04-Trajectory Data Mining-Trajectory Patternmining

合集下载

pqart关于轨迹的完整操作流程

pqart关于轨迹的完整操作流程

pqart关于轨迹的完整操作流程英文回答:Complete Workflow for Trajectory Operations in Pqart.1. Data Acquisition.Collect raw trajectory data from various sources, such as GPS, IMU, and radar.Ensure data quality by filtering out noise and outliers.2. Data Preprocessing.Convert raw data into a suitable format for processing.Calibrate and align data to account for sensor biases and offsets.3. Data Fusion.Combine data from multiple sources to create a more accurate representation of the trajectory.Utilize algorithms such as Kalman filtering orparticle filtering for data fusion.4. Trajectory Estimation.Estimate the position, velocity, and acceleration of the object along the trajectory.Employ methods like least squares or cubic splines for trajectory fitting.5. Trajectory Analysis.Characterize the motion of the object based on the estimated trajectory.Calculate parameters such as speed, distance traveled,and trajectory shape.6. Trajectory Prediction.Forecast the future motion of the object based on its previous trajectory.Utilize machine learning or statistical models for prediction.7. Trajectory Visualization.Display the trajectory in a user-friendly format for visualization and analysis.Use tools such as maps or 3D plots for effective visualization.8. Trajectory Optimization.Optimize the trajectory to achieve specific goals, such as minimizing time or energy consumption.Employ optimization algorithms like nonlinear programming or genetic algorithms.中文回答:Pqart中轨迹操作的完整操作流程。

