Influence of gas flow on thermal field and stress during growth of sapphire single crystal using
热能与动力工程专业英语
因此,朗肯循环的热效率 n 是
(1-2).
所需的输出,即除以能量输入 (购买能源)。
Obviously,the thermal efficiency can be improved by increasing the numerator or by decreasing the denominator. This can be done by increasing the pump outlet pressure P2, increasing the boiler outlet temperature T3 or decreasing the turbine outlet pressure P4.
显然,通过增加分子或通过减小分母可以提高热效率。这可以通过增加泵出口压力 P2,锅炉出口温度 T3 的增加或减少涡轮出口压力 P4。
1.1。8 再热循环
很明显与高锅炉压力或低凝汽器压力朗肯循环中运行时很难防止液滴在低压涡轮的部分形成。由于大多数金属不能经受温度约 600 以上,再热周期通常用于防止液体滴形成: 蒸汽涡轮机穿越在一些中间的压力,从而提高 5 中的状态 T 的图图 1-6 的温度加热。然后的蒸汽涡轮低压条经过和进入状态 6 冷凝器。这控制或完全消除了在涡轮中的水分问题。通常,涡轮分为高压涡轮和低压涡轮。再热循环不会显著影响热效率的周期,但它不会导致重大的额外工作输出,表示在图中的地区 4-5-6-4' 的图 1-6-4。再热循环要求额外的设备,在重大的投资和使用这类设备必须是从事经济工作增加的输出的 justifled。如果再热不用于避免液滴形成,凝汽器压力必须相当高,这会导致较低循环效率。在这个意义上,再热显著增大时没有再热,但较高的凝汽器压力相比,周期循环效率。
流体空化热效应的实验研究
摘要我国稠油资源丰富,对其进行降黏开采对于我国国民经济发展意义重大。
目前常用的蒸汽驱、蒸汽吞吐、电加热等方法存在设备复杂、成本高、能量损耗大、安全性差等缺点,寻找新的开采方法势在必行。
空化是发生在液体介质中的一种物理现象。
空化发生时,会在空泡附近形成极端高温(1900-5000K)和高压(140MPa-170MPa),并伴有强烈的冲击波和微射流。
如何有效利用空化过程中的这种极端热效应成为部分专家学者关注的课题。
基于以上几点,本文对流体空化过程中的热效应问题开展了实验研究,得到以下结论:(1)总结分析了空化类型与作用机理,确定了以闭式叶轮为核心的水力空化发生方式。
(2)基于数值模拟的方法,使用CFX软件对不同叶轮结构内空化情况进行了对比分析,选定进口角为11.2、出口角为36的叶轮用于后续的实验研究。
(3)设计并制作了空化热效应室内实验装置,对空化发生器部件进行了机械强度校核。
(4)利用空化热效应实验装置,研究了不同参量(流体初始温度、流量、流体体积、粘度)对流体空化热效应的影响规律,结果发现:在当前实验条件下,随着流量的增加,流体空化热效应先增强后减弱,在流量为1.6m3/h时流体空化热效应最佳;随着黄原胶粘度的增加,空化热效应逐渐受到抑制;流体初始温度(0-40°C)、流体体积对空化热效应的影响可以忽略不计。
研究成果对于弄清空化热效应的内在规律,拓展空化技术在石油领域的应用具有重要意义。
关键词:空化,热效应,叶轮,数值模拟,实验研究Experimental Research on Thermal Effect of Cavitating FluidQiu Junjie (Oil & Gas Well Engineering)Directed by Prof. Wang MingboAbstractThere is abundant heavy oil resource in mainland China. Steam flooding, steam stimulation and electric heating are very popular to develop heavy oil reservoir. These methods have disadvantages of complex equipment, high cost, large energy loss and insecurity. It is necessary to find a new and economical method to enhance the recovery of heavy oil resources.Cavitation is a physical phenomenon occured in liquid media. When cavitation occurs, extremely high temperature(1900-5000K) and pressure(140MPa-170MPa) are formed around the tiny bubbles, accompanied by strong shock waves and microjets. How to use the extreme thermal effect of cavitation has gained more and more attention from experts and scholars.On the basis of the points above, experimental research on the thermal effect of cavitating fluid is carried out in this thesis. The following conclusions are drawn from the thesis:(1)With the summary and analysis of the cavitation modes and working mechanisms, the hydrodynamic cavitation mode with the shrouded impeller was applied to the experimental study.(2)The cavitating effects with different impeller structures were simulated and analysed by commercial software CFX and the impeller with inlet angle of 11.2° and outlet angle of 36°was chosen for subsequent experimental research.(3)An experimental facility for the thermal effect of cavitating fluid was designed and manufactured and its mechanical strength was validated.(4)The influence of different parameters(initial temperature, flow rate, flow volume and fluid viscosity) on the thermal effect of cavitating fluid was analysed and the following conclusions were drawn that: As the flow rate increases, the thermal effect of cavitation increases at first and decreases later, reaching its peak value when the flow rate is 1.6m3/h; With the increase of xanthan gum viscosity, the thermal effect of cavitation is supressed; The influence of fluid temperature(under 40°C) and flow volume on the thermal effect of cavitation can be ignored.The research results are of great significance to finding out the internal law of thermal effect of cavitating fluid and expanding the application of cavitation technology in the field ofpetroleum.Key Words:cavitation, thermal effect, impeller, numerical simulation, experimental research目录第一章绪论 (1)1.1 研究目的及意义 (1)1.2 国内外研究进展 (1)1.2.1 空化的分类与发生方式 (1)1.2.2 空化理论研究进展 (2)1.2.3 空化实验研究进展 (3)1.2.4 空化数值模拟研究进展 (5)1.3 研究内容与技术路线 (9)第二章叶轮空化场的数值模拟 (10)2.1 叶轮设计 (10)2.2 数学模型 (11)2.2.1 Mixture模型 (11)2.2.2 湍流模型 (12)2.2.3 空化模型 (13)2.3 建模求解 (14)2.3.1 物理模型的建立 (14)2.3.2 网格划分 (15)2.3.3 求解设置 (17)2.4 结果分析 (17)2.4.1 压力分布 (17)2.4.2 速度场分布 (18)2.4.3 汽含率分布 (20)2.5 本章小结 (22)第三章空化热效应实验装置的设计 (23)3.1 实验系统设计 (23)3.2 部件设计 (23)3.2.1 驱动电机的选择 (23)3.2.2 基座设计 (24)3.2.3 连接盘设计 (24)3.2.4 支撑盘设计 (25)3.2.5 叶轮设计 (25)3.2.6 空化罐设计 (25)3.2.7 配套组件设计 (26)3.3 强度校核 (27)3.4 本章小结 (34)第四章空化热效应的实验研究 (35)4.1 实验方案介绍 (35)4.2 流体初始温度对空化热效应的影响 (38)4.3 流量对空化热效应的影响 (39)4.4 流体体积对空化热效应的影响 (41)4.5 黄原胶溶液粘度实验 (41)4.5.1 空化对溶液粘度的影响 (41)4.5.2 溶液粘度对空化热效应的影响 (43)4.6 导热油加热实验 (44)4.7 本章小结 (45)结论 (46)参考文献 (47)致谢 (51)中国石油大学(华东)硕士学位论文第一章绪论1.1 研究目的及意义我国稠油资源丰富,占原油总储量的20%以上。
沸腾液体扩展蒸汽爆炸初期演化过程的数值模拟
沸腾液体扩展蒸汽爆炸初期演化过程的数值模拟尚拓强;陈思凝;张东胜;杨剑锋;陈东梁;刘娅【摘要】The early progress of a boiling liquid expanding vapor explosion has been simulated by computational fluid dynamics (CFD). A two-dimensional physical model of a pressure vessel was established and a suitable mathematical model was selected. Water and saturated steam were chosen as service fluids. The early evolution of the flow field and variations in the characteristic parameters were explored. In order to analyze the influences of the initial conditions on the progress of the explosion, simulations under different conditions were performed with different temperatures, liquid levels and sizes of the opening adopted as initial conditions.%对沸腾液体扩展蒸汽爆炸发生初期,容器顶部突然出现开口,压力快速泄放导致容器内介质过热沸腾的过程进行了模拟研究.选取过热水及饱和水蒸气为容器内介质,分析了该过程中气液两相的变化过程.探讨了初始温度(初始压力)、初始充装量及开口大小等因素对前述物理过程及容器内压力、温度的影响.结果表明:容器内过热沸腾的过程中,温度逐渐下降,压力响应会出现两次压力峰和一个压力平台期,两个压力峰值都会随初始温度的增加而增加,压力平台持续时间随初始温度先增大后减小;第一个压力峰值随初始充装量的增加先增大后减小,第二个压力峰值则随初始充装量的增加而增大,压力平台的持续时间和液体充装量成正比关系;开口越大两个压力峰值也越大,压力平台持续时间越短.【期刊名称】《北京化工大学学报(自然科学版)》【年(卷),期】2012(039)004【总页数】5页(P101-105)【关键词】沸腾液体扩展蒸汽爆炸;过热沸腾;压力响应;数值模拟【作者】尚拓强;陈思凝;张东胜;杨剑锋;陈东梁;刘娅【作者单位】北京化工大学机电工程学院,北京100029;中国安全生产科学研究院,北京100029;北京化工大学机电工程学院,北京100029;北京化工大学机电工程学院,北京100029;北京化工大学机电工程学院,北京100029;河南省驻马店供电公司,河南驻马店463000【正文语种】中文【中图分类】X9沸腾液体扩展蒸汽爆炸(BLEVE)是一类常见的爆炸事故,是由介质相变引起的一种危害性极大的物理爆炸,通常会造成重大的人员伤亡和财产损失[1]。
流体力学中英文词
气动力 aerodynamic force
气动噪声 aerodynamic noise
气动加热 aerodynamic heating
离解 dissociation
地面效应 ground effect
气体动力学 gas dynamics
进口 entrance, inlet
出口 exit, outlet
扰动 disturbance, perturbation
分布 distribution
传播 propagation
色散 dispersion
弥散 dispersion
附加质量 added mass ,associated mass
库埃特流 Couette flow
单相流 single phase flow
单组份流 single-component flow
均匀流 uniform flow
非均匀流 nonuniform flow
二维流 two-dimensional flow
三维流 three-dimensional flow
马赫数 Mach number
平面流 plane flow
势 potential
势流 potential flow
速度势 velocity potential
复势 complex potential
复速度 complex velocity
流函数 stream function
源 source
有旋流 rotational flow
轴对称流 axisymmetric flow
热辐射对气膜冷却叶片表面热负荷的影响
收稿日期:2023-02-09基金项目:航空动力基础研究项目资助作者简介:饶乐威(1998),男,在读硕士研究生。
引用格式:饶乐威,王天壹,连文磊.热辐射对气膜冷却叶片表面热负荷的影响[J].航空发动机,2023,49(4):38-47.RAO Lewei ,WANG Tianyi ,LI⁃AN Wenlei.Effect of thermal radiation on the thermal load of a film-cooled vane[J].Aeroengine ,2023,49(4):38-47.第49卷第4期2023年8月Vol.49No.4Aug.2023航空发动机Aeroengine热辐射对气膜冷却叶片表面热负荷的影响饶乐威,王天壹,连文磊(南京航空航天大学能源与动力学院,南京210016)摘要:为了明确不同因素对叶片表面热负荷的影响规律,利用改进的WSGG 模型,通过CFD 数值仿真进行对流辐射耦合计算,探明高温燃气辐射传热对叶片表面热负荷的影响。
结果表明:进口压力、温度、黑体辐射温度和壁面发射率对叶片表面热负荷均有一定影响,在进口总温从1750K 升高到2150K 的过程中,叶片表面温度整体升高幅度为250~300K ,而黑体辐射温度对叶片表面温度的提升最高为40K 。
在壁面发射率从0.3提高到0.8的过程中,叶片表面辐射热流密度随之增大,在吸力面和压力面局部区域辐射热流密度增大了1倍。
壁面发射率和高温燃气进口温度对叶片表面的温度和热流作用相当均匀,进口压力和黑体辐射温度对叶片尾缘、前缘和压力面的热负荷影响远大于其他区域。
在此基础上,提出了以进口总温、黑体辐射温度、余气系数和壁面发射率为自变量,以辐射换热热流密度为因变量的辐射换热的经验准则关系式,获得了该经验关系式的拟合结果,并对该拟合精度进行了计算,相对误差均小于5%。
