-8,y M ),N (-2,y N ), 点N 在切线MP 上,由①式得y N =3(x 0+8)2y 0, 点M 在直线MF 1上,由②式得y M =6(x 0+2)y 0, |NF 1|2=y N2=9(x 0+8)24y 02,|MF 1|2=[(-2)-(-8)]2+y M2=36[y 02+(x 0+2)2]y 02,故|NF 1|2|MF 1|2=9(x 0+8)24y 02·y 0236[y 02+(x0+2)2]=116·(x 0+8)2y 02+(x0+2)2,③注意到点P 在椭圆C 上,即x 0216+y 0212=1,于是y 02=48-3x 024,代入③式并整理得|NF 1|2|MF 1|2=14,故|NF 1||MF 1|的值为定值12.20.(14分)已知函数f (x )=ln(1+x )+a2x 2-x (a ≥0). (1)若f (x )>0对x ∈(0,+∞)都成立,求a 的取值范围;(2)已知e 为自然对数的底数,证明:∀n ∈N *,√e <(1+1n 2)(1+2n 2)…(1+nn 2)<e . (1)解∵f (x )=ln(1+x )+a2x 2-x ,其定义域为(-1,+∞),∴f'(x)=11+x +ax-1=x(ax+a-1)1+x.①当a=0时,f'(x)=-x1+x,当x∈(0,+∞)时,f'(x)<0,则f(x)在区间(0,+∞)内单调递减,此时,f(x)<f(0)=0,不符合题意.②当0<a<1时,令f'(x)=0,得x1=0,x2=1-aa>0,当x∈(0,1-aa)时,f'(x)<0,则f(x)在区间(0,1-aa)内单调递减,此时,f(x)<f(0)=0,不符合题意.③当a=1时,f'(x)=x21+x,当x∈(0,+∞)时,f'(x)>0,则f(x)在区间(0,+∞)内单调递增,此时,f(x)>f(0)=0,符合题意.④当a>1时,令f'(x)=0,得x1=0,x2=1-aa<0,当x∈(0,+∞)时,f'(x)>0,则f(x)在区间(0,+∞)内单调递增,此时,f(x)>f(0)=0,符合题意.综上所述,a的取值范围为[1,+∞).(2)证明由(1)可知,当a=0时,f(x)<0对x∈(0,+∞)都成立,即ln(1+x)<x对x∈(0,+∞)都成立,∴ln(1+1n2)+ln(1+2n2)+…+ln(1+nn2)<1n2+2n2+…+nn2,即ln[(1+1n2)(1+2 n2)·…·(1+nn2)]<1+2+…+nn2=n+12n.由于n∈N*,则n+12n =12+12n≤12+12×1=1.∴ln[(1+1n2)(1+2n2)…(1+nn2)]<1.∴(1+1n2)(1+2n2)…(1+nn2)<e.由(1)可知,当a=1时,f(x)>0对x∈(0,+∞)都成立, 即x-12x2<ln(1+x)对x∈(0,+∞)都成立,∴(1n2+2n2+…+nn2)−12(12n4+22n4+…+n2n4)<ln(1+1n2)+ln(1+2n2)+…+ln(1+nn2),即n (n+1)2n 2−12[n (n+1)(2n+1)6n 4]<ln 1+1n 21+2n 2…1+nn 2,得6n 3+4n 2-3n -112n 3<ln 1+1n 21+2n 2·…·1+nn 2. 由于n ∈N *,则6n 3+4n 2-3n -112n 3=6n 3+(3n 2-3n )+(n 2-1)12n 3≥6n 312n 3=12.∴12<ln [(1+1n 2)(1+2n 2)…(1+n n 2)]. ∴√e <(1+1n 2)(1+2n 2)…(1+nn 2).∴√e <(1+1n 2)(1+2n 2)…(1+n n 2)<e .。
【2020】高考数学(理科,天津课标版)二轮复习专题能力训练 含答案15
1.解 依题意,OF⊥平面 ABCD,如图,以 O 为原点,分别以的方向为 x 轴、y 轴、z 轴的正方向建立空间直角坐标系,依题意可得 O(0,0,0),A(1,1,0),B(-1,-1,0),C(1,-1,0),D(1,1,0),E(-1,-1,2),F(0,0,2),G(1,0,0).
5/8
∴n,n,得 取 x=1,得平面 B1AE 的一个法向量 n= 要使 DP∥平面 B1AE,只要 n,有-az0=0, 解得 z0= 又 DP⊄平面 B1AE, ∴存在点 P,满足 DP∥平面 B1AE,此时 AP= 5.(1)证明 设 AC,BD 交点为 E,连接 ME. 因为 PD∥平面 MAC,平面 MAC∩平面 PDB=ME,所以 PD∥ME. 因为 ABCD 是正方形,所以 E 为 BD 的中点. 所以 M 为 PB 的中点. (2)解 取 AD 的中点 O,连接 OP,OE. 因为 PA=PD,所以 OP⊥AD. 又因为平面 PAD⊥平面 ABCD,且 OP⊂ 平面 PAD,所以 OP⊥平面 ABCD. 因为 OE⊂ 平面 ABCD,所以 OP⊥OE. 因为 ABCD 是正方形,所以 OE⊥AD. 如图建立空间直角坐标系 O-xyz,则 P(0,0,),D(2,0,0),B(2,4,0),=(4,-4,0),=(2,0,-). 设平面 BDP 的法向量为 n=(x,y,z), 则 令 x=1,则 y=1,z= 于是 n=(1,1,),平面 PAD 的法向量为 p=(0,1,0). 所以 cos<n,p>= 由题知二面角 B-PD-A 为锐角,所以它的大小为 (3)解 由题意知 M,C(2,4,0), 设直线 MC 与平面 BDP 所成角为 α , 则 sin α =|cos<n,>|= 所以直线 MC 与平面 BDP 所成角的正弦值为 6.(1)证明 因为 AB 是直径,所以 BC⊥AC. 因为 CD⊥平面 ABC,所以 CD⊥BC. 因为 CD∩AC=C,所以 BC⊥平面 ACD. 因为 CD∥BE,CD=BE, 所以四边形 BCDE 是平行四边形, 所以 BC∥DE,所以 DE⊥平面 ACD.
【2020】高考数学(理科,天津课标版)二轮复习专题能力训练 含答案6
1.B 解析 由题意得 f(x)单调递增,f(1)=-1<0,f(2)=>0,所以 f(x)=+log2x 的零点落在区间(1,2)内. 2.C 解析 依题意得 g-2<0,g=1>0,则 x2 若 f(x)=1-10x,
则有 x1=0,此时|x1-x2|>,因此选 C. 3.B 解析 设 AD 长为 x cm,则 CD 长为(16-x)cm,
f(x)+f(2-x)= 所以函数 y=f(x)-g(x)=f(x)-3+f(2-x)= 其图象如图所示. 显然函数图象与 x 轴有 2 个交点,故函数有 2 个零点. 13.(1)-1 (2)[2,+∞) 解析 (1)当 a=1 时,f(x)= 当 x<1 时,2x-1∈(-1,1); 当 x≥1 时,4(x-1)(x-2)∈[-1,+∞). 故 f(x)的最小值为-1. (2)若函数 f(x)=2x-a 的图象在 x<1 时与 x 轴有一个交点,则 a>0,并 且当 x=1 时,f(1)=2-a>0,所以 0<a<2. 同时函数 f(x)=4(x-a)(x-2a)的图象在 x≥1 时与 x 轴有一个交点,所 以 a<1. 若函数 f(x)=2x-a 的图象在 x<1 时与 x 轴没有交点,则函数 f(x)=4(x-a)(x-2a)的图象在 x≥1 时与 x 轴有两个不同的交点,当 a≤0 时,函数 f(x)=2x-a 的图象与 x 轴无交点,函数 f(x)=4(x-a)(x-2a)的图象 在 x≥1 上与 x 轴也无交点,不满足题意. 当 21-a≤0,即 a≥2 时,函数 f(x)=4(x-a)·(x-2a)的图象与 x 轴的两 个交点 x1=a,x2=2a 都满足题意. 综上,a 的取值范围为[2,+∞). 14.解 (1)当 0<x≤10 时,W=xR(x)-(10+2.7x)=8.1x--10; 当 x>10 时,W=xR(x)-(10+2.7x)=98--2.7x. 故 W= (2)①当 0<x≤10 时,由 W'=8.1-=0,得 x=9.当 x∈(0,9)时,W'>0;当 x∈(9,10]时,W'<0. 所以当 x=9 时,W 取得最大值, 即 Wmax=8.1×9-93-10=38.6.
高考数学复习考点知识与题型专题讲解训练01 集合与常用逻辑用语(含解析)
高考数学复习考点知识与题型专题讲解训练专题01集合与常用逻辑用语考点1 集合的含义与表示1.(2021·江苏高三模拟)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( ) A .9 B .10C .12D .13【答案】D【解析】由题意可知,集合A 中的元素有:()2,0-、()1,1--、()1,0-、()1,1-、()0,2-、()0,1-、()0,0、()0,1、()0,2、()1,1-、()1,0、()1,1、()2,0,共13个.故选:D.2.(2021·江西高三模拟)已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( ) A .{1} B .{0} C .{0,1,1}- D .{0,1}【答案】D【解析】①当0a =时,1{}2A =-,此时满足条件;②当0a ≠时,A 中只有一个元素的话,440a ∆=-=,解得1a =,综上,a 的取值集合为{0,1}.故选:D . 考点2 集合间的基本关系3.(2021·西安市经开第一中学高三模拟)集合{1A x x =<-或3}x ≥,{}10B x ax =+≤若B A ⊆,则实数a 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎡⎤-⎢⎥⎣⎦C .()[),10,-∞-⋃+∞D .()1,00,13⎡⎫-⋃⎪⎢⎣⎭【答案】A 【解析】B A ⊆,∴①当B =∅时,即10ax +无解,此时0a =,满足题意.②当B ≠∅时,即10ax +有解,当0a >时,可得1xa-, 要使B A ⊆,则需要011a a>⎧⎪⎨-<-⎪⎩,解得01a <<.当0a <时,可得1xa-, 要使B A ⊆,则需要013a a <⎧⎪⎨-⎪⎩,解得103a -<,综上,实数a 的取值范围是1,13⎡⎫-⎪⎢⎣⎭.故选:A .4.(2021·四川石室中学高三一模)已知集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,则M 的子集个数是( ) A .2 B .3 C .4 D .8【答案】D【解析】因为集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,所以当,,x y z 都是正数时,4m =;当,,x y z 都是负数时,4m =-;当,,x y z 中有一个是正数,另两个是负数时,0m =, 当,,x y z 中有两个是正数,另一个是负数时,0m =,所以集合M 中的元素是3个,所以M 的子集个数是8,故选D. 考点3 集合的基本运算 角度1:交集运算5.(2021·四川高三三模(文))设集合A ={x |1≤x ≤3},B ={x |24x x --<0},则A ∩B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】A【解析】∵A ={x |1≤x ≤3},B ={x |2<x <4},∴A ∩B ={x |2<x ≤3}.故选:A .6.(2021·浙江瑞安中学高三模拟)已知集合{}31A x Z x =∈-<<,{}2,B y y x x A ==∈,则A B 的元素个数为( )A .1B .2C .3D .4【答案】B【解析】因为{}{}2,1,031A x Z x =-∈--=<<所以{}{}4,2,02,=B y y x x A =--=∈, 所以{}=2,0A B -,所以A B 的元素个数为2个.故选B. 角度2:并集运算7.(2021·陕西高三模拟)已知集合{}21,M x x k k Z ==+∈,集合{}43,N y y k k Z ==+∈,则M N ⋃=( )A .{}62,x x k k Z =+∈B .{}42,x x k k Z =+∈C .{}21,x x k k Z =+∈D .∅【答案】C【解析】因为集合{}21,M x x k k ==+∈Z ,集合{}(){}43,2211,N y y k k y y k k ==+∈==++∈Z Z ,因为x ∈N 时,x M ∈成立,所以{}21,M N x x k k ⋃==+∈Z .故选:C.8.(2021·天津高三二模)已知集合{|42}M x x =-<<,2{|60}N x x x =--=,则M N ⋂=___________.【答案】{}2-【解析】因为集合{|42}M x x =-<<,{}2{|60}2,3N x x x =--==-,所以M N ⋂= {}2-角度3:补集运算9.(2021·四川高三零模(文))设全集{}*|9U x x =∈<N ,集合{}3,4,5,6A =,则U A ( )A .{}1,2,3,8B .{}1,2,7,8C .{}0,1,2,7D .{}0,1,2,7,8【答案】B【解析】因为{}{}*91,2,3,4|,5,6,7,8U x x =∈<=N ,{}3,4,5,6A =,所以{}1,2,7,8U A =.故选:B .10.(2021·江苏省江浦高级中学高三月考)已知集合{}1U x x =>,{}2A x x =>,则UA________.【答案】{}12x x <≤【解析】{}1U x x =>,{}2A x x =>,∴12U A x x ,角度4:交、并、补混合运算11.(2021·辽宁高三二模)已知U =R ,{}2M x x =≤,{}11N x x =-≤≤,则UM N =( )A .{1x x <-或}12x <≤B .{}12x x <≤C .{1x x ≤-或}12x ≤≤D .{}12x x ≤≤【答案】A【解析】因为{1U N x x =<-或1}x >,所以{1U M C N x x ⋂=<-或12}x <≤.故选:A.12.(2021·山东烟台市·烟台二中高三三模)已知集合{}13A x x =<<,{}2B x x =<,则RAB =( )A .{}12x x <<B .{}23x x <<C .{}23x x ≤<D .{}3x x >【答案】C 【解析】{}13A x x =<<,{}2B x x =<,{}R 2B x x ∴=≥,{}R 23A B x x ∴⋂=≤<.故选:C.13.【多选】(2021·重庆高三三模)已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .A B =∅ B .A B B = C .A B U ⋃= D .()U B A A =【答案】CD【解析】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =,但A B ⋂≠∅,A B B ≠,故A ,B 均不正确; 由()U A B B =,知UA B ⊆,∴()()UU AA AB =⊆,∴A B U ⋃=,由UA B ⊆,知UB A ⊆,∴()U B A A =,故C ,D 均正确.故选CD.14.(2021·江苏高三模拟)某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是________. 【答案】6【解析】如图所示,(a +b +c +x )表示周一开车上班的人数,(b +d +e +x )表示周二开车上班人数,(c +e +f +x )表示周三开车上班人数,x 表示三天都开车上班的人数,则有:1410820a b c x b d e x c e f x a b c d e f x +++=⎧⎪+++=⎪⎨+++=⎪⎪++++++=⎩,即22233220a b c d e f x a b c d e f x ++++++=⎧⎨++++++=⎩,即212b c e x +++=,当0b c e ===时,x 的最大值为6, 即三天都开车上班的职工人数至多是6. 角度5:利用集合的运算求参数15.(2021·江西高三模拟)已知集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B φ⋂≠,则实数m 的取值范围是_______. 【答案】{|113}m m -<<【解析】由题意,集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B ⋂=∅时,则有92m +≤-或3m ≥,解得11m ≤-或3m ≥,所以当A B ⋂≠∅时,实数m 的取值范围为{|113}m m -<<.16.(2021·山东高三模拟)集合{}{}240,1,,2,.A a B a =-=-若{}2,1,0,4,16A B ⋃=--,则a =( ) A .±1 B .2± C .3± D .4±【答案】B【解析】由{}2,1,0,4,16A B ⋃=--知,24416a a ⎧=⎨=⎩,解得2a =±故选:B考点4 集合中的新定义17.(2021·黑龙江哈师大附中高三三模(理))设全集{}1,2,3,4,5,6U =,且U 的子集可表示由0,1组成的6位字符串,如:{}2,4表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A ,B ,我们定义集合运算{A B x x A -=∈且}x B ∉,()()A B A B B A *=-⋃-.若{}2,3,4,5A =,{}3,5,6B =,则A B *表示的6位字符串是( ) A .101010 B .011001C .010101D .000111【答案】C【解析】由题意可得若{}2,3,4,5A =,{}3,5,6B =,则{}2,4,6A B *=, 所以此集合的第2个字符为1,第4个字符为1,第6个字符为1, 其余字符均为0,即A B *表示的6位字符串是010101.故选C18.【多选】(2021·开原市第二高级中学高三三模)满足{}1234,,,M a a a a ⊆,且{}{}12312,,,Ma a a a a =的集合M 可能是( )A .{}12,a aB .{}123,,a a aC .{}124,,a a aD .{}1234,,,a a a a【答案】AC 【解析】∵{}{}12312,,,Ma a a a a =,∴集合M 一定含有元素12,a a ,一定不含有3a ,∴12{,}M a a =或124{,,}M a a a =.故选AC .19.(2021·江苏省宜兴中学高三模拟)设A 是整数集的一个非空子集,对于k A ∈,若1k A -∉且1k A +∉,则k 是A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8,9S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_________个. 【答案】7【解析】由集合的新定义知,没有与之相邻的元素是“孤立元”,集合S 不含“孤立元”, 则集合S 中的三个数必须连在一起,所以符合题意的集合是{}1,2,3,{}2,3,4,{}3,4,5,{}4,5,6,{}5,6,7,{}6,7,8,{}7,8,9,共7个.