Efficient Broadcasting in Ad Hoc Networks Using Directional Antennas

合集下载

《2024年基于深度学习的多通道语音增强方法研究》范文

《2024年基于深度学习的多通道语音增强方法研究》范文

《基于深度学习的多通道语音增强方法研究》篇一一、引言随着人工智能技术的飞速发展,语音信号处理在众多领域中扮演着越来越重要的角色。

然而,由于环境噪声、信道失真、干扰声源等因素的影响,实际环境中获得的语音信号往往存在严重的质量问题。

为了改善这一情况,提高语音识别的准确性和可懂度,多通道语音增强技术应运而生。

本文将重点研究基于深度学习的多通道语音增强方法,旨在通过深度学习技术提高语音信号的信噪比和清晰度。

二、多通道语音增强技术概述多通道语音增强技术通过在空间域和时间域上利用多个传感器,以收集到来自不同方向的语音信号信息。

利用这一技术,可以有效地抑制噪声和干扰声源,从而提高语音信号的信噪比和清晰度。

传统的多通道语音增强方法主要依赖于信号处理技术,如滤波器、波束形成等。

然而,这些方法往往难以处理复杂的噪声环境和动态变化的声源。

三、深度学习在多通道语音增强中的应用深度学习技术为多通道语音增强提供了新的解决方案。

通过构建深度神经网络模型,可以自动学习和提取语音信号中的有效特征,从而实现对噪声和干扰声源的更有效抑制。

此外,深度学习还可以在多通道语音信号的融合和降噪过程中,对时间域和空间域的信息进行联合处理,进一步提高语音增强的效果。

四、基于深度学习的多通道语音增强方法研究本文提出了一种基于深度学习的多通道语音增强方法。

该方法首先通过多个传感器收集来自不同方向的语音信号信息,然后利用深度神经网络模型对收集到的信息进行特征提取和降噪处理。

具体而言,我们采用了卷积神经网络(CNN)和循环神经网络(RNN)的组合模型,以实现时间和空间域上的联合处理。

在训练过程中,我们使用了大量的实际录音数据和模拟噪声数据,以使模型能够更好地适应各种噪声环境和动态变化的声源。

五、实验与结果分析为了验证本文提出的多通道语音增强方法的性能,我们进行了大量的实验。

实验结果表明,该方法在各种噪声环境下均能显著提高语音信号的信噪比和清晰度。

与传统的多通道语音增强方法相比,基于深度学习的多通道语音增强方法具有更高的准确性和鲁棒性。

机器学习领域的知名人物和论文

机器学习领域的知名人物和论文

机器学习领域的知名人物和论文机器学习作为人工智能领域的重要分支及研究方向,不断涌现出许多杰出的知名人物以及具有重要影响力的论文。

这些人物和论文在推动机器学习技术发展和应用方面起到了重要的作用。

本文将介绍几位机器学习领域的知名人物以及他们的重要论文,带领读者了解机器学习领域的发展脉络和重要思想。

1. Andrew Ng(吴恩达)在机器学习领域,Andrew Ng无疑是一个家喻户晓的人物。

他是斯坦福大学的教授,并且曾经是谷歌的首席科学家。

他的重要贡献之一是创建了Coursera上非常著名的机器学习课程,该课程使得机器学习技术的学习变得更加便捷和可普及。

他的学术研究涉及深度学习、神经网络以及数据挖掘等领域。

他的论文《Deep Learning》被广泛引用,对深度学习领域的发展起到了重要推动作用。

2. Geoffrey Hinton(杰弗里·辛顿)Geoffrey Hinton被誉为“深度学习之父”,他是深度学习领域的杰出研究者和学者。

他的重要贡献之一是开发了BP(Backpropagation)算法,该算法为神经网络的训练提供了有效的方法。

他还提出了“Dropout”技术,通过随机丢弃一些神经元的方式来防止神经网络的过拟合问题。

他的论文《Deep Neural Networks for Acoustic Modeling in Speech Recognition》对语音识别等领域产生了巨大的影响。

3. Yoshua BengioYoshua Bengio是加拿大蒙特利尔大学教授,也是深度学习领域的重要人物之一。

他在深度学习领域的贡献源远流长。

他的论文《Learning Deep Architectures for AI》介绍了深度学习的概念和技术,并提出了一种深度置信网络(Deep Belief Networks)的训练方法。

这篇论文的发表引发了深度学习的研究和应用的热潮。

4. Ian GoodfellowIan Goodfellow是深度学习领域的年轻研究者,其主要贡献是提出了生成对抗网络(GAN)的概念。

efficientnet解读

efficientnet解读

EfficientNet解读一、简介EfficientNet是谷歌研究团队在2019年提出的一种高效的卷积神经网络架构。

它通过对网络深度、宽度和分辨率进行统一的缩放来实现优化,达到了在计算资源有限的情况下提高模型性能的效果。

EfficientNet在多个计算机视觉任务上取得了优异的表现,成为了当今领域内备受关注的模型之一。

二、网络架构EfficientNet的网络架构采用了一种称为复合缩放 (Compound Scaling) 的方法,通过对网络的深度、宽度和分辨率进行统一的缩放,实现了在有限的计算资源下提升模型的性能。

具体地,EfficientNet使用了一个复合系数φ来同时控制深度、宽度和分辨率的缩放,使得模型既能够充分利用计算资源,又能够达到更好的性能。

三、性能表现EfficientNet在各种计算机视觉任务上都取得了优异的表现,例如在图像分类、目标检测和语义分割等任务上都取得了state-of-the-art的性能。

其高效的模型架构使得在计算资源有限的情况下也能够获得很好的性能,这使得EfficientNet成为了很多计算机视觉研究者和工程师们研究和使用的对象。

四、应用领域由于其高效的性能和优异的表现,EfficientNet在各种计算机视觉任务的应用领域非常广泛。

例如在智能手机上进行图像识别、无人驾驶领域的视觉感知、医疗影像识别等方面,EfficientNet都能够发挥重要作用,成为了当前人工智能领域内备受关注的模型之一。

