Ferroelectric Properties of Polycrystalline Ceramics with Dipolar Defect Simulated from the

合集下载

聚合物化学英语翻译

聚合物化学英语翻译

第三章Polymer StructureThis chapter is concerned with aspects of the structure of polymeric materials outside those of simple chemical composition. The main topics covered are polymer stereochemistry, crystallinity, and the character of amorphous polymers including the glass transition. These may be thought of as arising from the primary structure of the constituent molecules in ways that will become clearer as the chapter progresses.本章所关注的这些简单的化学成分之外的高分子材料的结构方面。

主要内容包括:聚合物立体化学,结晶,包括无定形聚合物的玻璃化转变的特征。

这些可能被认为是章进展变得更为清晰的方式,将组成分子的一级结构所产生的。

Before proceeding, a word on nomenclature is necessary. Polymer chemists, following the example of P.J. Flory, have tended to use the words configuration and conformation in a sense that differs from that conventionally employed within organic chemistry. In this book, by contrast, I intend to go along with F. W. Billmeyer, and use these words in the way that they apply more widely throughout chemistry. Thus configuration is the term given to an arrangement of atoms that cannot be altered except by breaking chemical bonds, while conformation is the term applied to the individual, recognisable arrangement of atoms that can be altered by simple rotation around a single bond. Configurations include head-to-tail arrangements, described in the previous chapter, conformations include trans versus gauche arrangements of successive carbon-carbon bonds along the backbone of an individual macromolecule.在继续之前,一个命名的话是必要的。

到9月9日

到9月9日

到9月9日,社保基金正式进入股市整整3个月,按照有关规定,社保基金必须通过基金管理公司在三个月内完成建仓,并且其持仓市值要达到投资组合总市值80%的水平。

与此前大受追捧的QFII概念相比,社保基金及其所持有的股票显然低调得多,但是在西南证券分析师田磊看来,至少就目前来看,社保基金无论是在资金规模,还是在持股数量上明显都强于境外投资者,其投资理念和行为更可能给市场带来影响。

基金操作的社保基金的选股思路并不侧重某个行业,而更看重企业本身的发展和成长性,并且现阶段的企业经营业绩和走势也不是基金重点考虑的方面。

目前入市的社保基金都是委托南方、博时、华夏、鹏华、长盛、嘉实6家基金管理公司管理。

社保基金大致是被分为14个组合由以上6家管理公司分别管理,每个组合都有一个三位数的代码,第一位代表投资方向,其中“1”指股票投资、“2”指债券投资;第三位数字则代表基金公司名称,其中“1”为南方、“2”为博时、“3”为华夏、“4”为鹏华、“5”为长盛、“6”为嘉实;另有107、108组合主要运作社保基金此前一直持有的中石化股票,分别由博时与华夏基金公司管理。

在许多社保基金介入的股票中经常可以看到开放式基金的身影,例如在被社保基金大量持有的安阳钢铁(600569)的前10大股东中,其第2、6、7、8、9大股东均为开放式基金,而社保基金则以持股500多万股位列第3大股东。

类似的情况也出现在社保基金103组合所持有的华菱管线(000932)上,其第二大股东即为鹏华行业成长证券投资基金,社保基金则以200多万股的持仓量位列第7大股东,此外,在其前10大股东中还有5家是封闭式基金。

对此,某基金公司人士解释说,在获得社保基金管理人资格后,6家基金公司成立了专门的机构理财部门负责社保基金的投资管理,但是其研究、交易系统等则与公募基金共用一个平台,因此社保基金和开放式基金在选股时才会如此一致。

针对“社保概念股”的走势,国盛证券的分析师王剑认为,虽然社保基金此次委托入市资金超过百亿元,但大部分投向是债券,而且由于社保基金的特殊地位,因此基金管理公司对社保基金的操纵策略应该是以“集中持股,稳定股价”为主,不大可能博取太高的收益。

南邮材料化学名词解释

南邮材料化学名词解释

材料化学名词解释Ferroelectricity:a property of certain materials which possess a spontaneous electric polarization that can be reversed by the application of an external electric field. Piezoelectricity is the charge which accumulates in certain solid materials in response to applied mechanical strain.///Piezoelectric property means to produce small voltage at both sides of the material when exert pressure on the sample which leading to polarization changes.Self-propagatinghigh-temperature synthesis: a technology that can prepare material by interactions of reactants driven byself-heating andself-conduction of chemical reaction heat.Non-ferrous metals: refers to metals except iron, chromium, manganese and their alloys.PVD:Heat the raw materials to form plasm or vaporized, then it was cooled to produce materials of various form (wafers, film, crystal grain). CVD: a chemical process used to produce high-purity, high-performance solid materials. The process is often used in the semiconductor industry to produce thin films.degree of polymerization: the number of repeating structural units in themacromolecules, also knownas the number of links,denoted as n.photoresist: also known aslight-induced etching agent,refers to a kind of photonicmaterials that occurcross-linking ordecomposition reactionwhich results in a change ofsolubility when they wereilluminated by light.photoinitiator: refers toagents that can absorb UVlight (250 ~ 450 nm) orvisible light (400 ~ 800 nm),and molecules transfer formground state to the excitedstates, experience a singlemolecule or bimolecularchemical reaction andproduce free radical, cationic,anionic or ionic radical thatcan induce monomer topolymerize..Austenite: interstitial solidsolution formed by carbondiss olves in γ-Fe, it remainsface-centered cubic lattice ofγ-Fe, the grain boundary isrelatively straight, and isregular polygon.Martensite: supersaturatedsolid solution formed by thecarbon dissolves in α-Fe, thecrystal structure isbody-centered tetragonalstructure, it can be obtainedby accelerated cooling thehigh-carbon steel.Ferrite:I n t e r s t i t i a l s o l i ds o l u t i o n o f C d i s s o l v e i nα-F e(B C C).C o n t e n t o f C i ss o s m a l l(0.02%).Super heat-resistant alloys:materials that can maintainthe required mechanicalproperties at hightemperature of 700 to1200 ℃ for a long time. Theyare antioxidant, corrosionresistant and can worksatisfactory.p-type semiconductor:refers to the semiconductorwhose main carriers are hole,also known as the recipienttype or hole-typesemiconductor. For example,we can obtain p-typesemiconductor by doping Binto Si.structural ceramics:ceramic used as structuralmaterials, they have highmechanical strength, hightemperature resistance,corrosion resistance,abrasion and high hardnessproperties. Its mechanicalstrength and fracturetoughness is very importantin application.Dielectric ceramics:ceramics have dielectricproperties are known asdielectric ceramics. In anapplied electric field,dielectric ceramics will bepolarized, the positive andnegative charges in thematerial will separate in ashort-range, gravity centersof positive and negativecharge do not coincide, butthe charges is still influencedeach other, they don notmigrate in a long-distance, results in induced opposite charges on the surface, which can be seen that the external electric field convert electrical energy and stored in the material, and they can release some electrical energy under a certain condition (removal of the external voltage). The process is similar to charging and discharging, accompanied by energy losses, heating radiation, that is dielectric loss. Ferroelectric ceramics: Some ceramic materials have low lattice symmetry, the center of gravity of the positive and negative charge do not overlap, there will form spontaneous dipoles, but its spontaneous polarization is disordered in orientation, the main component is a ferroelectric, so they are named ferroelectric ceramics, they don not have piezoelectric properties.Piezoelectric ceramic: ceramics that have piezoelectric effect were called piezoelectric ceramics. The main ingredient of the ceramic is ferroelectrics. They have low lattice symmetry, center of gravity of positive and negative charges do not overlap, will form spontaneous dipole, but the spontaneous polarization is disordered in orientation, herein, there is nopiezoelectric property. Whenapplied a DC electric field topolarize it, the originaldisordered orientation ofspontaneous polarization willarrange along the direction ofthe electrical field. Afterremoval of the electric field,ceramics retained somepolarization, so that theceramics have piezoelectricproperties, may be called thepiezoelectric ceramic.superconductors: the natureof materials losing resistanceat extremely lowtemperatures is known assuperconductivity, suchsubstances are calledsuperconductors.Polymer: generally refersto organic macromoleculeswith molecular weightmore than 1500, and thelength of molecule is morethan 5 nm.oligomer: generally refers tothe molecules consists of afew monomer units, withmolecular weight below1500, and the molecularlength is not more than 5 nm.seven mechanisms ofphotochromic polymermaterial: heterolysis ofbonds, homolysis of bonds,cis-trans tautomerism,hydrogen transfertautomerization, valencetautomerization,oxidation-reduction reaction,and triplet - tripletabsorption.W h i s k e r: single crystalfibers with a certainslenderness ratio (generally >10) and cross-sectional arealess than 52 × 10-5cm2.Whiskers are singlecrystals short fiber with fewdefects, the tensile strength isclose to its theoreticalstrength of purecrystals.High strength (smalldiameter, few defects, singlecrystal)high elongation andmodulus、not easy fatigue、Expensive;Application:Space andhighly-sophisticatedtechnology;teeth, bones,wings, high-strengthcentrifuge.Composite materials——are engineered or naturallyoccurring materials madefrom two or more constituentmaterials with significantlydifferent physical orchemical properties whichremain separate and distinctinterface at the macroscopicor microscopic scale withinthe finished structureNanomaterials refer to avariety of solid ultrafinematerials that at themicroscopic structure at leastin one dimension are on theregulation of the nanoscale(1 to 100 nm), or regardthem as the basic unitconsisting of materials.。

真空铝热还原法制备高纯金属锶工艺

真空铝热还原法制备高纯金属锶工艺

真空铝热还原法制备高纯金属锶工艺于金1,吴三械2,李国庆1,董岩1,谈荣生1,朱鸣芳1(1.东南大学材料科学与工程学院,江苏南京211189;2.南京大学化学化工学院,江苏南京210008)摘 要:对真空铝热还原法制备高纯金属锶的纯度控制进行了热力学分析;探讨了锶、钡和钙的临界还原温度、蒸气压等热力学参数差异,并制定了制备高纯金属锶的工艺。

结果表明:BaO最不稳定最容易被还原,CaO最稳定最难被还原,SrO介于中间;随着温度增加,锶饱和蒸气压增大,越容易被蒸馏;在1273K左右,锶饱和蒸气压约为钙的2.4倍,杂质钙不容易被蒸馏提纯,而锶饱和蒸气压约为钡的28.5倍,杂质钡容易被蒸馏提纯;以优等品工业碳酸锶和Al99.80牌号纯铝为原料,优化工艺为还原温度(1050±20)℃,气压0.01k Pa,还原15h,可以获得高纯金属锶,w(Sr)≥9915%,w(Ba)<0.20%,w(Ca)<0.05%。

关键词:锶;铝热还原法;真空蒸馏;提纯中图分类号:TF803;TF827 文献标识码:A 文章编号:100023738(2007)1220037204Pur ity Contr ol in Pr oducing Metallic Str ont ium U sing V acuumAluminother mic ReductionYU Jin1,WU S an2xie2,L I G uo2qing1,DO NG Yan1,TAN Rong2sheng1,ZHU Ming2fang1 (1.S o ut heast Uni versit y,Nanjing211189,China;2.Nanjing U ni versit y,Nanjing210008,China)Abst ract:Purity cont rol in producing metallic st ro ntium using vacuum al umin ot her mic reduction wa s a nalyse d by t her modyna mic calculation.The diffe rentiae of the critical r eduction te mperat ure a nd vapo r pressure of Sr,Ba and Ca we re discussed,and the purity of metallic strontium wa s controled.The results showed tha t BaO wa s t he mo st unsta ble one to be reduced ea sily,CaO was the most stable one to be reduce d dific ultly,and Sr O was in betwee n.The vapor pre ssure of Sr inc rease d with higher te mpera ture,r esulting in easy distillation of Sr;At1273 K,the vapo r pre ssure ratio of Sr to Ca wa s about2.4,making Ca difficult to be distilled,while the ratio of Sr to Ba was a bout28.5making Ba ea sy to be distille d.High purity metallic strontium with w(Sr)≥99.5%,w(Ba) <0.20%,w(Ca)<0.05%can be produce d using e xcellent2gra de industrial pure st ro ntium car b o nate and p ure aluminum Al99.80under following optimized conditions,(1050±20)℃,0.01k Pa,15h.K ey w or ds:st ro ntium;aluminot her mic reduction;vacuum distillation;purif ying0 引 言金属锶在电子信息、化工、轻工、医药、陶瓷、冶金等行业有着广泛的应用。

过渡金属硫酸盐的溶剂热合成及晶体结构表征

过渡金属硫酸盐的溶剂热合成及晶体结构表征
体系 中尽 量 除去 各 种终 端 配体 ( 其 是水 分 子 ) 尤 。基 于这 种考
色块状单晶。挑取适于单 晶衍射的晶体测定其结构 。
12 3( H [ o(( ) ]的合成 . . N ) C s) 42
称取 四水 乙酸钴 O 29 (mr ) .4g 1 m1放置于干净的玛瑙 研钵 中, 向其中加入 012(mr 1 .3g 1 r )  ̄ 硫酸铵 , 研磨至混合均匀。将上
21年 ・ 1 01 第 期
技 术 与 研 究
中 国材 料 科 技 与设 备 ( 双月 0 ) 1
过 渡 金 属 硫 酸 盐 的 溶 剂 热 合 成 及 晶体 结 构 表 征
栗海琴 , 李彦涛 , 崔科会 , 田运 齐
( 宁 师 范 大 学功 能 材 料 研 究 所 , 宁 辽 辽 大连 16 2 ) 1 0 9
0 0 mm X 0 0 mm X . 4 .7 .5 0 0 mm 和 0 1 rm × 0 1 mm × 0 1 .2 a . 1 .0

仪器 : rk r X —S R P X 单 晶衍射 仪 , rkr glP S MA TA E I lAA I Bue A S ] A vne 一射线 粉末衍 射仪 ,e i Em r 4 X 一【 dac X 8 Prn le 20型元 k- 素分析 仪 , . T N O 7 外 光谱 仪 (00 0c ) Fr 一 E S R2 红 40 r 40r , n
加入 1n 冰乙酸, 51 l 充分搅拌 , 20 在 0 ̄ C下反应 2h , 4 后 自然冷却 到室温。得深粉色块状 晶体 。挑取适于单晶衍射的晶体测定其 结构。元素分析 ( 括号 内为计算 值, ) C 1.8(60 ) : 6 2 1.6 ,N