关键词:热负荷;对流辐射;涡轮叶片;数值模拟;灰气体加权和模型;经验准则关系式;航空发动机中图分类号:V232.4文献标识码:Adoi :10.13477/ki.aeroengine.2023.04.006Effect of Thermal Radiation on the Thermal Load of a Film-Cooled VaneRAO Le-wei ,WANG Tian-yi ,LIAN Wen-lei(School of Energy and Power Engineering ,Nanjing University of Aeronautics and Astronautics ,Nanjing 21006,China )Abstract :Thermal radiation has a great influence on vane surface thermal load.To clarify the influence law of different factors on vane surface thermal load,an improved WSGG model was used to conduct convective radiation coupling calculation through CFD numeri⁃cal simulation,and the influence of high-temperature gas radiation heat transfer on blade surface heat load was investigated.The results show that inlet pressure,temperature,blackbody radiation temperature,and wall emissivity all have a certain influence on vane surface ther⁃mal load.When the total inlet temperature rises from 1750K to 2150K,the vane temperature rises by 250K-300K,while the blackbody ra⁃diation temperature increases the vane temperature by 40K at the highest.When the wall emissivity increases from 0.3to 0.8,the radiantheat flux on the vane increases,and the radiant heat flux in some areas of the suction surface and pressure surface increases by one time.The effects of wall emissivity and inlet temperature on the vane temperature load and heat flow load are quite uniform.The influence of inlet pres⁃sure and blackbody radiation temperature on the thermal load of the trailing edge,leading edge,and pressure surface of the vane is muchgreater than in other areas.An empirical criterion relation of radiant heat transfer was proposed,which takes total inlet temperature,black⁃body radiant temperature,excess air coefficient,and wall emissivity as independent variables and radiant heat flux as a dependent variable.The fitting results of the empirical relation are obtained,and the relative errors are all less than 5%by calculating the fitting accuracy.Key words :thermal load;convection-radiation;turbine vane;numerical simulation;WSGG model;empirical criterion relation;aero⁃engine0引言当前高性能航空发动机涡轮前进口温度已然达到了1900K 的超高温水平,并且仍有继续上升的趋势,给热端部件承载热负荷的能力带来了巨大挑战,特别是在冷却系统设计和材料开发方面[1]。
FAA飞机维护执照常用单词
0001滚动摩擦rolling friction0002双排滚珠轴承锥形滚棒轴承推力轴承滑动轴承double-row ball bearing tapered roller bearing thrust bearingplain bearing0003星型发动机水平对臵发动机radial enginehorizontally opposed engine5reidjElE5pEuz0004零气门间隙zero valve clearance0005减速器,减速齿轮reduction gear0006容积效率volumetric efficiency0007急转弯sharp bend0008摇臂rocker arm0009曲轴crankshaft0010主连杆master rod0011连杆linkage, connected rod, link rod 0012活塞排量piston displacement0013进气,压缩,点火,做功,排气intake, compression, ignition, power,exhausti^5niFEn0014工作温度operating temprature0015提前点火preignition0016可动配重moveable counterweight0017共振v resonate5rezEneit0018气缸筒体,气缸筒气缸头cylinder cylinder barrel cylinder head0019上死点TDC下死点BDC top dead center bottom dead center0020发动机反冲,反转engine kickback0021(发动机)回火继续着火backfiring afterfiring0022轮廓,弧面contour5kCntuE 0023油气混合物fuel/air mixture0024油气比fuel/air ratio0025气门重叠valves overlap0026进气门排气门intake valve exhaust valve0027四冲程发动机four-stroke cycle engine 0028压缩行程compression stroke 0029(气缸)压缩比compression ratio0030火花塞污染点火嘴spark plug fouledigniter, igniter plugfaul0031发动机压力比EPR engine pressure ratio 0032主要目的primary purpose 0033弹簧振荡spring surge0034残留物residues0035铸铁cast iron0036表盘式指示器dial indicator0037工作平滑smoothness of operation0038气门间隙过大excessive valve clearance0039活塞环piston rings0040恒温器thermostat5WE:mEstAt 0041固定桨距螺旋桨fixed-pitch propeller0042点火顺序firing order0043例行检查routine inspection0044大范围波动fluctuate over a wide range0045消除eliminate0046顶臵气门发动机overhead valve engine0047偏心率runout0048稀释dilution dai5lju:FEn0049富油贫油rich lean0050马力horsepower0051汽车发动机automobile engine5C:tEmEubi:l0052指示功率轴功率indicated power shaft power0053高温/转速低温high temprature/RPM low temprature0054磨损的气门导套worn valve guide0055液压挺杆hydraulic lifter0056水蒸汽water vapor0057爆振detonation7detEu5neiFEn0058金属钠metallic-sodium mi 5tAlik5sEudjEm 0059(燃油)雾化atomize5AtEmaiz 0060节气门操纵杆throttle controller0061曲轴箱crankcase0062进气系统,吸气系统induction system0063暖车warmup0064辛烷值octane rating5Cktein0065最大起飞功率最大连续功率maximum takeoff power maximum continuous power0066发动机振动engine vibration0067进气温度intake air temperature0068临界高度critical altitude0069涡轮增压发动机turbo charged engine0070曲率,弯曲curvature5kE:vEtFE 0071渗漏leakage0072双转子轴流压气机双转子a dual axial compressortwo-spool, twin spool5AksiEl0073前臵风扇forward fan0074转速rotational speed0075轴流式涡轮喷气发动机 a axial-flow turbojet engine0076燃烧室combustion chamber, burner kEm5bQstFEn0077叶片打磨blending of blades and vanes0078扩压器diffuser0079总压,总温total pressure/temperature0080机身7号站位fuselage station No.75fju:zilB:V0081速度velocity0082涡轮进口at the entrance of the turbine or at theturbine entrance0083等容constant volume0084上游upstream0085石墨铅笔graphite lead pencil5^rAfait 0086叶轮impeller0087消磁degauss5di:5^aus0088两级单/双面离心式压气机dual-stage single/double entrycentrifugal compressorsen5trifju^El0089强制的mandatory5mAndEtEri 0090迷宫式封严labyrinth seal0091碳封严carbon rubbing seal0092冲击式涡轮反应式涡轮impulse turbine reaction turbine0093效率efficiency0094纵树fir tree fE:0095筒形(单管)燃烧室筒环(联管)环形燃烧室cancan annularannular5AnjulE0096外来物打伤foreign object damage-FOD0097变量variable5vZEriEbl 0098涡轮进口导向叶片turbine inlet guide vane0099冲压效率ram efficiency0100腐蚀erosion, corrosion i5rEuVEnkE5rEuVEn 0101标准大气条件standard atmospheric condition7AtmEs5ferik0102清洗压气机compressor field cleaning0103发动机性能下降engine performance degradation0104低/高压压气机low/high pressre compressor0105涡轮叶片叶冠shrouds on the turbine blades0106起动机starter0107将火吹灭blow out the fire0108尾锥,排气锥进气锥tail cone, exhaust cone inlet cone0109可调静子叶片variable stator vane 0110大的迎风面积high frontal area 0111防冰anti-icing0112亚音速的超音速的subsonic supersonic0113收敛型喷嘴扩张型喷嘴convergent nozzledivergent nozzle kEn5vE:dVEntdai5vE:dVEnt0114净化,清除v purge0115红外线成像infrared photography0116超声波ultrasound5QltrE7saund0117孔探borescope0118紫外光ultraviolet light5QltrE5vaiElit0119回油泵scavenge pump5skAvindV 0120惯性定律the Law of Inertia i5nE:FjE 0121影响v. n.influence0122布雷顿循环(定压加热,涡轮发动机)Brayton cycle`breItEn 0123蠕变creep0124(叶片)外形,叶型profile5prEufail 0125热效率thermal efficiency0126风扇叶片叠压fan blade shingling0127变形deformation7di:fC:5meiFEn0128扭曲distortion0129关车前的冷车阶段cool-off period prior to shutdown5praiE0130失速速度stall speed0131燃油喷嘴部分堵塞 a partially colgged fuel nozzle0132气塞vapor lock0133型号Model No.0134序号serial No.5siEriEl 0135件号part no.0136驱动轴drive shaft0137完整性integrity in5te^riti 0138适航指令AD Airworthiness Directive0139联邦航空条例FAR Federal Aviation Regulations0140检查单checklist0141适用于be applicable for5AplikEbl0142民用航空条例CAR Civil Air Regulations0143交换,对调exchange, interchange, swapinterchangeability, interchangeable,interchangeably0144油脂grease0145线,股,束,绳,索wire, strand, harness, thread, line, string,lead, cable0146初始认证be originally cetrificated 0147型号认证type certificated0148磁电机内部定时internal timing of magneto0149压坑indentation7inden5tei FEn0150补充型号合格证数据单Supplemintal Type Certificate Data Sheet 0151损伤缺陷磨损压痕,凹坑尖锐凹坑圆底凹坑裂纹划伤割伤刻痕碎裂破裂刮磨剥离疤痕,伤疤damage defectwear, galling dentsharp bottomed dent round bottomed dent crack scratch cut nick broken rupture chafing flaking scar0152定位销孔location pin hole 0153准确地accurately5Akjuritli0154滑油耗量oil consumption 0155双发飞机twin-engine aircraft 0156燃油流量传感器fuel flow transmitter 0157压力降pressure drop 0158初次启动initial start-up0159同步马达synchromous motor 5siNkrEnEs0160总管压力表manifold pressure gauge0161直流串励马达直流并励马达direct current series-wound motor direct current shunt-wound motor 0162绝对压力absolute pressure 0163燃油质量流量燃油体积流量fuel mass-flow rate fuel volume-flow rate 0164(星型发动机)液锁hydraulic lock 0165转子/静子rotor/stator 0166镍铬合金chromel0167镍基热电偶合金alumil0168波登管波纹管,膜盒膜片Bourdon-tubebellow, bellowsdiaphragm5belEu5daiEfrAm0169波动,抖动,颤抖,振动,颤振,脉动vibrate, vibriation, fluctuate, fluctuation, flutter, oscillation, impulse0170成分,组成,元素element, agent, component, composition0171废气门waste gate0172启动悬挂hung start0173热启动hot start0174油样分析oil sample analysis0175发动机排气温度EGT exhaust gas temperature0176(度量衡)单位unit0177(灭火瓶)爆炸帽(explosive) cartridge5kB:tridV 0178双金属的bimetallic7baimi5tAlik0179热电偶thermocouple0180温升率rate of temperature rise0181热敏电门(开关)thermoswitch0182窒息smother0183立场standpoint(from the standpoint of)(from a theoretical/political/economicetc standpoint)0184毒性toxicity tCk5sisiti 0185甲烷基methyl[5meWIl 0186干化学品(灭火剂)dry chemical0187二氧化碳carbon dioxide0188烟雾探测器smoke detector0189寿命件 a life-dated unit0190海伦1301灭火剂-一溴三氟甲烷Bromotrifluoromethane7brEumE7trai7flu:ErE5meWein0191陶瓷的,陶瓷制品ceramic si5rAmik] 0192四氯化碳carbon tetrachloride7tetrE5klC:raid0193吹开片breakable disk0194整流器rectifier0195换向器commutator5kCmjuteitE0196静变流机inverter0197反向电动势counter emf(electromotive force)0198电枢armature0199无刷同步发电机brushless alternator0200细砂纸very fine sandpaper0201滑环slip ring0202可变电阻器rheostat5ri:E7stAt 0203螺线管solenoid5sEulinCid 0204振荡型电压调节器vibrator-type voltage regulator0205输入/输出input/output0206磁通密度magnetic flux density0207励磁线圈field coil0208单独的individual0209正极负极positive terminal negative terminal0210电流currentelectron flow(负的电子流方向)conventional flow(正电的流动方向)0211硫酸sulfuric acid sQl5fjuErik0212安培-小时数ampere-hour rating0213电瓶,电池battery0214永久磁铁permanent