车辆控制系统说明书

车辆控制系统说明书

IndexAactuation layer, 132average brightness,102-103adaptive control, 43Badaptive cruise control, 129backpropagation algorithm, 159adaptive FLC, 43backward driving mode,163,166,168-169adaptive neural networks,237adaptive predictive model, 283Baddeley-Molchanov average, 124aerial vehicles, 240 Baddeley-Molchanov fuzzy set average, 120-121, 123aerodynamic forces,209aerodynamics analysis, 208, 220Baddeley-Molchanov mean,118,119-121alternating filter, 117altitude control, 240balance position, 98amplitude distribution, 177bang-bang controller,198analytical control surface, 179, 185BCFPI, 61-63angular velocity, 92,208bell-shaped waveform,25ARMAX model, 283beta distributions,122artificial neural networks,115Bezier curve, 56, 59, 63-64association, 251Bezier Curve Fuzzy PI controller,61attitude angle,208, 217Bezier function, 54aumann mean,118-120bilinear interpolation, 90, 300,302automated manual transmission,145,157binary classifier,253Bo105 helicopter, 208automatic formation flight control,240body frame,238boiler following mode,280,283automatic thresholding,117border pixels, 101automatic transmissions,145boundary layer, 192-193,195-198autonomous robots,130boundary of a fuzzy set,26autonomous underwater vehicle, 191braking resistance, 265AUTOPIA, 130bumpy control surface, 55autopilot signal, 228Index 326CCAE package software, 315, 318 calibration accuracy, 83, 299-300, 309, 310, 312CARIMA models, 290case-based reasoning, 253center of gravity method, 29-30, 32-33centroid defuzzification, 7 centroid defuzzification, 56 centroid Method, 106 characteristic polygon, 57 characterization, 43, 251, 293 chattering, 6, 84, 191-192, 195, 196, 198chromosomes, 59circuit breaker, 270classical control, 1classical set, 19-23, 25-26, 36, 254 classification, 106, 108, 111, 179, 185, 251-253classification model, 253close formation flight, 237close path tracking, 223-224 clustering, 104, 106, 108, 251-253, 255, 289clustering algorithm, 252 clustering function, 104clutch stroke, 147coarse fuzzy logic controller, 94 collective pitch angle, 209 collision avoidance, 166, 168 collision avoidance system, 160, 167, 169-170, 172collision avoidance system, 168 complement, 20, 23, 45 compressor contamination, 289 conditional independence graph, 259 confidence thresholds, 251 confidence-rated rules, 251coning angle, 210constant gain, 207constant pressure mode, 280 contrast intensification, 104 contrast intensificator operator, 104 control derivatives, 211control gain, 35, 72, 93, 96, 244 control gain factor, 93control gains, 53, 226control rules, 18, 27, 28, 35, 53, 64, 65, 90-91, 93, 207, 228, 230, 262, 302, 304-305, 315, 317control surfaces, 53-55, 64, 69, 73, 77, 193controller actuator faulty, 289 control-weighting matrix, 207 convex sets, 119-120Coordinate Measurement Machine, 301coordinate measuring machine, 96 core of a fuzzy set, 26corner cube retroreflector, 85 correlation-minimum, 243-244cost function, 74-75, 213, 282-283, 287coverage function, 118crisp input, 18, 51, 182crisp output, 7, 34, 41-42, 51, 184, 300, 305-306crisp sets, 19, 21, 23crisp variable, 18-19, 29critical clearing time, 270 crossover, 59crossover probability, 59-60cruise control, 129-130,132-135, 137-139cubic cell, 299, 301-302, 309cubic spline, 48cubic spline interpolation, 300 current time gap, 136custom membership function, 294 customer behav or, 249iDdamping factor, 211data cleaning, 250data integration, 250data mining, 249, 250, 251-255, 259-260data selection, 250data transformation, 250d-dimensional Euclidean space, 117, 124decision logic, 321 decomposition, 173, 259Index327defuzzification function, 102, 105, 107-108, 111 defuzzifications, 17-18, 29, 34 defuzzifier, 181, 242density function, 122 dependency analysis, 258 dependency structure, 259 dependent loop level, 279depth control, 202-203depth controller, 202detection point, 169deviation, 79, 85, 185-188, 224, 251, 253, 262, 265, 268, 276, 288 dilation, 117discriminated rules, 251 discrimination, 251, 252distance function, 119-121 distance sensor, 167, 171 distribution function, 259domain knowledge, 254-255 domain-specific attributes, 251 Doppler frequency shift, 87 downhill simplex algorithm, 77, 79 downwash, 209drag reduction, 244driver’s intention estimator, 148 dutch roll, 212dynamic braking, 261-262 dynamic fuzzy system, 286, 304 dynamic tracking trajectory, 98Eedge composition, 108edge detection, 108 eigenvalues, 6-7, 212electrical coupling effect, 85, 88 electrical coupling effects, 87 equilibrium point, 207, 216 equivalent control, 194erosion, 117error rates, 96estimation, 34, 53, 119, 251, 283, 295, 302Euler angles, 208evaluation function, 258 evolution, 45, 133, 208, 251 execution layer, 262-266, 277 expert knowledge, 160, 191, 262 expert segmentation, 121-122 extended sup-star composition, 182 Ffault accommodation, 284fault clearing states, 271, 274fault detection, 288-289, 295fault diagnosis, 284fault durations, 271, 274fault isolation, 284, 288fault point, 270-271, 273-274fault tolerant control, 288fault trajectories, 271feature extraction, 256fiber glass hull, 193fin forces, 210final segmentation, 117final threshold, 116fine fuzzy controller, 90finer lookup table, 34finite element method, 318finite impulse responses, 288firing weights, 229fitness function, 59-60, 257flap angles, 209flight aerodynamic model, 247 flight envelope, 207, 214, 217flight path angle, 210flight trajectory, 208, 223footprint of uncertainty, 176, 179 formation geometry, 238, 247 formation trajectory, 246forward driving mode, 163, 167, 169 forward flight control, 217 forward flight speed, 217forward neural network, 288 forward velocity, 208, 214, 217, 219-220forward velocity tracking, 208 fossil power plants, 284-285, 296 four-dimensional synoptic data, 191 four-generator test system, 269 Fourier filter, 133four-quadrant detector, 79, 87, 92, 96foveal avascular zone, 123fundus images, 115, 121, 124 fuselage, 208-210Index 328fuselage axes, 208-209fuselage incidence, 210fuzz-C, 45fuzzifications, 18, 25fuzzifier, 181-182fuzzy ACC controller, 138fuzzy aggregation operator, 293 fuzzy ASICs, 37-38, 50fuzzy binarization algorithm, 110 fuzzy CC controller, 138fuzzy clustering algorithm, 106, 108 fuzzy constraints, 286, 291-292 fuzzy control surface, 54fuzzy damage-mitigating control, 284fuzzy decomposition, 108fuzzy domain, 102, 106fuzzy edge detection, 111fuzzy error interpolation, 300, 302, 305-306, 309, 313fuzzy filter, 104fuzzy gain scheduler, 217-218 fuzzy gain-scheduler, 207-208, 220 fuzzy geometry, 110-111fuzzy I controller, 76fuzzy image processing, 102, 106, 111, 124fuzzy implication rules, 27-28 fuzzy inference system, 17, 25, 27, 35-36, 207-208, 302, 304-306 fuzzy interpolation, 300, 302, 305- 307, 309, 313fuzzy interpolation method, 309 fuzzy interpolation technique, 300, 309, 313fuzzy interval control, 177fuzzy mapping rules, 27fuzzy model following control system, 84fuzzy modeling methods, 255 fuzzy navigation algorithm, 244 fuzzy operators, 104-105, 111 fuzzy P controller, 71, 73fuzzy PD controller, 69fuzzy perimeter, 110-111fuzzy PI controllers, 61fuzzy PID controllers, 53, 64-65, 80 fuzzy production rules, 315fuzzy reference governor, 285 Fuzzy Robust Controller, 7fuzzy set averages, 116, 124-125 fuzzy sets, 7, 19, 22, 24, 27, 36, 45, 115, 120-121, 124-125, 151, 176-182, 184-188, 192, 228, 262, 265-266fuzzy sliding mode controller, 192, 196-197fuzzy sliding surface, 192fuzzy subsets, 152, 200fuzzy variable boundary layer, 192 fuzzyTECH, 45Ggain margins, 207gain scheduling, 193, 207, 208, 211, 217, 220gas turbines, 279Gaussian membership function, 7 Gaussian waveform, 25 Gaussian-Bell waveforms, 304 gear position decision, 145, 147 gear-operating lever, 147general window function, 105 general-purpose microprocessors, 37-38, 44genetic algorithm, 54, 59, 192, 208, 257-258genetic operators, 59-60genetic-inclined search, 257 geometric modeling, 56gimbal motor, 90, 96global gain-scheduling, 220global linear ARX model, 284 global navigation satellite systems, 141global position system, 224goal seeking behaviour, 186-187 governor valves80, 2HHamiltonian function, 261, 277 hard constraints, 283, 293 heading angle, 226, 228, 230, 239, 240-244, 246heading angle control, 240Index329heading controller, 194, 201-202 heading error rate, 194, 201 heading speed, 226heading velocity control, 240 heat recovery steam generator, 279 hedges, 103-104height method, 29helicopter, 207-212, 214, 217, 220 helicopter control matrix, 211 helicopter flight control, 207 Heneghan method, 116-117, 121-124heuristic search, 258 hierarchical approaches, 261 hierarchical architecture, 185 hierarchical fuzzy processors, 261 high dimensional systems, 191 high stepping rates, 84hit-miss topology, 119home position, 96horizontal tail plane, 209 horizontal tracker, 90hostile, 223human domain experts, 255 human visual system, 101hybrid system framework, 295 hyperbolic tangent function, 195 hyperplane, 192-193, 196 hysteresis thres olding, 116-117hIIF-THEN rule, 27-28image binarization, 106image complexity, 104image fuzzification function, 111 image segmentation, 124image-expert, 122-123indicator function, 121inert, 223inertia frame, 238inference decision methods, 317 inferential conclusion, 317 inferential decision, 317 injection molding process, 315 inner loop controller, 87integral time absolute error, 54 inter-class similarity, 252 internal dependencies, 169 interpolation property, 203 interpolative nature, 262 intersection, 20, 23-24, 31, 180 interval sets, 178interval type-2 FLC, 181interval type-2 fuzzy sets, 177, 180-181, 184inter-vehicle gap, 135intra-class similarity, 252inverse dynamics control, 228, 230 inverse dynamics method, 227 inverse kinema c, 299tiJ - Kjoin, 180Kalman gain, 213kinematic model, 299kinematic modeling, 299-300 knowledge based gear position decision, 148, 153knowledge reasoning layer, 132 knowledge representation, 250 knowledge-bas d GPD model, 146eLlabyrinths, 169laser interferometer transducer, 83 laser tracker, 301laser tracking system, 53, 63, 65, 75, 78-79, 83-85, 87, 98, 301lateral control, 131, 138lateral cyclic pitch angle, 209 lateral flapping angle, 210 leader, 238-239linear control surface, 55linear fuzzy PI, 61linear hover model, 213linear interpolation, 300-301, 306-307, 309, 313linear interpolation method, 309 linear optimal controller, 207, 217 linear P controller, 73linear state feedback controller, 7 linear structures, 117linear switching line, 198linear time-series models, 283 linguistic variables, 18, 25, 27, 90, 102, 175, 208, 258Index 330load shedding, 261load-following capabilities, 288, 297 loading dock, 159-161, 170, 172 longitudinal control, 130-132 longitudinal cyclic pitch angle, 209 longitudinal flapping angle, 210 lookup table, 18, 31-35, 40, 44, 46, 47-48, 51, 65, 70, 74, 93, 300, 302, 304-305lower membership functions, 179-180LQ feedback gains, 208LQ linear controller, 208LQ optimal controller, 208LQ regulator, 208L-R fuzzy numbers, 121 Luenburger observer, 6Lyapunov func on, 5, 192, 284tiMMamdani model, 40, 46 Mamdani’s method, 242 Mamdani-type controller, 208 maneuverability, 164, 207, 209, 288 manual transmissions, 145 mapping function, 102, 104 marginal distribution functions, 259 market-basket analysis, 251-252 massive databases, 249matched filtering, 115 mathematical morphology, 117, 127 mating pool, 59-60max member principle, 106max-dot method, 40-41, 46mean distance function, 119mean max membership, 106mean of maximum method, 29 mean set, 118-121measuring beam, 86mechanical coupling effects, 87 mechanical layer, 132median filter, 105meet, 7, 50, 139, 180, 183, 302 membership degree, 39, 257 membership functions, 18, 25, 81 membership mapping processes, 56 miniature acrobatic helicopter, 208 minor steady state errors, 217 mixed-fuzzy controller, 92mobile robot control, 130, 175, 181 mobile robots, 171, 175-176, 183, 187-189model predictive control, 280, 287 model-based control, 224 modeless compensation, 300 modeless robot calibration, 299-301, 312-313modern combined-cycle power plant, 279modular structure, 172mold-design optimization, 323 mold-design process, 323molded part, 318-321, 323 morphological methods, 115motor angular acceleration, 3 motor plant, 3motor speed control, 2moving average filter, 105 multilayer fuzzy logic control, 276 multimachine power system, 262 multivariable control, 280 multivariable fuzzy PID control, 285 multivariable self-tuning controller, 283, 295mutation, 59mutation probability, 59-60mutual interference, 88Nnavigation control, 160neural fuzzy control, 19, 36neural networks, 173, 237, 255, 280, 284, 323neuro-fuzzy control, 237nominal plant, 2-4nonlinear adaptive control, 237non-linear control, 2, 159 nonlinear mapping, 55nonlinear switching curve, 198-199 nonlinear switching function, 200 nonvolatile memory, 44 normalized universe, 266Oobjective function, 59, 74-75, 77, 107, 281-282, 284, 287, 289-291,Index331295obstacle avoidance, 166, 169, 187-188, 223-225, 227, 231 obstacle avoidance behaviour, 187-188obstacle sensor, 224, 228off-line defuzzification, 34off-line fuzzy inference system, 302, 304off-line fuzzy technology, 300off-line lookup tables, 302 offsprings, 59-60on-line dynamic fuzzy inference system, 302online tuning, 203open water trial, 202operating point, 210optical platform, 92optimal control table, 300optimal feedback gain, 208, 215-216 optimal gains, 207original domain, 102outer loop controller, 85, 87outlier analysis, 251, 253output control gains, 92 overshoot, 3-4, 6-7, 60-61, 75-76, 94, 96, 193, 229, 266Ppath tracking, 223, 232-234 pattern evaluation, 250pattern vector, 150-151PD controller, 4, 54-55, 68-69, 71, 74, 76-77, 79, 134, 163, 165, 202 perception domain, 102 performance index, 60, 207 perturbed plants, 3, 7phase margins, 207phase-plan mapping fuzzy control, 19photovoltaic power systems, 261 phugoid mode, 212PID, 1-4, 8, 13, 19, 53, 61, 64-65, 74, 80, 84-85, 87-90, 92-98, 192 PID-fuzzy control, 19piecewise nonlinear surface, 193 pitch angle, 202, 209, 217pitch controller, 193, 201-202 pitch error, 193, 201pitch error rate, 193, 201pitch subsidence, 212planetary gearbox, 145point-in-time transaction, 252 polarizing beam-splitter, 86 poles, 4, 94, 96position sensor detectors, 84 positive definite matrix, 213post fault, 268, 270post-fault trajectory, 273pre-defined membership functions, 302prediction, 251, 258, 281-283, 287, 290predictive control, 280, 282-287, 290-291, 293-297predictive supervisory controller, 284preview distance control, 129 principal regulation level, 279 probabilistic reasoning approach, 259probability space, 118Problem understanding phases, 254 production rules, 316pursuer car, 136, 138-140 pursuer vehicle, 136, 138, 140Qquadrant detector, 79, 92 quadrant photo detector, 85 quadratic optimal technology, 208 quadrilateral ob tacle, 231sRradial basis function, 284 random closed set, 118random compact set, 118-120 rapid environment assessment, 191 reference beam, 86relative frame, 240relay control, 195release distance, 169residual forces, 217retinal vessel detection, 115, 117 RGB band, 115Riccati equation, 207, 213-214Index 332rise time, 3, 54, 60-61, 75-76road-environment estimator, 148 robot kinematics, 299robot workspace, 299-302, 309 robust control, 2, 84, 280robust controller, 2, 8, 90robust fuzzy controller, 2, 7 robustness property, 5, 203roll subsidence, 212rotor blade flap angle, 209rotor blades, 210rudder, 193, 201rule base size, 191, 199-200rule output function, 191, 193, 198-199, 203Runge-Kutta m thod, 61eSsampling period, 96saturation function, 195, 199 saturation functions, 162scaling factor, 54, 72-73scaling gains, 67, 69S-curve waveform, 25secondary membership function, 178 secondary memberships, 179, 181 selection, 59self-learning neural network, 159 self-organizing fuzzy control, 261 self-tuning adaptive control, 280 self-tuning control, 191semi-positive definite matrix, 213 sensitivity indices, 177sequence-based analysis, 251-252 sequential quadratic programming, 283, 292sets type-reduction, 184setting time, 54, 60-61settling time, 75-76, 94, 96SGA, 59shift points, 152shift schedule algorithms, 148shift schedules, 152, 156shifting control, 145, 147shifting schedules, 146, 152shift-schedule tables, 152sideslip angle, 210sigmoidal waveform, 25 sign function, 195, 199simplex optimal algorithm, 80 single gimbal system, 96single point mass obstacle, 223 singleton fuzzification, 181-182 sinusoidal waveform, 94, 300, 309 sliding function, 192sliding mode control, 1-2, 4, 8, 191, 193, 195-196, 203sliding mode fuzzy controller, 193, 198-200sliding mode fuzzy heading controller, 201sliding pressure control, 280 sliding region, 192, 201sliding surface, 5-6, 192-193, 195-198, 200sliding-mode fuzzy control, 19 soft constraints, 281, 287space-gap, 135special-purpose processors, 48 spectral mapping theorem, 216 speed adaptation, 138speed control, 2, 84, 130-131, 133, 160spiral subsidence, 212sporadic alternations, 257state feedback controller, 213 state transition, 167-169state transition matrix, 216state-weighting matrix, 207static fuzzy logic controller, 43 static MIMO system, 243steady state error, 4, 54, 79, 90, 94, 96, 98, 192steam turbine, 279steam valving, 261step response, 4, 7, 53, 76, 91, 193, 219stern plane, 193, 201sup operation, 183supervisory control, 191, 280, 289 supervisory layer, 262-264, 277 support function, 118support of a fuzzy set, 26sup-star composition, 182-183 surviving solutions, 257Index333swing curves, 271, 274-275 switching band, 198switching curve, 198, 200 switching function, 191, 194, 196-198, 200switching variable, 228system trajector192, 195y,Ttail plane, 210tail rotor, 209-210tail rotor derivation, 210Takagi-Sugeno fuzzy methodology, 287target displacement, 87target time gap, 136t-conorm maximum, 132 thermocouple sensor fault, 289 thickness variable, 319-320three-beam laser tracker, 85three-gimbal system, 96throttle pressure, 134throttle-opening degree, 149 thyristor control, 261time delay, 63, 75, 91, 93-94, 281 time optimal robust control, 203 time-gap, 135-137, 139-140time-gap derivative, 136time-gap error, 136time-invariant fuzzy system, 215t-norm minimum, 132torque converter, 145tracking error, 79, 84-85, 92, 244 tracking gimbals, 87tracking mirror, 85, 87tracking performance, 84-85, 88, 90, 192tracking speed, 75, 79, 83-84, 88, 90, 92, 97, 287trajectory mapping unit, 161, 172 transfer function, 2-5, 61-63 transient response, 92, 193 transient stability, 261, 268, 270, 275-276transient stability control, 268 trapezoidal waveform, 25 triangular fuzzy set, 319triangular waveform, 25 trim, 208, 210-211, 213, 217, 220, 237trimmed points, 210TS fuzzy gain scheduler, 217TS fuzzy model, 207, 290TS fuzzy system, 208, 215, 217, 220 TS gain scheduler, 217TS model, 207, 287TSK model, 40-41, 46TS-type controller, 208tuning function, 70, 72turbine following mode, 280, 283 turn rate, 210turning rate regulation, 208, 214, 217two-DOF mirror gimbals, 87two-layered FLC, 231two-level hierarchy controllers, 275-276two-module fuzzy logic control, 238 type-0 systems, 192type-1 FLC, 176-177, 181-182, 185- 188type-1 fuzzy sets, 177-179, 181, 185, 187type-1 membership functions, 176, 179, 183type-2 FLC, 176-177, 180-183, 185-189type-2 fuzzy set, 176-180type-2 interval consequent sets, 184 type-2 membership function, 176-178type-reduced set, 181, 183-185type-reduction,83-1841UUH-1H helicopter, 208uncertain poles, 94, 96uncertain system, 93-94, 96 uncertain zeros, 94, 96underlying domain, 259union, 20, 23-24, 30, 177, 180unit control level, 279universe of discourse, 19-24, 42, 57, 151, 153, 305unmanned aerial vehicles, 223 unmanned helicopter, 208Index 334unstructured dynamic environments, 177unstructured environments, 175-177, 179, 185, 187, 189upper membership function, 179Vvalve outlet pressure, 280vapor pressure, 280variable structure controller, 194, 204velocity feedback, 87vertical fin, 209vertical tracker, 90vertical tracking gimbal, 91vessel detection, 115, 121-122, 124-125vessel networks, 117vessel segmentation, 115, 120 vessel tracking algorithms, 115 vision-driven robotics, 87Vorob’ev fuzzy set average, 121-123 Vorob'ev mean, 118-120vortex, 237 WWang and Mendel’s algorithm, 257 WARP, 49weak link, 270, 273weighing factor, 305weighting coefficients, 75 weighting function, 213weld line, 315, 318-323western states coordinating council, 269Westinghouse turbine-generator, 283 wind–diesel power systems, 261 Wingman, 237-240, 246wingman aircraft, 238-239 wingman veloc y, 239itY-ZYager operator, 292Zana-Klein membership function, 124Zana-Klein method, 116-117, 121, 123-124zeros, 94, 96µ-law function, 54µ-law tuning method, 54。

