函数图象变换与解析式之间的关系-2009北京第3题

合集下载

新42.一次函数的图像变换

新42.一次函数的图像变换
4/18
35. 【中】将直线 y = 2 x − 3 向下平移 4 个单位可得直线______,再向左平移 2 个单位可得 直线_______ 【答案】 y = 2 x − 7 , y = 2 x − 3 36. 【中】将直线 y = 2 x + 1 向下平移 3 个单位,得到的直线应为_______,关于 y 轴对称的 直线为________ 【答案】 y = 2 x − 2 , y = −2 x − 2 37. 【中】 (沈阳)将 y = −3x + 4 先向左平移 3 个单位,再向下平移 5 个单位,得到的直线 为__________. 【答案】 y = −3x − 10 38. 【中】 (2009 青海)直线 y = x + 2 向右平移 3 个单位,再向下平移 2 个单位所得直线的 解析式为________ 【答案】 y = x − 3 39. 【中】若直线 y = kx + b 平行直线 y = 3x + 4 ,且过点 (1,− 2 ) ,则将 y = kx + b 向下平移
3 个单位的直线是______. 【答案】 y = 3x − 8
1) ,则平移后的直线的函数关系式为 40. 【中】将直线 y = −3x + 5 平移,使它经过点 ( −1,
________ 【答案】 y = −3x − 2
41. 【中】已知一次函数 y = −3x + 2 ,它的图象不经过第____象限,将直线 y = 2 x − 4 向上 平移 5 个单位后,所得直线的表达式为________ 【答案】三, y = 2 x + 1 42. 【中】 (2010 人大附初二上统练)若直线 y = − mx + 1 + n 沿着 x 轴向左平移 3 个单位得 到 y = − x + 1 ,则 m − n = __________. 【答案】 −2 43. 【中】 (2009 枣庄)在直角坐标系中有两条直线 l1 、 l2 ,直线 l1 所对应的的函数关系式 为 y = x − 2 ,如果将坐标纸折叠,使 l1 与 l2 重合,此时点 ( −1,0 ) 与点 ( 0 ,− 1) 也重合, 则直线 l2 所对应的函数关系式为______________ 【答案】 y = x + 2

九年级数学上册 专题突破 19《二次函数和反比例函数》二次函数图象变换秘诀 (新版)北京课改版-北京

九年级数学上册 专题突破 19《二次函数和反比例函数》二次函数图象变换秘诀 (新版)北京课改版-北京

二次函数图象变换1. 二次函数图象关于x轴对称变换变形:特点:a、b、c符号都改变;依据:点关于x轴对称,该点的横坐标不变,纵坐标变为相反数;图例:2. 二次函数图象关于y轴对称变换变形:特点:a、c符号不变,b符号改变;依据:点关于y轴对称,该点横坐标变为相反数,纵坐标不变;图例:3. 二次函数图象关于原点中心对称变换变形:特点:a、c符号改变,b符号不变;依据:点关于原点对称,该点的横纵坐标都变为相反数;图例:4. 二次函数图象关于顶点中心对称变换变形:特点:变为顶点式后a符号改变;依据:变换后顶点坐标不变,开口大小不变,只改变开口方向;图例:例题1(某某)如图,已知二次函数的图象过点O(0,0),A(4,0),B(2,43),M是OA的中点。

(1)求此二次函数的解析式。

(2)将抛物线在x轴下方的部分沿x轴向上翻折,得曲线OB′A,B′为B关于x轴的对称点,在原抛物线x轴的上方部分取一点C,连接CM,CM与翻折后的曲线OB′A交于点D。

若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在,求出C点的坐标,若不存在,请说明理由。

解析:(1)利用待定系数法求出二次函数的解析式;(2)假设存在满足条件的点C ,由△CDA 的面积是△MDA 面积的2倍,可得点C 纵坐标是点D 纵坐标的3倍,由此列方程求出点C 的坐标。

答案:解:(1)∵抛物线过原点,∴设其解析式为:y =ax 2+bx ∵抛物线经过点A (4,0),B (2 ,43) ∴16a 4b 034a 2b 3+⎧⎪⎨+-⎪⎩==,解得3a 43b 3⎧⎪⎪⎨⎪-⎪⎩== ∴二次函数解析式为:2343y x =- (2)依题意,翻折之后的抛物线解析式为:2343y x x 33=-+ 假设存在这样的点C ,∵△CDA 的面积是△MDA 面积的2倍, ∴CD=2MD ,∴CM=3MD如下图所示,分别过点D 、C 作x 轴的垂线,垂足分别为点E 、点F ,则有DE∥CF∴DE ME MDCF MF MC==MD CM 3=∴CF=3DE ,MF =3ME 令0=y ,则x x y 334332-=的图象与x 轴的交点坐标分别为)0,4(A ,)0,0(O ∵M 为OA 中点)0,2(M ∴ 设C2343x -(,), 则MF =x -2,11ME MF x 233==-(),14OE ME OM x 33=+=+ ∴D2143144314x x x 333333+++(,()()) ∵CF=3DE , ∴223433144314x x 3[x x ]33333333-=-+++()(), 整理得:x 2-4x -8=0,解得:12x 223,x 223=+=- ∴128383y y 33== ∴存在满足条件的点C ,点C 的坐标为:838322323+-(,,)点拨:本题为二次函数综合题型,考查了二次函数的图象与性质、解方程、翻折变换等知识点。

函数的图像经典例题

函数的图像经典例题

函数的图象一、典型例题例1 设函数2()45f x x x =-- (1)在区间[2,6]-上画出函数()f x 的图像;(2)设集合{}()5,(,2][0,4][6,)A x f x B =≥=-∞-+∞ ,试判断集合A 和B 之间的关系,并给出证明;(3)当2k >时,求证:在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方。

例2(1)若把函数()y f x =的图像作平移,可以使图像上的点()1,0P 变换成点()2,2Q ,则函数()y f x =的图像经此变换后所得图像对应的函数为 ( )A .(1)2y f x =-+ B.(1)2y f x =--C . (1)2y f x =++D . (1)2y f x =+-(2)己知函数33(),()232x f x x x -=≠-,若(1)y f x =+的图像是1C ,它关于直线y x =对称图像是22,C C 关于原点对称的图像为33,C C 则对应的函数解析式是__________(3)作出下列函数的大致图象: ①()21y x x =-+;② 21x y x -=+; ③ lg 1y x =-④ 11xy x -=-例3 (1)设函数()x f 的定义域为R ,它的图像关于直线1x =对称,且当1≥x 时()13-=x x f 则( ) ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛322331A.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛312332B.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛233132C.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛313223D.f f f (2)已知()f x 是定义域为(-∞,0)∪(0,+∞)的奇函数,在区间(0,+∞)上单调递增, ()f x 的图象如图所示,若[]()()0x f x f x --<,则x 的取值范围是__________________例3 已知函数()()()()1212()211xx f x x x x ⎧⎛⎫-≤-⎪ ⎪=⎝⎭⎨⎪-->-⎩,如果方程()f x a =有四个不同的实根,求实数a 的取值范围。

第7节 函数的图象(经典练习及答案详解)

第7节 函数的图象(经典练习及答案详解)

第7节函数的图象知识梳理1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换y=f(x)的图象y=-f(x)的图象;y=f(x)的图象y=f(-x)的图象;y=f(x)的图象y=-f(-x)的图象;y=a x(a>0,且a≠1)的图象y=log a x(a>0,且a≠1)的图象.(3)伸缩变换(4)翻折变换1.记住几个重要结论(1)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称.(2)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)中心对称.(3)若函数y=f(x)对定义域内任意自变量x满足:f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.而言,如果x的系数不是1,常需把系数提出2.图象的左右平移仅仅是相对于...x.来,再进行变换.而言的,利用“上加下减”进行.3.图象的上下平移仅仅是相对于...y.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.()(2)函数y=af(x)与y=f(ax)(a>0且a≠1)的图象相同.()(3)函数y=f(x)与y=-f(x)的图象关于原点对称.()(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.()答案(1)×(2)×(3)×(4)√解析(1)令f(x)=-x,当x∈(0,+∞)时,y=|f(x)|=x,y=f(|x|)=-x,两者图象不同,(1)错误.(2)中两函数当a≠1时,y=af(x)与y=f(ax)是由y=f(x)分别进行横坐标与纵坐标伸缩变换得到,两图象不同,(2)错误.(3)y=f(x)与y=-f(x)的图象关于x轴对称,(3)错误.2.(多选题)若函数y=a x+b-1(a>0,且a≠1)的图象经过第一、三、四象限,则下列选项中正确的有()A.a>1B.0<a<1C.b>0D.b<0答案AD解析因为函数y=a x+b-1(a>0,且a≠1)的图象经过第一、三、四象限,所以其大致图象如图所示.由图象可知函数为增函数,所以a>1,当x=0时,y=1+b-1=b<0,故选AD.3.在2 h内将某种药物注射进患者的血液中,在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药物含量呈指数衰减,能反映血液中药物含量Q随时间t变化的图象是()答案B解析依题意知,在2 h内血液中药物含量Q持续增加,停止注射后,Q呈指数衰减,图象B适合.4.(2019·全国Ⅰ卷)函数f(x)=sin x+xcos x+x2在[-π,π]的图象大致为()答案D解析 ∵f (-x )=sin (-x )-x cos (-x )+(-x )2=-f (x ),且x ∈[-π,π],∴f (x )为奇函数,排除A.当x =π时,f (π)=π-1+π2>0,排除B ,C ,只有D 满足. 5.(2021·长沙检测)已知图①中的图象对应的函数为y =f (x ),则图②中的图象对应的函数为( )A.y =f (|x |)B.y =f (-|x |)C.y =|f (x )|D.y =-|f (x )|答案 B解析 观察函数图象可得,②是由①保留y 轴左侧及y 轴上的图象,然后将y 轴左侧图象翻折到右侧所得,结合函数图象的对称变换可得变换后的函数的解析式为y =f (-|x |).6.(2020·重庆联考)已知函数f (x )的图象如图所示,则函数g (x )=log2f (x )的定义域是________.答案 (2,8]解析 当f (x )>0时,函数g (x )=log 2f (x )有意义,由函数f (x )的图象知满足f (x )>0时,x ∈(2,8].考点一 作函数的图象【例1】作出下列函数的图象: (1)y =⎝ ⎛⎭⎪⎫12|x |;(2)y =|log 2(x +1)|;(3)y =x 2-2|x |-1.解 (1)先作出y =⎝ ⎛⎭⎪⎫12x 的图象,保留y =⎝ ⎛⎭⎪⎫12x 图象中x ≥0的部分,再作出y =⎝ ⎛⎭⎪⎫12x的图象中x >0部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎫12|x |的图象,如图①实线部分.(2)将函数y =log 2x 的图象向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图②.(3)∵y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图③.感悟升华 1.描点法作图:当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.2.图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.【训练1】分别作出下列函数的图象: (1)y =sin |x |;(2)y =2x -1x -1. 解 (1)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,图象关于y 轴对称,其图象如图①.(2)y =2x -1x -1=2+1x -1,故函数的图象可由y =1x 的图象向右平移1个单位,再向上平移2个单位得到,如图②所示. 考点二 函数图象的辨识1.(2020·浙江卷)函数y =x cos x +sin x 在区间[-π,π]的图象大致为( )答案 A解析 因为f (x )=x cos x +sin x ,则f (-x )=-x cos x -sin x =-f (x ),又x ∈[-π,π],所以f (x )为奇函数,其图象关于坐标原点对称,则C ,D 错误.且x =π时,y =πcos π+sin π=-π<0,知B 错误;只有A 满足. 2.(2021·重庆诊断)函数f (x )=x cos ⎝ ⎛⎭⎪⎫x -π2的图象大致为( )答案 A解析 根据题意,f (x )=x cos ⎝ ⎛⎭⎪⎫x -π2=x sin x ,定义域为R ,关于原点对称.有f (-x )=(-x )sin(-x )=x sin x =f (x ),即函数y =f (x )为偶函数,排除B ,D.当x ∈(0,π)时,x >0,sin x >0,有f (x )>0,排除C.只有A 适合. 3.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,log 13x ,x >1,则函数y =f (1-x )的大致图象是( )答案 D解析 法一先画出函数f (x )=⎩⎨⎧3x ,x ≤1,log 13x ,x >1的草图,令函数f (x )的图象关于y 轴对称,得函数f (-x )的图象,再把所得的函数f (-x )的图象,向右平移1个单位,得到函数y =f (1-x )的图象(图略),故选D.法二 由已知函数f (x )的解析式,得y =f (1-x )=⎩⎨⎧31-x,x ≥0,log 13(1-x ),x <0,故该函数过点(0,3),排除A ;过点(1,1),排除B ;在(-∞,0)上单调递增,排除C.选D.4.函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A.f (x )=x +sin xB.f (x )=cos xxC.f (x )=x ⎝ ⎛⎭⎪⎫x -π2⎝ ⎛⎭⎪⎫x -3π2D.f (x )=x cos x 答案 D解析 从图象看,y =f (x )应为奇函数,排除C ; 又f ⎝ ⎛⎭⎪⎫π2=0,知f (x )=x +sin x 不正确;对于B,f(x)=cos xx ,得f′(x)=-x sin x-cos xx2,当0<x<π2时,f′(x)<0,所以f(x)=cos xx 在⎝⎛⎭⎪⎫0,π2上递减,B不正确;只有f(x)=x cos x满足图象的特征.感悟升华 1.抓住函数的性质,定性分析:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从周期性,判断图象的循环往复;(4)从函数的奇偶性,判断图象的对称性.2.抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题.考点三函数图象的应用角度1研究函数的性质【例2】(多选题)(2021·滨州一模)在平面直角坐标系xOy中,如图放置的边长为2的正方形ABCD沿x轴滚动(无滑动滚动),点D恰好经过坐标原点.设顶点B(x,y)的轨迹方程是y=f(x),则对函数y=f(x)的判断正确的是()A.函数y=f(x)是奇函数B.对任意的x∈R,都有f(x+4)=f(x-4)C.函数y=f(x)的值域为[0,22]D.函数y=f(x)在区间[6,8]上单调递增答案BCD解析由题意得,当-4≤x<-2时,点B的轨迹为以(-2,0)为圆心,2为半径的14圆;当-2≤x <2时,点B 的轨迹为以原点为圆心,22为半径的14圆; 当2≤x <4时,点B 的轨迹为以(2,0)为圆心,2为半径的14圆,如图所示; 以后依次重复,所以函数f (x )是以8为周期的周期函数.由图象可知,函数f (x )为偶函数,故A 错误;因为f (x )的周期为8,所以f (x +8)=f (x ),即f (x +4)=f (x -4),故B 正确; 由图象可知,f (x )的值域为[0,22],故C 正确;由图象可知,f (x )在[-2,0]上单调递增,因为f (x )在[6,8]的图象和在[-2,0]的图象相同,故D 正确.故选BCD.角度2 函数图象在不等式中的应用【例3】 (1)若函数f (x )=log 2(x +1),且a >b >c >0,则f (a )a ,f (b )b ,f (c )c 的大小关系是( ) A.f (a )a >f (b )b >f (c )c B.f (c )c >f (b )b >f (a )a C.f (b )b >f (a )a >f (c )cD.f (a )a >f (c )c >f (b )b(2)(2020·北京卷)已知函数f (x )=2x -x -1,则不等式f (x )>0的解集是( ) A.(-1,1) B.(-∞,-1)∪(1,+∞) C.(0,1)D.(-∞,0)∪(1,+∞)答案 (1)B (2)D解析 (1)由题意可得,f (a )a ,f (b )b ,f (c )c 分别看作函数f (x )=log 2(x +1)图象上的点(a ,f (a )),(b ,f (b )),(c ,f (c ))与原点连线的斜率.结合图象可知,当a >b >c >0时,f (a )a <f (b )b <f (c )c .(2)在同一平面直角坐标系中画出h (x )=2x ,g (x )=x +1的图象如图.由图象得交点坐标为(0,1)和(1,2). 又f (x )>0等价于2x >x +1, 结合图象,可得x <0或x >1.故f (x )>0的解集为(-∞,0)∪(1,+∞).故选D.角度3 求参数的取值范围【例4】 (1)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,(x -1)3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.(2)已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________. 答案 (1)(0,1) (2)(0,1)∪(9,+∞)解析 (1)画出分段函数f (x )的图象如图所示,结合图象可以看出,若f (x )=k 有两个不同的实根,也即函数y =f (x )的图象与y =k 有两个不同的交点,k 的取值范围为(0,1). (2)设y 1=f (x )=|x 2+3x |,y 2=a |x -1|.在同一直角坐标系中作出y 1=|x 2+3x |, y 2=a |x -1|的图象如图所示.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同的交点,且4个交点的横坐标都小于1,所以①⎩⎪⎨⎪⎧y =-x 2-3x ,y =a (1-x )(-3<x <0)有两组不同解.消去y 得x 2+(3-a )x +a =0,该方程有两个不等实根x 1,x 2,∴⎩⎪⎨⎪⎧Δ=(3-a )2-4a >0,-3<a -32<0,(-3)2+(3-a )×(-3)+a >0,02+(3-a )×0+a >0,∴0<a <1.②⎩⎪⎨⎪⎧y =x 2+3x ,y =a (x -1)(x >1)有两组不同解. 消去y 得x 2+(3-a )x +a =0有两不等实根x 3、x 4, ∴Δ=a 2-10a +9>0,又∵x 3+x 4=a -3>2,x 3x 4=a >1, ∴a >9.综上可知,0<a <1或a >9.感悟升华 1.利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系.2.利用函数的图象可解决某些方程和不等式的求解问题,方程f(x)=g(x)的根就是函数f(x)与g(x)图象交点的横坐标;不等式f(x)<g(x)的解集是函数f(x)的图象位于g(x)图象下方的点的横坐标的集合,体现了数形结合思想.【训练2】(1)设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是________.(2)(2020·徽州一中期中)已知奇函数f(x)在x≥0时的图象如图所示,则不等式xf(x)<0的解集为________.(3)(多选题)(2021·淄博模拟)关于函数f(x)=|ln|2-x||,下列描述正确的有()A.函数f(x)在区间(1,2)上单调递增B.函数y=f(x)的图象关于直线x=2对称C.若x1≠x2,但f(x1)=f(x2),则x1+x2=4D.函数f(x)有且仅有两个零点答案(1)[-1,+∞)(2)(-2,-1)∪(1,2)(3)ABD解析(1)如图作出函数f(x)=|x+a|与g(x)=x-1的图象,观察图象可知,当且仅当-a≤1,即a≥-1时,不等式f(x)≥g(x)恒成立,因此a的取值范围是[-1,+∞).(2)∵xf(x)<0,∴x和f(x)异号,由于f(x)为奇函数,补齐函数的图象如图.当x∈(-2,-1)∪(0,1)∪(2,+∞)时,f(x)>0,当x∈(-∞,-2)∪(-1,0)∪(1,2)时,f(x)<0,∴不等式xf(x)<0的解集为(-2,-1)∪(1,2).(3)函数f(x)=|ln|2-x||的图象如图所示,由图可得,函数f(x)在区间(1,2)上单调递增,A正确;函数y=f(x)的图象关于直线x=2对称,B正确;若x1≠x2,但f(x1)=f(x2),则x1+x2的值不一定等于4,C错误;函数f(x)有且仅有两个零点,D正确.函数图象的活用直观想象是发现和提出问题,分析和解决问题的重要手段,在数学研究的探索中,通过直观手段的运用以及借助直观展开想象,从而发现问题、解决问题的例子比比皆是,并贯穿于数学研究过程的始终,而数形结合思想是典型的直观想象范例.一、根据函数图象确定函数解析式【例1】(2021·长沙检测)已知某函数的图象如图所示,则下列函数中,与图象最契合的是()A.y =sin(e x +e -x )B.y =sin(e x -e -x )C.y =cos(e x -e -x )D.y =cos(e x +e -x )答案 D解析 由函数图象知,函数图象关于y 轴对称,∵y =sin(e x -e -x )为奇函数,图象关于原点对称,B 不正确; 又-1<f (0)<0,但sin 2>0,cos 0=1,故A ,C 不正确; 只有y =cos(e x +e -x )满足图象特征.故选D.素养升华 函数解析式与函数图象是函数的两种重要表示法,图象形象直观,解析式易于研究函数性质,可根据需要,相互转化.二、由图象特征研究函数性质求参数【例2】设函数f (x )=⎩⎨⎧-x 2+4x ,x ≤4,log 2x ,x >4,若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( ) A.(-∞,1] B.[1,4]C.[4,+∞)D.(-∞,1]∪[4,+∞) 答案 D解析 作出函数f (x )的图象如图所示,由图象可知,要使f (x )在(a ,a +1)上单调递增, 需满足a ≥4或a +1≤2. 因此a ≥4或a ≤1.素养升华 1.运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.2.图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.A级基础巩固一、选择题1.(2020·天津卷)函数y=4xx2+1的图象大致为()答案A解析令f(x)=4xx2+1,则f(x)的定义域为R,且f(-x)=-4xx2+1=-f(x),因此,函数为奇函数,排除C,D.当x=1时,f(1)=42=2>0,排除B.故选A.2.(2021·江南十校模拟)函数f(x)=x cos x2x+2-x在⎣⎢⎡⎦⎥⎤-π2,π2上的图象大致为()答案C解析根据题意,有f(-x)=-x cos x2x+2-x=-f(x),且定义域关于原点对称,则在⎣⎢⎡⎦⎥⎤-π2,π2上,f (x )为奇函数,其图象关于原点对称,排除A ,B ; 又在区间⎝ ⎛⎭⎪⎫0,π2上,x >0,cos x >0,2x >0,2-x >0,则f (x )>0,排除D ,只有C 适合.3.若函数f (x )=a x -a -x (a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象可能是( )答案 D解析 由f (x )在R 上是减函数,知0<a <1.又y =log a (|x |-1)是偶函数,定义域是(-∞,-1)∪(1,+∞).∴当x >1时,y =log a (x -1)的图象由y =log a x 的图象向右平移一个单位得到.因此D 正确.4.下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( ) A.y =ln(1-x ) B.y =ln(2-x ) C.y =ln(1+x ) D.y =ln(2+x )答案 B解析 法一 设所求函数图象上任一点的坐标为(x ,y ),则其关于直线x =1的对称点的坐标为(2-x ,y ),由对称性知点(2-x ,y )在函数f (x )=ln x 的图象上,所以y =ln(2-x ).法二 由题意知,对称轴上的点(1,0)在函数y =ln x 的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A ,C ,D ,选B.5.(2021·豫北名校联考)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=3-2x ,则不等式f (x )>0的解集为( )A.⎝ ⎛⎭⎪⎫-32,32B.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫0,32 D.⎝ ⎛⎭⎪⎫-32,0∪⎝ ⎛⎭⎪⎫32,+∞ 答案 C解析 根据题意,f (x )是定义在R 上的奇函数,当x >0时,f (x )=3-2x ,可得其图象如图,且f (0)=0,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-32=0,则不等式f (x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫0,32.6.若函数f (x )=⎩⎨⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)=( ) A.-12 B.-54 C.-1D.-2答案 C解析 由图象知⎩⎪⎨⎪⎧ln (a -1)=0,b -a =3,得⎩⎪⎨⎪⎧a =2,b =5.∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1.故f (-3)=5-6=-1.7.(多选题)(2021·山东新高考模拟)对于函数f (x )=lg(|x -2|+1),下列说法正确的是( )A.f (x +2)是偶函数B.f (x +2)是奇函数C.f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数D.f (x )没有最小值 答案 AC解析 f (x +2)=lg(|x |+1)为偶函数,A 正确,B 错误.作出f (x )的图象如图所示,可知f (x )在(-∞,2)上是减函数,在(2,+∞)上是增函数;由图象可知函数存在最小值0,C 正确,D 错误.8.若函数y =f (x )的图象的一部分如图(1)所示,则图(2)中的图象所对应的函数解析式可以是( )A.y =f ⎝ ⎛⎭⎪⎫2x -12B.y =f (2x -1)C.y =f ⎝ ⎛⎭⎪⎫12x -12D.y =f ⎝ ⎛⎭⎪⎫12x -1答案 B解析 函数f (x )的图象先整体往右平移1个单位,得到y =f (x -1)的图象,再将所有点的横坐标变为原来的12,得到y =f (2x -1)的图象. 二、填空题9.若函数y =f (x )的图象过点(1,1),则函数y =f (4-x )的图象一定经过点________. 答案 (3,1)解析 由于函数y =f (4-x )的图象可以看作y =f (x )的图象先关于y 轴对称,再向右平移4个单位长度得到.点(1,1)关于y 轴对称的点为(-1,1),再将此点向右平移4个单位长度为(3,1).所以函数y =f (4-x )的图象过定点(3,1).10.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________. 答案 -12解析 函数y =|x -a |-1的大致图象如图所示,∴若直线y =2a 与函数y =|x -a |-1的图象只有一个交点, 只需2a =-1,可得a =-12.11.使log 2(-x )<x +1成立的x 的取值范围是________. 答案 (-1,0)解析 在同一直角坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).12.已知函数f (x )在R 上单调且其部分图象如图所示,若不等式-2<f (x +t )<4的解集为(-1,2),则实数t 的值为________. 答案 1解析 由图象可知不等式-2<f (x +t )<4, 即f (3)<f (x +t )<f (0).又y =f (x )在R 上单调递减,∴0<x +t <3,不等式解集为(-t ,3-t ). 依题意,得t =1.B 级 能力提升13.若直角坐标系内A ,B 两点满足:(1)点A ,B 都在f (x )的图象上;(2)点A ,B 关于原点对称,则称点对(A ,B )是函数f (x )的一个“和谐点对”,(A ,B )与(B ,A )可看作一个“和谐点对”.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x (x <0),2e x (x ≥0),则f (x )的“和谐点对”有( ) A.1个 B.2个C.3个D.4个答案 B解析 作出函数y =x 2+2x (x <0)的图象关于原点对称的图象(如图中的虚线部分),看它与函数y =2e x (x ≥0)的图象的交点个数即可,观察图象可得交点个数为2,即f (x )的“和谐点对”有2个.14.(2020·潍坊质检)已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,f (x +2)=f (x ),当0≤x ≤1时,f (x )=x 2.若直线y =x +a 与函数f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( ) A.0 B.0或-12 C.-14或12D.0或-14答案 D解析 因为f (x +2)=f (x ),所以函数f (x )的周期为2,如图所示:由图知,直线y =x +a 与函数f (x )的图象在区间[0,2]内恰有两个不同的公共点时,直线y =x +a 经过点(1,1)或与曲线f (x )=x 2(0≤x ≤1)相切于点A ,则1=1+a ,或方程x 2=x +a 只有一个实数根.所以a =0或Δ=1+4a =0,即a =0或a =-14.15.(多选题)(2021·日照模拟)设f (x )是定义在R 上的函数,若存在两个不相等的实数x 1,x 2,使得f ⎝ ⎛⎭⎪⎫x 1+x 22=f (x 1)+f (x 2)2,则称函数f (x )具有性质P .那么下列函数中,具有性质P 的函数为( ) A.f (x )=⎩⎪⎨⎪⎧1x ,x ≠0,0,x =0B.f (x )=|x 2-1|C.f (x )=x 3+xD.f (x )=2|x |答案 ABC解析 对于A ,在函数f (x )的图象上取A (-1,-1),B (0,0),C (1,1),有f (0)=f (-1)+f (1)2成立,故A 正确; 对于B ,在函数f (x )的图象上取A (-2,1),B (0,1),C (2,1),有f (0)=f (-2)+f (2)2成立,故B 正确; 对于C ,在函数f (x )的图象上取A (1,2),B (0,0),C (-1,-2),有f (0)=f (-1)+f (1)2成立,故C 正确; 对于D ,因为f (x )=2|x |,f (x 1)+f (x 2)2=2|x 1|+2|x 2|2≥2|x 1|·2|x 2|=2|x 1|+|x 2|2≥2|x 1+x 22|=f ⎝ ⎛⎭⎪⎫x 1+x 22,又x 1≠x 2,所以f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2恒成立,故D 错误.故选ABC.16.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则n m =________.答案 9解析 如图,作出函数f (x )=|log 3x |的图象,观察可知0<m <1<n且mn =1.若f (x )在[m 2,n ]上的最大值为2,从图象分析应有f (m 2)=2,∴log 3m 2=-2,∴m 2=19.从而m =13,n =3,故n m =9.。