magnet0215并励磁场shunt field0216剩磁residual magnetism0217极性polarity pEu5lAriti 0218导管,导线管conduit0219降级,降额derate0220搭地线,搭接片bonding jumper0221皂石soapstone0222油石oilstone0223插钉,插座pin, socket0224]云母mica5maIkE0225发电机generator0226线路断路器circuit breaker0227锡tin0228氧化n oxidization9CksIdaI`zeIFEn0229蓖式油滤(叠片转动式)cuno oil filter0230人造的synthetic0231闪点flash point0232比重specific gravity0233粘性viscosity0234粘度指数viscosity index0235副产品by-product0236焦炭coke0237漆,漆器lacquer5lAkE0238挥发性volatility7vClE5tiliti0239泼溅splash0240浸,蘸dip0241垫子,缓冲cushion0242物体substance0243中和n neutralization0244反乳化性demulsibility di:7mQlsi5biliti0245矿物基润滑剂植物基润滑剂mineral base lubricant vegetable base lubricant0246蒸馏水distilled water0247正齿轮spur gear0248磨合break-in0249直馏矿物油straight mineral oil0250恒温的thermostatic7WE:mE5stAtik0251末极油滤last chance oil filter0252冲击联轴器impulse coupling0253耦合couping0254焊剂,熔剂flux0255电极electrode I5lektrEJd0256定期at predetermined periods, at regularintervals0257污染,弄脏v污染,弄脏v contaminatecontaminationkEn5tAmineitkEn7tAmi5neiFEn0258污泥sludge0259封油环oil control ring0260喘振surge0261气穴cavitation7kAvi5teiFEn0262冷却器cooler0263即将来临的imminent5iminEnt 0264沉积物sediment0265夹杂空气的分离seperation of entrained air0266软铁soft iron0267钴cobalt5kEubC:lt 0268铬chrome krEum0269磁力线flux line0270(磁电机的)E间隙E-gap0271高压点火电缆high-tension ignition cable0272分电盘distributor0273高频电磁波high-frequency electromagnetic wave0274(磁电机的)断电器breaker point0275延迟vt提前vt加速v retardadvanceaccelerateEk5selEreit0276初级线圈primary coil0277次级绕组the secondary winding5waindiN 0278跳火n flashover0279漂移drift0280层压叠片lamination7lAmi5neiFEn0281磁场强度magnetic field stress0282屏蔽,护罩n shielding0283短时的momentary0284瞬间的transient5trAnziEnt 0285交错点火staggered ignition i^5niFEn 0286腐蚀性气体corrosive gas0287中止点火cease firing0288高压线high tension lead0289电流强度,安培数amperage5AmpZEridV 0290同时地simultaneously sImEl5teInIEsli0291触发v;触发器trigger0292穿透,刺破pierce piEs0293弧面,凸形,王冠crown0294丙酮acetone5AsitEun0295致命的电击lethal electric shock0296掉转速RPM drops0297防火墙firewall0298定量泵positive displacement pump0299变量泵variable-displacement pump0300增压泵boost pump0301叶轮泵impeller pump0302叶片泵vane pump0303齿轮泵gear pump0304微生物microorganism maIkrEJ5C:^EnIz(E)m0305坡,坡度slope0306最低点the lowest point0307加仑gallon0308双喷嘴duplex nozzle0309大修overhaul0310不完全燃烧incomplete combustion0311恒速constant -speed unit0312飞转booststrap0313喇叭口bellmouth0314齿轮系gear train0315涡流消散器vortex dissipator5vC:teks 0316几何,几何学geometry dVi5Cmitri 0317未经过滤的空气unfiltered air0318进气口,进气道,进气斗airscoop0319肋片,散热片(cooling)fin0320挡板,栅板baffle0321折流板deflector0322锯saw0323驱散,消散v dessipate0324打止裂孔be stop drilled0325完全关闭fully closed0326涡轮盘turbo disk0327驾驶舱cockpit, flight deck0328双向作动筒,作动器double-acting actuator, actuatingcylinder 5Aktjueit E0329平方英寸square inch0330惠斯通电桥wheastone bridge0331附件齿轮箱accessory gearbox Ak5sesEri 0332沟槽groove0333膨胀系数expansion coefficient0334收缩n contraction0335散热v dissipate heat0336静压测试hydrostatical test0337X射线X-ray0338碱alkali5AlkElai 0339去油除脂degreasing0340翘曲warping0341多孔的porous5pC:rEs0342潜在的热能latent heat energy5leitEnt 0343极细的花岗岩粗砂supper fine granite grit5^rAnit0344突出,伸出,探出protrude0345焊缝weld bead0346黑墨汁india ink0347样式pattern0348格栅louver0349背压back pressure0350球头连接ball joint0351煤烟,黑灰soot0352吸气式发动机aspirated engine0353激烈的温度变化drastic temperature change0354反推系统thrust reversing system0355级联cascade kAs5keid 0356电刷brush brQF0357向心力centripetal force sen5tripitl0358离心力centrifugal force sen5trifju^El0359螺旋桨调速器propeller governor0360油门杆throttle lever0361同步n synchronization7siNkrEnai5zeiFEn 0362异丙基酒精isopropyl alcohol7aisEu5prEupil0363乙醇,酒精ethyl alcohol5eWil0364乙烯乙二醇ethylene glycol5eWili:n5^laikCl 0365负载表loadmeter0366安培表ammeter0367刀轴,心轴arbor5B:bE0368持续的persistent0369趋势tendency0370化学稳定性chemical stability stE5biliti 0371素性plasticity plAs5tisiti 0372模子, 铸型mold0373复合结构composite structure5kCmpEzit 0374分层delamination di:9lAmI`neIFEn0375铝锂合金aluminum-lithium alloy5liWiEm0376紧固件fastener0377分离损伤的程度the extent of separation damage0378蜂窝结构honeycomb structure0379夹杂的水entrapped water0380发声(声波发射)acoustic emission E5ku:stIk 0381与…垂直be perpendicular to …7pE:pEn5dikjulE0382玻璃纤维fiberglass0383(一)批,(一)炉batch0384攻丝taper0385材料厚度的两倍two times the thickness of the material0386抑制剂inhibitor In`hIbItE 0387矩阵matrix5meitriks 0388沉闷(迟钝)的砰击声 a dull thud0389微球microballoon0390氯化物chloride5klC:raid 0391热塑性thermoplastic0392坩锅pot0393微黄色的yellowish0394浅的刮伤,擦伤shallow scratch0395表面疤痕superficial scar0396表面磨损surface abrasion E5breiVEn0397聚乙烯polyethylene7pCli5eWili:n0398红外线加热灯infrared heat lamp5infrE5red 0399电阻系数resistivity7ri:zis5tiviti0400催化v catalyze5kAtElaiz 0401定向v;东方n orient5C:riEnt 0402成层铺砌n layup0403聚酯polyester 5 pCliestE 0404切削用润滑液cutting fluid0405可溶解的soluble0406肥皂水soap water0407甲基乙基酮MEK methyl ethyl ketone5meWIl5eWil5ki:tEun 0408永久修理permanent repair0409带子,丝带ribbonaramid fiber(Kevlar)0410芳香族聚酯纤维(凯夫勒)0411脂肪族石脑油aliphatic naphtha7Ali5fAtik5nAfWE0412透明塑料transparent plastic0413网络,网状物network0414客舱内饰材料cabin upholstery material Qp5hEulstEri0415防火的fireproof0416阻燃的flame resistan0417粘合cement0418麻花钻twist drill0419树脂玻璃Plexiglas5pleksi^lB:s0420连接板,加强板gusset (plate)5^Qsit0421加强板reinforcing plate, doubler0422交叉,相交intersect0423肋rib0424梁spar, beam0425长hang,纵梁longeron5lCndVErEn 0426hang条string0427隔框bulkhead0428抛光,磨光polish, burnish0429铆钉间距rivet pitch0430铆接边距edge distance0431铆接行距transverse pitch0432埋头铆钉countersink rivet0433圆锥形的凹窝conical depression5kCnikEl 0434单/双刻纹挫single/double-cut file0435铰刀reamer0436包铝clad aluminum, Alclad0437半硬壳semi-monocoque5mCnEukEuk0438摩擦腐蚀fretting corrosion0439剥层腐蚀exfoliation corrosion eks9fEJlI`eIFEn0440时效硬化age hardening0441标记identifying mark0442标号designation0443冰箱铆钉icebox rivet, refrigerating revet0444变脆,脆化n embrittlement em5britlmEnt0445主要合金成分primary alloy agent0446阳极化处理anodic treatment E5nCdik0447冲孔punchMonel0448蒙乃尔合金(铜-镍合金)0449低碳钢(软钢)mild steel0450中碳钢medium steel0451高碳钢high steel, carbon steel, high-carbonsteel0452弯曲半径bend radius5reidjEs 0453弯曲余量bend allowance0454苛性钠,烧碱caustic soda0455醋酸acetic acid E5si:tik 0456弯曲中轴线neutral axis of the bend0457热处理heat treatment0458惰性气体iner gas0459熔池puddle0460消散,分散,散开n dissipation0461熔焊fusion welding0462氧炔焰oxyacetylene flame CksiE5setili:n0463中性焰neutral flame0464氧化焰oxidizing flame0465银焊silver solding0466钎焊solder0467鱼嘴焊fishmouth weld0468圆花焊rosette weld0469填充棒filler rod0470锡tin0471钼molybdenum mE5libdinEm0472兼容性compatibility kEm7pAti5biliti]0473welding rod0474研磨grind0475焊缝weld bead0476乙炔acetylene E5setili:n 0477焊枪welding torch0478惰性气体电弧焊inert-arc welding i5nE:t0479还原焰reducing flame0480青铜bronze0481槽口,缺口notch0482穿透n penetration peni5treiFEn0483溶剂solvent5sClvEnt0484溶液solution0485氮,氮气nitrogen5naitrEdVEn0486氢,氢气hydrogen5haidrEudVEn0487氦helium5hi:ljEm 0488氩argon5B:^Cn0489旋翼机rotorcraft0490尾桨auxiliary/tail rotor (blade)0491枢轴,支点pivot5pivEt0492总距collective pitch0493周距cyclic pitch5saIklIk 0494锐角acute angle E5kju:t 0495钝角obtuse angle Eb5tju:s 0496作用线line of action0497使倾斜tilt tilt0498悬停的直升机hovering helicopter5hCvE0499向前运动的叶片the advancing blade0500向后运动的叶片the retreating blade0501轨迹track0502绕纵轴运动延纵轴运动movement about/around thelongitudinal axismovement along the longitudinal axislCndVi5tju:dinl0503横轴lateral axis0504立轴vertical axis0505大翼上反角wing dihedral dai5hedrEl0506左大翼安装角the angle of incidence of the left wing0507压力中心the center of pressure0508升力中心the center of lift0509重心the center of gravity0510阻力drag0511单翼机monoplane5mCnEuplein0512改变大翼拱形(拱度)change the wing camber5kAmbE0513富勒式襟翼(后退偏转)fowler flap0514开缝式襟翼slotted flap0515分裂式襟翼(偏转裂开)split flap0516普通襟翼(原地偏转)plain flap0517展弦比aspect ratio5Aspekt0518翼展span0519力矩moment0520颤振fuffeting0521间歇性的,断断续续的intermittent7intE(:)5mitEnt0522紊流,湍流turbulence0523失速带stall strip0524量角器protractor prE5trAktE 0525机头迎风the nose into the wind0526大翼内侧部分inboard potion of the wing0527对称n symmetry5simitri0528上反角dihedral angle dai5hedrEl0529翼根wing root0530前梁front spar0531斜向地obliquely E5bli:kli 0532气泡水平仪bubble levering gauge0533直尺straightedge0534安全装臵(保险装臵)safety device0535开口销cotter pin0536锁垫片lockwasher0537保险丝safety wire0538星型垫片star washer0539灰口铁(piston ring)gray cast iron0540液压气门挺杆hydraulic valve lifter0541共振频率resonant frequency5rezEnEnt 0542气门杆valve stem0543气门导套valve guide0544气缸活塞上的三种活塞环oil control ringsoil wiper ringscompression rings0545蒸汽vapor, steam0546交流电AC alternating current0547直流电DC direct current0548有效电压effectiive voltage0549即时电压instantaneous voltage7instEn5teinjEs0550电压/电流波动voltage/current pulsation pQl`seIFEn 0551阻抗impedance im5pi:dEns0552电抗(含感抗及容抗)reactance ri5AktEns 0553电阻/电阻器(electrical) resistance/resistor0554电容/电容器/容抗capacitance/capacitor/capacitivereactance kE5pAsitEns /kE5pAsitE /kE5pAsitiv0555电感/电感器/感抗inductance/inductor/inductive reactance in5dQktEns]0556互感mutual inductance5mju:tjuEl0557工作电压wording voltage0558与…成正比/反比be directly/inversely proportional to…0559串联/并联 连接be connected in series/parallel5pArElel 0560微法。