Trajectory Pattern Mining

Trajectory Pattern Mining

13 of 90
Extension of the work proposed by [Laube 2004, 2005] Gudmundsson(2006)
Computes the longest duration flock patterns The longest pattern has the longest duration And has at least a minimal number of trajectories
Encounter: At least m entities will be concurrently inside the same circular region of radius r, assuming they move with the same speed and direction.
Frequent groups are computed with the algorithm Apriori
Group pattern: time, distance, and minsup
9/28/2013
Tutorial on Spatial and Spatio-Temporal Data Mining (ICDM 2010)
9/28/2013
Tutorial on Spatial and Spatio-Temporal Data Mining (ICDM 2010)
1 of 90
Trajectory Data (Giannotti 2007 – www.geopkdd.eu)
Spatio-temporal Data Represented as a set of points, located in space and time T=(x1,y1, t1), …, (xn, yn, tn) => position in space at time ti was (xi,yi)

orange data mining 用法

orange data mining 用法

orange data mining 用法
Orange Data Mining 是一个基于Python的数据可视化和数据分析工具,特别适用于数据挖掘任务。

以下是一些基本的用法步骤:
通过图形用户界面(GUI)使用Orange3:
1. 安装与启动:
首先按照之前的指令安装Orange3,创建并激活虚拟环境后,通过conda安装Orange3。

启动Orange3应用程序。

2. 导入数据:
打开Orange3,点击“File”菜单或工具栏上的“Ope n Data”按钮导入数据集,支持多种格式,如CSV、Excel 等。

数据导入后,可以在“Data Table”视图中查看和编辑数据。

3. 数据预处理:
使用Orange提供的各种数据预处理组件,包括但不限
于特征选择、离散化、标准化、缺失值处理等。

4. 可视化探索:
利用内置的可视化模块,如scatter plots、histogr ams、box plots等来探索数据分布和关系。

5. 建模与分析:
将数据拖放到机器学习算法组件上,如分类器、回归器、聚类器等进行训练和预测。

可以利用评估组件(如Cross Validation)检验模型性能。

6. 工作流构建:
在Orange的工作流界面上,可以通过拖拽方式将各个组件连接起来形成数据处理和分析流水线。

以上仅为简单示例,实际应用中可根据具体需求调整和扩展上述操作。

对于详细教程和API文档,请参考官方文档。

轨迹数据挖掘-介绍

轨迹数据挖掘-介绍

Batch Compression Douglas-Peucker (DP) Algorithm
• Preserve directional trends in the approximated trajectory using the perpendicular Euclidean distance as the error measure.
Chapter 1 Trajectory Preprocessing
Wang-Chien Lee Pennsylvania State University University Park, PA USA John Krumm Microsoft Research Redmond, WA USA
Location-Based Services
Open Window
• Different from the sliding window, choose location points with the highest error in the sliding window as the closing point of the approximating line segment as well as the new anchor point. • When p4 is included, the error for p2 exceeds the threshold, so p0p2 is included in the approximate trajectory and p2 is set as the anchor to continue.

Joke
The one about the guy who joins a monastery

轨迹分析研判报告

轨迹分析研判报告

轨迹分析研判报告一、概述轨迹分析是一种针对特定对象或事件的轨迹数据进行统计分析和研判的方法。

通过对轨迹数据的处理和分析,可以揭示对象的行为规律、位置关系和趋势变化等信息。

本报告针对某特定对象的轨迹数据进行分析和研判,旨在提供有关对象的行为特征和位置动态的详细信息,以支持决策制定和问题解决。

二、数据来源本报告所使用的轨迹数据来源于某特定对象的移动定位系统。

该系统通过卫星定位技术获取对象的定位数据,并存储为时间序列的轨迹数据,包括经纬度、时间戳和其他附加信息。

三、数据处理与分析1.数据清洗在进行轨迹数据分析之前,首先对数据进行清洗。

数据清洗的目的是去除异常值、缺失值和重复值等不符合要求的数据,以保证数据的准确性和完整性。

2.轨迹重组根据时间戳将轨迹数据进行排序,组成完整的轨迹序列。

轨迹重组可以恢复对象的移动路径和动态行为,为后续的分析提供基础。

3.轨迹分段将轨迹数据切分为不同的段落,每个段落代表对象在不同时间段内的运动状态。

轨迹分段可以帮助我们更精确地分析对象的运动趋势和行为特征。

4.轨迹可视化通过将轨迹数据在地图上进行可视化展示,可以直观地观察对象的运动轨迹和活动范围。

轨迹可视化可以帮助我们更好地理解对象的运动规律和活动特点。

四、分析结果1.行为规律分析通过对轨迹数据的时间间隔、运动速度和运动距离等指标进行分析,可以揭示对象的运动规律。

根据分析结果,我们可以了解对象的活动频率、活动时段和活动范围等信息,以及特定时期内的异常行为。

2.位置关系分析通过对轨迹数据的空间间隔、移动轨迹和位置簇等指标进行分析,可以揭示对象之间的位置关系。

根据分析结果,我们可以了解对象的相对位置、相互接触的频率和持续时间等信息,以及对象之间的互动行为。

3.趋势变化分析通过对轨迹数据的移动方向、速度变化和停留时长等指标进行分析,可以揭示对象的趋势变化。

根据分析结果,我们可以了解对象的运动趋势、迁徙模式和活动轨迹等信息,以及对象在不同时间段内的变化趋势。

04-Trajectory Privacy

04-Trajectory Privacy

• Support consistent user identity
15
Trajectory Tracing Attack (1/2)
Suppose R1 and R2 are two cloaked regions for user U at t1 and t2, respectively. Suppose attacker knows U’s maximum speed.
Outline
• Introduction
• Protecting Trajectory Privacy in Locationbased Services • Protecting Privacy in Trajectory Publication • Future Research Directions
6
Location Privacy
• Location-Based Services (LBS)
• Untrustable LBS Service Provider – Location Privacy Leakage
7
Location Privacy-Preserving Techniques
20
Solution 1: Group-based Approach
y 3-Anonymous Cloaked Spatial Region F H E G B A C D
ห้องสมุดไป่ตู้
y
y
F A G E C B
x
H
F G A C H E D B
D x
x
At time t1 • Group members are fixed
y A C
(x1, y1)

基于群组与密度的轨迹聚类算法

基于群组与密度的轨迹聚类算法

第47卷第4期Vol.47No.4计算机工程Computer Engineering2021年4月April2021基于群组与密度的轨迹聚类算法俞庆英1,2,赵亚军1,2,叶梓彤1,2,胡凡1,2,夏芸1,2(1.安徽师范大学计算机与信息学院,安徽芜湖241002;2.安徽师范大学网络与信息安全安徽省重点实验室,安徽芜湖241002)摘要:现有基于密度的聚类方法主要用于点数据的聚类,不适用于大规模轨迹数据。

针对该问题,提出一种利用群组和密度的轨迹聚类算法。

根据最小描述长度原则对轨迹进行分段预处理找出具有相似特征的子轨迹段,通过两次遍历轨迹数据集获取基于子轨迹段的群组集合,并采用群组搜索代替距离计算减少聚类过程中邻域对象集合搜索的计算量,最终结合群组和密度完成对轨迹数据集的聚类。

在大西洋飓风轨迹数据集上的实验结果表明,与基于密度的TRACLUS轨迹聚类算法相比,该算法运行时间更短,聚类结果更准确,在小数据集和大数据集上的运行时间分别减少73.79%和84.19%,且运行时间的减幅随轨迹数据集规模的扩大而增加。

关键词:群组;密度;群组可达;邻域搜索;轨迹聚类开放科学(资源服务)标志码(OSID):中文引用格式:俞庆英,赵亚军,叶梓彤,等.基于群组与密度的轨迹聚类算法[J].计算机工程,2021,47(4):100-107.英文引用格式:YU Qingying,ZHAO Yajun,YE Zitong,et al.Trajectory clustering algorithm based on group and density[J]. Computer Engineering,2021,47(4):100-107.Trajectory Clustering Algorithm Based on Group and DensityYU Qingying1,2,ZHAO Yajun1,2,YE Zitong1,2,HU Fan1,2,XIA Yun1,2(1.School of Computer and Information,Anhui Normal University,Wuhu,Anhui241002,China;2.Anhui Provincial Key Laboratory of Network and Information Security,Anhui Normal University,Wuhu,Anhui241002,China)【Abstract】The existing density-based clustering methods are mainly used for point data clustering,and not suitable for large-scale trajectory data.To address the problem,this paper proposes a trajectory clustering algorithm based on group and density. According to the principle of Minimum Description Length(MDL),the trajectories are preprocessed by segments to find out the sub trajectories with similar characteristics.The group set based on the sub trajectories is obtained by traversing the trajectories dataset twice,and the group search is used to replace the distance calculation to reduce the calculation amount required for the neighborhood object set search in the clustering process.Finally,the trajectory data set is clustered by combining the group and density.Experimental results on Atlantic hurricane track dataset show that,compared with the density-based TRACLUS track clustering algorithm,the running time of the proposed algorithm is less and the clustering results are more accurate.The running time on the small dataset and large dataset is reduced by73.79%and84.19%respectively,and the reduction of running time increases with the expansion of track dataset.【Key words】group;density;group reachability;neighborhood search;trajectory clusteringDOI:10.19678/j.issn.1000-3428.00574250概述随着定位、通信和存储技术的快速发展,车辆行驶轨迹数据、用户活动轨迹数据以及飓风轨迹数据等大量移动对象的轨迹数据可被搜集和存储。

人口与计划生育法英文介绍

人口与计划生育法英文介绍

人口与计划生育法英文介绍篇1The Population and Family Planning Law plays a crucial role in regulating and guiding population development in our country. It aims to strike a balance between population growth and the available resources and social development needs. This law has specific provisions and measures to control population growth. For instance, it promotes family planning and encourages couples to have an appropriate number of children based on various factors.One of its significant aspects is optimizing the population structure. It takes into account factors such as age distribution and gender ratio to ensure a more balanced and sustainable population composition. How amazing it is that such thoughtful considerations are made in the law!In terms of safeguarding citizens' reproductive rights and interests, the law also provides clear regulations. It ensures that citizens have the right to make informed and voluntary decisions regarding reproduction, while also emphasizing the importance of quality of life and the well-being of children. Isn't it a wonderful protection for citizens?The implementation of this law requires the joint efforts of the whole society. We should all understand and abide by its provisions, as it is for the long-term stability and prosperity of our country. What a significantand far-reaching law it is!篇2The Population and Family Planning Law has played a crucial role in the development of our society! It has witnessed significant changes and improvements over the years.In the early stages, this law aimed to control population growth and balance the population structure. As time went on, it has been continuously adjusted and refined to adapt to the changing social and economic circumstances. For instance, in some areas, it has focused on improving the quality of the population and promoting balanced population development.The significance of this law is immense! It has had a positive impact on the rational allocation of resources. By controlling population growth, it has helped to ensure that resources such as food, education, and medical care are distributed more effectively. This has undoubtedly contributed to the stable and sustainable development of society and the economy.How could we imagine a society without such a law? It would likely lead to chaos and imbalance in resource distribution. The Population and Family Planning Law is not just a set of regulations; it is a guiding light that leads us towards a better future. Isn't it amazing how such a law can shape the destiny of a nation?In conclusion, the Population and Family Planning Law is an essential tool for maintaining social order and promoting the well-being of thepeople. We should continue to pay attention to its development and implementation to ensure its effectiveness in the long run.篇3Population and Family Planning Laws are crucial for the development and stability of nations. In some developed countries, advanced population policies have been implemented. For instance, countries like Sweden and Denmark have emphasized on providing comprehensive family support, including generous parental leave and high-quality child care services. This has not only encouraged couples to have children but also ensured the well-being of children and families. How wonderful is this approach?On the other hand, developing countries often face similar challenges. Take India and Brazil as examples. They struggle with issues such as rapid population growth, limited resources, and insufficient social welfare. Isn't it a huge burden for these countries?The differences and similarities among these laws are quite remarkable. In developed countries, the focus is more on maintaining a balanced population structure and improving the quality of life. But in developing countries, the priority is often to control population growth to match the available resources. Isn't this a significant contrast?In conclusion, understanding and comparing the characteristics of Population and Family Planning Laws in different countries can provide valuable insights for formulating more effective policies. Don't you thinkso?篇4The Population and Family Planning Law has been of great significance in regulating population growth and promoting balanced development. However, during its implementation, various problems have emerged. For instance, in some remote areas, the lack of adequate medical resources and educational propaganda has made it difficult to ensure the effective execution of the law. People's traditional concepts and cultural factors have also posed obstacles to the implementation of the policy. How to solve these problems? One of the measures is to increase investment in medical infrastructure and professional training in these areas. This can improve the quality and accessibility of family planning services. Moreover, strengthening publicity and education through various channels, such as community activities and online platforms, can enhance people's understanding and acceptance of the law. Another important aspect is to formulate more flexible and targeted policies based on local actual conditions. Isn't it necessary to take into account the differences between regions and groups? Of course! Only by constantly adjusting and improving can the Population and Family Planning Law better meet the needs of social development and achieve its intended goals. Isn't that amazing?篇5The Population and Family Planning Law has been a significant aspect of social policy, exerting a profound influence on the trajectory of population development. This law is not just a set of regulations; it's a powerful tool shaping the future of our society!Consider the potential changes in population size. Under the sustained effect of this law, we might witness a controlled growth rate. Isn't it fascinating to think that this could lead to a more balanced distribution of resources and a reduced burden on social infrastructure?The age structure is another crucial aspect. We could expect a gradual shift towards an aging population. But what does this mean for our healthcare systems and social security? Will we be well-prepared to meet the needs of an older demographic?It's not all straightforward, though. There could be challenges along the way. For instance, how will a smaller working-age population impact economic productivity? How will we ensure the well-being of the elderly in a changing age structure?In conclusion, the Population and Family Planning Law holds the key to shaping the future of our population. It's a complex and dynamic issue that demands our continuous attention and thoughtful adaptation. How we navigate these changes will determine the quality of life for future generations. Isn't that a responsibility we all share?。