人教版初中九年级数学上册第二十二章《二次函数》经典练习题(含答案解析)(3)

人教版初中九年级数学上册第二十二章《二次函数》经典练习题(含答案解析)(3)

一、选择题1.抛物线y=ax2+bx+c(a≠0)的图象大致如图所示,下列说法:①2a+b=0;②当﹣1<x<3时,y<0;③若(x1,y1)(x2,y2)在函数图象上,当x1<x2时,y1<y2;④9a+3b+c=0,其中正确的是()A.①②④B.①④C.①②③D.③④A解析:A【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①由图示知,对称轴是直线x=3122ba-=-,则2a+b=0,故说法正确;②由图示知,当﹣1<x<3时,y<0,故说法正确;③若(x1,y1)(x2,y2)在函数图象上,当1<x1<x2时,y1<y2,故说法错误;④由图示知,当x=3时,y=0,即9a+3b+c=0,故说法正确.综上所述,正确的说法是①②④.故选:A.【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.2.如图,一条抛物线与x轴相交于M,N两点(点M在点N的左侧),其顶点P在线段AB上移动,点A,B的坐标分别为(﹣2,﹣3),(1,﹣3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A.﹣1 B.﹣3 C.﹣5 D.﹣7C 解析:C【分析】当图象顶点在点B时,点N的横坐标的最大值为4,求出a=13;当顶点在点A时,M点的横坐标为最小,此时抛物线的表达式为:y=13(x+2)2﹣3,令y=0,求出x值,即可求解.【详解】当图象顶点在点B时,点N的横坐标的最大值为4,则此时抛物线的表达式为:y=a(x﹣1)2﹣3,把点N的坐标代入得:0=a(4﹣1)2﹣3,解得:a=13,当顶点在点A时,M点的横坐标为最小,此时抛物线的表达式为:y=13(x+2)2﹣3,令y=0,则x=﹣5或1,即点M的横坐标的最小值为﹣5,故选:C.【点睛】本题考查的是二次函数与x轴的交点,涉及到函数基本性质和函数的最值,其中确定坐标取得最值时,图象所处的位置是本题的关键.3.如图等边ABC的边长为4cm,点P,点Q同时从点A出发点,Q沿AC以1cm/s 的速度向点C运动,点P沿A B C--以2cm/s的速度也向点C运动,直到到达点C时停止运动,若APQ的面积为()2cmS,点Q的运动时间为()s t,则下列最能反映S与t之间大致图象是().A .B .C .D .D解析:D 【分析】当点P 在AB 边运动时,S=12AQ×APsinA ,图象为开口向上的抛物线,当点P 在BC 边运动时,如下图,S=12×AQ×PCsinC ,即可求解. 【详解】解:当点P 在AB 边运动时,21133sin 22222S AQ AP A t t t =⨯=⨯⨯⨯=, 图象为开口向上的抛物线, 当点P 在BC 边运动时,如下图,1133sin 2(6)(6)2222S AQ PC C t t t t =⨯⨯=⨯⨯-⨯=-,图象为开口向下的抛物线, 故选:D . 【点睛】本题是运动型综合题,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程. 4.下列函数关系式中,属于二次函数的是( ) A .21y x =+ B .21y x x=+C .()()221y x x x=+-- D .21y x =-D解析:D 【分析】利用二次函数定义进行解答即可. 【详解】A 、21y x =+是一次函数,故A 不符合题意;B 、2y x =+1x不是二次函数,故B 不符合题意; C 、()()2222122y x x x x x x x =+--=+--=-,此函数是一次函数,故C 不符合题意;D 、21y x =-是二次函数,故D 符合题意; 故答案为:D . 【分析】本题主要考查了二次函数定义,关键是掌握形如2y ax bx c =++(a 、b 、c 是常数,a≠0)的函数,叫做二次函数.5.函数221y x x =--的自变量x 的取值范围为全体实数,其中0x ≥部分的图象如图所示,对于此函数有下列结论:①函数图象关于y 轴对称; ②函数既有最大值,也有最小值; ③当1x <-时,y 随x 的增大而减小;④当21a -<<-时,关于x 的方程221x x a --=有4个实数根. 其中正确的结论个数是( ) A .3 B .2C .1D .0A解析:A 【分析】根据函数解析式画出函数图象,结合函数图象进行判断.解:如图:①如图所示,函数图象关于y 轴对称,故①符合题意. ②如图所示,函数没有最大值,有最小值,故②不符合题意. ③如图所示,当x <-1时,y 随x 的增大而减小,故③符合题意.④如图所示,当-2<a <-1时,关于x 的方程x 2-2|x|-1=a 有4个实数根,故④符合题意. 综上所述,正确的结论有3个. 故选:A . 【点睛】本题为函数图象探究题,考查了根据函数图象判断函数的对称性、增减性以及从函数的角度解决方程问题.6.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .4C解析:C 【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下 ∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.7.如图,已知抛物线2(0)y ax bx c a =++≠的部分图象如图所示,则下列结论:①0abc >;②关于x 的一元二次方程20ax bx c ++=的根是-1,3;③2a b c +=;④y 最大值43c =;其中正确的有( )个.A .4B .3C .2D .1C解析:C 【分析】利用抛物线开口方向得到a <0,利用抛物线的对称轴方程得到b=-2a >0,利用抛物线与y 轴的交点在x 轴上方得到c >0,则可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(-1,0),则根据抛物线与x 轴的交点问题可对②进行判断;由于x=-1时,a-b+c=0,再利用b=-2a 得到c=-3a ,则可对③④进行判断. 【详解】解:∵抛物线开口向下, ∴a <0,∵抛物线的对称轴为直线x=﹣b2a=1, ∴b=-2a >0,∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∴abc <0,所以①错误;∵抛物线的对称轴为直线x=1,抛物线与x 轴的一个交点坐标为(3,0), ∴抛物线与x 轴的另一个交点坐标为(-1,0),∴关于x 的一元二次方程ax 2+bx+c=0的根是-1,3,所以②正确; ∵当x=-1时,y=0, ∴a-b+c=0, 而b=-2a ,∴a+2a+c=0,即c=-3a , ∴a+2b-c=a-4a+3a=0,即a+2b=c ,所以③正确; a+4b-2c=a-8a+6a=-a ,所以④错误; 故选:C . 【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.8.已知点1(1,)y -,(,)23y ,31(,)2y 在函数22y x x m =++的图象上,则1y ,2y ,3y 的大小关系是( ) A .123y y y >> B .213y y y >> C .231y y y >> D .312y y y >>C解析:C 【分析】由抛物线222(1)1y x x m x m =++=++-,可知抛物线对称轴为x =-1,开口向上,然后根据各点到对称轴的结论可判断y 1,y 2,y 3的大小. 【详解】∵222(1)1y x x m x m =++=++-, ∴抛物线对称轴为x =-1,开口向上,又∵点((,)23y 离对称轴最远,点1(1,)y -在对称轴上, ∴231y y y >>. 故选:C . 【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键. 9.若关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解,则函数21(3)4y x x a =--+-图象与x 轴的交点个数为( ) A .0个 B .1个C .2个D .1或2个C解析:C 【分析】根据解不等式组的一般步骤得到a 的取值范围,然后求出函数21(3)4y x x a =--+-的判别式,根据根的判别式的正负即可得到图象与x 轴的交点个数. 【详解】解:∵关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解,∴3a-2>a+2, 即a >2,令y=0,21(3)4x x a --+-=0,△=(-1)2-4×(a-3)×(-14)=a-2,∵a >2, ∴a-2>0,∴函数图象与x 轴的交点个数为2. 故选:C . 【点睛】解答此题要熟知以下概念:(1)解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.(2)一元二次方程ax 2+bx+c=0(a≠0)的解与二次函数y=ax 2+bx+c 的关系.10.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x 轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( ) A .3a 1-<<- B .2a 1-<< C .1a 0-<< D .2a 4<<C解析:C 【分析】根据二次函数2y ax bx c =++,当2x =时,该函数取最大值9,可以写出该函数的顶点式,得到0a <,再根据该函数图象与x 轴的一个交点的横坐标为1x ,15x >,可知,当5x =时,0y >,即可得到a 的取值范围,本题得以解决.【详解】 解:二次函数2y ax bx c =++,当2x =时,该函数取最大值9,0a ∴<,该函数解析式可以写成2(2)9y a x =-+,设该函数图象与x 轴的一个交点的横坐标为1x ,15x >,∴当5x =时,0y >,即2(52)90a -+>,解得,1a >-,a ∴的取值范围时10a -<<,故选:C . 【点睛】本题考查二次函数图象与系数的关系、二次函数的最值、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题11.抛物线2y x x =+向下平移2个单位长度,再向左平移3个单位长度,得到的抛物线表达式为____.【分析】先把配成顶点式再利用顶点式写出平移后的抛物线的解析式【详解】此抛物线的顶点坐标为()把点()向下平移个单位长度再向左平移个单位长度所得对应点的坐标为()即()所以平移后得到的抛物线的解析式为 解析:2710y x x =++【分析】先把2y x x =+配成顶点式,再利用顶点式写出平移后的抛物线的解析式. 【详解】2211()24y x x x =+=+-,此抛物线的顶点坐标为(12-,14-),把点(12-,14-)向下平移2个单位长度,再向左平移3个单位长度, 所得对应点的坐标为(132--,124--),即(72-,94-), 所以平移后得到的抛物线的解析式为279()24y x =+-,即2710y x x =++. 故答案为:2710y x x =++. 【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 12.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值时,的取值范围是______.表格给出的信息可看出对称轴为直线x =1a >0开口向上与x 轴交于(−10)(30)两点则y>0时x 的取值范围即可求出【详解】根据表格中给出的二次函数图象的信息对称轴为直线x =1a >0开口向解析:1x <-或3x > 【分析】由表格给出的信息可看出,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则y>0时,x 的取值范围即可求出. 【详解】根据表格中给出的二次函数图象的信息,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则当函数值y>0时,x 的取值范围是x<-1或x>3.故答案为:x<-1或x>3. 【点睛】本题考查了二次函数的图象及其性质,正确掌握才能灵活运用.13.如图,抛物线224y x x =-+与x 轴交于点O ,A ,把抛物线在x 轴及其上方的部分记为1C ,将1C 以y 轴为对称轴作轴对称得到2C ,2C 与x 轴交于点B ,若直线y = m 与1C ,2C 共有4个不同的交点,则m 的取值范围是_______________.【分析】首先求出点A 和点B 的坐标然后求出解析式分别求出直线过抛物线顶点时m 的值以及直线过原点时m 的值结合图形即可得到答案【详解】令解得:或则A (20)B (-20)∵与关于y 轴对称:顶点为(12)∴的 解析:02m <<【分析】首先求出点A 和点B 的坐标,然后求出2C 解析式,分别求出直线y m =过抛物线顶点时m的值以及直线y m =过原点时m 的值,结合图形即可得到答案. 【详解】令2240y x x =-+=, 解得:0x =或2x =, 则A (2,0),B (-2,0),∵1C 与2C 关于y 轴对称,1C :()2224212y x x x =-+=--+,顶点为(1,2), ∴2C 的解析式为()2221224y x x x =-++=--(20x -≤≤),顶点为(-1,2),当直线y m =过抛物线顶点时,它与1C ,2C 共有2个不同的交点,此时2m =;当直线y m =过原点时,它与1C ,2C 共有3个不同的交点,此时0m =; ∴当02m <<时,直线y m =与1C ,2C 共有4个不同的交点. 故答案为:02m <<. 【点睛】本题考查了抛物线与x 轴的交点、二次函数的图象与几何变换、一次函数与二次函数的关系,数形结合是解题的关键.14.如图是二次函数2(0)y ax bx c a =++≠图象的一部分,有下列4个结论:①0abc >;②240b ac ->;③关于x 的方程20ax bx c ++=的两个根是12x =-,23x =;④关于x 的不等式20ax bx c ++>的解集是2x >-.其中正确的结论是___________.②③【分析】根据抛物线开口方向对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断【详解】解:∵抛物线开口解析:②③【分析】根据抛物线开口方向,对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断.【详解】解:∵抛物线开口向下,交y 轴的正半轴,∴a <0,c >0,∵-2b a =12, ∴b =-a >0, ∴abc <0,所以①错误;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,即b2>4ac ,所以②正确;∵抛物线y =ax 2+bx +c 经过点(-2,0),而抛物线的对称轴为直线x=12, ∴点(-2,0)关于直线x =12的对称点(3,0)在抛物线上,∴关于x 的一元二次方程ax 2+bx +c =0的两根是x 1=-2,x 2=3,所以③正确.由图象可知当-2<x <3时,y >0,∴不等式ax 2+bx +c >0的解集是-2<x <3,所以④错误;故答案为②③.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac =0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.15.二次函数2y ax bx c =++自变量x 与函数值y 之间有下列关系:那么()b a b c a ++的值为______.=2再利用x =−3和x =1对应的函数值相等得到a +b +c =3然后利用整体代入的方法计算(a +b +c )的值【详解】解:∵抛物线 解析:6【分析】利用抛物线的对称性得到抛物线的对称轴为直线x =−1,则−2b a =−1,所以b a=2,再利用x =−3和x =1对应的函数值相等得到a +b +c =3,然后利用整体代入的方法计算b a (a +b +c )的值.【详解】解:∵抛物线经过点(−2,−1.68),(0,−1.68),∴抛物线的对称轴为直线x =−1,即−2b a =−1, ∴b a=2, ∴x =−3和x =1对应的函数值相等,∵x =−3时,y =3,∴x =1时,y =3,即a +b +c =3,∴b a(a +b +c )=2×3=6. 故答案为:6.【点睛】 本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.16.若抛物线256y x x =--与x 轴分别交于A 、B 两点,则AB 的长为_______________.7【分析】根据抛物线y=x2-5x-6与x 轴分别交于AB 两点可以令y=0求得点AB 的坐标从而可以求得AB 的长【详解】解:∵y=x2-5x-6∴y=0时x2-5x-6=0解得x1=-1x2=6∵抛物线解析:7【分析】根据抛物线y=x 2-5x-6与x 轴分别交于A 、B 两点,可以令y=0求得点A 、B 的坐标,从而可以求得AB 的长.【详解】解:∵y=x 2-5x-6,∴y=0时,x 2-5x-6=0,解得,x 1=-1,x 2=6.∵抛物线y=x 2-5x-6与x 轴分别交于A 、B 两点,∴点A 的坐标为(-1,0),点B 的坐标为(6,0),∴AB 的长为:6-(-1)=7.故答案为:7.【点睛】本题考查抛物线与x 轴的交点,以及数轴上两点间的距离,解题的关键是明确抛物线与x 轴相交时,y=0.17.已知关于x 的一元二次方程x 2﹣(2m +1)x +m 2﹣1=0有实数根a ,b ,则代数式a 2﹣ab +b 2的最小值为_____.【分析】由韦达定理得出ab 与m 的关系式由一元二次方程的根与判别式的关系得出m 的取值范围再对代数式a2﹣ab+b2配方并将a+b 和ab 整体代入化简然后再配方结合m 的取值范围可得出答案【详解】∵关于x 的 解析:916【分析】由韦达定理得出a ,b 与m 的关系式、由一元二次方程的根与判别式的关系得出m 的取值范围,再对代数式a 2﹣ab +b 2配方并将a +b 和ab 整体代入化简,然后再配方,结合m 的取值范围可得出答案.【详解】∵关于x 的一元二次方程x 2﹣(2m +1)x +m 2﹣1=0有实数根a ,b ,∴a +b =2m +1,ab =m 2﹣1,△≥0,∴△=[﹣(2m +1)]2﹣4×1×(m 2﹣1)=4m 2+4m +1﹣4m 2+4=4m +5≥0,∴m ≥54-. ∴a 2﹣ab +b 2 =(a +b )2﹣3ab=(2m +1)2﹣3(m 2﹣1)=4m 2+4m +1﹣3m 2+3=m 2+4m +4=(m +2)2,∴a 2﹣ab +b 2的最小值为:2592416⎛⎫-+= ⎪⎝⎭. 故答案为:916. 【点睛】本题考查了一元二次方程根与系数的关系,以及利用二次函数的性质求解代数的最值,灵活利用韦达定理及根的判别式,是解决本题的关键,熟悉用函数的思想解决最值问题也是关键点.18.