燃气内燃机排气流量和排气能量估算方法
燃气内燃机排气流量和排气能量估算方法童航;李国敏;王宝玉;阮慧锋;孙亮【摘要】针对燃气内燃机出口排气流量和排气能量难以测量的问题,提出了碳平衡法和氧平衡法两种估算方法.以某分布式能源燃气内燃机测试数据为例,对影响其估算精度的各个因素进行分析,得出结论:估算精度主要受烟气成分、天然气流量、CH4含量影响;在烟气成分测量误差相同的情况下,采用碳平衡法估算排气流量和排气能量的误差较氧平衡法小.【期刊名称】《华电技术》【年(卷),期】2019(041)007【总页数】4页(P6-9)【关键词】燃气内燃机;排气流量;排气能量;碳平衡法;氧平衡法;精度【作者】童航;李国敏;王宝玉;阮慧锋;孙亮【作者单位】华电电力科学研究院有限公司,杭州 310030;华电电力科学研究院有限公司,杭州 310030;华电电力科学研究院有限公司,杭州 310030;华电电力科学研究院有限公司,杭州 310030;华电电力科学研究院有限公司,杭州 310030【正文语种】中文【中图分类】TK310 引言天然气分布式能源具有综合能效高、清洁环保、就近供应等优点,近年来,随着人们节能环保意识的不断增强,以燃气内燃机为原动机的分布式能源得到越来越多的应用。
燃气内燃机排气流量和排气能量是污染物排放总量统计和余热利用设备(溴化锂吸收式制冷机、余热锅炉等)能效测试过程中的关键参数。
ASME PTC4.4—2008 和 ASME PTC22—2005标准介绍了燃气轮机热平衡和余热锅炉热平衡两种估算燃气轮机排气流量的方法,通过联立燃气轮机或余热锅炉物质守恒和能量守恒方程,解出过量空气系数,进而求出排气流量和排气成分。
但该方法计算过程复杂,计算结果的准确度受余热锅炉散热损失和燃气轮机各项损失(发电机损失、传动装置损失、固定损失等)的预估精度影响较大[1-5]。
本文根据元素守恒原理,对天然气在内燃机中的燃烧过程进行简化,提出了碳平衡法和氧平衡法两种燃气内燃机排气流量和排气能量估算方法。
流体力学英语词汇
流体力学英语词汇acceleration 加速度average velocity 平均速度Bernoulli 伯努力boundary layer 边界层calculus 微积分coefficient of viscosity 粘性系数compressible(incompressible) (不)可压的conservation of mass(momentum, energy) 质量(动量,能量)守恒continuum 连续介质control-volume 控制体density(mass per unit volume) 密度differential 微分dimension 量刚尺度dynamics 动力学Euler 欧拉eulerian (lagrangian) method of description欧拉(拉格郎日)观点,方法field of flow 流场flow pattern 流型(谱)fluid mechanics 流体力学function 函数inertia 惯性, 惯量integral 积分kinematics 运动学kinetic (potential, internal) energy 动(势,内)能Lagrange 拉格郎日liquid 流体Newtonian fluids 牛顿流体(non)linear (非)线性(non)uniform (非)均匀one-dimensional 一维pathline 迹线perfect-gas law 理想气体定律pressure 压力压强Reynolds 雷诺shear(normal) stress 剪(正)应力solution 解答statics 静力学steady(unsteady) (非)定常strain 应变streamline(tube) 流线(管)thermal conductivity 热传导thermodynamics 热力学variable 变量vector 矢量velocity distribution 速度分布velocity field 速度场velocity gradient 速度梯度viscous(inviscid) (无)粘性的volume rate of flow 体积流量CHAPTER -2absolute (gage,vacuum) pressure 绝对(表,真空)压力area moment of inertia 惯性面积矩atmospheric pressure 大气压力barometer 气压计body force 体力Cartesian [rectangular] coordinates 直角坐标(系)centroid 质心elliptic 椭圆的equilibrium 平衡horizontal 水平的hydrostatic 水静力学,流体静力学hyperbolic 双曲线的mercury 水银moment 矩parabolic 抛物线plane (curved) surface 平(曲)面plate 板pressure center 压力中心pressure distribution(gradient) 压力分布(梯度) reservoir 水库rigid-body 刚体scalar 标量specific weight 比重surface force 表面力vertical 垂直的, 直立的CHAPTER -3Bernoulli equation 伯努力方程Boundaries 边界Conservation of mass 质量Control volume 控制体Energy(hydraulic) grade line 能级线Flux 流率Free body 隔离体Heat transfer 热传到Imaginary 假想Inlet, outlet 进,出口Integrand 被积函数Jet flow 射流Linear(Angular)-momentum relation 线(角)动量关系式Momentum(energy)-flux 动量(能量)流量Net force 合力No slip 无滑移Nozzle 喷嘴Rate of work 功率Reynolds transport theorem 雷诺输运定理Shaft work 轴功Stagnation enthalpy 制止焓Surroundings 外围System 体系Time derivative 时间导数Vector sum 矢量合Venturi tube 文图里管Volume(mass) flow 体积(质量)流量Volume(mass) rate of flow体积(质量)流率CHAPTER -4Soomth 平滑Laminar 层流Transition 转捩Roughness 粗糙度Random fluctuations 随机脉动Reynolds number 雷诺数(Re)Instability 不稳定性Breakdown 崩溃Mean value 平均值Drag 阻力Osborne ReynoldsDye filament 染色丝Internal (external) flow 内(外)流Cartesian 笛卡坐标Infinitesimal 无限小local acceleration 当地加速度dot product 点乘total derivative 全导数convective acceleration 对流加速度substantial(material) derivative 随体(物质)导数operator 算子partial differential equation 偏微分方程Newtonian fluid 牛顿流体Navier-Stokes Equations N-S方程Second-order 二阶Similarity 相似Nondimensionalization 无量纲化Flat-plate boundary layer 平板边界层Thermal conductivity 热传导Heat flow 热流量Fourier's law 傅立叶定律Couette Flow 库塔流动Channel 槽道Parallel plates 平行平板Pressure gradient 压力梯度No-slip condition 无滑移条件Poiseuille flow 伯肖叶流动Parabola 抛物线Wall shear stress 壁面剪应力Prandtl 普朗特Karman 卡门Momentum-integral relation 动量积分关系Momentum thickness 动量厚度Skin-friction coefficient 壁面摩擦系数Displacement thickness 排移厚度Blasius equation 布拉修斯方程Coordinate transformation 坐标变换Composite dimensionless variable 组合无量纲变量Shape factor 形状因子Velocity profile 速度剖面流体动力学 fluid dynamics连续介质力学 mechanics of continuous media介质 medium流体质点 fluid particle无粘性流体 nonviscous fluid, inviscid fluid连续介质假设 continuous medium hypothesis流体运动学 fluid kinematics水静力学 hydrostatics液体静力学 hydrostatics支配方程 governing equation伯努利方程 Bernoulli equation伯努利定理 Bernonlli theorem毕奥-萨伐尔定律 Biot-Savart law欧拉方程 Euler equation亥姆霍兹定理 Helmholtz theorem开尔文定理 Kelvin theorem涡片 vortex sheet库塔-茹可夫斯基条件 Kutta-Zhoukowski condition 布拉休斯解 Blasius solution达朗贝尔佯廖 d'Alembert paradox雷诺数 Reynolds number施特鲁哈尔数 Strouhal number随体导数 material derivative不可压缩流体 incompressible fluid质量守恒 conservation of mass动量守恒 conservation of momentum能量守恒 conservation of energy动量方程 momentum equation能量方程 energy equation控制体积 control volume液体静压 hydrostatic pressure 涡量拟能 enstrophy压差 differential pressure流[动] flow流线 stream line流面 stream surface流管 stream tube迹线 path, path line流场 flow field流态 flow regime流动参量 flow parameter流量 flow rate, flow discharge 涡旋 vortex涡量 vorticity涡丝 vortex filament涡线 vortex line涡面 vortex surface涡层 vortex layer涡环 vortex ring涡对 vortex pair涡管 vortex tube涡街 vortex street卡门涡街 Karman vortex street 马蹄涡 horseshoe vortex对流涡胞 convective cell卷筒涡胞 roll cell涡 eddy涡粘性 eddy viscosity环流 circulation环量 circulation速度环量 velocity circulation 偶极子 doublet, dipole驻点 stagnation point总压[力] total pressure总压头 total head静压头 static head总焓 total enthalpy能量输运 energy transport速度剖面 velocity profile库埃特流 Couette flow单相流 single phase flow单组份流 single-component flow均匀流 uniform flow非均匀流 nonuniform flow二维流 two-dimensional flow三维流 three-dimensional flow准定常流 quasi-steady flow非定常流 unsteady flow, non-steady flow 暂态流 transient flow周期流 periodic flow振荡流 oscillatory flow分层流 stratified flow无旋流 irrotational flow有旋流 rotational flow轴对称流 axisymmetric flow不可压缩性 incompressibility不可压缩流[动] incompressible flow浮体 floating body定倾中心 metacenter阻力 drag, resistance减阻 drag reduction表面力 surface force表面张力 surface tension毛细[管]作用 capillarity来流 incoming flow自由流 free stream自由流线 free stream line外流 external flow进口 entrance, inlet出口 exit, outlet扰动 disturbance, perturbation分布 distribution传播 propagation色散 dispersion弥散 dispersion附加质量 added mass ,associated mass收缩 contraction镜象法 image method无量纲参数 dimensionless parameter 几何相似 geometric similarity运动相似 kinematic similarity动力相似[性] dynamic similarity平面流 plane flow势 potential势流 potential flow速度势 velocity potential复势 complex potential复速度 complex velocity流函数 stream function源 source汇 sink速度[水]头 velocity head拐角流 corner flow空泡流 cavity flow超空泡 supercavity超空泡流 supercavity flow空气动力学 aerodynamics低速空气动力学 low-speed aerodynamics 高速空气动力学 high-speed aerodynamics 气动热力学 aerothermodynamics亚声速流[动] subsonic flow跨声速流[动] transonic flow超声速流[动] supersonic flow锥形流 conical flow楔流 wedge flow叶栅流 cascade flow非平衡流[动] non-equilibrium flow细长体 slender body细长度 slenderness钝头体 bluff body钝体 blunt body翼型 airfoil翼弦 chord薄翼理论 thin-airfoil theory构型 configuration后缘 trailing edge迎角 angle of attack失速 stall脱体激波 detached shock wave波阻 wave drag诱导阻力 induced drag诱导速度 induced velocity临界雷诺数 critical Reynolds number 前缘涡 leading edge vortex附着涡 bound vortex约束涡 confined vortex气动中心 aerodynamic center气动力 aerodynamic force气动噪声 aerodynamic noise气动加热 aerodynamic heating离解 dissociation地面效应 ground effect气体动力学 gas dynamics稀疏波 rarefaction wave热状态方程 thermal equation of state喷管 Nozzle普朗特-迈耶流 Prandtl-Meyer flow瑞利流 Rayleigh flow可压缩流[动] compressible flow可压缩流体 compressible fluid绝热流 adiabatic flow非绝热流 diabatic flow未扰动流 undisturbed flow等熵流 isentropic flow匀熵流 homoentropic flow兰金-于戈尼奥条件 Rankine-Hugoniot condition 状态方程 equation of state量热状态方程 caloric equation of state完全气体 perfect gas拉瓦尔喷管 Laval nozzle马赫角 Mach angle马赫锥 Mach cone马赫线 Mach line马赫数 Mach number马赫波 Mach wave当地马赫数 local Mach number 冲击波 shock wave激波 shock wave正激波 normal shock wave斜激波 oblique shock wave头波 bow wave附体激波 attached shock wave 激波阵面 shock front激波层 shock layer压缩波 compression wave反射 reflection折射 refraction散射 scattering衍射 diffraction绕射 diffraction出口压力 exit pressure超压[强] over pressure反压 back pressure爆炸 explosion爆轰 detonation缓燃 deflagration水动力学 hydrodynamics液体动力学 hydrodynamics泰勒不稳定性 Taylor instability 盖斯特纳波 Gerstner wave斯托克斯波 Stokes wave瑞利数 Rayleigh number自由面 free surface波速 wave speed, wave velocity 