自动化专业英语常用词汇

自动化专业英语常用词汇

自动化专业英语常用词汇acceleration transducer 加速度传感器accumulated error 累积误差AC-DC-AC frequency converter交-直-交变频器AC (alternating current) electric drive 交流电子传动active attitude stabilization 主动姿态稳定adjoint operator 伴随算子admissible error 容许误差amplifying element 放大环节analog-digital conversion 模数转换operational amplifiers运算放大器aperiodic decomposition 非周期分解approximate reasoning 近似推理a priori estimate 先验估计articulated robot 关节型机器人asymptotic stability 渐进稳定性attained pose drift 实际位姿漂移attitude acquisition 姿态捕获AOCS (attitude and orbit control system) 姿态轨道控制系统attitude angular velocity 姿态角速度attitude disturbance 姿态扰动automatic manual station 自动-手动操作器automaton 自动机base coordinate system 基座坐标系bellows pressure gauge 波纹管压力表gauge测量仪器black box testing approach 黑箱测试法bottom-up development 自下而上开发boundary value analysis 边界值分析brainstorming method 头脑风暴法CAE (computer aided engineering) 计算机辅助工程CAM (computer aided manufacturing) 计算机辅助制造capacitive displacement transducer 电容式位移传感器capacity电容displacement 位移capsule pressure gauge 膜盒压力表rectangular coordinate system直角坐标系cascade compensation 串联补偿using series or parallel capacitors用串联或者并联的电容chaos 混沌calrity 清晰性classical information pattern 经典信息模式classifier 分类器clinical control system 临床控制系统closed loop pole 闭环极点open loop 开环closed loop transfer function 闭环传递函数c ombined pressure and vacuum gauge 压力真空表command pose 指令位姿companion matrix 相伴矩阵compatibility 相容性,兼容性compensating network 补偿网络Energy is conserved in all of its forms能量是守恒的compensation 补偿,矫正conditionally instability 条件不稳定性configuration 组态connectivity 连接性conservative system 守恒系统consistency 一致性constraint condition 约束条件control accuracy 控制精度Gyroscope陀螺仪control panel 控制屏,控制盘control system synthesis 控制系统综合corner frequency 转折频率coupling of orbit and attitude 轨道和姿态耦合critical damping 临界阻尼临界criticalDamper阻尼器critical stability 临界稳定性cross-over frequency 穿越频率,交越频率cut-off frequency 截止频率cybernetics 控制论cyclic remote control 循环遥控cycle 循环cycliccylindrical robot 圆柱坐标型机器人damped oscillation 阻尼振荡oscillation 振荡;振动;摆动damper 阻尼器damping ratio 阻尼比ratio 比data acquisition 数据采集data preprocessing 数据预处理data processor 数据处理器D controller 微分控制器微分控制:Differential control 积分控制:integral control 比例控制:proportional controldescribing function 描述函数desired value 希望值真值: truth values 参考值: reference valuedestination 目的站detector 检出器deviation 偏差deviation alarm 偏差报警器differential dynamical system 微differential pressure level meter 差压液位计meter=gauge 仪表differential 差别的微分的differential pressure transmitter 差压变送器differential transformer displacement transducer 差动变压器式位移传感器differentiation element 微分环节digital filer 数字滤波器filter 滤波器digital signal processing 数字信号处理dimension transducer 尺度传感器discrete system simulation language 离散系统仿真语言discrete离散的不连续的displacement vibration amplitude transducer 位移振幅传感器幅度:amplitudedistrubance 扰动disturbance compensation 扰动补偿diversity 多样性divisibility 可分性domain knowledge 领域知识dominant pole 主导极点零点zero调制:modulation ; modulate 解调:demodulationcountermodulationduty ratio负载比dynamic characteristics 动态特性dynamic deviation 动态偏差dynamic error coefficient 动态误差系数dynamic input-output model 动态投入产出模型Index指数eddy current thickness meter 电涡流厚度计meter 翻译成计gauge 翻译成表electric conductance level meter 电导液位计electromagnetic flow transducer 电磁流量传感器electronic batching scale 电子配料秤scale 秤electronic belt conveyor scale 电子皮带秤electronic hopper scale 电子料斗秤elevation 仰角depression 俯角equilibrium point 平衡点error 误差estimate 估计量estimation theory 估计理论expected characteristics 希望特性failure diagnosis 故障诊断feasibility study 可行性研究feasible 可行的feasible region 可行域feature detection 特征检测feature extraction 特征抽取feedback compensation 反馈补偿Feed forward path 前馈通路前馈:feed forward 反馈feedbackFMS (flexible manufacturing system) 柔性制造系统柔性:flexible 刚性:rigidity bending deflection 弯曲挠度deflect 偏向偏离flow sensor/transducer 流量传感器flow transmitter 流量变送器forward path 正向通路frequency converter 变频器frequency domain model reduction me thod 频域模型降阶法频域frequency response 频域响应functional decomposition 功能分解FES (functional electrical stimulation) 功能电刺激stimulate 刺激functional simularity 功能相似fuzzy logic模糊逻辑generalized least squares estimation 广义最小二乘估计geometric similarity 几何相似global optimum 全局最优goal coordination method 目标协调法graphic search 图搜索guidance system 制导系统gyro drift rate 陀螺漂移率gyrostat 陀螺体Hall displacement transducer 霍尔式位移传感器horizontal decomposition横向分解hydraulic step motor 液压步进马达I controller 积分控制器integral 积分identifiability 可辨识性image recognition 图像识别impulse 冲量impulse function 冲击函数,脉冲函数index of merit 品质因数index 指数inductive force transducer 电感式位移传感器感应的inductive 电感:inductance industrial automation 工业自动化inertial attitude sensor 惯性姿态敏感器inertial coordinate system 惯性坐标系information acquisition 信息采集infrared gas analyzer 红外线气体分析器infrared 红外线红外线的ultraviolet ray紫外线的visible light可见光inherent nonlinearity 固有非线性inherent regulation 固有调节initial deviation 初始偏差input-output model 投入产出模型instability 不稳定性integrity 整体性intelligent terminal 智能终端internal disturbance 内扰invariant embedding principle 不变嵌入原理inverse Nyquist diagram 逆奈奎斯特图investment decision 投资决策joint 关节knowledge acquisition 知识获取knowledge assimilation 知识同化knowledge representation 知识表达lag-lead compensation 滞后超前补偿Laplace transform 拉普拉斯变换large scale system 大系统least squares criterion 最小二乘准则criterion 准则linearization technique 线性化方法linear motion electric drive 直线运动电气传动linear motion valve 直行程阀linear programming 线性规划load cell 称重传感器local optimum 局部最优local 局部log magnitude-phase diagram 对数幅相图magnitude大小的程度amplitude振幅long term memory 长期记忆Lyapunov theorem of asymptotic stability 李雅普诺夫渐近稳定性定理magnetoelastic weighing cell 磁致弹性称重传感器magnitude-frequency characteristic 幅频特性magnitude margin 幅值裕度margin 边缘magnitude scale factor 幅值比例尺manipulator 机械手man-machine coordination 人机协调MAP (manufacturing automation protocol) 制造自动化协议protocol 协议marginal effectiveness 边际效益Mason‘‘s gain formula 梅森增益公式matching criterion 匹配准则maximum likelihood estimation 最大似然估计maximum overshoot 最大超调量maximum principle 极大值原理mean-square error criterion 均方误差准则minimal realization 最小实现minimum phase system 最小相位系统minimum variance estimation 最小方差估计model reference adaptive control system 模型参考适应控制系统model verification 模型验证modularization 模块化MTBF (mean time between failures) 平均故障间隔时间mean 平均MTTF (mean time to failures) 平均无故障时间multiloop control 多回路控制multi-objective decision 多目标决策Nash optimality 纳什最优性nearest-neighbor 最近邻necessity measure 必然性侧度negative feedback 负反馈neural assembly 神经集合neural network computer 神经网络计算机Nichols chart 尼科尔斯图Nyquist stability criterion 奈奎斯特稳定判据objective function 目标函数on-line assistance 在线帮助on-off control 通断控制optic fiber tachometer 光纤式转速表optimal trajectory 最优轨迹optimization technique 最优化技术order parameter 序参数orientation control 定向控制oscillating period 振荡周期周期:period cycleoutput prediction method 输出预估法oval wheel flowmeter 椭圆齿轮流量计Over damping 过阻尼underdamping 欠阻尼PR (pattern recognition) 模式识别P control 比例控制器peak time 峰值时间penalty function method 罚函数法perceptron 感知器phase lead 相位超前phase lag相位滞后Photoelectri c光电tachometric transducer 光电式转速传感器piezoelectric force transducer 压电式力传感器PLC (programmable logic controller) 可编程序逻辑控制器plug braking 反接制动pole assignment 极点配置pole-zero cancellation 零极点相消polynomial input 多项式输入portfolio theory 投资搭配理论pose overshoot 位姿过调量position measuring instrument 位置测量仪posentiometric displacement transducer 电位器式位移传感器positive feedback 正反馈power system automation 电力系统自动化pressure transmitter 压力变送器primary frequency zone 主频区priority 优先级process-oriented simulation 面向过程的仿真proportional control 比例控制proportional plus derivative controller 比例微分控制器pulse duration 脉冲持续时间pulse frequency modulation control system 脉冲调频控制系统:frequency modulation 频率调制调频pulse width modulation control system 脉冲调宽控制系统PWM inverter 脉宽调制逆变器QC (quality control) 质量管理quantized noise 量化噪声ramp function 斜坡函数random disturbance 随机扰动random process 随机过程rate integrating gyro 速率积分陀螺real time telemetry 实时遥测receptive field 感受野rectangular robot 直角坐标型机器人redundant information 冗余信息regional planning model 区域规划模型regulating device 调节装载regulation 调节relational algebra 关系代数remote regulating 遥调reproducibility 再现性resistance thermometer sensor 热电阻电阻温度计传感器response curve 响应曲线return difference matrix 回差矩阵return ratio matrix 回比矩阵revolute robot 关节型机器人revolution speed transducer 转速传感器rewriting rule 重写规则rigid spacecraft dynamics 刚性航天动力学dynamics 动力学robotics 机器人学robot programming language 机器人编程语言robust control 鲁棒控制robustness 鲁棒性root locus 根轨迹roots flowmeter 腰轮流量计rotameter 浮子流量计,转子流量计sampled-data control system 采样控制系统sampling control system 采样控制系统saturation characteristics 饱和特性scalar Lyapunov function 标量李雅普诺夫函数s-domain s域self-operated controller 自力式控制器self-organizing system 自组织系统self-reproducing system 自繁殖系统self-tuning control 自校正控制sensing element 敏感元件sensitivity analysis 灵敏度分析sensory control 感觉控制sequential decomposition 顺序分解sequential least squares estimation 序贯最小二乘估计servo control 伺服控制,随动控制servomotor 伺服马达settling time 过渡时间sextant 六分仪short term planning 短期计划short time horizon coordination 短时程协调signal detection and estimation 信号检测和估计signal reconstruction 信号重构similarity 相似性simulated interrupt 仿真中断simulation block diagram 仿真框图simulation experiment 仿真实验simulation velocity 仿真速度simulator 仿真器single axle table 单轴转台single degree of freedom gyro 单自由度陀螺翻译顺序呵呵spin axis 自旋轴spinner 自旋体stability criterion 稳定性判据stability limit 稳定极限stabilization 镇定,稳定state equation model 状态方程模型state space description 状态空间描述static characteristics curve 静态特性曲线station accuracy 定点精度stationary random process 平稳随机过程statistical analysis 统计分析statistic pattern recognition 统计模式识别steady state deviation 稳态偏差顺序翻译即可steady state error coefficient 稳态误差系数step-by-step control 步进控制step function 阶跃函数strain gauge load cell 应变式称重传感器subjective probability 主观频率supervisory computer control system 计算机监控系统sustained oscillation 自持振荡swirlmeter 旋进流量计switching point 切换点systematology 系统学system homomorphism 系统同态system isomorphism 系统同构system engineering 系统工程tachometer 转速表target flow transmitter 靶式流量变送器task cycle 作业周期temperature transducer 温度传感器tensiometer 张力计texture 纹理theorem proving 定理证明therapy model 治疗模型thermocouple 热电偶thermometer 温度计thickness meter 厚度计three-axis attitude stabilization 三轴姿态稳定three state controller 三位控制器thrust vector control system 推力矢量控制系统thruster 推力器time constant 时间常数time-invariant system 定常系统,非时变系统invariant不变的time schedule controller 时序控制器time-sharing control 分时控制time-varying parameter 时变参数top-down testing 自上而下测试TQC (total quality control) 全面质量管理tracking error 跟踪误差trade-off analysis 权衡分析transfer function matrix 传递函数矩阵transformation grammar 转换文法transient deviation 瞬态偏差短暂的瞬间的transient process 过渡过程transition diagram 转移图transmissible pressure gauge 电远传压力表transmitter 变送器trend analysis 趋势分析triple modulation telemetering system 三重调制遥测系统turbine flowmeter 涡轮流量计Turing machine 图灵机two-time scale system 双时标系统ultrasonic levelmeter 超声物位计unadjustable speed electric drive 非调速电气传动unbiased estimation 无偏估计underdamping 欠阻尼uniformly asymptotic stability 一致渐近稳定性uninterrupted duty 不间断工作制,长期工作制unit circle 单位圆unit testing 单元测试unsupervised learing 非监督学习upper level problem 上级问题urban planning 城市规划value engineering 价值工程variable gain 可变增益,可变放大系数variable structure control system 变结构控制vector Lyapunov function 向量李雅普诺夫函数function 函数velocity error coefficient 速度误差系数velocity transducer 速度传感器vertical decomposition 纵向分解vibrating wire force transducer 振弦式力传感器vibrometer 振动计vibrationVibrate振动viscous damping 粘性阻尼voltage source inverter 电压源型逆变器vortex precession flowmeter 旋进流量计vortex shedding flowmeter 涡街流量计WB (way base) 方法库weighing cell 称重传感器weighting factor 权因子weighting method 加权法Whittaker-Shannon sampling theorem 惠特克-香农采样定理Wiener filtering 维纳滤波w-plane w平面zero-based budget 零基预算zero-input response 零输入响应zero-state response 零状态响应z-transform z变换《信号与系统》专业术语中英文对照表第 1 章绪论信号(signal)系统(system)电压(voltage)电流(current)信息(information)电路(circuit)网络(network)确定性信号(determinate signal)随机信号(random signal)一维信号(one–dimensional signal)多维信号(multi–dimensional signal)连续时间信号(continuous time signal)离散时间信号(discrete time signal)取样信号(sampling signal)数字信号(digital signal)周期信号(periodic signal)非周期信号(nonperiodic(aperiodic)signal)能量(energy)功率(power)能量信号(energy signal)功率信号(power signal)平均功率(average power)平均能量(average energy)指数信号(exponential signal)时间常数(time constant)正弦信号(sine signal)余弦信号(cosine signal)振幅(amplitude)角频率(angular frequency)初相位(initial phase)周期(period)频率(frequency)欧拉公式(Euler’s formula)复指数信号(complex exponential signal)复频率(complex frequency)实部(real part)虚部(imaginary part)抽样函数Sa(t)(sampling(Sa)function)偶函数(even function)奇异函数(singularity