考点5 全称量词与特称量词20.“0[2,)x ∃∈+∞,20log 1x <”的否定是( ) A .[2,)x ∀∈+∞,2log 1x ≥ B .(,2)x ∀∈-∞,2log 1x > C .0(,2)x ∃∈-∞,20log 1x ≥ D .[2,)x ∃∈+∞,2log 1x ≤【答案】A【解析】“0[2,)x ∃∈+∞,20log 1x <”是特称命题,特称命题的否定是全称命题, 所以“0[2,)x ∃∈+∞,20log 1x <”的否定是“[2,)x ∀∈+∞,2log 1x ≥”.故选:A21.(2021·黑龙江大庆中学高三期末)命题“0x ∀>,总有()11xx e +>”的否定是( )A .0x ∀>,总有()11xx e +≤ B .0x ∀≤,总有()11xx e +≤C .00x ∃≤,使得()0011xx e +≤D .00x ∃>,使得()0011xx e +≤【答案】D【解析】由全称命题的否定可知,命题“0x ∀>,总有()11xx e +>”的否定是“00x ∃>,使得()0011xx e +≤”.故选D.考点6 充分条件、必要条件的判断22.(2021·南京师范大学附属扬子中学高三模拟)设乙的充分不必要条件是甲,乙是丙的充要条件,丁是丙的必要不充分条件,那么甲是丁的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分又不必要【答案】A【解析】甲是乙的充分不必要条件,即甲⇒乙,乙⇒甲, 乙是丙的充要条件,即乙⇔丙,丁是丙的必要非充分条件,即丙⇒丁,丁⇒丙,所以甲⇒丁,丁⇒甲,即甲是丁的充分不必要条件,故选:A .23.(2021·宁波中学高三模拟)△ABC 中,“△ABC 是钝角三角形”是“AB AC BC +<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】在△ABC 中,若∠A 为锐角,如图画出平行四边形ABCD ∴AB AC AD +=易知AD BC >∴“△ABC 是钝角三角形”不一定能推出“AB AC BC +<”; 在△ABC 中,A B C ,,三点不共线, ∵AB AC BC +<∴AB AC AC AB +<-∴22AB AC AC AB +<-∴0AB AC ⋅<∴∠A 为钝角∴△ABC 为钝角三角形 ∴“AB AC BC +<”能推出“△ABC 是钝角三角形”故“△ABC 是钝角三角”是“AB AC BC +<”的必要不充分条件,故选:B. 考点7 充分条件、必要条件的应用24.(2021·内蒙古高三二模(理))设计如下图的四个电路图,则能表示“开关A 闭合”是“灯泡B 亮”的必要不充分条件的一个电路图是( )A .B .C .D .【答案】C【解析】选项A :“开关A 闭合”是“灯泡B 亮”的充分不必要条件; 选项B :“开关A 闭合”是“灯泡B 亮”的充要条件; 选项C :“开关A 闭合”是“灯泡B 亮”的必要不充分条件;选项D :“开关A 闭合”是“灯泡B 亮”的既不充分也不必要条件.故选:C.25.(2021·山东高三其他模拟)已知p :x a ≥,q :23x a +<,且p 是q 的必要不充分条件,则实数a 的取值范围是( )A .(]1-∞-,B .()1-∞-,C .[)1+∞,D .()1+∞,【答案】A【解析】因为q :23x a +<,所以:2323q a x a --<<-+, 记{}|2323A x a x a =--<<-+;:p x a ≥,记为{}|B x x a =≥.因为p 是q 的必要不充分条件,所以A B ,所以23a a ≤--,解得1a ≤-.故选:A .26.(2021·河北衡水中学高三模拟)若不等式()21x a -<成立的充分不必要条件是12x <<,则实数a 的取值范围是________. 【答案】[]1,2【解析】由()21x a -<得11a x a -<<+,因为12x <<是不等式()21x a -<成立的充分不必要条件, ∴满足1112a a -≤⎧⎨+≥⎩且等号不能同时取得,即21a a ≤⎧⎨≥⎩,解得12a ≤≤. 考点8 根据命题的真假求参数的取值范围11 / 11 27.(2021·涡阳县育萃高级中学高三月考(文))若命题“0x R ∃∈,200220x mx m +++<”为假命题,则m 的取值范围是( )A .12m -≤≤B .12m -<<C .1m ≤-或2m ≥D .1m <-或2m >【答案】A【解析】若命题“0x R ∃∈,200220x mx m +++<”为假命题, 则命题“x R ∀∈,2220x mx m +++≥”为真命题,即判别式()2=4420m m ∆-+≤,即()()210m m -+≤,解得12m -≤≤.故选:A.28.(2021·广东石门中学高三其他模拟)若“2[4,6],10x x ax ∃∈-->”为假命题,则实数a 的取值范围为___________. 【答案】356a ≥ 【解析】因为“2[4,6],10x x ax ∃∈-->”为假命题,所以[]24,6,10x x ax ∀∈--≤恒成立, 即1x a x -≤在[]4,6恒成立,所以max 1a x x ⎛⎫≥- ⎪⎝⎭且[]4,6x ∈, 又因为()1f x x x=-在[]4,6上是增函数,所以()()max 1356666f x f ==-=,所以356a ≥.。
高三数学二轮复习 专题一 集合与常用逻辑用语课件
[解析] 本题的难点在于理解为什么“对任意的x∈R,x3 -x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”,对这个
难点需要正确理解“命题的否定”的含义,命题的否定是
指“否定这个命题所得出的结论”,那么命题“对任意的 x∈R,x3-x2+1≤0”是指对所有的实数不等式x3-x2+1≤0 都成立,要否定这个结论,只要找到一个实数x使不等式x3 -x2+1≤0不成立即可,即存在x使x3-x2+1>0.
(2)要善于举出反例:如果从正面判断或证明一个命题的正 确或错误不易进行时,可以通过举出恰当的反例来说明;
(3)要注意转化:如果p是q的充分不必要条件,那么綈p是 綈q的必要不充分条件;同理,如果p是q的必要不充分条 件,那么綈p是綈q的充分不必要条件;如果p是q的充要条 件,那么綈p是綈q的充要条件.
(2)(2011·江西文,2)若全集U={1,2,3,4,5,6},M={2,3},
N={1,4},则集合{5,6}等于( )
A.M∪N
B.M∩N
C.(∁UM)∪(∁UN) [答案] D
D.(∁UM)∩(∁UN)
[解析] (∁UM)∩(∁UN)={1,4,5,6}∩{2,3,5,6}={5,6}.
用逻辑联结词“且”把命题p和命题q联结起来,就得到一 个新命题,记作“p∧q”;
用逻辑联结词“或”把命题p和命题q联结起来,就得到一 个新命题,记作“p∨q”; 对一个命题p全盘否定,就得到一个新命题,记作“綈p”.
6.全称量词与存在量词
(1)全称命题p:∀x∈M,p(x). 它的否定綈p:∃x0∈M,綈p(x0).
[例5] 已知命题p:2x2-9x+a<0,命题q:
x2-4x+3<0, x2-6x+8<0,
专题1 集合与常用逻辑用语
专题1 集合与常用逻辑用语1.1集合的含义与表示 (1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.(3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{|具有的性质},其中为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().1.2集合间的基本关系(7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集.解析获取vx :lingzi980N N *N +Z Q R a M a M ∈a M ∉x x x ∅A (1)n n ≥2n21n-21n-22n -1.3 集合的基本运算1. 2.注意:1. 元素与集合的关系,.2.德摩根公式.3.包含关系4.容斥原理.【例1】(2022•新高考Ⅰ)若集合 }4|{,<=x x M }13| {,≥=x x N 则=N MA .}40|{<≤x xB . }231|{<≤x x C .}163|{<≤x x D . }1631|{<≤x x 【例2】(2022•新高考II )已知集合{}4211,,,-=A ,{}11≤-=x x B ,则=⋂B A A.{}21,- B.{}21, C.{}41, D.{}41,-【例3】(2022•乙卷理)设全集{1U =,2,3,4,5},集合M 满足{1U M =,3},则( )AB {|x x ∈A A A =A∅=∅A B A ⊆A B B ⊆AB {|x x ∈A A A =AA ∅=AB A ⊇AB B ⊇U A {|x x ()U A A =∅()U A A U =U x A xC A ∈⇔∉U x C A x A ∈⇔∉();()U U U U U U C A B C A C B C A B C A C B ==A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+()()()UU U A B A B =()()()U U U A B A B =A .2M ∈B .3M ∈C .4M ∉D .5M ∉【例4】(2019•全国)设集合P ={x |x 2﹣2>0},Q ={1,2,3,4},则P ∩Q 的非空子集的个数为( ) A .8B .7C .4D .3【例5】(2020•上海)集合A ={1,3},B ={1,2,a },若A ⊆B ,则a = . 【例6】已知集合{0A =,1,2},{|B ab a A =∈,}b A ∈,则集合B 中元素个数为( ) A .2B .3C .4D .5【例7】已知集合{{}A =∅,}∅,下列选项中均为A 的元素的是( ) (1){}∅;(2){{}}∅;(3)∅;(4){{}∅,}∅. A .(1)(2)B .(1)(3)C .(2)(3)D .(2)(4)【例8】已知函数2()f x x ax b =++,集合{|()0}A x f x =,集合5|(())4B x f f x ⎧⎫=⎨⎬⎩⎭,若A B =≠∅,则实数a 的取值可以是( ) A .2B .3C .4D .5【例9】向50名学生调查对A 、B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成;赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人.则下列说法正确的是( ) A .赞成A 的不赞成B 的有9人 B .赞成B 的不赞成A 的有11人 C .对A 、B 都赞成的有21人D .对A 、B 都不赞成的有8人【例10】(2015•上海)设集合21{|10}P x x ax =++>,22{|20}P x x ax =++>,21{|0}Q x x x b =++>,22{|20}Q x x x b =++>,其中a ,b R ∈,下列说法正确的是( ) A .对任意a ,1P 是2P 的子集,对任意b ,1Q 不是2Q 的子集 B .对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集 C .存在a ,1P 不是2P 的子集,对任意b ,1Q 不是2Q 的子集 D .存在a ,1P 不是2P 的子集,存在b ,使得1Q 是2Q 的子集1.(2022•乙卷文)集合{}{}2,4,6,8,10,16M N x x ==-<<,则MN =( )A. {2,4}B. {2,4,6}C. {2,4,6,8}D. {2,4,6,8,10}2.(2022•上海)已知集合A =(﹣1,2),集合B =(1,3),则A ∩B = .3.(2021•新高考Ⅰ)设集合A ={x |﹣2<x <4},B ={2,3,4,5},则A ∩B =( ) A .{2}B .{2,3}C .{3,4}D .{2,3,4}4.(2021•上海)已知集合A ={x |x >﹣1,x ∈R },B ={x |x 2﹣x ﹣2≥0,x ∈R },则下列关系中,正确的是( ) A .A ⊆BB .∁R A ⊆∁R BC .A ∩B =∅D .A ∪B =R5.(2022•天津)设全集{2U =-,1-,0,1,2},集合{0A =,1,2},{1B =-,2},则()(U A B =⋂)A .{0,1}B .{0,1,2}C .{1-,1,2}D .{0,1-,1,2}6.(2022•浙江)设集合{1A =,2},{2B =,4,6},则(A B = )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}7.(2022•北京)已知全集{|33}U x x =-<<,集合{|21}A x x =-<,则(UA = )A .(2-,1]B .(3,2)[1--,3) C .[2-,1)D .(3-,2](1,3)- 8.(2021•乙卷)已知集合{|21S s s n ==+,}n Z ∈,{|41T t t n ==+,}n Z ∈,则(S T = )A .∅B .SC .TD .Z9.(2020•全国)若集合A 共有5个元素,则A 的真子集的个数为( ) A .32B .31C .16D .1510.(2020•新课标Ⅲ)已知集合{(,)|A x y x =,*y N ∈,}y x ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A .2B .3C .4D .611.(2017•江苏)已知集合{1A =,2},{B a =,23}a +.若{1}A B =,则实数a 的值为 .12.(2022•重庆期末)下列说法正确的是( ) A .任何集合都是它自身的真子集B .集合{a ,}b 共有4个子集C .集合{|31x x n =+,}{|32n Z x x n ∈==-,}n Z ∈D .集合2{|1x x a =+,*2}{|45a N x x a a ∈==-+,*}a N ∈13.(2021•重庆期末)已知全集为U ,A ,B 是U 的非空子集且UA B ⊆,则下列关系一定正确的是()A .x U ∃∈,x A ∉且xB ∈ B .x A ∀∈,x B ∉C .x U ∀∈,x A ∈或x B ∈D .x U ∃∈,x A ∈且x B ∈14.(2021•虎丘区月考)江苏省实验中学科技城校举行秋季运动会,高一某班共有30名同学参加比赛,有20人参加田赛,13人参加径赛,有19人参加球类比赛,同时参加田赛与径赛的有8人,同时参加田赛与球类比赛的有9人,没有人同时参加三项比赛.以下说法正确的有( ) A .同时参加径赛和球类比赛的人数有3人 B .只参加球类一项比赛的人数有2人C .只参加径赛一项比赛的人数为0人D .只参加田赛一项比赛的人数为3人1.4 充分条件与必要条件充要条件(1)充分条件:若,则是充分条件.(2)必要条件:若,则是必要条件.(3)充要条件:若,且,则是充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.抓住关键词:大必小充。
天津市高三数学二轮专题复习测试 一《集合与简易逻辑、函数与导数》 新人教版
一、选择题(每小题5分,共60分) 1.若集合}{2-==x y y M ,}1{-==x y y P ,那么=P M ( )A .),1(+∞B .),1[+∞C .),0(+∞D .),0[+∞2.若函数)(x f y =的图象与函数)1lg(-=x y 的图象关于直线0=-y x 对称,则=)(x f ( )A .x 101-B .110+xC .110+-xD .110--x3.函数)1(21)(x x x f --=的最大值是( )A .49B .94C .47D .744.已知函数)(1x f y -=的图象过点)0,1(,则)121(-=x f y 的反函数的图象一定过点( )A .)2,1(B .)1,2(C .)2,0(D .)0,2(5.设集合},,{c b a M =,}1,0{=N ,映射N M f →:满足)()()(c f b f a f =+,则映射N M f →:的个数为( )A .1B .2C .3D .4A .042,0200>+-∈∃x x R xB .042,2≤+-∈∀x x R xC .042,2>+-∈∀x x R x D .042,2≥+-∈∀x x R x 6.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度 7.如图是函数)(x f y =的导函数)(x f '的图象,则下面判断正确的是A .在区间(-2,1)上)(x f 是增函数B .在(1,3)上)(x f 是减函数C .在(4,5)上)(x f 是增函数D .当8. 若函数))(12()(a x x xx f -+=为奇函数,则a 的值为 ( )A .21 B .32 C .43D .1 9.已知定义域为R 的函数f(x)在区间(4,+∞)上为减函数,且函数y=f(x+4)为偶函数,则( ) A .f(2)>f(3) B .f(3)>f(6) C .f(3)>f(5) D . f(2)>f(5)10.已知a>0且a≠1,若函数f (x )= log a (ax 2–x )在[3,4]是增函数,则a 的取值范围是( )A .(1,+∞)B .11[,)(1,)64+∞C .11[,)(1,)84+∞D .11[,)64 11. 用},,min{c b a 表示c b a ,,三个数中的最小值,}102,2m in{)(x x x f x-+=,, (x ≥0) ,则)(x f 的最大值为 ( )A .4B .5C .6D .712. 若函数f(x)=⎩⎨⎧>+≤0)( 1)ln(0)(x x x x ,若f(2-x 2)>f(x),则实数x 的取值范围是A .(-∞,-1)∪(2,+∞)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)二、填空题(每小题4分,共16分.把答案填在题中的横线上)13.设全集U 是实数集R ,{}24M x|x >=,{}|13N x x =<<,则图中阴影部分所表示的集合是___________。
天津市2020高考数学二轮复习专题一集合、逻辑用语、不等关系、向量、复数1.3平面向量与复数课件
A.3 ������������ − 1 ������������
4
4
B.1 ������������ − 3 ������������
4
4
C.3 ������������ + 1 ������������
4
4
D.1 ������������ + 3 ������������
4
4
(2)在△ABC 中,N 是 AC 边上一点,且������������ =
-5-
突破点一
突破点二
突破点三
突破点四
突破点五
能否利用特殊的三角形解决该题?