五、未来展望随着计算资源的不断提升和深度学习技术的不断发展,EfficientNet有望在未来进一步发展壮大,在更多的应用领域展现出其优异的性能。

未来,EfficientNet还有望在模型的压缩和加速领域有更多的发展,在计算资源有限的环境下依然能够取得更好的性能,为人工智能技术的发展做出更大的贡献。

六、总结EfficientNet的神经网络架构和性能表现都使得它成为了当前领域内备受关注的模型之一。

《2024年基于多尺度和注意力机制融合的语义分割模型研究》范文

《2024年基于多尺度和注意力机制融合的语义分割模型研究》范文

《基于多尺度和注意力机制融合的语义分割模型研究》篇一一、引言随着深度学习技术的不断发展,语义分割作为计算机视觉领域的一个重要任务,逐渐成为研究的热点。

语义分割旨在将图像中的每个像素划分为不同的语义类别,为图像理解提供了更加细致的信息。

然而,由于实际场景中存在多尺度目标和复杂背景的干扰,语义分割任务仍面临诸多挑战。

为了解决这些问题,本文提出了一种基于多尺度和注意力机制融合的语义分割模型。

二、相关工作语义分割作为计算机视觉的一个关键任务,在近几年的研究中得到了广泛的关注。

目前主流的语义分割模型主要采用深度卷积神经网络(CNN)来实现。

这些模型通过捕获上下文信息、提高特征表达能力等手段提高分割精度。

然而,在处理多尺度目标和复杂背景时,这些模型仍存在局限性。

为了解决这些问题,本文提出了一种融合多尺度和注意力机制的语义分割模型。

三、模型与方法本文提出的模型主要由两个部分组成:多尺度特征提取和注意力机制融合。

(一)多尺度特征提取多尺度特征提取是提高语义分割性能的关键技术之一。

在本模型中,我们采用了不同尺度的卷积核和池化操作来提取图像的多尺度特征。

具体而言,我们设计了一个包含多种尺度卷积核的卷积层,以捕获不同尺度的目标信息。

此外,我们还采用了池化操作来获取更大尺度的上下文信息。

这些多尺度特征将被用于后续的注意力机制融合。

(二)注意力机制融合注意力机制是一种有效的提高模型性能的技术,可以使得模型更加关注重要的区域。

在本模型中,我们采用了自注意力机制和交叉注意力机制来提高模型的表达能力。

自注意力机制主要用于捕获每个像素的上下文信息,而交叉注意力机制则用于融合不同尺度特征之间的信息。

具体而言,我们通过在卷积层之间引入自注意力和交叉注意力模块,使得模型能够更好地关注重要区域和提取多尺度特征。

四、实验与结果为了验证本文提出的模型的性能,我们在公开的语义分割数据集上进行了一系列实验。

实验结果表明,本文提出的模型在处理多尺度目标和复杂背景时具有更好的性能。

《2024年基于麦克风阵列的语音增强研究》范文

《2024年基于麦克风阵列的语音增强研究》范文

《基于麦克风阵列的语音增强研究》篇一一、引言随着人工智能技术的快速发展,语音识别和语音交互技术已成为人们日常生活和工作中不可或缺的一部分。

然而,在复杂多变的实际环境中,语音信号常常受到各种噪声的干扰,导致语音质量下降,进而影响语音识别的准确性和语音交互的体验。

因此,如何有效地进行语音增强,提高语音信号的信噪比(SNR),成为了一个重要的研究课题。

麦克风阵列技术因其能够通过多个麦克风的协同作用,实现空间滤波和声源定位,为语音增强提供了新的解决方案。

本文将就基于麦克风阵列的语音增强研究进行深入探讨。

二、麦克风阵列技术概述麦克风阵列是由多个麦克风按照一定几何结构排列组成,通过采集声波到达各个麦克风的相位差和幅度差,实现声源定位和语音信号处理。

麦克风阵列技术具有空间分辨率高、抗干扰能力强、适用于复杂环境等优点,在语音识别、语音交互、机器人听觉等领域有着广泛的应用。

三、基于麦克风阵列的语音增强方法基于麦克风阵列的语音增强方法主要包括波束形成、噪声抑制和语音分离等技术。

1. 波束形成波束形成是麦克风阵列技术中常用的一种方法,它通过加权求和各个麦克风的信号,形成指向性波束,从而提高目标语音的信噪比。

常见的波束形成方法包括延迟求和波束形成、相位变换波束形成等。

2. 噪声抑制噪声抑制是针对麦克风阵列接收到的语音信号中的噪声进行处理,以降低噪声对语音质量的影响。

常见的噪声抑制方法包括谱减法、非负矩阵分解等。

在麦克风阵列中,可以通过空间滤波和声源定位,更准确地识别并抑制噪声。

3. 语音分离语音分离是通过分析多个声源的信号特征,将不同声源的语音信号分离出来。

在麦克风阵列中,可以利用声源定位技术,确定各个声源的位置,然后通过信号处理技术将不同声源的语音信号分离出来。

四、实验与分析为了验证基于麦克风阵列的语音增强方法的有效性,我们进行了相关实验。

实验结果表明,通过波束形成、噪声抑制和语音分离等技术,可以有效提高语音信号的信噪比,改善语音质量。

数字信号处理中的语音增强算法与处理方法

数字信号处理中的语音增强算法与处理方法

数字信号处理中的语音增强算法与处理方法数字信号处理在现代通信领域扮演着重要角色,语音增强作为其中的一个关键应用领域,致力于提高语音信号的质量和清晰度。

本文将介绍一些常用的语音增强算法与处理方法,以帮助读者更好地理解数字信号处理中的语音增强技术。

1. 时域法时域法是一种常见的语音增强算法,它主要通过对语音信号的时间域进行处理来提高语音信号的质量。

其中最常用的方法是维纳滤波器。

维纳滤波器是一种自适应滤波器,它通过最小化噪声和语音信号之间的均方误差来估计噪声的功率谱密度,并对语音信号进行滤波,以减少噪声干扰。

另一个常用的时域方法是扩展最小拍线(EMD),它利用自适应滤波器和经验模态分解方法,对语音信号进行去噪处理。

EMD方法通过将信号分解为一组固有模态函数(IMF)和一个剩余项来进行去噪,从而提高语音信号的质量。

2. 频域法频域法是另一种常用的语音增强算法,它主要通过对语音信号的频域进行处理来提高语音信号的质量。

其中最常用的方法是谱减法。

谱减法通过估计噪声的功率谱密度,将它从观测到的语音信号的频谱中减去,从而减少噪声干扰。

此外,为了尽量保留语音信号的谐波特征,谱减法还会对估计的语音信号功率谱做一些修正。

另一个常用的频域方法是基于频谱特性的语音增强算法,例如基于谐波比的方法和基于特征选择技术的方法。

这些方法通过分析语音信号的频谱特性,如谐波比和谐波间隔等,来提取语音信号的有用信息并减小噪声干扰。

3. 混合域法混合域方法是一种将时域和频域方法相结合的语音增强算法,它综合了两种方法的优点,以达到更好的增强效果。

其中一个常用的混合域方法是频率子带加权方法。

这种方法将音频信号分为多个子带,对每个子带分别进行时域和频域处理,然后将结果进行加权合并,从而提高整体语音信号的质量。

另一个常用的混合域方法是基于主成分分析(PCA)的方法。

PCA方法通过对语音信号进行降维处理和离散余弦变换,从而减少噪声干扰和提取有用的语音信息。

神经网络 论文

神经网络 论文

神经网络论文以下是一些关于神经网络的重要论文:1. "A Computational Approach to Edge Detection",作者:John Canny,论文发表于1986年,提出了一种基于神经网络的边缘检测算法,被广泛应用于计算机视觉领域。

2. "Backpropagation Applied to Handwritten Zip Code Recognition",作者:Yann LeCun et al.,论文发表于1990年,引入了反向传播算法在手写数字识别中的应用,为图像识别领域开创了先河。

3. "Gradient-Based Learning Applied to Document Recognition",作者:Yann LeCun et al.,论文发表于1998年,介绍了LeNet-5,一个用于手写数字和字符识别的深度卷积神经网络。

4. "ImageNet Classification with Deep Convolutional Neural Networks",作者:Alex Krizhevsky et al.,论文发表于2012年,提出了深度卷积神经网络模型(AlexNet),在ImageNet图像识别竞赛中取得了重大突破。

5. "Deep Residual Learning for Image Recognition",作者:Kaiming He et al.,论文发表于2015年,提出了深度残差网络(ResNet),通过引入残差连接解决了深度神经网络训练中的梯度消失和梯度爆炸问题。

6. "Generative Adversarial Networks",作者:Ian Goodfellow etal.,论文发表于2014年,引入了生成对抗网络(GAN),这是一种通过博弈论思想训练生成模型和判别模型的框架,广泛应用于图像生成和增强现实等领域。

联合听觉掩蔽效应的予空间语音增强算法

联合听觉掩蔽效应的予空间语音增强算法
第3 7卷 第 8期
V0 -7 l3






21 0 1年 4月
A p i 01 rl 2 1
NO8 .
Co pu e g n e i m trEn i e rng
开发研 究 与设计 技术 ・
文章 编号:l 32( 1 0_05_ 3 0 _ 48 01 8-2 _ 0 2 ) 0
ef c, fe t mo i e o c re t e ce n s e c i e v l e y wi n rfl rf risr sr i tt o s s e ily m u i o s , t i st e c e n s e c d f s c n u n l t l a p e h e g n a u sb e e i e o t e tan o n ie e p c a l i yh t sc n ie a t n h l a p e h. a Ex e i n a e u t h w h tt e p o o e l o i m a c i v h i h rSNR n t e ta ii n la g rt m n t e s me Ga s i n wh t o s p rme t l s l s o t a h r p s d a g rt r s h c n a he et ehg e t ha h r d to a l o ih i h a u s a ie n ie n r i o o e o s , n e u e s e h d so to n e i u ln i e a d tan c l r d n ie a d r d c pe c it r i n a d r sd a o s
I s at ntet dt nl u saesec n a cme t loi m h is fh smae p ehegn au sed ec itro n Abt e]I aio a sbpc p eheh n e n g rh teba eet tdsec iev le ast s ehds t na d r h r i a t ot i l op oi