function)奇异信号(singularity signal)单位斜变信号(unit ramp signal)斜率(slope)单位阶跃信号(unit step signal)符号函数(signum function)单位冲激信号(unit impulse signal)广义函数(generalized function)取样特性(sampling property)冲激偶信号(impulse doublet signal)奇函数(odd function)偶分量(even component)偶数 even 奇数 odd 奇分量(odd component)正交函数(orthogonal function)正交函数集(set of orthogonal function)数学模型(mathematics model)电压源(voltage source)基尔霍夫电压定律(Kirchhoff’s voltage law(KVL))电流源(current source)连续时间系统(continuous time system)离散时间系统(discrete time system)微分方程(differential function)差分方程(difference function)线性系统(linear system)非线性系统(nonlinear system)时变系统(time–varying system)时不变系统(time–invariant system)集总参数系统(lumped–parameter system)分布参数系统(distributed–parameter system)偏微分方程(partial differential function)因果系统(causal system)非因果系统(noncausal system)因果信号(causal signal)叠加性(superposition property)均匀性(homogeneity)积分(integral)输入–输出描述法(input–output analysis)状态变量描述法(state variable analysis)单输入单输出系统(single–input and single–output system)状态方程(state equation)输出方程(output equation)多输入多输出系统(multi–input and multi–output system)时域分析法(time domain method)变换域分析法(transform domain method)卷积(convolution)傅里叶变换(Fourier transform)拉普拉斯变换(Laplace transform)第 2 章连续时间系统的时域分析齐次解(homogeneous solution)特解(particular solution)特征方程(characteristic function)特征根(characteristic root)固有(自由)解(natural solution)强迫解(forced solution)起始条件(original condition)初始条件(initial condition)自由响应(natural response)强迫响应(forced response)零输入响应(zero-input response)零状态响应(zero-state response)冲激响应(impulse response)阶跃响应(step response)卷积积分(convolution integral)交换律(exchange law)分配律(distribute law)结合律(combine law)第3 章傅里叶变换频谱(frequency spectrum)频域(frequency domain)三角形式的傅里叶级数(trigonomitric Fourier series)指数形式的傅里叶级数(exponential Fourier series)傅里叶系数(Fourier coefficient)直流分量(direct component)基波分量(fundamental component) component 分量n 次谐波分量(n th harmonic component)复振幅(complex amplitude)频谱图(spectrum plot(diagram))幅度谱(amplitude spectrum)相位谱(phase spectrum)包络(envelop)离散性(discrete property)谐波性(harmonic property)收敛性(convergence property)奇谐函数(odd harmonic function)吉伯斯现象(Gibbs phenomenon)周期矩形脉冲信号(periodic rectangular pulse signal)直角的周期锯齿脉冲信号(periodic sawtooth pulse signal)周期三角脉冲信号(periodic triangular pulse signal)三角的周期半波余弦信号(periodic half–cosine signal)周期全波余弦信号(periodic full–cosine signal)傅里叶逆变换(inverse Fourier transform)inverse 相反的频谱密度函数(spectrum density function)单边指数信号(single–sided exponential signal)双边指数信号(two–sided exponential signal)对称矩形脉冲信号(symmetry rectangular pulse signal)线性(linearity)对称性(symmetry)对偶性(duality)位移特性(shifting)时移特性(time–shifting)频移特性(frequency–shifting)调制定理(modulation theorem)调制(modulation)解调(demodulation)变频(frequency conversion)尺度变换特性(scaling)微分与积分特性(differentiation and integration)时域微分特性(differentiation in the time domain)时域积分特性(integration in the time domain)频域微分特性(differentiation in the frequency domain)频域积分特性(integration in the frequency domain)卷积定理(convolution theorem)时域卷积定理(convolution theorem in the time domain)频域卷积定理(convolution theorem in the frequency domain)取样信号(sampling signal)矩形脉冲取样(rectangular pulse sampling)自然取样(nature sampling)冲激取样(impulse sampling)理想取样(ideal sampling)取样定理(sampling theorem)调制信号(modulation signal)载波信号(carrier signal)已调制信号(modulated signal)模拟调制(analog modulation)数字调制(digital modulation)连续波调制(continuous wave modulation)脉冲调制(pulse modulation)幅度调制(amplitude modulation)频率调制(frequency modulation)相位调制(phase modulation)角度调制(angle modulation)频分多路复用(frequency–division multiplex(FDM))时分多路复用(time–division multiplex(TDM))相干(同步)解调(synchronous detection)本地载波(local carrier)载波系统函数(system function)网络函数(network function)频响特性(frequency response)幅频特性(amplitude frequency response)幅频响应相频特性(phase frequency response)无失真传输(distortionless transmission)理想低通滤波器(ideal low–pass filter)截止频率(cutoff frequency)正弦积分(sine integral)上升时间(rise time)窗函数(window function)理想带通滤波器(ideal band–pass filter)太直译了第 4 章拉普拉斯变换代数方程(algebraic equation)双边拉普拉斯变换(two-sided Laplace transform)双边拉普拉斯逆变换(inverse two-sided Laplace transform)单边拉普拉斯变换(single-sided Laplace transform)拉普拉斯逆变换(inverse Laplace transform)收敛域(region of convergence(ROC))延时特性(time delay)s 域平移特性(shifting in the s-domain)s 域微分特性(differentiation in the s-domain)s 域积分特性(integration in the s-domain)初值定理(initial-value theorem)终值定理(expiration-value)复频域卷积定理(convolution theorem in the complex frequency domain)部分分式展开法(partial fraction expansion)留数法(residue method)第 5 章策动点函数(driving function)转移函数(transfer function)极点(pole)零点(zero)零极点图(zero-pole plot)暂态响应(transient response)稳态响应(stable response)稳定系统(stable system)一阶系统(first order system)高通滤波网络(high-pass filter)低通滤波网络(low-pass filter)二阶系统(second order system)最小相位系统(minimum-phase system)高通(high-pass)带通(band-pass)带阻(band-stop)有源(active)无源(passive)模拟(analog)数字(digital)通带(pass-band)阻带(stop-band)佩利-维纳准则(Paley-Winner criterion)最佳逼近(optimum approximation)过渡带(transition-band)通带公差带(tolerance band)巴特沃兹滤波器(Butterworth filter)切比雪夫滤波器(Chebyshew filter)方框图(block diagram)信号流图(signal flow graph)节点(node)支路(branch)输入节点(source node)输出节点(sink node)混合节点(mix node)通路(path)开通路(open path)闭通路(close path)环路(loop)自环路(self-loop)环路增益(loop gain)不接触环路(disconnect loop)前向通路(forward path)前向通路增益(forward path gain)梅森公式(Mason formula)劳斯准则(Routh criterion)第 6 章数字系统(digital system)数字信号处理(digital signal processing)差分方程(difference equation)单位样值响应(unit sample response)卷积和(convolution sum)Z 变换(Z transform)序列(sequence)样值(sample)单位样值信号(unit sample signal)单位阶跃序列(unit step sequence)矩形序列(rectangular sequence)单边实指数序列(single sided real exponential sequence)单边正弦序列(single sided exponential sequence)斜边序列(ramp sequence)复指数序列(complex exponential sequence)线性时不变离散系统(linear time-invariant discrete-time system)常系数线性差分方程(linear constant-coefficient difference equation)后向差分方程(backward difference equation)前向差分方程(forward difference equation)海诺塔(Tower of Hanoi)菲波纳西(Fibonacci)冲激函数串(impulse train)第7 章数字滤波器(digital filter)单边Z 变换(single-sided Z transform)双边Z 变换(two-sided (bilateral) Z transform)幂级数(power series)收敛(convergence)有界序列(limitary-amplitude sequence)正项级数(positive series)有限长序列(limitary-duration sequence)右边序列(right-sided sequence)左边序列(left-sided sequence)双边序列(two-sided sequence)Z 逆变换(inverse Z transform)围线积分法(contour integral method)幂级数展开法(power series expansion)z 域微分(differentiation in the z-domain)序列指数加权(multiplication by an exponential sequence)z 域卷积定理(z-domain convolution theorem)帕斯瓦尔定理(Parseval theorem)传输函数(transfer function)序列的傅里叶变换(discrete-time Fourier transform:DTFT)序列的傅里叶逆变换(inverse discrete-time Fourier transform:IDTFT)幅度响应(magnitude response)相位响应(phase response)量化(quantization)编码(coding)模数变换(A/D 变换:analog-to-digital conversion)数模变换(D/A 变换:digital-to- analog conversion)第8 章端口分析法(port analysis)状态变量(state variable)无记忆系统(memoryless system)有记忆系统(memory system)矢量矩阵(vector-matrix )常量矩阵(constant matrix )输入矢量(input vector)输出矢量(output vector)直接法(direct method)间接法(indirect method)状态转移矩阵(state transition matrix)系统函数矩阵(system function matrix)冲激响应矩阵(impulse response matrix)光学专业词汇大全Accelaration 加速度Myopia-near-sighted近视Sensitivity to Light感光灵敏度boost推进lag behind落后于Hyperopic-far-sighted远视visual sensation视觉ar Pattern条状图形approximate近似adjacent邻近的normal法线Color Difference色差V Signal Processing电视信号处理back and forth前后vibrant震动quantum leap量子越迁derive from起源自inhibit抑制,约束stride大幅前进obstruction障碍物substance物质实质主旨residue杂质criteria标准parameter参数parallax视差凸面镜convex mirror凹面镜concave mirror分光镜spectroscope入射角angle of incidence出射角 emergent angle平面镜plane mirror放大率角度放大率 angular magnification 放大率:magnification 折射refraction反射reflect干涉interfere衍射diffraction干涉条纹interference fringe衍射图像diffraction fringe衍射条纹偏振polarize polarization透射transmission透射光transmission light光强度] light intensity电磁波electromagnetic wave振动杨氏干涉夫琅和费衍射焦距brewster Angle布鲁斯特角quarter Waveplates四分之一波片ripple波纹capacitor电容器vertical垂直的horizontal 水平的airy disk艾里斑exit pupil出[射光]瞳Entrance pupil 入瞳optical path difference光称差radius of curvature曲率半径spherical mirror球面镜reflected beam反射束YI= or your information供参考phase difference相差interferometer干涉仪ye lens物镜/目镜spherical球的field information场信息standard Lens标准透镜refracting Surface折射面principal plane主平面vertex顶点,最高点fuzzy失真,模糊light source 光源wavelength波长angle角度spectrum光谱diffraction grating衍射光栅sphere半球的DE= ens data editor Surface radius of curvature表面曲率半径surface thickness表面厚度semi-diameter半径focal length焦距field of view视场stop 光阑refractive折射reflective反射金属切削metal cutting机床machine tool tool 机床金属工艺学technology of metals刀具cutter摩擦friction传动drive/transmission轴shaft弹性elasticity频率特性frequency characteristic误差error响应response定位allocation动力学dynamic运动学kinematic静力学static分析力学analyse mechanics 力学拉伸pulling压缩hitting compress剪切shear扭转twist弯曲应力bending stress强度intensity几何形状geometricalUltrasonic超声波精度precision交流电路AC circuit机械加工余量machining allowance变形力deforming force变形deformation应力stress硬度rigidity热处理heat treatment电路circuit半导体元件semiconductor element反馈feedback发生器generator直流电源DC electrical source门电路gate circuit逻辑代数logic algebra磨削grinding螺钉screw铣削mill铣刀milling cutter功率power装配assembling流体动力学fluid dynamics流体力学fluid mechanics加工machining稳定性stability介质medium强度intensity载荷load应力stress可靠性reliability精加工finish machining粗加工rough machining腐蚀rust氧化oxidation磨损wear耐用度durability随机信号random signal离散信号discrete signal超声传感器ultrasonic sensor摄像头CCD cameraLead rail 导轨合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer车间workshop工程技术人员engineer数学模型mathematical model标准件standard component零件图part drawing装配图assembly drawing刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture 破裂塑性变形plastic distortionelastic deformation 弹性变形脆性材料brittleness material刚度准则rigidity criterion齿轮gearGrain 磨粒转折频率corner frequency =break frequency Convolution 卷积Convolution integral 卷积积分Convolution property 卷积性质Convolution sum 卷积和Correlation function 相关函数Critically damped systems 临界阻尼系统Crosss-correlation functions 互相关函数Cutoff frequencies 截至频率transistor n 晶体管diode n 二极管semiconductor n 半导体resistor n 电阻器capacitor n 电容器alternating adj 交互的amplifier n 扩音器,放大器integrated circuit 集成电路linear time invariant systems 线性时不变系统voltage n 电压,伏特数Condenser=capacitor n 电容器dielectric n 绝缘体;电解质electromagnetic adj 电磁的adj 非传导性的deflection n偏斜;偏转;偏差linear device 线性器件the insulation resistance 绝缘电阻anode n 阳极,正极cathode n 阴极breakdown n 故障;崩溃terminal n 终点站;终端,接线端emitter n 发射器collect v 收集,集聚,集中insulator n 绝缘体,绝热器oscilloscope n 示波镜;示波器gain n 增益,放大倍数forward biased 正向偏置reverse biased 反向偏置P-N junction PN结MOS(metal-oxide semiconductor)金属氧化物半导体enhancement and exhausted 增强型和耗尽型integrated circuits 集成电路analog n 模拟digital adj 数字的,数位的horizontal adj, 水平的,地平线的vertical adj 垂直的,顶点的amplitude n 振幅,广阔,丰富multimeter n 万用表frequency n 频率,周率the cathode-ray tube 阴极射线管dual-trace oscilloscope 双踪示波器signal generating device 信号发生器peak-to-peak output voltage 输出电压峰峰值sine wave 正弦波triangle wave 三角波square wave 方波amplifier 放大器,扩音器oscillator n 振荡器feedback n 反馈,回应phase n 相,阶段,状态filter n 滤波器,过滤器rectifier n整流器;纠正者band-stop filter 带阻滤波器band-pass filter 带通滤波器decimal adj 十进制的,小数的hexadecimal adj/n十六进制的binary adj 二进制的;二元的octal adj 八进制的domain n 域;领域code n代码,密码,编码v编码the Fourier transform 傅里叶变换Fast Fourier Transform 快速傅里叶变换microcontroller n 微处理器;微控制器assembly language instrucions n 汇编语言指令chip n 芯片,碎片modular adj 模块化的;模数的sensor n 传感器plug vt堵,塞,插上n塞子,插头,插销coaxial adj 同轴的,共轴的fiber n 光纤relay contact 继电接触器Artificial Intelligence 人工智能Perceptive Systems 感知系统neural network 神经网络fuzzy logic 模糊逻辑intelligent agent 智能代理electromagnetic adj 电磁的coaxial adj 同轴的,共轴的microwave n 微波charge v充电,使充电insulator n 绝缘体,绝缘物nonconductive adj非导体的,绝缘的simulation n 仿真;模拟prototype n 原型array n 排队,编队vector n 向量,矢量inverse adj倒转的,反转的n反面;相反v倒转high-performance 高精确性,高性能two-dimensional 二维的;缺乏深度的three-dimensional 三维的;立体的;真实的object-oriented programming面向对象的程序设计spectral adj 光谱的distortion n 失真,扭曲,变形wavelength n 波长refractive adj 折射的ivision Multiplexing单工传输simplex transmission半双工传输half-duplex transmission全双工传输full-duplex transmission电路交换circuit switching数字传输技术Digital transmission technology灰度图像Grey scale images灰度级Grey scale level幅度谱Magnitude spectrum相位谱Phase spectrum频谱frequency spectrum相干解调coherent demodulation coherent相干的数字图像压缩digital image compression图像编码image encoding量化quantization人机交互man machine interface交互式会话Conversational interaction路由算法Routing Algorithm目标识别Object recognition话音变换Voice transform中继线trunk line传输时延transmission delay远程监控remote monitoring光链路optical linkhalf-duplex transmission 半双工传输accompaniment 伴随物,附属物reservation 保留,预定quotation 报价单,行情报告,引语memorandum 备忘录redundancy 备用be viewed as 被看作…。