波高 wave height波列 wave train波群 wave group波能 wave energy表面波 surface wave表面张力波 capillary wave规则波 regular wave不规则波 irregular wave浅水波 shallow water wave深水波 deep water wave重力波 gravity wave椭圆余弦波 cnoidal wave潮波 tidal wave涌波 surge wave破碎波 breaking wave船波 ship wave非线性波 nonlinear wave孤立子 soliton水动[力]噪声 hydrodynamic noise 水击 water hammer空化 cavitation空化数 cavitation number空蚀 cavitation damage超空化流 supercavitating flow 水翼 hydrofoil水力学 hydraulics洪水波 flood wave涟漪 ripple消能 energy dissipation海洋水动力学 marine hydrodynamics 谢齐公式 Chezy formula欧拉数 Euler number弗劳德数 Froude number水力半径 hydraulic radius水力坡度 hvdraulic slope高度水头 elevating head水头损失 head loss水位 water level水跃 hydraulic jump含水层 aquifer排水 drainage排放量 discharge壅水曲线 back water curve压[强水]头 pressure head过水断面 flow cross-section明槽流 open channel flow孔流 orifice flow无压流 free surface flow有压流 pressure flow缓流 subcritical flow急流 supercritical flow渐变流 gradually varied flow急变流 rapidly varied flow临界流 critical flow异重流 density current, gravity flow 堰流 weir flow掺气流 aerated flow含沙流 sediment-laden stream降水曲线 dropdown curve沉积物 sediment, deposit沉[降堆]积 sedimentation, deposition 沉降速度 settling velocity流动稳定性 flow stability不稳定性 instability奥尔-索末菲方程 Orr-Sommerfeld equation 涡量方程 vorticity equation泊肃叶流 Poiseuille flow奥辛流 Oseen flow剪切流 shear flow粘性流[动] viscous flow层流 laminar flow分离流 separated flow二次流 secondary flow近场流 near field flow远场流 far field flow滞止流 stagnation flow尾流 wake [flow]回流 back flow反流 reverse flow射流 jet自由射流 free jet管流 pipe flow, tube flow内流 internal flow拟序结构 coherent structure 猝发过程 bursting process表观粘度 apparent viscosity 运动粘性 kinematic viscosity 动力粘性 dynamic viscosity泊 poise厘泊 centipoise厘沱 centistoke剪切层 shear layer次层 sublayer流动分离 flow separation层流分离 laminar separation 湍流分离 turbulent separation 分离点 separation point附着点 attachment point再附 reattachment再层流化 relaminarization起动涡 starting vortex驻涡 standing vortex涡旋破碎 vortex breakdown涡旋脱落 vortex shedding压[力]降 pressure drop压差阻力 pressure drag压力能 pressure energy型阻 profile drag滑移速度 slip velocity无滑移条件 non-slip condition壁剪应力 skin friction, frictional drag 壁剪切速度 friction velocity磨擦损失 friction loss磨擦因子 friction factor耗散 dissipation滞后 lag相似性解 similar solution局域相似 local similarity气体润滑 gas lubrication液体动力润滑 hydrodynamic lubrication浆体 slurry泰勒数 Taylor number纳维-斯托克斯方程 Navier-Stokes equation牛顿流体 Newtonian fluid边界层理论 boundary later theory边界层方程 boundary layer equation边界层 boundary layer附面层 boundary layer层流边界层 laminar boundary layer湍流边界层 turbulent boundary layer温度边界层 thermal boundary layer边界层转捩 boundary layer transition边界层分离 boundary layer separation边界层厚度 boundary layer thickness位移厚度 displacement thickness本文来自: 恒星英语学习网() 详细出处参考:/word/sxwl/2009-01-26/66896.html动量厚度 momentum thickness能量厚度 energy thickness焓厚度 enthalpy thickness注入 injection吸出 suction泰勒涡 Taylor vortex速度亏损律 velocity defect law形状因子 shape factor测速法 anemometry粘度测定法 visco[si] metry流动显示 flow visualization油烟显示 oil smoke visualization孔板流量计 orifice meter频率响应 frequency response油膜显示 oil film visualization阴影法 shadow method纹影法 schlieren method烟丝法 smoke wire method丝线法 tuft method氢泡法 nydrogen bubble method相似理论 similarity theory相似律 similarity law部分相似 partial similarity定理 pi theorem, Buckingham theorem 静[态]校准 static calibration动态校准 dynamic calibration风洞 wind tunnel激波管 shock tube激波管风洞 shock tube wind tunnel水洞 water tunnel拖曳水池 towing tank旋臂水池 rotating arm basin扩散段 diffuser测压孔 pressure tap皮托管 pitot tube普雷斯顿管 preston tube斯坦顿管 Stanton tube文丘里管 Venturi tubeU形管 U-tube压强计 manometer微压计 micromanometer多管压强计 multiple manometer静压管 static [pressure]tube流速计 anemometer风速管 Pitot- static tube激光多普勒测速计 laser Doppler anemometer, laser Doppler velocimeter 热线流速计 hot-wire anemometer热膜流速计 hot- film anemometer流量计 flow meter粘度计 visco[si] meter涡量计 vorticity meter传感器 transducer, sensor压强传感器 pressure transducer热敏电阻 thermistor示踪物 tracer时间线 time line脉线 streak line尺度效应 scale effect壁效应 wall effect堵塞 blockage堵寒效应 blockage effect动态响应 dynamic response响应频率 response frequency底压 base pressure菲克定律 Fick law巴塞特力 Basset force埃克特数 Eckert number格拉斯霍夫数 Grashof number努塞特数 Nusselt number普朗特数 prandtl number雷诺比拟 Reynolds analogy施密特数 schmidt number斯坦顿数 Stanton number对流 convection自由对流 natural convection, free convec-tion 强迫对流 forced convection热对流 heat convection质量传递 mass transfer传质系数 mass transfer coefficient热量传递 heat transfer传热系数 heat transfer coefficient对流传热 convective heat transfer辐射传热 radiative heat transfer动量交换 momentum transfer能量传递 energy transfer传导 conduction热传导 conductive heat transfer热交换 heat exchange临界热通量 critical heat flux浓度 concentration扩散 diffusion扩散性 diffusivity扩散率 diffusivity扩散速度 diffusion velocity分子扩散 molecular diffusion沸腾 boiling蒸发 evaporation气化 gasification凝结 condensation成核 nucleation计算流体力学 computational fluid mechanics 多重尺度问题 multiple scale problem伯格斯方程 Burgers equation对流扩散方程 convection diffusion equation KDU方程 KDV equation修正微分方程 modified differential equation 拉克斯等价定理 Lax equivalence theorem数值模拟 numerical simulation大涡模拟 large eddy simulation数值粘性 numerical viscosity。
关于连铸凝固传热数值模拟中钢液有效导热系数的探讨 2009
第6期 2009年12月连铸Continuous CastingNo.6December 2009关于连铸凝固传热数值模拟中钢液有效导热系数的探讨邹达基, 邹宗树(东北大学材料与冶金学院,辽宁沈阳110004)摘 要:在建立板坯连铸一维非稳态凝固传热数学模型的基础上,考虑到液相区的流动和传热状态随拉坯方向的变化,研究了有效导热系数与固相导热系数的比值m (λeff /λs )的处理方法对计算结果的影响。
结果表明,在相同的二冷条件下,m 取不同的常数对模型计算结果影响很大。
在相同的二冷条件下,将m 取为常数和取为随拉坯方向变化的变量都可以得到相同的液相穴深度,但二者的凝固壳厚度随拉坯方向的变化有一定的差别,并且出结晶器坯壳厚度差别较大。
改变二冷条件,上述二者液相穴深度不再相等。
因此,将m 取为常数的处理方法是不合理的。
关键词:板坯连铸;凝固传热;数值模拟;液相有效导热系数中图分类号:TF777.1 文献标识码:A 文章编号:100524006(2009)0620005204Discussion on E ffective Therm al Conductivity of Molten Steel inNumerical Simulation of Solidif ication in Continuous C astingZOU Da 2ji , ZOU Zo ng 2shu(School of Materials and Metallurgy ,Northeastern University ,Shenyang ,110004,Liaoning ,China )Abstract :Considering the variation of flow and heat transfer conditions in the region of slab continuous castingstrand ,the influence of m (λeff /λS )ratio of effective thermal conductivity to solid thermal conductivity on simulationresult was studied with a one 2dimensional unsteady solidification heat transfer model.The results showed that under the same secondary cooling condition ,the value of m has a great effect on the model calculating result ;the same depth of liquid core can be obtained with a constant m or a variable m along with casting direction ,but the variations of solidified shell thickness are different f rom each other ,particularly at the exit of the mold.Moreover ,if the sec 2ondary cooling condition is changed ,the depths of liquid core will no longer be equal to each other.Therefore ,the taking m as a constant is unreasonable.K ey w ords :slab continuous casting ;solidification heat transfer ;numerical simulation ;liquid effective thermal con 2ductivity作者简介:邹达基(19862),男,硕士生; E 2m ail :daji141@ 修订日期:2009206217符号表τ———时间,st p ———浇注温度,℃q w ———热流密度,W/m 2A ,B ———常数τ0———凝固时间,s α———对流给热系数,W/(m 2・℃)t w ———铸坯表面温度,℃t f 1———冷却水温度,℃t f 2———环境温度,℃W ———水流密度,L/m 2・s ε———铸坯表面黑度,一般取0.8σ———波尔兹曼常数,5.67×10-8W/(m 2・K 4)T ———温度,℃T l ,T s ———液相线、固相线温度,℃f s ———固相率C s ,C l ,C s -l ———固相区、液相区、两相区比热容,J /(kg ・℃)L f ———凝固潜热,低碳钢可取310800J /kg [2]λs ———固相导热系数,W/(m ・℃)λeff ———有效导热系数,W/(m ・℃)1 问题的提出在凝固传热的数值模拟中,对液相导热系数的处理是必须解决的问题。
A105_锻钢球阀激光深熔焊接工艺优化及组织性能研究