解:该题中的“三角形”均没有特殊的条件要求,所以可以利用“特
殊化”——放在直角三角形中,然后利用坐标即可快速得到相应的
选项.
而两题均以������������, ������������作为基底,故可令 A 为直角.
第(1)小题,令������������ ⊥ ������������,不妨设|������������|=|������������|=1.
如图,以点 A 为坐标原点,AB,AC 所在直线分别为 x,y 轴,
建立平面直角坐标系,则 B(1,0),C(0,1),D
1 2
,
1 2
,E
1 4
,
1 4
.
故������������ =
3 4
,-
1 4
,而������������ =(1,0),������������ =(0,1),
所以������������ = 3 ������������ +
第二部分
1.3 平面向量与复数
高频考点•探究突破 核心归纳•预测演练
(新课标)天津市新2020年高考数学二轮复习 专题能力训练1 集合与常用逻辑用语 理【下载】
专题能力训练1 集合与常用逻辑用语一、能力突破训练1.若命题p:∀x∈R,cos x≤1,则p为()A.∃x0∈R,cos x0>1B.∀x∈R,cos x>1C.∃x0∈R,cos x0≥1D.∀x∈R,cos x≥12.(2018全国Ⅲ,理1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}3.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数4.已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=()A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)5.设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}6.(2018天津,理4)设x∈R,则“”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.已知集合A={x||x-2|>1},B={x|y=},则()A.A∩B=⌀B.A⊆BC.B⊆AD.A=B8.设m∈R,命题“若m>0,则关于x的方程x2+x-m=0有实根”的逆否命题是()A.若关于x的方程x2+x-m=0有实根,则m>0B.若关于x的方程x2+x-m=0有实根,则m≤0C.若关于x的方程x2+x-m=0没有实根,则m>0D.若关于x的方程x2+x-m=0没有实根,则m≤09.已知命题p:“∃x0∈R,+2ax0+a≤0”为假命题,则实数a的取值范围是()A.(0,1)B.(0,2)C.(2,3)D.(2,4)10.已知条件p:|x+1|>2,条件q:x>a,且 p是 q的充分不必要条件,则a的取值范围是()A.a≥1B.a≤1C.a≥-1D.a≤-311.下列命题正确的是()A.∃x0∈R,+2x0+3=0B.∀x∈N,x3>x2C.x>1是x2>1的充分不必要条件D.若a>b,则a2>b212.已知命题p:∃x0∈R,x0-2>lg x0,命题q:∀x∈R,e x>1,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(q)是真命题D.命题p∨(q)是假命题13.命题“若x>0,则x2>0”的否命题是()A.若x>0,则x2≤0B.若x2>0,则x>0C.若x≤0,则x2≤0D.若x2≤0,则x≤014.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.15.设p:<0,q:0<x<m,若p是q成立的充分不必要条件,则m的取值范围是.16.已知集合A={y|y=log2x,x>1},B=,则A∩B= .17.设a,b∈R,集合{1,a+b,a}=,则b-a= .18.已知集合A={(x,y)|y=},B={(x,y)|y=x+m},且A∩B≠⌀,则实数m的取值范围是.二、思维提升训练19.设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)20.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)21.命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x222.已知p:函数f(x)=|x+a|在区间(-∞,-1)内是单调函数,q:函数g(x)=log a(x+1)(a>0,且a≠1)在区间(-1,+∞)内是增函数,则p成立是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件23.设全集U=R,集合M={x|y=},N={y|y=3-2x},则图中阴影部分表示的集合是()A.B.C.D.24.(2018浙江,6)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件25.“对任意x∈,k sin x cos x<x”是“k<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件26.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“若x=y,则sin x=sin y”的逆否命题为真命题D.命题“∃x0∈R,使得+x0+1<0”的否定是“∀x∈R,均有x2+x+1<0”27.下列命题中的真命题是()A.∃x0∈R,使得≤0B.sin2x+≥3(x≠kπ,k∈Z)C.函数f(x)=2x-x2有两个零点D.“a>1,b>1”是“ab>1”的充分不必要条件28.设A,B是非空集合,定义A B={x|x∈A∪B,且x∉A∩B},已知M={y|y=-x2+2x,0<x<2},N={y|y=2x-1,x>0},则M N=.29.下列命题正确的是.(填序号)①若f(3x)=4x log23+2,则f(2)+f(4)+…+f(28)=180;②函数f(x)=tan 2x图象的对称中心是(k∈Z);③“∀x∈R,x3-x2+1≤0”的否定是“∃x0∈R,+1>0”;④设常数a使方程sin x+cos x=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.30.设p:关于x的不等式a x>1的解集为{x|x<0},q:函数y=lg(ax2-x+a)的定义域为R,若p∨q 为真命题,p∧q为假命题,则a的取值范围是.专题能力训练1集合与常用逻辑用语一、能力突破训练1.A解析由全称命题的否定得, p:∃x0∈R,cos x0>1,故选A.2.C解析由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.3.B4.A解析取P,Q的所有元素,得P∪Q={x|-1<x<2},故选A.5.B解析∵A={1,2,6},B={2,4},∴A∪B={1,2,4,6}.∵C={x∈R|-1≤x≤5},∴(A∪B)∩C={1,2,4}.故选B.6.A解析由,可得0<x<1.由x3<1,可得x<1.所以是“x3<1”的充分而不必要条件.故选A.7.A解析由|x-2|>1,得x-2<-1或x-2>1,即x<1或x>3;由得1≤x≤3,因此A={x|x<1或x>3},B={x|1≤x≤3},A∩B=⌀,故选A.8.D解析原命题的逆否命题是将条件和结论分别否定,作为新命题的结论和条件,所以其逆否命题为“若关于x的方程x2+x-m=0没有实根,则m≤0”.9.A解析由p为假命题知,∀x∈R,x2+2ax+a>0恒成立,∴Δ=4a2-4a<0,∴0<a<1,故选A.10.A解析因为条件p:x>1或x<-3,所以p:-3≤x≤1;因为条件q:x>a,所以q:x≤a.因为p是q的充分不必要条件,所以a≥1,故选A.11.C解析+2x0+3=(x0+1)2+2>0,选项A错;x3-x2=x2(x-1)不一定大于0,选项B错;若x>1,则x2>1成立,反之不成立,选项C正确;取a=1,b=-2,满足a>b,但a2>b2不成立,选项D错.故选C.12.C解析因为命题p:∃x0∈R,x0-2>lg x0是真命题,而命题q:∀x∈R,e x>1是假命题,所以由命题的真值表可知命题p∧(q)是真命题,故选C.13.C解析命题的条件的否定为x≤0,结论的否定为x2≤0,则该命题的否命题是“若x≤0,则x2≤0”,故选C.14.1解析由已知得1∈B,2∉B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.15.(2,+∞)解析由<0,得0<x<2.∵p是q成立的充分不必要条件,∴(0,2)⫋(0,m),∴m>2. 16解析由已知,得A={y|y>0},B=,则A∩B=17.2解析∵1≠0,∴a+b和a中必有一个为0,当a=0时,无意义,故a+b=0,∴两个集合分别为{1,0,a},{0,-1,b}.∴a=-1,b=1,b-a=2.18.[-7,7]解析集合A表示以原点为圆心,7为半径的圆在x轴及其上方的部分,A∩B≠⌀,表示直线y=x+m与圆有交点,作出示意图(图略)可得实数m的取值范围是[-7,7].二、思维提升训练19.D解析由4-x2≥0,得A=[-2,2],由1-x>0,得B=(-∞,1),故A∩B=[-2,1).故选D.20.B解析∵Q={x∈R|x2≥4}={x∈R|x≤-2或x≥2},∴∁R Q={x∈R|-2<x<2}.∴P∪(∁R Q)={x∈R|-2<x≤3}=(-2,3].故选B.21.D解析由含量词命题的否定格式,可知首先改写量词,而n≥x2的否定为n<x2.故选D.22.C解析由p成立,得a≤1,由q成立,得a>1,所以 p成立时a>1, p成立是q成立的充要条件.故选C.23.B解析M=,N={y|y<3},故阴影部分N∩(∁U M)={x|x<3}24.A解析当m⊄α,n⊂α时,由线面平行的判定定理可知,m∥n⇒m∥α;但反过来不成立,即m∥α不一定有m∥n,m与n还可能异面.故选A.25.B解析当x时,sin x<x,且0<cos x<1,∴sin x cos x<x.∴k<1时有k sin x cos x<x.反之不成立.如当k=1时,对任意的x,sin x<x,0<cos x<1,∴k sin x cos x=sin x cos x<x成立,这时不满足k<1,故应为必要不充分条件.26.C解析否命题应同时否定条件与结论,选项A错;若x=-1,则x2-5x-6=0成立,反之不成立,选项B错;因为原命题为真命题,所以其逆否命题为真命题,选项C正确;特称命题的否定为全称命题,同时否定结论,选项D错,故选C.27.D解析对任意的x∈R,e x>0恒成立,A错误;当sin x=-1时,sin2x+=-1,B错误;f(x)=2x-x2有三个零点(x=2,4,还有一个小于0),C错误;当a>1,b>1时,一定有ab>1,但当a=-2,b=-3时,ab=6>1也成立,故D正确.28(1,+∞)解析M={y|y=-x2+2x,0<x<2}=(0,1],N={y|y=2x-1,x>0}=,M∪N=(0,+∞),M∩N=,所以M N=(1,+∞).29.③④解析因为f(3x)=4x log23+2,令3x=t⇒x=log3t,则f(t)=4log3t·log23+2=4log2t+2,所以f(2)+f(4)+…+f(28)=4(log22+log222+…+log228)+16=4×(1+2+…+8)+16=4×36+16=160,故①错;函数f(x)=tan 2x图象的对称中心是(k∈Z),故②错;由全称命题的否定是特称命题知③正确;f(x)=sin x+cos x=2sin,要使sin x+cos x=a在闭区间[0,2π]上恰有三个解,则a=,x1=0,x2=,x3=2π,故④正确.30[1,+∞)解析当p真时,0<a<1;当q真时,ax2-x+a>0对x∈R恒成立,则即a>若p∨q为真,p∧q为假,则p,q应一真一假.①当p真q假时,0<a;②当p假q真时,a≥1.综上,a[1,+∞).。
2020新课标高考数学讲义:集合、不等式、常用逻辑用语含解析
3.已知向量a=(x-1、3)、b=(1、y)、其中x、y都为正实数.若a⊥b、则 + 的最小值为()
A.2B.2
C.4D.2
解析:选C.因为a⊥b、所以a·b=x-1+3y=0、即x+3y=1.又x、y为正实数、所以 + =(x+3y)· =2+ + ≥2+2 =4、当且仅当x=3y= 时取等号.所以 + 的最小值为4.故选C.
A.(2、3)B.[2、4)
C.[2、3]D.(2、3]
解析:选B.不等式[x]2-5[x]+6≤0可化为([x]-2)·([x]-3)≤0、解得2≤[x]≤3、即不等式[x]2-5[x]+6≤0的解集为2≤[x]≤3.根据[x]表示不超过x的最大整数、得不等式的解集为2≤x<4.故选B.
5.已知实数b>a>0、m<0、则mb________ma、 ________ (用>、<填空).
基本不等式及其应用
[考法全练]
1.(多选)下列不等式的证明过程错误的是()
A.若a、b∈R、则 + ≥2 =2
B.若a<0、则a+ ≥-2 =-4
C.若a、b∈(0、+∞)、则lga+lgb≥2
D.若a∈R、则2a+2-a≥2 =2
解析:选ABC.由于a、b的符号不确定、故选项A错误;因为a<0、所以a+ =- ≤-2 =-4、故B错误;由于lga、lgb的符号不确定、故选项C错误;因为2a>0、2-a>0、所以2a+2-a≥2 =2、故选项D正确.故选ABC.
B.∀x∈R、2x>x2
C.a+b=0的充要条件是 =-1
D.若x、y∈R、且x+y>2、则x、y中至少有一个大于1
(课标专用)天津市2020高考数学二轮复习专题能力训练1集合与常用逻辑用语
专题能力训练1 集合与常用逻辑用语专题能力训练第10页一、能力突破训练1.(2019浙江,1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=()A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}答案:A解析:∁U A={-1,3},则(∁U A)∩B={-1}.2.已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}答案:C解析:由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.3.设x∈R,则“|x-12|<12”是“x3<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A解析:由|x-12|<12,可得0<x<1.由x3<1,可得x<1.所以“|x-12|<12”是“x3<1”的充分不必要条件.故选A.4.已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=()A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)答案:A解析:取P,Q的所有元素,得P∪Q={x|-1<x<2},故选A.5.设集合A={1,2,6},B={2,4},C={x ∈R |-1≤x ≤5},则(A ∪B )∩C=( ) A.{2} B.{1,2,4} C.{1,2,4,6} D.{x ∈R |-1≤x ≤5}答案:B解析:∵A={1,2,6},B={2,4},∴A ∪B={1,2,4,6}.∵C={x ∈R |-1≤x ≤5},∴(A ∪B )∩C={1,2,4}.故选B .6.(2019天津十二重点中学联考(一))设x ∈R ,则“2x<18”是“2x <1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:A解析:∵2x<18⇔2x<2-3⇔x<-3,2x<1⇔x -2x >0⇔x>2或x<0, ∴x<-3能推出x>2或x<0, x>2或x<0不能推出x<-3,∴“2x <18”是“2x <1”的充分不必要条件,故选A .7.已知集合A={x||x-2|>1},B={x|y=√x -1+√3-x },则( ) A.A ∩B=⌀ B.A ⊆BC.B ⊆AD.A=B答案:A解析:由|x-2|>1,得x-2<-1或x-2>1,即x<1或x>3;由{x -1≥0,3-x ≥0,得1≤x ≤3,因此A={x|x<1或x>3},B={x|1≤x ≤3},A ∩B=⌀,故选A.8.(2019北京海淀区一模)已知a<b ,则下列结论中正确的是( ) A.∀c<0,a>b+c B.∀c<0,a<b+c C.∃c>0,a>b+c D.∃c>0,a<b+c答案:D解析:A不一定成立,如a=1,b=10,c=-1,a>b+c不成立;B也不一定成立,如a=9.5,b=10,c=-1,a<b+c不成立;C不成立,因为a<b,c>0,所以a<b+c恒成立,D正确.9.已知命题p:“∃x∈R,x2+2ax+a≤0”为假命题,则实数a的取值范围是()A.(0,1)B.(0,2)C.(2,3)D.(2,4)答案:A解析:由p为假命题知,∀x∈R,x2+2ax+a>0恒成立,∴Δ=4a2-4a<0,∴0<a<1,故选A.10.若命题“∃x∈R,x2+2mx+m+2<0”为假命题,则m的取值范围是()A.(-∞,-1]∪[2,+∞)B.(-∞,-1)∪(2,+∞)C.[-1,2]D.(-1,2)答案:C解析:若命题“∃x∈R,x2+2mx+m+2<0”为假命题,则命题等价于x2+2mx+m+2≥0恒成立,故只需要Δ=4m2-4(m+2)≤0⇒-1≤m≤2.故选C.11.下列命题正确的是()A.∃x∈R,x2+2x+3=0B.∀x∈N,x3>x2C.x>1是x2>1的充分不必要条件D.若a>b,则a2>b2答案:C解析:x2+2x+3=(x+1)2+2>0,选项A错;x3-x2=x2(x-1)不一定大于0,选项B错;若x>1,则x2>1成立,反之不成立,选项C正确;取a=1,b=-2,满足a>b,但a2>b2不成立,选项D错,故选C.12.设a,b是非零向量,则“a·b=|a||b|”是“a∥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:设a,b所成的角为θ,则a·b=|a|·|b|·cosθ,由已知得cosθ=1,即θ=0,a∥b.而当a∥b 时,θ还可能是π,此时a·b=-|a||b|,故“a·b=|a|·|b|”是“a∥b”的充分不必要条件,故选A.13.设a,b是两条直线,α,β是两个平面,则a⊥b的一个充分条件是()A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β答案:C解析:A.a,b可能垂直也可能不垂直,平行都有可能;B.a∥b;D.a,b可能垂直、不垂直或是平行都有可能;C.由α∥β,b⊥β,知b⊥α,又a⊂α,则b⊥a,故C正确.14.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.答案:1解析:由已知得1∈B,2∉B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.15.设p:xx-2<0,q:0<x<m,若p是q成立的充分不必要条件,则m的取值范围是.答案:(2,+∞)解析:由xx-2<0,得0<x<2.∵p是q成立的充分不必要条件,∴(0,2)⫋(0,m),∴m>2.16.已知集合A={y|y=log2x,x>1},B=y|x=(12)x,x>1,则A∩B=.答案:{x|0<x<12}解析:由已知,得A={y|y>0},B={x|0<x<12},则A∩B={x|0<x<12}.17.