轨迹数据分类

轨迹数据分类

轨迹数据分类 轨迹数据是对移动对象的运动过程采样得到的数据,通常包含采样位置、时间、运动速度等属性信息。

将采样点按照一定时间尺度排序便形成了移动对象的轨迹[1]。

根据采样方式和驱动因素的不同,将轨迹数据分为以下3类:①基于时间采样的轨迹数据,即按等时间间隔对移动对象进行采样形成的轨迹;②基于位置采样的轨迹数据,即移动对象位置发生变化即被记录而形成的轨迹;③基于事件触发的轨迹数据,即移动对象触发传感器事件后而被记录下来形成的轨迹[2]。

基于时间采样的轨迹数据基于时间采样的轨迹数据基于时间采样的轨迹是等时间间隔记录移动对象的信息,或扫描全局通过反演移动对象位置而获得的数据,前者如车载GPS 数据、动物迁徙数据,后者如飓风数据、涡旋数据等。

基于时间采样的轨迹可用以下模型表达,即以等长的时间间隔记录移动个体的位置[3]。

Tr 代表一条时空轨迹,St 代表起始时间,T ∆代表时间记录间隔,序列中(n X ,n Y ,St +(n-1)*T ∆)代表在St +(n-1)*T ∆时刻,轨迹对象在二维时空的位置为(n X ,n Y )。

基于时间采样的轨迹数据具有数据量大、覆盖范围广的特点。

但未考虑数据的代表性,会造成数据冗余、数据遗漏,如车载GPS 在车辆状态没有发生变化时仍然收集数据,传输过程中往往出现传感器信号丢失以致数据遗漏,且轨迹数据依赖局限于交通路网[2]。

绝大多数的轨迹研究都立足于此,他们从大量轨迹数据中提取出行模式和交通状况。

他们或将访问地点按频率排序可以用来提取个体用户的出行模式[4],或从集体轨迹信息入手,推测城市活动的热点规律模式。

Wu (2013)等认为在轨迹数据中寻找的热点的动态模式可以用来揭示历史事件和预测未来活动热点,这也许对交通和公共安全很有价值。

将活动热点按时序排列,整理成库。

可以显示了城市热点在时空上是如何形成,消失等过程。

还探索了地区工作日与休息日的模式区别,并建立数据库用来预测将来地区模式[5]。

移动轨迹数据可视化方法总结

移动轨迹数据可视化方法总结

测绘与空间地理信息GEOMATICS & SPATIAL INFORMATION TECHNOLOGY第43卷第4期2020年4月Vol.43,No.4Apr.,2020移动轨迹数据可视化方法总结酒心愿,柳林,郭慧(山东科技大学测绘科学与工程学院,山东青岛266590)摘 要:作为移动社交网络的主体,人们移动带来的位置轨迹不仅记录了人的行为历史,也记录了人与社会的交互活动信息。

移动社交网络中位置轨迹数据的分析与利用为解决城市问题提供了一种新的思路。

本文概述了 轨迹数据可视分析中的几种方法,总结了轨迹数据可视分析研究中存在的问题和面临的挑战。

关键词:移动社交网络;位置轨迹;可视化分析中图分类号:P208 文献标识码:A 文章编号:1672-5867 (2020) 04-0178-04Summary of Visualization Methods for Mobile Trajectory DataJ1U Xinyuan, L1U Lin, GUO Hui(College of Geomatics , Shandong University of Science and Technology , Qingdao 266590, China )Abstract : As the main body of mobile social network , the location trajectory brought by people's movement not only records the historyof human behavior , but also records the information of human and social interaction. The analysis and utilization of location trajectory data in mobile social networks provides a new way to solve urban problems. Several methods of visual analysis of trajectory data are summarized , and the problems and challenges in visual analysis of trajectory data are summarized.Key words : mobile social network ; location trajectory ; visual analysis0引言数据可视化是一种综合运用计算机图形学和图像处 理技术,将处理后的数据转换成为图形或图像,并在计算 机屏幕上进行可视化显示,它不需要使用严格的数据分析处理方式和方法就能实现时空数据的视觉化显示,下 面介绍几种常用的可视化方法。