2024 年temperature field of QFP element pin brazing[J]. Weld‐ing machine, 2017, 47(09): 57-61.[3] Gillner A,Holtkamp J,Hartmann C,et al. Laser appli‐cations in microtechnology[J]. Journal of MaterialsProcessing Technology, 2005, 167(2-3): 494-498.[4] TIAN Y, WANG C, LIU D. Thermomechanical behav‐iour of PBGA package during laser and hot air reflowsoldering[J]. Modelling and Simulation in MaterialsScience and Engineering, 2004, 12(2): 235-237.[5] 刘炜,周德俭. QFP器件激光软钎焊温度场的建模与仿真[J]. 桂林电子科技大学学报, 2014, 34(01):21-24.LIU W, ZHOU D J. Modeling and simulation of lasersoldering temperature field of QFP devices[J]. Journalof Guilin University of Electronic Science and Technol‐ogy, 2014, 34(01): 21-24.[6] 余淑荣,陈秀娟,刘剑,等. 激光对接异厚度铝/钢熔钎焊温度场及残余应力场的数值模拟[J]. 兰州理工大学学报, 2017, 43(02): 25-29.YU S R, CHEN X J, LIU J, et al. Numerical simula‐tion of temperature field and residual stress field of la‐ser butt brazing of aluminum/steel with different thick‐ness[J]. Journal of Lanzhou University of Technology,2017, 43(02): 25-29.[7] 刘曰利,周鹏宇,李利敬. SnBiAg无铅钎料激光钎焊工艺的数值模拟与实验研究[J]. 武汉理工大学学报,2019, 41(06): 31-38.LIU Y L,ZHOU P Y,LI L J. Numerical simulationand experimental study on laser brazing process of Sn‐BiAg lead-free solder[J]. Journal of Wuhan Universityof Technology, 2019, 41(06): 31-38.[8] 李绍伟,王付鑫. 镀锌钢板卷对接头激光钎焊过程温度场模拟的实验验证[J]. 世界有色金属, 2020(18):12-13.LI S W,WANG F X. Experimental verification of tem‐perature field simulation of laser brazing process of gal‐vanized steel coil[J]. World Nonferrous Metals,2020(18): 12-13.[9] YANG Z,LI L,CHEN W, et al. Numerical and experi‐mental study on laser soldering process of SnAgCulead-free solder[J]. Materials Chemistry and Physics,2021, 273: 125046-125047.[10] KUNWAR A,SHANG S,RABACK P,et al. Heat and mass transfer effects of laser soldering ongrowth behav‐ior of interfacial intermetallic compounds in Sn/Cu andSn-3.5 Ag0.5/Cu joints[J]. Microelectronics Reliabil‐ity, 2018, 80: 55-67.[11] 赵庆宇,秦坤,万焱. 激光焊接1Cr17铁素体不锈钢温度场数值模拟[J]. 宽厚板, 2021, 27(03): 37-40.ZHAO Q Y, QIN K, WAN Y. Numerical simulation oftemperature field of laser welded 1Cr17 ferritic stain‐less steel[J]. Wide Plate, 2021, 27(03): 37-40.[12] 张立艳,董万鹏,刘雅芳,等. 基于ANSYS的激光焊接温度场数值模拟与实验研究[J]. 轻工机械, 2017,35(01): 45-49.ZHANG L Y, DONG W P, LIU Y F, et al. Numericalsimulation and experimental study of laser welding tem‐perature field based on ANSYS[J]. Light industry ma‐chinery, 2017, 35(01): 45-49.[13] OGAWA K,DENG D,KIYOSHIMA S,et al. Investiga‐tions on welding residual stresses in penetration nozzlesby means of 3D thermal elastic plastic FEM and experi‐ment[J]. Computational materials science,2009,45(4): 1031-1042.[14] 张立艳,董万鹏. 激光焊接应力场数值模拟的研究进展[J]. 热加工工艺, 2016, 45(13): 8-10.ZHANG L Y,DONG W P. Research progress in nu‐merical simulation of laser welding stress field[J]. HotProcessing Technology, 2016, 45(1): 8-10.[15] 卢艳,张静,胡敬佩,等. 激光焊接铝合金材料过程的建模与仿真[J]. 热加工工艺,2012,41(01):130-133.LU Y,ZHANG J,HU J P,et al. Modeling and simula‐tion of laser welding process of aluminum alloy[J].Hot working process, 2012,41(01):130-133.[16] Yoon J W,Noh B I,Kim B K,et al. Wettability and in‐terfacial reactions of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cusolder joints[J]. Journal of Alloys and Compounds,2009, 486(1-2): 142-147.[17] Huan P C,Tang X X,Sun Q,et al. Comparative study of solder wettability on aluminum substrate andmicrostructure-properties of Cu-based component/alumin-um laser soldering joint[J]. Materials & De‐sign, 2022, 215: 110485-110487.[18] Meco S,Pardal G,Ganguly S,et al. Application of la‐ser in seam welding of dissimilar steel to aluminiumjoints for thick structural components[J]. Optics andLasers in Engineering, 2015, 67: 22-30.[19] Deng S,Yuan R,Tang X,et al. Migration behavior of IMC layer in twin-spot laser welding-soldering of alu‐minum to steel[J]. Materials & Design,2020,188:108489.编辑部网址:http://88Electric Welding MachineVol.54 No.3Mar. 2024第 54 卷 第 3 期2024 年3 月A105锻钢球阀激光深熔焊接工艺优化及组织性能研究王申1, 王栋2, 冯涛3, 杨香1, 汪思鹏1, 魏志宏11.安徽理工大学 机械工程学院,安徽 淮南 2320012.安徽理工大学 人工智能学院,安徽 淮南 2320013.江苏诚功阀门科技有限公司,江苏 常州 213000摘 要:采用正交试验对5 mm 厚A105锻钢管件激光深熔焊接工艺参数进行优化,确定了各工艺参数对各响应量的影响程度及最优焊接工艺,对该最优工艺参数下焊接接头组织和力学特性进行研究。
汉英地质学名词
汉英地质学名词(1993)面角守恒定律||law of constancy of angle面金属量||areal productivity面状构造||planar structure庙坡组||Miaopo Formation妙高阶||Miaogaoan Stage妙高期||Miaogaoan Age妙高组||Miaogao Formation敏感系数||sensitivity ratio敏感粘土||sensitive clay明矾石||alunite明化镇组||Minghuazhen Formation明水组||Mingshui Formation模||mold模拟实验||simulation experiment模式年龄||model age磨拉石||molasse磨蚀[作用]||abrasion莫尔包络线||Mohr failure envelope莫尔图||Mohr diagram莫尔应力圆||Mohr stress circle莫来石||mullite莫氏硬度||Moh's hardness莫斯科阶||Moscovian Stage莫斯科期||Moscovian Age墨西拿阶||Messinian Stage墨西拿期||Messinian Age木栓质体||suberinite穆斯堡尔谱||Moessbauer spectrum穆斯堡尔效应||Moessbauer effect钠长石-绿帘石-角岩相||albite-epidote-hornfels facies钠长石||albite钠交代型铀矿||sodic-metasomatism type uranium deposit钠闪石||riebeckite钠铁闪石||arfvedsonite; 又称“亚铁钠闪石”。
钠硝石||soda niter, nitronatrite, nitratine; 又称“智利硝石”。
钠硝石矿床||soda niter deposit, nitratine deposit; 又称“智利硝石矿床”。
介质阻挡放电去除NO的实验研究_赵文华
文章编号:025322468(2004)0120107204 中图分类号:O539 文献标识码:A介质阻挡放电去除NO 的实验研究赵文华,张旭东 (清华大学工程力学系,北京 100084)摘要:设计了一套高压电源和同轴圆柱-筒介质阻挡放电反应器装置,进行了冷等离子体去除NO 的实验研究,结果表明该方法是有效的.研究了气体流量、NO 初始浓度、放电电压、O 2含量以及中心电极尺寸对NO 去除效率的影响.当流量较小或NO 初始浓度较低时,有较高的去除率;流量变大和NO 初始浓度增加时,NO 的去除率将下降.放电电压升高,NO 去除率将增大.O 2的存在会降低NO 的去除率.放电管其它特征尺寸给定条件下,中心电极存在一个最佳直径,使得NO 的去除效果最为理想.关键词:介质阻挡放电;冷等离子体;NO 去除The experimental research of N O removal with the dielectric barrier dis 2charge non 2thermal plasmaZH AO W enhua ,ZH ANG Xudong (Department of Engineering M echanics ,Tsinghua University ,Beijing 100084)Abstract :A set of experimental setup of the high v oltage power and coaxial cylinder 2tube dielectric barrier discharge reaction vessel is designed to investigate NO rem oval with non 2thermal plasma produced by barrier discharges.The method is proved to be effective.The in fluences of the gas flow rate ,NO initial concentration ,applied v oltage ;contents of O 2and the diameter of the central electrode on the NO rem oval rate are al 2s o investigated respectively.The NO rem oval rate is high at small gas flow rate or low NO initial concentration ,while it will decrease remark 2ably with the gas flow rate or NO initial concentration increasing.M oreover ,the rem oval rate will increase with the discharge v oltage increas 2ing.The existence of O 2can lead to the decreasing of the NO rem oval rate.The diameter of the central electrode will als o in fluence the NO re 2m oval rate ,and when the other conditions are given ,the optimal NO rem oval rate can be obtained through the optim ization of the diameter of the central electrode.K eyw ords :dielectric barrier discharge ;non 2thermal plasma ;NO rem oval收稿日期:2003202224;修订日期:2003205229作者简介:赵文华(1938—),男,教授zhaowh @ 汽车排气现已成为继煤烟之后城市主要的污染源,控制汽车排气污染成为各国竞相研究的重要课题.目前,有许多种汽车尾气排放控制的技术,如废气再循环(EG R )、燃油添加剂、附加催化反应装置等,这些技术各有优缺点.相比C O 和HC ,NO x 的去除更为困难[1].因此有待研究能够高效去除NO x 的新技术.作为一种独特的方法,近些年来,冷等离子体(non 2thermal plas 2ma )在空气污染净化,尤其是NO x 去除方面的应用逐渐引起了人们的重视[2].产生冷等离子体的方法有多种,例如电晕放电、介质阻挡放电等.这两种方法所用设备均非常简单,具有实用价值.本文设计了一套工频高压电源和同轴圆柱2筒电极介质阻挡放电装置,对介质阻挡放电去除NO (汽车尾气中NO x 的80%是NO [3])进行了初步的研究.1 实验系统实验系统如图1所示.整个系统可以分为4部分:供气系统、电源及其控制系统、放电管反应器与气体检测系统.供气系统包括NO 标准气气瓶(919%NO +N 2)和N 2ΠO 2混合气气瓶(9915%N 2+015%O 2)(研究O 2含量对NO 去除的影响除外),以及配套的流量调节装置.调节第24卷第1期2004年1月环 境 科 学 学 报ACT A SCIE NTI AE CIRCUMST ANTI AE V ol.24,N o.1Jan.,2004图1 实验系统示意图Fig.1 Schematic diagram of theexperimental system 两种混合气的流量,可得到不同NO 浓度的NO ΠN 2ΠO 2混合气体.实验所用的电源由以下几部分组成:电源控制箱、1∶250升压变压器、电源输入遥控装置以及调压遥控装置.电源控制箱将输入的工频(50H z )电经调压后输入变压器,同时显示电压及电流信号.当回路中电流超过设定值时,控制箱自动切断电源.为安全和操作方便起见,电源开关和电压调节均采用遥控装置进行操作.放电管反应器结构如图2所示.管外层均匀包裹一层锡箔,和高压电源的地端相连.处理后的气体经出气口和管路相连排出,接受气体分析仪器检测.11绝缘塞子 21进(出)气口 31中心电极41接地电极 51石英玻璃套管图2 同轴圆柱2筒电极介质阻挡放电管反应器结构图Fig.2 Schematic of coaxial cylinder 2tube electrodedielectric barrier discharge reaction vessel 放电区长度(即为锡箔层接地电极的长度):L =250mm.中心电极直径D 1=1418mm(研究中心电极直径对NO 去除的影响除外).石英玻璃管介质层内径D 2=2010mm.采用K M900型便携式烟气分析仪来分析气体组分.该仪器可自动分析混合气体中的多种组分(如N 2、O 2、NO 、NO x 、S O x 等)的含量.2 实验结果采用上述系统进行了初步实验,混合气体经过放电处理后,NO 浓度会降低.对放电处理后的混合气体进行成份分析,其成份仍然是N 2、O 2和NO.说明冷等离子体去除NO 的反应产物主要是N 2和O 2,这和文献[4]中给出的冷等离子体还原NO 的机理是相一致的.在此基础上,本文进一步研究了气体流量、NO 初始浓度、施加电压、O 2含量以及中心电极直径对NO 去除效果的影响.为叙述方便,定义如下符号:混合气体流量:Q (m 3Πh );NO 初始浓度:C in (10-6);NO 残余浓度:C out (10-6);NO 去除率:η=C in -C out C in×100%.211 气体流量和NO 初始浓度对去除率的影响中心电极施加电压固定(U =16kV ),改变混合气体流量(Q =0105、0106、0108、0110、0112、0115、0120、0125m 3Πh ),在不同NO 初始浓度(C in =100×10-6、200×10-6、300×10-6、400×10-6、500×10-6、600×10-6)下进行实验.结果见图3.从图3看出,流量较小、NO 初始浓度较低的情况下,均可取得比较好的去除效果.212 电压对去除率的影响给定初始浓度C in =400×10-6,在不同混合气体流量下改变中心电极电压进行了实验.结果如图4所示.实验发现,当中心电极电压U 升至615kV 时,放电管排出的混合气的NO 浓度突然减小.电压增加,NO 去除率随之增加.213 O 2对NO 去除率的影响固定混合气体流量(Q =011m 3Πh )(加入O 2后的流量)情况下,在不同NO 入口浓度C in 下,801环 境 科 学 学 报24卷 (a )η2Q 关系 (b )η2C in 关系图3 N O 初始浓度和混合气体流量对N O 去除率的影响Fig.3 In fluences on the NO rem oval rate of NO initial concentration and gas flow rate加入不同比率的O 2(2%、4%、6%、8%),进行实验.结果如图5所示.从图中可以看出,O 2的加入会导致相同情况下NO 去除率降低,O 2加入的量越多,去除率降低得也越多.当O 2含量达到8%时,NO 去除率降低不到10%.图4 C i n =400×10-6时不同流量下N O 去除率随中心电极电压的变化关系Fig.4 Curves of η2U at different gas flow ratesand C in =400ppm 图5 Q =011m 3Πh ,不同O 2含量下的η2C i n 曲线Fig 15 Curves of η2C in with different O 2contents at Q =0110m 3Πh(a )Q =0110m 3Πh 的η2C in 关系 (b )C in =400×10-6的η2Q 关系图6 中心电极直径对N O 去除率的影响Fig.6 In fluences on the NO rem oval rate of the diameter of the central electrode214 中心电极直径对去除率的影响保持放电管其它特征参数不变,采用3支直径分别为12mm (M1)、1418mm (M2)与16mm (M3)的不同中心电极,进行了2组实验.图6(a )是混合气体流量一定(Q =0110m 3Πh )时,NO 去除率随初始浓度的变化曲线.图6(b )是NO 初始浓度一定(C in =400×10-6)时,去除率随混合气体流量的变化曲线.