已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出 一组满足条件的,a b 的值:a =__________,b =_________________【分析】根据判别式的意义得到△=b2-4a=0然后a 取一个不为0的实数再确定对应的b 的值【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x 轴只有一个交点∴△=b2-4a=0若a=1则b 可解析:12【分析】根据判别式的意义得到△=b 2-4a=0,然后a 取一个不为0的实数,再确定对应的b 的值.【详解】解:∵二次函数y=ax 2+bx+1(a≠0)的图象与x 轴只有一个交点,∴△=b 2-4a=0,若a=1,则b 可取2.故答案为1,2(答案不唯一).【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.19.已知二次函数2(0)y ax bx c a =++≠的对称轴为直线1x =-,与x 轴的一个交点B的坐标为()1,0其图象如图所示,下列结论:①0abc <;②20a b -=;③当0y >时,1x >;④320b c +>;⑤当0x <时,y 随x 的增大而减小;其中正确的有____.(只填序号)①②【分析】根据开口向上故;对称轴再y 轴的的左边根据同左异右故抛物线交y 轴的下方;对称轴为故有即抛物线与x 轴的交点有两个根据对称性可以得到交点为等信息利用这些信息进行答题【详解】解:根据开口向上故;解析:①②【分析】根据开口向上,故0a > ;对称轴再y 轴的的左边,根据“同左异右”,故0b > ,抛物线交y 轴的下方;对称轴为1x =-,故有12b a-=- 即2b a =,抛物线与x 轴的交点有两个,根据对称性可以得到交点为121,3x x ==-等信息,利用这些信息进行答题.【详解】解:根据开口向上,故0a > ;对称轴再y 轴的的左边,根据“同左异右”,故0b > ,抛物线交y 轴的下方,故0c < ,因此0abc <①正确对称轴为1x =-,故有12b a-=- 即2b a = 故②20a b -=也正确 由抛物线知道,抛物线与x 轴的交点有两个,根据对称性可以得到交点为121,3x x ==- 当当0y >时,图形上是在x 轴的上方,有1x >或者3x <- 故③错误当x=1是,由图可以知道0a b c ++= 即2220a b c ++= 由2b a =,便有320b c += 故④错误由图形可以知道当1x <-时,y 随x 的增大而减小,当1x ≥-时,y 随x 的增大而增大,故⑤错误故答案为①②【点睛】本题考查二次函数图像,从图像中获取信息是关键,20.如图,抛物线 y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①2a +b =0;②b 2-4ac <0;③当y >0时,x 的取值范围是 -1<x <3;④当 x >0时,y 随x 增大而增大;⑤若t 为任意实数,则有a+b≥at 2+bt .其中结论正确的是_________.①③⑤【分析】根据二次函数的图象及性质即可判断【详解】解:由图象可知:该抛物线的对称轴为x=1∴抛物线与x 轴的另外一个交点为:(30)∵对称轴为x=−=1从而可知:2a+b=0故①正确;∵抛物线与x解析:①③⑤【分析】根据二次函数的图象及性质即可判断.【详解】解:由图象可知:该抛物线的对称轴为x=1,∴抛物线与x 轴的另外一个交点为:(3,0)∵对称轴为x=−2b a=1, 从而可知:2a+b=0,故①正确;∵抛物线与x 轴有两个交点(-1,0),(3,0)∴△=b 2-4ac >0,而②b 2-4ac <0,故②错误;由图象可知:当y >0时,x 的取值范围是-1<x <3,故③正确;由图象可知:当x <1时,y 随x 增大而增大,故④错误;若t 为任意实数,x=1时,函数取得最大值,故a+b+c≥at 2+bt+c ,∴a+b≥at 2+bt ,故⑤正确,所以,结论正确的是①③⑤.故答案为:①③⑤.【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.三、解答题21.如图,在平面直角坐标系中,点1A ,2A ,3A ,……,n A 和1C ,2C ,3C ,……,n C 均在抛物线2y x 上,点1B ,2B ,3B ,……,n B 在y 轴的正半轴上,若四边形111OA B C ,四边形1222B A B C ,四边形2333B A B C ,……,四边形1n n n n B A B C 都是正方形.(1)分别写出点1A ,1B ,1C 的坐标;(2)分别求出正方形2333B A B C 和正方形1n n n n B A B C -的面积.解析:(1)1A (1,1),1B (0,2),1C (-1,1)(2)223⨯ ,22n ⨯.【分析】(1)直接根据图象以及二次函数的解析式求出点的坐标即可;(2)表示出正方形所在的直线解析式,求出每一个正方形的面积,找出规律即可;【详解】解:(1)∵四边形111A OC B 是正方形且关于y 轴对称,∴ ∠11AOB =45°,又∵点1A 在二次函数图象上, 设1A (x ,x),∴2x x = 且x >0,∴x=1即点1A (1,1),∴1OA 2 ,12OB = ,∴1A (1,1),1B (0,2),1C (-1,1);(2)根据正方形的性质,1OA 与y 轴的夹角为45°,故直线1OA 解析式为y x =,∵1B (0,2),求得直线11C B 的解析式为2y x =+,进而求得2A (2,4),2C (-2,4),2B (0,6),同时求得3B (0,12) ,于是12OB =,124B B =,236B B =,正方形111OA B C 面积=12222⨯⨯=,正方形1222B A B C 面积=21448=222⨯⨯=⨯, 正方形2333B A B C 面积=216618=232⨯⨯=⨯, 正方形1n n n n B A B C -的面积=212222n n n ⨯⨯=⨯; 【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形所在的直线解析式,求出每一个正方形的面积,找出规律是解题的关键;22.某厂生产一种玩具,成本价是8元∕件,经过调查发现,每天的销售量y (件)与销售单价x (元)存在一次函数关系10600 y x =-+.(1)销售单价定为多少时,该厂每天获得的利润最大?最大利润是多少?(2)若物价部门规定,该产品的最高销售单价不得超过30元,那么销售单价如何定位才能获得最大利润?解析:(1)34,6760元;(2)当销售单价定为30元时,才能获得最大利润.【分析】(1)根据题意,可以写出利润与销售单价之间的函数关系式,然后根据二次函数的性质,即可得到销售单价定为多少时,该厂每天获取的利润最大,最大利润为多少;(2)根据(1)中利润与单价之间的函数关系式和物价部门规定,该产品的最高销售单价不得超过30元,可以得到当单价为30时,才能获得最大利润.【详解】解:(1)设该厂每天获得的利润为w 元,2810600106804800W x x x x210x 346760 当x 34=时,W 有最大值6760元因此,当销售单价定为34元时,该厂每天获得的利润最大,最大利润是6760元. (2)由(1)可知210346760W x∴函数图像开口向下,对称轴为34x =,∵最高销售单价不得超过30元,∴当x =30时,w 取得最大值,此时210303467606600W, 因此,当销售单价定为30元时,才能获得最大利润是6600元.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答. 23.已知二次函数y =(x ﹣1)(x ﹣m )(m 为常数)(1)求证:不论m 为何值,该函数的图象与x 轴总有公共点;(2)当m 的值变化时,该函数图象的顶点在下列哪个函数的图象上? . A .y =x ﹣1 B .y =﹣x ﹣1 C .y =﹣(x+1)2 D .y =﹣(x ﹣1)2解析:(1)见解析;(2)D【分析】(1)根据已知函数解析式得到抛物线与x 轴的两点交点横坐标:x 1=1,x 2=m ,据此证得结论;(2)根据顶点式先得到抛物线的顶点坐标为(-m ,m ),然后分别代入四个解析式中看是否满足解析式,再进行判断.【详解】(1)证明:当y =0时,(x ﹣1)(x ﹣m )=0.解得x 1=1,x 2=m .当m =1时,方程有两个相等的实数根;当m≠1时,方程有两个不相等的实数根.所以,不论m 为何值,该函数的图象与x 轴总有公共点.(2)由二次函数y =(x ﹣1)(x ﹣m )=(x ﹣12m +)2+m ﹣2(1)4m +得到该抛物线的顶点坐标是(12m +,m ﹣2(1)4m +), 而点(12m +,m ﹣2(1)4m +)满足y =﹣(x ﹣1)2,不满足y =x ﹣1,y =﹣x ﹣1,y =﹣(x+1)2,∴点(12m +,m ﹣2(1)4m +)在函数y =﹣(x ﹣1)2上. 故答案是:D .【点睛】本题主要考查了二次函数图象上点的坐标特征,抛物线与x 轴的交点,二次函数的性质等知识点,需要掌握二次函数与一元二次方程间的关系,二次函数三种形式.24.如图,Rt △OAB 中,∠OAB=90°,O 为坐标原点,边OA 在x 轴上,OA=AB=2个单位长度,把Rt △OAB 沿x 轴正方向平移2个单位长度后得△11AA B .(1)求以A 为顶点,且经过点1B 的抛物线的解析式;(2)若(1)中的抛物线与OB 交于点C ,与y 轴交于点D ,求点D 、 C 的坐标.解析:(1)()2122y x =-;(2)()0,2D ,(35,35C 【分析】(1)根据三角形的边长求出点A 和点1B 的坐标,设抛物线解析式为()22y a x =-,代入点1B 坐标求出解析式;(2)令0x =,求出y 的值,得到点D 的坐标,再求出直线OB 的解析式和抛物线联立求出点C 的坐标.【详解】解:∵2OA =,∴()2,0A ,∵14OA =,112A B =,∴()14,2B ,设抛物线解析式为()22y a x =-,把点()14,2B 代入,得42a =,解得12a =, ∴()2122y x =-; (2)令0x =,得1422y =⨯=, ∴()0,2D ,设直线OB 解析式为y kx =,把点()2,2B 代入,得到22k =,解得1k =,∴直线OB 解析式为y x =,联立直线和抛物线的解析式,得()2122x x -=,解得35x =±, 根据点C 的位置,取35x =-,∴()35,35C --.【点睛】本题考查二次函数,解题的关键是掌握求二次函数的解析式的方法,求抛物线和直线交点的方法.25.如图已知抛物线2y x bx c =-++与x 轴交于(1,0)A -,(3,0)B 两点与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)如图,连接BC ,PB ,PC ,设PBC 的面积为S .①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.解析:(1)2y x 2x 3=-++;(2)①23922S t t =-+;②最大值928,此时P 坐标315,24⎛⎫ ⎪⎝⎭【分析】(1)由点A 、B 坐标,利用待定系数法求解抛物线的表达式即可;(2)①过点P 作PH ⊥x 轴于H ,设点P 坐标为(t ,223t t -++),由PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形即可表示出S 关于t 的函数表达式;②由于BC 为定值,所以点P 到直线BC 的距离最大时即为S 最大,根据二次函数的性质求出S 的最大值,利用勾股定理求出线段BC 的长,再利用等面积法求出点P 到直线BC 的距离的最大值,进而可求出此时的点P 坐标.【详解】解:(1)将点A (﹣1,0)、B (3,0)代入2y x bx c =-++中,得:10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩, ∴,抛物线的表达式为2y x 2x 3=-++;(2)①过点P 作PH ⊥x 轴于H ,如图,当x=0时,y=3,∴C (0,3),OC=3,∵点P 的坐标为(t ,223t t -++)且点P 在第一象限,∴PH=223t t -++,OH=t ,BH=3﹣t ,∴PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形=22111(233)(3)(23)33222t t t t t t ⋅-+++⋅+⋅-⋅-++-⨯⨯ =23922t t -+, ∴S 关于t 的函数关系式为S=23922t t -+(t >0);②由S=23922t t -+= 23327()228t --+,且32-<0,得: 当t= 32时,S 有最大值,最大值为278, ∵OB=3,OC=3,∴BC= 2232OB OC +=,∵当t=32时,223t t -++=23315()23224-+⨯+= ∴点P 到直线BC 的距离的最大值为272928832⨯=,此时,点P 的坐标为(32,154). 【点睛】本题考查了待定系数法求二次函数的解析式、坐标与图形的性质、二次函数的性质、割补法求三角形的面积,解答的关键是认真审题,寻找知识点的关联点,利用待定系数法、割补法和数形结合思想进行推理、探究和计算.26.在平面直角坐标系xOy 中,抛物线223=+-y mx mx 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,4AB =.(1)直接写出抛物线的对称轴为直线____,点A 的坐标为___.(2)求抛物线的解析式(化为一般式);(3)若将抛物线223=+-y mx mx 沿x 轴方向平移()0n n >个单位长度,使得平移后的抛物线与线段AC 恰有一个公共点,结合函数图象,回答下列问题:①若向左平移,则n 的取值范围是______.②若向右平移,则n 的取值范围是______.解析:(1)1x =-,()3,0-;(2)223y x x =+-;(3)①04n <≤,②02n <≤ 【分析】(1)由对称轴为直线x=-2b a,可求解; (2)将点B 坐标代入可求解; (3)设向左平移后的解析式为:y =(x +1+n )2-4,设向右平移后的解析式为:y =(x +1-n )2-4,利用特殊点代入可求解.【详解】解:(1)∵抛物线y =mx 2+2mx -3的对称轴为直线x =22m m=-1,AB=4, ∴点A (-3,0),点B (1,0),故答案为:x =-1,(-3,0);(2)∵抛物线y =mx 2+2mx -3过点B (1,0),∴0=m +2m -3,∴m =1,∴抛物线的解析式:y =x 2+2x -3,(3)如图,∵y =x 2+2x -3=(x +1)2-4,∴设向左平移后的解析式为:y =(x +1+n )2-4,把x =-3,y =0代入解析式可得:0=(-3+1+n )2-4,∴n =0(舍去),n =4,∴向左平移,则n 的取值范围是0<n ≤4;设向右平移后的解析式为:y =(x +1-n )2-4,把x =0,y =-3代入解析式可得:-3=(1-n )2-4,∴n =0(舍去),n =2,∴向右平移,则n 的取值范围是0<n ≤2,故答案为:0<n ≤4;0<n ≤2.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,平移的性质等知识,灵活运用这些性质解决问题是本题的关键.27.某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货。

第8讲 二次函数的解析式和图象变换(学生版)

第8讲 二次函数的解析式和图象变换(学生版)

知识导航经典例题1在平面直角坐标系中,抛物线2已知二次函数的图象以3已知抛物线4在平面直角坐标系中,二次函数5若二次函数知识导航经典例题1如果将抛物线2如果将某一抛物线向右平移3将抛物线4已知抛物线知识导航经典例题1将二次函数2抛物线3将二次函数4先作二次函数1在平面直角坐标系中,抛物线2如图,已知抛物线帝通过数来统治宇宙。

这是毕达哥拉斯学派和其他教派的主要区别。

他们很重视数学,企图用数来解释一切。

宣称数是宇宙万物的本原,研究数学的目的并不在于使用而是为了探索自然的奥秘。

他们从五个苹果、五个手指等事物中抽象出了五这个数。

这在今天看来很平常的事,但在当时的哲学和实用数学界,这算是一个巨大的进步。

但是,他们同时任意地把非物质的、抽象的数夸大为宇宙的本原,认为'万物皆数','数是万物的本质',是'存在由之构成的原则',而整个宇宙是数及其关系的和谐的体系。

毕达哥拉斯将数神秘化,说数是众神之母,是普遍的始原,是自然界中对立性和否定性的原则。

毕达哥拉斯本人以发现勾股定理(西方称毕达哥拉斯定理)著称于世。

这定理早已为巴比伦人所知,不过最早的证明大概可归功于毕达哥拉斯。

他是用演绎法证明了直角三角形斜边平方等于两直角边平方之和,即毕达哥拉斯定理(勾股定理)。

任何一个学过代数或几何的人,都会听到毕达哥拉斯定理。

这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.【毕达哥拉斯定理】毕达哥拉斯对数论作了许多研究,将自然数区分为奇数、偶数、素数、完全数、平方数、三角数和五角数等。

在几何学方面,毕达哥拉斯学派证明了'三角形内角之和等于两个直角'的论断;研究了黄金分割;发现了正五角形和相似多边形的作法;还证明了正多面体只有五种:正四面体、正六面体、正八面体、正十二面体和正二十面体。

【黄金分割】然而,最让毕达哥拉斯学派出名的却是他们中的一个'叛逆者'--希帕索斯,正是他发现了第一个无理数根号2的存在,从而在当时的数学界掀起了一场巨大风暴。

2022-2023学年北京市铁路第二中学九年级上学期数学期中考试试卷带讲解

2022-2023学年北京市铁路第二中学九年级上学期数学期中考试试卷带讲解
【详解】解:根据题意得二次函数 的图象在对称轴右侧y随x的增大而减小,
∵ ,
∴ ,
∴ .
故答案为:<
【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
13.如图,△ABC中∠B=50°,在同一平面内,将△ABC绕点A逆时针旋转到△ADE,使AD⊥BC,连接CE,则∠ACE=_______________°.
D、整理整理为 , ,则方程有两个不相等的实数根,所以该选项不符合题意.
故选:A.
【点睛】本题考查了根的判别式:一元二次方程 (a≠0)的根与 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.
7.抛物线 和 的对称轴分别是()
A.y轴,直线 B.直线 , C.直线 ,直线 D.y轴,直线
(2)若方程有一个根大于4且小于8,求m的取值范围.
【答案】(1)见解析;
(2) .
【分析】(1)先计算判别式的值得到 ,利用非负数的性质得 ,然后根据判别式的意义判断根的情况;
17.解下列方程
(1)用公式法解一元二次方程: ;
(2)用适当的方法解方程 ;
【答案】(1)
(2)
【分析】(1)先计算 再利用求根公式解方程即可;
(2)先移项,提取公因式 把方程化为两个一次方程,再解一次方程即可.
【小问1详解】
解: ,




【小问2详解】




∴ 或
解得:
【点睛】本题考查的是一元二次方程的解法,掌握“公式法与因式分解的方法解一元二次方程”是解本题的关键.
(6)观察函数 的图象的交点个数可得答案.