毕业设计论文塑料注射成型

毕业设计论文塑料注射成型

Modeling of morphology evolution in the injection moldingprocess of thermoplastic polymersR.Pantani,I.Coccorullo,V.Speranza,G.Titomanlio* Department of Chemical and Food Engineering,University of Salerno,via Ponte don Melillo,I-84084Fisciano(Salerno),Italy Received13May2005;received in revised form30August2005;accepted12September2005AbstractA thorough analysis of the effect of operative conditions of injection molding process on the morphology distribution inside the obtained moldings is performed,with particular reference to semi-crystalline polymers.The paper is divided into two parts:in the first part,the state of the art on the subject is outlined and discussed;in the second part,an example of the characterization required for a satisfactorily understanding and description of the phenomena is presented,starting from material characterization,passing through the monitoring of the process cycle and arriving to a deep analysis of morphology distribution inside the moldings.In particular,fully characterized injection molding tests are presented using an isotactic polypropylene,previously carefully characterized as far as most of properties of interest.The effects of both injectionflow rate and mold temperature are analyzed.The resulting moldings morphology(in terms of distribution of crystallinity degree,molecular orientation and crystals structure and dimensions)are analyzed by adopting different experimental techniques(optical,electronic and atomic force microscopy,IR and WAXS analysis).Final morphological characteristics of the samples are compared with the predictions of a simulation code developed at University of Salerno for the simulation of the injection molding process.q2005Elsevier Ltd.All rights reserved.Keywords:Injection molding;Crystallization kinetics;Morphology;Modeling;Isotactic polypropyleneContents1.Introduction (1186)1.1.Morphology distribution in injection molded iPP parts:state of the art (1189)1.1.1.Modeling of the injection molding process (1190)1.1.2.Modeling of the crystallization kinetics (1190)1.1.3.Modeling of the morphology evolution (1191)1.1.4.Modeling of the effect of crystallinity on rheology (1192)1.1.5.Modeling of the molecular orientation (1193)1.1.6.Modeling of theflow-induced crystallization (1195)ments on the state of the art (1197)2.Material and characterization (1198)2.1.PVT description (1198)*Corresponding author.Tel.:C39089964152;fax:C39089964057.E-mail address:gtitomanlio@unisa.it(G.Titomanlio).2.2.Quiescent crystallization kinetics (1198)2.3.Viscosity (1199)2.4.Viscoelastic behavior (1200)3.Injection molding tests and analysis of the moldings (1200)3.1.Injection molding tests and sample preparation (1200)3.2.Microscopy (1202)3.2.1.Optical microscopy (1202)3.2.2.SEM and AFM analysis (1202)3.3.Distribution of crystallinity (1202)3.3.1.IR analysis (1202)3.3.2.X-ray analysis (1203)3.4.Distribution of molecular orientation (1203)4.Analysis of experimental results (1203)4.1.Injection molding tests (1203)4.2.Morphology distribution along thickness direction (1204)4.2.1.Optical microscopy (1204)4.2.2.SEM and AFM analysis (1204)4.3.Morphology distribution alongflow direction (1208)4.4.Distribution of crystallinity (1210)4.4.1.Distribution of crystallinity along thickness direction (1210)4.4.2.Crystallinity distribution alongflow direction (1212)4.5.Distribution of molecular orientation (1212)4.5.1.Orientation along thickness direction (1212)4.5.2.Orientation alongflow direction (1213)4.5.3.Direction of orientation (1214)5.Simulation (1214)5.1.Pressure curves (1215)5.2.Morphology distribution (1215)5.3.Molecular orientation (1216)5.3.1.Molecular orientation distribution along thickness direction (1216)5.3.2.Molecular orientation distribution alongflow direction (1216)5.3.3.Direction of orientation (1217)5.4.Crystallinity distribution (1217)6.Conclusions (1217)References (1219)1.IntroductionInjection molding is one of the most widely employed methods for manufacturing polymeric products.Three main steps are recognized in the molding:filling,packing/holding and cooling.During thefilling stage,a hot polymer melt rapidlyfills a cold mold reproducing a cavity of the desired product shape. During the packing/holding stage,the pressure is raised and extra material is forced into the mold to compensate for the effects that both temperature decrease and crystallinity development determine on density during solidification.The cooling stage starts at the solidification of a thin section at cavity entrance (gate),starting from that instant no more material can enter or exit from the mold impression and holding pressure can be released.When the solid layer on the mold surface reaches a thickness sufficient to assure required rigidity,the product is ejected from the mold.Due to the thermomechanical history experienced by the polymer during processing,macromolecules in injection-molded objects present a local order.This order is referred to as‘morphology’which literally means‘the study of the form’where form stands for the shape and arrangement of parts of the object.When referred to polymers,the word morphology is adopted to indicate:–crystallinity,which is the relative volume occupied by each of the crystalline phases,including mesophases;–dimensions,shape,distribution and orientation of the crystallites;–orientation of amorphous phase.R.Pantani et al./Prog.Polym.Sci.30(2005)1185–1222 1186R.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221187Apart from the scientific interest in understandingthe mechanisms leading to different order levels inside a polymer,the great technological importance of morphology relies on the fact that polymer character-istics (above all mechanical,but also optical,electrical,transport and chemical)are to a great extent affected by morphology.For instance,crystallinity has a pro-nounced effect on the mechanical properties of the bulk material since crystals are generally stiffer than amorphous material,and also orientation induces anisotropy and other changes in mechanical properties.In this work,a thorough analysis of the effect of injection molding operative conditions on morphology distribution in moldings with particular reference to crystalline materials is performed.The aim of the paper is twofold:first,to outline the state of the art on the subject;second,to present an example of the characterization required for asatisfactorilyR.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221188understanding and description of the phenomena, starting from material description,passing through the monitoring of the process cycle and arriving to a deep analysis of morphology distribution inside the mold-ings.To these purposes,fully characterized injection molding tests were performed using an isotactic polypropylene,previously carefully characterized as far as most of properties of interest,in particular quiescent nucleation density,spherulitic growth rate and rheological properties(viscosity and relaxation time)were determined.The resulting moldings mor-phology(in terms of distribution of crystallinity degree, molecular orientation and crystals structure and dimensions)was analyzed by adopting different experimental techniques(optical,electronic and atomic force microscopy,IR and WAXS analysis).Final morphological characteristics of the samples were compared with the predictions of a simulation code developed at University of Salerno for the simulation of the injection molding process.The effects of both injectionflow rate and mold temperature were analyzed.1.1.Morphology distribution in injection molded iPP parts:state of the artFrom many experimental observations,it is shown that a highly oriented lamellar crystallite microstructure, usually referred to as‘skin layer’forms close to the surface of injection molded articles of semi-crystalline polymers.Far from the wall,the melt is allowed to crystallize three dimensionally to form spherulitic structures.Relative dimensions and morphology of both skin and core layers are dependent on local thermo-mechanical history,which is characterized on the surface by high stress levels,decreasing to very small values toward the core region.As a result,the skin and the core reveal distinct characteristics across the thickness and also along theflow path[1].Structural and morphological characterization of the injection molded polypropylene has attracted the interest of researchers in the past three decades.In the early seventies,Kantz et al.[2]studied the morphology of injection molded iPP tensile bars by using optical microscopy and X-ray diffraction.The microscopic results revealed the presence of three distinct crystalline zones on the cross-section:a highly oriented non-spherulitic skin;a shear zone with molecular chains oriented essentially parallel to the injection direction;a spherulitic core with essentially no preferred orientation.The X-ray diffraction studies indicated that the skin layer contains biaxially oriented crystallites due to the biaxial extensionalflow at theflow front.A similar multilayered morphology was also reported by Menges et al.[3].Later on,Fujiyama et al.[4] investigated the skin–core morphology of injection molded iPP samples using X-ray Small and Wide Angle Scattering techniques,and suggested that the shear region contains shish–kebab structures.The same shish–kebab structure was observed by Wenig and Herzog in the shear region of their molded samples[5].A similar investigation was conducted by Titomanlio and co-workers[6],who analyzed the morphology distribution in injection moldings of iPP. They observed a skin–core morphology distribution with an isotropic spherulitic core,a skin layer characterized by afine crystalline structure and an intermediate layer appearing as a dark band in crossed polarized light,this layer being characterized by high crystallinity.Kalay and Bevis[7]pointed out that,although iPP crystallizes essentially in the a-form,a small amount of b-form can be found in the skin layer and in the shear region.The amount of b-form was found to increase by effect of high shear rates[8].A wide analysis on the effect of processing conditions on the morphology of injection molded iPP was conducted by Viana et al.[9]and,more recently, by Mendoza et al.[10].In particular,Mendoza et al. report that the highest level of crystallinity orientation is found inside the shear zone and that a high level of orientation was also found in the skin layer,with an orientation angle tilted toward the core.It is rather difficult to theoretically establish the relationship between the observed microstructure and processing conditions.Indeed,a model of the injection molding process able to predict morphology distribution in thefinal samples is not yet available,even if it would be of enormous strategic importance.This is mainly because a complete understanding of crystallization kinetics in processing conditions(high cooling rates and pressures,strong and complexflowfields)has not yet been reached.In this section,the most relevant aspects for process modeling and morphology development are identified. In particular,a successful path leading to a reliable description of morphology evolution during polymer processing should necessarily pass through:–a good description of morphology evolution under quiescent conditions(accounting all competing crystallization processes),including the range of cooling rates characteristic of processing operations (from1to10008C/s);R.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221189–a description capturing the main features of melt morphology(orientation and stretch)evolution under processing conditions;–a good coupling of the two(quiescent crystallization and orientation)in order to capture the effect of crystallinity on viscosity and the effect offlow on crystallization kinetics.The points listed above outline the strategy to be followed in order to achieve the basic understanding for a satisfactory description of morphology evolution during all polymer processing operations.In the following,the state of art for each of those points will be analyzed in a dedicated section.1.1.1.Modeling of the injection molding processThefirst step in the prediction of the morphology distribution within injection moldings is obviously the thermo-mechanical simulation of the process.Much of the efforts in the past were focused on the prediction of pressure and temperature evolution during the process and on the prediction of the melt front advancement [11–15].The simulation of injection molding involves the simultaneous solution of the mass,energy and momentum balance equations.Thefluid is non-New-tonian(and viscoelastic)with all parameters dependent upon temperature,pressure,crystallinity,which are all function of pressibility cannot be neglected as theflow during the packing/holding step is determined by density changes due to temperature, pressure and crystallinity evolution.Indeed,apart from some attempts to introduce a full 3D approach[16–19],the analysis is currently still often restricted to the Hele–Shaw(or thinfilm) approximation,which is warranted by the fact that most injection molded parts have the characteristic of being thin.Furthermore,it is recognized that the viscoelastic behavior of the polymer only marginally influences theflow kinematics[20–22]thus the melt is normally considered as a non-Newtonian viscousfluid for the description of pressure and velocity gradients evolution.Some examples of adopting a viscoelastic constitutive equation in the momentum balance equations are found in the literature[23],but the improvements in accuracy do not justify a considerable extension of computational effort.It has to be mentioned that the analysis of some features of kinematics and temperature gradients affecting the description of morphology need a more accurate description with respect to the analysis of pressure distributions.Some aspects of the process which were often neglected and may have a critical importance are the description of the heat transfer at polymer–mold interface[24–26]and of the effect of mold deformation[24,27,28].Another aspect of particular interest to the develop-ment of morphology is the fountainflow[29–32], which is often neglected being restricted to a rather small region at theflow front and close to the mold walls.1.1.2.Modeling of the crystallization kineticsIt is obvious that the description of crystallization kinetics is necessary if thefinal morphology of the molded object wants to be described.Also,the development of a crystalline degree during the process influences the evolution of all material properties like density and,above all,viscosity(see below).Further-more,crystallization kinetics enters explicitly in the generation term of the energy balance,through the latent heat of crystallization[26,33].It is therefore clear that the crystallinity degree is not only a result of simulation but also(and above all)a phenomenon to be kept into account in each step of process modeling.In spite of its dramatic influence on the process,the efforts to simulate the injection molding of semi-crystalline polymers are crude in most of the commercial software for processing simulation and rather scarce in the fleur and Kamal[34],Papatanasiu[35], Titomanlio et al.[15],Han and Wang[36],Ito et al.[37],Manzione[38],Guo and Isayev[26],and Hieber [25]adopted the following equation(Kolmogoroff–Avrami–Evans,KAE)to predict the development of crystallinityd xd tZð1K xÞd d cd t(1)where x is the relative degree of crystallization;d c is the undisturbed volume fraction of the crystals(if no impingement would occur).A significant improvement in the prediction of crystallinity development was introduced by Titoman-lio and co-workers[39]who kept into account the possibility of the formation of different crystalline phases.This was done by assuming a parallel of several non-interacting kinetic processes competing for the available amorphous volume.The evolution of each phase can thus be described byd x id tZð1K xÞd d c id t(2)where the subscript i stands for a particular phase,x i is the relative degree of crystallization,x ZPix i and d c iR.Pantani et al./Prog.Polym.Sci.30(2005)1185–1222 1190is the expectancy of volume fraction of each phase if no impingement would occur.Eq.(2)assumes that,for each phase,the probability of the fraction increase of a single crystalline phase is simply the product of the rate of growth of the corresponding undisturbed volume fraction and of the amount of available amorphous fraction.By summing up the phase evolution equations of all phases(Eq.(2))over the index i,and solving the resulting differential equation,one simply obtainsxðtÞZ1K exp½K d cðtÞ (3)where d c Z Pid c i and Eq.(1)is recovered.It was shown by Coccorullo et al.[40]with reference to an iPP,that the description of the kinetic competition between phases is crucial to a reliable prediction of solidified structures:indeed,it is not possible to describe iPP crystallization kinetics in the range of cooling rates of interest for processing(i.e.up to several hundreds of8C/s)if the mesomorphic phase is neglected:in the cooling rate range10–1008C/s, spherulite crystals in the a-phase are overcome by the formation of the mesophase.Furthermore,it has been found that in some conditions(mainly at pressures higher than100MPa,and low cooling rates),the g-phase can also form[41].In spite of this,the presence of different crystalline phases is usually neglected in the literature,essentially because the range of cooling rates investigated for characterization falls in the DSC range (well lower than typical cooling rates of interest for the process)and only one crystalline phase is formed for iPP at low cooling rates.It has to be noticed that for iPP,which presents a T g well lower than ambient temperature,high values of crystallinity degree are always found in solids which passed through ambient temperature,and the cooling rate can only determine which crystalline phase forms, roughly a-phase at low cooling rates(below about 508C/s)and mesomorphic phase at higher cooling rates.The most widespread approach to the description of kinetic constant is the isokinetic approach introduced by Nakamura et al.According to this model,d c in Eq.(1)is calculated asd cðtÞZ ln2ðt0KðTðsÞÞd s2 435n(4)where K is the kinetic constant and n is the so-called Avrami index.When introduced as in Eq.(4),the reciprocal of the kinetic constant is a characteristic time for crystallization,namely the crystallization half-time, t05.If a polymer is cooled through the crystallization temperature,crystallization takes place at the tempera-ture at which crystallization half-time is of the order of characteristic cooling time t q defined ast q Z D T=q(5) where q is the cooling rate and D T is a temperature interval over which the crystallization kinetic constant changes of at least one order of magnitude.The temperature dependence of the kinetic constant is modeled using some analytical function which,in the simplest approach,is described by a Gaussian shaped curve:KðTÞZ K0exp K4ln2ðT K T maxÞ2D2(6)The following Hoffman–Lauritzen expression[42] is also commonly adopted:K½TðtÞ Z K0exp KUÃR$ðTðtÞK T NÞ!exp KKÃ$ðTðtÞC T mÞ2TðtÞ2$ðT m K TðtÞÞð7ÞBoth equations describe a bell shaped curve with a maximum which for Eq.(6)is located at T Z T max and for Eq.(7)lies at a temperature between T m(the melting temperature)and T N(which is classically assumed to be 308C below the glass transition temperature).Accord-ing to Eq.(7),the kinetic constant is exactly zero at T Z T m and at T Z T N,whereas Eq.(6)describes a reduction of several orders of magnitude when the temperature departs from T max of a value higher than2D.It is worth mentioning that only three parameters are needed for Eq.(6),whereas Eq.(7)needs the definition offive parameters.Some authors[43,44]couple the above equations with the so-called‘induction time’,which can be defined as the time the crystallization process starts, when the temperature is below the equilibrium melting temperature.It is normally described as[45]Dt indDtZðT0m K TÞat m(8)where t m,T0m and a are material constants.It should be mentioned that it has been found[46,47]that there is no need to explicitly incorporate an induction time when the modeling is based upon the KAE equation(Eq.(1)).1.1.3.Modeling of the morphology evolutionDespite of the fact that the approaches based on Eq.(4)do represent a significant step toward the descriptionR.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221191of morphology,it has often been pointed out in the literature that the isokinetic approach on which Nakamura’s equation (Eq.(4))is based does not describe details of structure formation [48].For instance,the well-known experience that,with many polymers,the number of spherulites in the final solid sample increases strongly with increasing cooling rate,is indeed not taken into account by this approach.Furthermore,Eq.(4)describes an increase of crystal-linity (at constant temperature)depending only on the current value of crystallinity degree itself,whereas it is expected that the crystallization rate should depend also on the number of crystalline entities present in the material.These limits are overcome by considering the crystallization phenomenon as the consequence of nucleation and growth.Kolmogoroff’s model [49],which describes crystallinity evolution accounting of the number of nuclei per unit volume and spherulitic growth rate can then be applied.In this case,d c in Eq.(1)is described asd ðt ÞZ C m ðt 0d N ðs Þd s$ðt sG ðu Þd u 2435nd s (9)where C m is a shape factor (C 3Z 4/3p ,for spherical growth),G (T (t ))is the linear growth rate,and N (T (t ))is the nucleation density.The following Hoffman–Lauritzen expression is normally adopted for the growth rateG ½T ðt Þ Z G 0exp KUR $ðT ðt ÞK T N Þ!exp K K g $ðT ðt ÞC T m Þ2T ðt Þ2$ðT m K T ðt ÞÞð10ÞEqs.(7)and (10)have the same form,however the values of the constants are different.The nucleation mechanism can be either homo-geneous or heterogeneous.In the case of heterogeneous nucleation,two equations are reported in the literature,both describing the nucleation density as a function of temperature [37,50]:N ðT ðt ÞÞZ N 0exp ½j $ðT m K T ðt ÞÞ (11)N ðT ðt ÞÞZ N 0exp K 3$T mT ðt ÞðT m K T ðt ÞÞ(12)In the case of homogeneous nucleation,the nucleation rate rather than the nucleation density is function of temperature,and a Hoffman–Lauritzen expression isadoptedd N ðT ðt ÞÞd t Z N 0exp K C 1ðT ðt ÞK T N Þ!exp KC 2$ðT ðt ÞC T m ÞT ðt Þ$ðT m K T ðt ÞÞð13ÞConcentration of nucleating particles is usually quite significant in commercial polymers,and thus hetero-geneous nucleation becomes the dominant mechanism.When Kolmogoroff’s approach is followed,the number N a of active nuclei at the end of the crystal-lization process can be calculated as [48]N a ;final Zðt final 0d N ½T ðs Þd sð1K x ðs ÞÞd s (14)and the average dimension of crystalline structures can be attained by geometrical considerations.Pantani et al.[51]and Zuidema et al.[22]exploited this method to describe the distribution of crystallinity and the final average radius of the spherulites in injection moldings of polypropylene;in particular,they adopted the following equationR Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3x a ;final 4p N a ;final 3s (15)A different approach is also present in the literature,somehow halfway between Nakamura’s and Kolmo-goroff’s models:the growth rate (G )and the kinetic constant (K )are described independently,and the number of active nuclei (and consequently the average dimensions of crystalline entities)can be obtained by coupling Eqs.(4)and (9)asN a ðT ÞZ 3ln 24p K ðT ÞG ðT Þ 3(16)where heterogeneous nucleation and spherical growth is assumed (Avrami’s index Z 3).Guo et al.[43]adopted this approach to describe the dimensions of spherulites in injection moldings of polypropylene.1.1.4.Modeling of the effect of crystallinity on rheology As mentioned above,crystallization has a dramatic influence on material viscosity.This phenomenon must obviously be taken into account and,indeed,the solidification of a semi-crystalline material is essen-tially caused by crystallization rather than by tempera-ture in normal processing conditions.Despite of the importance of the subject,the relevant literature on the effect of crystallinity on viscosity isR.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221192rather scarce.This might be due to the difficulties in measuring simultaneously rheological properties and crystallinity evolution during the same tests.Apart from some attempts to obtain simultaneous measure-ments of crystallinity and viscosity by special setups [52,53],more often viscosity and crystallinity are measured during separate tests having the same thermal history,thus greatly simplifying the experimental approach.Nevertheless,very few works can be retrieved in the literature in which(shear or complex) viscosity can be somehow linked to a crystallinity development.This is the case of Winter and co-workers [54],Vleeshouwers and Meijer[55](crystallinity evolution can be drawn from Swartjes[56]),Boutahar et al.[57],Titomanlio et al.[15],Han and Wang[36], Floudas et al.[58],Wassner and Maier[59],Pantani et al.[60],Pogodina et al.[61],Acierno and Grizzuti[62].All the authors essentially agree that melt viscosity experiences an abrupt increase when crystallinity degree reaches a certain‘critical’value,x c[15]. However,little agreement is found in the literature on the value of this critical crystallinity degree:assuming that x c is reached when the viscosity increases of one order of magnitude with respect to the molten state,it is found in the literature that,for iPP,x c ranges from a value of a few percent[15,62,60,58]up to values of20–30%[58,61]or even higher than40%[59,54,57].Some studies are also reported on the secondary effects of relevant variables such as temperature or shear rate(or frequency)on the dependence of crystallinity on viscosity.As for the effect of temperature,Titomanlio[15]found for an iPP that the increase of viscosity for the same crystallinity degree was higher at lower temperatures,whereas Winter[63] reports the opposite trend for a thermoplastic elasto-meric polypropylene.As for the effect of shear rate,a general agreement is found in the literature that the increase of viscosity for the same crystallinity degree is lower at higher deformation rates[62,61,57].Essentially,the equations adopted to describe the effect of crystallinity on viscosity of polymers can be grouped into two main categories:–equations based on suspensions theories(for a review,see[64]or[65]);–empirical equations.Some of the equations adopted in the literature with regard to polymer processing are summarized in Table1.Apart from Eq.(17)adopted by Katayama and Yoon [66],all equations predict a sharp increase of viscosity on increasing crystallinity,sometimes reaching infinite (Eqs.(18)and(21)).All authors consider that the relevant variable is the volume occupied by crystalline entities(i.e.x),even if the dimensions of the crystals should reasonably have an effect.1.1.5.Modeling of the molecular orientationOne of the most challenging problems to present day polymer science regards the reliable prediction of molecular orientation during transformation processes. Indeed,although pressure and velocity distribution during injection molding can be satisfactorily described by viscous models,details of the viscoelastic nature of the polymer need to be accounted for in the descriptionTable1List of the most used equations to describe the effect of crystallinity on viscosityEquation Author Derivation Parameters h=h0Z1C a0x(17)Katayama[66]Suspensions a Z99h=h0Z1=ðx K x cÞa0(18)Ziabicki[67]Empirical x c Z0.1h=h0Z1C a1expðK a2=x a3Þ(19)Titomanlio[15],also adopted byGuo[68]and Hieber[25]Empiricalh=h0Z expða1x a2Þ(20)Shimizu[69],also adopted byZuidema[22]and Hieber[25]Empiricalh=h0Z1Cðx=a1Þa2=ð1Kðx=a1Þa2Þ(21)Tanner[70]Empirical,basedon suspensionsa1Z0.44for compact crystallitesa1Z0.68for spherical crystallitesh=h0Z expða1x C a2x2Þ(22)Han[36]Empiricalh=h0Z1C a1x C a2x2(23)Tanner[71]Empirical a1Z0.54,a2Z4,x!0.4h=h0Zð1K x=a0ÞK2(24)Metzner[65],also adopted byTanner[70]Suspensions a Z0.68for smooth spheresR.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221193。