满足差分隐私的位置轨迹流量发布方法

满足差分隐私的位置轨迹流量发布方法

第17期2023年9月无线互联科技Wireless Internet TechnologyNo.17September,2023基金项目:校级重点项目;项目名称:边缘计算中用户数据隐私保护技术研究;项目编号:2022KZZ02㊂校级重点项目;项目名称:大数据环境下位置轨迹隐私保护方法研究;项目编号:2021ZDG08㊂作者简介:潘洪志(1991 ),男,安徽安庆人,讲师,硕士;研究方向:信息安全㊂满足差分隐私的位置轨迹流量发布方法潘洪志(安徽商贸职业技术学院信息与人工智能学院,安徽芜湖241002)摘要:随着移动通信技术的不断发展,人们在使用位置服务(Location Based Services ,LBS )的同时,用户的位置轨迹等敏感信息也会发生泄露㊂为了保护包含用户敏感信息的位置轨迹数据的安全,文章设计了一种满足差分隐私位置轨迹发布方法㊂首先,利用轨迹数据构造位置轨迹流量图,在流量图中添加差分隐私噪声;其次,使用满足一致性特性的后置调节算法对包含噪声的轨迹数据进行一致性调节㊂通过真实的路网验证可以看出,该方法能够满足处理大规模路网的能力,且经过一致性调节算法优化之后,发布误差缩小了约20%㊂关键词:位置服务;位置轨迹;差分隐私;一致性调节中图分类号:TP391㊀㊀文献标志码:A 0㊀引言㊀㊀随着移动通信技术的不断发展,LBS 得到广泛应用㊂人们在使用LBS 的过程中,往往需要和LBS 提供商进行信息交互,这些交互的信息包含的内容涉及大量用户的隐私,例如:位置㊁轨迹㊁时间等[1]㊂在用户和LBS 提供商进行信息交互的过程中,用户的数据可能会在交互的过程中泄露,隐私数据中隐含了用户的日常的出行㊁位置和一些行为习惯等数据[2]㊂因此,为了保护用户的隐私,我们需要对数据进行保护后发布㊂Qardaji 等[3]通过构建分区层次结构来选择正确的分区粒度,以平衡噪声误差和非均匀性误差,同时使用一种新的自适应网格方法来改善网格粒度优化机制,但无法从根本上解决该矛盾㊂Hay 等[4]为了解决直方图发布场景中的不一致性问题,提出了一种后置处理方案,但由于场景不同,无法适用于本文的路网环境㊂因此,本文在以往研究的基础上,将实际城市路网抽象成有向图模型,并向图中引入了多个辅助虚拟节来中和网格粒度不均匀的情况;结合拉普拉斯机制,通过改变隐私预算配额,降低总体节点方差,同时提出满足差分隐私流量图生成算法和一致性调节算法㊂通过在真实路网上验证本文提出的算法,结果表明本文的算法能够有效解决路网轨迹发布的隐私保护问题㊂1㊀研究背景㊀㊀Cao 等[5]提出了轨迹差分隐私模型,根据用户的隐私需求保护任意长度L 的轨迹数据,并提供个性化的隐私保护㊂Shokri 等[6]的攻击者贝叶斯模型旨在优化隐私和效用之间的权衡,提出了一种计算最优噪声产生机制的方法,将效用约束和隐私目标形式化为线性优化问题㊂研究人员使用线性规划计算最佳噪声机制,并考虑在给定隐私级别优化效用的反向问题㊂此外,Hay 等[4]使用分层方法回答直方图查询,并使用约束推理技术调查噪声添加导致的数据不一致问题㊂Ma 等[7]提出RPTR 机制是一种基于差异隐私的实时跟踪信息发布机制㊂在预测计算中,使用了基于用户位置转移概率矩阵的集合卡尔曼滤波器,以额外的时间代价换取数据精度㊂Chen 等[8]使用原始轨迹构建了带噪前缀树,通过在前缀树节点的计数值中加入了满足拉普拉斯分布的噪声数据,从而确保用户的轨迹隐私㊂然而,由于前缀树的特点,随着树的增大,树中的节点也会猛增,导致数据的可用性严重降低㊂Chen 等[9]为了消除轨迹数据中的公共前缀,利用指数机制对轨迹进行隐私保护,很好地解决了公共前缀对轨迹数据发布的影响㊂张双越等[10]通过将路网信息构造一个带权有向图,通过向轨迹流量图中加入满足拉普拉斯分布的噪声数据,实现差分隐私,最后利用后置调节使得发布数据满足一致性特征,减少了发布误差㊂2㊀满足差分隐私的位置轨迹流量发布方法㊀㊀通过使用有向图G =(V ,E ,Q )模拟路网空间,V是路网中路口集合,E 表示路网中的街道集合,Q 是边的权重集合,轨迹流量图中要确保每个起止节点的出入度相等,即每个起止路口的出入流量相同㊂同时,为了保证路网的粒度平衡,本文通过引入若干个虚拟节组成虚拟路口集合,集合中的虚拟节点出入流量相等,确保不影响真实流量,最后对加噪后的流量图进行改进的最小二乘法后置优化㊂2.1㊀基本概念㊀㊀定义1(轨迹流量图):将城市道路抽象成一个有向图G =(V ,E ,Q ),其中V 代表道路网络中所有交叉口的集合,E 代表道路网络所有相邻交叉口之间的路段集合,Q 代表道路网络内所有轨迹的集合㊂根据轨迹集合Q 得出每条边的权值,然后构成有向加权图,流量矩阵记为X ɪR |V|ˑ|V|,X 为轨迹流量图㊂定义2(差分隐私):假设存在两个相邻数据集(D和D ᶄ)和一个随机算法M ,若算法M 满足P r[M (D )ɪS ]ɤexp(ε)ˑPr[M (D ᶄ)ɪS ],则称算法M 满足ε-差分隐私保护㊂其中,S 表示算法M 所有可能的输出构成的集合,参数ε称为隐私保护预算㊂从定义可知,ε越小,标识隐私保护级别越高,数据效用越高㊂定义3(全局敏感度):任意函数f :D ңR d 的全局敏感度Δf 为:Δf =max D ,D ᶄf (D )-f (Dᶄ) ,其中D 和Dᶄ为相邻数据集, f (D )-f (Dᶄ) 标识查询结果的差值㊂定义4(拉普拉斯机制):拉普拉斯作一种最为常见也是最基本的差分隐私的噪声机制之一,对于任意函数f :D ңR d,拉普拉斯机制实现差分隐私保护的过程可表示如下:A (D )=f (D )+Lap 1Δf ε(),Lap 2Δf ε(),...,Lap dΔfε()()T其中,Δf =max D ,D ᶄf (D )-f (Dᶄ) p ,其中p 一般取1,为一范式㊂2.2㊀满足差分隐私的轨迹流量图发布方法㊀㊀差分隐私流量图发布算法过程如算法1所示㊂算法1:差分隐私轨迹流量发布输入:A,D,ε㊀//路网邻接矩阵A,轨迹数据集D,隐私预算ε输出:加噪前的流量矩阵X ,加噪后的流量矩阵X ~,一致性调节后流量矩阵X-(1)初始化X =O,X ~=O,X -=O(2)for each L ɪD ㊀㊀//生成差分隐私轨迹流量(3)㊀L =add(k v )//添加虚拟节点k v (4)㊀㊀For each (l i ,l j )(5)㊀㊀㊀x i ,j =x i ,j +1(6)㊀㊀㊀IF(L ɪD ,a i ,j =1)(7)㊀㊀㊀㊀x ~i ,j =x i ,j +lab (Δf ε)(8)X -=polyval(polyfit(X ,X ~,1),X )//一致性调节(9)return X ,X ~,X-3㊀实验分析㊀㊀本文使用Thomas Brinkhoff 路网生成器将oldenburgGen 路网结构中的一小片区域抽象成有向图,图中的交叉点为路口,各路口之间的边即为有向图的边,如图1所示㊂由图1展示的oldenburgGen 路网可以看出,路网网格粒度分布不均匀,这会导致两种极端现象㊂一是网格粒度过大时,查询结果的精确度就会降低,难以满足应用需求㊂二是网格的粒度过小时,大多数网格数据稀疏,导致误差累积严重,查询精度会受覆盖面积影响,覆盖面积越大,查询精度越差㊂同时,图中抽象出的包含6个节点的有向图结构,有向图的边权值代表每个路口之间的轨迹流量,为了保护每个路段的轨迹流量数据,通过将轨迹流量添加噪声,得到加噪的有向图㊂然而,添加噪声会导致有向图路口的出入流量也会产生不一致的问题,如图2所示㊂图2中B 路口添加噪声之前B 点的出度和入度都是4,当添加噪声之后,该点的入度是2,出度是4㊂然而这种与实际不符的情况往往会增大轨迹流量发布误差㊂所以,本文通过使用增加虚拟节点集合来动态调整路网的网格粒度,从而解决数据使用误差大的问题;同时参考求解凸优化问题,采用最小二乘法对满足差分隐私的轨迹流量进行后置处理来解决节点出入度在加噪前后不符的问题㊂图1㊀路网抽象过程图2㊀轨迹流量生成图㊀㊀实验环境:Inter(R)Core TM i5-8250U @1.6GHz(8CPUs),16G,64位Windows 操作系统,使用MATLAB 实现㊂本实验中使用的数据集是Oldenburg㊁San Joaquin㊁San Francisco Bay Area 3个城市㊂通过由Brinkhoff 基于路网的轨迹生成器生成对应3个城市的轨迹数据㊂其中,本实验3个城市的路网数据信息如表1所示㊂表1㊀路网数据地区路口/个边数Oldenburg 610514058San Joaquin1849648061San Francisco Bay Area175343444503㊀㊀本文分析这3个城市在不同的隐私预算下的情况㊂笔者使用误差平方和S =X ~-X 来度量隐私保护效果,分别取ε={0.25,0.5,1.0,2.0}时,实验重复100次,取其平均值作为实验的最终结果,图3 5分别是3个城市的实验结果,图中x 轴表示不同的隐私预算,y 轴表示标准误差即误差平方和㊂3个城市的实验结果表明,标准误差随着隐私预算的增加而减少,随着隐私预算的增加,轨迹流量添加的噪声也会随之减少㊂同时能够看出,经过一致性调节后的误差也有明显的变化,比调节前相比减少了20%左右的误差㊂图3㊀Oldenburg调节前后轨迹发布误差图4㊀San Joaquin调节前后轨迹发布误差图5㊀San Francisco Bay Area 调节前后轨迹发布误差4㊀结语㊀㊀本文根据路网的特点,用带权的有向图来构造路网流量图,然后对路网中的轨迹添加服从拉普拉斯分布的噪声㊂将单一的结果转变成概率结果,从而保证了路网轨迹发布的差分隐私㊂最后本文利用最小二乘法来抑制噪声的输出,提高了数据的可用性㊂然而,最小二乘法一致性约束带来的计算开销较大,无法满足对时效性有极高要求的实时轨迹发布场景㊂下一步,笔者将继续研究更好㊁更合适的算法㊂参考文献[1]BAO J ,HE T F ,RUAN S J ,et al.Planning bikelanesbased on sharing -bikes trajectories :The 23rd ACMSIGKDD International Conference on KnowledgeDiscoveryand Data Mining ,August 13-17,2017[C ].New York :ACM ,2017.[2]YUAN J ,ZHENG Y ,ZHANG C Y ,et al.T -drive :driving directions based on taxi trajectories :The 18thSIGSPATIAL International Conference on Advances inGeographic Information Systems ,November 2-5,2010[C ].New York :ACM ,2010.[3]QARDAJI W ,YANG W N ,LI N H.Differentiallyprivate grids for geospatial data :The 29th IEEEInternational Conference on Data Engineering ,April 8-12,2013[C ].New York :IEEE ,2013.[4]HAY M ,RASTOGI V ,MIKLAU G ,et al.Boostingthe accuracy of differentially private histograms through consistency [J ].Proceedings of the VLDB Endowment ,2010(1/2):1021-1032.[5]CAO Y ,YOSHIKAWA M.Differentially privatereal -time data release over infinite trajectory streams :16th IEEE International Conference on Mobile DataManagement ,June15-18,2015[C ].New York :IEEE ,2015.[6]SHOKRI R ,THEODORAKOPOULOS G ,TRONCOSOC ,et al.Protecting location privacy :optimal strategyagainst localization attacks :Proceedings of the 2012ACMConference on Computer and Communications Security ,October16-18,2012[C].Raleigh:ACM,2012. [7]MA Z,ZHANG T,LIU X.Real-time privacy-preserving data release over vehicle trajectory[J]. IEEE Transactions on Vehicular Technology,2019(8): 8091-8102.[8]CHEN R,FUNG B,DESAI B.Differentially private trajectory data publication:Computer Science, 10.48550/arXiv:1112.2020[P].2011. [9]CHEN R,ÁCS G,CASTELLUCCIA C.Differentially private sequential data publication via variable-length n-grams:Proceedings of the ACM Conference on Computer and Communications Security,October16-18,2012[C].New York:ACM,2012.[10]张双越,蔡剑平,田丰,等.差分隐私下满足一致性的轨迹流量发布方法[J].计算机科学与探索,2018 (12):11.(编辑㊀王雪芬)Traffic publishing method of location trajectories satisfying differential privacyPan HongzhiSchool of Information and Artificial Intelligence Anhui Business College ofVocational Technology Wuhu241002 ChinaAbstract With the continuous development of mobile communication technology when people use Location Based Services LBS sensitive information such as user s location track will also be leaked.In order to protect the security of the location track data containing user sensitive information a location track publishing method satisfying differential privacy is designed.First we use the trajectory data to construct the position trajectory flow chart add differential privacy noise to the flow chart and then use the post-adjustment algorithm that meets the consistency characteristics to adjust the consistency of the trajectory data containing noise.Finally through the real road network verification it can be seen that this method can meet the ability to deal with large-scale road network and after the consistency adjustment algorithm optimization the publishing error is reduced by about20%.Key words location service position track differential privacy consistency adjustment。