设a,b∈R,集合{1,a+b,a}={0,xx,x},则b-a=.答案:2解析:∵1≠0,∴a+b和a中必有一个为0,当a=0时,xx无意义,故a+b=0, ∴两个集合分别为{1,0,a},{0,-1,b},∴a=-1,b=1,b-a=2.18.已知集合A={(x,y)|y=√49-x2},B={(x,y)|y=x+m},且A∩B≠⌀,则实数m的取值范围是.答案:[-7,7√2]解析:集合A表示以原点为圆心,7为半径的圆在x轴及其上方的部分,A∩B≠⌀,表示直线y=x+m与圆有交点,作出示意图(图略)可得实数m的取值范围是[-7,7√2].二、思维提升训练19.设函数y=√4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)答案:D解析:由4-x2≥0,得A=[-2,2],由1-x>0,得B=(-∞,1),故A∩B=[-2,1).故选D.20.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)答案:B解析:∵Q={x∈R|x2≥4}={x∈R|x≤-2或x≥2},∴∁R Q={x∈R|-2<x<2}.∴P∪(∁R Q)={x∈R|-2<x≤3}=(-2,3].故选B.21.若f(x)是R上的奇函数,且x1,x2∈R,则“x1+x2=0”是“f(x1)+f(x2)=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A解析:∵函数f(x)是奇函数,∴若x1+x2=0,则x1=-x2,则f(x1)=f(-x2)=-f(x2),即f(x1)+f(x2)=0成立,即充分性成立;若f(x)=0,满足f(x)是奇函数,当x1=x2=2时,满足f (x 1)=f (x 2)=0,此时满足f (x 1)+f (x 2)=0, 但x 1+x 2=4≠0,即必要性不成立,故“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的充分不必要条件, 所以A 选项正确.22.已知x ,y ∈R ,则“x+y ≤1”是“x ≤12,且y ≤12”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件答案:B解析:当“x+y ≤1”,如x=-4,y=1,x+y ≤1,但没有“x ≤12,且y ≤12”;当“x ≤12,且y ≤12”时,根据不等式的性质有“x+y ≤1”.故“x+y ≤1”是“x ≤12,且y ≤12”的必要不充分条件.23.设全集U=R ,集合M={x|y=√3-2x },N={y|y=3-2x},则图中阴影部分表示的集合是( )A.{x |32<x ≤3} B.{x |32<x <3}C.{x |32≤x <2} D.{x |32<x <2} 答案:B解析:M={x |x ≤32},N={y|y<3},故阴影部分N ∩(∁U M )={x|x<3}∩{x |x >32}={x |32<x <3}.24.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件答案:A解析:当m ⊄α,n ⊂α时,由线面平行的判定定理可知,m ∥n ⇒m ∥α;但反过来不成立,即m ∥α不一定有m ∥n ,m 与n 还可能异面.故选A .25.“对任意x∈(0,π2),k sin x cos x<x”是“k<1”的() A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:当x∈(0,π2)时,sin x<x,且0<cos x<1,∴sin x cos x<x.∴k<1时有k sin x cos x<x.反之不成立.如当k=1时,对任意的x∈(0,π2),sin x<x,0<cos x<1,∴k sin x cos x=sin x cos x<x成立,这时不满足k<1,故应为必要不充分条件.26.将函数y=sin(3x+φ)的图象向左平移π9个单位长度后,得到函数f(x)的图象,则“φ=π6是f(x)是偶函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:把函数y=sin(3x+φ)的图象向左平移π9单位长度后,得到的图象的解析式是y=sin3x+π3+φ,该函数是偶函数的充要条件是π3+φ=kπ+π2,k∈Z,所以“φ=π6”是“f(x)是偶函数”的充分不必要条件.故选A.27.下列命题中的真命题是()A.∃x∈R,使得e x≤0B.sin2x+2sin x≥3(x≠kπ,k∈Z)C.函数f(x)=2x-x2有两个零点D.“a>1,b>1”是“ab>1”的充分不必要条件答案:D解析:对任意的x ∈R ,e x >0恒成立,A 错误;当sin x=-1时,sin 2x+2sin x =-1,B 错误;f (x )=2x -x 2有三个零点(x=2,4,还有一个小于0),C 错误;当a>1,b>1时,一定有ab>1,但当a=-2,b=-3时,ab=6>1也成立,故D 正确.28.设A ,B 是非空集合,定义A x B={x|x ∈A ∪B ,且x ∉A ∩B },已知M={y|y=-x 2+2x ,0<x<2},N={y|y=2x-1,x>0},则M x N= .答案:(0,12]∪(1,+∞)解析:M={y|y=-x 2+2x ,0<x<2}=(0,1],N={y|y=2x-1,x>0}=(12,+∞),M ∪N=(0,+∞),M ∩N=(12,1],所以M x N=(0,12]∪(1,+∞).29.已知集合A={x|x=2k-1,k ∈N *},B={x|x=8k-8,k ∈N *},从集合A 中取出m 个不同元素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T.若S+T ≤967,则m+2n 的最大值为 . 答案:44解析:欲使m ,n 更大,则所取元素尽可能小,所以从最小元素开始取,S=x (1+2x -1)2=m 2,T=x (0+8x -8)2=4n 2-4n ,∴m 2+4n 2-4n ≤967,即(2n-1)2+m 2≤968,m ,n ∈N *.令2n-1=t ,则m+2n=t+m+1,t 为奇数,m 为整数,则t 2+m 2≤968,由基本不等式√x2+x 22≥x +x 2,∴m+t ≤44,当且仅当m=t=22时取等号,∵t 为奇数,∴m+t 的最大值在t=22附近取到,则t=21,m=23(舍);t=21,m=22,成立;t=23,m=21(舍);t=23,m=20,成立;故m+t 的最大值为43,∴m+2n 的最大值为44. 30.设非直角三角形ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,则下列结论正确的是 .(写出所有正确结论的编号)①“sin A>sin B ”是“a>b ”的充分必要条件②“cos A<cos B”是“a>b”的充分必要条件③“tan A>tan B”是“a>b”的充分必要条件④“sin 2A>sin 2B”是“a>b”的充分必要条件⑤“cos 2A<cos 2B”是“a>b”的充分必要条件答案:①②⑤解析:由①sin A>sin B,利用正弦定理得a=2r sin A,b=2r sin B(r为△ABC的外接圆半径),故sin A>sin B,等价于a>b,反之也成立,所以①正确;由②cos A<cos B,利用函数y=cos x在区间(0,π)内单调递减得A>B,等价于a>b,反之也成立,所以②正确;由③tan A>tan B,不能推出a>b,如A为锐角,B为钝角,虽然有tan A>tan B,但由大角对大边得a<b,所以③错误;由④sin2A>sin2B,不能推出a>b,如A=45°,B=60°时,虽然有sin2A>sin2B,但由大角对大边得a<b,④错误;由⑤cos2A<cos2B,利用二倍角公式得sin2A>sin2B,∴sin A>sin B等价于a>b,⑤正确.。
(新课标)天津市2020年高考数学二轮复习 综合能力训练 理
综合能力训练第Ⅰ卷(选择题,共40分)一、选择题(本大题共8小题,每小题5分,共40分)1.已知集合A=,B={x|y=lg(4x-x2)},则A∩B等于()A.(0,2]B.[-1,0)C.[2,4)D.[1,4)2.设直线x+y=1与抛物线y2=2px(p>0)交于A,B两点,若OA⊥OB,则△OAB的面积为()A.1B.C.D.23.已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<cB.c<b<aC.b<a<cD.b<c<a4.(2018浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.85.执行如图所示的程序框图.若输入n=3,则输出的S=()A.B.C.D.6.已知双曲线=1(a>0,b>0)被斜率为1的直线截得的弦的中点为(4,1),则该双曲线离心率的值是()A.B.C.D.27.已知函数f(x)=若f(1)+f(a)=2,则a的所有可能值为()A.1B.-C.1,-D.1,8.已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b-c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b-c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2-c|≤1,则a2+b2+c2<100第Ⅱ卷(非选择题,共110分)二、填空题(本大题共6小题,每小题5分,共30分)9.已知a,b∈R,i是虚数单位,若(1+i)(1-b i)=a,则的值为.10.在(2x-1)5的展开式中,含x2的项的系数是.(用数字填写答案)11.已知两球O1和O2在棱长为1的正方体ABCD-A1B1C1D1的内部,且互相外切,若球O1与过点A的正方体的三个面相切,球O2与过点C1的正方体的三个面相切,则球O1和O2的表面积之和的最小值为.12.在极坐标系中,直线4ρcos+1=0与圆ρ=2sin θ的公共点的个数为.13.设变量x,y满足约束条件的最小值是.14.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是.(填写所有正确结论的编号)三、解答题(本大题共6小题,共80分)15.(13分)△ABC的内角A,B,C的对边分别为a,b,c.已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.16.(13分)已知数列{a n}中,a1=2,且a n=2a n-1-n+2(n≥2,n∈N*).(1)求a2,a3,并证明{a n-n}是等比数列;(2)设b n=,求数列{b n}的前n项和S n.17.(13分)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ.(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.18.(13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.19.(14分)已知椭圆C:=1(a>b>0)的左、右焦点F1,F2与椭圆短轴的一个端点构成边长为4的正三角形.(1)求椭圆C的标准方程;(2)过椭圆C上任意一点P作椭圆C的切线与直线F1P的垂线F1M相交于点M,求点M的轨迹方程;(3)若切线MP与直线x=-2交于点N,求证:为定值.20.(14分)已知函数f(x)=ln(1+x)+x2-x(a≥0).(1)若f(x)>0对x∈(0,+∞)都成立,求a的取值范围;(2)已知e为自然对数的底数,证明:∀n∈N*,<e.##综合能力训练1.A解析∵A=[-1,2],B=(0,4),∴A∩B=(0,2].故选A.2.B解析设A(x1,y1),B(x2,y2),由x+y=1与抛物线y2=2px,得y2+2py-2p=0,解得y1=-p+,x1=1+p-,y2=-p-,x2=1+p+, 由OA⊥OB得,x1x2+y1y2=0,即[(1+p)2-(p2+2p)]+[p2-(p2+2p)]=0,化简得2p=1,从而A,B,OA2==5-2,OB2==5+2,△OAB的面积S=|OA||OB|=故选B.3.C解析∵f(x)是R上的奇函数,∴g(x)=xf(x)是R上的偶函数.∴g(-log25.1)=g(log25.1).∵奇函数f(x)在R上是增函数,∴当x>0时,f(x)>0,f'(x)>0.∴当x>0时,g'(x)=f(x)+xf'(x)>0恒成立,∴g(x)在区间(0,+∞)上是增函数.∵2<log25.1<3,1<20.8<2,∴20.8<log25.1<3.结合函数g(x)的性质得b<a<c.故选C.4.C解析由三视图可知该几何体为直四棱柱.∵S底=(1+2)×2=3,h=2,∴V=Sh=3×2=6.5.B解析由题意得,输出的S为数列的前3项和,而,即S n=故当输入n=3时,S3=,故选B.6.A解析设直线l与双曲线交于点A(x1,y1),B(x2,y2),则=0,即由弦的中点为(4,1),直线的斜率为1可知,x1+x2=8,y1+y2=2,=1,,e2=1+e=故选A.7.C解析∵f(1)=e1-1=1,∴f(a)=1.若a∈(-1,0),则sin(πa2)=1,∴a=-若a∈[0,+∞),则e a-1=1,∴a=1.因此a=1或a=-8.D解析 (举反例排除)选项A中,令a=b=10,c=-110,则|a2+b+c|+|a+b2+c|=|100+10-110|+|10+100-110|=0<1.而a2+b2+c2=100+100+1102=200+1102>100,故选项A不成立;选项B中,令a=10,b=-100,c=0,则|a2+b+c|+|a2+b-c|=0<1.而a2+b2+c2=100+1002+0>100,故选项B不成立;选项C中,令a=100,b=-100,c=0,则|a+b+c2|+|a+b-c2|=0<1.而a2+b2+c2=1002+1002+0>100,故选项C不成立;故选D.9.2解析 (1+i)(1-b i)=1+b+(1-b)i=a,则所以=2.故答案为2.10.-40解析 (2x-1)5的展开式的通项为T r+1=(2x)5-r(-1)r=(-1)r25-r x5-r.根据题意,得5-r=2,解得r=3.所以含x2项的系数为(-1)325-3=-22=-40.11.3(2-)π解析∵AO1=R1,C1O2=R2,O1O2=R1+R2,∴(+1)(R1+R2)=,R1+R2=,球O1和O2的表面积之和为4π()≥4π·2=2π(R1+R2)2=3(2-)π.12.2解析∵4ρcos+1=0,展开得2cos θ+2ρsin θ+1=0,∴直线的直角坐标方程为2x+2y+1=0.∵ρ=2sin θ两边同乘ρ得ρ2=2ρsin θ,∴圆心到直线的距离d=<r=1.∴直线与圆相交.∴直线与圆公共点的个数为2.13.1解析由约束条件作出可行域如图,联立解得A(3,2),的几何意义为可行域内的动点与定点P(1,0)连线的斜率,则其最小值为k PA==1.14.②③解析由题意,AB是以AC为轴,BC为底面半径的圆锥的母线,由AC⊥a,AC⊥b,得AC⊥圆锥底面,在底面内可以过点B,作BD∥a,交底面圆C于点D,如图所示,连接DE,则DE⊥BD,∴DE∥b.连接AD,在等腰三角形ABD 中,设AB=AD=,当直线AB与a成60°角时,∠ABD=60°,故BD=又在Rt△BDE中,BE=2,∴DE=,过点B作BF∥DE,交圆C于点F,连接AF,由圆的对称性可知BF=DE=,∴△ABF为等边三角形,∴∠ABF=60°,即AB与b 成60°角,②正确,①错误.由最小角定理可知③正确;很明显,可以满足直线a⊥平面ABC,直线AB与a所成的最大角为90°,④错误.故正确的说法为②③.15.解 (1)由题设及A+B+C=π,得sin B=8sin2,故sin B=4(1-cos B).上式两边平方,整理得17cos2B-32cos B+15=0,解得cos B=1(舍去),cos B=(2)由cos B=得sin B=,故S△ABC=ac sin B=ac.又S△ABC=2,则ac=b2=a2+c2-2ac cos B=(a+c)2-2ac(1+cos B)=36-2=4.所以b=2.16.解 (1)由已知a n=2a n-1-n+2(n≥2,n∈N*)得a2=4,a3=7.a n-n=2a n-1-2n+2,即a n-n=2[a n-1-(n-1)].=2(n≥2,n∈N*),且a1-1=1,∴{a n-n}是以1为首项,2为公比的等比数列.(2)由(1)得a n-n=(a1-1)·2n-1,即a n=2n-1+n,∴b n==1+设c n=,且前n项和为T n,则T n=+…+, ①T n=+…+, ②①-②,得T n=1++…+=2-故T n=4-,S n=n+4-17.解法一 (1)证明:如图①,连接AD1,由ABCD-A1B1C1D1是正方体,知BC1∥AD1.当λ=1时,P是DD1的中点,又F是AD的中点,所以FP∥AD1,所以BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图②,连接BD.因为E,F分别是AB,AD的中点,所以EF∥BD,且EF=BD.又DP=BQ,DP∥BQ,所以四边形PQBD是平行四边形,故PQ∥BD,且PQ=BD,从而EF∥PQ,且EF=PQ.所以EQ=FP=,所以四边形EFPQ也是等腰梯形.同理可证四边形PQMN也是等腰梯形.分别取EF,PQ,MN的中点为H,O,G,连接OH,OG,则GO⊥PQ,HO⊥PQ,而GO∩HO=O,故∠GOH是平面EFPQ与平面PQMN所成的二面角的平面角.若存在λ使平面EFPQ与平面PQMN所成的二面角为直二面角,则∠GOH=90°.连接EM,FN,则由EF∥MN,且EF=MN知四边形EFNM是平行四边形.连接GH,因为H,G是EF,MN的中点,所以GH=ME=2.在△GOH中,GH2=4,OH2=1+λ2-=λ2+,OG2=1+(2-λ)2-=(2-λ)2+,由OG2+OH2=GH2,得(2-λ)2++λ2+=4,解得λ=1±,故存在λ=1±,使平面EFPQ与平面PQMN所成的二面角为直二面角.解法二以D为原点,射线DA,DC,DD1分别为x,y,z轴的正半轴建立如图③所示的空间直角坐标系.由已知得B(2,2,0),C1(0,2,2),E(2,1,0),F(1,0,0),P(0,0,λ).=(-2,0,2),=(-1,0,λ),=(1,1,0).(1)证明:当λ=1时,=(-1,0,1).因为=(-2,0,2),所以=2,即BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)设平面EFPQ的一个法向量为n=(x,y,z),则由可得于是可取n=(λ,-λ,1).同理可得平面MNPQ的一个法向量为m=(λ-2,2-λ,1).若存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角,则m·n=(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±故存在λ=1±,使平面EFPQ与平面PQMN所成的二面角为直二面角.18.解 (1)由已知,有P(A)=所以,事件A发生的概率为(2)随机变量X的所有可能取值为0,1,2.P(X=0)=,P(X=1)=,P(X=2)=所以,随机变量X的分布列为X0 1 2P随机变量X的数学期望E(X)=0+1+2=1.19.(1)解依题意,2c=a=4,∴c=2,b=2∴椭圆C的标准方程为=1.(2)解由(1)知F1(-2,0),设P(x0,y0),M(x,y),过椭圆C上点P的切线方程为=1, ①直线F1P的斜率,则直线MF1的斜率=-, 直线MF1的方程为y=-(x+2),即yy0=-(x0+2)(x+2), ②①②联立,解得x=-8,精品故点M的轨迹方程为x=-8.(3)证明依题意及(2),知点M,N的坐标可表示为M(-8,y M),N(-2,y N),点N在切线MP上,由①式得y N=,点M在直线MF1上,由②式得y M=,|NF1|2=,|MF1|2=[(-2)-(-8)]2+,故=, ③注意到点P在椭圆C上,即=1,于是,代入③式并整理得,故的值为定值20.(1)解∵f(x)=ln(1+x)+x2-x,其定义域为(-1,+∞),∴f'(x)=+ax-1=①当a=0时,f'(x)=-,当x∈(0,+∞)时,f'(x)<0,则f(x)在区间(0,+∞)内单调递减,此时,f(x)<f(0)=0,不符合题意.②当0<a<1时,令f'(x)=0,得x1=0,x2=>0,当x时,f'(x)<0,则f(x)在区间内单调递减,此时,f(x)<f(0)=0,不符合题意.③当a=1时,f'(x)=,当x∈(0,+∞)时,f'(x)>0,则f(x)在区间(0,+∞)内单调递增,此时,f(x)>f(0)=0,符合题意.④当a>1时,令f'(x)=0,得x1=0,x2=<0,当x∈(0,+∞)时,f'(x)>0,则f(x)在区间(0,+∞)内单调递增,此时,f(x)>f(0)=0,符合题意.综上所述,a的取值范围为[1,+∞).(2)证明由(1)可知,当a=0时,f(x)<0对x∈(0,+∞)都成立,即ln(1+x)<x对x∈(0,+∞)都成立,精品∴ln+ln+…+ln+…+,即ln…由于n∈N*,则=1.∴ln<1.<e.由(1)可知,当a=1时,f(x)>0对x∈(0,+∞)都成立,即x-x2<ln(1+x)对x∈(0,+∞)都成立,+…+<ln+ln+…+ln, 即<ln,得<ln由于n∈N*,则<ln<e.。