注塑中英文对照

注塑中英文对照

不良标签标示单整理整顿清扫清洁教养安全来料不良刮伤压痕螺栓热注射成型控制面板显示器安全门注射座螺杆料膛加热圈喷嘴定模板动模板成型机顶杆手动操作半自动操作全自动操作料膛清洗上料机温调机控制模具温度,保持在设定温度以内的温度控制设备参数监控画面对设备具体参数设定的画面,一般配有图表生产管理画面模板控制画面顶出控制画面加热管理画面注射速度画面注射压力画面保压控制画面计量控制画面报警显示画面最大高度最小高度能满足成型机性能的最小模具厚度锁模力锁模系统控制系统抽芯距白化制品破坏前变形引起的颜色差异缩痕收缩差异熔接线亮线冷熔接困气烧伤黑斑料纹烧焦色差脆化蠕变位移分层表面剥离三角洲效应方向收缩尺寸变化尺寸稳定性密度翘曲变形迟滞垂直于流动方向的收缩热变形温度脱模脱模斜度脱模困难内应力长链高分子凝固层比例取出粗加工伺服马达工序塑料件注射模斜销斜滑块悬臂搭扣连接模套型芯支架推块推杆推板复位杆扇形浇口浇口镶块圆柱头推杆扁顶杆连接推杆导套导柱浇口浇口长度浇口位置嵌件楔紧块凹模凹模拼块定模座板顶出系统设计顶出时间推板导套推板导柱冷料穴公模面模具温度支撑板隔板掏空型心拼块强度设计型芯固定板斜度母模面动模面斜槽导板推杆固定板弹性模量模具的 弹性变形加热圈定距拉板热流道板水平分型面热流道模具热塑性塑料注射模垫片拼块限位块限位丁浇口镶块钩型拉料杆球头拉料杆标准模架滑块煤油定位工作台车间故障低碳钢修正包装面板绘图机装模工花键条形码操作员课长外观检查内部检查前面板后面板电源按键工作间品质管理部门机械手车床工业酒精生锈换模装模修模到角淬火回火退火套筒无流道首件确认特采电极稳定性好气阀斜顶锁模块压条二板模三板模热嘴快接头扭距样品变形疲劳延展性翘曲熔接线脱模困难扭曲留痕鱼眼疲劳龟裂现象缩痕冻结浇口固化喷泉流动自由收缩中心趋向热熔接平均温度平均速度回流计量背压料筒溢料共混凸台分流道计算机辅助工程充填基本流动方式悬臂式卡扣毛细管流变仪型腔压力型腔 压力曲线中心温度热膨胀系数位移分布可压缩冷却效率冷却过程冷却速率冷却速度冷却阶段冷却系统冷却时间冷却水管锥板式流变仪冷却模拟冷却通道模面温度差分布弧制品产品轴钳工工作坯料黄铜毛刺铸钢压板轮廓制图点火花加工电极套管装配工磨光硬度应力集中应力断裂应力松弛应力集中源应力应变特性浇注系统纤维增强性材料纤维添加剂流动充填方式充填过程充填速率充填阶段充填时间注射力体积弯曲流动平衡流动控制流动长度流长比流动趋向流动模拟圆形流道三角筋半圆形流道热传导系数热传控制热传导速率冷却水管配置方式 玻璃化转变温度静置段冲击强度模内收缩流动方向的收缩率注射压力注射速度注射系统模内压力定压冷却阶段各向同性坚韧体积收缩率体积特性体积收缩率体积收缩 率分布长径比长度—厚度比线性收缩长期载荷隔热板热应力壁薄件螺纹型心螺纹型环熔体波前熔融指数成型温度计量区熔体流动速度微观结构带圆角的梯形流道再吸水模内收缩模具温度高分子链分子链的取向分子质量分布锥形定位件模架(注射模)塑料成型模具热塑性 塑料模具热固性塑料模具开模力模板闭合高度成型压力活动镶件动模动模座板多点进浇牛顿流体非牛顿流体喷嘴压力曲线过保压保压模拟保压流动保压压力保压过程保压阶段保压时间潜流效应冷却不均均匀度阀式浇口排气槽壁厚过度区域模具加工精度梯形流道护耳浇口絮流圆柱形塑料制品超声波焊接平头螺钉平行板流变仪制品装配制品设计制品尺寸制品收缩制品刚度制品强度制品顶出温度制品壁厚制品公差流道重量分型面点浇口塑料制品塑化平板型塑料制品脱膜后定压冷却入口压力压力控制压力差压力分布压力变化过程压力-体积-温度 关系成型循环加工参数投影面积赛马现象矩形流道增强增强成分增强筋筋筋的形状环行浇口流道浇道平衡流道截面积流道直径流道尺寸流道长度流道板份流道拉料杆螺杆旋转推流道板流道系统流道系统布局无流道模具封口压力半结晶型塑料半结晶齿壮设定的注塑压力曲线轴剪切剪切率切应力切应力分布剪切变稀特性短射短期载荷注射能力带肩推杆收缩率收缩收缩变形翘曲模拟收缩应力收缩空洞侧型心滑块导板银纹单浇口或多浇口表面层搭扣配合连接固化层,凝固层主流道浇口套拉料杆圆锥头拉料杆状态方程式阶跃式变化吸水程度吸水性塑料容积温度纤维素结晶型塑料玻璃纤维玻璃态低密度聚乙烯力学性能共塑物热物理特性热塑性塑料耐冲击聚苯乙烯黏度粘滞加热粘弹性交联结晶膨胀比热比体积热卡特性温度梯度热通量结晶热融化相变热高弹态热点相变温度熔点晶格英文术语qualitytolerancedefective product label identifying sheet listSeiriSeitonSeiketsuSeisoShitsukeSafedeficient purchasescratchdentsboltthermoplastic injection molding contorl platpro-facesaft doorenjection blendscrewfabbrelheaternozzleplammoving plamejector pinmansengle manautopurgeloaderproduct menutplam controlejector controlheat controlspeed controlfulling pressure controlpacking pressure controlexcit controlalarm viewmaximum daylightclamping forceclamping systemcontrol systemcore-pulling distancecore-pulling forcehydraulic systemshort shotjettingshrinkageasymmetric shrinkagelinescolor changeCold weldingair trapsburnblack specksblack streadsburn marksdiscolorationbrittlenessCreepDisplacementdelaminationdelta effectdiectional shrinkagedimensional variation dimensional stabilityDensitywarpagedistortionhesitationcross-flowshrinkagedeflection temperatu re demoldingdraftejection difficultiesinternal stresslong chain macromoleculesfrozen layer fractionremovalrough machiningservomotorworkstageplastic partsinjection mouldangle pin / finger camangled-lift / splitscantilever snap jointschase / bolster / frame Coreejector housing / mould base leg ejector padejector pinejector platepush-pack pinGate dimensions(sizes)disk gateedge gatefan gategating insertejector pin with cylindrical head flat ejector pinejector tie rodguide bushguide pillargategate lengthGate locationinsertheel lockcavity platecavity splitsfixed clamp plateejection system designejection timeejector bushingejector guide pillarcold-slug wellmale mold facemold temperaturebacking plate / support plate bafflecore outcore splitsDesign for strengthcore-retainer platedraft angleFamale mold facedynnamic mold facefinger guide plateejector retainer plateelastic moduluselastic deformation of toolheaterpuller plate; limit platehot-runner manifoldhorizontal parting linehot runner mouldinjection mold for thermoplastics gasketsplits(of a mould)stop blockstop pingating insertsprue puller,z-shapedsprue puller, ball headedstandard mould basescam slidestripper platesubmarine gatesupport pillarmould insertkerosenelocatemachine tablemachine shopmalfunctionlow carbon steelmodificationpackpanelplotterpress settersplinebarcodeoperatorsupervisorcosmetic inspectinner parts inspectfront platerear platepower buttonwork cellQC Sectionrobotlatheiudustrial alcoholrustdie changeto fix a dieto repair a diereverse angle = chamfer quenchingtemperingannealingsleaveRunner lessFAA first article assurance L/N Lot Number 特copper electrodegood stabilityvalvesangle from pinlock plateplate2-plate mold3-plate moldhot spruejiffy quick connector plug torquesamplecause analysisdefective productflashjettingdistortionfatigueductileWarpageweld lineejection difficultiestorsionflow marksfish eyesfatigueenvironmental stress crackresistancesink marksfreezegate freeze-offFountain Flowfree shrinkagecore orientationhot weldingAverage Temperatureaverage velocityback flowback pressurebarrelbleedingblendBossesBranched runnersCAE(computer aid engineering)Basic Flow Pattern in FillingCantilever snap (hook)Capillary viscometerCavity pressurecavity pressure profileCenter Temperaturecoefficient of thermal expansion displacement distributioncompressiblecooling efficiencycooling processcooling ratecooling rateCooling stagecooling systemcooling timecooling channelcone-and-plate viscometercool simulationcooling channel / cooling linedistribution of mold temperature difference cushionsectionapertureapplied loadsarcarticleaxisbench-workblankbrassburrcast steelclampcontourdrawingelectrochemical machining electrodeferrulefittergrindinghardnessStress concentrationstress crackingstress relaxationstress risersStress-strain behaviorfeed systemfiber-filled polymersfibersfillerfilling patternfilling processfilling ratefilling stagefilling timeejection forcefree volumeFlexuralflow balanceflow controlflow lengthflow length to thicknessflow orientationflow simulationFull-round runnerGussetsHalforound runnerheat transfer coefficientheat transfer controlheat transfer ratelayout of cooling channels Glass Transition Temperature,Tg holding stageholding timeImpact strengthin mold shrinkagein-flow shrinkageinjection pressureinjection speedinjection systemintemal mould pressure/cavity pressure isobaric coolingisotropictoughvolume shrinkagewolumetric Propertiesvolumetric shrindagevolumetric shrindage distribution, length-to-diameter ratiolength-to-thicknesslinear shrinkageLong-term loadthermal insulation boardthermal stressthinner walled partthread plug / threaded corethread ring /threaded cavitymeltmelt front (Advancement)melt index,MImelt temperaturemetering zoneMFRmicrostructureModified trapezoidal runnermoisture reabsorptionmold shrindagemold temperaturemolecular chainmolecular Chain Orientationmolecular weihght distribution,(MWD) mould ases locating elementsmould basesmould for plasticsmould for thermoplasticsmould for thermosetsmould opening forcemould platemould shut heihgtmoulding pressuremovable insert ,loose detailmovable mould / moving mouldmoving clamp plate / bottom clamp plate multiple gatingNewtonian fluidnon-Newtonian fluidNon-uniform Shrinkagenozzle pressure profileoverpackpack simulationpacking flowpacking pressurePacking ProcessPacking stagepacking timeunderflow effectuneven coolinguniformityvalve gatevent (of a mould)wall thickness transition regionstool tolerancesTrapezoidal runnertube gateturbulancecylinder-like partsUltrasonic weldingpan-head screwsparallel-plate viscometerPart AssemblyPart desingnpart dimensionPart ShrinkagePart StiffnessPart