(常考题)人教版初中数学九年级数学上册第二单元《二次函数》测试(有答案解析)(3)

(常考题)人教版初中数学九年级数学上册第二单元《二次函数》测试(有答案解析)(3)

一、选择题1.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( )A .先向左平移4个单位,在向上平移1个单位B .先向左平移4个单位,在向下平移1个单位C .先向右平移4个单位,在向上平移1个单位D .先向右平移4个单位,在向下平移1个单位2.如图所示,二次函数2y ax bx c =++的图象中,对称轴是直线1x =,王刚同学观察得出了下面四条信息:①1c >;②若()12,y ,()24,y 是抛物线上两点,则12y y >;③420a b c -+<;④方程20ax bx c ++=的两根是11x =-,23x =.其中说法正确的有( )A .①②③④B .②④C .①②④D .①③④3.如图是二次函数y =ax 2+bx +c 的图像,对于下列说法:①abc >0,②240b ac ->,③a +b +c <0,④当x >0时,y 随x 的增大而增大,其中正确的个数是( )A .1B .2C .3D .4 4.抛物线2(2)3y x =-+的对称轴是( )A .直线2x =-B .直线3x =C .直线1x =D .直线2x =5.在平面直角坐标系中抛物线2y x =的图象如图所示,已知点A 坐标为(1,1),过点A 作1//AA x 轴交抛物线于点A ,过点1A 作12//A A OA 交抛物线于点2A ,过点2A 作23//A A x 轴交抛物线于点3A 过点3A 作34//A A OA 交抛物线于点4A ,……则点2020A 的坐标为( )A .(1011, 21011)B .(-1011, 21011)C .(-1010, 21011)D .(1010, 21011)6.已知函数235y x =-+经过A (m ,1y )、B (m−1,2y ),若12y y >.则m 的取值范围是( ) A .0m ≤B .12m <C .102m <<D .12m <<7.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >>8.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .7.9(12)y x =+B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++9.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( )A .0ac >B .方程20ax bx c ++=的两根是1213x x =-=, C .20a b -=D .当x>0时,y 随x 的增大而减小.10.二次函数2y ax bx c =++的图象如图所示,下列结论中:①20a b +>;②()a b m am b +≠+(1m ≠的实数);③2a c +>;④在10x -<<中存在一个实数0x 、使得0a bx a+=-其中正确的有( )A .1个B .2个C .3个D .4个 11.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( ) A .x =-3B .x =-1C .x =-2D .x =412.二次函数2y ax bx c =++的图象如图所示,下列结论正确的是( )A .0abc >B .0a b c ++=C .420a b c ++=D .240b ac -<二、填空题13.对于抛物线243y x x =-+,当712x -<<时,关于x 的一元二次方程2430x x t -+-=有解,则t 的取值范围是 ______.14.如果抛物线y =x 2﹣6x +c 的顶点到x 轴的距离是3,那么c 的值等于____. 15.将抛物线2(3)2y x =--向左平移3个单位后的解析式为______.16.高尔夫球运动是一项具有特殊魅力的运动,运动员会利用不同的高尔夫球杆将高尔夫球打进球洞,从而使其在优美的自然环境中锻炼身体,并陶冶情操. 如图,某运动员将一只高尔夫球沿某方向击出时,小球的飞行路线是一条抛物线. 如果不考虑空气阻力等因素,小球的飞行高度 h (单位:米)与飞行时间 t (单位:秒)之间满足函数关系2205h t t =- .则小球从飞出到落地瞬间所需的时间为________秒.17.单行隧道的截面是抛物线形,且抛物线的解析式为21 3.258y x =-+,一辆车高3米,宽4米,该车________(填“能”或“不能”)通过该隧道.18.在平面直角坐标系中,点A 是抛物线()24y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且//AB x 轴,则以AB 为边的等边三角形ABC 的周长为_____.19.已知抛物线243y x x =-+与x 轴交于A 、B 两点,P 为抛物线上一点,且1APB S ∆=,则P 的坐标为_______.20.抛物线y =x²-x 的顶点坐标是________三、解答题21.已知:直线2l y x =+:与过点(0,2)-且平行于x 轴的直线交于点A ,点A 关于直线1x =- 的对称点为点B . (1)求A B 、两点的坐标;(2)若抛物线2y x bx c =-++的顶点(,)m n 在直线l 上移动.①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,求抛物线解析式;②若抛物线2y x bx c =-++与线段AB 有交点,当抛物线的顶点(,)m n 向上运动时,抛物线与y 轴的交点也向上运动,求m 的取值范围.22.已知抛物线23y ax bx =++经过点()3,0-,()2,5-.求此抛物线的解析式. 23.已知二次函数2(21)3y x m x m =-+-.(1)若2m =,写出该函数的表达式,并求出函数图象的对称轴.(2)已知点()1,P m y ,()24,Q m y +在该函数图象上,试比较1y ,2y 的大小. (3)对于此函数,在13x -≤≤的范围内函数最大值为-2,求m 的值.24.已知抛物线2221y x x m =--+,直线2y x =-与x 轴交于点M ,与y 轴交于点N . (1)求证:抛物线与x 轴必有公共点;(2)若抛物线与x 轴交于A 、B 两点,且抛物线的顶点C 落在此直线上,求ABC 的面积;(3)若线段MN 与抛物线有且只有一个公共点,求m 的取值范围.25.为了在体育中考中取得更好地成绩,小明积极训练.在某次试投中,实心球经过的路线是如图所示的抛物线的一部份.已知实心球出手处A 距离地面的高度是169米,当实心球运行的水平距离为3米时,达到最大高度259米的B 处,实心球的落地点为C . (1)如图,已知AD CD ⊥于D ,以D 为原点,CD 所在直线为x 轴建立平面直角坐标系,在图中画出坐标系,点B 的坐标为________; (2)小明此次投掷的成绩是多少米?26.如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A 'B 'O .一抛物线经过点A '、B '、B .(1)求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB 'A 'B 的面积是△A 'B 'O 面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况.【详解】解:抛物线y=2x2的顶点坐标为(0,0),抛物线y=2(x-4)2+1的顶点坐标为(4,1),而点(0,0)先向右平移4个单位,再向上平移1个单位可得到点(4,1),所以抛物线y=2x2先向右平移4个单位,再向上平移1个单位得到抛物线y=2(x+4)2+1.故选:C.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.2.A解析:A【分析】由OC与OA的大小对①进行判断;利用二次函数的性质对②进行判断;利用x=-2时,y <0可对③进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点为(3,0),然后根据抛物线与x轴的交点问题可对④进行判断.【详解】∵抛物线与y轴的交点在x轴的上方,且OC>1,∴c>1,所以①正确;∵抛物线的对称轴为直线x=1,而点(2,y 1)到直线x=1的距离小于点(4,y 2)到直线x=1的距离相等, ∴y 1>y 2,所以②正确; ∵x=-2时,y <0,∴4a-2b+c <0,所以③正确;∵抛物线的对称轴为直线x=1,而抛物线与x 轴的一个交点为(-1,0), ∴抛物线与x 轴的另一个交点为(3,0),∴方程ax 2+bx+c=0的两根是x 1=-1,x 2=3,所以④正确. 故选:A . 【点睛】考查了二次函数图象与系数的关系,解题关键是熟记二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.3.C解析:C 【分析】根据抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上即可求出a 、b 、c 的正负,即可判断①;根据抛物线与x 轴的交点坐标即可判断②;把x=1代入抛物线即可判断③;求出抛物线的对称轴,根据图象即可判断④. 【详解】解:∵抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上, ∴a >0,-2ba>0,c <0, 即b <0, ∴abc >0, ∴①正确;由抛物线与x 轴有两个交点, ∴△=b 2-4ac >0,故②正确; 由图象可知:x=1时,y=a+b+c <0, 故③正确;由图象可得,当0<x<-2ba时,y 随着x 的增大而减小,故④错误; ∴正确的个数有3个. 故选:C . 【点睛】本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力.解析:D 【分析】直接利用二次函数对称轴求法得出答案. 【详解】解:抛物线y=(x-2)2+3的对称轴是:直线x=2. 故选:D . 【点睛】此题主要考查了二次函数的性质,正确掌握对称轴确定方法是解题关键.5.A解析:A 【分析】根据二次函数性质可得出点A 1的坐标,求得直线A 1A 2为y =x +2,联立方程求得A 2的坐标,即可求得A 3的坐标,同理求得A 4的坐标,即可求得A 5的坐标,根据坐标的变化找出变化规律,即可找出点A 2020的坐标. 【详解】∵A 点坐标为(1,1), ∴直线OA 为y =x ,A 1(−1,1), ∵A 1A 2∥OA , 设直线A 1A 2为y =x +b 把A 1(−1,1)代入得1=-1+b 解得b=2∴直线A 1A 2为y =x +2, 解22y x y x=+⎧⎨=⎩ 得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩,∴A 2(2,4), ∴A 3(−2,4), ∵A 3A 4∥OA ,设直线A 3A 4为y =x +n ,把A 3(−2,4)代入得4=-2+n ,解得n=6 ∴直线A 3A 4为y =x +6, 解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴A 4(3,9), ∴A 5(−3,9)同理求出A 6(4,16),A 7(-4,16)A 8(5,25),A 9(-5,25)A 10(6,36),A 11(-6,36)∴A 2n 为22222,22n n ⎡⎤++⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∴A 2020(1011,10112), 故选A . 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.6.B解析:B 【分析】由235y x =-+图像开口向下,对称轴为y =0知,要使12y y >,需使A 点更靠近对称轴y轴,由此列出关于m 的不等式解之即可 . 【详解】解:∵235y x =-+图像开口向下,对称轴为y =0且12y y >∴1m m <-,下面解此不等式.第一种情况,当m <0时,得1m m -<-,解得m <0;第二种情况,当01m ≤<时,得1m m <-,解得12m <; 第三种情况,当m 1≥时,得1m m <-,解得,无解;综上所述得12m <. 故选:B . 【点睛】此题考查二次函数的图像与性质,比较图像上两点的函数值.其关键是,当二次函数开口向下时,图像上的点越靠近对称轴时,函数值越大;当二次函数开口向上时,图像上的点越靠近对称轴时,函数值越小.7.C解析:C 【分析】根据函数解析式的特点为顶点式,其对称轴为x=-3,图象开口向下;根据二次函数图象的对称性,利用在对称轴的左侧,y 随x 的增大而增大,可判断y 2>y 1>y 3. 【详解】由二次函数y =a (x +3)2+k 可知对称轴为x =−3,根据二次函数图象的对称性可知,()22,B y -与2(4,)D y -对称,∵点()15,A y -,()36.5,C y -, 2(4,)D y -)在对称轴的左侧,y 随x 的增大而增大, ∵-4>-5>-6.5,∴y 2>y 1>y 3, 故选C. 【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.8.C解析:C 【分析】根据平均每个季度GDP 增长的百分率为x ,第三季度季度GDP 总值约为7.9(1+x )元,第四季度GDP 总值为7.9(1+x )2元,则函数解析式即可求得. 【详解】解:设平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是:y=7.9(1+x )2.故选:C . 【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键.9.B解析:B 【解析】 解:A 、∵抛物线开口向下,与y 轴交于正半轴,∴a <0,c >0,ac <0,故本选项错误;B 、∵抛物线对称轴是x=1,与x 轴交于(3,0),∴抛物线与x 轴另一交点为(-1,0),即方程ax2+bx+c=0的两根是x1=-1,x2=3,故本选项正确;C 、∵抛物线对称轴为,∴b=-2a ,∴2a+b=0,故本选项错误;D 、∵抛物线对称轴为x=1,开口向下,∴当x >1时,y 随x 的增大而减小,故本选项错误. 故选B .根据抛物线的开口方向,对称轴,与x 轴、y 轴的交点,逐一判断.10.B解析:B 【分析】根据二次函数的图象与性质逐项判定即可求出答案. 【详解】解:①由抛物线的对称轴可知:12ba-< 由抛物线的图象可知:a >0,∴-b <2a ,∴2a+b >0,故①正确;②当x=1时,y=a+b+c=0,当y=ax 2+bx+c=0,∴x=1或x=m ,∴当m≠1时,a+b=am 2+bm ,故②错误;③由图象可知:x=-1,y=2,即a-b+c=2,∵a+b+c=0,∴b=-1,∴c=1-a∴a+c=a+1-a=1<2,故③错误;④由于a+b=-c=a-1,∵c <0,∴a-1>0,∴a >1,∴0<11a< ∵x 0=111,a a a--=-+ ∴-1<-1+1a <0 ∴-1<x 0<0,故④正确;故选:B .【点睛】本题考查二次函数的图象与性质,解题的关键是应用数形结合思想解题.11.C解析:C【分析】根据二次函数图象的平移规律得出平移后的抛物线的解析式,由此即可得出答案.【详解】由题意,平移后的抛物线的解析式为2213()3y x =-+-,即22(2)3y x =+-, 则此时抛物线的对称轴是直线2x =-,故选:C .【点睛】本题考查了二次函数图象的平移、二次函数的对称轴,熟练掌握二次函数图象的平移规律是解题关键. 12.C解析:C【分析】由二次函数的开口方向,对称轴0x >,以及二次函数与y 的交点在x 轴的上方,与x 轴有两个交点等条件来判断各结论的正误即可.【详解】A 、观察图象,二次函数的开口向下,∴0a <,与y 轴的交点在x 轴上方,∴0c >,又∵对称轴为2b x a =-,在x 轴的正半轴上, 故02b x a=->,即0b >. ∴0abc <,故选项A 不正确;B 、观察图象,抛物线对称轴为直线12122x -+== ∴在对称轴右侧,当1x =时,函数值0y a b c =++>,故选项B 不正确; C 、观察图象,当2x =时,函数值420y a b c =++=,故选项C 正确;D 、∵二次函数与x 轴有两个交点,∴240b ac =->,故D 不正确.故选:C .【点睛】本题考查了二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键. 二、填空题13.﹣1≤t <8【分析】结合直角坐标系将一元二次方程转化成二次函数与一次函数图象相交的问题确定二次函数在上的取值范围即可求解【详解】解:当时关于x 的一元二次方程有解∴即在图象上和在相交∵当x=2时有最小 解析:﹣1≤t <8【分析】结合直角坐标系,将一元二次方程转化成二次函数与一次函数图象相交的问题,确定二次函数 21=43y x x -+在712x -<<上的取值范围即可求解. 【详解】 解:当712x -<<时,关于x 的一元二次方程2430x x t -+-=有解, ∴243x x t -+= 即在图象上21=43y x x -+和2=y t 在712x -<<相交, ∵()21=21y x -- 当x=2时,1y 有最小值﹣1当x =﹣1是,1y 有最大值8 即当712x -<<是,﹣1≤y 1<8 ∴﹣1≤t <8故答案为:﹣1≤t <8【点睛】本题主要考查二次函数与一次函数交点的问题,解题的关键是正确理解题意,将方程转化为二次函数与一次函数相交的问题. 14.c=6或12【分析】根据题意得顶点的纵坐标是3或-3列出方程求出解则可【详解】解:根据题意得:±3解得:c=6或12故答案为:c=6或12【点睛】本题考查了二次函数的性质熟记顶点的纵坐标公式是解题的解析:c =6或12【分析】根据题意得顶点的纵坐标是3或-3,列出方程求出解则可.【详解】解:根据题意得:24(6)4c --=±3, 解得:c =6或12.故答案为:c =6或12.【点睛】本题考查了二次函数的性质,熟记顶点的纵坐标公式是解题的关键.15.【分析】根据得到该抛物线的顶点坐标为(3-2)将该点向左平移3个单位后得到的点的坐标为(0-2)即可得到解析式;【详解】∵抛物线∴顶点坐标为(3-2)∴向左平移3个单位后得到新的坐标为(0-2)∴平解析:22y x =-【分析】根据2(3)2y x =--得到该抛物线的顶点坐标为(3,-2),将该点向左平移3个单位后得到的点的坐标为(0,-2),即可得到解析式;【详解】∵抛物线2(3)2y x =--∴顶点坐标为(3,-2),∴向左平移3个单位后得到新的坐标为(0,-2),∴平移后的解析式22(33)22y x x =-+-=-.【点睛】本题考查了二次函数图象的平移变换,正确掌握二次函数平移的方法是解题的关键; 16.4【分析】根据函数关系式当h=0时0=20t-5t2解方程即可解答【详解】由题意得:20t-5t2=0解之:t1=0(不符合题意)t2=4∴小球从飞出到落地瞬间所需的时间为4秒故答案为:4【点睛】本解析:4【分析】根据函数关系式,当h=0时,0=20t-5t 2,解方程即可解答.【详解】由题意得:20t-5t 2=0,解之:t 1=0(不符合题意),t 2=4.∴小球从飞出到落地瞬间所需的时间为4秒.故答案为:4.【点睛】本题主要考查了二次函数与一元二次方程的关系,根据题意建立方程是解决问题的关键. 17.不能【分析】根据题意将x=2代入求出相应的y 值然后与车高比较大小即可解答本题【详解】解:将x=2代入y=-x2+325得y=-×22+325=275∵275<3∴该车不能通过隧道故答案为:不能【点睛解析:不能.【分析】根据题意,将x=2代入求出相应的y 值,然后与车高比较大小即可解答本题.【详解】解:将x=2代入y=-18x 2+3.25,得 y=-18×22+3.25=2.75, ∵2.75<3,∴该车不能通过隧道,故答案为:不能.【点睛】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件. 18.24【分析】根据抛物线的解析式即可确定对称轴则可以确定AB 的长度然后根据等边三角形的周长公式即可求解【详解】抛物线的对称轴是过点作于点如下图所示则则则以为边的等边的周长为故答案为24【点睛】此题考查 解析:24【分析】根据抛物线的解析式即可确定对称轴,则可以确定AB 的长度,然后根据等边三角形的周长公式即可求解.【详解】抛物线2(4)y a x k =-+的对称轴是4x =过C 点作CD AB ⊥于点D ,如下图所示则4=AD ,则28AB AD ==则以AB 为边的等边ABC 的周长为2483=⨯.故答案为24.【点睛】此题考查了二次函数的性质,根据抛物线的解析式确定对称轴,从而求得AB 的长是关键.19.(2-1)或(2-1)或(2+1)【分析】当y=0时求得x 的值确定AB 的长设点P 坐标为根据三角形面积公式列方程求解即可【详解】解:当y=0时解得:∴AB=2设点P 坐标为∴∴当时解得x=2此时P 点坐标解析:(2,-1)或(21),或(2,1).【分析】当y=0时,求得x 的值,确定AB 的长,设点P 坐标为2(,43)x x x -+,根据三角形面积公式列方程求解即可.【详解】解:当y=0时,243=0x x -+解得:121,3x x ==∴AB=2设点P 坐标为2(,43)x x x -+, ∴214312APB S AB x x ∆=-+= ∴2431x x -+=当2431x x -+=-时,解得x=2,此时P 点坐标为(2,-1)当2431x x -+=时,解得12=2+222x x =,P 点坐标为(2,1),或(2,1)综上,P 的坐标为:(2,-1)或(21),或(2,1)故答案为:(2,-1)或(2,1),或(2,1).【点睛】本题考查二次函数与图形,利用数形结合思想列方程求解是解题关键.20.【分析】先把函数解析式配成顶点式得到然后根据顶点式即可得到顶点坐标【详解】解:所以抛物线的顶点坐标为故答案为:【点睛】本题考查了二次函数的性质解题的关键是熟练掌握将二次函数的一般形式化为顶点式解析:11,24⎛⎫- ⎪⎝⎭【分析】 先把函数解析式配成顶点式得到21124()y x =--,然后根据顶点式即可得到顶点坐标. 【详解】 解:2211()24y x x x =-=--, 所以抛物线的顶点坐标为11,24⎛⎫- ⎪⎝⎭, 故答案为:11,24⎛⎫- ⎪⎝⎭. 【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握将二次函数的一般形式化为顶点式.三、解答题21.(1)()4,2A --;()2,2B -;(2)①244y x x =---;②43m -≤≤-或0<5m ≤【分析】(1)根据已知直线和对称点的性质即可求出A 、B .(2)①根据抛物线的顶点为直线2l y x =+:与x 轴的交点()2,0-求解即可;②根据已知条件判断出二次函数顶点的位置,计算即可;【详解】(1)直线2l y x =+:与2y =-的交点为A ,则可得到:22x -=+,∴4x =-,∴点A 的坐标是()4,2--, 设(),2Bb -,点A 与点B 关于1x =-对称,则()()141b ---=--, ∴2b =,∴()2,2B -;(2)①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,此时抛物线的顶点为直线2l y x =+:与x 轴的交点()2,0-, 则222b b x a =-==-, ∴4b =-,代入顶点可得4c =-, ∴抛物线的解析式为244y x x =---;②抛物线2y x bx c =-++与线段AB 有交点,∴顶点坐标为(),2m m +,∴抛物线的解析式可化为()22y x m m =--++, 把点()4,2A --代入解析式可得,()2242m m -=---++,13m =-,24m =-,∴43m -≤≤-,把点()2.2B -代入解析式得, ()2222m m ---++=-, 30m =,45m =,∴0<5m ≤;综上所述:43m -≤≤-或0<5m ≤.【点睛】本题主要考查了二次函数与一次函数的综合,准确分析计算是解题的关键.22.223y x x =--+【分析】将点3,0,2,5代入抛物线23y ax bx =++解方程组求出b 、c 的值即可得答案.【详解】由题意得,93304235a b a b -+=⎧⎨++=-⎩解得,12a b =-⎧⎨=-⎩, 则二次函数的解析式为223y x x =--+.【点睛】本题考查待定系数法求二次函数解析式,把抛物线上的点的坐标代入解析式确定字母的值是解题关键.23.(1)256y x x =--,直线52x =;(2)21y y >;(3)4 【分析】(1)把m=2代入y=x 2-(2m+1)x-3m 即可求得函数的表达式,进而根据对称轴x=-2b a求得对称轴;(2)把P (m ,y 1),Q (m+4,y 2)两点代入y=x 2-(2m+1)x-3m 比较即可;(3)分132m +>,1132m -≤+≤,112m +<-三种情况,列式求解即可. 【详解】解:(1)2(21)3y x m x m =-+-,∴当2m =时,256y x x =--,对称轴:直线55222b x a -=-=-=, ∴函数的解析式为:256y x x =--,对称轴为:直线52x =. (2)2(21)3y x m x m =-+-,∴对称轴为直线(21)1222b m x m a -+=-=-=+, ∵抛物线开口向上,(,)P m y 距对称轴为:1122m m +-=, ()24,Q m y +距对称轴为:17422m m +--=, ∴Q 离对称轴更远,2y 值更大.21y y ∴>.(3)2(21)3y x m x m =-+-,∴对称轴为:12x m =+, ①当132m +>,即52m >, 当1x =-时,max 2y =-,12132m m ∴++-=-,4m ∴=,符合52m >. .②当1132m -≤+≤时,即3522m -≤≤,若1x =-时,y 取最大-2,12132m m ∴++-=-,解得4m =,不符合:3522m -≤≤(舍) 若3x =时,y 取最大-2,则93(21)32m m -+-=-,解得:89m =,符合3522m -≤≤, 当89m =时,对称轴:81259218x =+=, 2518x =离3x =距离为:2918, 2518x =离1x =-距离为:4318, ∴离1x =-更远,最大值应在1x =-处取得,与3x =处取最大值矛盾,故舍去.③当112m +<-时,即32m <-时,3x =处,取最大值,如图,93(21)32m m ∴-+-=-,解得:89x =, 不符合32m <-, 故舍去.综上所述,m 的值为4.【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,解题的关键是根据题意得到一元一次不等式.24.(1)见解析;(2)1;(3)m =或13m <或1m <- 【分析】(1)根据根的判别式2=4∆-b ac 的正负性,即可求证;(2)利用顶点的特点,求得点C 的坐标,将点C 坐标代入抛物线即可求得抛物线解析式,继而可得抛物线与x 的交点A 、B 坐标,继而根据三角形面积公式即可求解; (3)先求出点M 、N 的坐标,再分两种情况讨论即可:【详解】解:(1)∵()222(2)4140m m ∆=---+=≥∴抛物线与x 轴必有公共点.(2)∵2221y x x m =--+ ∴其定点C 的横坐标为1212--⨯= 又∵定点C 在直线2y x =-上,所以定点C 的坐标为(1,1)- 把点(1,1)-代入抛物线2221y x x m =--+中,解得21m =∴抛物线方程为22(2)y x x x x =-=-∴抛物线与x 轴的交点分别为(0,0)和(2,0)∴2AB = ∴1121122ABC C S AB y =⋅=⨯⨯= (3)当0x =时,2y =-,则N 为(0,2)- 当0y =时,20x -=,即M 为(2,0)∵拋物线的对称轴为1x =∴分两种情况:①由22221y x y x x m =-⎧⎨=--+⎩,得22330x x m --+=∴()22(3)410m ∆=---+=,解得2m =±时, 线段MN 与抛物线有且只有一个公共点;②当2210m --+<,解得13m <或1m <-时,线段MN 与抛物线有且只有一个公共点.综上所述,m 的取值范围是m =或13m <或1m <-.【点睛】本题考查二次函数与一次函数的综合问题,涉及到根的判别式,解题的关键是综合运用所学知识,特别是二次函数的性质,有一定的难度.25.(1)253,9B ⎛⎫ ⎪⎝⎭;(2)8米 【分析】 (1)根据题意直接写出坐标即可;(2)求出二次函数表达式,求C 点横坐标即可;【详解】(1)坐标系253,9B ⎛⎫ ⎪⎝⎭(2)设抛物线的表达式为225(3)(0)9y a x a =-+≠ 由抛物线经过点160,9A ⎛⎫ ⎪⎝⎭得21625(3)99a =-+解得19a =- 2125(3)99y x =--+ 0y =时,18x =,22x =-(舍)答:小明此次投掷的成绩是8米【点睛】此题考查利用二次函数解决实际问题,理解函数定义是关键26.(1)22y x x =-++;(2)存在,P (1,2).【分析】(1)利用旋转的性质得出A′(−1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S 四边形PB′A′B =S △B′OA′+S △PB′O +S △POB ,再假设四边形PB′A′B 的面积是△A′B′O 面积的4倍,得出一元二次方程,得出P 点坐标即可.【详解】解:(1)△A′B′O 是由△ABO 绕原点O 逆时针旋转90°得到的,又A (0,1),B (2,0),O (0,0),∴A′(−1,0),B′(0,2),∵A′(−1,0),B′(0,2),B(2,0),设抛物线的解析式为:y=a(x+1)(x−2)将B′(0,2)代入得出:2=a(0+1)(0−2),解得:a=−1,故抛物线的解析式为y=−(x+1)(x−2)=−x2+x+2;(2)∵P为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=−x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,=12×1×2+12×2×x+12×2×y,=x+(−x2+x+2)+1,=−x2+2x+3,∵A′O=1,B′O=2,∴△A′B′O面积为:12×1×2=1,假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=−x2+2x+3,即x2−2x+1=0,解得:x1=x2=1,此时y=−12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.【点睛】此题主要考查了待定系数法求二次函数的解析式,二次函数的性质,坐标和图形的变换−旋转,利用四边形PB′A′B的面积是△A′B′O面积的4倍得出等式方程求出x是解题关键.。