专题练 第1练 集合与常用逻辑用语、复数
第1练 集合与常用逻辑用语、复数1.(2022·新高考全国Ⅰ)若集合M ={x |x <4},N ={x |3x ≥1},则M ∩N 等于( ) A .{x |0≤x <2}B.⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <2 C .{x |3≤x <16}D.⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <16 答案 D解析 因为M ={x |x <4}, 所以M ={x |0≤x <16};因为N ={x |3x ≥1},所以N =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥13. 所以M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <16. 2.(2022·全国乙卷)已知z =1-2i ,且z +a z +b =0,其中a ,b 为实数,则( ) A .a =1,b =-2 B .a =-1,b =2 C .a =1,b =2 D .a =-1,b =-2答案 A解析 由题意知z =1+2i , 所以z +a z +b =1-2i +a (1+2i)+b =a +b +1+(2a -2)i , 又z +a z +b =0,所以a +b +1+(2a -2)i =0, 又a ,b ∈R ,所以⎩⎪⎨⎪⎧ a +b +1=0,2a -2=0,解得⎩⎪⎨⎪⎧a =1,b =-2.3.(2022·浙江)设x ∈R ,则“sin x =1”是“cos x =0”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 由sin x =1,得x =2k π+π2(k ∈Z ),则cos ⎝⎛⎭⎫2k π+π2=cos π2=0,故充分性成立;又由cos x =0,得x =k π+π2(k ∈Z ),而sin ⎝⎛⎭⎫k π+π2=1或-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件.4.(2020·全国Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6 答案 C解析 A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,y ≥x }={(1,7),(2,6),(3,5),(4,4)},共4个元素. 5.(2020·全国Ⅰ)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B ={x |-2≤x ≤1},则a 等于( ) A .-4 B .-2 C .2 D .4答案 B解析 A ={x |-2≤x ≤2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-a 2. 由A ∩B ={x |-2≤x ≤1},知-a2=1,所以a =-2.6.(2019·全国Ⅰ)设复数z 满足|z -i|=1,z 在复平面内对应的点为(x ,y ),则( ) A .(x +1)2+y 2=1 B .(x -1)2+y 2=1 C .x 2+(y -1)2=1 D .x 2+(y +1)2=1答案 C解析 ∵z 在复平面内对应的点为(x ,y ), ∴z =x +y i(x ,y ∈R ). ∵|z -i|=1,∴|x +(y -1)i|=1, ∴x 2+(y -1)2=1.7.(2022·北京)设{a n }是公差不为0的无穷等差数列,则“{a n }为递增数列”是“存在正整数N 0,当n >N 0时,a n >0”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 C解析 设无穷等差数列{a n }的公差为d (d ≠0),则a n =a 1+(n -1)d =dn +a 1-d .若{a n }为递增数列,则d >0,则存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,所以充分性成立;若存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,即d >d -a 1n 对任意的n >N 0,n ∈N *均成立,由于n →+∞时,d -a 1n →0,且d ≠0,所以d >0,{a n }为递增数列,必要性成立.8.(2020·全国Ⅱ)设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________. 答案 2 3解析 方法一 设z 1-z 2=a +b i ,a ,b ∈R , 因为z 1+z 2=3+i , 所以2z 1=(3+a )+(1+b )i , 2z 2=(3-a )+(1-b )i. 因为|z 1|=|z 2|=2, 所以|2z 1|=|2z 2|=4,所以(3+a )2+(1+b )2=4,① (3-a )2+(1-b )2=4,② ①2+②2,得a 2+b 2=12. 所以|z 1-z 2|=a 2+b 2=2 3.方法二 设复数z 1,z 2在复平面内分别对应向量OA →,OB →, 则z 1+z 2对应向量OA →+OB →.由题意知|OA →|=|OB →|=|OA →+OB →|=2,如图所示,以OA ,OB 为邻边作平行四边形OACB ,则z 1-z 2对应向量BA →,且|OA →|=|AC →|=|OC →|=2, 可得|BA →|=2|OA →|sin 60°=2 3. 故|z 1-z 2|=|BA →|=2 3.9.(2022·淄博模拟)已知集合A ={(x ,y )|y =x 2},B ={(x ,y )|y =x +2},则A ∩B 等于( ) A .{1,4} B .[0,+∞) C .{-1,2} D .{(-1,1),(2,4)}答案 D解析 解方程组⎩⎪⎨⎪⎧y =x 2,y =x +2,可得⎩⎪⎨⎪⎧x =-1,y =1或⎩⎪⎨⎪⎧x =2,y =4,故A ∩B ={(-1,1),(2,4)}.10.(2022·重庆调研)已知集合A ,B 为全集U 的子集,若∁U A ⊆∁U B ,则A ∪(∁U B )等于( ) A .A B .B C .U D .∅ 答案 C解析 因为∁U A ⊆∁U B , 所以有B ⊆A ,则A ∪(∁U B )=U .11.(2022·黄山模拟)命题:∃x ∈R ,ax 2-ax -2>0为假命题的一个充分不必要条件是( ) A .(-∞,-8]∪[0,+∞) B .(-8,0) C .(-∞,0] D .[-8,0] 答案 B解析 ∵命题“∃x ∈R ,ax 2-ax -2>0”为假命题, ∴命题“∀x ∈R ,ax 2-ax -2≤0”为真命题, 当a =0时,-2≤0成立; 当a ≠0时,a <0,故方程ax 2-ax -2=0的Δ=a 2+8a ≤0, 解得-8≤a <0,故a 的取值范围是[-8,0],要满足题意,则选项是集合[-8,0]的真子集,故选项B 满足. 12.(多选)(2022·青岛模拟)已知复数z =a +(1-a 2)i ,i 为虚数单位,a ∈R ,则下列选项正确的为( )A .若z 是实数,则a =-1B .复平面内表示复数z 的点位于一条抛物线上C .|z |≥32D .若z =2z +1,则a =±1答案 BC解析 由复数z =a +(1-a 2)i 是实数可知1-a 2=0,解得a =±1,A 选项错误;复数z =a +(1-a 2)i 在复平面内对应点Z (a ,1-a 2),其坐标满足方程y =1-x 2,即点Z (a ,1-a 2)位于抛物线y =1-x 2上,B 选项正确; 由z =a +(1-a 2)i ,可得|z |=a 2+(1-a 2)2=a 4-a 2+1=⎝⎛⎭⎫a 2-122+34≥32,C 选项正确;z =2z +1,即a +(1-a 2)i =2a +1-2(1-a 2)i ,可得⎩⎪⎨⎪⎧a =2a +1,1-a 2=-2(1-a 2),解得a =-1,D 选项错误.13.(2022·蚌埠模拟)设复数z =⎝ ⎛⎭⎪⎫1+2i 2-i 2 022,则z 等于( )A .1B .-1C .iD .-i 答案 B 解析1+2i 2-i =(1+2i )(2+i )(2-i )(2+i )=5i5=i , 因此z =i 2 022=(i 2)1 011=(-1)1 011=-1.14.(多选)(2022·广州模拟)已知集合A ={x ∈R |x 2-3x -18<0},B ={x ∈R |x 2+ax +a 2-27<0},则下列命题中正确的是( ) A .若A =B ,则a =-3 B .若A ⊆B ,则a =-3 C .若B =∅,则a ≤-6或a ≥6 D .若B A ,则-6<a ≤-3或a ≥6 答案 ABC解析 A ={x ∈R |-3<x <6},若A =B ,则a =-3,且a 2-27=-18,故A 正确; 当a =-3时,A =B ,故D 不正确;若A ⊆B ,则(-3)2+a ·(-3)+a 2-27≤0,且62+6a +a 2-27≤0,解得a =-3,故B 正确; 若B =∅,则a 2-4(a 2-27)≤0,解得a ≤-6或a ≥6,故C 正确.15.(2022·济宁模拟)命题“∃x ∈R ,x 2-x +1>0”的否定是____________________. 答案 ∀x ∈R ,x 2-x +1≤0解析 由存在量词命题的否定为全称量词命题, 可得原命题的否定为“∀x ∈R ,x 2-x +1≤0”.16.(2022·天津模拟)已知p :x 2-7x +10<0,q :(x -m )(x -3m )<0,其中m >0.若q 是p 的必要不充分条件,则实数m 的取值范围是________.答案 53≤m ≤2解析 p :x 2-7x +10<0⇒(x -2)(x -5)<0 ⇒2<x <5,所以p :{x |2<x <5},q :(x -m )(x -3m )<0,其中m >0, 解得m <x <3m , 所以q :{x |m <x <3m }. 由q 是p 的必要不充分条件, 可得p ⇒q 且q ⇏p ,所以{x |2<x <5}{x |m <x <3m },则⎩⎪⎨⎪⎧m ≤2,3m ≥5且等号不同时成立, 解得53≤m ≤2.[考情分析] 1.集合作为高考必考内容,命题较稳定,难度较小,常与简单的一元二次不等式结合命题.2.高考对常用逻辑用语考查的概率较低,其中含有量词的命题的否定、充要条件的判定需要关注,常与函数、平面向量、三角函数、不等式、数列等结合命题.3.对复数的考查重点是其代数形式的四则运算(特别是乘、除法),也涉及复数的概念及几何意义等知识.一、集合的运算 核心提炼1.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为2n ,2n -1,2n -1,2n -2. 2.A ∩B =A ⇔A ⊆B ⇔A ∪B =B .3.若已知A ∩B =∅,要注意不要漏掉特殊情况: A =∅或B =∅;若已知A ⊆B ,要注意不要漏掉特殊情况:A =∅. 练后反馈题目 1 4 5 9 10 14 正误错题整理:二、常用逻辑用语核心提炼1.含有量词命题的否定:“∀x∈M,p(x)”的否定为“∃x∈M,綈p(x)”,“∃x∈M,p(x)”的否定为“∀x∈M,綈p(x)”.简记:改变量词,否定结论.2.充要条件的判定方法有定义法、集合法、等价转换法等.练后反馈题目37111516正误错题整理:三、复数核心提炼1.复数的定义:纯虚数、共轭复数及复数的模的概念.2.复数的几何意义:z=a+b i(a,b∈R)一一对应复平面内的点Z(a,b).3.复数的运算(1)复数的乘法类似于多项式的乘法,复数的除法的实质就是“分母实数化”.(2)i4n=1,i4n+1=i,i4n+2=i2=-1,i4n+3=i3=-i.练后反馈题目2681213正误错题整理:1.[T3补偿](2022·合肥模拟)已知x∈R,则“x≤-3”是“(x+2)(x-3)≥0”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析当“x≤-3”成立时,x+2<0,x-3<0,故“(x+2)(x-3)≥0”成立,即“x≤-3”是“(x+2)(x-3)≥0”的充分条件;当“(x +2)(x -3)≥0”成立时,x ≤-2或x ≥3, 此时推不出“x ≤-3”成立,故“x ≤-3”不是“(x +2)(x -3)≥0”的必要条件. 综上,“x ≤-3”是“(x +2)(x -3)≥0”的充分不必要条件.2.[T14补偿](2022·上海模拟)设a ,b 是实数,集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>3,x ∈R },且A ⊆B ,则|a -b |的取值范围为( ) A .[0,2] B .[0,4] C .[2,+∞) D .[4,+∞)答案 D解析 集合A ={x ||x -a |<1,x ∈R }={x |a -1<x <a +1}, B ={x ||x -b |>3,x ∈R }={x |x <b -3或x >b +3}, 又A ⊆B ,所以a +1≤b -3或a -1≥b +3, 即a -b ≤-4或a -b ≥4,即|a -b |≥4, 所以|a -b |的取值范围为[4,+∞).3.[T6补偿](2022·上海模拟)复平面中有动点Z ,Z 所对应的复数z 满足|z -3|=|z -i|,则动点Z 的轨迹为( ) A .直线 B .线段 C .两条射线 D .圆 答案 A解析 设动点Z 的坐标为(x ,y ),则z =x +y i , 所以|x +y i -3|=|x +y i -i|, 即(x -3)2+y 2=x 2+(y -1)2, 化简得3x -y -4=0, 故动点Z 的轨迹为直线.4.[T8补偿](2022·宁波模拟)若复数z =12+b i(b ∈R ,i 为虚数单位)满足z ·z =-b ,其中z 为z 的共轭复数,则⎪⎪⎪⎪z1+2i 的值为( )A.210 B.25 C .1 D.1010答案 D解析 因为z =12+b i ,所以z =12-b i ,所以z ·z =14+b 2=-b ,解得b =-12,所以z =12-12i ,⎪⎪⎪⎪z 1+2i =|z ||1+2i|=225=1010.5.[T13补偿](2022·武汉模拟)已知z =⎝ ⎛⎭⎪⎫1+i 1-i 2 021+i 2 022,则在复平面内,复数z 所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 B解析 因为1+i 1-i=1+2i +i 22=i ,且i 的乘方运算是以4为周期的运算,所以z =⎝ ⎛⎭⎪⎫1+i 1-i 2 021+i 2 022=i 2 021+i 2 022=i +i 2=-1+i ,所以复数z 所对应的点(-1,1)位于第二象限.6.[T16补偿](2022·运城模拟)已知f (x )是定义在(0,+∞)上的增函数,且恒有f (f (x )-ln x )=1,则“a >1”是“f (x )≤ax -1恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 令t =f (x )-ln x ,则f (x )=ln x +t , ∴f (t )=ln t +t =1.∵g (t )=ln t +t -1是增函数且g (1)=0, ∴t =1, ∴f (x )=ln x +1,∴f (x )≤ax -1⇔ln x +1≤ax -1⇔a ≥ln x +2x 对∀x >0恒成立.令φ(x )=ln x +2x ,φ′(x )=-ln x -1x 2,当x ∈⎝⎛⎭⎫0,1e 时,φ′(x )>0,φ(x )单调递增;当x ∈⎝⎛⎭⎫1e ,+∞时,φ′(x )<0,φ(x )单调递减, ∴φ(x )max =φ⎝⎛⎭⎫1e =e , ∴a ≥e.∵“a >1”是“a ≥e ”的必要不充分条件.∴“a >1”是“f (x )≤ax -1恒成立”的必要不充分条件.。
2020高考数学课标二轮(天津专用)训练题:题型练1 选择题、填空题综合练(一)