Strengthpart temperature at ejection/ejection tem Part thickness,thinkness of partPart Tolerancepart weightparting linepin-point gateplastic partsplasticizationplate-like partspost mold isobaric coolingPressure at the entrancepressure controlPressure differencePressure |DistributonPressure Historyprssure-volume-temperature relationship PVT process cycleprocessing parametersprojected arearace trackRectangular runnerreinforcedreinforcement contentreinforcing ribrelaxationResidual stressReynolds numberRheologyRibRib geometryring gaterunnerrunner balancerunner cross sectionrunner diameterrunner dimensions (sizes)runner lengthrunner platerunner pullerScrew rotation speedrunner stripper platerunner systemrunner system layoutsrunnerless mouldsealing pressuresemi-crystalline polymerssemi-crystallineserrationsSetted injection pressure profile shaftShearshear rateshear stressShear Stress Distributionshear-thinningshort shotshort term loadshot capacityshouldered ejector pinshrinkage rateshrinkageshrindage &warpage simulation shrinkage stressShrindage voidsslide coreside guide pinSilver streaksSingle vs.multiple gatesskin layersnap-fit Jointssolidification layerspruesprue bush / sprue busingsprue pullersprue puller,conical headedstate equationstep changeswitch-over positionthermal degradation temperature Amorphous polymersdegree of crystallinity degree of moisture absorption hygroscopic polymersBulk temperatureCA(Cellulosics)crystalline polymersGF (glass-fiber)glsaay stateLDPE (Low Density Polyethylene) mechanical performancecpolymerThermophysical Properties thermoplasticsHIPS(high impact polystyrene) viscosityviscous heatingViscoelastic behaviorcross-linkcrystallineswellSpecific HeatSpecific VolumeCalorimertric properties temperature gradientheat fluxHeat of CrystallizationHeat of Fusionheat of phase transitionHigh elastics satatehot spotTransition TemperatureMelting Temperature/TMlattice通用翻译满足或高于消费者期望的产品综合质量保证质量前提下允许尺寸的波动范围表明制品,不良或不合格内容的小说明表明制品,物品,地点等特性或作用的小说明必要与不必要的物品分开处理物品分门别类,按规定摆放并标识去除赃污防止再次发生将整理、整顿清扫制度化、标准化人人按照规定和制度行事,养成良好习惯自身安全,他人安全和设备安全上一工序的产品质量不符合本工序质量要求在制品表面因手或其它物体摩擦形成的影响制品外观质量的现象由于重力或压力引起接触面的痕迹,可影响外观美观起固定作用的栓件通过加热使物料熔化在注射到模具内形成期望的制品对设备参数控制的简易操作平台显示设备必要信息的屏幕防止事故发生,增大安全系数的保护装置门注射成型机组成部件,支撑并协助注射的金属平台起旋转计量作用的螺纹状部件.是成型机的核心机械件树脂预塑的炮膛状部件,和螺杆配合俎件质量要求较高围绕在料膛周围,起迅速并均匀加热作用的片状加热器连接注射成型机料筒与模具浇口套接触的像针头状的组件可固定模具在成型机上的铁板,是成型机的一部分成型机曲臂连接板,使模具固定在成型机上做开合模运动的动模板连接到模具上控制模具顶杆顶出或回退作用的连接杆只能手动单一步骤状态操作可半自动状态操作根据设置的程序在全自动状态动作一般用PE料做射出动作来清除或淡化料膛内物料或颜色在料杯树脂不足在传感器监控下吸取储备树脂的成型辅助设备在全自动生产状态下对产品质量和数量控制的页面模板动作状态控制页面顶出动作状态控制画面材料加热控制画面注射过程中对速度控制的画面注射过程中注射压力控制画面注射后保持设定压力提高制品质量的控制画面计量尺寸和相关参数控制画面设备动作异常或监控报警预览成型机模板打开的最大尺寸成型过程中为保证动,定模相互紧密配合而需施加的在模具上的力模板控制系统,注塑机上系统的一部分计算机通过检测、处理信息并重新输入计算机进行控制相关参数将侧型心抽至不防碍制品脱落的滑块滑动的距离从模内的成型塑件中,抽拔出侧型心所需要的力生产每个制品的时间或是单位时间内生产制品的个数液压动力注射机上的压力系统由于一次注射压力不足或速度偏低引起的浇不足现象材料水份超标,结构不良引起的表面气泡等不良现象热熔体在收缩情况下表面会形成凸凹状现象的统称制品厚度不均匀或分子排列不同引起的不均匀收缩两股或多股熔体结合位置形成的线状痕迹一种有明亮痕迹的注塑成型缺陷,一般为线状少为带状低温区域的熔接,多见于冲填结束,不同塑料熔前交汇造成又称包气,熔体流动将气体堵住或包住不能及时排出填充时模具内部气体不能迅速排出产生压缩高温,导致制品局部变色注射成型过程中因高温或树脂分解等原因引起的黑色不良现象树脂在模具腔内流动时由于层流因素引起的外观不良现象因高温引起的成型缺陷的一种制品本身颜色有其他杂质颜色混入形成的不良现象成型缺陷(因树脂性质发生变化引起的脆化或者破裂)高聚物在恒定温度和应力下,长度随时间延长而逐步深长的现象熔体内部压力差引起高压部份向低压部分推移现象,可产生层次感同一树脂或不同树脂发生层流后产生的 现象局部温度差由大分子链排列引起的具有方向特性的收缩生产出的制品在不同的环境下都会产生尺寸的变化制品尺寸的稳定性和一致性单位体积的质量有多种原因引起的变形现象,如收缩翘曲,配向翘曲等产品在内应力或外力的作用下产生的尺寸变化以及形状变化熔体的某一部份发生停止流动或极缓慢流动的现象发生在垂直于熔体流动方向上的收缩热力的作用下,塑料可以发生变形的温度保压后制品在模具内部成型完毕脱离模具的现象方便成型制品脱离模具而设计的角度成型制品不容易脱离模具的现象残留在制品内部因各种原因产生的应力很多小分子连接而成的具有较大质量的长分子连熔体在模具内冷却状态之一的数学表示方法成型后制品拿出的过程毛坯加工或留有大量余量的待加工品配合CPU工作的马达完成一个组件或产品经过的步骤以塑料为原料生产的制品通过注射方式成型的模具倾斜于分型面、随模具的开闭产生相对运动的圆柱零件斜向镶块或滑动的镶块组合方式之一使镶件或拼块定位并紧固在一起的框套形结构零件成型模具内表面突起的组件使动模能固定在压机或注塑机上的L型垫块在腔内起部分成型作用,并在开模时把塑件从型腔内推出的零件用于推出塑件或浇注系统凝料的杆件支撑推出和复位零件,直接传递机床推出力的板件借助模具的闭合动作,强制推出机构复位的杆件浇口的相关尺寸熔融塑料经主流道直接进入型腔的进料方式沿塑料件内圆周扩展进料的浇口设置在模具的分型处 从塑件的内或外侧进料的方式从分流道道型腔方向的宽度逐渐增加的呈扇型的浇口浇口以镶块的形式存在推杆的一种,头部形状是圆柱型形工作截面为矩形的顶杆连接推件板与推杆固定板,传递推力的杆件与导柱相配合,用于初步确定模具起导向作用的部件,一般为圆柱体连接分流道合型腔的进料通道浇口的长度树脂流入模腔的点相对整体模腔的位置成型中埋入或随后压入塑件中的金属或其他材料的部件带有楔角,用于合模时楔紧滑块的零件成型塑件外表面的凹壮零件(包括零件的内腔和实体两部分)母模中的镶件拼块使定模固定在注塑机的固定工作台面上的板件 是模具的基座顶出制品机构的类型,布置方式的设计 包括模具和成型机两部分制品脱离模具可安全取出的时间与导柱滑配合,用于推出机构导向的圆柱形零件与推板导柱滑配合,用于推出机构导向的圆柱形零件在浇口流道末端用于储藏低温熔体的槽指凸模面或是动模面注射成型使用的模具的实际温度或设置温度支撑模具芯体和其它运动结构的板状模块为改变蒸汽或冷却水的流向而在模具内部设置的金属条或板将制品的一 部分设计成掏空的部分凸模中的镶拼件,一般成型出制品内表面的某个部分对应制品使用环境要求而设计的强度用于固定型心的板状零件为了方便出型或脱模设计的斜度指凹模面也叫定模指凸模面也叫公模具有斜导槽,用以使滑块随槽动作抽芯合复位动作的板状零件用于固定推杆位置,使其不发生位置变化的压板衡量材料产生弹性变形难易程度的指标模具在行腔压力下发生的弹性变形用于加热使用的环行加热部件在开模时限定某一板动作距离的板件为开设分流道设置的加热元件,保持融料的温度立式成型机中,模具天地开模(上下),分型面为水平状态也称无流道,浇口料在模具内部保持熔融状态的模具热塑性材料使用的注射成型模具调整高度使用的薄金属片按设计和工艺要求,用以拼合模具型腔或型芯的零件限制活动范围的零件限制位置的丁状零件以浇口形式存在的镶块形状像钩子,起拉料作用拉料部位呈圆型的零件但不是规范的圆形通用并具有互换性的模架可以滑动,带动侧型心完成出型,抽芯和复位动作的零件直接推出塑件的板壮零件起局部或整体推出塑件作用的环行或盘型零件位置不明显,一般可自动剪切的浇口为增强动模的钢度设在动模支撑板和动模座板之间的支撑零件在工艺上便于加工或修理与主体部件分开制造的局部零件石油提炼出的油脂,一般在模具行业中清洗附着的分解物或异物固定在要求位置操作或加工的区域,可能是安全区域也可能是非接触区域.工作的场合,一般指一线工作人员的工作区域而非文件处理办公室影响机械设备正常工作的现象含碳量在0.10%至0.30%之间,也称为软钢一般指在接近标准的基础上进行小尺寸的修改以达到更高的要求为了美观或防止潮湿,灰尘,碰伤等采取的保护措施多指可视或裸露在外面的并起到遮盖作用的部件可联网专用于绘制图纸的机械组装并研磨模具的工人齿轮状起到连接固定作用的部件用于储存部件相关信息的条状代码使用或控制机械设备人员外来语,日本,韩国称为课长,中国一般称科长对制品外观质量目视或测量的过程对制品内部质量目视或测量的过程组件前部或正对着使用者方向的部件组件后部或背向使用者方向的部件控制电源开启或关闭的按键小型工作车间或有几个人协作完成的一道工序的线体品质控制和管理的部门,国际上多与生产分开管理代替操作人员手动工作的半自动或自动机械设备用车刀对对旋转的工件进行车削加工的机床可以导致人体中毒的甲醇模具因潮湿和空气中的氧气发生的一种化学反应成红赫色物质换模就是切换其它模具,将原来的模具卸下换上另一副开机生产前将模具使用手动或机械自动夹持在成型机上一种对模具非正常状态进行处理并修理到正常状态的过程为了防止金属锐利的角划伤或使外形美观将锐角去处的一种方法提高钢强度和硬度的一种工艺方法淬火后一般都经过回火,可提高组织稳定性生产中常用的预备热处理工艺中空的小管,和套筒芯组成组件形成孔,顶出时只有套筒动作即热流道,熔体不形成冷却废弃的材料,在模具内保持熔体状态对生产的第一个制品进行外观检查或组装等实验,确保可继续生产在不防止阻碍制品正常应用的条件下被允许生产的托词铜制品,在电加工上对坯放电造型质量在允许范围内波动控制气体的阀与推板动作方向不一直的顶杆防止模具在运输过程中打开的锁紧件固定相关组件的条状零件无中间板的模具,看模后只见两个板有中间板的模具,可见三个板可加热的端口区域实现快速连接的接头扭转变形时,内力偶距称为扭距可代表综合质量的个别产品通常采用人,机,料,法,环来剖析问题的过程符合质量规定的产品不符合质量规定的产品在模具缝隙中形成的不良现象,片状的称为飞边树脂熔体形成泉流后在制品表面形成的不良现象由于收缩和其它原因引起的形状变化高聚物材料在长期应用情况下所表现出来的特性可锤炼可压延的程度,材料特性之一由于非均匀收缩或分子排列等引起的抽曲熔体相遇后在连接位置形成的不良现象制品脱落时发生的困难一种载荷类型注塑成型缺陷的一种包括料留痕,气留痕和型腔结构留痕注射成型缺陷的一种,表面有颗粒状物质高聚物材料在长期应用情况下所表现出来的特性由于内应力的存在发生的制品段列,裂纹现象熔体遇冷后产生的收缩现象大分子链停止运动,熔体开始凝固浇口中的熔体由流动到冷却静止的过程像泉水涌出,中间层熔体向两侧翻出的现象在常温常压以及不受载荷时发生的自由收缩现象注塑成型工艺中的有一个重要参数熔体分流后再次融合的一起的现象不同测控点的温度平均值熔体在流动时候速度的平均值由于不同区域压力差引起的熔体倒流现象树脂在计量时候形成推动螺杆向后移动的压力树脂计量时的外部部件,与螺杆配合进行计量融体在充填或保压时刻发生熔体溢出的现象聚合物该性方法的一种呈突起状区域,具体作用与设计相关流道系统的一部分,与主流道相连的小流道分支计算机模拟流动,保压,变形,气辅等模拟手段融体在充填时流动的基本模式类是于“ 7 ” 型的钩子妆连接方式测量流体黏度的测量仪器熔体填充到模具内部时,模具内的压力以曲线的形式描绘出腔内随时间,速度变化的压力曲线制品中心层处的温度单位长度的材料温度每升一度的伸长量制品各个部分尺寸的线形伸长或缩短的分布情况塑料在不同的温度下体积发生变化的现象单位时间内带走热量多少的度量塑料冷却的全过程熔体冷却的速度塑件冷却的速度成型周期的一部分,制品冷却直至可安全取出用于冷却塑件的系列冷却装置以及布置方式塑件从保压开始一直到顶出的一段时间用于冷却塑件分布在模具外部的水路一种流体的黏度测试仪器CAE辅助分析的一种,用于模拟冷却过程设计在模具内部的冷却液通道,用以控制所要求的模温制品的两个和模具接触表面的温度差分布情况保压后螺杆所剩余的计量长度塑料制品壁部的厚度变化断开的端面起到组装或固定作用的孔(不一定是圆形)实际载荷或受力直线的过度联系常使用的弧,可以起到加强或美观的作用物品,制造生产的部件应用在不同环境下的轴,可起到对称基准或连接等作用研磨,组装,修理模具等工作没有进行细致加工的原材料由铜和锌组成的合金尖锐的比较小的突出部分用于浇注铸件的钢用于固定模具的夹具造型艺术术语,指界定表现对象形体范围的边缘线给予说明加工尺寸或外观图纸制作过程一种采用高压放电对金属部件加工的工艺铜材料,用于放电加工的阴模,放电加工完毕后被加工部件形成阳模筒装管子组装研磨工人研磨抛光材料局部抵抗硬物压入其表面的能力在应力的情况下出现在应力聚集的现象在应力的情况下发生断裂在恒温和应变情况下应力随时间延长而减小的情况产生 应力集中的区域应力发生变化的特点由喷嘴到型腔之间的进料通道组成包括主,分,浇口合冷料穴为了提高或降低某中特性在塑料材料中添加了其它成分高分子材料的一种添加到高分子内部改善塑料有关性能的成分填充过程熔体流动的各种形式熔体填充到模具的整个过程单位时间内添入模腔的熔体量熔体填充到模具阶段熔料充满型腔所用的时间严格上讲包括保压填充时间熔体从料膛注入模具内所需要的力一定量的熔体材料占据空间的部分一种可发生弯曲的载荷类型熔体填充到模具内流动均匀性的一种表现形式螺杆速度及压力控制模具腔内熔体的体积流量形式熔体流过的长度壁厚与熔体流动距离的比塑料在流动或冷却的过程呢中,发生在分子链定向的一种行为CAE辅助分析虚拟流动的一种方式截面为圆形的流道三角形状起到加强或者支撑作用的筋等截面的形状为半圆形的流道将热量从热的地方向冷的地方传导速度的量度控制热量传导的仪器设备单位时间内热能传递的量度冷却水管在墨菊内部布置和排列的方式粘流态树脂冷却成玻璃态时刻的温度Pack结束后,螺杆基本静止不动而维持压力不便的阶段填补收缩时保持设置压力的时间盛放待加工树脂塑料的容器。

翻译

翻译

通过做转变层和RAFT技术聚合来制备独立的分子印迹膜并在高效液相色谱中使用摘要独立的分子印迹膜(SS-MIFS)已经通过转变层结构由可逆加成-断裂链转移自由基(RAFT)聚合法来准备。