Accurate Passive Location Estimation Using TOA Measurements

Accurate Passive Location Estimation Using TOA Measurements

Accurate Passive Location Estimation Using TOA MeasurementsJunyang Shen,Andreas F.Molisch,Fellow,IEEE,and Jussi Salmi,Member,IEEEAbstract—Localization of objects is fast becoming a major aspect of wireless technologies,with applications in logistics, surveillance,and emergency response.Time-of-arrival(TOA) localization is ideally suited for high-precision localization of objects in particular in indoor environments,where GPS is not available.This paper considers the case where one transmitter and multiple,distributed,receivers are used to estimate the location of a passive(reflecting)object.It furthermore focuses on the situation when the transmitter and receivers can be synchronized,so that TOA(as opposed to time-difference-of-arrival(TDOA))information can be used.We propose a novel, Two-Step estimation(TSE)algorithm for the localization of the object.We then derive the Cramer-Rao Lower Bound(CRLB) for TOA and show that it is an order of magnitude lower than the CRLB of TDOA in typical setups.The TSE algorithm achieves the CRLB when the TOA measurements are subject to small Gaussian-distributed errors,which is verified by analytical and simulation results.Moreover,practical measurement results show that the estimation error variance of TSE can be33dB lower than that of TDOA based algorithms.Index Terms—TOA,TDOA,location estimation,CRLB.I.I NTRODUCTIONO BJECT location estimation has recently received inten-sive interests for a large variety of applications.For example,localization of people in smoke-filled buildings can be life-saving[1];positioning techniques also provide useful location information for search-and-rescue[2],logistics[3], and security applications such as localization of intruders[4].A variety of localization techniques have been proposed in the literature,which differ by the type of information and system parameters that are used.The three most important kinds utilize the received signal strength(RSS)[5],angle of arrival(AOA)[6],and signal propagation time[7],[8],[9], respectively.RSS algorithms use the received signal power for object positioning;their accuracies are limited by the fading of wireless signals[5].AOA algorithms require either directional antennas or receiver antenna arrays1.Signal-propagation-time based algorithms estimate the object location using the time it takes the signal to travel from the transmitter to the target and from there to the receivers.They achieve very accurate Manuscript received April15,2011;revised September28,2011and Jan-uary18,2012;accepted February12,2012.The associate editor coordinating the review of this paper and approving it for publication was X.Wang.J.Shen and A.F.Molisch are,and J.Salmi was with the Department of Electrical Engineering,Viterbi School of Engineering,University of Southern California(e-mail:{junyangs,molisch,salmi}@).J.Salmi is currently with Aalto University,SMARAD CoE,Espoo,Finland.This paper is partially supported by the Office of Naval Research(ONR) under grant10599363.Part of this work was presented in the IEEE Int.Conference on Ultrawide-band Communications2011.Digital Object Identifier10.1109/TWC.2012.040412.1106971Note that AOA does not provide better estimation accuracy than the signal propagation time based methods[10].estimation of object location if combined with high-precision timing measurement techniques[11],such as ultrawideband (UWB)signaling,which allows centimeter and even sub-millimeter accuracy,see[12],[13],and Section VII.Due to such merits,the UWB range determination is an ideal candidate for short-range object location systems and also forms the basis for the localization of sensor nodes in the IEEE802.15.4a standard[14].The algorithms based on signal propagation time can be fur-ther classified into Time of Arrival(TOA)and Time Difference of Arrival(TDOA).TOA algorithms employ the information of the absolute signal travel time from the transmitter to the target and thence to the receivers.The term“TOA”can be used in two different cases:1)there is no synchronization between transmitters and receivers and then clock bias between them exist;2)there is synchronization between transmitters and receivers and then clock bias between them does not exist. In this paper,we consider the second situation with the synchronization between the transmitter and receivers.Such synchronization can be done by cable connections between the devices,or sophisticated wireless synchronization algo-rithms[15].TDOA is employed if there is no synchronization between the transmitter and the receivers.In that case,only the receivers are synchronized.Receivers do not know the signal travel time and therefore employ the difference of signal travel times between the receivers.It is intuitive that TOA has better performance than the TDOA,since the TDOA loses information about the signal departure time[7].The TDOA/TOA positioning problems can furthermore be divided into“active”and“passive”object cases.“Active”means that the object itself is the transmitter,while“passive”means that it is not the transmitter nor receiver,but a separate (reflecting/scattering)object that just interacts with the signal stemming from a separate transmitter2.There are numerous papers on the TOA/TDOA location estimation for“active”objects.Regarding TDOA,the two-stage method[16]and the Approximate Maximum Likelihood Estimation[17]are shown to be able to achieve the Cramer-Rao Lower Bound(CRLB)of“active”TDOA[8].As we know,the CRLB sets the lower bound of the estimation error variance of any un-biased method.Two important TOA methods of“active”object positioning are the Least-Square Method[18]and the Approximate Maximum Likelihood Es-timation Method[17],both of which achieve the CRLB of “active”TOA.“Active”object estimation methods are used, e.g,for cellular handsets,WLAN,satellite positioning,and active RFID.2The definitions of“active”and“passive”here are different from those in radar literature.In radar literature,“passive radar”does not transmit signals and only detects transmission while“active radar”transmits signals toward targets.1536-1276/12$31.00c 2012IEEE“Passive”positioning is necessary in many practical situa-tions like crime-prevention surveillance,assets tracking,and medical patient monitoring,where the target to be localized is neither transmitter nor receiver,but a separate(reflect-ing/scattering)object.The TDOA positioning algorithms for “passive”objects are essentially the same as for“active”objects.For TOA,however,the synchronization creates a fundamental difference between“active”and“passive”cases. Regarding the“passive”object positioning,to the best of our knowledge,no TOA algorithms have been developed.This paper aims tofill this gap by proposing a TOA algorithm for passive object location estimation,which furthermore achieves the CRLB of“passive”TOA.The key contributions are:•A novel,two step estimation(TSE)method for the passive TOA based location estimation.It borrows an idea from the TDOA algorithm of[16].•CRLB for passive TOA based location estimation.When the TOA measurement error is Gaussian and small,we prove that the TSE can achieve the CRLB.Besides,it is also shown that the estimated target locations by TSE are Gaussian random variables whose covariance matrix is the inverse of the Fisher Information Matrix(FIM)related to the CRLB.We also show that in typical situations the CRLB of TOA is much lower than that of TDOA.•Experimental study of the performances of TSE.With one transmitter and three receivers equipped with UWB antennas,we perform100experimental measurements with an aluminium pole as the target.After extracting the signal travel time by high-resolution algorithms,the location of the target is evaluated by TSE.We show that the variance of estimated target location by TSE is much (33dB)lower than that by the TDOA method in[16]. The remainder of this paper is organized as follows.Section II presents the architecture of positioning system.Section III derives the TSE,followed by comparison between CRLB of TOA and TDOA algorithms in Section IV.Section V analyzes the performance of TSE.Section VI presents the simulations results.Section VII evaluates the performance of TSE based on UWB measurement.Finally Section VIII draws the conclusions.Notation:Throughout this paper,a variable with“hat”ˆ•denotes the measured/estimated values,and the“bar”¯•denotes the mean value.Bold letters denote vectors/matrices. E(•)is the expectation operator.If not particularly specified,“TOA”in this paper denotes the“TOA”for a passive object.II.A RCHITECTURE OF L OCALIZATION S YSTEMIn this section,wefirst discuss the challenges of localization systems,and present the focus of this paper.Then,the system model of individual localization is discussed.A.Challenges for target localizationFor easy understanding,we consider an intruder localization system using UWB signals.Note that the intruder detection can also be performed using other methods such as the Device-free Passive(DfP)approach[19]and Radio Frequency Identification(RFID)method[20].However,both the DfP and RFID methods are based on preliminary environmental measurement information like“Radio Map Construction”[19] and“fingerprints”[20].On the other hand,the TOA based approach considered in our framework does not require the preliminary efforts for obtaining environmental information. With this example,we show the challenges of target po-sitioning system:Multiple Source Separation,Indirect Path Detection and Individual Target Localization.The intruder detection system localizes,and then directs a camera to capture the photo of the targets(intruders).This localization system consists of one transmitter and several receivers.The transmitter transmits signals which are reflected by the targets,then,the receivers localize the targets based on the received signals.Multiple Source Separation:If there are more than one intruders,the system needs to localize each of them.With multiple targets,each receiver receives impulses from several objects.Only the information(such as TOA)extracted from impulses reflected by the same target should be combined for localization.Thus,the Multiple Source Separation is very important for target localization and several techniques have been proposed for this purpose.In[21],a pattern recognition scheme is used to perform the Multiple Source Separation. Video imaging and blind source separation techniques are employed for target separation in[22].Indirect Path Detection:The transmitted signals are not only reflected by the intruders,but also by surrounding objects,such as walls and tables.To reduce the adverse impact of non-target objects in the localization of target, the localization process consists of two steps.In the initial/first stage,the system measures and then stores the channel impulses without the intruders.These impulses are reflected by non-target objects,which is referred to as reflectors here.The radio signal paths existing without the target are called background paths.When the intruders are present,the system performs the second measurement. To obtain the impulses related to the intruders,the system subtracts the second measurement with thefirst one. The remaining impulses after the subtraction can be through one of the following paths:a)transmitter-intruders-receivers,b)transmitter-reflectors-intruders-receivers,c) transmitter-intruders-reflectors-receivers,d)transmitter-reflectors-intruders-reflectors-receivers3.Thefirst kind of paths are called direct paths and the rest are called indirect paths.In most situations,only direct paths can be used for localization.In the literature,there are several methods proposed for indirect path identification[23],[24]. Individual Target Localization:After the Multiple Source Separation and Indirect Path Detection,the positioning system knows the signal impulses through the direct paths for each target.Then,the system extracts the characteristics of direct paths such as TOA and AOA.Based on these characteristics, the targets arefinally localized.Most researches on Individual Target Localization assumes that Multiple Source Separation and Indirect Path Detection are perfectly performed such as [16],[25]and[26].Note that the three challenges sometimes 3Note that here we omit the impulses having two or more interactions with the intruder because of the resulted low signal-to-noise radio(SNR)by multiple reflections.Cable for synchronizationFig.1.Illustration of TOA based Location Estimation System Model.are jointly addressed,so that the target locations are estimated in one step such as the method presented in [27].In this paper,we focus on the Individual Target Local-ization,under the same framework of [16],[25]and [26],assuming that Multiple Source Separation and Indirect Path Detection are perfectly performed in prior.In addition,we only use the TOA information for localization,which achieves very high accuracy with ultra-wideband signals.The method to ex-tract TOA information using background channel cancelation is described in details in [28]and also Section VII.B.System Model of Individual LocalizationFor ease of exposition,we consider the passive object (target)location estimation problem in a two-dimensional plane as shown in Fig.1.There is a target whose location [x,y ]is to be estimated by a system with one transmitter and M receivers.Without loss of generality,let the location of the transmitter be [0,0],and the location of the i th receiver be [a i ,b i ],1≤i ≤M .The transmitter transmits an impulse;the receivers subsequently receive the signal copies reflected from the target and other objects.We adopt the assumption also made in [16],[17]that the target reflects the signal into all ing (wired)backbone connections be-tween the transmitter and receivers,or high-accuracy wireless synchronization algorithms,the transmitter and receivers are synchronized.The errors of cable synchronization are negli-gible compared with the TOA measurement errors.Thus,at the estimation center,signal travel times can be obtained by comparing the departure time at the transmitter and the arrival time at the receivers.Let the TOA from the transmitter via the target to the i th receiver be t i ,and r i =c 0t i ,where c 0is the speed of light,1≤i ≤M .Then,r i = x 2+y 2+(x −a i )2+(y −b i )2i =1,...M.(1)For future use we define r =[r 1,r 2,...,r M ].Assuming each measurement involves an error,we haver i −ˆri =e i ,1≤i ≤M,where r i is the true value,ˆr i is the measured value and e i is the measurement error.In our model,the indirect paths areignored and we assume e i to be zero mean.The estimation system tries to find the [ˆx ,ˆy ],that best fits the above equations in the sense of minimizing the error varianceΔ=E [(ˆx −x )2+(ˆy −y )2].