题型专项集训题型练1 选择题、填空题综合练(一) 题型练第50页 一、能力突破训练1.(2019全国Ⅱ,理1)设集合A={x|x 2-5x+6>0},B={x|x-1<0},则A ∩B=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)答案:A解析:由题意,得A={x|x<2,或x>3},B={x|x<1},所以A ∩B={x|x<1},故选A .2.若a>b>1,0<c<1,则( )A.a c <b cB.ab c <ba cC.a log b c<b log a cD.log a c<log b c答案:C解析:特殊值验证法,取a=3,b=2,c=.12因为,所以A 错;3>2因为3>2,所以B 错;2=183=12因为3log 2=-3<2log 3=-2log 32,所以C 正确;1212因为log 3=-log 32>-1=log 2,所以D 错.1212故选C .3.(2019北京,理4)已知椭圆=1(a>b>0)的离心率为,则( )x 2a2+y 2b 212A.a 2=2b 2 B.3a 2=4b 2C.a=2bD.3a=4b 答案:B解析:椭圆的离心率e=,c 2=a 2-b 2,化简得3a 2=4b 2,故选B .ca =124.(2019浙江,5)设a>0,b>0,则“a+b ≤4”是“ab ≤4”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:当a>0,b>0时,a+b ≥2,若a+b ≤4,则2≤a+b ≤4,所以ab ≤4,充分性成ab ab 立;当a=1,b=4时,满足ab ≤4,但此时a+b=5>4,必要性不成立.综上所述,“a+b ≤4”是“ab ≤4”的充分不必要条件.5.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案:A解析:设建设前经济收入为1,则建设后经济收入为2,建设前种植收入为0.6,建设后种植收入为2×0.37=0.74,故A 不正确;建设前的其他收入为0.04,养殖收入为0.3,建设后其他收入为0.1,养殖收入为0.6,故B,C 正确;建设后养殖收入与第三产业收入的总和所占比例为58%,故D 正确,故选A .6.函数f (x )=x cos x 2在区间[0,2]上的零点的个数为( )A .2B .3C .4D .5答案:A解析:令f (x )=0,即x cos x 2=0,得x=0或cos x 2=0,则x=0或x 2=k π+,k ∈Z .π2∵x ∈[0,2],∴x 2∈[0,4],得k 的取值为0,即方程f (x )=0有两个解,则函数f (x )=x cos x 2在该区间上的零点的个数为2,故选A .7.如图,半圆的直径AB 的长为6,O 为圆心,C 为半圆上不同于A ,B 的任意一点.若P 为半径OC 上的动点,则()·的最小值为( )PA +PB PCA .B .9C .-D .-99292答案:C解析:∵=2,∴()·=2=-2||·||.又PA +PB PO PA +PB PC PO ·PC PO PC||+||=||=3≥||·||≤,∴()·≥-.故答案为-.PO PC OC PO PC 94PA +PB PC 92928.函数f (x )=(1-cos x )sin x 在区间[-π,π]上的图象大致为( )答案:C解析:由函数f (x )为奇函数,排除B;当0≤x ≤π时,f (x )≥0,排除A;又f'(x )=-2cos 2x+cos x+1,令f'(0)=0,得cos x=1或cos x=-,结合x ∈[-π,π],求得f (x )在12区间(0,π]上的极大值点为,靠近π,排除D .2π39.若复数z 满足2z+。
(新课标)天津市2020年高考数学二轮复习 专题能力训练1 集合与常用逻辑用语 理
2019年专题能力训练1 集合与常用逻辑用语一、能力突破训练1.若命题p:∀x∈R,cos x≤1,则p为()A.∃x0∈R,cos x0>1B.∀x∈R,cos x>1C.∃x0∈R,cos x0≥1D.∀x∈R,cos x≥12.(2018全国Ⅲ,理1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}3.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数4.已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=()A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)5.设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}6.(2018天津,理4)设x∈R,则“”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.已知集合A={x||x-2|>1},B={x|y=},则()A.A∩B=⌀2019年B.A⊆BC.B⊆AD.A=B8.设m∈R,命题“若m>0,则关于x的方程x2+x-m=0有实根”的逆否命题是()A.若关于x的方程x2+x-m=0有实根,则m>0B.若关于x的方程x2+x-m=0有实根,则m≤0C.若关于x的方程x2+x-m=0没有实根,则m>0D.若关于x的方程x2+x-m=0没有实根,则m≤09.已知命题p:“∃x0∈R,+2ax0+a≤0”为假命题,则实数a的取值范围是()A.(0,1)B.(0,2)C.(2,3)D.(2,4)10.已知条件p:|x+1|>2,条件q:x>a,且 p是 q的充分不必要条件,则a的取值范围是()A.a≥1B.a≤1C.a≥-1D.a≤-311.下列命题正确的是()A.∃x0∈R,+2x0+3=0B.∀x∈N,x3>x2C.x>1是x2>1的充分不必要条件D.若a>b,则a2>b212.已知命题p:∃x0∈R,x0-2>lg x0,命题q:∀x∈R,e x>1,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(q)是真命题D.命题p∨(q)是假命题13.命题“若x>0,则x2>0”的否命题是()A.若x>0,则x2≤0B.若x2>0,则x>0C.若x≤0,则x2≤0D.若x2≤0,则x≤014.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.15.设p:<0,q:0<x<m,若p是q成立的充分不必要条件,则m的取值范围是.16.已知集合A={y|y=log2x,x>1},B=,则A∩B= .17.设a,b∈R,集合{1,a+b,a}=,则b-a= .18.已知集合A={(x,y)|y=},B={(x,y)|y=x+m},且A∩B≠⌀,则实数m的取值范围是.二、思维提升训练19.设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)20.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)21.命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x222.已知p:函数f(x)=|x+a|在区间(-∞,-1)内是单调函数,q:函数g(x)=log a(x+1)(a>0,且a≠1)在区间(-1,+∞)内是增函数,则p成立是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件23.设全集U=R,集合M={x|y=},N={y|y=3-2x},则图中阴影部分表示的集合是()A.B.C.D.24.(2018浙江,6)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件25.“对任意x∈,k sin x cos x<x”是“k<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件26.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“若x=y,则sin x=sin y”的逆否命题为真命题D.命题“∃x0∈R,使得+x0+1<0”的否定是“∀x∈R,均有x2+x+1<0”27.下列命题中的真命题是()A.∃x0∈R,使得≤0B.sin2x+≥3(x≠kπ,k∈Z)C.函数f(x)=2x-x2有两个零点D.“a>1,b>1”是“ab>1”的充分不必要条件28.设A,B是非空集合,定义A B={x|x∈A∪B,且x∉A∩B},已知M={y|y=-x2+2x,0<x<2},N={y|y=2x-1,x>0},则M N=.29.下列命题正确的是.(填序号)①若f(3x)=4x log23+2,则f(2)+f(4)+…+f(28)=180;②函数f(x)=tan 2x图象的对称中心是(k∈Z);③“∀x∈R,x3-x2+1≤0”的否定是“∃x0∈R,+1>0”;④设常数a使方程sin x+cos x=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.30.设p:关于x的不等式a x>1的解集为{x|x<0},q:函数y=lg(ax2-x+a)的定义域为R,若p∨q为真命题,p∧q为假命题,则a的取值范围是.专题能力训练1集合与常用逻辑用语一、能力突破训练1.A解析由全称命题的否定得, p:∃x0∈R,cos x0>1,故选A.2.C解析由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.3.B4.A解析取P,Q的所有元素,得P∪Q={x|-1<x<2},故选A.5.B解析∵A={1,2,6},B={2,4},∴A∪B={1,2,4,6}.∵C={x∈R|-1≤x≤5},∴(A∪B)∩C={1,2,4}.故选B.6.A解析由,可得0<x<1.由x3<1,可得x<1.所以是“x3<1”的充分而不必要条件.故选A.7.A解析由|x-2|>1,得x-2<-1或x-2>1,即x<1或x>3;由得1≤x≤3,因此A={x|x<1或x>3},B={x|1≤x≤3},A∩B=⌀,故选A.8.D解析原命题的逆否命题是将条件和结论分别否定,作为新命题的结论和条件,所以其逆否命题为“若关于x 的方程x2+x-m=0没有实根,则m≤0”.9.A解析由p为假命题知,∀x∈R,x2+2ax+a>0恒成立,∴Δ=4a2-4a<0,∴0<a<1,故选A.10.A解析因为条件p:x>1或x<-3,所以p:-3≤x≤1;因为条件q:x>a,所以q:x≤a.因为p是q的充分不必要条件,所以a≥1,故选A.11.C解析+2x0+3=(x0+1)2+2>0,选项A错;x3-x2=x2(x-1)不一定大于0,选项B错;若x>1,则x2>1成立,反之不成立,选项C正确;取a=1,b=-2,满足a>b,但a2>b2不成立,选项D错.故选C.12.C解析因为命题p:∃x0∈R,x0-2>lg x0是真命题,而命题q:∀x∈R,e x>1是假命题,所以由命题的真值表可知命题p∧(q)是真命题,故选C.13.C解析命题的条件的否定为x≤0,结论的否定为x2≤0,则该命题的否命题是“若x≤0,则x2≤0”,故选C.14.1解析由已知得1∈B,2∉B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.15.(2,+∞)解析由<0,得0<x<2.∵p是q成立的充分不必要条件,∴(0,2)⫋(0,m),∴m>2.16解析由已知,得A={y|y>0},B=,则A∩B=17.2解析∵1≠0,∴a+b和a中必有一个为0,当a=0时,无意义,故a+b=0,∴两个集合分别为{1,0,a},{0,-1,b}.∴a=-1,b=1,b-a=2.18.[-7,7]解析集合A表示以原点为圆心,7为半径的圆在x轴及其上方的部分,A∩B≠⌀,表示直线y=x+m 与圆有交点,作出示意图(图略)可得实数m的取值范围是[-7,7].二、思维提升训练19.D解析由4-x2≥0,得A=[-2,2],由1-x>0,得B=(-∞,1),故A∩B=[-2,1).故选D.20.B解析∵Q={x∈R|x2≥4}={x∈R|x≤-2或x≥2},∴∁R Q={x∈R|-2<x<2}.∴P∪(∁R Q)={x∈R|-2<x≤3}=(-2,3].故选B.21.D解析由含量词命题的否定格式,可知首先改写量词,而n≥x2的否定为n<x2.故选D.22.C解析由p成立,得a≤1,由q成立,得a>1,所以 p成立时a>1, p成立是q成立的充要条件.故选C.23.B解析M=,N={y|y<3},故阴影部分N∩(∁U M)={x|x<3}24.A解析当m⊄α,n⊂α时,由线面平行的判定定理可知,m∥n⇒m∥α;但反过来不成立,即m∥α不一定有m ∥n,m与n还可能异面.故选A.25.B解析当x时,sin x<x,且0<cos x<1,∴sin x cos x<x.∴k<1时有k sin x cos x<x.反之不成立.如当k=1时,对任意的x,sin x<x,0<cos x<1,∴k sin x cos x=sin x cos x<x成立,这时不满足k<1,故应为必要不充分条件.26.C解析否命题应同时否定条件与结论,选项A错;若x=-1,则x2-5x-6=0成立,反之不成立,选项B错;因为原命题为真命题,所以其逆否命题为真命题,选项C正确;特称命题的否定为全称命题,同时否定结论,选项D错,故选C.27.D解析对任意的x∈R,e x>0恒成立,A错误;当sin x=-1时,sin2x+=-1,B错误;f(x)=2x-x2有三个零点(x=2,4,还有一个小于0),C错误;当a>1,b>1时,一定有ab>1,但当a=-2,b=-3时,ab=6>1也成立,故D正确.28(1,+∞)解析M={y|y=-x2+2x,0<x<2}=(0,1],N={y|y=2x-1,x>0}=,M∪N=(0,+∞),M∩N=,所以M N=(1,+∞).29.③④解析因为f(3x)=4x log23+2,令3x=t⇒x=log3t,则f(t)=4log3t·log23+2=4log2t+2,所以f(2)+f(4)+…+f(28)=4(log22+log222+…+log228)+16=4×(1+2+…+8)+16=4×36+16=160,故①错;函数f(x)=tan 2x 图象的对称中心是(k∈Z),故②错;由全称命题的否定是特称命题知③正确;f(x)=sin x+cosx=2sin,要使sin x+cos x=a在闭区间[0,2π]上恰有三个解,则a=,x1=0,x2=,x3=2π,故④正确.30[1,+∞)解析当p真时,0<a<1;当q真时,ax2-x+a>0对x∈R恒成立,则即a>若p∨q为真,p∧q为假,则p,q应一真一假.①当p真q假时,0<a;②当p假q真时,a≥1.综上,a[1,+∞).。
2020高考数学刷题首秧第一章集合与常用逻辑用语考点测试1集合文含解析
第一章 集合与常用逻辑用语考点测试1 集合高考概览本考点在高考中是必考知识点,常考题型为选择题,分值5分,低难度考纲研读1.了解集合的含义,体会元素与集合的属于关系2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题3.理解集合之间包含与相等的含义,能识别给定集合的子集4.在具体情境中,了解全集与空集的含义5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集7.能使用韦恩(Venn)图表达集合的关系及运算一、基础小题1.已知集合A={0,1,2},B={y|y=2x,x∈A},则A∩B=( )A.{0,1,2} B.{1,2}C.{1,2,4} D.{1,4}答案 B解析 由题意可知B={1,2,4},所以A∩B={1,2},故选B.2.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是( ) A.1 B.2 C.3 D.4答案 B解析 集合M={a1,a2}或{a1,a2,a4},有2个,故选B.3.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是( )答案 B解析 由N={x|x2+x=0},得N={-1,0},则N M.故选B.4.已知集合A={1,2},B={(x,y)|x∈A,y∈A,x-y∈A},则B的子集共有( ) A.2个 B.4个 C.6个 D.8个答案 A解析 由已知B ={(2,1)},所以B 的子集有2个,故选A .5.下列六个关系式:①{a ,b }⊆{b ,a },②{a ,b }={b ,a },③{0}=∅,④0∈{0},⑤∅∈{0},⑥∅⊆{0},其中正确的个数为( )A .6B .5C .4D .3答案 C解析 ①正确,任何集合是其本身的子集.②考查了元素的无序性和集合相等的定义,正确.③错误,{0}是单元素集合,而∅不包含任何元素.④正确,考查了元素与集合的关系.⑤集合与集合的关系是包含关系,错误.⑥正确,∅是任何集合的子集.故选C .6.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},A ∩(∁U B )={3},则B =( )A .{1,2}B .{2,4}C .{1,2,4}D .∅答案 A解析 由∁U (A ∪B )={4},得A ∪B ={1,2,3}.由A ∩(∁U B )={3},得3∈A 且3∉B .现假设1∉B :∵A ∪B ={1,2,3},∴1∈A .又∵1∉A ∩(∁U B )={3},∴1∉∁U B 即1∈B ,矛盾.故1∈B .同理2∈B .7.已知I 为全集,B ∩(∁I A )=B ,则A ∩B =( )A .AB .BC .∁I BD .∅答案 D解析 由B ∩(∁I A )=B 可得B ⊆∁I A .因为A ∩(∁I A )=∅,所以A ∩B =∅.故选D .8.已知集合A =xy =,B ={x |x >a },则下列选项不可能成立的是( )x +1x -2A .A ⊆B B .B ⊆AC .A ∩B ≠∅D .A ⊆∁R B答案 D解析 由Error!得x ≥-1且x ≠2,所以A =[-1,2)∪(2,+∞),又B =(a ,+∞),所以选项A ,B ,C 都有可能成立,对于选项D ,∁R B =(-∞,a ],不可能有A ⊆∁R B .故选D .9.如图,已知全集U =R ,集合A ={x |x <-1或x >4},B ={x |-2≤x ≤3},则图中阴影部分表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x ≤-1}D.{x|-1≤x≤3}答案 D解析 U=R,A={x|x<-1或x>4},所以∁U A={x|-1≤x≤4},则阴影部分表示的集合为B∩(∁U A)={x|-2≤x≤3}∩{x|-1≤x≤4}={x|-1≤x≤3},故选D.10.设集合A=Error!,B={x|1<x≤2},则A∩B=( )A.(1,2) B.(1,2] C.[-1,2] D.[-1,2)答案 A解析 A={x|-1≤x<2},B={x|1<x≤2},∴A∩B={x|1<x<2}.故选A.11.已知A={x|x2-3x+2=0},B={x|ax-2=0},若A∩B=B,则实数a的值为( ) A.0或1或2 B.1或2C.0 D.0或1答案 A解析 由题意A={1,2},当B≠∅时,∵B⊆A,∴B={1}或{2}.当B={1}时,a·1-2=0,解得a=2;当B={2}时,a·2-2=0,解得a=1.当B=∅时,a=0.故a的值为0或1或2.故选A.12.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B⊆A,则实数m的取值范围是( )A.(-∞,2] B.(2,4] C.[2,4] D.(-∞,4]答案 D解析 当B=∅时,有m+1≥2m-1,则m≤2;当B≠∅时,若B⊆A,如图所示,则Error!解得2<m≤4.综上有m≤4,故选D.二、高考小题13.(2018·全国卷Ⅰ)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( ) A.{0,2} B.{1,2}C.{0} D.{-2,-1,0,1,2}答案 A解析 根据集合交集的概念,可以求得A∩B={0,2}.故选A.14.(2018·全国卷Ⅲ)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( ) A.{0} B.{1} C.{1,2} D.{0,1,2}答案 C解析 因为集合A={x|x≥1},所以A∩B={1,2}.故选C.15.(2018·北京高考)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1} B.{-1,0,1}C.{-2,0,1,2} D.{-1,0,1,2}答案 A解析 化简A={x|-2<x<2},∴A∩B={0,1},故选A.16.