这个结构,组成和分子印迹的选择性以及质量传递的机理通过电子显微镜,X光照射,傅里叶变换红外光谱仪,比表面积区域分析,热重分析和高效液相色谱进行表征。

分析表明样品具有比表面积高80.5 m2.g−1。

是原始多孔阳极氧化铝基板的几乎9倍以上。

热重分析还表明,样品的热稳定温度高达350 °C。

用高效液相色谱法研究分离能力,揭示了目标分子对可可碱选择性分离的能力。

分离系数为5.37。

关键词:分子印迹膜层状双氢氧化物RAFT聚合化学分离介绍分子印迹膜具有分子印迹和膜技术的特点,现在已成为一种广泛应用于各个领域的技术,如分离,化学传感器,生物受体模型等。

在早期的研究中,分子印迹膜的制备是热或紫外线引发自由基聚合。

这些过程具有简单和容易控制的反应条件,但结果大多有大的颗粒尺寸,不规则形状,从而降低分子印迹效率。

近年来,可控自由基聚合合成超精细、超薄、纳米结构的分子印迹薄膜已成为分子印迹领域的一个重要发展方向。

通过制备方法控制自由基聚合,在分子印迹薄膜样品的活性成分-分子印迹层可以得到稳定性的改善,更均匀和稳定的识别位点,以及较高的分子识别效率。

然而,分子印迹膜的制造方法要么以薄层相邻支撑表面和/或接枝- 从载体材料的反应的选择性启动。

分子印迹层之间的结合的相互作用是弱的范德华力或通过复杂的化学氧化还原或辐射接枝获得的共价键。

此外,这些分子印迹膜的支撑膜是灵活的有机薄膜并不能独立的发挥作用。

因此,无机独立分子印迹膜(SSMIFs)是近年来发展起来的。

例如,杨的团队报道了分子印迹的多孔阳极氧化铝膜的自立建设(PAAO)的内部孔壁直接通过一个浅显的溶胶凝胶过程形成–的印迹层膜。

对多孔薄膜利用刚性基板产生的分子印迹膜具有良好的自支撑结构。

外文资料翻译-万一锴

外文资料翻译-万一锴

外文资料译文化学气相沉积金刚石:控制结构和形态摘要对于许多工业材料如切割工具,光学部件和微电子器件,控制薄膜形态组织是非常重要的。

在力学,电学和光学方面,颗粒的尺寸,排列方式和表面粗糙度对薄膜沉积具有深远的意义。

本文介绍目前的最新研究对表面的前处理,衬底和金刚石薄膜的偏置以及对处理气体甲烷和氢气中氮的添加来影响薄膜表面的形态和结构。

报告了衬底偏压对薄膜形貌影响的预研究结果。

金刚石粉和矾土粉组成的抛光材料的粒子大小是由于成核位置的缩小,从而成核密度提高了,这个已经被证实出来。

矾土比金刚石更易产生沉淀。

属于表面粗糙较能存放的质地。

对于氮元素里面参杂的杂质,有200万分之一的已经被显示出来。

对于这个问题,科学的解释是表面的碳过度饱和。

§1 引言金刚石是当今可以使用的先进科技材料之一。

它把出色的物理和化学性能独特的结合起来,使其成为在许多潜在用途方面的理想材料。

在切割工具、光学元件、生物医学元件、微电子电路和热量管理系统都有应用。

人们研究大量的方法在不同衬底上沉积金刚石薄膜,最常见的是硅。

可论证地,最成功的沉积金刚石结晶层的方法是化学气相沉积法(CVD)。

这篇文章我们研究的是另一种化学气相沉积法基本过程,通常被称为热丝化学气相沉积法。

关于沉积机制有许多问题,如果热丝化学气相沉积法在工业中成为切实可行的应用,需要解决按比例增加因素和表面化学组成这些问题。

尽管如此,这项技术仍然可以提供有关金刚石沉积科技的大量有用的科学信息。

普遍认为例如形态,质量和对衬底粘着力等特性决定了它是否适合用于特殊用途等这些问题很关键,需要研究。

金刚石成核阶段和CVD加工条件都关键性的决定薄膜结构和形态。

人们经常在沉积之前用金刚石粉刮擦衬底材料的方法来提高成核密度。

然而,这样的刮擦方法会以不明确的方式破坏表面而抑制CVD金刚石在某些方面的特殊用途。

因此更多的成核方法例如在标准CVD之前偏置变得广泛起来,它甚至可以促进金刚石薄膜的异相外延生长。

翻译

翻译

新型pH敏感聚乙二醇聚合物中空微球Panayiotis Bilalis Nikos Boukos的,乔治C. Kordas的⁎材料科学研究所,:“德谟克利特NCSR银。

GR-15310,雅典,希腊PARASKEVI Atti摘要:pH敏感的新型聚乙二醇化聚[甲基丙烯酸- 共- 聚(乙二醇)甲基醚甲基丙烯酸酯] [P]空心微球,合成了一个两阶段的蒸馏沉淀聚合(MAA - 共-PEGMA)。

聚甲基丙烯酸的@ P(MAA - 共-PEGMA)核壳微球的合成由第二阶段聚合MAA和PEGMA,使用N,N'-亚甲基双丙烯酰胺(MBAAm),作为交联剂的存在下非交联的聚甲基丙烯酸的微球。

通过选择性地除去在乙醇中的聚甲基丙烯酸的核心形成的空腔。

聚乙二醇化导致空心微球进行了表征透射电子显微镜(TEM),扫描电子显微镜(SEM)和傅立叶变换红外光谱(FT-IR)。

缩水和不同pH条件下的溶胀性能进行了研究,通过动态光散射(DLS)。

关键词:PEG pH敏感聚乙二醇空心微珠聚合物PMAA1.介绍近年来,开发的中空聚合物球亚微米尺寸范围已受到科学界显着的关注。

结果已经证明有前途的生物医学应用[1]。

特别是,聚合物球含有可离子化的基团,如羧酸,承诺胶体稳定性[2],更好的稳定性封装药品低pH值(胃)[3]和刺激的药物的控制释放[4]。

许多努力一直致力于渲染制作纳米结构生物相容性通过各种表面改性程序。

保利(乙二醇)(PEG)被广泛地用作亲水性的,无毒的聚合物[5],通常疏水性链段结合,以产生两亲性纳米载体[6,7]。

团的亲水性的mPEG基的聚合物纳米颗粒的表面上,发现显示抵抗非特异性蛋白吸附[8]和更长在体内的循环时间在血液中的[9]。

最近,出现了相当大的兴趣在不同的方法聚乙二醇化的聚合的PEG乙烯大分子单体。

这种方法允许制备的聚合物的结构,是生物相容性和刺激响应性。

peppas等。

有对不同pH值的影响研究的合成及其溶胀性能聚(甲基丙烯酸- 克乙二醇)P(MAA-克-EG)的凝胶[10]和纳米微球[11],通过利用大单体方法。

姜明莉毕业设计译文

姜明莉毕业设计译文

外文资料译文晶膜McrAlY涂层的镍基高温合金的电火花沉积在2006年3月31月,中科院沈阳110016,金属研究所,国家重点实验室的防腐与保护与中国北京100039中国研究生院的中科北院收到此文献;在2006年8月31日接受订正形式;在2006年9月20日网上提供文献。

摘要一种新型的电火花沉积技术已成功的应用在晶膜McrAlY涂层固化镍基高温合金上。

涂层的凝固组织主要是γ相。

该合金凝固主要γ相和固化条件的小薄熔体在组织转变的电火花冷处理条件使电火花沉积技术的形成机制成为可能。

关键字:电火花沉积,McrAlY涂层,超高耐热合金,定向固化1.引言超耐热合金和高温保护膜是燃气轮机必不可少的部分。

涂层McrAlY合金(M=镍,钴)起着重要的作用,不仅起着保护的作用,而且还在粘结层和底层起着隔热的作用。

随着涡轮设备温度的升高,传统铸造镍基高温正逐步由定向凝固合金(DS)和单晶合金(SX)取代。

然而,前进的刀片材料并不遵循该涂层方法。

通过传统的方法如真空等离子喷涂(VPS),空气等离子喷涂(APS),此涂层用于指定的基底,涂层的结构仍存在多晶。

这种方法的指定基底和未指定涂层有一个很大的力学性能差异在于基底和涂层等结构作为拥有电子模量远远高于那些晶向为001的指定材料。

在热循环过程中差异的E-模量使应力界面高不相容,从而导致热机械疲劳破坏。

涂层合金的热机疲劳性能远远低于那些未取向单晶材料的性能。

因此,开发新技术来使晶膜生成的保护层以符合指定的基底具有重大意义。

为了产生晶膜的生长涂层,必需使用熔焊接工艺。

然而,定向凝固耐热合金(单晶耐热合金)在焊接期间和之后形成裂纹的趋势很高。

这些裂纹主要发生在热影响区,很大程度上与大的热输入和冶金反应有关。

经验显示:通过使用适当的热输入和工艺控制来尽量减小热影响可以避免裂纹。

另一种考验是通过避免CET(柱状等晶过渡)来实现连续的柱状晶生长。

晶膜激光金属形成(E-LMF)技术已经被作为一种有前景的方法来生产DS(SX),如修复先进的燃气涡轮叶片,一些激动人心的研究成果和已经被报道的工业应用。

高锰酸钾溶液粗化环氧树脂板的研究

高锰酸钾溶液粗化环氧树脂板的研究

文章编号:100123849(2006)062009205 高锰酸钾溶液粗化环氧树脂板的研究①王秀文, 姜洪艳, 刘志鹃, 王增林(陕西师范大学化学与材料科学学院,陕西西安 710062) 摘要:在不同的微蚀温度、时间条件下,研究了高锰酸钾微蚀溶液对环氧树脂层压板和3240型环氧树脂板(基板)微蚀作用的影响。

通过基板表面形貌的观察和对化学镀铜层与基板间粘结强度的测定,研究和比较了高锰酸钾体系和传统的铬酐2浓硫酸体系对两种基板的微蚀效果。

结果表明,经过高锰酸钾溶液处理后,环氧树脂层压板和3240型环氧板粘结强度分别可达到5188N c m和2135 N c m,远远高于传统的铬酐2浓硫酸处理后镀铜层与基板的粘结强度;同时,使用高锰酸钾溶液可以减小环境污染,且操作简单易行,它作为新型的微蚀体系有望取代传统的铬酐2浓硫酸微蚀体系。

关 键 词:高锰酸钾;铬酐2浓硫酸;环氧树脂板;粘结强度中图分类号:T G178 文献标识码:AA Study on Potassi u m Per manganate Soluti onRoughen i n g Epoxy Resi n BoardsWAN G X iu2w en,J I A N G Hong2yan,L I U Zh i2juan,WAN G Zeng2lin (School of Che m istry&M aterials Science,Shanx i N or m al U niversity,X i’an 710062,Ch ina)Abstract:Effect of po tassium per m anganate etch ing s oluti on on the roughening of epoxy resin la m i2 nates board and3240epoxy resin board at vari ous te mperatures and ti m es w as investigated.E tch ing effects of po tassium per m anganate etch ing s o luti on and traditi onal ch rom ic acid2sulfuric acid s oluti on w ere researched and compared by observati on s of surface morphol ogy and m easure m en ts of peel strength betw een electroless copper coating and the substrate.T he results show that peel strength s of epoxy resin la m inates and3240epoxy resin reach5.88N c m and2.35N c m res pectively after treat2 m en t of po tassium per m anganate etch ing s o luti on,w h ich w ere m uch h igher than that after treated w ith traditi onal ch rom ic acid2sulfuric acid etch ing s oluti on.M eanw h ile,because of l ow envirom ental polluti on and easy operati on conditi on,po tassium per m anganate etch ing s oluti on w ill rep lace traditi on2 al ch rom ic acid2sulfuric acid syste m.Keywords:po tassium per m anganate;ch rom ic acid2sulfuric acid;epoxy resin board;adhesi on strength 引 言化学镀铜形成导电层和电镀铜增加铜膜的厚度是印刷电路板生产工艺中形成铜互连线的重要过程,为了提高印刷电路板中化学铜膜与基板间的粘结强度,在化学镀之前对基板表面进行处理(前处・9・2006年11月 电镀与精饰 第28卷第6期(总171期) ①收稿日期:2006205208基金项目:国家自然科学基金资助项目(20573073),陕西省自然科学基金资助项目(2005B13)作者简介:王秀文(19812),女,山西太谷人,陕西师范大学化学与材料科学学院硕士研究生1 理),是很有必要的。