(2)Assuming the e i are Gaussian-distributed variables with zeromean and variances σ2i ,the conditional probability functionof the observations ˆr are formulated as follows:p (ˆr |z )=Ni =11√2πσi ·exp −(ˆr i −( x 2+y 2+ (x −a i )2+(y −b i )2))22σ2i,(3)where z =[x,y ].III.TSE M ETHODIn this section,we present the two steps of TSE andsummarize them in Algorithm 1.In the first step of TSE,we assume x ,y , x 2+y 2are independent of each other,and obtain temporary results for the target location based on this assumption.In the second step,we remove the assumption and update the estimation results.A.Step 1of TSEIn the first step of TSE,we obtain an initial estimate of[x,y, x 2+y 2],which is performed in two stages:Stage A and Stage B.The basic idea here is to utilize the linear approximation [16][29]to simplify the problem,considering that TOA measurement errors are small with UWB signals.Let v =x 2+y 2,taking the squares of both sides of (1)leads to2a i x +2b i y −2r i v =a 2i +b 2i −r 2i .Since r i −ˆr i =e i ,it follows that−a 2i +b 2i −ˆr 2i 2+a i x +b i y −ˆr i v=e i (v −ˆr i )−e 2i 2=e i (v −ˆr i )−O (e 2i ).(4)where O (•)is the Big O Notation meaning that f (α)=O (g (α))if and only if there exits a positive real number M and a real number αsuch that|f (α)|≤M |g (α)|for all α>α0.If e i is small,we can omit the second or higher order terms O (e 2i )in Eqn (4).In the following of this paper,we do this,leaving the linear (first order)term.Since there are M such equations,we can express them in a matrix form as followsh −S θ=Be +O (e 2)≈Be ,(5)whereh=⎡⎢⎢⎢⎢⎣−a21+b21−ˆr212−a22+b22−ˆr222...−a2M+b2M−ˆr2M2⎤⎥⎥⎥⎥⎦,S=−⎡⎢⎢⎢⎣a1b1−ˆr1a2b2−ˆr2...a Mb M−ˆr M⎤⎥⎥⎥⎦,θ=[x,y,v]T,e=[e1,e2,...,e M]T,andB=v·I−diag([r1,r2,...,r M]),(6) where O(e2)=[O(e21),O(e22),...,O(e2M)]T and diag(a) denotes the diagonal matrix with elements of vector a on its diagonal.For notational convenience,we define the error vectorϕ=h−Sθ.(7) According to(5)and(7),the mean ofϕis zero,and its covariance matrix is given byΨ=E(ϕϕT)=E(Bee T B T)+E(O(e2)e T B T)+E(Be O(e2)T)+E(O(e2)O(e2)T)≈¯BQ¯B T(8)where Q=diag[σ21,σ22,...,σ2M].Because¯B depends on the true values r,which are not obtainable,we use B(derived from the measurementsˆr)in our calculations.From(5)and the definition ofϕ,it follows thatϕis a vector of Gaussian variables;thus,the probability density function (pdf)ofϕgivenθisp(ϕ|θ)≈1(2π)M2|Ψ|12exp(−12ϕTΨ−1ϕ)=1(2π)M2|Ψ|12exp(−12(h−Sθ)TΨ−1(h−Sθ)).Then,lnp(ϕ|θ)≈−12(h−Sθ)TΨ−1(h−Sθ)+ln|Ψ|−M2ln2π(9)We assume for the moment that x,y,v are independent of each other(this clearly non-fulfilled assumption will be relaxed in the second step of the algorithm).Then,according to(9),the optimumθthat maximizes p(ϕ|θ)is equivalent to the one minimizingΠ=(h−Sθ)TΨ−1(h−Sθ)+ln|Ψ|. IfΨis a constant,the optimumθto minimizeΠsatisfies dΠdθθ=0.Taking the derivative ofΠoverθ,we havedΠdθθ=−2S TΨ−1h+2S TΨ−1Sθ.Fig.2.Illustration of estimation ofθin step1of TSE.Thus,the optimumθsatisfiesˆθ=arg minθ{Π}=(S TΨ−1S)−1S TΨ−1h,(10)which provides[ˆx,ˆy].Note that(10)also provides the leastsquares solution for non-Gaussian errors.However,for our problem,Ψis a function ofθsince Bdepends on the(unknown)values[x,y].For this reason,themaximum-likelihood(ML)estimation method in(10)can notbe directly used.Tofind the optimumθ,we perform theestimation in two stages:Stage A and Stage B.In Stage A,themissing data(Ψ)is calculated given the estimate of parameters(θ).Note thatθprovides the values of[x,y]and thus thevalue of B,therefore,Ψcan be calculated usingθby(8).In the Stage B,the parameters(θ)are updated according to(10)to maximize the likelihood function(which is equivalentto minimizingΠ).These two stages are iterated until con-vergence.Simulations in Section V show that commonly oneiteration is enough for TSE to closely approach the CRLB,which indicates that the global optimum is reached.B.Step2of TSEIn the above calculations,ˆθcontains three componentsˆx,ˆy andˆv.They were previously assumed to be independent;however,ˆx andˆy are clearly not independent ofˆv.As amatter of fact,we wish to eliminateˆv;this will be achievedby treatingˆx,ˆy,andˆv as random variables,and,knowing thelinear mapping of their squared values,the problem can besolved using the LS solution.Letˆθ=⎡⎣ˆxˆyˆv⎤⎦=⎡⎣x+n1y+n2v+n3⎤⎦(11)where n i(i=1,2,3)are the estimation errors of thefirststep.Obviously,the estimator(10)is an unbiased one,and themean of n i is zero.Before proceeding,we need the following Lemma.Lemma 1:By omitting the second or higher order errors,the covariance of ˆθcan be approximated as cov (ˆθ)=E (nn T )≈(¯S T Ψ−1¯S )−1.(12)where n =[n 1,n 2,n 3]T ,and Ψand ¯S(the mean value of S )use the true/mean values of x ,y,and r i .Proof:Please refer to the Appendix.Note that since the true values of x ,y,and r i are not obtain-able,we use the estimated/measured values in the calculationof cov (ˆθ).Let us now construct a vector g as followsg =ˆΘ−G Υ,(13)where ˆΘ=[ˆx 2,ˆy 2,ˆv 2]T ,Υ=[x 2,y 2]T and G =⎡⎣100111⎤⎦.Note that here ˆΘis the square of estimation result ˆθfrom the first step containing the estimated values ˆx ,ˆy and ˆv .Υis the vector to be estimated.If ˆΘis obtained without error,g =0and the location of the target is perfectly obtained.However,the error inevitably exists and we need to estimate Υ.Recalling that v =x 2+y 2,substituting (11)into (13),and omitting the second-order terms n 21,n 22,n 23,it follows that,g =⎡⎣2xn 1+O (n 21)2yn 2+O (n 22)2vn 3+O (n 23)⎤⎦≈⎡⎣2xn 12yn 22vn 3⎤⎦.Besides,following similar procedure as that in computing(8),we haveΩ=E (gg T )≈4¯D cov (ˆθ)¯D ,(14)where ¯D =diag ([¯x ,¯y ,¯v ]).Since x ,y are not known,¯Dis calculated as ˆD using the estimated values ˆx ,ˆy from the firststep.The vector g can be approximated as a vector of Gaussian variables.Thus the maximum likelihood estimation of Υis theone minimizing (ˆΘ−G Υ)T Ω−1(ˆΘ−G Υ),expressed by ˆΥ=(G T Ω−1G )−1G T Ω−1ˆΘ.(15)The value of Ωis calculated according to (14)using the valuesof ˆx and ˆy in the first step.Finally,the estimation of target location z is obtained byˆz =[ˆx ,ˆy ]=[±ˆΥ1,± ˆΥ2],(16)where ˆΥi is the i th item of Υ,i =1,2.To choose the correct one among the four values in (16),we can test the square error as followsχ=M i =1( ˆx 2+ˆy 2+ (ˆx −a i )2+(ˆy −b i )−ˆr i )2.(17)The value of z that minimizes χis considered as the final estimate of the target location.In summary,the procedure of TSE is listed in Algorithm 1:Note that one should avoid placing the receivers on a line,since in this case (S T Ψ−1S )−1can become nearly singular,and solving (10)is not accurate.Algorithm 1TSE Location Estimation Method1.In the first step,use algorithm as shown in Fig.2to obtain ˆθ,2.In the second step,use the values of ˆx and ˆy from ˆθ,generate ˆΘand D ,and calculate Ω.Then,calculate the value of ˆΥby (15),3.Among the four candidate values of ˆz =[ˆx ,ˆy ]obtained by (16),choose the one minimizing (17)as the final estimate for target location.IV.C OMPARISON OF CRLB BETWEEN TDOA AND TOA In this section,we derive the CRLB of TOA based estima-tion algorithms and show that it is much lower (can be 30dB lower)than the CRLB of TDOA algorithms.The CRLB of “active”TOA localization has been studied in [30].The “passive”localization has been studied before under the model of multistatic radar [31],[32],[33].The difference between our model and the radar model is that in our model the localization error is a function of errors of TOA measurements,while in the radar model the localization error is a function of signal SNR and waveform.The CRLB is related to the 2×2Fisher Information Matrix (FIM)[34],J ,whose components J 11,J 12,J 21,J 22are defined in (18)–(20)as follows J 11=−E (∂2ln(p (ˆr |z ))∂x 2)=ΣM i =11σ2i (x −a i (x −a i )2+(y −b i )2+xx 2+y2)2,(18)J 12=J 21=−E (∂2ln(p (ˆr |z ))∂x∂y )=ΣM i =11σ2i (x −a i (x −a i )2+(y −b i )2+x x 2+y 2)×(y −b i (x −a i )2+(y −b i )2+yx 2+y 2),(19)J 22=−E (∂2ln(p (ˆr |z ))∂y 2)=ΣM i =11σ2i (y −b i (x −a i )2+(y −b i )2+yx 2+y2)2.(20)This can be expressed asJ =U T Q −1U ,(21)where Q is defined after Eqn.(8),and the entries of U in the first and second column are{U }i,1=x ¯r i −a ix 2+y 2(x −a i )2+(y −b i )2 x 2+y 2,(22)and{U }i,2=y ¯r i −b ix 2+y 2(x −a i )2+(y −b i )2 x 2+y 2,(23)with ¯r i =(x −a i )2+(y −b i )2+ x 2+y 2.The CRLB sets the lower bound for the variance of esti-mation error of TOA algorithms,which can be expressed as [34]E [(ˆx −x )2+(ˆy −y )2]≥ J −1 1,1+J −1 2,2=CRLB T OA ,(24)where ˆx and ˆy are the estimated values of x and y ,respec-tively,and J −1 i,j is the (i,j )th element of the inverse matrix of J in (21).For the TDOA estimation,its CRLB has been derived in [16].The difference of signal travel time between several receivers are considered:(x −a i )2+(y −b i )2−(x −a 1)2+(y −b 1)2=r i −r 1=l i ,2≤i ≤M.(25)Let l =[l 2,l 3,...,l M ]T ,and t be the observa-tions/measurements of l ,then,the conditional probability density function of t is p (t |z )=1(2π)(M −1)/2|Z |12×exp(−12(t −l )T Z −1(t −l )),where Z is the correlation matrix of t ,Z =E (tt T ).Then,the FIM is expressed as [16]ˇJ=ˇU T Z −1ˇU (26)where ˇUis a M −1×2matrix defined as ˇU i,1=x −a i (x −a i )2+(y −b i )2−x −a 1(x −a 1)2+(y −b 1)2,ˇUi,2=y −b i (x −a i )2+(y −b i )2−y −b 1(x −a 1)2+(y −b 1)2.The CRLB sets the lower bound for the variance of esti-mation error of TDOA algorithms,which can be expressed as [34]:E [(ˆx −x )2+(ˆy −y )2]≥ ˇJ −1 1,1+ ˇJ −1 2,2=CRLB T DOA .(27)Note that the correlation matrix Q for TOA is different from the correlation matrix Z for TDOA.Assume the variance of TOA measurement at i th (1≤i ≤M )receiver is σ2i ,it follows that:Q (i,j )=σ2i i =j,0i =j.and Z (i,j )= σ21+σ2i +1i =j,σ21i =j.As an example,we consider a scenario wherethere is a transmitter at [0,0],and four receivers at [−6,2],[6.2,1.4],[1.5,4],[2,2.3].The range of the targetlocations is 1≤x ≤10,1≤y ≤10.The ratio of CRLB of TOA over that of TDOA is plotted in Fig.3.Fig.3(a)shows the contour plot while Fig.3(b)shows the color-coded plot.It can be observed that the CRLB of TOA is always —in most cases significantly —lower than that of TDOA.xy(a )xy0.10.20.30.40.50.60.70.80.9Fig.3.CRLB ratio of passive TOA over passive TDOA estimation:(a)contour plot;(b)pcolor plot.V.P ERFORMANCE OF TSEIn this section,we first prove that the TSE can achieve the CRLB of TOA algorithms by showing that the estimation error variance of TSE is the same as the CRLB of TOA algorithms.In addition,we show that,for small TOA error regions,the estimated target location is approximately a Gaussian random variable whose covariance matrix is the inverse of the Fisher Information Matrix (FIM),which in turn is related to the CRLB.Similar to the reasoning in Lemma 1,we can obtain the variance of error in the estimation of Υas follows:cov (ˆΥ)≈(G T Ω−1G )−1.(28)Let ˆx =x +e x ,ˆy=y +e y ,and insert them into Υ,omitting the second order errors,we obtainˆΥ1−x 2=2xe x +O (e 2x )≈2xe x ˆΥ2−y 2=2ye y +O (e 2y)≈2ye y (29)Then,the variance of the final estimate of target location ˆzis cov (ˆz )=E (e x e ye x e y )≈14C −1E ( Υ1−x 2Υ2−y 2Υ1−x 2Υ2−y 2 )C −1=14C −1cov (ˆΥ)C −1,(30)where C = x 00y.Substituting (14),(28),(12)and (8)into (30),we can rewrite cov (ˆz )as cov (ˆz )≈(W T Q −1W )−1(31)where W =B −1¯SD−1GC .Since we are computing an error variance,B (19),¯S(5)and D (14)are calculated using the true (mean)value of x ,y and r i .Using (19)and (1),we can rewrite B =−diag ([d 1,d 2,...,d M ]),whered i=(x−a i)2+(y−b i)2.Then B−1¯SD−1is given by B−1¯SD−1=⎡⎢⎢⎢⎢⎢⎣a1xd1b1yd1−¯r1√x2+y2d1a2xd2b2yd2−¯r2√x2+y2d2.........a Mxd Mb Myd M−¯r M√x2+y2d M⎤⎥⎥⎥⎥⎥⎦.(32)Consequently,we obtain the entries of W as{W}i,1=x¯r i−a ix2+y2(x−a i)2+(y−b i)2x2+y2,(33){W}i,2=y¯r i −b ix2+y2(x−a i)2+(y−b i)2x2+y2.(34)where{W}i,j denotes the entry at the i th row and j th column.From this we can see that W=paring(21)and (31),it followscov(ˆz)≈J−1.(35) Then,E[(ˆx−x)2+(ˆy−y)2]≈J−11,1+J−12,2.Therefore,the variance of the estimation error is the same as the CRLB.In the following,wefirst employ an example to show that[ˆx,ˆy]obtained by TSE are Gaussian distributed with covariance matrix J−1,and then give the explanation for this phenomenon.Let the transmitter be at[0,0],target at[0.699, 4.874]and four receivers at[-1,1],[2,1],[-31.1]and[4 0].The signal travel distance variance at four receivers are [0.1000,0.1300,0.1200,0.0950]×10−4.The two dimensional probability density function(PDF)of[ˆx,ˆy]is shown in Fig.4 (a).To verify the Gaussianity of[ˆx,ˆy],the difference between the PDF of[ˆx,ˆy]and the PDF of Gaussian distribution with mean[¯x,¯y]and covariance J−1is plotted in Fig.4(b).The Gaussianity of[ˆx,ˆy]can be explained as follows.Eqn.(35)means that the covariance of thefinal estimation of target location is the FIM related to CRLB.We could further study the distribution of[e x,e y].The basic idea is that by omitting the second or high order and nonlinear errors,[e x,e y]can be written as linear function of e:1)According to(29),[e x,e y]are approximately lineartransformations ofˆΥ.2)(15)means thatˆΥis approximately a linear transfor-mation ofˆΘ.Here we could omit the nonlinear errors occurred in the estimate/calculation ofΩ.3)According to(11),ˆΘ≈¯θ2+2¯θn+n2,thus,omittingthe second order error,thus,ˆΘis approximately a linear transformation of n.4)(10)and(39)mean that n is approximately a lineartransformation of e.Here we could omit the nonlinear errors accrued in the estimate of S andΨ.Thus,we could approximately write[e x,e y]as a linear trans-formation of e,thus,[e x,e y]can be approximated as Gaussian variables.Fig.4.(a):PDF of[ˆx,ˆy]by TSE(b):difference between the PDF of[ˆx,ˆy] by TSE and PDF of Gaussian distribution with mean[¯x,¯y]and covariance J−1.Fig.5.Simulation results of TSE for thefirst configuration.VI.S IMULATION R ESULTSIn this section,wefirst compare the performance of TSE with that TDOA algorithm proposed in[16]and CRLBs.Then, we show the performance of TSE at high TOA measurement error scenario.For comparison,the performance of a Quasi-Newton iterative method[35]is shown.To verify our theoretical analysis,six different system con-figurations are simulated.The transmitter is at[0,0]for all six configurations,and the receiver locations and error variances are listed in Table I.Figures5,6and7show simulation results comparing the distance to the target(Configuration1vs. Configuration2),the receiver separation(Configuration3vs. Configuration4)and the number of receivers(Configuration5 vs.Configuration6),respectively4.In eachfigure,10000trails are simulated and the estimation variance of TSE estimate is compared with the CRLB of TDOA and TOA based localization schemes.For comparison,the simulation results of error variance of the TDOA method proposed in[16]are also drawn in eachfigure.It can be observed that1)The localization error of TSE can closely approach theCRLB of TOA based positioning algorithms.4During the simulations,only one iteration is used for the calculation of B(19).。