(2018·天津高考)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1} B.{0,1}C.{-1,0,1} D.{2,3,4}答案 C解析 由题意得A∪B={1,2,3,4,-1,0},∴(A∪B)∩C={1,2,3,4,-1,0}∩{x∈R|-1≤x<2}={-1,0,1}.故选C.17.(2017·全国卷Ⅰ)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0} B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅答案 A解析 由3x<1,得x<0,所以B={x|x<0},故A∩B={x|x<0}.故选A.18.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( )A.{1,-3} B.{1,0} C.{1,3} D.{1,5}答案 C解析 ∵A∩B={1},∴1∈B,∴1-4+m=0,∴m=3.由x2-4x+3=0,解得x=1或x=3.∴B={1,3}.经检验符合题意.故选C.19.(2017·全国卷Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B 中元素的个数为( )A.3 B.2 C.1 D.0答案 B解析 集合A表示以原点O为圆心,以1为半径的圆上的所有点的集合,集合B表示直线y=x上的所有点的集合.由图形可知,直线与圆有两个交点,所以A∩B中元素的个数为2.故选B.20.(2018·全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A .9B .8C .5D .4答案 A解析 ∵x 2+y 2≤3,∴x 2≤3,∵x ∈Z ,∴x =-1,0,1,当x =-1时,y =-1,0,1;当x =0时,y =-1,0,1;当x =1时,y =-1,0,1,所以A 中元素共有9个,故选A .三、模拟小题21.(2018·广东华南师大附中测试三)已知集合A ={-1,0},B ={0,1},则集合∁A ∪B (A ∩B )=( )A .∅B .{0}C .{-1,1}D .{-1,0,1}答案 C解析 A ∪B ={-1,0,1},A ∩B ={0},则∁A ∪B (A ∩B )={-1,1},故选C .22.(2018·湖北联考二)已知集合A =x ∈Z ≤0,B ={y |y =x 2,x ∈A },则集合B x -2x +2的子集的个数为( )A .7B .8C .15D .16答案 B解析 由题意得集合A ={-1,0,1,2},则集合B ={0,1,4},所以集合B 的子集的个数为23=8,故选B .23.(2018·广东三校联考)设集合M ={x |x 2=10x },N ={x |lgx <1},则M ∪N =( )A .(-∞,10]B .(0,10]C .[0,10)D .[0,10]答案 D解析 因为M ={x |x 2=10x }={0,10},N ={x |lg x <1}={x |0<x <10},所以M ∪N ={x |0≤x ≤10},故选D .24.(2018·山西、内蒙六校联考四)设集合A ={x |x 2-x -6<0},则满足A ∩B =B 的集合B 不可能为( )A .{0,1}B .(0,3)C .(-2,2)D .(-3,1)答案 D解析 因为A ={x |x 2-x -6<0}={x |-2<x <3},又A ∩B =B ,所以B ⊆A ,所以集合B 不可能为(-3,1),故选D .25.(2018·江西赣州摸底)已知集合A={x|x2-x>0},B={x|log2x<0},则( )A.A∩B={x|x<0} B.A∪B=RC.A∩B=∅ D.A∪B={x|x>1}答案 C解析 由于集合A={x|x2-x>0}={x|x<0或x>1},B={x|log2x<0}={x|0<x<1},则A∩B=∅,故选C.26.(2018·湖北八校3月联考)设集合P={3,log3a},Q={a,b},若P∩Q={0},则P∪Q=( )A.{3,0} B.{3,0,2}C.{3,0,1} D.{3,0,1,2}答案 C解析 因为P∩Q={0},所以log3a=0,所以a=1,b=0,所以P∪Q={0,1,3},故选C.27.(2018·长沙雅礼、河南实验联考)设集合A={(x,y)|x2+y2=1},B={(x,y)|y=3x},则A∩B的子集的个数是( )A.4 B.3 C.2 D.1答案 A解析 因为指数函数y=3x的图象与圆x2+y2=1有两个交点,则A∩B中含有2个元素,所以A∩B有4个子集,故选A.28.(2018·山东太原二模)设U为全集,集合A,B,C满足A⊆C,B⊆∁U C,则下列结论中不成立的是( )A.A∩B=∅ B.B⊆(∁U A)C.(∁U B)∩A=A D.A∪(∁U B)=U答案 D解析 用Venn图表示出全集U,集合A,B,C的关系如图,由图可得选项A,B,C都正确,又A⊆∁U B,则A∪(∁U B)=∁U B,D错误,故选D.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.(2018·山东聊城月考)已知R 为全集,A ={x |log (3-x )≥-2},B =Error!.12(1)求A ∩B ;(2)求(∁R A )∩B 与(∁R A )∪B .解 (1)由log (3-x )≥-2,即log (3-x )≥log 4,121212得Error!解得-1≤x <3,即A ={x |-1≤x <3}.由≥1,得≤0,解得-2<x ≤3,5x +2x -3x +2即B ={x |-2<x ≤3},∴A ∩B ={x |-1≤x <3}.(2)由(1)得∁R A ={x |x <-1或x ≥3},故(∁R A )∩B ={x |-2<x <-1或x =3},(∁R A )∪B =R .2.(2019·云南师大附中月考)设集合A =x ≤2x ≤4,B ={x |x 2+(b -a )x -ab ≤0}.12(1)若A =B 且a +b <0,求实数a ,b 的值;(2)若B 是A 的子集,且a +b =2,求实数b 的取值范围.解 (1)A =x ≤2x ≤4={x |-1≤x ≤2},12∵a +b <0,∴a <-b ,∴B ={x |(x -a )(x +b )≤0}={x |a ≤x ≤-b },∵A =B ,∴a =-1,b =-2.(2)∵a +b =2,∴B ={-b ≤x ≤2-b },∵B 是A 的子集,∴-b ≥-1且2-b ≤2,解得0≤b ≤1.。
2020年高考数学(理)真题与模拟题分类训练 专题01 集合与常用逻辑用语(学生版)
专题01 集合与常用逻辑用语1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a = A .–4 B .–2 C .2D .42.【2020年高考全国Ⅱ卷理数】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UAB =A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}3.【2020年高考全国Ⅲ卷理数】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为 A .2 B .3 C .4D .64.【2020年高考天津】设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =∩A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---5.【2020年高考北京】已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2}6.【2020年高考天津】设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.【2020年新高考全国Ⅰ卷】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}8.【2020年高考浙江】已知集合P ={|14}x x <<,Q={|23}x x <<,则PQ =A .{|12}x x <≤B .{|23}x x <<C .{|34}x x ≤<D .{|14}x x <<9.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.【2020年高考北京】已知,αβ∈R ,则“存在k ∈Z 使得π(1)k k αβ=+-”是“sin sin αβ=”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.【2020年高考江苏】已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.12.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝1.【2020·四川省高三二模(理)】已知集合{A =,{}1,B m =,若A B A =,则m =A .0B .0或3C .1D .1或32.【2020·湖南省高三二模(理)】设{}1A x x =>,{}220B x x x =--<,则()A B =RA .{}1x x >- B .{}11x x -<≤ C .{}11x x -<<D .{}12x x <<3.【2020届山西省高三高考考前适应性测试数学(理)试题】已知集合(){}2,A x y y x ==,(){},2B x y y x ==+,则A B 中元素的个数是A . 0B . 1C . 2D . 34.【重庆市巴蜀中学2019-2020学年高三下学期高考适应性月考(六)数学(理)试题】已知集合{}220A x x x =+-<,集合11B x x ⎧⎫=<⎨⎬⎩⎭,则A B =A . ∅B . {}1x x <C . {}01x x <<D . {}20x x -<<5.【2020届辽宁省葫芦岛市普通高中高三上学期学业质量监测(期末)数学(理)】{|10}A x x =->,{}2|60B x x x =--≤,则A B =A .[2,1)-B .[2,3]-C .(1,3]D .[1,3)6.【2020届安徽省芜湖市高三下学期教育教学质量监测理科数学试题】已知集合{}13M x x =+<,6{}260N x x x =--<,则MN =A . {}43x x -<<B . {}42x x -<<- C . {}22x x -<<D . {}23x x <<7.【2020届山东省淄博市高三网考数学试题】命题“000(0,),ln 1x x x ∃∈+∞=-”的否定是A .(0,),ln 1x x x ∀∈+∞≠-B .(0,),ln 1x x x ∀∉+∞=-C .000(0,),ln 1x x x ∃∈+∞≠-D .000(0,),ln 1x x x ∃∉+∞=-8.【甘肃省天水市一中2020届高三一轮复习第一次模拟考试(理)】设函数23()e xxf x -=(e 为自然底数),则使()1f x <成立的一个充分不必要条件是 A .01x << B .04x <<C .03x <<D .34x <<9.【2020届陕西省咸阳市高三第三次高考模拟数学(理)试题】“22αππ-<<”是“方程2212cos x y α-=表示双曲线”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.【2020·安徽省高三二模(理)】已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件11.【2020·天津高三其他】已知直线a ,b 和平面α,若a α⊂,b α⊄,则“a b ⊥”是“b α⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.【2020·河北省正定中学高三月考(理)】命题“1x ∀>,20x x ->”的否定是A .01x ∃≤,2000x x -≤ B .1x ∀>,20x x -≤ C .01x ∃>,2000x x -≤D .1x ∀≤,20x x ->13.【2020·江西省高三其他(理)】命题“α∃∈R ,sin 0α=”的否定是A .α∃∈R ,sin 0α≠B .α∀∈R ,sin 0α≠C .α∀∈R ,sin 0α<D .α∀∈R ,sin 0α>14.【2020·安庆市第二中学高三期末(理)】设λ∈R ,则“3λ=-”是“直线2(1)1x y λλ+-=与直线()614x y λ+-=平行”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件15.【2020·山东省高三一模】南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为12,V V ,被平行于这两个平面的任意平面截得的两个截面的面积分别为12,S S ,则“12,S S 总相等”是“12,V V 相等”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件16.【2020·银川三沙源上游学校高三二模(理)】已知命题p :“[]1,e x ∀∈,ln a x >”,命题q :“x ∃∈R ,240x x a -+=””若“p q ∧”是真命题,则实数a 的取值范围是A .(]1,4 B .(]0,1C .[]1,1-D .()4,+∞17.【2020·天津高三其他】下列命题中错误的是A .若p q ∨为假命题,则p 与q 均为假命题B .已知向量(1,1)m =+a ,(,2)m =b ,则∥a b 是1m =的充分不必要条件C .命题“若2320x x -+=,则1x =”的逆否命题是“若1x ≠,则2320x x -+≠”D .命题“(0,)x ∀∈+∞,ln 0x x ->”的否定是“(0,)x ∃∈+∞,ln 0x x -≤”。
天津市2020〖人教版〗高三数学复习试卷常用逻辑用语
高三数学复习试卷常用逻辑用语一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.“经过两条相交直线有且只有一个平面”是( )A .全称命题B .特称命题C .p ∨q 形式D .p ∧q 形式 【解析】此命题暗含了“任意”两字,即经过任意两条相交直线有且只有一个平面.【答案】A)(的”1>3x “是”1>x “则,R ∈x 设)考湖南高·(.2 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件时,1>x 上为增函数,所以当R 在3x =)x (f 由于函数 【解析】的充”>13x “是”>1x “也成立.因此1>x 时,1>3x 成立,反过来,当1>3x 要条件,故选C.【答案】 C)(是的否定”x ≠2x ,R ∈x ∀“命题)湖北高考·(.3 x ≠2x ,R ∉x ∀.Ax =2x ,R ∈x ∀.B x≠2x ,R ∉x ∃.C x =2x ,R ∈x ∃.D 【解析】 全称命题的否定,需要把全称量词改为特称量词,并否定结论.【答案】D 4.全称命题“∀x∈Z,2x+1是整数”的逆命题是( )A.若2x+1是整数,则x∈ZB.若2x+1是奇数,则x∈ZC.若2x+1是偶数,则x∈ZD.若2x+1能被3整除,则x∈Z【解析】易知逆命题为:若2x+1是整数,则x∈Z.【答案】A 5.已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是( )B.¬p∧qA.p∧¬qD.p∧qC.¬p∧¬q 【解析】命题p为真命题,命题q为假命题,所以命题¬q为真命题,所以p∧¬q为真命题,故选A.【答案】A 6.(·皖南八校联考)命题“全等三角形的面积一定都相等”的否定是( )A.全等三角形的面积不一定都相等B.不全等三角形的面积不一定都相等C.存在两个不全等三角形的面积相等D.存在两个全等三角形的面积不相等【解析】命题是省略量词的全称命题.易知选D.【答案】D∈n ,n a <an +an +12若“.原命题为7,关于其逆命题,否命题,逆否命题真假性”为递减数列}n a {则,+N 的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假 n a <1+n a ⇔n a <an +an +12从原命题的真假入手,由于 【解析】为递减数列,即原命题和逆命题均为真命题,又原命题与逆否}n a {⇔命题同真同假,则逆命题、否命题和逆否命题均为真命题,选A.【答案】 A8.给定两个命题p ,q .若¬p 是q 的必要而不充分条件,则p 是¬q 的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 是p 故.p ⇒/qD ¬等价于q ⇒/pD ¬,q ¬⇒p 等价于p ¬⇒q 【解析】¬q 的充分而不必要条件.【答案】 A有一个正根和一个负根的)0≠a 0(=3+x 4+2ax .一元二次方程9充分不必要条件是( )A .a <0B .a >0C .a <-1D .a >1 有一个正根和一个)0≠a 0(=3+x 4+2ax 一元二次方程 【解析】是它的一个充分不必要条件.1-<a ,故0<a ,解得0<3a⇔负根 【答案】 C10.设集合U ={(x ,y )|x ∈R ,y ∈R },A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},那么点P (2,)(是的充要条件)B U ∁(∩A ∈3) 【导学号:26160027】A .m >-1,n <5B .m <-1,n <5C .m >-1,n >5D .m <-1,n >5【解析】 ∵P (2,3)∈A ∩(∁U B ),∴满足⎩⎪⎨⎪⎧ 2×2-3+m >0,2+3-n >0,故⎩⎪⎨⎪⎧ m >-1,n <5.【答案】 A11.下列命题中为真命题的是( )A .∃x 0∈R ,e x 0≤0B .∀x ∈R,2x >x 2C .a +b =0的充要条件是a b=-1 D .a >1,b >1是ab >1的充分条件【解析】 对于∀x ∈R ,都有e x >0,故选项A 是假命题;当x =2时,2x =x 2,故选项B 是假命题;当a b =-1时,有a +b =0,但当a +b =0时,如a =0,b =0时,a b无意义,故选项C 是假命题;当a >1,b >1时,必有ab >1,但当ab >1时,未必有a >1,b >1,如当a =-1,b =-2时,ab >1,但a 不大于1,b 不大于1,故a >1,b >1是ab >1的充分条件,选项D 是真命题.【答案】 D12.下列命题中真命题的个数为( )①命题“若x =y ,则sin x =sin y ”的逆否命题为真命题;②设α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则“α<β”是“tan α<tan β”的充要条件;③命题“自然数是整数”是真命题;④命题“∀x ∈R ,x 2+x +1<0”的否定是“∃x 0∈R ,x 20+x 0+1<0.”A .1B .2C .3D .4【解析】①命题“若x =y ,则sin x =sin y ”为真命题,所以其逆否命题为真命题;②因为x ∈⎝ ⎛⎭⎪⎫-π2,π2 时,正切函数y =tan x 是增函数,所以当α,β∈⎝ ⎛⎭⎪⎫-π2,π2时,α<β⇔tan α<tan β,所以“α<β”是“tan α<tan β”的充要条件,即②是真命题;③命题“自然数是整数”是全称命题,省略了“所有的”,故③是真命题;④命题“∀x ∈R ,x 2+x +1<0”的否定是“∃x 0∈R ,x 20+x 0+1≥0”,故④是假命题.