实验结果显示,中心电极直径变化对NO 的去除有着显著的影响.采用M2电极时NO 的去除率在3种情况里最高,这说明在放电管其他特征参数给定的条件下,中心电极直径既非9011期赵文华等:介质阻挡放电去除NO 的实验研究011环 境 科 学 学 报24卷越大越好,也非越小越好,存在一个最佳值,使得NO的去除率最高.3 分析与讨论根据冷等离子体去除NO的反应机理[4],可知放电生成的高能电子数密度的大小对NO的去除效果有关键性的影响.更深入的研究[5]指出,对于介质阻挡放电管去除NO的情形,影响去除率的还有2个关键因素:气体在放电管内的停留时间与有效的放电时间.气体的流量越小,在放电管内的停留时间越长,去除NO的反应发生得也就越多,从而NO的去除率就越高.文献[6]指出,O2的加入会降低放电产生的高能电子数的密度,这将导致NO去除率的降低.除去外界加入的O,NO被还原后生成的O2同样也会影响高能电子数的密度.NO初始浓2的浓度也越高,因而NO去除率也越低.对于介质阻挡放电进行数值模度越高,反应生成的O2拟的结果表明[7],尽管外加电压在一个较大范围内变化,但放电时由于空间电荷的屏蔽作用,放电间隙内的电场强度基本保持不变,也就是说,电压的变化对高能电子数密度没有太大的影响.但由于在交变电压变化的整个周期内,并不都在放电[8],只有当施加电压达到起始击穿电压时,才开始放电,而当施加电压达到峰值电压时,放电截止.因此在一个周期内,只有部分时间发生去除NO的反应.施加电压提高,将延长有效的放电时间,从而会提高NO的去除效率.中心电极直径的变化会影响起始击穿电压[6],进而影响有效的放电时间.中心电极直径越大,起始放电电压越低,电源变化的一个周期内有效放电时间越长,有助于提高NO的去除效率;但同时,气隙的截面积随着中心电极直径的增大而减小,气体在放电管内的停留时间缩短了.因此,不需改变其他条件,选择合适直径的中心电极,即可使得NO的去除效率达到最佳.4 结论(1)混合气体的流量以及NO的初始浓度对NO的去除有着明显的影响.流量较小和初始浓度较低时,可以达到很好的去除效果.流量和初始浓度增加,NO去除率都将下降.(2)放电电压对NO去除率有显著的影响.电压越高,去除率越大.(3)O2的存在会降低NO的去除率,O2含量越高,NO的去除率越低.(4)保持其他条件不变,改变中心电极的直径对NO的去除率也有影响.中心电极直径存在一最佳值,使得放电管去除NO的效率最高.参考文献:[1] Sawyer R F,Harley R A,Cadle S H,et al.M obile s ources critical review:1998NARST O assessment[J].Atm ospheric Environ2ment,2000,34:2161—2181[2] Hacham R,Akiyama H.Air pollution control by electrical discharges[J].IEEE T ransactions on Dielectrics and E lectrical Insula2tion,2000,7(5):654—683[3] Fujii T om io,Rea M assim o.T reatment of NO x in exhaust gas by corona plasma over water surface[J].Vacuum,2000,59:228—235[4] G al A,K urahashi M,K uzum oto M.An energy2consum ption and byproduct2generation analysis of the discharge non2thermal plasma2chem ical NO2reduction process[J].Journal of Physics D:Applied Physics,1999,32:1163—1168[5] 张旭东.介质阻挡放电冷等离子体去除NO的研究[D].北京:清华大学,2003[6] 王文春,吴彦,李学初,等.NO,N2气体中电源放电高能电子密度分布的光谱实验研究[J].环境科学学报,1998,18(1):51—55[7] Penetrante Bernie M,Hsiao M ark C,M erritt Bernard T,et al.C om paris on of electrical discharge techniques for non2thermal plasmaprocessing of NO in N2[J].IEEE T ransactions on Plasma Science,1995,23(4):679—687[8] 徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1995:309—335。
基于MCNP的反应堆建模方法
由于蒙特卡罗 (Monte Carlo, MC) 方法相比于 确定性方法 (如 Boltzmann 输运方程的数值解),能
收稿日期:2020−10−14. 网络出版日期:2021−04−14. 基金项目:国家自然科学基金项目 (51379046);黑龙江省自然科
学基金项目 (E2017023). 作者简介:王武,男,硕士研究生.
关键词:反应堆;MCNP;不可分辨共振区概率表;自由气体热散射;热中子 S(α, β) 模型;有效增值因子;堆芯能谱;功率分布
中图分类号:(2021)04−0092−06
Reactor physical modeling method based on MCNP
使用MCNP 中的lattice(lat) 卡、fill 卡以及universe (u) 卡对燃料组件几何进行分级描述。以 E 类组 件为例,组件结构分三级描述,第一级为组件,第 二级为填充组件的栅格,第三级为填充栅格的燃 料棒、控制棒以及水。首先,描述燃料棒以及周围 的水并分配世界体编号 u=2。然后,描述控制棒,由 于一个控制棒栅格占据 4 个燃料棒栅格的位置, 而使用 lat 卡和 fill 卡进行矩阵式填充时栅格的大 小必须一致,所以需要将控制棒栅格划分成 4 个 大小相同的栅格并分别分配世界体编号 u=3、u=4、 u=5 和 u=6,每个栅格中都包含有 1/4 控制棒、1/4 导向管以及除控制棒和导向管以外的水。接着,定 义参考栅格,并使用 lat 卡和 fill 卡将各个世界体 填充的栅格按[ 矩阵形式] 进行重复,其中参考栅格 作为矩阵的 0 0 0 元素。为所有栅格分配世 界体编号 u=1,最后使用 fill=1 将栅格填入组件中。 图 2 为 MCNP5 构建的 E 类组件模型的径向截面图, 其中不同的颜色代表不同的材料。其他 E 类组件只 需要使用 like…but…卡进行复制和坐标变换。除 燃料组件以外其他堆芯结构 (如围板、吊篮、压力容 器等) 的几何描述相对比较简单,因此不再详述。 图 3 为 MCNP 构建的堆芯整体模型的径向截面图。
气体的流通时间的英语
气体的流通时间的英语Gas Flow Duration: A Technical Insight.Gas flow duration, often referred to as residence time, is a crucial parameter in various industrial processes and scientific experiments. It represents the average time a gas particle spends within a specific system or volume before exiting. Understanding and controlling gas flow duration is essential for ensuring efficient and effective operations in various fields, ranging from combustion engines to chemical reactors.1. Factors Influencing Gas Flow Duration.Gas flow duration is influenced by several factors, including the properties of the gas itself, the geometry and dimensions of the flow passage, and the external conditions such as temperature and pressure.Gas Properties: The density, viscosity, and molecularweight of the gas directly affect its flow behavior. Lighter gases with lower viscosities tend to flow more rapidly, resulting in shorter residence times.Flow Passage Geometry: The shape, size, and internal obstructions of the flow passage play a crucial role. Narrow passages or those with sudden changes in direction can increase flow resistance and, subsequently, residence time.External Conditions: Variables like temperature and pressure affect gas density and, indirectly, its flow duration. Higher temperatures can lead to increased gas expansion, reducing density and potentially speeding up flow. Conversely, increased pressure can compress the gas, leading to slower flow rates.2. Applications of Gas Flow Duration.Gas flow duration is crucial in various industrial and scientific applications.Combustion Engines: In internal combustion engines, controlling the residence time of the air-fuel mixture is essential for efficient combustion. Short residence times can lead to incomplete combustion, resulting in power losses and increased emissions.Chemical Reactors: Chemical reactors rely on precise control of gas flow duration to ensure maximum reaction efficiency. By adjusting residence time, one can optimize reaction rates and yields.Air Filtration Systems: In air purification andfiltration systems, gas flow duration determines how long contaminants are exposed to filters. Longer residence times improve contaminant removal efficiency.3. Measurement and Control of Gas Flow Duration.Accurate measurement and control of gas flow duration are key to achieving desired outcomes in various applications. Instruments like flow meters, pressure sensors, and temperature gauges are used to monitor andadjust gas flow parameters.Flow Meters: These devices measure the rate and volume of gas flow, providing critical data for calculating residence time.Pressure and Temperature Monitors: By monitoring and controlling pressure and temperature, one can indirectly influence gas flow duration, adjusting it to meet specific process requirements.Control Valves: Control valves are used to regulate gas flow rate, thus affecting residence time within a system. By adjusting valve settings, operators can fine-tune gas flow duration to optimize performance.4. Challenges and Solutions in Managing Gas Flow Duration.Managing gas flow duration presents several challenges, particularly in complex systems with multiple interacting factors.Flow Instabilities: Fluctuations in gas flow rate can lead to inconsistent residence times, affecting process reproducibility and reliability. To address this, one may employ flow stabilization techniques or use more sophisticated control systems.Thermal and Pressure Fluctuations: Changes in temperature and pressure within a system can significantly affect gas flow duration. To mitigate these effects, one may need to implement temperature and pressure control mechanisms to maintain stable operating conditions.Complex Geometry: Complex flow passage geometries can make accurate residence time calculations challenging. In such cases, computational fluid dynamics (CFD) modeling can be employed to simulate and predict gas flow behavior.In conclusion, gas flow duration is a crucial parameter in various industrial and scientific applications. Understanding its influencing factors, developing measurement and control strategies, and addressingassociated challenges are essential for optimizing gas flow systems and achieving desired outcomes.。
工业燃烧室天然气湍流扩散火焰长度影响因素分析
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 S1 期工业燃烧室天然气湍流扩散火焰长度影响因素分析杨玉地1,李文韬2,钱永康1,惠军红1(1 北京航天动力研究所,北京 100076;2 北京航空航天大学宇航学院,北京 102206)摘要:通过1.3MW 级工业燃烧器实验验证商用CFD 软件计算天然气湍流扩散火焰长度的有效性。
以天然气(含有95%CH 4和5%N 2)为燃料,以直径为300mm 、长度为1200mm 的圆筒形燃烧室中、燃气孔径基本尺寸2mm 的同轴射流扩散火焰为研究对象。
采用数值计算的方法研究了燃气流量、喷孔孔径、助燃风特性等多种因素对火焰长度的影响规律。
研究结果表明:在天然气湍流扩散火焰中,当孔径不变燃气流量增加一倍,火焰长度由652mm 增加到782mm ,增长19.9%。
当燃气流量不变孔径增加一倍,652mm 增加到1012mm ,增长55.2%。
改变燃气孔径是控制湍流扩散火焰长度的有效手段;在一定氧含量范围内,与助燃风氧含量相比,湍流火焰长度对助燃风速度的变化更加敏感。
该研究对评估天然气燃烧装备性能和优化燃烧室设计具有重要的应用价值。