《2024年基于深度学习的无线通信(FM)语音增强的研究》范文

《2024年基于深度学习的无线通信(FM)语音增强的研究》范文

《基于深度学习的无线通信(FM)语音增强的研究》篇一一、引言随着无线通信技术的快速发展,FM(调频)广播作为传统的音频传输方式,其语音质量与传输效率日益受到关注。

然而,由于无线通信环境的复杂性和多变性,FM广播中常常出现语音信号的失真、干扰和噪声等问题,影响了用户的收听体验。

因此,基于深度学习的无线通信(FM)语音增强技术的研究显得尤为重要。

本文旨在探讨基于深度学习的无线通信(FM)语音增强的研究现状、方法及挑战,以期为相关研究提供参考。

二、研究背景及意义随着深度学习技术的发展,其在无线通信(FM)语音增强领域的应用逐渐成为研究热点。

通过深度学习技术,可以有效地对无线通信中的语音信号进行降噪、去干扰和增强,从而提高语音的清晰度和可懂度。

该技术对于提高FM广播的音质、提升用户体验具有重要意义,同时也为无线通信技术的发展提供了新的思路和方法。

三、研究现状及方法(一)研究现状目前,基于深度学习的无线通信(FM)语音增强技术已经成为研究热点。

研究者们通过构建各种深度学习模型,如循环神经网络(RNN)、卷积神经网络(CNN)和生成对抗网络(GAN)等,对无线通信中的语音信号进行降噪和增强。

这些模型能够有效地提取语音信号中的特征信息,降低噪声和干扰对语音的影响。

(二)研究方法1. 数据集:构建包含无线通信(FM)语音信号的数据集,包括带噪声和不带噪声的语音样本。

2. 模型构建:根据无线通信(FM)语音的特点,构建适合的深度学习模型,如RNN、CNN或GAN等。

3. 模型训练:利用构建的数据集对模型进行训练,优化模型的参数,提高模型的性能。

4. 模型评估:通过对比模型处理前后的语音信号质量,评估模型的性能和效果。

四、技术研究及实现(一)技术研究在基于深度学习的无线通信(FM)语音增强技术中,关键技术包括特征提取、降噪算法和模型优化等。

特征提取是提取语音信号中的关键信息,为后续的降噪和增强提供基础;降噪算法是利用深度学习模型对带噪声的语音信号进行降噪处理;模型优化则是通过调整模型的参数和结构,提高模型的性能和泛化能力。

中英翻译《使用加权滤波器的一种改进的谱减语音增强算法》

中英翻译《使用加权滤波器的一种改进的谱减语音增强算法》

使用加权滤波器的一种改进的谱减语音增强算法摘要在噪声环境,例如飞机座舱、汽车引擎中,语音中或多或少地夹杂着噪声。

为了减少带噪语音中的噪声,我们提出了一种改进型的谱减算法。

这种算法是利用对谱减的过度减法而实现的。

残余噪声能够利用人类听觉系统的掩蔽特性被掩蔽。

为了消除残余的音乐噪声,引入了一种基于心理声学的有用的加权滤波器。

通过仿真发现其增强的语音并未失真,而且音乐噪声也被有效地掩蔽,从而体现了一种更好的性能。

关键词:语音增强;谱减1.引言语音信号中经常伴有环境中的背景噪声。

在一些应用中如:语音命令系统,语音识别,说话者认证,免提系统,背景噪声对语音信号的处理有许多不利的影响。

语音增强技术可以被分为单通道和多通道或多通道增强技术。

单通道语音增强技术的应用情况是只有一个采集通道可用。

谱减语音增强算法是一个众所周知的单通道降噪技术[]2,1。

大多数实现和多种基本技术的运用是在语音谱上减去对噪声谱的估计而得以实现的。

传统的功率谱相减的方法大大减少了带噪语音中的噪声水平。

然而,它也在语音信号中引入了一种被称为音乐噪声的恼人的失真。

在本文中我们运用一种能够更好、更多地抑制噪声的改进的频谱过度减法的方法[]3。

该方法的运用是为了估计纯净语音的功率谱,它是通过从语音功率谱中减去噪声功率谱的过度估计而实现的。

此外,为了在语音失真和噪声消除之间找到最佳的平衡点,一种基于声学心理学的动机谱加权规则被纳入。

通过利用人耳听觉系统的掩蔽特性能够掩蔽现有的残余噪声。

当确定了语音掩蔽阈值的时候,运用一种改进的掩蔽阈值估计来消除噪声的影响。

该方法提供了比传统的功率谱相减法更优越的性能,并能在很大程度上降低音乐噪声。

2.过度谱相减算法该方法的基本假设是把噪声看作是独立的加性噪声。

假设已经被不相关的加性噪声信号()t n降解的语音信号为()t s:()()()t n t s t x += (1)带噪语音信号的短时功率谱近似为:()()()ωωωj j j e N e S e X +≈ (2) 通过用无音期间得到的平均值()2ωj e N 代替噪声的平方幅度值()2ωj e N 得到功率谱相减的估计值为: ()()()222ˆωωωj j j e N e X e S -= (3)在运用了谱减算法之后,由于估计的噪声和有效噪声之间的差异而出现了一种残余噪声。

《2024年基于深度学习的无线通信(FM)语音增强的研究》范文

《2024年基于深度学习的无线通信(FM)语音增强的研究》范文

《基于深度学习的无线通信(FM)语音增强的研究》篇一一、引言随着无线通信技术的不断发展,人们对通信质量和音质的要求也在逐步提高。

无线通信中的FM(Frequency Modulation)语音传输由于其信号的开放性及通信环境中的干扰噪声等问题,经常会导致接收到的语音质量降低,甚至无法识别。

因此,提高FM语音的质量成为无线通信领域的一项重要研究内容。

近年来,深度学习技术的发展为解决这一问题提供了新的思路和方法。

本文将就基于深度学习的无线通信(FM)语音增强的研究进行深入探讨。

二、FM语音增强问题的挑战在无线通信环境中,FM语音传输面临的主要问题包括背景噪声、回声、多径干扰等。

这些因素都会导致接收到的语音信号质量下降,影响用户的通信体验。

传统的语音增强方法主要依赖于信号处理技术,如滤波、去噪等,但这些方法往往难以在保留语音信息的同时有效去除噪声。

而深度学习技术能够在处理复杂非线性问题时展现出强大的能力,为解决FM语音增强问题提供了新的途径。

三、基于深度学习的FM语音增强方法(一)基本原理基于深度学习的FM语音增强方法主要通过构建深度神经网络模型,对输入的带噪语音信号进行学习和预测,从而实现对噪声的抑制和语音质量的提升。

该方法主要利用神经网络对语音信号和噪声信号的表征能力,以及其从大量数据中学习到的知识和规律。

(二)模型选择与构建在模型选择方面,常用的深度学习模型包括循环神经网络(RNN)、卷积神经网络(CNN)和长短期记忆网络(LSTM)等。

针对FM语音增强的特点,本文建议采用基于CNN和LSTM 的混合模型。

该模型能够充分利用CNN在特征提取方面的优势和LSTM在处理时序数据方面的优势,实现对带噪语音信号的有效处理。

(三)训练与优化在模型训练过程中,需要使用大量的带噪语音数据和对应的干净语音数据进行训练。

通过优化算法(如梯度下降法)对模型进行训练,使模型能够从大量数据中学习到知识和规律。

在优化过程中,还需要考虑模型的泛化能力、计算复杂度等因素,以实现模型的性能最优。

efficientdet简介

efficientdet简介

efficientdet简介
EfficientDet是一种高效目标检测算法,由谷歌公司在2019年提出并发表在CVPR上。

它结合了EfficientNet作为骨干网络和BiFPN 作为特征金字塔网络进行目标检测。

EfficientNet是一种高效的卷积神经网络结构,可以在保持准确度的前提下显著减少模型参数和计算量。

BiFPN是一种双向特征金字塔网络,可以有效地提取多尺度的特征来检测不同大小的目标。

EfficientDet通过在每个特征层上应用BiFPN来构建多尺度特征金字塔。

这个特征金字塔可以提供丰富的特征表示,使得算法可以在不同尺度和大小的目标之间进行有效检测。

此外,EfficientDet还使用了一种特定的损失函数设计来平衡不同目标之间的训练难度,并使用了一种自适应的网络宽度缩放方法来进一步提高检测性能。

与其他目标检测算法相比,EfficientDet在保持准确度的同时更加高效。

实验证明,EfficientDet在COCO数据集上的性能超越了以往基于单一网络的目标检测算法,具有更好的检测速度和更小的模型参数。

这使得EfficientDet成为一种理想的目标检测算法,可以在资源受限的环境下实现高效的实时检测应用。

cvpr声音多模态检测算法

cvpr声音多模态检测算法

cvpr声音多模态检测算法
CVPR声音多模态检测(CMMD)算法是一种将检测模式用于识别图像中多种物
体的最新算法。

这项技术能够有效地检测来自不同场景的多种声音,包括说话、汽车、人类、动物等声音,即使在嘈杂的背景中仍然能够很好地实现识别。

另外,CMMD还具有良好的泛化能力,可以在不同场景中有效地识别多模态声音,具有较
高的准确性和稳健性。

CMMD的核心思想是深度学习,其核心技术包括音频特征提取、深度神经网络、多阶段预测和虚拟对齐技术。

其中,首先通过声频特征提取算法从音频中提取人声、汽车、动物、环境等不同类别的特征数据;其次,采用深度神经网络来自动训练语音模型,以标记不同类别的音频信号;第三,在多阶段预测中,采用基于深度学习的方法预测不同类别的特征;最后,通过虚拟对齐技术来准确地定位多模态声音的时空位置信息。

总的来说,CVPR声音多模态检测算法(CMMD)是一种有效的多模态声音检测
方法,具有良好的准确性、可靠性、稳定性和泛化能力,可以被用于不同场景中的多模态声音识别。

计算机辅助翻译硕士专业教学探讨

计算机辅助翻译硕士专业教学探讨

计算机辅助翻译硕士专业教学探讨俞敬松王华树北京大学摘要:进入21世纪以来,语言服务发生了翻天覆地的变化,新的时代呼唤新一代的语言服务人才。

为了适应信息化时代翻译服务日益剧增的要求,北京大学软件与微电子学院语言信息工程系在2007年开设了中国大陆第一个计算机辅助翻译硕士专业。

本论文主要介绍了我们对于新世纪语言服务的理解和思考,翻译技术相关课程的设计定位以及教学计划的制定,教学实践过程中面临的各种问题及解决思路,最后介绍了学生实习就业情况,并展望了CAT 专业未来的发展。

1.认识新世纪的语言服务行业在专栏作家托马斯·弗里德曼所写的《地球是平的》一书中,他相信世界已经被新技术和跨国资本碾成一块没有边界的平地,在强大的经济全球化与金融全球化的力量推动下,洲与洲之间、国与国之间的市场交流达到了一个前所未有的高度。