初中数学二次函数的图象与性质基础过关测试题3(附答案详解)

初中数学二次函数的图象与性质基础过关测试题3(附答案详解)

初中数学二次函数的图象与性质基础过关测试题3(附答案详解)1.将抛物线24y x =+先向左平移2个单位,再向下平移1个单位,那么所得抛物线的函数关系式是( ) A .2(2)3y x =-- B .2(2)3y x =+- C .2(2)3y x =-+D .2(2)3y x =++2.如图,已知抛物线y =x 2+bx +c 与直线y =x 交于(1,1)和(3,3)两点,现有以下结论:①b 2﹣4c >0;②3b +c +6=0;③当x 2+bx +c >2x时,x >2;④当1<x <3时,x 2+(b ﹣1)x +c <0,其中正确的序号是( )A .①②④B .②③④C .②④D .③④3.二次函数y =2x 2-8x +9的图象可由y =2x 2的图象怎样平移得到( ) A .先向右平移2个单位再向上平移1个单位 B .先向右平移2个单位再向下平移1个单位 C .先向左平移2个单位再向上平移1个单位 D .先向左平移2个单位再向下平移1个单位4.若点(﹣2,y 1),(﹣1,y 2),(3,y 3)在二次函数y =﹣x 2+x ﹣3的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 3=y 1<y 2B .y 3≤y 2≤y 1C .y 2<y 1=y 3D .y 1<y 2<y 35.对于每个自然数n ,抛物线()()221111n y x x n n n n +=-+++与x 轴交于n A 、n B ,两点,以n n A B 表示该两点间的距离,则1122A B A B ++⋅⋅⋅20152015A B +值为( ). A .20142015B .20162015C .20152014D .201520166.已知点A(-3,y 1),B(-1,y 2),C(2,y 3)在函数y=-x 2的图象上,则y 1,y 2,y 3的大小关系为( ) A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 1<y 37.抛物线y=﹣x 2经过平移得到抛物线y=﹣(x+2)2﹣3,平移的方法是( ) A .向左平移2个,再向下平移3个单位 B .向右平移2个,再向下平移3个单位 C .向左平移2个,再向上平移3个单位D .向右平移2个,再向上平移3个单位9.把抛物线y =ax 2+bx+c 图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y =x 2+5x+6,则a ﹣b+c 的值为( ) A .2B .3C .5D .1210.已知二次函数y =ax 2+bx +c +2的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 2﹣4ac =0;③a >2;④ax 2+bx +c =﹣2的根为x 1=x 2=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 2)为函数图象上的两点,则y 1>y 2.其中正确的个数是( )A .2B .3C .4D .511.将抛物线y =x 2﹣6x +5化成y =a (x ﹣h )2﹣k 的形式,则hk =_____. 12.如图,ABC ∆的顶点坐标分别为()()()0,4,2,0,4,2A B C ,若二次函数22y x bx =++的图象与阴影部分(含边界)一定有公共点,则实数b 的取值范围是__________.13.若抛物线y=x 2+bx(b>2)上存在关于直线y=x 成轴对称的两个点,则b 的取值范围是______.14.已知抛物线的顶点坐标为(1,8)--,且过点(0,6)-,则该抛物线的表达式为________.15.二次函数22(1)4y x =-+-图象的顶点坐标是______.16.抛物线2(0)y ax a =≠沿某条直线平移一段距离,我们把平移后得到的新抛物线叫做原抛物线的“同簇抛物线”.如果把抛物线2yx 沿直线y x =向上平移,平移距离2时,那么它的“同簇抛物线”的表达式是_____.17.在平面直角坐标系 xOy 中,函数 y = x 2 的图象经过点M (x 1 , y 1 ) ,N (x 2 , y 2 ) 两点,若- 4< x 1< -2, 0< x 2 <2 ,则 y 1 ____ y 2 . (用“ < ”,“=”或“>”号连接) 18.对于二次函数y=5x 2+bx+c ,甲、乙、丙、丁四位同学给出四个说法,甲:图象对称轴是x=1;乙:函数最小值为3;丙:当x=﹣1时,y=0;丁:点(2,8)在函数图象上.其中有且仅有一个说法是错误的,则哪位同学的说法是错误的_____. 19.已知抛物线y=2x 2-bx+3的对称轴经过点(2,—1),则b 的值为______.20.某同学利用描点法画二次函数y =ax 2+bx+c (a≠0)的图象时,列出的部分数据如下表:经检查,发现表格中恰好有一组数据计算错误,请你根据上述信息写出该二次函数的解析式:_____ x 0 1 2 3 4 y3﹣2321.已知二次函数y =﹣x 2﹣2x+3.(1)把函数关系式配成顶点式并求出图象的顶点坐标和对称轴.(2)若图象与x 轴交点为A .B ,与y 轴交点为C ,求A 、B 、C 三点的坐标; (3)在图中画出图象.并求出△ABC 面积.22.已知抛物线2y x bx c =++与y 轴交于点()C 0,6-与x 轴的一个交点坐标是()A 2,0-.()1求此抛物线的顶点D 的坐标;()2将此图象沿x 轴向左平移2个单位长度,直接写出当y 0<时x 的取值范围.23.已知二次函数y =x 2﹣6mx+9m 2+n (m ,n 为常数)(1)若n =﹣4,这个函数图象与x 轴交于A ,B 两点(点A ,B 分别在x 轴的正、负半轴),与y 轴交于点C ,试求△ABC 面积的最大值;(2)若n =4m+4,当x 轴上的动点Q 到抛物线的顶点P 的距离最小值为4时,求点Q 的坐标.24.在平面直角坐标系xOy 中,抛物线2:23c y ax ax =-+与直线:l y kx b =+交于A ,B 两点,且点A 在y 轴上,点B 在x 轴的正半轴上.(1)直接写出点A 的坐标; (2)若1a =-,求直线l 的解析式; (3)若31k -≤≤-,求a 的取值范围.25.如图,是一块三角形材料,∠A =30°,∠C =90°,AB =6.用这块材料剪出一个矩形DECF ,点D ,E ,F 分别在AB ,BC ,AC 上,要使剪出的矩形DECF 面积最大,点D 应该选在何处?26.如图,已知二次函数21:22(0)L y ax ax a a =++->和二次函数22:(2)2(0)=--+>L y a x a 图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1))函数222(0)y ax ax a a =++->的顶点坐标为 ;当二次函数L 1 ,L 2 的y 值同时随着x 的增大而增大时,x 的取值范围是 ;(2)当AD=MN 时,求a 的值,并判断四边形AMDN 的形状(直接写出,不必证明); (3)当B ,C 是线段AD 的三等分点时,求a 的值.27.在如图的平面直角坐标系中,抛物线y =ax 2﹣2amx +am 2+1(a <0)与x 轴交于点A 和点B ,点A 在点B 的左侧,与y 轴交于点C ,顶点是D ,且∠DAB =45°. (1)填空:点C 的纵坐标是 (用含a 、m 的式子表示); (2)求a 的值;(3)点C 绕O 逆时针旋转90°得到点C ′,当﹣12≤m ≤52时,求BC ′的长度范围.28.如图,直线y =-x +4与x 轴,y 轴分别交于点B ,C ,点A 在x 轴负半轴上,且OA =12OB , 抛物线y =ax 2+bx +4经过A ,B ,C 三点.(1)求抛物线的解析式;(2)点P是第一象限内抛物线上的动点,设点P的横坐标为m,过点P作PD⊥BC,垂足为D,用含m的代数式表示线段PD的长,并求出线段PD的最大值;(3)设点E为抛物线对称轴与直线BC的交点,若A,B,E三点到同一直线的距离分别是d1,d2,d3,问是否存在直线l,使得d1= d2=12d3? 若存在,请直接写出d3的值,若不存在,请说明理由.参考答案1.D 【解析】 【分析】根据抛物线的平移规律“左加右减,上加下减”进行判断即可. 【详解】解:抛物线24y x =+先向左平移2个单位,再向下平移1个单位,所得抛物线的函数关系式是:2(2)3y x =++. 故选D. 【点睛】本题考查了抛物线的平移,属于基础题型,熟知抛物线的平移规律是解题的关键. 2.C 【解析】 【分析】由函数y =x 2+bx +c 与x 轴无交点,可得b 2﹣4c <0;当x =3时,y =9+3b +c =3,3b +c +6=0;利用抛物线和双曲线交点(2,1)得出x 的范围;当1<x <3时,二次函数值小于一次函数值,可得x 2+bx +c <x ,继而可求得答案. 【详解】∵函数y =x 2+bx +c 与x 轴无交点, ∴b 2﹣4ac <0; ∴b 2﹣4c <0 故①不正确;当x =3时,y =9+3b +c =3, 即3b +c +6=0; 故②正确;把(1,1)(3,3)代入y =x 2+bx +c ,得抛物线的解析式为y =x 2﹣3x +3, 当x =2时,y =x 2﹣3x +3=1,y =2x=1, 抛物线和双曲线的交点坐标为(2,1)第一象限内,当x>2时,x2+bx+c>2x;或第三象限内,当x<0时,x2+bx+c>2x;故③错误;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确;故选:C.【点睛】本题考查了图象与二次函数系数之间的关系,此题难度适中,注意掌握数形结合思想的应用.3.A【解析】【分析】先将二次函数y=2x2-8x+9变形为顶点式,再利用函数平移规则:上加下减,左加右减,即可解答.【详解】y=2x2-8x+9=2(x-2)2+1所以由y=2x2的图象先向右平移2个单位再向上平移1个单位得到二次函数y=2x2-8x+9的图象.故选A【点睛】本题考查二次函数平移,熟练掌握二次函数平移规律“上加下减,左加右减”是解题关键. 4.A【解析】【分析】首先根据二次函数解析式确定抛物线的对称轴为x=12,再根据抛物线的增减性以及对称性可得y1,y2,y3的大小关系.【详解】解:∵二次函数y =﹣x 2+x ﹣3=﹣(x ﹣12)2﹣114,∴对称轴为x =12, ∵a <0, ∴x <12时,y 随x 增大而增大, ∵(3,y 3)关于对称轴的对称点为(﹣2,y 3) ∴y 3=y 1<y 2. 故选:A . 【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,关键是掌握二次函数的增减性. 5.D 【解析】 【分析】首先求出抛物线与x 轴两个交点坐标,然后由题意得到n n A B 111n n =-+,进而求出1122A B A B ++⋅⋅⋅20152015A B +的值.【详解】 令y =x 2()211n n n +-+x ()11n n +=+0, 即x 2()211n n n +-+x()11n n +=+0, 解得:x 1n =或x 11n =+, 故抛物线y =x 2()211n n n +-+x ()11n n ++与x 轴的交点为(1n ,0),(11n +,0),由题意得:n n A B 111n n =-+,则1122A B A B ++⋅⋅⋅20152015A B +=11111122320152016-+-++-=11201520162016-=. 故选D . 【点睛】本题考查了抛物线与x 轴交点的知识,解答本题的关键是求出n n A B . 6.B 【解析】 【分析】根据二次函数图象上点的坐标特征,把三个点的坐标分别代入二次函数解析式,计算出y 1、y 2、y 3的值,然后比较它们的大小. 【详解】当x=-3时,y 1=-x 2=-9;当x=-1时,y 2=-x 2=-1;当x=2时,y 3=-x 2=-4, 所以y 1<y 3<y 2. 故选B . 【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式. 7.A 【解析】 【分析】先确定两个抛物线的顶点坐标,再利用点平移的规律确定抛物线平移的情况. 【详解】解:抛物线y=-x 2的顶点坐标为(0,0),抛物线y=﹣(x+2)2﹣3的顶点坐标为(-2,-3),而点(0,0)向左平移2个,再向下平移3个单位可得到(-2,-3),所以抛物线y=-x 2向左平移2个,再向下平移3个单位得到抛物线y=﹣(x+2)2﹣3. 故选A . 【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 8.C【解析】【分析】 根据图上给出的条件是与x 轴交于(1,0),叫我们加个条件使对称轴是x=2,意思就是抛物线的对称轴是x=2是题目的已知条件,这样可以求出a 、b 的值,然后即可判断题目给出四个人的判断是否正确.【详解】解:∵抛物线过(1,0),对称轴是x=2,3022a b b a++=⎧⎪∴⎨-=⎪⎩ 解得a=1,b=-4,∴y=x 2-4x+3,当x=3时,y=0,所以小华正确;当x=4时,y=3,小彬也正确,小明也正确;抛物线被x 轴截得的线段长为2,已知过点(1,0),则可得另一点为(-1,0)或(3,0),所以对称轴为y 轴或x=2,此时答案不唯一,所以小颖错误.故选:C .【点睛】本题是开放性题目,要把题目的结论作为题目的条件,再推理出四个人说的结论的正误.难度较大.9.B【解析】【分析】求得平移后抛物线的顶点坐标,根据平移规律求得原抛物线的顶点坐标,写出原抛物线解析式,即可取得a 、b 、c 的值.【详解】y =x 2+5x+6=(x+)2﹣.则其顶点坐标是(﹣,﹣),将其右左平移2个单位长度,再向上平移3个单位长度后得到(﹣,).故原抛物线的解析式是:y =(x+)2+=x 2+x+3.所以a =b =1,c =3.所以a ﹣b+c =1﹣1+3=3.故选B .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10.D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】 解:①由抛物线的对称轴可知:02b a -<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12b a-=-, ∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.11.﹣12.【解析】【分析】将抛物线化成顶点式,可得h ,k 的值,代入计算即可.【详解】解:∵y =x 2﹣6x +5=x 2﹣6x +9﹣4=(x ﹣3)2﹣4,∴h =3,k =﹣4,∴hk =3×(﹣4)=﹣12.故答案是:﹣12.【点睛】本题考查了抛物线的顶点式,熟练掌握顶点式的转化是解题关键.12.b≥-4【解析】【分析】因为a=1>0,根据左同右异可知,对称轴在y 轴的左侧时,b >0,对称轴在y 轴右侧时,b <0,对称轴x=-2b ≤2时,二次函数y=x 2+bx+2的图象与阴影部分(含边界)一定有公共点. 【详解】抛物线y=x 2+bx+2与y 轴的交点为(0,2),∵C (4,2),当对称轴在y 轴的右侧时当C 与(0,2)是对称点时,抛物线的对称轴的位置在最右边,∴对称轴0<-2b ≤2时,二次函数y=x 2+bx+2的图象与阴影部分(含边界)一定有公共点, ∴-4≤b <0.当对称轴在y 轴或y 轴的右侧时,都满足条件则有-02b ≤ 解得:b ≥0, 故有b≥-4故答案为b≥-4.【点睛】本题考查了二次函数图象与系数的关系,解题时,利用了二次函数对称轴的位置列不等式来求b 的取值范围,并利用数形结合的思想.13.b>3【解析】【分析】可设出对称的两个点P ,Q 的坐标,利用两点关于直线y=x 成轴对称,可以设直线PQ 的方程为y=-x+a ,由于P 、Q 两点存在,所以方程组2y x a y x bx =-+⎧⎨=+⎩有两组不同的实数解,利用中点在直线上消去b ,建立关于a 的函数关系,求出变量a 的范围.【详解】解:设抛物线上关于直线l 对称的两相异点为P (x 1,y 1)、Q (x 2,y 2),线段PQ 的中点为M (x 0,y 0),设直线PQ 的方程为y=x+a ,由于P 、Q 两点存在,所以方程组2y x a y x bx=-+⎧⎨=+⎩有两组不同的实数解, 即得方程x 2+(1+b )x -a=0.①判别式△=21b ()+-41a ⨯⨯-()>0.② 由①得x 0=x1x22+=-1b 2+,y 0=-x 0+a=1b 2++a ∵M (x 0,y 0)在y=x 上,x 0=y 0∴-1b 1b 22++=+a ∴a=-b-1代入②解得b >3或b <-1 ∵b>2,∴b >3故答案为b >3【点睛】本题考查了直线与抛物线的位置关系,以及对称问题,属于难题,有一定的计算量. 14.22(1)8y x =+-【解析】【分析】利用顶点式求解即可,设y=a (x+1)2-8,把(0,6)-代入求解.【详解】设y=a (x+1)2-8,把(0,6)-代入,得-6=a ×(0+1)2-8,∴a=2,∴22(1)8y x =+-.故答案为:22(1)8y x =+-.【点睛】本题考查了用待定系数法求二次函数解析式的方法,关键是根据条件确定抛物线解析式的形式,再求其中的待定系数.一般式:y=ax 2+bx+c (a≠0);顶点式y=a (x-h )2+k ,其中顶点坐标为(h ,k );交点式y=a (x-x 1)(x-x 2),抛物线与x 轴两交点为(x 1,0),(x 2,0).15.(-1,-4)【解析】【分析】根据抛物线的顶点式直接得到答案.【详解】二次函数22(1)4y x =-+-图象的顶点坐标是(1,4)--.【点睛】本题考查二次函数的顶点式,二次函数的顶点式为y=a (x-h )2+k ,顶点坐标是(h ,k ),解决此题需注意坐标的符号问题.16.()211y x =-+【解析】【分析】沿直线y=x y=ax 2 (a≠0)向右平移1个单位,向上平移1个单位,即可得到平移后抛物线的表达式.【详解】解:∵抛物线2y x =沿直线y x =向上平移,相当于抛物线()2y ax a 0=≠向右平移1个单位,向上平移1个单位,∴根据平移的规律得到:“同簇抛物线”的表达式是()2y x 11=-+.故答案为:()2y x 11=-+.【点睛】本题考查了二次函数的几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式只考虑平移后的顶点坐标,即可求出解析式.17.>【解析】【分析】通过比较点M 和点N 到y 轴的距离的远近判断y 1与y 2的大小.【详解】解:抛物线y=x 2的对称轴为y 轴,而M (x 1,y 1)到y 轴的距离比N (x 2,y 2)点到y 轴的距离要远,所以y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.利用二次函数的图象比较二次函数值的大小比较简便.18.丙【解析】【分析】设甲乙正确,利用顶点时写出抛物线的解析式为y=5(x-1)2+3,然后计算自变量为-1和2对应的函数值,从而判断丙错误.【详解】若甲乙对,则抛物线的解析式为y=5(x-1)2+3,当x=-1时,y=23,此时丙错误;当x=2时,y=8,此时丁正确.而其中有且仅有一个说法是错误的,所以只有丙错误.故答案为丙.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.19.8【解析】【分析】根据公式法可求对称轴,可得关于b 的一元一次方程,解方程即可.【详解】∵抛物线y=2x 2-bx+3的对称轴经过点(2,-1),∴对称轴x=-22b =2, 解得:b=8.故答案为8.【点睛】此题考查二次函数的性质,掌握利用公式法求对称轴是解决问题的关键.20.y=x2﹣4x+3.【解析】【分析】由图表的信息知:第一、二、四、五个点的坐标都关于x=2对称,所以错误的一组数据应该是(2,-2);可选取其他四组数据中的任意三组,用待定系数法求出抛物线的解析式.【详解】解:选取(0,3)、(1,0)、(3,0);设抛物线的解析式为y=a(x﹣1)(x﹣3),则有:a(0﹣1)(0﹣3)=3,a=1;∴y=(x﹣1)(x﹣3)=x2﹣4x+3.故答案为y=x2﹣4x+3【点睛】本题考查了用待定系数法求函数解析式的方法,能够正确的判断出错误的一组数据是解答此题的关键.21.(1)y=﹣(x+1)2+4(2)抛物线与 y 轴的交点 C(0,3)(3)6【解析】【分析】(1)根据配方法步骤将解析式配成顶点式可得;(2)求出y=0时x的轴可得点A、B的坐标,求出x=0时y的值可得点C的坐标;(3)根据抛物线的顶点坐标及其与坐标轴的交点可画出抛物线的图象,再由三角形的面积公式可得答案.【详解】(1)∵y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴抛物线的顶点坐标为(﹣1,4),对称轴为直线 x =﹣1; (2)当 y =0 时,﹣x 2﹣2x+3=0,解得:x =1 或 x =﹣3,∴抛物线与 x 轴的交点 A (﹣3,0)、B (1,0),当 x =0 时,y =3,∴抛物线与 y 轴的交点 C (0,3);(3)其函数图象如下图所示:S △ABC = AB•y C = ×4×3=6.【点睛】本题考查的知识点是抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式,解题的关键是熟练的掌握抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式.22.(1) D 的坐标为125,24⎛⎫-⎪⎝⎭;(2) 4x 1-<<. 【解析】【分析】 ()1根据抛物线2y x bx c =++与y 轴交于点()C 0,6-与x 轴的一个交点坐标是()A 2,0-,可以求得该抛物线的解析式,然后将解析式化为顶点式,即可求得点D 的坐标;()2根据平移的特点,可以得到平移后抛物线的解析式,从而可以写出当y 0<时x 的取值范围.【详解】解:()1抛物线2y x bx c =++与y 轴交于点()C 0,6-与x 轴的一个交点坐标是()A 2,0-, {c 642b c 0=-∴-+=,得{b 1c 6=-=-, ∴抛物线的解析式为22125y x x 6(x )24=--=--, ∴此抛物线的顶点D 的坐标为125,24⎛⎫- ⎪⎝⎭; ()2抛物线的解析式为2125y (x )24=--, ∴此图象沿x 轴向左平移2个单位长度后对应的函数解析式为:22125325y (x 2)(x )2424=-+-=+-, ∴平移后抛物线的对称轴为直线3x 2=-,当y 0=时,1x 4=-,2x 1=, ∴当y 0<时x 的取值范围是4x 1-<<.【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象与几何变换,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.23.(1)当m =0时,△ABC 的面积最大为8;(2)Q 点的坐标为(﹣6,0)或(0,0).【解析】【分析】(1)把n =﹣4代入得到带有m 的解析式解析式y =x 2﹣6mx+9m 2﹣4,再用带有m 的值表示出A 、B 、C 的坐标,然后得出三角形面积判断最大值;(2)把n =4m+4代入原解析式得到y =(x ﹣3m )2+4m+4,得出顶点P 的坐标,再根据动点Q 到抛物线的顶点P 的距离最小时为PQ 的横坐标相同,即可得出Q 的坐标.【详解】解:(1)若n =﹣4,则y =x 2﹣6mx+9m 2﹣4,当x =0时,y =9m 2﹣4,∴C (0,9m 2﹣4),∵这个函数图象开口向上,与x 轴交于A ,B 两点(点A ,B 分别在x 轴的正、负半轴),与y 轴交于点C ,∴9m 2﹣4<0,当y =0时,x 2﹣6mx+9m 2﹣4=0,x 1=3m+2,x 2=3m ﹣2,∴A (3m+2,0),B (3m ﹣2,0),∵3m+2﹣(3m ﹣2)=4,∴AB =4,∴S △ABC =1•2C AB y =12×4•(﹣9m 2+4)=﹣2m 2+8, ∵﹣2<0,∴当m =0时,△ABC 的面积最大为8;(2)若n =4m+4,则y =x 2﹣6mx+9m 2+4m+4=(x ﹣3m )2+4m+4,∴P (3m ,4m+4),当动点Q 到抛物线的顶点P 的距离最小值为4时,则Q 为(3m ,0)且4m+4=±4, 解得m =﹣2或m =0,∴Q 点的坐标为(﹣6,0)或(0,0).【点睛】本题是二次函数的动点题型,此题综合性较强,难度较大,解题的关键是注意数形结合与方程思想的应用.24.(1)()0,3A ;(2)3y x =-+;(3)a<−1或a>3【解析】【分析】(1)抛物线C :y=ax 2-2ax+3与y 轴交于点A ,令x=0,即可求得A 的坐标;(2)令y=0,解方程即可求得B 的坐标,然后根据待定系数法即可求得直线l 的解析式; (3)当a=3时,抛物线C 过点B (1,0),此时k=-3.当a=-1时,抛物线C 过点B (3,0),此时k=-1.结合图象即可求得.【详解】(1)∵抛物线C:y=ax 2−2ax+3与y 轴交于点A ,∴点A 的坐标为(0,3).(2)当a=−1时,抛物线C 为y=−x 2+2x+3.∵抛物线C与x轴交于点B,且点B在x轴的正半轴上,∴点B的坐标为(3,0).∵直线l:y=kx+b过A,B两点,∴330bk b=⎧⎨+=⎩.解得13kb=-⎧⎨=⎩.∴直线l的解析式为y=−x+3.(3)如图,当a>0时,当a=3时,抛物线C过点B(1,0),此时k=−3.结合函数图象可得a>3.当a<0时,当a=−1时,抛物线C过点B(3,0),此时k=−1.结合函数图象可得a<−1.综上所述,a的取值范围是a<−1或a>3.【点睛】本题考查一次函数和二次函数综合,解题的关键是掌握待定系数法求解析式.25.使剪出的矩形DECF面积最大,点D应该选在AB的中点.【解析】【分析】根据直角三角形的性质求出BC,根据勾股定理求出AC,根据矩形的面积公式列出函数解析式,根据二次函数的性质解答即可.【详解】解:∵∠C=90°,∠A=30°,∴BC =12AB =3,由勾股定理得,AC ==在Rt △ADF 中,∠A =30°,∴AD =2DF ,AF DF ,∴CF =AC ﹣AF =,则矩形DECF 面积=DF ×()2=23)24DF -+当DF =32时,剪出的矩形DECF 面积最大, 则AD =2DF =3,∴使剪出的矩形DECF 面积最大,点D 应该选在AB 的中点.【点睛】本题考查的是勾股定理、二次函数的性质、矩形的性质,根据勾股定理、矩形的面积公式列出二次函数解析式是解题的关键.26.(1)顶点坐标为M (-1,-2),12x -<<;(2)四边形AMDN 是矩形,理由见解析;(3)a =329 【解析】【分析】(1)把222(0)y ax ax a a =++->化为顶点式()212y a x =+-,即可求出顶点坐标;根据图像即可求出次函数L 1 ,L 2 的y 值同时随着x 的增大而增大时,x 的取值范围; (2)由两点间的距离公式求出MN 的长,用含a 的代数式表示出AD 的长,根据AD =MN列方程即可求出a 的值;由两点间的距离公式可求AN =MD ,AM =DN ,从而可证四边形AMDN是平行四边形,又AD =MN ,所以可证四边形AMDN 是矩形;(3)当B ,C 是线段AD 的三等分点时,分两种情况,根据两点间的距离公式求解:①点C 在点B 的左边,②点B 在点C 的左边.【详解】(1)∵222(0)y ax ax a a =++->∴()212y a x =+-,∴顶点坐标为M (-1,-2);∵M (-1,-2),N (2,2),∴当1x >-时, L 1 的y 值随着x 的增大而增大,当2x <时,L 2的y 值随着x 的增大而增大. ∴x 的取值范围是12x -<< .(2)如图1,MN =,当y=0时,即()2120a x +-=,解得1A x =--1B x =-+当y=0时,即()2220a x --+=,2C x =-2D x =+∴AD=(2+-(1--=3+当AD=MN 时,即3+,解得a =2. 当 a =2时,1A x =--2,2D x =3,∵==∴AN=DM,∵==,∴AM=DN,∴四边形AMDN 是平行四边形,∵AD=3-(-2)=5,MN=5,∴AD=MN,∴四边形AMDN 是矩形 ;(3)当B,C是线段AD的三等分点时,存在以下两种情况:①点C在点B的左边,如图2,BC=(21a-+-(22a-=232a-+AC=BD=3 ,即232a-+,解得29a=;②点B在点C的左边,如图3,CB=(22a--(21a-+=23a-AB=CD=22a,即22a23a-329a= .【点睛】本题考查了二次函数一般式与顶点式的互化,二次函数的图像与性质,两点间的距离公式,矩形的判定,数形结合及分类讨论的数学思想.掌握一般式化顶点式的方法是解(1)的关键;灵活运用两点间的距离公式是解(2)的关键;分两种情况求解是解(3)的关键.27.(1)am2+1;(2)a=﹣1;(3)0≤BC′≤94.【解析】【分析】(1)代入0x =求出y 值,此问得解;(2)设抛物线对称轴与x 轴交于点E ,由二次函数的对称性可得出ABD 为等腰直角三角形,进而可得出2AB DE =,利用二次函数图象上点的坐标特征可得出点B 、D 的坐标,由2AB DE =可得出关于a 的无理方程,解之即可得出a 值;(3)由(1)(2)可得出点B 、C 的坐标,由旋转的性质可得出点'C 的坐标,利用两点间的距离公式可求出2'2BC m m =-++,再利用二次函数的性质即可求出:当1522m -≤≤时,'BC 的长度范围. 【详解】解:(1)当x =0时,y =ax 2﹣2amx +am 2+1=am 2+1,∴点C 的纵坐标为am 2+1.故答案为am 2+1.(2)设抛物线对称轴与x 轴交于点E ,如图1所示.∵DA =DB ,∠DAB =45°,∴△ABD 为等腰直角三角形,∴AB =2DE .∵y =ax 2﹣2amx +am 2+1=a (x ﹣m )2+1,∴点D 的坐标为(m ,1).当y =0时,ax 2﹣2amx +am 2+1=0,即a (x ﹣m )2=﹣1,解得:x 1=m x 2=m∴AB =2, 解得:a =﹣1.(3)由(1)(2)可知:点C 的坐标为(0,1﹣m 2),点B 的坐标为(m +1,0).∵点C 绕O 逆时针旋转90°得到点C ′,∴点C ′的坐标为(m 2﹣1,0),∴BC ′=|m +1﹣(m 2﹣1)|=|﹣m 2+m +2|.∵﹣m 2+m +2=﹣(m ﹣12)2+94,﹣12≤m ≤52,∴当m=52时,﹣m2+m+2取得最小值,最小值为﹣74;当m=12时,﹣m2+m+2取得最大值,最大值为94,∴当﹣12≤m≤52时,﹣74≤﹣m2+m+2≤94,∴当﹣12≤m≤52时,0≤BC′≤94.【点睛】本题考查了二次函数图象上点的坐标特征、等腰直角三角形、解无理方程、两点间的距离公式以及二次函数的性质,解题的关键是:(1)代入0x 求出y值;(2)利用等腰直角三角形的性质找出关于a的无理方程;(3)利用二次函数的性质找出'BC的长度范围.28.(1)y=-12x2+ x+4;(2)当m=2时,PE2;(3)存在,满足题意的d3的值为2或665.【解析】【分析】(1)由直线y=-x+4得出B(4,0),C(0,4),即可得出A(-2,0),将A与B坐标代入抛物线解析式求出a与b的值,即可确定出抛物线解析式;(2)已知P点横坐标,根据直线AB、抛物线的解析式,求出C、P的坐标,由此得到线段PC的长;在Rt△OBC中,∠OCB=45°,根据平行线的性质得出∠PFD=45°,解直角三角形即可求出PD的表达式,利用二次函数的性质求出PD的最大值即可.(3)见解析.【详解】解:(1)由y=-x+4得当x=0时,y=4;当y=0时,x=4.∴B (4,0) ,C (0,4), ∴ OB =4.∴ OA =12OB =2, ∴ 点 A (-2,0). 把A (-2,0),B (4,0)分别代入抛物线y =ax 2+bx +4中,得4230,16430.a b a b -+=⎧⎨++=⎩ 解得1,21.a b ⎧=-⎪⎨⎪=⎩ ∴ 抛物线的解析式为 y =-12x 2+ x +4. (2)∵ 点P 的横坐标为m ,则P (m ,-12m 2+ m +4). 过点P 作PF ∥y 轴交BC 于点F ,则F (m ,-m +4) .∴ PF =-12m 2+ m +4-(-m +4)=-12m 2+2m . 在Rt △OBC 中,OB =4,OC =4.又 PF ∥y 轴, ∴ ∠PFD =∠OCB=45°.∴ PD =PF ·sin ∠PFD = PF ·sin ∠OCB =22(-12m 2+2m )=-24(m -2)22 ∵ 0<m <4,-24<0,∴ 当m =2时,PE 2 (3)存在,∵y =-12x 2+ x +4=-12(x-1)²+92, ∴C 点坐标为(1,3),如图,d 1= d 2=12d 3 ,满足题意的d3的值为2或6或655.【点睛】本题考查了二次函数的应用以及解析式的确定、解直角三角形等知识,主要考查学生数形结合思想的应用能力,。