5A06铝合金板材热态本构模型及韧性断裂准则

5A06铝合金板材热态本构模型及韧性断裂准则

第53卷第1期2018年2月西南交通大学学报JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITYVol. 53 No. 1Feb. 2018文章编号:0258-2724(2018)01~0214-05 D O I:10. 3969/j. issn. 0258-2724. 2018.01.0265A06铝合金板材热态本构模型及韧性断裂准则刘康宁u,郎利辉2,续秋玉3(1.北京航天发射技术研究所,北京100076 ; 2.北京航空航天大学机械工程及自动化学院,北京100191;3.航天材料及工艺研究所,北京100076)摘要:为了获取材料在不同条件下成形性能指标,对5A06铝合金板材进行了热态单向拉伸试验,结合热态单向拉伸试验和韧性断裂试验结果,提出了一种修正M isio lek模型;利用修正模型的外插性能预测颈缩后板材流变应力,应用径向基函数神经网络算法建立了C ockroft-L atham韧性断裂阈值预测模型,并对该模型进行了预测精度评估.结果表明,流变应力对温度及应变速率敏感,对比径向基函数网络模型预测误差小于10.6% .关键词:铝合金;本构模型;热态;韧性断裂准则;径向基函数网络中图分类号:T G146.2 文献标志码:AModified Constitutive Model and Ductile Fracture Criterion for5A06 Al-Alloy Sheets at Elevated TemperaturesLIU Kangning1,2,LANG Lihui2,XU Qiuyu3(1. Beijing Institute of Space Launch Technology, Beijing 100076, C h in a;2. School of M echanical E ngineering andA utom ation,B eihang U niversity,Beijing 100191,C hina; 3. A erospace R esearch Institute of M aterials & ProcessingT echnology,Beijing 100076,C hina)Abstract:In order to obtain the formation characteristics of5A06 aluminium alloy sheets,uniaxial tensile tests were conducted under different conditions.From hot tensile and fracture tests,a modifiedMisiolek equation was defined that extrapolated the flow stress from the diffuse necking of the metal sheet.By using a radial basis unction(RBF)artificial neural network,a Crockroft-Latham ductile fracture threshold prediction model was also developed.An evaluation of the network compared model results with experimental data.Results show that the material flow stress is very sensitive to temperature and strain rate,and the RBF artificial neural network can predict the ductile fracture threshold with a maximum error of less than 10. 6% .Key words:aluminium alloy;constitutive model;elevated temperature;ductile fracture criterion;RBF artificial neural network轻质合金材料一般在常温下具有较低的塑性,杂结构薄壁类零部件的加工制造变为可能.然而在 成形性能较差.在热态条件下的成形性大大提高,热态条件下,这类材料力学性能参数、成形极限、断 许多板材的成形技术[1]均利用了这一特点,使复 裂阈值受温度、变形速度等多种因素影响,导致材收稿日期:2016.18基金项目:国家自然科学基金资助项目(51511130041)作者简介:刘康宁(1988—),男,博士,研究方向为材料模型及仿真优化技术,E-mail: lkn_buaa@引文格式:刘康宁,郎利辉,续秋玉.5A06铝合金板材热态本构模型及韧性断裂准则[].西南交通大学学报,2018,53(1): 214-218.LIU Kangning, LANG Lihui, XU Qiuyu. Modified constitutive model and ductile fracture criterion for 5A06 Al-alloy sheets at elevat­ed temperatures [ J]. Journal of Southwest Jiaotong University, 2018,53(1):214-218.第1期刘康宁,等:5A06铝合金板材热态本构模型及初性断裂准则215料模型复杂,同时也对轻量化合金热态条件下的韧性断裂评判标准提出了更高要求.准确建立材料在相应条件下力学模型、获取材料在不同变形条件下成形性能指标一直是板材成形过程中工艺分析及工艺优化的关键.韧性断裂是板材塑性加工过程中重要的失效类型[2],多数钣金成形工艺均把韧性断裂作为材料成形极的重要指标.基于韧性损伤理论的韧性断裂准则是预测板料成形极限指标的有效方法.国内外学者在理论及试验研究基础上提出了多种韧性断裂准则[3'其中应用较广的有C ockroft-Latham准则[]、Brozzo准则[]及Oyane准则[].这些准则多采用阈值控制的方法,即某处材料超过了一定阈值便认为材料发生断裂.与传统的Swtft失稳舰、M-K沟槽理论相比,金属韧性断裂理论可解决具有复杂应力状态及非线性加载历史的塑性成形的断裂失效问题.同时,由于金属韧性断裂模型具有简单、参数求解方便等优点,被广泛应用于成形过程数值仿真分析[].5A06铝合金是具有代表性的铝镁系防锈铝合金材料[],因其具有较高的比强度并有良好的耐腐蚀性及焊接性,在航空航天领域应用十分广泛.该材料在常温下塑性较差,加热条件下成形性会有明显改善,其热变形行为较为复杂,对变形条件十分敏感.本文中通过热态单向拉伸试验,获取了不同温度及应变率条件下5A06铝合金板材颈缩前的应力-应变曲线,在对比M isiolek模型基础上,提出了修正M isiolek本构模型,利用热态本构模型外插性能及雖积分法确定不同温度及应变速率条件下的C ockroft-L atham韧性断裂阈值.利用径向基函数人工神经网络算法对5A06-O板材断裂阈值预测模型进行了训练.在建立的断裂阈值预测模型及热态本构方程基础上,预测了 200 °C条件下宽板弯曲及热态胀形过程韧性断裂临界条件,并与试验数据进行了对比.1试验1.1热态单向拉伸试验试验选择厚度为1.5 mm的5A06-O铝合金板材,其化学成分见表1,表中为质量分数.采用长春试验机研究所CCS-88000电子万能试验机,根据G B/T 4338—2006《金属材料高温拉伸试验方法》,在不同温度(150、00、250、300 C )、不同应变率(0.055 00、0.005 50、0.000 55 s_1)条件下进行试件的热态单向拉伸试验.通过对单向拉伸试件印制网格,获取单向拉伸状态下板材破裂处极限应变数据,利用该麵确定断裂阈值.表1 5A06-O铝合金板材化学成分Tab. 1 Chem ical com position of the 5A06 alloy 元素Mg Si Fe Cu Mn Zn Ti Al W b/% 5.90.40.40. 10.70.20.06其余单拉试验环境箱采用封闭式整体对流加热,获 取共计12组数据,试样在拉伸前保温10 m in,计算得到颈缩前应力-塑性应变曲线如图1所示,图中:s为材料应变率.图1 5A06铝合金板材流动应力-塑性应变曲线Fig. 1 Flow stress vs. plastic strain ofthe 5 A06 alloy sheet由图1可以看出,在相同温度条件下,5A06铝 合金板材的流变应力随着应变率的增加而增大;低于250 C后,材料变形主要以加工硬化为主,应力-塑性应变曲线近似为幂函数型,随着温度的升高(高于250 C),金属原子热运动加剧,动态回复(再结晶)效应愈加明显,此时软化机制占主导,使材料变形曲线呈现加工软化特点.另外,动态回复(再结晶)过程进行需要一定时间,较低的应变速率可使软化现象更加显著.1.2热态宽板弯曲及胀形试验本文进行了 200 C不同变形速率条件下宽板弯曲试验与胀形试验,其中,宽板弯曲试样长100 m m,两端夹持段宽度50 m m,中间平行段宽度39 m m,平行段与两端过度圆角24 m m;胀形试验内凹模直径100 m m.试验前,通过电化学腐蚀法在试样表面印制直径为2. 5 m m网格阵列,以测量破裂时应变.宽板弯曲试验及胀形试验分别在B S C-50A R板材成形试验机及Y R J-50板材充液热胀形- 拉深试验机上进行.216西南交通大学学报第53卷2 修正Misiolek本构模型金属热态本构关系反映了材料流变应力特征,是材料在热态条件下的重要力学性能,描述了应力随着应变率、温度及变形程度的变化,在制定合理热加工工艺、金属塑性变形舰研究及有限元仿真计算中均起着重要作用[w].在热态变形过程中,5A06铝合金等轻量化合金材料加工硬化、动态回复软化机制相互作用,使流变应力曲线呈现出对温度及应变率的敏感性,增加了预测难度.国内外研究学者对热环境下材料流动应力的研究多基于A r r h e n iu s形式,热激活流动模型或其修正形式[11—13],适用于预测具有饱和应力特征的金属高温流变应力,对于温热条件下如铝合金等轻质合金材料的预测效果并不理想.单拉试验可以较为精确地获取颈缩前的板材应力-应变曲线,板材成形过程一般具有较大的变形量,当计算仿真分析过程中,板材变形程度超过单向拉伸试验中最大均匀变形量时,模拟结果会出现误差.本文通过建立适用于5A06铝合金温热状态本构模型,利用单拉试验中获取不同条件下的流变应力曲线确定模型錄,采用本构模型外插计算方法预测颈缩后材料力学性能的变化规律.对比国内外学者提出的本构模型[14—15],本文选择以M is io le k模型[16]为基础,构造该模型修正形式,以反映温度及应变辆材料流变应力的影响规律.修正M is io le k本构模型如式(1 )、(2).j = C U,F(e0 +jP))W)e m(£,7>,(1)卜1〇〇〇/r,} ⑵n = lnIS,J式中:U o+P严70为幂函数强化项;e47>为软化因子;其余物量含见文献[16 ].假定M is io le k模型各参量分别与f及n呈抛物线关系.对值进行非线性高次函数拟合,得到的修正M is io le k本构模型及模型参数如式⑶、⑷,式中:M J V、P分别为不同参数的修正系数修正M is io le k本构模型计算应力与试验数据对比如图1所示.由图1可以发现,修正M is io le k本构模型预测结果与试验应力-应变曲线较为吻合.C T = c(,n)(s〇+j P)(’nV(’n),'c(^,n)= t1i f]M[\ n n2]T,^n(i,n) = l1i i2^\N[1n n2]T,m(f,n)= l1f f2]p[:i n n2]T•---4288.19-1 348.66 -113.95-M= 2 166.69668.45 54.76--194.71-67.14 -5.63 -- 6 •57 3. 770. 37 -N=-4.62-1.94-0. 17-0.500. 210.019 ---0.515-0.245- 0. 039 -P=0.4670. 1470.017--0.044-0.016-0.001 76-3韧性断裂阈值确定采用阈值控制方法确定金属韧性断裂准则,可 用于预测非线性加载塑性变形过程断裂失效问题.C r o c k ro ft-L a th a m断裂准则是目前应用较广的韧性断裂准则[17].该准则认为,在不同温度、变形速率条件下,塑性变形最大拉应力是导致材料破坏的主要因素,单位体积拉应力功达到某一临界細材料便发生断裂.C r o c k r o ft-L a th a m断裂准则所需待定变量较少,参数获取简单,预测精度较高,适用于轻质合金板材热态成形过程断裂性能预测.C ro c k ro ft-L a th a m 断裂准则为厂珔/ = J〇‘d珔 ()式中:为临界断裂应变能;S f为断裂发生处的等效应变;^为最大拉应力;为某一时刻的等效塑性应变本文建立的5A06铝合金热态韧性断裂准则忽略了板材各向异性影响,屈服函数删各项同性V o n-M is e s屈服模型及相应等效应变计算公式,利 用提出的修正M is io le k本构模型外插延伸性,建立板材颈缩后流变应力曲线,并利用数值积分算法,将式(5)进行梯形积分离散化处理,得珔Z Z( + J max(S1+1)/2,,,、>=0 } ()A S, = S,+1 - S, ’i =1,2,•….利用读数显微镜测取热态单向拉伸试验破裂点周围极限应变数据,将其作为断裂发生处的等效应变珔值,将式⑶〜⑷代入式(6),得到5A06 铝合金不同条件下C o c k r o ft-L a th a m韧性断裂阈值,如表2所示.由表2可知,5A06铝合金韧性断裂阈值随温度的升高而逐渐降低,与该铝合金材料变形第1期刘康宁,等:5A06铝合金板材热态本构模型及初性断裂准则217抗力随着温度的变化趋势一致;在低于250 °C条件下,断裂阈值随着变形速度的降低而增大,这是因为变形速麵低,材料回复过程越充分,金属晶体缺陷消除程度增大,得到更大的变形量;300 C条件下该趋势与之相反,本文认为与材料在300 C条件下流变应力对变形速度敏感程度较大及应力值较低有关.表2不同条件下5A06铝合金C r o c k ro ft-L a th a m韧性断裂阈值Tab. 2 Crockroft-Latham fracture threshold ofthe 5A06 A1 alloy under various conditions M Pa应变速率/s-1温度/C 1502002503000.0550076.53573.42365.65265.1050.0055091.97980.17271.43858.6680. 000 55115.04890.07173.93851.417径向基函数(RBF,radial basis function)神经网络是一种前馈型人工神经网络[1S-19],基本思想是利用对中心点径向对称的非负非线性函数作为隐含层单元的“基函数”构成隐含层空间,将输人矢量映射到隐空间,以任意雛全局逼近一个非线性函数.文中利用径向基函数网络算法对5A06板材断裂阈值与变形条件关系模型网络进行了训练,建立的断裂阈值预测模型及热态本构方程,在此基础上预测200 C时,宽板弯曲及热态胀形过程韧性断裂临界条件,并与试验结果对比.典型径向基函数(RBF)神经网络通常具有3层网络结构™,包括输人层、隐含层、输出层. RBF网络中常用的径向基函数为高斯函数,其激活函数如式(7)所示.用式(7)实现了输人矢量到隐函数空间的非负非线性映射.开((P-^)=exp(—2^11^-c』2),()式中:11^ -II为欧氏范数;,为隐含层节点中心;= ((iP,、,•••,#)为第P个W维输入样本;Y为 隐含层节点归一化参数.基于径向基函数网络,由式(8)确定从隐含层空间到输出层空间的线性变换.^= X'exp(),()式中为隐含层到输出层的连接权值;为隐含层的节点数;为与 '对应的第y个输出节点值.编写RBF神经网络模型训练程序,输入表2中 的5A06铝合金不同变形条件下韧性断裂阈值,添加必中间插值节点并归一化后,建立了该材料在150~300 C,应变速率在0. 055 ~ 0. 000 55 s-1间的Crockroft-Latham断裂阈值预测模型,经过27次迭代训练得到最终训练均方误差,均方误差小于1x10-6. 4试验对比分析利用建立的径向基函数神经网络,结合修正Misiolek本构模型,计算200 C时的不同变形速率、不同变形路径下Crockroft-Latham韧性断裂阈值,结果如图2所示.由图2可知,利用径向基函数网络得到的预测值与试验雖为吻合,其最大误差为10.63%,表明文中建立的韧性断裂准则预测模型能较好地预测5A06铝合金板材不同变形条件下的断裂阈值.n1Q〇「• 一胀形试验预测值I15(5 50.............................................................-150.001 950.007 810.031 250.003 910.015 630.062 5应变率/s 4图2预测结果与试验结果对比Fig. 2 Com parison betw een predictedand test results5结论⑴通过5A06铝合金板材热态下单向拉伸试验发现,该材料应力曲线具有显著的温度敏感性及应变率敏感性特点,在250 C以上时,曲线出现软化趋势.⑵基于单向拉伸试验数据,提出了一种修正Misiolek本构模型,该模型可反映不同温度及应变速率影响下的5A06铝合金板材流变应力特征,模型预测结果与试验曲线较为吻合.⑶利用径向基函数神经网络算法,结合修正Misiolek本构模型,本文建立了5A06板材热态Crockroft-Latham韧性断裂阈值预测模型,结合热态胀形试验及宽板弯曲试验对该神经网络模型实用性进行了验证,对比结果发现,模型预测误差在10.63% 内.参考文献:[1]LANG L ih u i,LIU K angning,CAI G aoshen,et al. A218西南交通大学学报第53卷critical review on special form ing processes andassociated research for lightw eight com ponents based onsheet and tube m aterials [ J ]. M anufacturing R eview,2014, 1(9) : 1-20.[]杨锋平,罗金恒,张华,等.金属延性断裂准则度的评价[].塑性工程学报,2011,18(2):103-106.YANG F engping, LUO Jin heng, ZHANG H u a, et al.Evaluation of ductile fracture criterions [ J ]. Journal ofPlasticity E ngineering,2011,18(2):103-106.[]虞松,陈军,阮雪榆.韧性断裂准则的试验与理论研究[].中国机械工程,2006,17(19) : 2049-2052.YU Song Y, CH EN Ju n, RUAN Xueyu. Experimentaland theoretical research on ductile fracture ciiterion[ J].China Mechanical Engineering, 2006, 17(19) :2049-2052. []余心宏,翟妮芝,翟江波.应用韧性断裂准则预测板料的成形极限图[].锻压技术,2007,32(5): 4447.YU X inhong, ZHAI N izhi, ZHAI Jiangbo. Prediction ofsheet m etal form ing lim it diagram by applying ductilefracture criterion [ J ]. Forging and Stam pingT echnology,2007, 32(5): 4447[5]COCKCROFT M G, LATHAM D J. D uctility and thew orkability of m etals [ J ]. Journal Institute of M etals,1968, 96(1) : 33-39.[6]BROZZO P, DELUKA B, RENDINA R. A new m ethodfor the prediction of form ability in m etal sheets [ C] //Proceedings of the Seventh B iennial Conference on SheetM etal Form ing and Form ability. [ S. l. ]:InternationalDeep Drawing R esearch G roup,1972: 18-26.[7]OYANE M,SATO T,OKIM OTO K,et al. Criteria forductile fracture and their applications [ J ]. Journal ofM echanical W orking T echnology, 1980, 4(1):65-81. []叶拓,王冠,姚再起,等.汽车用6x x x系铝合金薄壁件的韧性断裂行为[J].中国有色金属学报,2014,24(4) :878-887.YE T uo, W ANG G uan, YAO Z aiqi, et al. Ductilefracture behavior of 6xxx alum inum alloy thin-w alledcom ponents of autom obile [ J ]. The C hinese Journal ofNonferrous M etals,2014,24(4): 878.[]张红霞,吴广贺,闫志峰,等.5A06铝合金及其焊接接头的疲劳断裂行为[].中国有色金属学报,2013,23(2) : 327-335.ZHANG H ongxia, W U G uanghe, YAN Z hifeng, et al.Fatigue fracture behavior of 5A06 alum inum alloy and itsw elded joint[ J]. The C hinese Journal of NonferrousM etals,2013, 23(2): 327-335.[10] LIN Y ongcheng, CH EN M ingsong, ZHANG Jun.M odeling of flow stress of 42CrM o steel under hotcom pression[ J]. M aterials Science and E ngineering:A,2009, 499(1) : 88-92.[11] YIN F e i,HUA L in,MAO H u ajie,et al. Constitutivem odeling for flow behavior of GCr15 steel under hotcom pression experim ents[ J]. M aterials and D esign,2013, 43: 393401.[12] GUPTA A K, ANIRUBH V K, SINGH S K.Constitutive m odels to predict flow stress in austeniticstainless steel 316 at elevated tem peratures [ J ].M aterials and D esign,2013,43: 410418.[13] PEN G X iaona, GUO H ongzhen, SHI Z hifeng, et al.Constitutive equations for high temperature flow stress of TC4-DT alloy incorporating strain, strain rate and tem perature[J].Materials & Design, 2013 , 50(17) :198-206.[14] CH ABOCHE J L. A review of some plasticity andviscoplasticity constitutive theories [ J ]. InternationalJournal of P lasticity,2008,24(10) : 1642-1693.[ 15 ] GRONOSTAJSKI Z. The constitutive equations for FEM analysis [ J ]. Journal of M aterials ProcessingTechnology,2000,106(1) : 4044.[16] M ISIOLEK Z, KOW ALCZYK J, KASTNER P.Investigation of plastic flow stresses of Zn and itsa l l o y s[]. A rch. H u tn,1977, 22(1) : 71-88.[17] FA G ERH O LT E, DORUM C, BORVIK T, et al.Experim ental and num erical investigation of fracture ina cast alum inum alloy [ J ]. International Journal ofSolids and S tru ctures,2010,47(24) : 3352-3365. [18]缪报通,陈发来.径向基函数神经网络在散乱数据插值中的应用[].中国科学技术大学学报,2001,31(2): 135-142.MIAO Baotong, CH EN Falai. A pplications of radiusbasis function neural networks in scattered datainterpolation [ J ]. Journal of U niversity of Science andTechnology of C hina,2001,31(2): 135-142. [19]王炜,吴耿锋,张博锋,等.径向基函数(R B F)神经网络及其应用[J].地震,2005,25(2):19-25.W ANG W ei, W U G engfeng, ZHANG Bofeng, et al.N eural netw orks of radial basis function ( R B F) andit’s application to earthquake prediction [ J ].E arth q u ak e,2005,25(2): 19-25.[20]张晓斌,孙宇,代珊.基于径向基神经网络杯形件拉深成形变压边力预测技术研究[].机械科学与技术,2007,24(8): 36-38.ZHANG X iaobin, SUN Y u, DAI Shan. A study on theprediction technology of variable blank-holding force fordeep draw ing form ing of cup shaped parts based onradial basis neural n e tw o rk[J]. Journal of M achineD esign,2007, 24(8): 36-38.(编辑:秦瑜)。