21世纪的中国在全球市场中已成为最有潜力的选手,越来越多的中国的企业在走向国际市场,国际间多层次全方位的交流对翻译的需求空前高涨,信息化时代的语言服务已经发生了巨大的变化。

Internet如暴风骤雨般颠覆了传统的语言服务方式,将人们带入信息化的新境界。

环境的变化要求语言服务企业发现新的商业模式、采用新的战略和新的管理模式,提高生产效率。

效率提高要在很短的时间按照预定的质量标准完成大量的翻译,时间压力越来越大。

很多翻译和本地化公司中每月百万字级别的翻译项目已经屡见不鲜。

业务量之巨大,过程之复杂,时间之紧迫,都对语言服务工作者提出全新的高要求。

而传统手工的翻译流程通常包括“译、审、校”,这种小作坊式的模式已经不再适应当今大批量的、团队协作的业务流程。

大型项目的完整流程通常包括诸如编译、工程处理、本地化翻译、软件测试、桌面排版和项目管理等,这些流程的控制也已经得到很大的优化。

例如在语言服务供应商(LSP[1])的全球信息管理系统(GIM[2])中,通常集成了BS或CS架构的翻译管理系统(TMS[3])和内容管理系统(CMS[4])。

cvpr论文

cvpr论文

cvpr论文CVPR (Conference on Computer Vision and Pattern Recognition)是计算机视觉和模式识别领域的顶级国际会议,每年举办一次。

以下是一些CVPR论文的主题和标题:1. "Fully Convolutional Networks for Semantic Segmentation" - Jonathan Long, Evan Shelhamer, and Trevor Darrell (2015)这篇论文提出了一种用于语义分割的全卷积网络,具有显著的准确性和效率。

2. "Generative Adversarial Networks" - Ian J. Goodfellow, Jean Pouget-Abadie, et al. (2014)这篇论文介绍了一种生成对抗网络的概念,可以用于生成逼真的图像和其他样本。

3. "Mask R-CNN" - Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick (2017)这篇论文提出了一种能够同时进行目标检测和实例分割的神经网络模型,对于复杂场景中的物体识别非常有效。

4. "Deep Residual Learning for Image Recognition" - Kaiming He, Xiangyu Zhang, et al. (2016)这篇论文介绍了一种深度残差学习网络,可以通过网络层之间的残差连接来解决深层网络训练中的梯度消失和梯度爆炸问题。

5. "DeepFace: Closing the Gap to Human-Level Performance in Face Verification" - Yaniv Taigman, Ming Yang, et al. (2014)这篇论文描述了一种能够达到人类级别面部验证性能的深度学习模型,引起了广泛的关注。

《2024年基于深度学习的无线通信(FM)语音增强的研究》范文

《2024年基于深度学习的无线通信(FM)语音增强的研究》范文

《基于深度学习的无线通信(FM)语音增强的研究》篇一一、引言随着无线通信技术的快速发展,FM(调频)广播作为传统的音频传输方式,其语音质量的重要性日益凸显。

然而,由于无线通信环境中的各种干扰和噪声,接收到的语音信号往往存在音质损失和清晰度下降的问题。

为了解决这一问题,本文提出了一种基于深度学习的无线通信(FM)语音增强方法。

该方法通过深度学习技术,对接收到的语音信号进行增强处理,有效提高语音质量和清晰度。

二、相关工作近年来,深度学习在语音增强领域取得了显著的成果。

传统的语音增强方法主要依赖于信号处理技术,如滤波、去噪等。

然而,这些方法往往难以处理复杂的噪声和环境干扰。

相比之下,深度学习可以通过学习大量的语音数据,提取有效的特征,实现对语音信号的准确增强。

目前,基于深度学习的语音增强方法已经广泛应用于智能手机、智能音箱等设备中。

三、方法本文提出的基于深度学习的无线通信(FM)语音增强方法主要包括以下步骤:1. 数据收集与预处理:收集包含噪声和清晰语音的语料库,对语料进行预处理,如归一化、分帧等。