函数图象的平移,对称,翻折,伸缩变换..

函数图象的平移,对称,翻折,伸缩变换..
思路分析:根据函数解析式的特点,可按翻折变换法作 图. 2 2 x - x , x 0 ≤ x≤1 x - x , 0≤ ≤ 1 (1)y = y = 2 解析: (1) x - x ,2 x>1或x<0 - -x-x ,x>1或x<0
- + , 0 ≤ x ≤ 1 即:y= 2 4 1 1 x- - ,x>1或x<0 即:y= 2 14 1 2
高考总复习·理科·数学
(2)作出y=log2x的图象,将此图象向左平移1个单位,得 到y=log2(x+1)的图象,再保留其y≥0部分,加上其y<0的部 分关于x轴的对称部分,即得y=|log(x+1)|的图象(如上图 右).
高考总复习·理科·数学
函数y=f(x)与y=g(x)的图象如下图:则函数y= f(x)· g(x)的图象可能是( )
高考总复习·理科·数学
解法二: (1)作出函数y=2x的图象关于y轴的对称图象,得到 y=2-x的图象; (2)把函数y=2-x的图象向左平移3个单位,得到y=2-x-3 的图象; (3)把函数y=2-x-3的图象向上平移1个单位,得到函数y =2-x-3+1的图象.
从而可以作出x>0时f(x)的图象,
又∵x>0时,f(x)≥2,
∴x=1时,f(x)的最小值为2,图象最低点为(1,2),
又∵f(x)在(0,1)上为减函数,在(1,+∞)上是增函数,
1 同时f(x)=x+ x (x>0)即以y=x为渐近线,
高考总复习·理科·数学
于是x>0时,函数f(x)的图象应为图①,进而得y=f(x)的 整个图象为图②.
高考总复习·理科·数学
变式探究 3.函数y = a| x | (a > 1)的图象是( B )

第3讲 一次函数的解析式与图象变换(教师版)

第3讲 一次函数的解析式与图象变换(教师版)

板块一
此处需要添加知识点1
已知:正比例函数
1
1
1
一次函数
板块二
此处需要添加知识点1
把函数
1
1
阅读下面的材料:
∵直线分别与轴、轴交于点、,∴点∵,∴直线为.∴点的坐标为∵,∴.∴点在轴的正半轴上.
当点在点的左侧时,
当点在点的右侧时,
1
⑴2
3
如图,在平面直角坐标系中,
板块三
1
在直角坐标系中画函数
1
求在直角坐标平面中不等式1
如图,已知直线
1
已知一次函数图象经过点
1
一辆汽车在行驶过程中,路程1
已知一次函数
1
已知一次函数1
若将直线
1
如图,将直线
1
在同一坐标系中,对于函数①2
某一次函数的图象与直线
1
已知:一次函数2
已知点
1
在直角坐标系中画函数
的值对应取绝对值所得,
图象中位于轴下方部分翻折到轴上方所得,直1
已知
1
如果一条直线
1
已知一次函数
1
函数
1
平面直角坐标系中,正方形
1
解关于
标注函数>二次函数。

第二十章 一次函数-3一次函数的性质(上)沪教版八年级第二学期数学

第二十章 一次函数-3一次函数的性质(上)沪教版八年级第二学期数学

技能点拨
【答案】C 【解析】解:过C点作CD⊥x轴于D,如图. ∵y=-2x+2的图象分别与x轴、y轴交于A,B两点, ∴当x=0时,y=2,则B(0,2), 当y=0时,-2x+2=0,解得x=1,则A(1,0). ∵线段AB绕A点顺时针旋转90°, ∴AB=AC,∠BAC=90°, ∴∠BAO+∠CAD=90°, 而∠BAO+∠ABO=90°, ∴∠ABO=∠CAD. 在△ABO和△CAD中
di
er
bu
fen
第二部 分
技能点拨
【答案】C 【解析】解: 由“上加下减”的原则可知,直线y=-2x向下平移2个单位,得 到直线是:y=-2x-2. 故选C.
技能点拨
变式:(中)把直线y=2x-1向左平移1个单位,平移后直线的关 系式为( ) A.y=2x-2 B.y=2x+1 C.y=2x D.y=2x+2
课堂检测
【解答】(3)直线y=2x-4与x轴的交点A的坐标为(2,0),与直线x=-1 的交点B的坐标为(-1,-6), 直线y=2x-4绕点P(-1,0)顺时针旋转90°时,A点的对应点A′的坐标为(1,-3),B点的对应点B′的坐标为(-7,-0), 设旋转后的直线解析式为y=kx+b,把A′(-1,-3),B′(-7,0)代入得
知识回顾
一次函数图像的几何变换
(2)对称 直线y=kx+b,(k≠0,且k,b为常数) ①关于x轴对称,就是x不变,y变成-y:-y=kx+b,即y=-kx-b; (关于X轴对称,横坐标不变,纵坐标是原来的相反数) ②关于y轴对称,就是y不变,x变成-x:y=k(-x)+b,即y=kx+b;(关于y轴对称,纵坐标不变,横坐标是原来的相反数) ③关于原点对称,就是x和y都变成相反数:-y=k(-x)+b,即 y=kx-b.(关于原点轴对称,横、纵坐标都变为原来的相反数)

三角函数中的恒等变换应用-高中数学知识点讲解(含答案)

三角函数中的恒等变换应用-高中数学知识点讲解(含答案)