astm 晶胞参数

astm 晶胞参数

astm 晶胞参数
美国材料和试验协会(ASTM)是一个制定材料和产品标准的组织,它的标准涵盖了许多领域,包括晶体学。

晶体学中的晶胞参数是描述晶体结构的重要参数之一。

晶胞参数通常包括晶格常数、晶胞的空间群、晶胞的结构类型等内容。

首先,晶格常数是描述晶体结构的重要参数之一。

晶格常数是指晶体中基本晶胞的尺寸,通常用a、b、c表示,分别对应晶格的三个方向。

在ASTM标准中,晶格常数的测定方法和标准可以帮助科研人员和工程师准确地确定晶体结构的特征。

其次,晶胞的空间群也是描述晶体结构的重要参数之一。

空间群描述了晶体的对称性,它包括平移、旋转和镜像等操作,能够完整地描述晶体的对称性质。

ASTM标准中可能包括了对晶体空间群的定义和分类,以及相关的实验方法和测定技术。

此外,晶胞的结构类型也是晶体学中的重要内容之一。

不同的晶体结构类型包括立方晶系、正交晶系、单斜晶系、三斜晶系等,它们具有不同的晶胞参数和空间对称性。

ASTM标准可能会涉及对不同晶体结构类型的描述、分类以及相关性质的测试方法。

总的来说,ASTM标准在晶体学领域可能涉及晶格常数的测定方法、晶体空间群的描述和分类、晶胞结构类型的定义和特性测试等内容。

这些标准的制定有助于推动晶体学领域的研究和应用,促进材料科学和工程技术的发展。

北大考研-工学院研究生导师简介-李法新

北大考研-工学院研究生导师简介-李法新

爱考机构-北大考研-工学院研究生导师简介-李法新李法新工作经历2007.10-北京大学工学院力学与空天技术系特聘研究员2005-2007加拿大不列颠哥伦比亚大学机械工程系博士后教育经历00.9-04.7清华大学工程力学系固体力学专业博士97.9-00.7大连理工大学土木系港口、海岸及近海工程专业硕士93.9-97.7哈尔滨工程大学船舶与海洋工程专业学士实验室智能材料与振动声学实验室(LabforSmartMaterials,SoundandVibration)本实验室招收硕士、博士研究生及博士后,欢迎相关学科的同学报考和咨询。

主要研究方向1.铁电陶瓷/晶体及薄膜的测试与表征2.扫描探针声学显微术-AtomicForceAcousticMicroscopy(AFAM)3.复合材料制备及无损检测4.医学弹性成像主要荣誉与获奖经历1.“电磁固体的变形与断裂”,国家自然科学二等奖(排名第4),20102.清华大学优秀博士论文,20043.清华大学优秀助教,20014.山东省化学奥赛一等奖,全国高中数学联赛三等奖,1992学术兼职ReviewerforJApplPhys,JPhys:CondensMatter,JPhysD:ApplPhys,SmartMaterStruct.,J.Mater.Sci., MaterLett.,JAlloyComp.,etc主要论文列表Journals37.Y.W.Li,F.X.Li*.UltrahighactuationstrainsinBaTiO3andPb(Mn1/3Nb2/3)O3-PbTiO3singlecrysta lsviareversibleelectromechanicaldomainswitching.ApplPhysLett,102,152905,201336.Y.W.Li,Y.Sun,F.X.Li*.Domaintexturedependentfracturebehaviorinmechanicallypoled/depoledf erroelectricceramics.CeramInt.2013(inpress)35.L.Z.Lin,Y.W.Li,A.K.Soh,F.X.Li*.Apencil-likemagnetoelectricsensorexhibitingultrahighcouplin gproperties.JApplPhys,113,134101,201334.Y.W.Li,X.B.Ren,F.X.Li*,H.S.Luo,D.N.Fang*.LargeandelectricfieldtunablesuperelasticityinBaT iO3crystalspredictedbyanincrementaldomainswitchingcriterion.ApplPhysLett,102,092905,201333.XilongZhou,FaxinLi*,HuarongZeng.Mappingnanoscaledomainpatternsinferroelectricceramicsb yatomicforceacousticmicroscopyandpiezoresponseforcemicroscopy.J.Appl.Phys.2013(inpress)32.J.Fu,L.Z.Lin,X.L.Zhou,Y.W.Li,F.X.Li*.Amacroscopicnon-destructivetestingsystembasedonthe cantilever-samplecontactresonance.ReviewofScientificInstruments.83:123707,201231.L.Z.Lin,Y.P.Wan,F.X.Li*.Ananalyticalnonlinearmodelforlaminatemultiferroiccompositesreprod ucingthedc-magnetic-biasdependentmagnetoelectricproperties.IEEETransactionsonUltrasonics,Fer roelectrics&FrequencyControl.59(7):1568-1574,201230.Y.W.Li,F.X.Li*.InsituobservationofelectricfieldinducedcrackpropagationinBaTiO3crystalsalon gthefielddirection.ScriptaMaterialia67:601-604,201229.X.L.Zhou,F.X.Li*.Simulationsofdomainevolutioninmorphotropicferroelectricceramicsunderele ctromechanicalloadingusinganoptimization-basedmodel.JApplPhys,109,084107,201128.F.X.Li*,X.L.Zhou.Simulationsofgradualdomain-switchinginpolycrystallineferroelectricsusinga noptimization-based,putersandStructures,89:1142-1147,201127.Y.W.Li,F.X.Li*.Two-dimensionaldomainswitchinginducedtensilefractureinacrack-freePZTcera micsunderorthogonalelectromechanicalloading.ApplPhysLett97,102903,201026.Y.W.Li,X.L.Zhou, F.X.Li*.Temperaturedependentmechanicaldepolarizationofferroelectricceramics.JPhysD-ApplPhy s43,175501,201025.F.X.Li*,X.L.Zhou,A.K.Soh.Anoptimization-based“phasefield”modelforpolycrystallineferroelectrics.ApplPhysLett96:152905,201024.F.X.LI*,A.K.Soh.Anoptimi zation-basedcomputationalmodelfordomainevolutioninpolycrystallineferroelastics.ActaMater58:2207-2215,201023.Y.W.LI,F.X.LI*.Largeanisotropyoffracturetoughnessinmechanicallypoled/depoledferroele ctricceramics.ScriptaMater62:313-316,201022.F.X.LI*,Y.W.LI.Modelingondomainswitchinginferroelectricceramicsnearthemorphotropicphasebo undary.JApplPhys105:124105,200921.Y.M.Pei,D.N.Fang,F.X.LI.GiantforcedvolumemagnetostrictioninpolycrystallineTb0.3Dy0.7Fe1. 95alloysundermagnetomechanicalloading.JMagMagMater321:2783-2787,200920.F.X.Li.Aninverse-pole-figuremethodforanalysisofdomainswitchinginpolycrystallineferroelectrics/ferroelastics.ScriptaMater,59:677-680,200819.M.Senousy,F.X.Li,D.Mumford,M.Gadala,R.K.N.D.Rajapakse.Thermo-Electro-MechanicalPerf ormanceofPiezoelectricStackActuatorsforFuelInjectorApplications.J.Intell.Mater.Syst.Struct.20:38 7-399,200918.F.X.Li,R.K.N.D.Rajapakse.Nonlinearfiniteelementmodelingofpolycrystallineferroelectricsbase pMaterSci,44(2):322-329,200817.F.X.Li,R.K.N.D.Rajapakse,D.Mumford,M.Gadala,Quasi-staticthermo-electromechanicalbehavi orofpiezoelectricstackactuators.SmartMaterStruct17,015049,200816.F.X.Li,R.K.N.D.Rajapakse,Aconstraineddomainswitchingmodelforpolycrystallineferroelectricc eramics.PartI:modelformulationandapplicationtotetragonalmaterials.ActaMater,55:6472-6480,200 715.F.X.Li,R.K.N.D.Rajapakse,Aconstraineddomainswitchingmodelforpolycrystallineferroelectricc eramics.PartII:combinedswitchingandapplicationtorhombohedralmaterials.ActaMater,55:6481-648 8,200714.F.X.Li,R.K.N.D.Rajapakse,Analyticalsaturateddomainorientationtextureandelectromechanicalp ropertiesofferroelectricceramicsduetoelectric/mechanicalpolingJ.ApplPhys101,054110,200713.F.X.Li,X.X.Yi,Z.Q.CongandD.N.Fang,PZTnano-compositesreinforcedbysmallamountofMgO. ModernPhysLettB,21(24):1605-1610,200712.YuanmingLiu,FaxinLiandDainingFang,Anisotropyofdomainswitchinginpre-poledleadtitanatezi rconateceramicsundermulti-axialelectricloading,ApplPhysLett.90,032905,200711.Y.J.Jiang,D.N.FangandF.X.Li,In-situobservationofelectricfieldinduceddomainswitchingnearacr acktipinpoledPMNT62/38singlecrystals.ApplPhysLett90,222907200710.FaxinLi,DainingFangandYuanmingLiu,DomainswitchinganisotropyinpoledPZTceramicsundero rthogonalelectromechanicalloading.J.Appl.Phys.100,084101,20069.FaxinLi,DainingFangandAi-KahSoh,Theoreticalsaturateddomainorientationstatesinferroelectricc eramics,ScriptaMater.,54(7):1241-1246,20068.FaxinLi,DainingFang,J.J.LeeandK.H.Cheol,Effectsofcompressivestressonthenonlinearelectrome chanicalbehaviorofferroelectricceramics,ScienceinChinaE,49(1):29-37,20067.FaxinLi,ShangLiandDainingFang,DomainswitchinginFerroelectricsinglecrystal/ceramicsunderel ectromechanicalloading,Mater.Sci.EngngB,120(1-3):119-124,20056.FaxinLiandDainingFang,Effectsofelectricalboundaryconditionsandpolingapproachesonthemecha nicaldepolarizationbehaviorofPZTceramics.ActaMater.,53:2665-2673,20055.FaxinLiandDainingFang,Effectsoflateralstressontheelectromechanicalresponseofferroelectriccer amics:ExperimentsversusModel,J.Intell.Mater.Syst.Struct.,16(7-8):583-588,20054.DainingFang,FaxinLi,AiKahSohandTieqiLiu,Analysisoftheelectromechnicalbehaviorofferroelect ricceramicsbasedonanonlinearfiniteelementmodel.ActaMechanicaSinica,21(3):294-304,20053.FaxinLiandDainingFang,Simulationsofdomainswitchinginferroelectricsbyathree-dimensionalfini teelementmodel,MechMater,36(10):959-973,20042.FaxinLi,DainingFangandAi-KahSoh,Ananalyticalaxisymmetricmodelforthepoling-historydepen dentbehaviorofferroelectricceramics,SmartMater.Struct.13:668-675,20041.LiFaxin,FangDainingandFengXue,EffectoflateralpressureonthenonlinearbehaviorofPZTceramics, ChinesePhysicsLetters,20(12):2250-2251,2003联系方式办公电话:62757454Email:">。

全氟聚醚的折光系数

全氟聚醚的折光系数

全氟聚醚的折光系数英文回答:The refractive index of perfluoropolyether (PFPE) varies depending on its chemical structure and composition. PFPE is a fluorinated polymer with excellent thermal and chemical stability, making it suitable for various applications such as lubricants, heat transfer fluids, and optical materials. The refractive index of PFPE can be tailored by adjusting the molecular weight, end groups, and degree of fluorination.For example, perfluoropolyether with a high molecular weight and a high degree of fluorination tends to have a higher refractive index. This is because the fluorine atoms in the PFPE molecule have a higher polarizability compared to other atoms, resulting in a higher refractive index. On the other hand, PFPE with lower molecular weight and lower degree of fluorination will have a lower refractive index.Additionally, the end groups of PFPE can also influence its refractive index. Different end groups, such ashydroxyl or carboxyl groups, can introduce polarizability and affect the overall refractive index of the polymer. For instance, PFPE with hydroxyl end groups may have a higher refractive index compared to PFPE with carboxyl end groups.In summary, the refractive index of perfluoropolyether depends on factors such as molecular weight, degree of fluorination, and end groups. By adjusting these parameters, the refractive index can be tailored to meet specific requirements in various applications.中文回答:全氟聚醚(PFPE)的折光系数取决于其化学结构和组成。

温度梯度铁电材料极化偏移与热释电性的内在关联性研究

温度梯度铁电材料极化偏移与热释电性的内在关联性研究

温度梯度铁电材料极化偏移与热释电性的内在关联性研究李文治 李元宏 安祥鲁 陈明雨 张新欣 陈辉*沈阳化工大学理学院 辽宁沈阳 110142摘要: 在平均场近似的理论框架下,采用拓展的横场伊辛模型理论,探讨温度梯度铁电材料极化偏移与热释电性质的内在联系的微观物理机制。

研究表明:极化偏移的极值和材料内首发相变的梯度层的性质密切相关。

极化偏移的极值和热释电系数的峰值总是成对出现,改变温度梯度铁电材料内首发相变层的性质是调控极化偏移、改善材料热释电性能的关键因素。

关键词: 温度梯度 极化强度 极化偏移 热释电性中图分类号: TN03;TB383.2文献标识码: A文章编号: 1672-3791(2024)04-0082-03Research on the Intrinsic Correlation Between the Polarization Offset and Pyroelectric Properties of Temperature-GradientFerroelectric MaterialsLI Wenzhi LI Yuanhong AN Xianglu CHEN mingyu ZHANG Xinxin CHEN Hui*College of Science, Shenyang University of Chemical Technology, Shenyang, Liaoning Province, 110142 China Abstract: In the theoretical framework of mean field approximation, the extended theory of the transverse ising model is adopted to explore the microscopic physical mechanism of the intrinsic correlation between the polariza⁃tion offset and pyroelectric properties of temperature-gradient ferroelectric materials. Research results show that the extreme value of polarization offset is closely related to the properties of the initial phase-transition gradient layer in materials. The extreme value of polarization offset and the peak value of pyroelectric coefficient always appear in pairs, and altering the properties of the initial phase-transition layer in temperature-gradient ferroelectric materials is a key factor in regulating polarization offset and improving the pyroelectric performance of materials.Key Words: Temperature gradient; Intensity of polarization; Polarization offset; Pyroelectricity铁电材料因其优良的热释电性一直是材料学界开发和研究的热点问题之一[1-2]。

翻译——精选推荐

翻译——精选推荐

硅烷化水性交联聚氨酯分散体系的合成与表征摘要:一系列的水性聚氨酯分散体系制备是先由异佛尔酮二异氰酸酯、聚(氧四亚甲基)二醇和二羟甲基丙酸的逐步加聚反应来制备预聚物,然后再用3-氨基丙基三甲氧基硅烷交联、封端来制备硅烷化聚氨酯分散体系。

在封端反应发生前,为了避免凝胶化体系分散已经进行。

纯的或者是四亚乙基五胺链式增长聚氨酯也已经合成好。

连段长度和异氰酸根与羟基的比值是可以变化的。

这些预聚物分散体系的性质是由傅里叶红外变换、差示扫描量热法、热重量分析、X射线衍射、拉伸强度和表面接触角测量、纳米压痕测量、凝胶含量、水和二甲苯溶胀性以及耐储存性这些来表征的。

与纯聚氨酯分散体比较可以发现,硅烷化聚氨酯分散体在模量和硬度上增强,但在拉伸性能上减弱。

这可能是由于少量的氢键和硅烷化聚氨酯的甲氧基硅烷水解缩合反应而得到的交联硅氧烷网络,并由此形成的薄膜的脆性,并且3-氨基丙基三氧基硅烷的封端和交联被证实对此也有影响。