2. 模型构建:采用深度神经网络(DNN)或循环神经网络(RNN)构建语音增强模型。

模型以带噪语音为输入,输出增强后的语音信号。

3. 训练与优化:使用大量的训练数据对模型进行训练,通过损失函数和优化算法对模型进行优化,使模型能够更好地适应不同的噪声和环境。

4. 测试与评估:使用测试数据对模型进行评估,比较增强前后的语音质量,如信噪比(SNR)、听觉质量等。

四、实验与分析本节通过实验验证了基于深度学习的无线通信(FM)语音增强方法的有效性。

实验中,我们使用了包含各种噪声和干扰的语料库,对模型进行了训练和测试。

实验结果表明,该方法能够有效提高语音质量和清晰度,显著提高信噪比和听觉质量。

具体而言,我们采用了DNN和RNN两种不同的模型进行实验。

在DNN模型中,我们使用了多层神经网络对语音信号进行特征提取和增强。

在RNN模型中,我们利用循环神经网络的时序特性,对连续的语音信号进行增强处理。

voa 算法

voa 算法

voa 算法
VOA(Voice of America)算法,是一种用于音频处理的算法。

它在语音识别、音频编解码、音频增强等领域得到广泛应用。

VOA算法在语音识别方面具有重要作用。

语音识别是将人类语言转换为计算机可理解的文本的过程。

VOA算法通过分析音频信号的频谱、时域特征和语音模型,实现了准确的语音识别。

这项技术在智能助理、语音输入等领域得到广泛应用,极大地方便了人们的生活。

VOA算法在音频编解码方面也有着重要的意义。

音频编解码是将音频信号转换为数字信号或将数字信号转换为音频信号的过程。

VOA 算法通过优化压缩算法和声音编码技术,实现了音频信号的高效传输和存储。

这项技术在音乐、电影、通信等领域发挥着重要的作用,使得音频内容的传输更加高效和稳定。

VOA算法还可以用于音频增强。

音频增强是通过对音频信号进行处理,改善音频质量或提取特定音频信息的过程。

VOA算法通过去噪、降噪、音频增益等方法,实现了对音频信号的优化。

这项技术在语音通信、音频录音等场景中发挥着重要的作用,提升了音频信号的清晰度和可听性。

总结一下,VOA算法在语音识别、音频编解码和音频增强等方面都发挥着重要的作用。

它不仅提高了语音识别的准确性,也实现了音频信号的高效传输和存储,同时还改善了音频信号的质量。

随着科
技的不断发展,VOA算法将会越来越成熟,为人们的生活带来更多便利。

人工智能训练师职业技能等级认定考试

人工智能训练师职业技能等级认定考试

选择题在人工智能模型训练过程中,下列哪项是数据预处理的关键步骤?A. 数据清洗B. 数据存储C. 数据展示D. 数据标注(正确答案)人工智能训练师在进行模型调优时,主要关注的是哪个指标来提升模型性能?A. 训练时间B. 数据量大小C. 准确率或损失函数(正确答案)D. 模型复杂度下列哪项技术不属于深度学习领域,且在人工智能训练中应用较少?A. 卷积神经网络(CNN)B. 循环神经网络(RNN)C. 支持向量机(SVM)(正确答案)D. 生成对抗网络(GAN)在自然语言处理(NLP)任务中,词嵌入(Word Embedding)的主要目的是什么?A. 将文本转换为图像B. 将单词映射到高维向量空间(正确答案)C. 减少文本数据量D. 实现文本的自动分类人工智能训练师在选择优化算法时,下列哪个算法常用于处理大规模数据集且收敛速度较快?A. 梯度下降法(GD)B. 随机梯度下降法(SGD)(正确答案)C. 牛顿法D. 拟牛顿法在监督学习中,下列哪项是模型训练过程中必需的?A. 仅有无标签数据B. 有标签数据集合(正确答案)C. 仅需测试数据集D. 无需任何数据集关于超参数调优,下列哪种方法是通过自动搜索最优超参数组合的?A. 手动调优B. 网格搜索(Grid Search)C. 随机搜索(Random Search)D. 贝叶斯优化(Bayesian Optimization)(正确答案)在深度学习模型中,Dropout技术主要用于解决什么问题?A. 过拟合(Overfitting)(正确答案)B. 欠拟合(Underfitting)C. 数据不平衡D. 梯度消失或爆炸下列哪项是人工智能训练师在进行模型部署前必须考虑的因素之一?A. 模型的文件大小B. 模型的运行效率与资源消耗(正确答案)C. 模型的开发语言D. 模型的训练时长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Efficient Broadcasting in Ad Hoc Networks UsingDirectional AntennasFei Dai and Jie WuDepartment of Computer Science and EngineeringFlorida Atlantic UniversityBoca Raton,FL33431ing directional antennas to conserve bandwidth and energy con-sumption in ad hoc networks is becoming popular in recent years.However,ap-plications of directional antennas for broadcasting have been limited.We pro-pose a novel broadcast protocol called directional self-pruning(DSP)for ad hocnetworks using directional antennas.DSP is a non-trivial generalization of anexisting localized deterministic broadcast protocol using omnidirectional anten-pared with its omnidirectional predecessor,DSP uses about the samenumber of forward nodes to relay the broadcast packet,while the number offorward directions that each forward node uses in transmission is significantlyreduced.With the lower broadcast redundancy,DSP is more bandwidth-andenergy-efficient.DSP is based on2-hop neighborhood information and does notrely on location or angle-of-arrival(AoA)information.DSP is a pure localizedprotocol.We prove that the expected number of forward nodes in DSP is within aconstant factor of the minimal value in an optimal solution.Our simulation resultsshow that DSP can reduce the transmission cost by30%–65%.1IntroductionUsing directional antennas to conserve bandwidth and energy consumption in wireless communications is becoming popular in recent years[1].Compared with the omnidi-rectional antennas,a smart antenna can form directional beams for both transmission and reception,which achieves better signal-to-noise ratio(SNR)and reduces interfer-ence.Many network protocols have been proposed for using directional antennas in ad hoc networks[2–6].However,most of them focused on the MAC layer,and research on the application of directional antennas in unicasting and broadcasting has been limited.Broadcasting is frequently used in ad hoc networks for data dissemination and on-demand route discovery.Blindflooding has high cost and excessive redundancy,which causes the broadcast storm problem[7].Both probabilistic approaches[7]and deter-ministic approaches[8–12]have been proposed for efficient broadcasting in ad hoc networks.Probabilistic approaches need relatively high broadcast redundancy to main-tain an acceptable delivery ratio.Deterministic approaches select a few forward nodes based on neighborhood information to achieve full delivery.Most deterministic broad-cast schemes in ad hoc networks are localized.A localized algorithm determines the This work was supported in part by NSF grants CCR0329741,CNS0422762,CNS0434533, ANI0073736,and EIA0130806.Contact address:jie@2status of each node(forward or non-forward)based on its k-hop neighborhood infor-mation,where k is a small constant.Although deterministic algorithms are more efficient than probabilistic approaches, their broadcast redundancy is not minimized.Wireless nodes with directional antenna can control their radiation pattern to reduce broadcast redundancy.Several protocols [13–16]have been proposed for efficient broadcasting using directional antennas.How-ever,most of them are probabilistic approaches,depend on location or AoA informa-tion,and assume specific antenna models.All those protocols assume the omnidirec-tional reception mode.In this paper,we propose a novel broadcast protocol called direc-tional self-pruning(DSP),which extends an omnidirectional broadcast protocol(called self-pruning)[17].Extending the omnidirectional self-pruning scheme to use direc-tional antennas is non-trivial.We show that the original self-pruning algorithm in[17] must be enhanced carefully to avoid broadcast failure without be overly conservative. Compared with its omnidirectional predecessor,DSP minimizes the interference and energy consumption by switching off transmission in unnecessary directions.Our sim-ulation results show that DSP can reduce the transmission cost by30%–65%.In DSP,each node is equipped with only2-hop neighborhood information(or sim-ply2-hop information),which is collected via two rounds of“Hello”exchanges among neighbors.The direction information(i.e.,how to form a directional beam to reach a specific neighbor)is included in the2-hop information and does not cause extra over-head to collect.DSP uses a general antenna model with fewer assumptions than existing models.The main contributions of this paper are as follows:bine directional antennas with the latest broadcast techniques to minimize thebroadcast redundancy in ad hoc networks.2.Provide a general antenna model and a directional neighbor discovery scheme thatdoes not rely on any location or AoA information.3.Conduct both theoretical and simulation study to evaluate the performance of DSP.The remainder of this paper is organized as follows.Section2reviews existing broadcast schemes.In Section3,we introduce a general antenna model,a neighbor-hood discovery scheme,and a formal definition of the problem.Section4discusses the DSP algorithm and properties.Simulation results are presented in Section5.Section6 concludes this paper.2Related WorkMany deterministic broadcast schemes have been proposed for ad hoc networks using omnidirectional antennas.A deterministic broadcast algorithm is equivalent to an algo-rithm that forms a connected dominating set(CDS).The problem offinding a minimal CDS was proved NP-complete.Approximation algorithms exist,but are either cen-tralized[18],cluster-based[19],or location-based[20].Centralized and cluster-based algorithms have slow convergency in mobile networks.Location-based algorithms rely on external devices such as GPS receivers,which cause extra cost.Localized broad-cast algorithms can be further divided into neighbor designating algorithms and self-pruning algorithms.In neighbor-designating[8,9,11],each forward node selects a few3(d) a general model(a) ideally sectorized (c) irregular beam pattern (b) adjustable cone Fig.1.Directional antenna models.1-hop neighbors as new forward nodes to cover its 2-hop neighbors.In self-pruning [10,12,21],each node determines it own status (forward or non-forward).A generic self-pruning scheme was proposed in [17].Application of directional antennas in localized broadcasting is limited in literature.Most of them are probabilistic approaches [14–16].Choudhury and Vaidya [14]pro-posed to reduce the broadcast redundancy in relaying routing request by switching off transmissions in directions toward the last forward node.Hu,Hong,and Hou [15]pre-sented three schemes to improve the broadcast efficiency.In the first scheme,each node switches off its transmission beams towards known forward nodes.In the second and third schemes,each forward node designates only one neighbor as a forward node in each direction.In the third scheme,the selection of forward nodes is aided by location information.Shen et al [16]devised directional versions of probabilistic protocols in [7].Only two localized deterministic schemes were proposed [13,16].Lim and Kim’s neighbor elimination [8]was extended in [16],where each node switches off trans-mission in a direction,if all neighbors in this direction are also neighbors of a known forward node.In [13],each node forms a single beam with an adjustable width to reach all neighbors that are not covered by transmissions of known forward nodes.Location information is used to calculate the angle and orientation of the transmission beam.3Preliminaries3.1Antenna modelTwo beam-forming techniques exist:switched beam and steerable beam [1].Switched beam systems use fixed antenna patterns to transmit to or receive from specific di-rections.A popular antenna model for those systems is ideally sectorized [14–16],as shown in Figure 1(a).The neighborhood of each node v is equally divided into K non-overlapping sectors.Each node can switch on one or several sectors for transmission or reception.Aligned sectors are assumed in most existing protocols.Steerable beam systems can adjust the bearing and width of a beam to transmit to or receive from cer-tain neighbors.The corresponding antenna mode is a adjustable cone [13],as shown in4Figure1(b).Most protocols also assume an omnidirectional mode,but the transmis-sion range in omnidirectional mode(represented by the dashed circle in Figure1(a))is substantially smaller than that in directional mode.Both antenna models assume regu-lar beam shapes.In practical systems,antenna patterns have irregular shapes due to the existence of side lobes(as shown in Figure1(c)).This paper uses a general antenna model that does not rely on a specific beam-forming technique.As shown in Figure1(d),each node can transmit and receive in K directions with id’s1,2,...,K.The shape of each direction can be irregular,overlap-ping(see the shadowed area),and unaligned.Each node can transmit in one direction or several directions via sweeping[14].The reception mode can be omnidirectional(de-fault)or directional.For each node v,N i(v)denotes v’s neighbor set direction i,and N(v)=N1(v)∪N2(v)∪...∪N K(v)is v’s complete neighbor set.A neighbor may ap-pear in several directions when there is an overlapped area.For each neighbor u,its di-rections with respect to node v is D v→u={i|u∈N i(v)}.For example,in Figure1(d), N(v)={u,w},where u,w∈N1(v)and u∈N2(v).Therefore,D v→u={1,2}and D v→w={1}.The network is viewed as a graph G=(V,E),where V is the set of nodes,and E is the set of bidirectional links.A wireless link(u,v)∈E if and only if v∈N(u)and u∈N(v).We assume the network is symmetric and connected via bidirectional links.3.2Directional neighborhood discoveryIn directional neighborhood discovery,each node sends periodical“Hello”messages to its neighbors.Each“Hello”message is transmitted in all directions.By collecting “Hello”messages from its neighbors,each node v can assemble its1-hop information, including id’s and directions of its neighbors.Note that the direction for v to reach a neighbor u is still unknown at that time.The1-hop information is exchanged among neighbors in the next round of“Hello”messages.By assembling the1-hop information of v its neighbors,node v can construct its2-hop(direction)information,which is a subgraph of G derived from v’s closed neighbor set N[v]=N(v)∪{v},and direction D u→w for any two nodes u,v∈N[v].Note that v’s2-hop neighbors are excluded from the2-hop information,because the direction from a1-hop neighbor to any2-hop neighbor is unknown.In the above scheme,each“Hello”message is sent out K times in K directions at each node.However,given the same neighborhood area,the cost of each directional transmission is roughly1/K that of an omnidirectional transmission.The total cost of the directional neighborhood discovery is similar to that of the traditional scheme using omnidirectional“Hello”messages.This scheme also works when there are obstacles, as the neighbor and direction information is retrieved from real signal reception instead of being computed from an ideal antenna pattern.We assume that node movement,in terms of changing positions or turning on their axes,is relatively slow with respect to the“Hello”interval,so that2-hop information collected at each node is up-to-date.We also assume that packet collision is avoided via an ideal MAC layer.For clarity,we use ideally sectorized direction shapes in examples.Nevertheless,all results in this paper work for the general antenna model as shown in Figure1(d).5(b) an overly conservative broadcast process(a) a failed broadcast processfoward directionsFig.2.Problems in converting OSP to DSP.3.3Efficient broadcastingFor each broadcasting,a few forward nodes are selected to forward in some forward directions .We define the forward scheme ,F ,as a function on V ,where F (v )is the set of v ’s forward directions.Given F ,we say a destination d is reachable from a source s ,if s =d or there exists a forward path P :(v 1=s,v 2,...,v l =d )satisfying that every node in P forwards to the direction of its successor.A forward scheme F achieves full delivery if all nodes in the network are reachable from s .Given an antenna model,we define the transmission cost of a forward scheme as |F |= v ∈V |F (v )|.Efficient Broadcasting :Given a number of antenna directions K ,network G ,and source s ,find the forward scheme F that achieves full delivery with minimum transmis-sion cost |F |.Efficient broadcasting using omnidirectional antennas is a special case of the above problem with K =1,which is known to be NP-complete.The efficient broadcasting problem with a particular K ≥2in a geometric graph is conjectured to be NP-complete.Our objective is to find a localized solution with a low average transmission cost.We first review the omnidirectional self-pruning (OSP)as a trivial solution to the above problem.In OSP,each node computers the coverage of its neighborhood after receiving the packet from one or several known forward nodes .In node v ’s local view,a node w is covered if:(1)w is a known forward node,(2)w is a neighbor of a known forward node,or (3)w is a neighbor of a covered node with a higher id than v .If v has uncovered neighbors,it becomes a forward node and transmits in all directions;otherwise,it does nothing.It was