三角函数中的恒等变换应用(北京习题集)(教师版)一.选择题(共6小题)1.(2017秋•东城区期末)若)3cos ,(,)x x x ϕϕππ+=-∈-,则ϕ等于( ) A .3π-B .3πC .56π D .56π-2.(2019•石景山区一模)已知函数()sin f x a x x =-的一条对称轴为6x π=-,12()()0f x f x +=,且函数()f x 在1(x ,2)x 上具有单调性,则12||x x +的最小值为( ) A .6πB .3π C .23π D .43π 3.(2018•海淀区二模)关于函数()sin cos f x x x x =-,下列说法错误的是( ) A .()f x 是奇函数 B .0不是()f x 的极值点C .()f x 在(,)22ππ-上有且仅有3个零点D .()f x 的值域是R4.(2017春•西城区期末)函数()f x x x =-在区间[0,]π上的最大、最小值分别为( )A .π,0B .2π- C .,14ππ- D .0,14π-5.(2017春•海淀区校级期中)已知函数21()(2cos 1)sin 2cos42f x x x x =-+,若(2πα∈,)π且()f α=α的值是( ) A .58πB .1116πC .916π D .78π6.(2015秋•丰台区期末)函数()sin 22f x x x =+在区间[0,]π上的零点之和是( ) A .23πB .712π C .76π D .43π 二.填空题(共5小题)7.(2018春•丰台区期末)已知函数2()cos cos f x x x x =+,则()f x 的最小正周期为 ;最大值为 . 8.(2017•海淀区校级三模)已知函数()sin()cos (0)6f x x x πωωω=+->,若函数()f x 的图象关于直线2x π=对称,且在区间[,]44ππ-上是单调函数,则ω的最大值是9.(2017•朝阳区二模)若平面向量(cos ,sin )a θθ=,(1,1)b =-,且a b ⊥,则sin 2θ的值是 . 10.(2016•北京模拟)已知函数(tan )sin 2cos2f ααα=+,则函数()f x 的值域为 .11.(2016春•海淀区校级期末)函数2()sin()cos 62xf x x π=++的振幅为 ,最小正周期为 .三.解答题(共4小题)12.(2015春•延庆县期末)(Ⅰ)证明:sin 1cos 1cos sin αααα-=+. (Ⅱ)已知圆的方程是222x y r +=,则经过圆上一点0(M x ,0)y 的切线方程为200x x y y r +=,类比上述性质,试写出椭圆22221x y a b+=类似的性质.13.(2014•海淀区校级模拟)由倍角公式2cos22cos 1x x =-,可知cos2x 可以表示为cos x 的二次多项式.对于cos3x ,我们有 cos3cos(2)x x x =+ cos2cos sin2sin x x x x =-2(2cos 1)cos 2(sin cos )sin x x x x x =-- 322cos cos 2(1cos )cos x x x x =--- 34cos 3cos x x =-可见cos3x 可以表示为cos x 的三次多项式.一般地,存在一个n 次多项式()n P t ,使得cos (cos )n nx P x =,这些多项式()n P t 称为切比雪夫多项式.()I 求证:3sin33sin 4sin x x x =-;()II 请求出4()P t ,即用一个cos x 的四次多项式来表示cos4x ; ()III 利用结论3cos34cos 3cos x x x =-,求出sin18︒的值.14.(2009秋•通州区期末)求证:2tan (1cos2)1cos2θθθ+=-.15.(20092tan α=.三角函数中的恒等变换应用(北京习题集)(教师版)参考答案与试题解析一.选择题(共6小题)1.(2017秋•东城区期末)若)3cos ,(,)x x x ϕϕππ+=-∈-,则ϕ等于( ) A .3π-B .3πC .56π D .56π-【分析】由题意利用两角和的正弦公式可得cos ϕ和sin ϕ的值,从而求得ϕ的值. 【解答】解:23sin()3cos xx x ϕ+-,cos sin 3cos x x xx ϕϕ∴+=-,∴3ϕϕ⎧=⎪=⎨=-⎪⎩即1cos 2sin ϕϕ⎧=⎪⎪⎨⎪=⎪⎩(,)ϕππ∈-,3πϕ∴=-, 故选:A.【点评】本题主要考查两角和的正弦公式的应用,属于基础题.2.(2019•石景山区一模)已知函数()sin f x a x x =-的一条对称轴为6x π=-,12()()0f x f x +=,且函数()f x 在1(x ,2)x 上具有单调性,则12||x x +的最小值为( ) A .6πB .3π C .23π D .43π 【分析】利用辅助角公式化简,对称轴为6x π=-,12()()0f x f x +=,且函数()f x 在1(x ,2)x 上具有单调性,可得1x 与2x ,关于对称中心对称,即可求解12||xx +的最小值;【解答】解:函数()sin )f x a xx x θ=-=+,其中tan θ= 函数()f x的一条对称轴为6x π=-,可得1()62f a π-=--=解得:2a =. 3πθ∴=-对称中心对称横坐标3x k ππ-=,可得3x k ππ=+,k Z ∈.又12()()0f x f x +=,且函数()f x 在1(x ,2)x 上具有单调性. 12||2||3x x k π∴+=+当0k =时,可得122||3x x π+= 故选:C .【点评】本题考查了正弦函数的最值和单调性的综合应用.属于中档题. 3.(2018•海淀区二模)关于函数()sin cos f x x x x =-,下列说法错误的是( ) A .()f x 是奇函数 B .0不是()f x 的极值点C .()f x 在(,)22ππ-上有且仅有3个零点D .()f x 的值域是R【分析】根据三角函数的性质和导函数,依次判断各选项即可.【解答】解:对于A :由()sin()cos()()f x x x x f x -=-+-=-,()f x ∴是奇函数,A 对;对于B ,()sin cos f x x x x =-,()cos cos sin sin f x x x x x x x '=--=-,当0x =时,()0f x =,()0f x '=,0不是()f x 的极值点.B 对.对于:()sin cos C f x x x x =-,()cos cos sin sin f x x x x x x x '=-+=,可得在(2π-,0)上单调递减.(0,)2π上单调递增.(0)f 可得最小值,(0)0f =,所以,()f x 在(,)22ππ-上不是3个零点.C 不对;对于D :当x 无限大或无线小时,可得()f x 的值域为R ,D 对. 故选:C .【点评】本题主要考查三角函数的图象和性质,导函数的应用,属于基础题.4.(2017春•西城区期末)函数()f x x x =-在区间[0,]π上的最大、最小值分别为( )A .π,0B .2π- C .,14ππ- D .0,14π-【分析】对函数()f x 求导数,利用导数判断()f x 的单调性,并求()f x 在区间[0,]π上的最大、最小值.【解答】解:函数()f x x x =,()1f x x ∴'=;令()0f x '=,解得cos x , 又[0x ∈,]π,4x π∴=;[0x ∴∈,)4π时,()0f x '<,()f x 单调递减;(4x π∈,]π时,()0f x '>,()f x 单调递增;且()14444f ππππ==-,(0)0f =,()f ππ=;∴函数()f x 在区间[0,]π上的最大、最小值分别为π和14π-.故选:C .【点评】本题考查了利用导数求函数在闭区间上的最值问题,是中档题.5.(2017春•海淀区校级期中)已知函数21()(2cos 1)sin 2cos42f x x x x =-+,若(2πα∈,)π且()f α=α的值是( ) A .58πB .1116πC .916π D .78π【分析】利用二倍角公式和和角公式化简()f x ,根据()f α=α的表达式即可得出α的值.【解答】解:111()cos2sin 2cos4sin 4cos4)2224f x x x x x x x π=+=++,())242f παα∴=+=4242k ππαπ∴+=+,即162k ππα=+,k Z ∈. (2πα∈,)π,916216πππα∴=+=. 故选:C .【点评】本题考查了三角恒等变换,正弦函数的图象与性质,属于中档题.6.(2015秋•丰台区期末)函数()sin 22f x x x =+在区间[0,]π上的零点之和是( ) A .23πB .712π C .76π D .43π 【分析】由()0f x =结合正切函数的性质求出函数的零点即可得到结论.【解答】解:由()sin 220f x x x ==得sin 2x x =,即tan 2x = 即23x k ππ=-,即26k x ππ=-, 0x π,∴当1k =时,3x π=,当2k =时,56x π=, 则函数()f x 的零点之和为57366πππ+=, 故选:C .【点评】本题主要考查函数零点的求解和应用,根据正切函数的性质求出x 的值是解决本题的关键. 二.填空题(共5小题)7.(2018春•丰台区期末)已知函数2()cos cos f x x x x =+,则()f x 的最小正周期为 π ;最大值为 . 【分析】利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性求得函数()f x 的最小正周期.再根据正弦函数值域求最大值.【解答】解:函数2111()cos cos 2cos2sin(2)2262f x x x x x x x π=+=++=++. 故函数()f x 的最小正周期为T π=. 当2262x k πππ+=+时,函数()f x 取得最大值为32. 故答案为:3,2π.【点评】本题主要考查三角恒等变换,正弦函数的周期性,函数sin()y A x ωϕ=+的图象变换规律,正弦函数的定义域和值域,属于中档题.8.(2017•海淀区校级三模)已知函数()sin()cos (0)6f x x x πωωω=+->,若函数()f x 的图象关于直线2x π=对称,且在区间[,]44ππ-上是单调函数,则ω的最大值是 43【分析】利用和与差和辅助角公式化简,根据直线2x π=对称,且在区间[,]44ππ-上是单调函数可得1()244T ππ--,建立不等式关系,求解即可.【解答】解:函数()sin()cos (0)6f x x x πωωω=+->,1cos 2x x ωω=- sin()6x πω=-函数()f x 的图象关于直线2x π=对称, 即262k πππωπ-=+,k Z ∈,1123k ω∴=+,又()f x 在区间[,]44ππ-上是单调函数,∴1()244T ππ--, 则T π.即2ω.∴24622462k k πππωππππωπ⎧---⎪⎪⎨⎪-+⎪⎩解得:483883k k ωω⎧-⎪⎪⎨⎪+⎪⎩∴403ω< 可得ω的最大值为:43. 故答案为:43【点评】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键. 9.(2017•朝阳区二模)若平面向量(cos ,sin )a θθ=,(1,1)b =-,且a b ⊥,则sin 2θ的值是 1 .【分析】利用向量垂直,就是数量积为0,求出cos sin 0θθ-=,两边平方,利用同角三角函数基本关系式,二倍角的正弦函数公式可求sin 2θ的值. 【解答】解:因为a b ⊥, 所以0a b =, 即:cos sin 0θθ-=,两边平方可得:22cos 2sin cos sin 0θθθθ-+=, 可得:1sin20θ-=,解得:sin21θ=. 故答案为:1.【点评】本题考查数量积判断两个平面向量的垂直关系,考查计算能力,逻辑思维能力,是基础题. 10.(2016•北京模拟)已知函数(tan )sin 2cos2f ααα=+,则函数()f x 的值域为 [ . 【分析】由三角恒等变换化简()f x ,然后转化为关于x 的方程. 【解答】解:22(tan )sin 2cos22sin cos cos sin f ααααααα=+=+-2222222sin cos cos sin 2tan 1tan cos sin 1tan ααααααααα+-+-==++, ∴2221()1x x f x x +-=+,2(1)210y x x y ∴+-+-=,当110,2y x +==-,即1y =-成立; 当10y +≠时,△2(2)4(1)(1)0y y =--+-,可得2y,且10y +≠,综上所述,可得函数的值域为[.【点评】本题考查三角恒等变换以及换元,转化思想.11.(2016春•海淀区校级期末)函数2()sin()cos 62xf x x π=++的振幅为,最小正周期为 . 【分析】将函数利用二倍角公式和辅助角公式进行化简,结合三角函数的图象和性质即可得出答案.【解答】解:2()sin()cos 62xf x x π=++,11sin coscos sincos 6622x x x ππ=+++111cos cos 222x x x =+++1cos 2x x =++1)2x ϕ=++,其中tan ϕ=∴,最小正周期222||1T πππω===;,2π. 【点评】本题考查了利用二倍角公式和辅助角公式进行三角函数的能力和三角函数的图象和性质的运用.属于基础题三.解答题(共4小题)12.(2015春•延庆县期末)(Ⅰ)证明:sin 1cos 1cos sin αααα-=+. (Ⅱ)已知圆的方程是222x y r +=,则经过圆上一点0(M x ,0)y 的切线方程为200x x y y r +=,类比上述性质,试写出椭圆22221x y a b+=类似的性质.【分析】(Ⅰ)运用分析法进行证明;(Ⅱ)经过圆上一点0(M x ,0)y 的切线方程就是将圆的方程中的一个x 与y 分别用0(M x ,0)y 的横坐标与纵坐标替换.由此类比得到. 【解答】(Ⅰ)证明:欲证sin 1cos 1cos sin αααα-=+, 只需证2sin (1cos )(1cos )ααα=-+, 即证22sin 1cos αα=-,上式显然成立,故原等式成立.5⋯分(Ⅱ)解:圆的性质中,经过圆上一点0(M x ,0)y 的切线方程就是将圆的方程中的一个x 与y 分别用0(M x ,0)y 的横坐标与纵坐标替换.故可得椭圆22221x y a b +=类似的性质为:过椭圆22221x y a b+=一点0(P x ,0)y 的切线方程为00221x x y ya b+=.10⋯分. 【点评】本题考查了三角函数恒等式的证明以及类比推理.13.(2014•海淀区校级模拟)由倍角公式2cos22cos 1x x =-,可知cos2x 可以表示为cos x 的二次多项式.对于cos3x ,我们有 cos3cos(2)x x x =+ cos2cos sin2sin x x x x =-2(2cos 1)cos 2(sin cos )sin x x x x x =-- 322cos cos 2(1cos )cos x x x x =--- 34cos 3cos x x =-可见cos3x 可以表示为cos x 的三次多项式.一般地,存在一个n 次多项式()n P t ,使得cos (cos )n nx P x =,这些多项式()n P t 称为切比雪夫多项式.()I 求证:3sin33sin 4sin x x x =-;()II 请求出4()P t ,即用一个cos x 的四次多项式来表示cos4x ; ()III 利用结论3cos34cos 3cos x x x =-,求出sin18︒的值.【分析】()I 利用诱导公式可得33sin3cos(3)cos[3(3)]22x x x ππ=--=--,把已知的条件代入可证得结论成立. ()II 两次使用二倍角公式,即可求得结果.()III 利用sin36cos54︒=︒,可得32sin18cos184cos 183cos18︒︒=︒-︒,解方程求出2sin18︒的值.【解答】解:()I 证明:33sin3cos(3)cos[3()][4cos ()3cos()]2222x x x x x ππππ=--=--=---- 33(4sin 3sin )3sin 4sin x x x x =--=-,故等式成立.22242()cos4cos(22)2cos 212(2cos 1)12(4cos 4cos 1)1II x x x x x x ==-=--=-+- 428cos 8cos 1x x =-+.()sin36cos54III ︒=︒,32sin18cos184cos 183cos18∴︒︒=︒-︒,24sin 182sin1810∴︒+︒-=,∴sin18︒=. 【点评】本题考查二倍角公式、诱导公式的应用,正确选择公式是解题的关键. 14.(2009秋•通州区期末)求证:2tan (1cos2)1cos2θθθ+=-.【分析】原式的左边括号外边利用同角三角函数间的基本关系把tan θ化为sin cos θθ,括号里边利用二倍角的余弦函数公式化简,合并后约分即可得到结果;原式的右边利用二倍角的余弦函数公式化简,合并后得到结果,由左边=右边得证.【解答】证明:等式左边2tan (1cos 2)θθ=+222sin (12cos 1)cos θθθ=+- 222sin 2cos cos θθθ= 22sin θ=,等式右边221cos21(12sin )2sin θθθ=-=--=,∴左边=右边,故原式成立.【点评】此题考查了三角函数恒等式的证明,用到的知识有同角三角函数间的基本关系,以及二倍角的余弦函数公式,熟练掌握三角函数的恒等变换公式是证明的关键.15.(20092tan α=.【分析】先把1sin 1sin αα+-分子分母同时乘以1sin α+,整理求得22(1sin )cos αα+,进而根据α所在的象限求得1sin cos αα+=1sin cos αα-= 2tan α=.【解答】解:1sin 1sin αα+-2(1sin )(1sin )(1sin )ααα+=-+ (1sin )a =+^2/[1(sin )a -^2] 22(1sin )cos αα+=因为A 是第四象限的角 所以cos 0> 又因为sin 1α<- 所以1sin 0a +>1sin cos αα+1sin cos αα-=第11页(共11页)1sin 1sin sin 2cos cos cos αααααα+-=-= 2tan α=原式得证.【点评】本题主要考查了三角函数恒等式的证明及同角三角函数基本关系的应用.。

初中数学第二十二章第2节《二次函数与一元二次方程方程》解答题 (26)(含解析)

初中数学第二十二章第2节《二次函数与一元二次方程方程》解答题 (26)(含解析)