关键词:天然气;湍流扩散火焰长度;数值计算中图分类号:TQ038 文献标志码:A 文章编号:1000-6613(2023)S1-0267-09Analysis of influencing factors of natural gas turbulent diffusion flamelength in industrial combustion chamberYANG Yudi 1,LI Wentao 2,QIAN Yongkang 1,HUI Junhong 1(1 Beijing Aerospace Propulsion Institute, Beijing 100076, China; 2 School of Astronautics, Beihang University, Beijing102200, China)Abstract: Via experimental validation with a 1.3MW industrial burner, the commercial CFD software in calculating natural gas turbulent diffusion flame length was verified. A coaxial jet diffusion flame in a cylindrical combustion chamber (diameter of 300mm and length of 1200mm) with a diameter of 2mm gas nozzle was studied, using the natural gas containing 95%CH 4 and 5%N 2. The influences of gas flow, nozzle diameter, and combustion air characteristics on the flame length were studied by numerical simulation. The results indicated that in the natural gas turbulent diffusion flame when the gas flow rate was doubled with the gas nozzle diameter unchanged, the flame length increases from 652mm to 782mm, with an increase of 19.9%. When the gas flow rate was unchanged with the nozzle diameter doubled, the flame length increases from 652 mm to 1012 mm, an increase of 55.2%. Changing the gas nozzle diameter was an effective means to control the length of turbulent diffusion flame. Within a specific range of oxygen concentration, the turbulent flame length was more sensitive to the velocity than the oxygen concentration of combustion air. The analysis had important application value for evaluating the performance of natural gas combustion equipment and optimizing the combustion chamber design.Keywords: natural gas; turbulent diffusion flame length; numerical simulation研究开发DOI :10.16085/j.issn.1000-6613.2023-0583收稿日期:2023-04-12;修改稿日期:2023-08-03。
influence的中文是什么意思
influence的中文是什么意思单词influence的英文发音很重要,同时它详细的中文意思也一样重要。
下面我们就来看看英语单词influence具体的几种中文意思,欢迎大家阅读!influence的中文意思英 [ˈɪnfluəns] 美 [ ˈɪnfluəns]第三人称单数:influences第三人称复数:influences现在分词:influencing过去分词:influenced过去式:influencedinfluence 基本解释名词影响; 势力; 有影响的人(或事物); [占星学]星力及物动词影响; 感染; 支配; 对…起作用例句1. My teacher's influence made me study science at college.由于我老师的影响,我上大学学了理科。
2. Mr.Smith is a man of influence in this town.史密斯先生是这个镇上有权势的人物。
3. The influence of climate on crops are self-evident.气候对农作物的影响是不证自明的。
influence的.词典解释1. 影响;对…起作用If someone or something influences a person or situation, they have an effect on that person's behaviour or that situation.e.g. We became the best of friends and he influenced me deeply...我们成了最好的朋友,他深深地影响了我。
e.g. What you eat may influence your risk of getting cancer...你吃的东西会影响你患癌症的风险。
2. 有影响的人(或事物)Someone or something that is a good or bad influence on people has a good or bad effect on them.e.g. I thought Sue would be a good influence on you...我认为苏能对你产生良好影响。
高压燃烧室进气雷诺数对旋流预混燃烧特性的影响
高压燃烧室进气雷诺数对旋流预混燃烧特性的影响付忠广;王树成;宋依璘;张高强;高玉才【摘要】采用数值模拟的方法对干式低排放高压燃烧室的燃烧特性进行研究,通过与文献中实验数据对比,验证了模型的正确性.分析了不同进气雷诺数下燃烧室的速度场、压力场及燃烧室出口截面温度的分布情况.结果表明,雷诺数对燃烧室内的流场影响较大.随着雷诺数的增加,燃烧室的回流区范围增大,燃气流速增加.燃烧室出口温度上升,燃烧室出口截面中心区域温度由外向内呈升高趋势.【期刊名称】《中国电力》【年(卷),期】2018(051)012【总页数】6页(P14-19)【关键词】燃气轮机;预混燃烧;燃烧室;进气参数;雷诺数;数值模拟【作者】付忠广;王树成;宋依璘;张高强;高玉才【作者单位】电站状态监测与控制教育部重点实验室华北电力大学,北京 102206;电站状态监测与控制教育部重点实验室华北电力大学,北京 102206;能源清洁利用国家重点实验室,热能工程研究所浙江大学,浙江杭州 310027;电站状态监测与控制教育部重点实验室华北电力大学,北京 102206;电站状态监测与控制教育部重点实验室华北电力大学,北京 102206【正文语种】中文【中图分类】TK2270 引言燃烧室作为燃气轮机的核心部件,燃料在其内燃烧性能的优劣对燃气轮机有着重要的影响。
燃气轮机进气参数的选择十分重要[1-3],如果燃料燃烧不充分或燃烧产物中的氮氧化物含量超标会对大气造成污染。
目前燃烧室多采用预混燃烧技术来降低污染物的生成[4-6]。
预混燃烧的原理为预先把燃料和空气充分混合,然后再送入燃烧室内燃烧。
这样可以使燃料充分燃烧,有效地降低燃烧过程中的局部高温区温度,减少热力型氮氧化物的生成,因而其相对于扩散燃烧更加清洁环保[7]。
文献[8]以某重型燃气轮机分管型燃烧室为研究对象,研究了燃烧室进气压力对燃烧稳定性的影响。
结果表明,增加燃烧室的进气压力,会使压力脉动变得强烈,主频幅值增加。
保研英文个人陈述
PERSONAL STATEMENTBy xxxxxxxxIn the summer of 2007, due to excellent performance, I was enrolled from Anshan NO.1 middle school to Shanghai Jiao tong University, School of Mechanical Engineering. Being the minister of Communist Youth League propaganda department of SJTU, the monitor and the party secretary of F0702012 administrative class, I am a student with good team spirit and strong communication skills, ranking 5/25.My three year’s study in the Shanghai Jiao Tong University has a great impact on my personal growth. The technical based courses give me sound knowledge about math and science, while the academic atmosphere nurtures me to be practical and diligent. When I begin to apply for the Peking, HSBC business school, I realized that the academic background and the personal values developed during my previous study are my most precious fortune.I have established a solid foundation in the field of mathematics during my SJTU career. As a student major in thermal energy and power engineering, mathematics is frequently utilized. In the course of dynamics of gas flow,we analyze fluid body based on infinitesimal method; in engineering thermodynamics,however, we perform calculations about complex relationship between enthalpy and entropy;during the course of control theory, mathematics helps me see through the appearance to perceive what is exactly goin g on……As a result of those above, my math ability has dramatically improved.The technical based experience makes me a stable boy and keen on combining theory with practice. I took part in the HONDA energy-saving Contest on behalf of our school during my sophomore year. We managed to apply the theory in books like machine design into practice for the first time. I was mainly responsible for the design of chassis, while taking charge of the financial issues of the whole team. Serious and responsible, I managed to maintain a zero error record. After hard work of several months working with teammates, tremendous sense of accomplishment filled me when our car ran on the F1 Shanghai Track. Junior summer, I worked in Freescale camera team to participate in the annual contest, and finally we got first place in East Division, seventh in national competition.I did not fall in love with finance at the first sight, but developed my interest gradually through my understanding about it. My father entered into the stock market at the bull time in 2007. This is when I starts to care about finance and becomes curious about the numbers as well as the drivers behind them. So, I started to learn more about the market through the insights provided by Adam Smith in his book< Causes of the wealth of nations> and by Mankwin in <Macroeconomic>. Then, I investigate deeply into several business cases and build up my models that calculate the change of the supply and demand curves. During my study, I become passionateabout the beauty of finance and economics. The rapid expansion of finance industry energizes the capital markets and pushes the economy to grow as a whole. As a result, finance plays a central role in resource allocation and thus becomes the main tool used by government to adjust macro economy, especially to stabilize the economy condition and avoid inflation.Second major in accounting provides an excellent opportunity for me to systematically study knowledge of this kind. I have already finished many courses, including Macro Micro Economics, Management, operational research, Human Resources Management, accounting, administrative accounting, etc.The 2010 Expo is held from May 1st, 2010 to October 31st, 2010 in Shanghai, China. Many visitors have great interests in certain popular pavilions. While one pavilion can only hold certain number of visitors at one time, it is very common that there is always a long queue outside these pavilions. I was there suffering from the really long queues. After my visit to Expo, I have been thinking about what will happen if we have trade the position in a queue using money. So I set up a mathematic model to analysis this problem. The statement is enclosed to my application materials.If I can get a chance to further my graduate study in Peking University HSBC School of Business, i will keep my passion for the academic research work, focus more about practical society problems, pay more attention to work in a scientific way and assist tutors with all different project work. At this stage of my undergraduate study I only have slight apprehensions of different financial policies and instruments . I want to learn all the finance knowledge in a more systematic way. During my graduate study I will try my best to dig much more into finance books and academic materials from both home and abroad and get familiar with the history of global finance market and different finance theories. I will devote myself to produce academic papers of high quality to express my ideas and opinions about finance. I hope after my graduate study I could become an outstanding expert and enter departments like CSRC or CBRC to demonstrate my gift in finance area.。