轨迹数据挖掘:概述

轨迹数据挖掘:概述

轨迹数据挖掘:概述Trajectory Data Mining: An Overview位置采集和移动计算技术的进步已经产生了大量的空间轨迹数据,这些数据代表了移动物体(如人,车辆和动物)的移动性。

在过去十年中,已经提出了许多技术来处理,管理和挖掘轨迹数据,促进了广泛的应用。

在本文中,我们对轨迹数据挖掘的主要研究进行了系统的调研,提供了该领域的全景及其研究课题的范围。

根据轨迹数据的推导,轨迹数据预处理,轨迹数据管理以及各种挖掘任务(如轨迹模式挖掘,异常值检测和轨迹分类)的路线图,调研探讨了连接,相关性,以及这些现有技术之间的差异。

这项调研还介绍了将轨迹转换为其他数据格式(如图,矩阵和张量)的方法,可以应用更多的数据挖掘和机器学习技术。

最后,提出了一些公共轨迹数据集。

这项调研可以帮助塑造轨迹数据挖掘领域,从而快速了解这一领域对社区的影响。

类别和主题描述符:H.2.8 [数据库管理]:数据库应用- 数据挖掘,空间数据库和GIS; I.2.6 [人工智能]:学习- 知识获取一般术语:算法,测量,实验附加关键词和短语:时空数据挖掘,轨迹数据挖掘,轨迹压缩,轨迹索引和检索,轨迹模式挖掘,轨迹异常值检测,轨迹不确定性,轨迹分类,城市计算1.引言空间轨迹是由地理空间中的运动物体产生的轨迹,通常由一系列时间顺序的点表示,例如p1 →p2 → · · · → p n,其中每个点包括地理空间坐标集和时间戳,如p = (x, y, t)。

位置采集技术的进步产生了无数的空间轨迹,代表了各种移动物体(如人,车辆和动物)的移动性。

这些轨迹为我们提供了前所未有的信息来了解移动物体和位置,促进了基于位置的社交网络[Zheng 2011],智能交通系统和城市计算领域的广泛应用[Zheng et al. 2014b]。

这些应用的流行又要求系统地研究新的计算技术,以从轨迹数据中发现知识。

在这种情况下,轨迹数据挖掘已经成为越来越重要的研究课题,引起了计算机科学,社会学和地理学等众多领域的关注。

航空器轨迹预测技术研究综述

航空器轨迹预测技术研究综述

20215712据预测,未来20年,全球航空运输年增长率约为4.4%,中国空中交通量将增长3.5倍[1],这对民航界的发展提出了重大的挑战。

而目前的空中交通管理(Air Traffic Management,ATM)系统在操作、功能和技术层面上是分散的,导致了航班延误、空域拥堵、管制员工作负荷较大以及需求和容量失衡等一系列问题[2-3]。

因此,ATM系统中出现了许多决策支持工具(Decision Support Tools,DST),旨在帮助管制员进行冲突检测和解脱、进场排序以及航空器异常行为监测等,确保飞行安全,提高运行效率,减轻管制员工作负荷,扩大空域容量[4-6]。

而航迹预测是所有DST的基础,能够极大地降低航空器未来飞行的不确定性,提高空中交通的可预测性。

同时,航迹预测也成为了现代空管自动化系统的核心技术。

另外,为了克服ATM系统的缺陷,应对日益增长的航空运输需求,许多国家和组织提出了改造项目,如国际民用航空组织的航空系统组块升级框架、欧洲的单一航空器轨迹预测技术研究综述徐正凤,曾维理,羊钊南京航空航天大学民航学院,南京211106摘要:航空器轨迹预测是流量管理、冲突检测和解脱、航空器进场排序以及异常行为监测等空中交通管理技术的基础。

关于航空器轨迹预测的研究产生了许多经典的方法和应用领域。

对研究航迹预测问题的背景和意义进行概述,并从数据库、基础流程和预测关键技术三个方面介绍了有关航迹预测的基础知识。

其中数据库包括航空器性能数据库、航空器监视数据库和气象数据库,基础流程包括准备、预测、更新和输出四个模块,预测关键技术总结并列举了状态估计模型、动力学模型和机器学习模型三类方法的典型模型。

对航迹预测系统模型进行具体分析时,进一步列举三类方法的主要研究成果并归纳各类方法的特点。

对航迹预测在空中交通管理中的具体应用进行分析,包括冲突检测、到达管理和流量管理等。

总结并指出了目前航迹预测问题所面临的挑战和未来的发展方向。

轨迹大数据:数据、应用与技术现状

轨迹大数据:数据、应用与技术现状

轨迹大数据:数据、应用与技术现状许佳捷;郑凯;池明旻;朱扬勇;禹晓辉;周晓方【摘要】移动互联技术的飞速发展催生了大量的移动对象轨迹数据.这些数据刻画了个体和群体的时空动态性,蕴含着人类、车辆、动物的行为信息,对交通导航、城市规划、车辆监控等应用具有重要的价值.为了实现有效的轨迹数据价值提取,近年来学术界和工业界针对轨迹管理问题开展了大量研究工作,包括轨迹数据预处理,以解决数据冗余高、精度差、不一致等问题;轨迹数据库技术,以支持有效的数据组织和高效的查询处理;轨迹数据仓库,支持大规模轨迹的统计、理解和分析;最后是知识提取,从数据中挖掘有价值的模式与规律.因此,综述轨迹大数据分析,从企业数据、企业应用、前沿技术这3个角度揭示该领域的现状.【期刊名称】《通信学报》【年(卷),期】2015(036)012【总页数】9页(P97-105)【关键词】时空数据库;轨迹数据管理;数据索引;查询优化【作者】许佳捷;郑凯;池明旻;朱扬勇;禹晓辉;周晓方【作者单位】苏州大学计算机科学与技术学院,江苏苏州215006;江苏省软件新技术与产业化协同创新中心,江苏南京211102;苏州大学计算机科学与技术学院,江苏苏州215006;江苏省软件新技术与产业化协同创新中心,江苏南京211102;复旦大学计算机科学技术学院上海市数据科学重点实验室,上海201203;复旦大学计算机科学技术学院上海市数据科学重点实验室,上海201203;山东大学计算机科学与技术学院,山东济南250101;苏州大学计算机科学与技术学院,江苏苏州215006;江苏省软件新技术与产业化协同创新中心,江苏南京211102【正文语种】中文【中图分类】TP3921 引言随着卫星导航、无线通信、普适计算技术的不断发展,带有定位功能的移动智能设备被广泛使用。

人们在使用这些设备的同时也主动或被动地记录了大量的历史移动轨迹并被持久化保存,形成了时空轨迹(spatio-temporal trajectories)数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A) Clusters of segments gments B) Micro-clusters C) Macro-clusters B) Micro-clusters C) Macro-clusters
[2] Z. Li, J. Lee, X.Li, and J. Han. Incremental Clustering for Trajectories. DASFAA 2010
– Clustering-based methods [1]
• Detect stay points from trajectories • Clustering stay points into regions • Apply PrefixSpan or CloseSpan to find sequential patterns
p3
p2
p1
p4 p 5 p6 p7
p8
p9
E) MDL-based
(xu,yu) (x l,y l)
B1
L1
A) MBR Distance
L2 L1
d ,a
L2
B2
(x u,y u)
B2
L2
B1
L1
(xl,yl)
B) Trajectory-Hausdorff Distance
[1] J. G. Lee, J. Han, and K. Y. Whang. Trajectory clustering: A partition-and-group framework. SIGMOD 2007
• Free spaces or in a road network setting
Mining Sequential Patterns from Trajectories
• In a free space
– Line simplification-based method
• Using line simplification algorithm to compress a trajectory • Group simplified segments based on distance (without considering temporal gaps)

Convoy
– captures generic trajectory pattern of any shape – by employing the density-based clustering – requires a group of objects to be density-connected during k consecutive time points

Swarm
– a cluster of objects lasting for at least k (possibly non-consecutive) timestamps
o1 o2 o 3 o4 o5
o1 o2 o3 o4 o5 o6
C4
t3
C5
t3
C2
t2 y
t1 t2
C3
y x
t1
C1
x
Managing Recent Trajectories
Compression Segmentation
TD
Trajectory Preprocessing Map-Matching Stay Point Detection Noise Filtering
MF
CF
Matrix
Spatial Trajectories
• Li et al. [2]
– new data will only affect the local area where the new data were received rather than the far-away areas – Incremental clustering algorithm
• A certain number of moving objects traveling a common sequence of locations in a similar time interval
• Applications
– – – – – travel recommendation, life pattern understanding, next location prediction, estimating user similarity trajectory compression
B) Gathering
– The shape or density of a group – The number of objects in a group – The duration of a pattern
Moving Together Patterns
• Flock
– a group of objects that travel together within a disc of some user-specified size for at least k consecutive timestamps – The pre-defined circular shape may not well describe the shape of a group in reality
• Group similar trajectories into clusters
– To find representative paths or – common trends shared by different moving objects
• In free spaces
– Distance between two entire trajectories – Distance between segments of trajectories
– – – – – Flock Convoy Swarm Traveling companion Gathering
o1 o2 o 3 o4 o5
o1 o2 o3 o4 o5 o6
C4
t3
C5
t3
C2
t2 y
t1 t2
C3
y x
t1
C1
x
• Differences
A) Flock, convoy and swarm
Tr 3 l2 t2 t3 Tr 1 l3
l1 p1
t1 Tr 2
p2
p6
• How to define a location
– Exact match: Check-in, road segment ID – Approximate match: spatial closeness, GPS trajectories
d ,b
d
θ
,a
d
,b
Trajectory Clustering
• Micro-and-Macro-clustering framework
– First find mirco-clusters of trajectory segments – Then group micro-clusters into macro-clusters
Trajectory Pattern Mining
• • • • Moving Together Patterns Trajectory Clustering Sequential Patterns Periodic Patterns
Moving Together Patterns
• Discover a group of objects moving together for a certain time period • Patterns
Root
Tr1
Tr2
Tr3
Tr4
2
3
3
1
1
1
r1 r5
r2 r6
r r3 7 r4
r1
2
r2
2 1
1
r3
Trajectory Data Mining
Dr. Yu Zheng
Lead Researcher, Microsoft Research Chair Professor at Shanghai Jiao Tong University Editor-in-Chief of ACM Trans. Intelligent Systems and Technology
A) Flock, convoy and swarm
B) Gathering
Convoy and swarm need to load entire trajectories into memory for a pattern mining!
Moving Together Patterns
o1 o2 o 3 o 4
Trajectory Pattern Mining
• • • • Moving Together Patterns Trajectory Clustering Sequential Patterns Periodic Patterns
Mining Sequential Patterns from Trajectories
/en-us/people/yuzheng/
Paradigm of Trajectory Data Mining
Uncertainty Privacy Preserving Reducing Uncertainty
Traj. Pattern Mining Moving Freq. Seq. Together Patterns Patterns Periodic Clustering Patterns
相关文档
最新文档