proved in [17]that OSP guarantees full delivery.4Directional self-pruningIntuitively,a forward node only needs to transmit in directions of uncovered neigh-bors to conserve transmission cost.However,this “optimization”is over aggressive and causes broadcast failures.As shown in Figure 2(a),if node 4forwards in direction 1only,neither node 5nor 2will forward the packet.Nodes 3,6,7,and 8will never received the packet.6w w w w Fig.3.Replacement paths.A solution to the above problem is for each forward node to piggyback its forward directions to the data packet.In computing coverage,a neighbor w of a forward node u is not covered unless it is within a forward direction of u .This rule ensures full delivery,but is overly conservative and causes unnecessary transmissions.As shown in Figure 2(b),nodes 2,3,5,6,and 7become forward nodes under the new rule.However,transmissions of nodes 2and 3are redundant.Directional self-pruning (DSP)uses a refined coverage rule to achieve both full delivery and high efficiency.A neighbor w of node v is viewed covered if and only if w :1.is a known forward node,2.is a neighbor of a known forward node u that has transmitted in w ’s direction,or3.is a neighbor of a covered node with a higher id than v .As shown in Figure 3,a covered neighbor is either a forward node or connected to a forward node via a replacement path (u,w 1,w 2,...,w m ,w ),where id (w i )>id (v ).Two scenarios exit:(a)id (u )<id (v ),then w 1must be within a forward direction of u in order to apply term 2;(b)id (u )>id (v ),then w 1can be out of u ’s forward directions by applying term 3.Based on the new rule,node 5in Figure 2can no longer view node 6as covered,because node 4has not transmitted in direction 2and,in addition,node 4has a lower id than node 5.Therefore,node 5becomes a forward node.Similarly,nodes 6,7,and 3become forward nodes and ensure full delivery.On the other hand,node 2can still view nodes 3and 8as covered,because both nodes are connected via a replacement path to node 4,which has a higher id than node 2.Therefore,node 2becomes a non-forward node.1:Compute the set U of uncovered nodes.2:If U =∅,then v becomes a non-forward node.3:Otherwise,v becomes a forward node.Its set of forward directions is {d v →w |w ∈U }.Algorithm 1gives the DSP algorithm.For each uncovered neighbor w ,at least one direction d v →w ∈D v →w must become a forward direction in F (v ).If directions are7Fig.4.Directional self-pruning.overlapping,each uncovered node may be within several directions(i.e.,|D v→w|>1). In this case,a greedy heuristic algorithm for the set coverage problem[18]can be used to select a minimum F(v)that covers all nodes in N(v)−C.Figure4illustrates DSP in a network with11nodes,each node has ideally sector-ized directions with K=4.The source node2transmits in all four directions.Node2 transmits in only one direction,because in its local view(as shown in Figure4(b)),all neighbors except node7are covered.Meanwhile,there is an uncovered node8in node 9’s local view(as shown in Figure4(c)).Therefore,node9becomes a forward node and transmits in direction1.Similarly,node5has two uncovered nodes6and10,and transmits in directions3and4.Each node receives the broadcast packet exactly once, except for the source node.Theorem1.The forward scheme determined by DSP achieves full delivery.Proof.By contradiction,suppose there is at least one node that is unreachable from the source s.Let U be the set of“border”nodes that(1)is reachable from the source node, and(2)has an unreachable neighbor.U is not empty in a connected network.Let v be the node with the highest id in U,and w an unreachable neighbor of v.Since v has not transmitted in w’s direction,node w must be covered in v’s local view.However,we show that w cannot be covered,as none of the three terms in the refined coverage rule applies:1.w is a known forward node,which implies that w is reachable from s.2.w is a neighbor of a known forward node u that has transmitted in w’s direction.In this case w is reachable from s via a forward path through u.3.w is a neighbor of a covered node with a higher id than v.There are only twopossible scenarios,as shown in Figure3.In both cases,the unreachable node w is connected to a reachable node w1via a path P:(w1,w2,...,w m,w),where each w i(1≤i≤m)has a higher id than v.There is at least one node w j in P that has an unreachable neighbor w j+1(here we view w as w m+1).That is,w j∈U,which contradicts the assumption that v has the highest id in U.Theorem2.In random ad hoc networks,the expected number of forward nodes in DSP is O(1)times that in an optimal solution.81(a)OSP 2(b)DSP (K =4)Fig.5.Sample broadcast processes from source node 1.Gray nodes are forward nodes and white nodes are non-forward nodes.Pies surrounding forward nodes represent forward directions.Ar-rows represent receptions of the broadcast packet,where double lines are first receptions,and single lines redundant receptions.Proof of Theorem 2is omitted due to the limit of space.Whether a bound exists on the number of forward directions remains an open problem.5Simulation5.1Simulation environmentWe simulated DSP,OSP,and blind flooding on a customized simulator.Simulations are conducted in random networks with 20–200nodes deployed in a 100×100area.We use two fixed ranges r =25and r =50,which correspond to relatively sparse and dense networks,respectively.Only connected networks are used in the simulation;dis-connected networks are discarded.All nodes have an ideally sectorized antenna pattern with K sectors (2≤K ≤16).We assume no mobility or collision.The following mea-sures are compared:(1)efficiency in terms of the number of forward nodes and normal-ized transmission cost |F |/K ,(2)redundancy ratio ,i.e.,average number of receptions per node,and (3)average routing distance in hops.The 90%confidence intervals of these measures are within ±1%.Figure 5illustrates executions of omnidirectional and directional self-pruning al-gorithms in a random network with 50nodes and an average node degree of 6.OSP (shown in Figure 5(a))uses 21forward nodes.Its normalized transmission cost is also 21.Its redundant ratio is 2.74.The average routing distances is 3.70.DSP (shown in Figure 5(b))uses 22forward nodes and 34forward directions,which corresponds to a normalized transmission cost of 8.5with 4directions.Its redundant ratio is 1.56.The average routing distances is 3.72.In this example,DSP has a similar number of forward9nodes and routing distance to OSP,and has lower normalized transmission cost and redundant ratio.5.2Simulation resultsN u m b e r o f F o w a r d N o d e sNumber of Nodesr=25N u m b e r o f F o w a r d N o d e sNumber of Nodesr=50Fig.6.Number of forwardnodes.N o r m a l i z e d T r a n s m i s s i o n C o s tNumber of Nodesr=25N o r m a l i z e d T r a n s m i s s i o n C o s tNumber of Nodesr=50Fig.7.Normalized transmission cost.Efficiency .Figures 6and 7compare the broadcast efficiency of OSP and DSP.The left graph in Figure 6shows the number of forward nodes in relatively sparse networks (r =25),and the right graph shows results in relatively dense network (r =50).The same layout is used in the following figures.For all network types,DSP uses more forward nodes than OSP.DSP uses about 5%more forward nodes than OSP when K =2,and about 10%more forward nodes when K =4,8,or 16.It is because fewer10nodes can be marked as covered in each node’s local view in DSP.It is because fewer nodes can be marked as covered in each node’s local view in DSP.Based on the refined coverage rule,a neighbor w of a known forward node u in node v ’s local view may not be covered if w is in a non-forward direction of u ,and u has a lower id than v .Using more directions may produce more uncovered nodes.Figure 7shows the transmission cost of different schemes.For all network types,the normalized transmission cost of DSP with K =2,4,8,and 16is about 70%,55%,45%,35%that of OSP.The fraction of non-forward directions increases as more directions are used to create finer divisions.On the other hand,the gain in broadcast efficiency is not a linear function of K .Considering the complexity of forming many beam patterns,using K =4or K =8is good enough to conserve bandwidth and energy consumption.R e d u n d a n t R a t i oNumber of Nodesr=25R e d u n d a n t R a t i oNumber of Nodesr=50Fig.8.Redundant ratio.Redundancy .Figure 8shows the redundancy of blind flooding,OSP,and DSP.While the redundancy ratio of blind flooding increases as the number of nodes increases,re-dundant ratios of the self-pruning schemes remain low.Specifically,the redundant ratio of OSP is about 4,and that of DSP with 2≤K ≤16is between 1.8to 3.5.The re-dundancy ratio of DSP is smaller than that of OSP,but the difference is not as large as in the case of normalized transmission cost.It is because some forward nodes have “empty”directions.As DSP has very low redundancy with a larger K ,it is very effi-cient in conserving the bandwidth resource.On the other hand,it may suffer a reliability problem in a real environment with packet losses caused by mobility,collision,and sig-nal fading.In such a case,either a small K or some reliability mechanisms,such as acknowledgement,should be used.Routing distance .Figure 9compares average routing distances.The difference be-tween DSP and OSP is very small.Self-pruning algorithms have larger average routing distances than blind flooding.In all types of networks,the average routing distance of blind flooding is about 20%shorter than those of self-pruning algorithms.That is,if a self-pruning algorithm,omnidirectional or directional,is used to disseminate route re-quest packets in a reactive routing protocol,the discovered route is expected to be 20%11A v e r a g e R o u t i n g D i s t a n c eNumber of Nodes r=25A v e r a g e R o u t i n g D i s t a n c e Number of Nodesr=50Fig.9.Average routing distance.longer than the one discovered via blind flooding.In this case,tradeoffs must be done to balance the route discovery cost and the cost of transmitting data packets along a longer route.However,once self-pruning is selected to disseminate route request packets,us-ing DSP will not further increase the length of the discovered route.Simulation results can be summarized as follows:(1)DSP uses slightly more for-ward nodes than OSP,but has a much lower bandwidth and energy consumption.(2)The redundant ratio of DSP is 50%–89%that of OSP.(3)The average routing distance of DSP is very close to that of OSP,and is about 20%longer than the optimal distance.6ConclusionWe have proposed an efficient broadcast protocol for ad hoc networks using directional antennas.This protocol,called directional self-pruning (DSP),is a non-trivial general-ization of an existing localized deterministic broadcast protocol using omnidirectional pared with its omnidirectional predecessor,DSP achieves much lower broadcast redundancy and conserves bandwidth and energy consumption.DSP is based on 2-hop topology information and does not rely on any location or angle-of-arrival (AoA)information.We proved that the average number of forward nodes in DSP is within a constant factor of the minimal value in an optimal solution.In future work,we plan to expand the proposed scheme to support neighbor des-ignating protocols such as MPR and its variations [8,9,11].Another task is the prob-abilistic analysis on the number of forward directions in random ad hoc networks.We expect that the average number of forward directions in DSP is also bounded as the number of forward nodes,but the technique used to calculate the number of forward nodes does not apply to the case of forward directions.We also plan to simulate DSP in more realistic networks with mobility and collisions,and embed DSP in an on-demand routing protocol to evaluate the overall routing performance.12References1.Ramanathan,R.:On the performance of ad hoc networks with beamforming antennas.In:Proc.of ACM MobiHoc.(2001)95–1052.Bao,L.,Garcia-Luna-Aceves,J.J.:Transmission scheduling in ad hoc networks with direc-tional antennas.In:Proc.of ACM MobiCom.(2002)48–583.Choudhury,R.R.,Yang,X.,Ramanathan,R.,Vaidya,N.H.:Using directional antennas formedium access control in ad hoc networks.In:Proc.of ACM MobiCom.(2002)59–704.Korakis,T.,Jakllari,G.,Tassiulas,L.:A MAC protocol for full exploitation of directionalantennas in ad-hoc wireless networks.In:Proc.of ACM MobiHoc.(2003)98–1075.Roy,S.,Saha,D.,Bandyopadhyay,S.,Ueda,T.,Tanaka,S.:A network-aware MAC androuting protocol for effective load balancing in ad hoc wireless networks with directional antennas.In:Proc.of ACM MobiHoc.(2003)6.Takai,M.,Martin,J.,Ren,A.,Bagrodia,R.:Directional virtual carrier sensing for directionalantennas in mobile ad hoc networks.In:Proc.of ACM MobiHoc.(2002)183–1937.Tseng,Y.C.,Ni,S.Y.,Chen,Y.S.,Sheu,J.P.:The broadcast storm problem in a mobile adhoc network.Wireless Networks8(2002)153–1678.Lim,H.,Kim,C.:Multicast tree construction andflooding in wireless ad hoc networks.In:Proc.of ACM MSWiM.(2000)9.Lou,W.,Wu,J.:On reducing broadcast redundancy in ad hoc wireless networks.IEEETransactions on Mobile Computing1(2002)111–12310.Peng,W.,Lu,X.:On the reduction of broadcast redundancy in mobile ad hoc networks.In:Proceedings of ACM MobiHoc.(2000)129–13011.Qayyum,A.,Viennot,L.,Laouiti,A.:Multipoint relaying forflooding broadcast message inmobile wireless networks.In:Proc.of HICSS.V olume9.(2002)29812.Sucec,J.,Marsic,I.:An efficient distributed network-wide broadcast algorithm for mobilead hoc networks.CAIP Technical Report248,Rutgers University(2000)13.Cartigny,J.,Simplot,D.,Stojmenovic,I.:An adaptive localized scheme for energy efficientbroadcasting in ad hoc networks with directional antennas.IEEE Transactions on Commuin-cations(2003)14.Choudhury,R.R.,Vaidya,N.H.:Ad hoc routing using directional antennas.Technical report,Dept.Electrical and Computer Engeineering,University of Illinois at Urbana Champaign (2002)15.Hu,C.,Hong,Y.,Hou,J.:On mitigating the broadcast storm problem with directionalantennas.In:Proc.of IEEE ICC.(2003)16.Shen,C.C.,Huang,Z.,Jaikaeo,C.:Directional broadcast for ad hoc networks with perco-lation theory.Technical report,Computer and Information Sciences,University of Delware (2004)17.Wu,J.,Dai,F.:Broadcasting in ad hoc networks based on self-pruning.Proc.of IEEEInfocom(2003)18.Das,B.,Sivakumar,R.,Bhargavan,V.:Routing in ad hoc networks using a spine.In:Proc.of IEEE IC3N.(1997)1–2019.Alzoubi,K.M.,Wan,P.J.,Frieder,O.:Distributed heuristics for connected dominating setsin wireless ad hoc networks.Journal of Communications and Networks4(2002)22–29 20.Liao,W.H.,Tseng,Y.C.,Sheu,J.P.:GRID:A fully location-aware routing protocol formobile ad hoc networks.Telecommunication Systems18(2001)37–6021.Dai,F.,Wu,J.:An extended localized algorithm for connected dominating set formation inad hoc wireless networks.IEEE Transactions on Parallel and Distributed Systems15(2004) 902–92022.Williams,B.,Camp,T.:Comparison of broadcasting techniques for mobile ad hoc networks.In:Proceedings of MobiHoc.(2002)194–205。

相关文档
最新文档