硅烷化聚氨酯体系的凝胶含量随着异氰酸根和羟基的比值的增长而增加,并且所有的样品在自然状态下都是非定形态的。

硅烷化聚氨酯分散体系的热稳定性比纯的或者是胺扩链的聚氨酯分散体系要高的多。

在水中和溶剂中的溶胀的减弱和水接触角的增长证明了硅烷化聚氨酯的硅氧基团的有效交联。

储存稳定性结果表明所有预分散体系可以保持稳定3个月以上。

关键词:交联;分散体系;硬度;压痕;聚氨酯;热重量分析(TGA)。

简介由于现代社会不断增加的需求,科研工作者把他们的全部注意力投在特种材料的合成上。

传统上聚合物是由于它的机械性能而被使用,现在发展成为满足特殊用途的特殊材料。

聚氨酯已被证明是具有高性能的工程材料,它拥有良好的机械力学性能、很高的化学和溶剂稳定性等等。

正是由于这些方方面面的性能,聚氨酯几乎有应用的无限光谱可用作先进技术的特种聚合物。

聚合材料的一个主要应用就是在涂料领域。

涂料的大量需求,是以美化材料外观和保护材料免遭环境腐蚀为前提的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CHIN.PHYS.LETT.Vol.25,No.4(2008)1442 Ferroelectric Properties of Polycrystalline Ceramics with Dipolar DefectSimulated from the Potts–Ising Model∗ZHANG Yan-Fei(张艳飞)∗∗,WANG Chun-Lei(王春雷),ZHAO Ming-Lei(赵明磊),LI Ji-Chao(李吉超), ZHANG Rui-Zhi(张睿智),LIU Jian(刘剑),MEI Liang-Mo(梅良模)School of Physics and Microelectronics,State Key Laboratory of Crystal Materials,Shandong University,Jinan250100(Received10November2007)Physical properties of polycrystalline ferroelectrics including the contributions of thefixed dipolar defects and the average grain size in the Potts–Ising model are simulated by using the Monte Carlo method.Domain pattern,hysteresis loop and switching current of the polarization reversal process are obtained.Two processes are considered in our simulation.In thefirst one,the grain texture of ferroelectric ceramics are produced from the Potts model,and then the Ising model is implemented in the obtained polycrystalline texture to produce the domain pattern,hysteresis loop and switching current.It is concluded that the defect has the ability to decrease the remnant polarization P r as well as the coercivefield E c.The back switching is obviously observed after the electricfield is off,and it shows some variation after introducing thefixed dipolar defect.Meanwhile,the spike of the switching current is found to lower with the increasing defect concentration and the decreasing average grain size.PACS:77.80.−e,61.72.Bb,05.50.+qFerroelectric(FE)materials have been extensively studied in recent years because of their promising properties for nonvolatile random access memories as well as other practical applications.The defect ef-fect has been one of the fundamental physical is-sues in ferroelectrics.[1−7]The defect is known to influence the remnant polarization,motion of do-main wall,polarization reversal and leakage current. Therefore,the defect in ferroelectrics has been sub-ject of many studies in experimental and theoretical aspects.[1−11]On the other hand,the conventional theory-experiment[12−21]basis for scientific research has been expanded to include computer simulation, which is an increasingly important component of many research lines.Thus interest in computer simulation of physical properties in ferroelectrics has grown recently due to the application of the switching in ferroelec-tric ceramics for nonvolatile date storage.[8−11,22−27] Among them,the Monte Carlo(MC)simulation has been proven to be an effective method used to study the physical properties of ferroelectrics.Wu et al.[26] have studied the influence of defect-induced internal field on the dielectric response of relaxors.Based on these results,the ferroelectric system with two-type defects has been further investigated.[10]It was found that thefirst-type off-centre dipolar defect will cause two90◦successive rotations of the direction of the dipoles during the switching process,while the switching behaviour of the ferroelectric system with the second-typefixed-dipolar defect shows almost a single180◦flipping.In this Letter,the dipolar defect influence on the properties of polycrystalline is studied using the MC method on the Potts–Ising model.Wefirst simulate the polycrystalline texture from the Potts model using the Monte Carlo method,which is based on the energy minimization of an ensemble of electric dipoles on the lattice configuration.Then the Ising model is imple-mented to investigate the effects of the proposed defect on the ferroelectric properties.To our best knowledge, this is thefirst attempt to study the effect of dipolar defect on the hysteresis loop and switching behaviour in ferroelectric ceramics from the Potts–Ising model.A two-dimensional square lattice of size200×200 under periodic boundary conditions is employed in our simulations.The periodic boundary conditions imply that the simulated domain structure reflects a domain structure within an infinitely large polycrystalline ce-ramic,in which there are no free edges and thus the edge effect is not considered.Monte Carlo step(MCS) is used as time scale and one MCS represents200×200flip events.The Potts model isfirst proposed as a general-ization of the Ising model for simulation the critical transitions in magnetic materials with more than two degenerate states.[28]Hamiltonian of a q-state Potts model isH=−ijδσiσj,(1)whereσi=0,1···q−1stands for the different grain orientation;δis the Kronecker operator,when σi=σj,δ=1,otherwiseδ=0.The Potts model has been widely used to simulate the grain growth in metal materials.[17,18]It has also been applied to de-scribe ferroelectric behaviour,particularly in the con-text of grain boundaries,anti-phase boundaries in in-commensurate ferroelectrics and considering the grain size,surface nucleation,and related effects in general-∗Supported by the National Natural Science Foundation of China under Grant No10474057.∗∗Email:zhangyf@c 2008Chinese Physical Society and IOP Publishing LtdNo.4ZHANG Yan-Fei et al.1443izing the switching theories.[19−21]The simulation procedure involves the flipping of the orientation of a randomly chosen site to any of the other neighbouring orientations.This procedure is found to be very inefficient since the probability of the acceptance of a spin is very small if q value is very large.However,for low q values,large occur-rences of grain coalescing are observed.Since such coalesce events are strictly forbidden in grain growth,an appropriate large value of q is required to mini-mize the chances of two grains of the same crystal orientation meeting and coalescing.[29]Therefore,the suitable number of states in the Potts model is q =68from our trial simulating processes.This value of q represents the maximum value of grain orientation.The orientation of each individual grain is assigned by a q value,and it does not change with time in the following domain switching simulations.After we obtain the polycrystalline texture with desired average grain size from the Potts model,the spin-1/2Ising model is implemented in the simulation.The two spin states represent the two dipole orienta-tion states in ferroelectrics,and the dipole could be reversed by the external electric field.The Hamilto-nian of the Ising model has the following form:H =− ijJ ij S z i S z j −2ηE (t )iS zi cos θi ,(2)where S z i =±1stands two opposite directions of the dipoles,J ij measures the interaction of pair interac-tions,here only the nearest-neighbouring couplings are taken into account in the simulation.The ex-change strength J ij =J cos(θij ),where θij is the an-gle between orientation of σi and σj .When the two dipoles are within the same grain,we have σi =σj .Otherwise,σi =σj ,that is,the two dipoles lies in the grain boundary.The angle between the two grains is defined as θij =2π(σi −σj )/q .Here ηis the dipole moment,E (t )is the applied external field.An electric field in sinusoidal form is applied to reverse polariza-tion,E (t )=E 0sin(ωt ),(3)where E 0is the amplitude of the applied field,whichis set to be larger than the coercive field in our sim-ulation,E 0=6;ωis the frequency of the applied field,ω=0.001MCS −1is used in our simulation.The global polarization is taken the average of the dipole in the whole lattice,i.e.,P = i S zicos(θi )N ×N.(4)Monte Carlo simulation with Metropolis sampling is employed for the Ising system to obtain the global polarization and hysteresis loops.Temperature T is set to 2.0J in the simulation.The Curie tempera-ture of the two-dimensional infinite Ising-1/2lattice is T c =2.2692J ,so our simulation is at temperatureT =0.88T c .The fixed dipolar defect is presumed that the di-rections of these selected dipoles can not be reoriented by the thermal distribution and the applied electric field.In order to make the simulation more realistic,both the position and the direction of these fixed dipo-lar defects are all assigned randomly.Therefore,do-main patterns,hysteresis loops as well as the switching current are obtained for polycrystalline texture with different defect concentrations and different average grain sizes.Figure 1shows the grain textures simulated from the Potts model and the corresponding domain pat-terns from the Ising model with different defect con-centrations.Figures 1(a),1(b)and 1(c)represent the case of no defect,1%defect concentration and 3%de-fect concentration,respectively.The grain size is con-trolled by the MCS.The average grain area is defined as the total lattice site 200×200divided by the total number of grains.Thus the unit of grain area is the number of lattice site.Then the average grain size is the square root of the average grain area.From the obtained polycrystalline texture pattern,the average grain size in Fig.1is of 22lattice sites.The defect concentration is defined as the ratio of the number of defect sites to the total lattice site number 200×200.The defects are marked as dark dots in the diagrams.To visualize the simulation results,the domain orien-tation is presented by different grey scales.The dark colour stands for one direction of polarization,and the white colour represents the opposite direction.The domain patterns are obtained under an electric field at the saturated polarization.We can find that all grains are in single domain.The different grey scale of the domains,i.e.,the different orientation of the domain is due to the different grain orientations.The number of the domain orientations is more than that simulated in single crystal ferroelectrics.[9,10,22]Figure 1(d)shows the domain nucleation under the external electric field for systems without defect (left panel)and with defect concentration of 3%(right panel).It can be easily seen that the nucleation occurred mainly at the grain boundary without defect as the electric field applied to the system.However,for the system with defects,the domain nucleation occurred mainly around the dipolar defect sites in the grains.The hysteresis loops for different defect concentra-tions are shown in Fig.2(a)and for different average grain sizes in Fig.2(b),respectively.It can be seen from Fig.2that the effect of defect and the average grain size on the coercive field and remnant polariza-tion in the hysteresis loops.Both the coercive field and the remnant polarization decrease with the increase of the defect concentration as shown in Fig.2(a).The increasing average grain size enhances the remnant polarization,see Fig.2(b),but slightly increases the coercive field.1444ZHANG Yan-Fei et al.Vol.25 Fig.1.Polycrystalline textures and corresponding domain patterns for different defect concentrations:(a)no defect,(b) 1%defect concentration,(c)3%defect concentration.The average grain size is about R=22.(d)The domain nucleation under the external electricfield for the system without and with defects.Fig.2.(a)Hysteresis loops for different defect concentra-tion of average grain size R=20.(b)Hysteresis loops of different average grain sizes without defects.The remnant polarization P r and the coercivefield E c,which are taken from the hysteresis loops as such in Fig.2,are plotted in Figs.3(a)and3(b)against av-erage grain size R for different defect concentrations. The remnant polarization P r increases with the grain size monotonically for all the three defect concentra-tions,and its value is much depressed by the defect effect.This is consistent with the previous theoretical calculations that the increase of defect concentration leads to a decline of polarization hysteresis loops and brings about a decrease in P r.[30]The coercivefield E c slightly increases with the average grain size for sam-ple without defects introduction,see the curve shown in Fig.3(b).It is interesting that E c becomes less dependent on the average grain size when the dipo-lar defects are introduced,see curves of1%and3% defect concentration.Also the coercivefield E c is re-duced by the effect of the dipolar defects.Especially, with the high defect concentration to3%,the coercive field E c is much depressed by the defect effect.This is consistent with thesimulation results in single crys-tal ferroelectrics[10]and the experimental results.[31] In Ref.[10],it was found that dipolar defects decrease the coercivefieldand saturate polarization compared with the defect-free case.Thus we can conclude that the dipolar defects have similar effect on the hysteresis loop in both the polycrystalline and the single crystal ferroelectrics.Fig.3.(a)The remnant polarization Pr and(b)the co-ercivefield Ec as a function of average grain size R for different defect concentrations.Fig.4.Pulsed electricfield applied to the ferroelectric polycrystalline texture.The switching current is then generated from the global average polarization P as i(N)=P(N)−P(N−1),when the pulsed electricfield applied,here N is the time scale represented by the MCS.The applied pulse electricfield as is shown in Fig.4.The strength of the electricfield is set as E0=5,which is larger than theNo.4ZHANG Yan-Fei et al.1445 coercivefield strength.The response of the polariza-tion and the switching current is shown in Figs.5and6respectively for different defect concentration anddifferent average grain size.In Fig.5(a),the arrows mark the back switching after the electricfield is off, i.e.,after the removal of the electricfield,a gradual decrease of the polarization is observed,however,hav-ing different ratios depending on defect concentration. It is noticed that lower defect concentration results in a smaller and faster polarization decay.An opposite behaviour is noticed for higher defect concentration. We can also see that thefirst pulse switches down the polarization,and the secondpulse reverses the polar-ization upwards.The corresponding switching current is shown in Fig.5(b).From the curve without de-fect,we can see that after the removal of the applied negative electricfield,a spontaneous deploring pro-cess occurs,indicated by positive current response as shown in the inset of Fig.5(b).The switching current exhibits a maximum when the electricfield immedi-ately resumes to its peak value from zero,i.e.,the cur-rent shows spike.The current maximum corresponds to the reorientation contribution of the ferroelectric dipoles.The value of maximum current that corre-sponds to the second negative appliedfield is lower than for thefirst one.It means that the electrical response in the ferroelectrics is partly determined by the signal that has been previously applied to the sam-ple.The simulation result agrees well with the exper-imental result obtained in MAPBB crystals.[32]The spikes of the switching currents lower in the next pulse with increased defect concentration from0%to3%as shown in Fig.5(b).In contrast,the peak values of the back switching current increase as seen in the inset of Fig.5(b).Under these conditions,a single cycle takes 120MCS.Fig.5.Response of polarization(a)and switching cur-rent(b)for polycrystalline texture with average grain size R=25for different defect concentrations.In addition,Fig.6shows the switching behaviour obtained for different average grain size with no de-fect concentration.These data reveal almost similar changes in comparison to those obtained considering different values for defect concentration as presented in Fig.5.From Fig.6(a),it is obvious that both the polarization and the back switching increase with the increasing average grain size.One can clearly see in Fig.6(b)that the spike of the switching current in-creases as the average grain size increases,whereas the back switching current slightly changes.Fig.6.Responses of polarization(a)and switching cur-rent(b)of different average grain sizes for the polycrys-talline texture without defects.In conclusion,we have performed the Monte Carlo simulation on the domain,hysteresis loop and the switching behaviours of ferroelectric ceramics with randomly distributedfixed dipolar defects using the Potts–Ising model.Our results reveal that introduc-ing defects to ferroelectric ceramics leads to a decrease of both the remnant polarization P r and the coercive field E c.Wefind the back switching after the pulsed electricfield is offand the dependence of the defect and the average grain size on the polarization. References[1]P¨o ykk¨o S and Chadi D J1999Phys.Rev.Lett.831231[2]Park C H and Chadi D J1998Phys.Rev.B57R13961[3]Picinin A et al2004Phys.Rev.B69064117[4]Lente M H and Eiras J A2002J.Appl.Phys.922112[5]Lupascu D C,Shur V Y and Shur A G2002Appl.Phys.Lett.802359[6]Zeng L B et al2005Chin.Phys.Lett.2280[7]Kim J S and Kim I W2006J.Electroceram.16373[8]Liu J S et al2004Phys.Lett.A321199[9]Ahluwalia R and Cao W2000Phys.Rev.B63012103[10]Wu Y Z,Yao D L and Li Z Y2002Solid State Commun.122395[11]Schorn P J,B¨o ttger U and Waser R2005Appl.Phys.Lett.87242902[12]Ishibashi Y and Takagi Y1971J.Phys.Soc.Jpn.31506[13]Du X F and Chen I W1998Appl.Phys.Lett.721923[14]Chen I W and Wang Y1999Appl.Phys.Lett.754186[15]Jung D J et al2002Integr.Ferroelectr.4859[16]Jung D J,Kim K and Scott J F2005J.Phys.:Condens.Matter174843[17]Mehnert K and Klimanek P1997Comput.Mater.Sci.9261[18]Mehnert K.and Klimanek P.1996Scipta Metall.35699[19]Hassold G N et al1986Phys.Rev.B333581[20]Srolovitz D J and Scott J F1986Phys.Rev.B341815[21]Duiker H M et al1990J.Appl.Phys.685783[22]Potter B G et al2000J.Appl.Phys.874415[23]Li K T and.Lo V C2005J.Appl.Phys.97034107[24]Su C C et al2001J.Appl.Phys.906345[25]Li K T and Lo V C2004Solid State Commun.13249[26]Wu Z Q et al2003Phys.Rev.B67052101[27]Wang Y et al2003Jpn.J.Appl.Phys.42515[28]Wu F Y1982Rev.Mod.Phys.54235[29]Paramdeep S S et al1983Phys.Rev.Lett.50263[30]Baudry L1999J.Appl.Phys.861096[31]Noguchi Y J et al2004J.Appl.Phys.954261[32]Matyjaseka K and Rogowski R Z2006J.Appl.Phys.99074107。

相关文档
最新文档