【答案】C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.设p :x >2或x <23;q :x >2或x <-1,则¬p 是¬q 的________条件.【解析】 ¬p :23≤x ≤2. ¬q :-1≤x ≤2.¬p ⇒¬q ,但¬qD ⇒/¬p .∴¬p 是¬q 的充分不必要条件.【答案】充分不必要14.若命题“对于任意实数x,都有x2+ax-4a>0且x2-2ax+1>0”是假命题,则实数a的取值范围是________.【解析】若对于任意实数x,都有x2+ax-4a>0,则Δ=a2+16a<0,即-16<a<0;若对于任意实数x,都有x2-2ax+1>0,则Δ=4a2-4<0,即-1<a<1,故命题“对于任意实数x,都有x2+ax-4a>0且x2-2ax+1>0”是真命题时,有a∈(-1,0).而命题“对于任意实数x,都有x2+ax-4a>0且x2-2ax+1>0”是假命题,故a∈(-∞,-1]∪[0,+∞).【答案】(-∞,-1]∪[0,+∞)15.给出下列四个命题:①“若xy=1,则x,y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则关于x的方程x2-2bx+b2+b=0有实数根”的逆否命题;④若sin α+cos α>1,则α必定是锐角.其中是真命题的有________.(请把所有真命题的序号都填上).【解析】②可利用逆命题与否命题同真假来判断,易知“相似三角形的周长相等”的逆命题为假,故其否命题为假.④中α应为第一象限角.【答案】①③16.已知p:-4<x-a<4,q:(x-2)(3-x)>0,若¬p是¬q的充分条件,则实数a的取值范围是________.【解析】p:a-4<x<a+4,q:2<x<3,∵¬p是¬q的充分条件(即¬p⇒¬q),∴q⇒p,∴⎩⎪⎨⎪⎧ a -4≤2,a +4≥3,∴-1≤a ≤6.【答案】 [-1,6]三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)指出下列命题的构成形式,并写出构成它的命题:(1)36是6与18的倍数;(2)方程x 2+3x -4=0的根是x =±1;(3)不等式x 2-x -12>0的解集是{x |x >4或x <-3}.【解】(1)这个命题是p ∧q 的形式,其中p :36是6的倍数;q :36是18的倍数.(2)这个命题是p ∨q 的形式,其中p :方程x 2+3x -4=0的根是x =1;q :方程x 2+3x -4=0的根是x =-1.(3)这个命题是p ∨q 的形式,其中p :不等式x 2-x -12>0的解集是{x |x >4};q :不等式x 2-x -12>0的解集是{x |x <-3}.18.(本小题满分12分)写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)全等三角形一定相似;(2)末位数字是零的自然数能被5整除.【解】(1)逆命题:若两个三角形相似,则它们一定全等,为假命题;否命题:若两个三角形不全等,则它们一定不相似,为假命题; 逆否命题:若两个三角形不相似,则它们一定不全等,为真命题.(2)逆命题:若一个自然数能被5整除,则它的末位数字是零,为假命题;否命题:若一个自然数的末位数字不是零,则它不能被5整除,为假命题;逆否命题:若一个自然数不能被5整除,则它的末位数字不是零,为真命题.19.(本小题满分12分)写出下列命题的否定并判断真假:(1)所有自然数的平方是正数;(2)任何实数x都是方程5x-12=0的根;(3)∀x∈R,x2-3x+3>0;(4)有些质数不是奇数.【解】(1)所有自然数的平方是正数,假命题;否定:有些自然数的平方不是正数,真命题.(2)任何实数x都是方程5x-12=0的根,假命题;否定:∃x0∈R,5x0-12≠0,真命题.(3)∀x∈R,x2-3x+3>0,真命题;否定:∃x0∈R,x20-3x0+3≤0,假命题.(4)有些质数不是奇数,真命题;否定:所有的质数都是奇数,假命题.20.(本小题满分12分)(·汕头高二检测)设p:“∃x0∈R,x20-ax0+1=0”,q:“函数y=x2-2ax+a2+1在x∈[0,+∞)上的值域为[1,+∞)”,若“p∨q”是假命题,求实数a的取值范围.【解】由x20-ax0+1=0有实根,得Δ=a2-4≥0⇒a≥2或a≤-2.因为命题p为真命题的范围是a≥2或a≤-2.由函数y=x2-2ax+a2+1在x∈[0,+∞)上的值域为[1,+∞),得a ≥0.因此命题q 为真命题的范围是a ≥0.根据p ∨q 为假命题知:p ,q 均是假命题,p 为假命题对应的范围是-2<a <2,q 为假命题对应的范围是a <0.这样得到二者均为假命题的范围就是⎩⎪⎨⎪⎧ -2<a<2,a<0⇒-2<a <0.21.(本小题满分12分)(·惠州高二检测)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0;命题q :实数x 满足x 2-5x +6≤0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若p 是q 成立的必要不充分条件,求实数a 的取值范围.【解】(1)由x 2-4ax +3a 2<0,得(x -3a )·(x -a )<0,又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,实数x 的取值范围是1<x <3,由x 2-5x +6≤0得2≤x ≤3,所以q 为真时,实数x 的取值范围是2≤x ≤3.若p ∧q 为真,则2≤x <3,所以实数x 的取值范围是[2,3).(2)设A ={x |a <x <3a },B ={x |2≤x ≤3},由题意可知q 是p 的充分不必要条件,则B A ,所以⎩⎪⎨⎪⎧ 0<a<2,3a>3⇒1<a <2,所以实数a 的取值范围是(1,2).22.(本小题满分12分)已知二次函数f (x )=ax 2+x ,对任意x∈[0,1],|f (x )|≤1恒成立,试求实数a 的取值范围. 【导学号:26160028】【解】由f (x )=ax 2+x 是二次函数,知a ≠0.|f (x )|≤1⇔-1≤f (x )≤1⇔-1≤ax 2+x ≤1,x ∈[0,1],①当x =0,a ≠0时,①式显然成立;当x ∈(0,1]时,①式化为-1x2-1x ≤a ≤1x2-1x, 当x ∈(0,1]时恒成立.设t =1x,则t ∈[1,+∞),所以-t 2-t ≤a ≤t 2-t . 令f (t )=-t 2-t =-⎝ ⎛⎭⎪⎫t +122+14,t ∈[1,+∞), 所以f (t )max =-2.令g (t )=t 2-t =⎝ ⎛⎭⎪⎫t -122-14,t ∈[1,+∞), 所以g (t )min =0.所以只需-2≤a ≤0.综上所述,实数a 的取值范围是[-2,0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题整合集训专题能力训练1集合与常用逻辑用语专题能力训练第10页一、能力突破训练1.(2019浙江,1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=()A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}答案:A解析:∁U A={-1,3},则(∁U A)∩B={-1}.2.已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}答案:C解析:由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.3.设x∈R,则“-”是“x3<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A解析:由-,可得0<x<1.由x3<1,可得x<1.所以“-”是“x3<1”的充分不必要条件.故选A.4.已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=()A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)答案:A解析:取P,Q的所有元素,得P∪Q={x|-1<x<2},故选A.5.设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}答案:B解析:∵A={1,2,6},B={2,4},∴A∪B={1,2,4,6}.∵C={x∈R|-1≤x≤5},∴(A∪B)∩C={1,2,4}.故选B.6.(2019天津十二重点中学联考(一))设x∈R,则“2x<”是“<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A解析:∵2x<⇔2x<2-3⇔x<-3,<1⇔->0⇔x>2或x<0,∴x<-3能推出x>2或x<0,x>2或x<0不能推出x<-3,∴“2x<”是“<1”的充分不必要条件,故选A.7.已知集合A={x||x-2|>1},B={x|y=--},则()A.A∩B=⌀B.A⊆BC.B⊆AD.A=B答案:A解析:由|x-2|>1,得x-2<-1或x-2>1,即x<1或x>3;由--得1≤x≤3,因此A={x|x<1或x>3},B={x|1≤x≤3},A∩B=⌀,故选A.8.(2019北京海淀区一模)已知a<b,则下列结论中正确的是()A.∀c<0,a>b+cB.∀c<0,a<b+cC.∃c>0,a>b+cD.∃c>0,a<b+c答案:D解析:A不一定成立,如a=1,b=10,c=-1,a>b+c不成立;B也不一定成立,如a=9.5,b=10,c=-1,a<b+c不成立;C不成立,因为a<b,c>0,所以a<b+c恒成立,D正确.9.已知命题p:“∃x∈R,x2+2ax+a≤0”为假命题,则实数a的取值范围是()A.(0,1)B.(0,2)C.(2,3)D.(2,4)答案:A解析:由p为假命题知,∀x∈R,x2+2ax+a>0恒成立,∴Δ=4a2-4a<0,∴0<a<1,故选A.10.若命题“∃x∈R,x2+2mx+m+2<0”为假命题,则m的取值范围是()A.(-∞,-1]∪[2,+∞)B.(-∞,-1)∪(2,+∞)C.[-1,2]D.(-1,2)答案:C解析:若命题“∃x∈R,x2+2mx+m+2<0”为假命题,则命题等价于x2+2mx+m+2≥0恒成立,故只需要Δ=4m2-4(m+2)≤0⇒-1≤m≤2.故选C.11.下列命题正确的是()A.∃x∈R,x2+2x+3=0B.∀x∈N,x3>x2C.x>1是x2>1的充分不必要条件D.若a>b,则a2>b2答案:C解析:x2+2x+3=(x+1)2+2>0,选项A错;x3-x2=x2(x-1)不一定大于0,选项B错;若x>1,则x2>1成立,反之不成立,选项C正确;取a=1,b=-2,满足a>b,但a2>b2不成立,选项D错,故选C.12.设a,b是非零向量,则“a·b=|a||b|”是“a∥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:设a,b所成的角为θ,则a·b=|a|·|b|·cosθ,由已知得cosθ=1,即θ=0,a∥b.而当a∥b 时,θ还可能是π,此时a·b=-|a||b|,故“a·b=|a|·|b|”是“a∥b”的充分不必要条件,故选A.13.设a,b是两条直线,α,β是两个平面,则a⊥b的一个充分条件是()A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β答案:C解析:A.a,b可能垂直也可能不垂直,平行都有可能;B.a∥b;D.a,b可能垂直、不垂直或是平行都有可能;C.由α∥β,b⊥β,知b⊥α,又a⊂α,则b⊥a,故C正确.14.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.答案:1解析:由已知得1∈B,2∉B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.<0,q:0<x<m,若p是q成立的充分不必要条件,则m的取值范围15.设p:-是.答案:(2,+∞)<0,得0<x<2.∵p是q成立的充分不必要条件,解析:由-∴(0,2)⫋(0,m),∴m>2.16.已知集合A={y|y=log2x,x>1},B=y,x>1,则A∩B=.答案:解析:由已知,得A={y|y>0},B=,则A∩B=.17.设a,b∈R,集合{1,a+b,a}=,则b-a=.答案:2解析:∵1≠0,∴a+b和a中必有一个为0,当a=0时,无意义,故a+b=0,∴两个集合分别为{1,0,a},{0,-1,b},∴a=-1,b=1,b-a=2.18.已知集合A={(x,y)|y=-},B={(x,y)|y=x+m},且A∩B≠⌀,则实数m的取值范围是.答案:[-7,7]解析:集合A表示以原点为圆心,7为半径的圆在x轴及其上方的部分,A∩B≠⌀,表示直线y=x+m与圆有交点,作出示意图(图略)可得实数m的取值范围是[-7,7].二、思维提升训练19.设函数y=-的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)答案:D解析:由4-x2≥0,得A=[-2,2],由1-x>0,得B=(-∞,1),故A∩B=[-2,1).故选D.20.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)答案:B解析:∵Q={x∈R|x2≥4}={x∈R|x≤-2或x≥2},∴∁R Q={x∈R|-2<x<2}.∴P∪(∁R Q)={x∈R|-2<x≤3}=(-2,3].故选B.21.若f(x)是R上的奇函数,且x1,x2∈R,则“x1+x2=0”是“f(x1)+f(x2)=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A解析:∵函数f(x)是奇函数,∴若x1+x2=0,则x1=-x2,则f(x1)=f(-x2)=-f(x2),即f(x1)+f(x2)=0成立,即充分性成立;若f(x)=0,满足f(x)是奇函数,当x1=x2=2时,满足f(x1)=f(x2)=0,此时满足f(x1)+f(x2)=0,但x1+x2=4≠0,即必要性不成立,故“x1+x2=0”是“f(x1)+f(x2)=0”的充分不必要条件,所以A选项正确.22.已知x,y∈R,则“x+y≤1”是“x≤,且y≤”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B解析:当“x+y≤1”,如x=-4,y=1,x+y≤1,但没有“x≤,且y≤”;当“x≤,且y≤”时,根据不等式的性质有“x+y≤1”.故“x+y≤1”是“x≤,且y≤”的必要不充分条件.23.设全集U=R,集合M={x|y=-},N={y|y=3-2x},则图中阴影部分表示的集合是()A. B.C. D.答案:B解析:M=,N={y|y<3},故阴影部分N∩(∁U M)={x|x<3}∩.24.已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:当m⊄α,n⊂α时,由线面平行的判定定理可知,m∥n⇒m∥α;但反过来不成立,即m∥α不一定有m∥n,m与n还可能异面.故选A.25.“对任意x∈,k sin x cos x<x”是“k<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:当x∈时,sin x<x,且0<cos x<1,∴sin x cos x<x.∴k<1时有k sin x cos x<x.反之不成立.如当k=1时,对任意的x∈,sin x<x,0<cos x<1,∴k sin x cos x=sin x cos x<x成立,这时不满足k<1,故应为必要不充分条件.26.将函数y=sin(3x+φ)的图象向左平移个单位长度后,得到函数f(x)的图象,则“φ=是f(x)是偶函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:把函数y=sin(3x+φ)的图象向左平移单位长度后,得到的图象的解析式是y=sin3x++φ,该函数是偶函数的充要条件是+φ=kπ+,k∈Z,所以“φ=”是“f(x)是偶函数”的充分不必要条件.故选A.27.下列命题中的真命题是()A.∃x∈R,使得e x≤0B.sin2x+≥3(x≠kπ,k∈Z)C.函数f(x)=2x-x2有两个零点D.“a>1,b>1”是“ab>1”的充分不必要条件答案:D解析:对任意的x∈R,e x>0恒成立,A错误;当sin x=-1时,sin2x+=-1,B错误;f(x)=2x-x2有三个零点(x=2,4,还有一个小于0),C错误;当a>1,b>1时,一定有ab>1,但当a=-2,b=-3时,ab=6>1也成立,故D正确.28.设A,B是非空集合,定义A B={x|x∈A∪B,且x∉A∩B},已知M={y|y=-x2+2x,0<x<2},N={y|y=2x-1,x>0},则M N=.答案:∪(1,+∞)解析:M={y|y=-x2+2x,0<x<2}=(0,1],N={y|y=2x-1,x>0}=,M∪N=(0,+∞),M∩N=,所以M N=∪(1,+∞).29.已知集合A={x|x=2k-1,k∈N*},B={x|x=8k-8,k∈N*},从集合A中取出m个不同元素,其和记为S;从集合B中取出n个不同元素,其和记为T.若S+T≤967,则m+2n的最大值为.答案:44解析:欲使m,n更大,则所取元素尽可能小,所以从最小元素开始取,S=-=m2,T=-=4n2-4n,∴m2+4n2-4n≤967,即(2n-1)2+m2≤968,m,n∈N*.令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则t2+m2≤968,由基本不等式,∴m+t≤44,当且仅当m=t=22时取等号,∵t为奇数,∴m+t的最大值在t=22附近取到,则t=21,m=23(舍);t=21,m=22,成立;t=23,m=21(舍);t=23,m=20,成立;故m+t的最大值为43,∴m+2n的最大值为44. 30.设非直角三角形ABC的内角A,B,C所对边的长分别为a,b,c,则下列结论正确的是.(写出所有正确结论的编号)①“sin A>sin B”是“a>b”的充分必要条件②“cos A<cos B”是“a>b”的充分必要条件③“tan A>tan B”是“a>b”的充分必要条件④“sin 2A>sin 2B”是“a>b”的充分必要条件⑤“cos 2A<cos 2B”是“a>b”的充分必要条件答案:①②⑤解析:由①sin A>sin B,利用正弦定理得a=2r sin A,b=2r sin B(r为△ABC的外接圆半径),故sin A>sin B,等价于a>b,反之也成立,所以①正确;由②cos A<cos B,利用函数y=cos x在区间(0,π)内单调递减得A>B,等价于a>b,反之也成立,所以②正确;由③tan A>tan B,不能推出a>b,如A为锐角,B为钝角,虽然有tan A>tan B,但由大角对大边得a<b,所以③错误;由④sin2A>sin2B,不能推出a>b,如A=45°,B=60°时,虽然有sin2A>sin2B,但由大角对大边得a<b,④错误;由⑤cos2A<cos2B,利用二倍角公式得sin2A>sin2B,∴sin A>sin B等价于a>b,⑤正确.。