第二十二章第2节《二次函数与一元二次方程方程》解答题(26)一、解答题1.已知抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,﹣3). (1)求抛物线的表达式.(2)已知点(m ,k )和点(n ,k )在此抛物线上,其中m ≠n ,请判断关于t 的方程t 2+mt +n =0是否有实数根,并说明理由. 2.已知二次函数的解析式是215322y x x =-+. (1)用配方法将215322y x x =-+化成()2y a x h k =-+的形式,并写出该二次函数的对称轴和顶点坐标; (2)二次函数215322y x x =-+的图象与x 轴相交吗?说明理由;若相交,求出交点坐标.3.已知二次函数()2221y x m x m =-++(m 是常数)的图象与x 轴有两个不同的交点()1,0A x ,()2,0B x .(1)求m 的取值范围;(2)若22127x x +=,求m 的值.4.已知抛物线()256y x m x m =-+-+-.(1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围; (3)设抛物线()256y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.5.(1)若关于x 的方程(a ﹣1)x 2﹣2x +1=0有实数根,求a 的取值范围. (2)若x 1,x 2是关于x 的方程kx 2+(k +2)x 4k+=0的两实数根,且k |21x x |=kx 1﹣12x 2+2,求k 的值.(3)若x 1,x 2,x 3,是关于x 的方程x (x ﹣2)2=t 的三个实数根,且x 1<x 2<x 3;则x 3﹣x 1的最大值为 .6.已知二次函数2y ax bx c =++(a ≠0)的图象过点E (2,3),对称轴为1x =,它的图象与x 轴交于两点(1x ,0),B (2x ,0),且12x x <,221210x x +=.(1)求这个二次函数的解析式;(2)在(1)中抛物线上是否存在点P ,使△POA 的面积等于△EOB 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.7.如图,已知直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)连接EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.8.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B.求:(1)点A、B的坐标;(2)抛物线的函数表达式;(3)若点M是该抛物线对称轴上的一点,求AM+BM的最小值及点M的坐标;(4)在抛物线对称轴上是否存在点P,使得以A、B、P为顶点的三角形为等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.9.已知抛物线y= x2-(m-2)x-12m2(1)求证:无论m取何实数,抛物线总与x轴有两个不同的交点.(2)若抛物线与x轴的两交点坐标分别是A(x1,0),B(x2,0),且满足|x2|=|x1|+2,求m 的值.10.如图,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.11.(本题满分12分)如图,抛物线y=+3与x轴相交于A、B,与直线y=-x+b相交于B、C,直线y=-x+b与y轴交于点E.(1)求直线BC的表达式;(2)求△ABC的面积;(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A、B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动.设运动时间为t秒,请写出△MNB的面积s与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?12.如图,已知抛物线y=ax2+32x+4的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧),与y轴交于C点.(1)求抛物线的解析式;(2)求A,B两点的坐标;(3)若M是抛物线上B,C两点之间的一个动点(不与B,C重合),过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.13.已知二次函数的图象经过点(0,-3),顶点坐标为(-1,-4), (1)求这个二次函数的解析式; (2)求图象与x 轴交点A 、B 两点的坐标; (3)图象与y 轴交点为点C ,求三角形ABC 的面积.14.如图,二次函数2y x 2x 3=-++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,顶点为D ,(1)求点A,B,C 的坐标. (2)求△BCD 的面积15.已知二次函数1(3)()y x x a a=-+-的图像与x 轴相交于点A 和点B (点A 在点B 的左侧),与y 轴相交于点C .一次函数y x a =-+的图像与y 轴相交于点D ,其中0a >.(1)分别求出A 、B 、C 三点的坐标(可以用含有字母a 的代数式表示). (2)点P 与点C 关于抛物线的对称轴成轴对称,点Q 为抛物线上的一个动点. ①试说明点P 在直线y x a =-+的图像上.②若点Q 在抛物线上有且只有三个位置满足QPB APC S S ∆∆=,求a 的值.16.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣利用函数图象研究其性质﹣应用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了一个陌生函数的大致图象,结合上面经历的学习过程,现在来解决下面问题:在函数y=a x b⨯+中,当x=0时,y=1;当x=2时,y=7.(1)求这函数的表达式;(2)在给出的平面直角坐标系中画出这个函数的大致图象并写出这个函数的一条性质;(3)结合你所画的函数图象与y=12x+32的图象,直接写出不等式组1322a xb xx⎧⨯++⎪⎨⎪⎩的解集.17.如图,已知抛物线y1=﹣12x2+32x+2与x轴交于A、B两点,与y轴交于点C,直线l 是抛物线的对称轴,一次函数y2=kx+b经过B、C两点,连接AC.(1)△ABC是三角形;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)结合图象,写出满足y1>y2时,x的取值范围.18.已知:抛物线.(1)写出抛物线的对称轴;(2)完成下表;x…﹣7﹣313…y…﹣9﹣1…(3)在下面的坐标系中描点画出抛物线的图象.19.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b、c的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围;(3)当2≤x≤4时,求y的最大值.20.如图,在直角坐标平面内,直线y=﹣x+5与x轴和y轴分别交于A、B两点,二次函数y=x2+bx+c的图象经过点A、B,且顶点为C.(1)求这个二次函数的解析式;(2)求sin∠OCA的值;(3)若P是这个二次函数图象上位于x轴下方的一点,且△ABP的面积为10,求点P的坐标.【答案与解析】一、解答题1.(1)y =x 2+2x ﹣3;(2)方程有两个不相等的实数根. (1)将已知点的坐标代入二次函数列出方程组,解之即可; (2)因为(m ,k ),(n ,k )是关于直线x =﹣1的对称点,所以+2m n=﹣1 即m =﹣n ﹣2,于是 b 2﹣4ac =m 2﹣4n =(﹣n ﹣2)2﹣4n =n 2+4>0,所以此方程有两个不相等的实数根.(1)抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,3) 9a ﹣3b +c =0930312a b c c b a ⎧⎪-+=⎪=-⎨⎪⎪-=-⎩解得a =1,b =2,c =﹣3 ∴抛物线y =x 2+2x ﹣3;(2)∵点(m ,k ),(n ,k )在此抛物线上, ∴(m ,k ),(n ,k )是关于直线x =﹣1的对称点, ∴+2m n=﹣1 即m =﹣n ﹣2 b 2﹣4ac =m 2﹣4n =(﹣n ﹣2)2﹣4n =n 2+4>0 ∴此方程有两个不相等的实数根. 【点睛】本题考查了二次函数,熟练掌握二次函数的性质与二次函数上点的坐标特征是解题的关键.2.(1)对称轴为直线x=3,顶点坐标为(3,-2);(2)相交;交点为(1,0),(5,0).(1)根据配方法可以将该函数解析式化为y=a (x-h )2+k 的形式,从而可以得到该函数图象的对称轴和顶点坐标;(2)计算∆的值即可判断图象是否与x 轴相交;令y=0求出相应的x 的值,即可求得该函数图象与x 轴的交点坐标. 解:(1)215322y x x =-+ ()21569922x x =-+-+21(3)22x =--, 即21(3)22y x =-- 该二次函数对称轴为直线3x =,顶点坐标为(3,-2); (2)相交,理由如下: 令0y =,则2150322x x =-+, ∵22154(3)44022b ac -=--⨯⨯=>, ∴该二次函数图象与x 轴相交,且有两个交点; 解得11x =,25x =,∴与x 轴的交点为(1,0),(5,0). 【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数由一般式化为顶点式,解答本题的关键是明确题意,利用二次函数的性质解答. 3.(1)14m >-;(2)m 的值为1 (1)利用根的判别式列出不等式,然后求解即可;(2)利用根与系数的关系用m 表示出x 12+x 22,然后列出方程,再求解即可. 解:(1)由题意,得:>0∆, ∴()222140m m -+-⨯>⎡⎤⎣⎦,∴410m +>, ∴14m >-; (2)由根与系数关系,得:1221x x m +=+,212x x m =.∵()2221212122x x x x x x +=+-,代入,得()222127m m +-=, 解得:13m =-,21m =; ∵14m >-, ∴m 的值为1. 【点睛】本题是二次函数综合题型,主要利用了根的判别式,根与系数的关系,难点在于(2)利用根与系数的关系列出关于m 的方程.4.(1)详见解析;(2)13m <<;(3)m=5或m=6(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点;(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果; (3)根据抛物线y =−x2+(5−m )x +6−m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y =−x 的对称点的坐标,列方程可得结论. (1)证明:△=(5−m )2−4×(−1)(6−m )=m 2−14m +49=(m−7)2≥0, ∴该抛物线与x 轴总有交点;(2)解:由(1)△=(m−7)2,根据求根公式可知,方程的两根为:x即x 1=−1,x 2=−m +6,由题意,有3<−m +6<5, ∴1<m <3;(3)解:令 x =0,y =−m +6, ∴M (0,−m +6),由(2)可知抛物线与x 轴的交点为(−1,0)和(−m +6,0), 它们关于直线y =−x 的对称点分别为(0,1)和(0,m−6), 由题意,可得:−m +6=1或−m +6=m−6, ∴m =5或m =6. 【点睛】本题主要考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键. 5.(1)a ≤2;(2)k 43=;(3 (1)由题意可分当a =1时和当a ≠1时,然后分别求解即可;(2)根据一元二次方程根与系数的关系可得x 1+x 22k k +=-, 12144kx x k ==>0,则有kx 12+(k +2)x 14k+=0,然后代入k |21x x |=kx 1﹣12x 2+2,进而可进行求解;(3)由题意得x (x ﹣2)2﹣t =(x ﹣x 1)(x ﹣x 2)(x ﹣x 3),然后整理化简可得x 1+x 2+x 3=4,x 1x 2+x 2x 3+x 3x 1=4,x 1x 2x 3=t ,进而可得x 3x 1=4﹣(x 1+x 3)x 2,x 3x 12tx =,最后根据二次函数的性质可求解.解:(1)①a =1,方程为一元一次方程,必有一根;②a ≠1,方程为一元二次方程,△=(﹣2)2﹣4×(a ﹣1)=4﹣4a +4=8﹣4a ≥0, 解得:a ≤2,即a ≤2且a ≠1, 综上,a ≤2;(2)∵x 1,x 2是关于x 的方程kx 2+(k +2)x 4k+=0的两实数根, ∴x 1+x 22k k +=-,12144kx x k ==>0,kx 12+(k +2)x 14k+=0, ∴x 1,x 2同号,kx 12=﹣(k +2)x 14k -, ∵k |21x x |=kx 1﹣12x 2+2,∴kx 2=kx 12﹣12x 1x 2+2x 1, ∴kx 2=﹣(k +2)x 14k--12x 1x 2+2x 1, ∴k (x 1+x 2)4k++12x 1x 2=0, ∴﹣(k +2)4k ++3=0,解得:k 43=, △=(k +2)2﹣4k 4k⨯≥0,解得:k ≥﹣1, ∵二次项系数不为零k ≠0, ∴k ≥﹣1且k ≠0, ∴k 43=; (3)由题意得:x (x ﹣2)2﹣t =(x ﹣x 1)(x ﹣x 2)(x ﹣x 3), ∴x 3﹣4x 2+4x ﹣t =x 3﹣(x 1+x 2+x 3)x 2+(x 1x 2+x 2x 3+x 3x 1)x ﹣x 1x 2x 3, ∴x 1+x 2+x 3=4,x 1x 2+x 2x 3+x 3x 1=4,x 1x 2x 3=t , ∴x 1x 2+x 2x 3+x 3x 1的值为4, ∵x 1+x 2+x 3=4, ∴x 1+x 3=4﹣x 2, ∵x 1x 2+x 2x 3+x 3x 1=4, ∴x 3x 1=4﹣(x 1+x 3)x 2, ∵x 1x 2x 3=t , ∴x 3x 12tx =, ∵(x 3﹣x 1)2=(x 3+x 1)2﹣4x 3x 1, ∴(x 3﹣x 1)2=(4﹣x 2)2﹣4[4﹣(x 1+x 3)x 2] =﹣3x 22+8x 2 =﹣3(x 243-)2161633+≤,∴当x 243=时,x 3﹣x 13=, ∴x 3﹣x 1的最大值为3,【点睛】本题主要考查二次函数与一元二次方程的关系,熟练掌握二次函数与一元二次方程的关系是解题的关键.6.(1)y=-x²+2x+3;(2)存在,P (9)或(9).(1)把E 点代入、对称轴表示出来,再结合根与系数的关系可表示出x 12+x 22=10,可得到关于a 、b 、c 的方程组,求解即可求出二次函数的解析;(2)可先求得A 、B 的坐标,求得△EOB 的面积,可求得P 到OA 的距离,代入抛物线可求得P 点坐标.(1)∵图象过E (2,3), ∴4a+2b+c=3①; ∵对称轴x=1,∴-2ba=1②, ∵图象与x 轴交于两点A (x 1,0),B (x 2,0), ∴x 1、x 2是方程ax 2+bx+c=0两根, ∴x 1+x 2=-b a ,x 1x 2=c a, ∴x 12+x 22=(x 1+x 2)2-2x 1x 2=22b a -2ca=10③, 由①②③可解1{23a b c =-==,∴二次函数解析式为y=-x 2+2x+3;(2)在y=-x 2+2x+3中,令y=0可得-x 2+2x+3=0,解得x=-1或x=3, ∴A 为(-1,0)、B 为(3,0), ∴OA=1,OB=3,且E 为(2,3), ∴S △EOB =12×3×3=92, 设P 点坐标为(x ,y ),则S △POA =12×1×|y|, ∵S △EOB =S △POA , ∴|y|=9,解得y=±9, 当y=9时,代入后x 无解,当y=-9时,代入可得x=1+13或1-13,∴P点坐标为(1+13,-9)或(1-13,-9),∴在(1)中抛物线上是存在点P,使△POA的面积等于△EOB的面积,其坐标为(1+13,-9)或(1-13,-9)【点睛】本题考查了待定系数法求函数解析式及二次函数与一元二次方程的关系,在(1)中用a、b、c表示出x12+x22=10是解题的关键,在(2)中求出P点的横坐标是解题的关键.7.(1)y=﹣+x+2;(2);(3)当a=2(在0<a<3范围内)时,S最小值=.(1)由题意得A(0,2)、B(2,2)、C(3,0).设经过A,B,C三点的抛物线的解析式为y=ax2+bx+2.则,解得,∴.(2)由=.∴顶点坐标为G(1,).过G作GH⊥AB,垂足为H.则AH=BH=1,GH=﹣2=.∵EA⊥AB,GH⊥AB,∴EA∥GH.∴GH是△BEA的中位线.∴EA=2GH=.过B作BM⊥OC,垂足为M.则MB=OA=AB.∵∠EBF=∠ABM=90°,∴∠EBA=∠FBM=90°﹣∠ABF.∴Rt△EBA≌Rt△FBM.∴FM=EA=.∵CM=OC﹣OM=3﹣2=1,∴CF=FM+CM=.3)设CF=a,则FM=a-1或1- a,∴BF2=FM2+BM2=(a-1)2+22=a2-2a+5 .∵△EBA≌△FBM,∴BE=BF.则,又∵,∴,即,∴当a=2(在0<a<3范围内)时,∴.8.(1)点A的坐标为(1,0).点B的坐标为(0,3).(2)y=x2﹣4x+3.(3)M (2,1).(4)点P的坐标为(2,2)或(2,3)或(2,3+)或(2,3﹣).试题分析:(1)将x=0代入直线的解析式可求得点B的坐标,将y=0代入直线的解析式可求得点A的坐标;(2)将点A、B的坐标代入抛物线的解析式得到关于a、k的方程组,求得a、k的值,从而可求得抛物线的解析式;(3)先求得抛物线的对称轴方程,从而可求得点C的坐标,由轴对称图形的性质可知AM+BM=BM+MC,当点B、M、C在一条直线上时,AM+BM有最小值,在Rt△BOC中,由勾股定理可求得BC的长,从而得到AM+BM的最小值,然后由△CDM∽△COB,可求得DM=1,从而得到点M的坐标;(4)设点P的坐标为(2,m),然后分为AP=PB,AP=AB,BA=BP三种情况列方程求解即可.解:(1)∵将x=0代入直线的解析式得:y=3,∴点B的坐标为(0,3).∵将y=0代入直线的解析式得:﹣3x+3=0,解得:x=1.∴点A的坐标为(1,0).(2)将A(1,0)、B(0,3)代入抛物线的解析式得:,解得:a=1,k=﹣1.抛物线的解析式为y=x2﹣4x+3.(3)如图所示:连接BC交抛物线的对称轴于点M,连接AM.∵由题意可知抛物线的对称轴为x=2,∴点C的坐标为(3,0).∵点A与点M关于x=2对称,∴AN=MC.∴AM+BM=BM+MC.∵当点B、M、C在一条直线上时,AM+BM有最小值,AM+BM的最小值为BC的长.∴AM+BM的最小值==3.∵MD∥OB,∴△CDM∽△COB.∴,即.解得:MD=1.∴M(2,1).(4)设点P的坐标为(2,m).①当PA=PB时,由两点间的距离公式可知:(2﹣1)2+(m﹣0)2=(2﹣0)2+(m﹣3)2.整理得:6m=12.解得:m=2.点P的坐标为(2,2).②当AP=AB时,由两点间的距离公式可知:(2﹣1)2+(m﹣0)2=(1﹣0)2+(0﹣3)2.整理得:m2=9.解得:m=3或m=﹣3(舍去).点P的坐标为(2,3).③当BA=BP时,由两点间的距离公式可知:(1﹣0)2+(0﹣3)2=(2﹣0)2+(m﹣3)2.整理得:(m﹣3)2=6.解得:m=3+或m=3﹣.点P的坐标为(2,3+)或(2,3﹣).综上所述,点P的坐标为(2,2)或(2,3)或(2,3+)或(2,3﹣).考点:二次函数综合题.9.(1)见解析;(2)m=4或m=0.(1)只要证明b2-4ac>0即可;(2)由一元二次方程根与系数的关系可知:x 1+x 2=m -2,x 1x 2=-12m 2,进而可得x 12+x 22=(m -2)2+m 2,再根据|x 2|=|x 1|+2可得x 12+x 22-2|x 1x 2|=4,最后代入计算即可.解:(1)令y =0, 得:x 2-(m -2)x -12m 2=0, b 2-4ac =221(2)41()2m m --⨯⨯-=m 2-4m +4+2m 2 =3m 2-4m +4 =3(m -23)2+83>0, ∴无论m 取什么实数,抛物线总与x 轴有两个不同交点; (2)令y =0, 得:x 2-(m -2)x -12m 2=0, 由一元二次方程根与系数的关系可知:x 1+x 2=m -2①,x 1x 2=-12m 2②. 由①平方得:x 12+x 22+2x 1x 2=(m -2)2, ∴x 12+x 22=(m -2)2+m 2③. ∵|x 2|=|x 1|+2, ∴|x 2|-|x 1|=2. ∴x 12+x 22-2|x 1x 2|=4, ∴(m -2)2+m 2-2|-12m 2|=4, 整理得:(m -2)2=4. ∴m =4或m =0. 【点睛】本题主要考查的是二次函数与x 轴交点的问题,将函数问题转化为方程问题是解题的关键.10.(1)抛物线解析式为y=x 2﹣4x+3;(2)Q 点的坐标为(0,0)或(,0). 试题分析:(1)先确定出点B ,C 坐标,再用待定系数法求函数解析式; (2)先求出BA=2,BC=3,BP=,然后分两种情况①由△ABC ∽△PBQ ,得到,求出BQ ,②由△ABC ∽△QBP 得,求出BQ ,即可.解:(1)∵直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,令x=0,得y=3, ∴C (0,3), 令y=0,得x=3, ∴B (3,0),∵经过B、C两点的抛物线y=x2+bx+c∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)由(1),得A(1,0),连接BP,∵∠CBA=∠ABP=45°,∵抛物线解析式为y=x2﹣4x+3;∴P(2,﹣1),∵A(1,0),B(3,0),C(0,3),∴BA=2,BC=3,BP=,当△ABC∽△PBQ时,∴,∴,∴BQ=3,∴Q(0,0),当△ABC∽△QBP时,∴,∴,∴BQ=,∴Q(,0),∴Q点的坐标为(0,0)或(,0).11.y=-x+;;.试题分析:根据二次函数求出A、B两点的坐标,然后根据点B在一次函数上得出b的值,得出直线BC的解析式;首先求出两个函数的交点坐标,得出点C的坐标,然后求出三角形的面积;过点N作NP⊥MB于点P,根据题意得出△BNP∽△BEO,根据直线解析式得出点E的坐标,根据△BEO得出BE的长度,然后根据三角形相似得出NP的长度,然后S与t的函数关系式,根据二次函数的性质得出最值.试题解析:(1)在y=-+3中,令y=0,得-+3=0,解得x1=2,x2=-2,∴A(-2,0),B(2,0).又∵点B在y=-x+b上,∴0=-×2+b,∴b=.∴直线BC的表达式为y=-x+.(2)过点C作CD⊥AB于点D.由得∴C(-1,).∴AB=4,CD=.∴S△ABC=×4×=.(3)过点N作NP⊥MB于点P.∵EO⊥MB,∴NP∥EO.∴△BNP∽△BEO,∴=.由直线y=-x+可得:E(0,).在△BEO中,∵OB=2,EO=,∴BE=.∴=,∴NP=t .∴S=·(4-t)·t=-t2+t=-(t-2)2+(0<t<4)∵此抛物线开口向下,∴当t=2时,S最大=.∴当点M运动2秒时,△MNB的面积最大,最大面积是.考点:二次函数的综合应用.12.(1) y=-14x2+32x+4; (2)点A的坐标为(-2,0),点B的坐标为(8,0);(3)点M的坐标为(2,6)或(6,4).(1)由抛物线的对称轴为直线x=3,利用二次函数的性质即可求出a值,进而可得出抛物线的解析式;(2)利用二次函数图象上点的坐标特征,即可求出点A、B的坐标;(3)利用二次函数图象上点的坐标特征可求出点C的坐标,由点B、C的坐标,利用待定系数法即可求出直线BC的解析式,设点M的坐标为(m,-14m2+32m+4),则点N的坐标为(m,-12m+4),进而可得出MN=|-14m2+2m|,结合MN=3即可得出关于m的含绝对值符号的一元二次方程,解之即可得出结论.(1)∵抛物线y=ax2+32x+4的对称轴是直线x=3,∴3232a-=,解得:a=-14,∴抛物线的解析式为y=-14x2+32x+4(2)当y=0时,-14x2+32x+4=0,解得:x1=-2,x2=8,∴点A的坐标为(-2,0),点B的坐标为(8,0)(3)当x =0时,y =-14x 2+32x +4=4, ∴点C 的坐标为(0,4).设直线BC 的解析式为y =kx +b (k≠0).将B (8,0),C (0,4)代入y =kx +b ,得804k b b +=⎧⎨=⎩,解得:124k b ⎧=-⎪⎨⎪=⎩∴直线BC 的解析式为y =-12x +4 设点M 的坐标为213(,4)42m m m -++,则点N 的坐标为1(,4)2m m -+,其中0<m<8∴MN =2213114(4)24224m m m m m -++--+=-+,又∵MN =3,∴-14m 2+2m =3,解得:m 1=2,m 2=6,∴点M 的坐标为(2,6)或(6,4). 【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求一次函数解析式,解题的关键是:(1)利用二次函数的性质求出a 的值;(3)根据MN 的长度,找出关于m 的一元二次方程.13.(1)y=x 2+2x-3;(2)A (-3,0),B (1,0),(3)6.试题分析:(1)设顶点式y=a (x+1)2-4,然后把点(0,-3)代入求出a 即可得到抛物线解析式;(2)通过解方程可得到A 点和B 点坐标;(3)先写出C 点坐标,然后根据三角形面积公式计算. 试题解析:(1)设抛物线的解析式为y=a (x+1)2-4, 把点(0,-3)代入得a-4=-3,解得a=1, 所以函数解析式y=(x+1)2-4或y=x 2+2x-3; (2)当y=0时,x 2+2x-3=0,解得x 1=1,x 2=-3, 所以A (-3,0),B (1,0), (3)C (0,-3), △ABC 的面积=12×(1+3)×3=6. 14.(1)A (-1,0)B (3,0) C (0,3) (2)△BCD 的面积为3.试题分析:(1)分别令y=0,x=0,即可求出A.B.C 点的坐标. (2)延长DC 交x 轴于E ,利用S △BCD =S △BED -S △BCE 计算即可 (1)令y=0,可得x=3或x=﹣1. 令x=0,可得y=3. ∴A (-1,0)B (3,0) C (0,3)(2)依题意,可得y=-x 2+2x+3=-(x-1)2+4. ∴顶点D (1,4). 令y=0,可得x=3或x=-1. ∴令x=0,可得y=3. ∴C (0,3). ∴OC=3,∴直线DC 的解析式为y=x+3. 设直线DE 交x 轴于E . ∴BE=6.∴S △BCD =S △BED -S △BCE =3. ∴△BCD 的面积为3.15.(1)(3,0),(,0),(0,3)A B a C -;(2)①见解析;②32或32+ (1)令0,y = 求解,A B 的坐标,令0,x = 求C 的坐标;(2)①根据抛物线是解析式求解抛物线的对称轴,由轴对称求解P 的坐标,把P 的坐标代入y x a =-+可得结论,②点Q 在抛物线上有且只有三个位置满足QPB APC S S ∆∆=得到Q 在在直线PB 上方只能存在一个位置,即此时QPB S ∆的面积最大,利用函数的性质求解面积的最大值,分情况建立方程求解即可. (1)令0,y =则1(3)()0,x x a a-+-= 解得:123,,x x a =-=()()3,0,,0,A B a ∴-令0,x =()11(3)()33,y x x a a a a∴=-+-=-⨯⨯-=()0,3.C ∴∴ A (-3,0)、B (a ,0)、C (0,3)(2)①1(3)(),y x x a a=-+-∴ 抛物线的对称轴为32a x -=, 点P 与点C 关于抛物线的对称轴成轴对称, 则中点坐标公式得:P 坐标为(a -3,3) 将点P 坐标(a -3,3)代入到y x a =-+中,得33a a =--+() 成立∴点P 在直线y x a =-+的图像上② 由题意得:13322APC S PC PC ∆=⋅⋅=⋅ 在直线PB 下方始终存在两个位置,使得QPB APC S S ∆∆= 则在直线PB 上方只能存在一个位置,使得QPB APC S S ∆∆=, 即QPB S ∆最大时成立由点Q 在在直线PB 上方,过点Q 作x 轴垂线,垂足为点M , 交PB 于点H ,交PC 于点N ,如图,则1122QPB QHP QHB S S S QH PN QH BM ∆∆∆=+=⋅⋅+⋅⋅ ()1322QH PN BM QH =+=⋅, 2113(3)()3,a y x x a x x a a a -=-+-=--+∴ 设点213,3,a Q m m m a a -⎛⎫--+ ⎪⎝⎭()()3,3,,0,P a B a - ,P B ∴都在y x a =-+上,PB ∴为:y x a =-+,(),,H m m a ∴-+则213(2)3QH m m a a a=-⋅+-+- 当232a m -=时,QH 有最大值=94a,所以此时面积最大为3924QPB S a ∆=⋅ 当0<<3a 时,3PC a =-,得3393-)224a a ⋅=⋅(,则1232a a == 当3a >时,-3PC a =,得339-3)224a a ⋅=⋅(,则12322a a +==(舍去)综上所述:32a =或a =【点睛】本题考查的二次函数,考查二次函数与一元二次方程的关系,考查利用二次函数的性质求解面积的最大值,同时考查了一次函数的性质,掌握以上知识是解题的关键. 16.(1)y 31x ⨯+2)关于y 轴对称;(3)0≤x ≤1.(1)根据在函数y a x b ⨯+x =0时,y =1;当x =2时,y 7,可以求得该函数的表达式;(2)根据(1)中的表达式列表、描点,连线可以画出该函数的图象并得到函数的性质; (3)根据图象可以直接写出所求不等式组的解集. 【解答】解:(1)∵在函数y a x b ⨯+x =0时,y =1;当x =2时,y 7.∴127b a b =+=31a b =⎧⎨=⎩,∴这个函数的表达式是y 31x ⨯+ 故答案为:y 31x ⨯+ (2)∵y 31x ⨯+∴y =31(0)31(0)x x x x +≥-+<, 列表: x ﹣5 ﹣2﹣1 0 1 25… y47 21274…函数的性质:关于y轴对称,故答案为:关于y轴对称;(3)∵13 22a xb x⨯++即是直线高于曲线,且0x,∴由函数图象可得,不等式组1322a xb xx⎧⨯++⎪⎨⎪⎩的解集是0≤x≤1.【点睛】此题考查待定系数法求函数解析式,画函数图象,函数图象的性质,不等式组与函数图象的关系.17.(1)直角;(2)P(32,54);(3)0<x<4.(1)求出点A、B、C的坐标分别为:(-1,0)、(4,0)、(0,2),则AB2=25,AC2=5,BC2=20,即可求解;(2)点A关于函数对称轴的对称点为点B,则直线BC与对称轴的交点即为点P,即可求解;(3)由图象可得:y1>y2时,x的取值范围为:0<x<4.解:(1)当x=0时,y1=0+0+2=2,当y=0时,﹣1 2 x2+32x+2=0,解得x1=-1,x2=4,∴点A、B、C的坐标分别为:(﹣1,0)、(4,0)、(0,2),则AB2=25,AC2=5,BC2=20,故AB2=AC2+BC2,故答案为:直角;(2)将点B、C的坐标代入一次函数表达式:y=kx+b得:40k bb+=⎧⎨=⎩,解得122kb⎧=-⎪⎨⎪=⎩,∴直线BC的表达式为:y=﹣12x+2,抛物线的对称轴为直线:x=32,点A关于函数对称轴的对称点为点B,则直线BC与对称轴的交点即为点P,当x=32时,y=12-×32+2=54,故点P(32,54);(3)由图象可得:y1>y2时,x的取值范围为:0<x<4,故答案为:0<x<4.【点睛】本题考查了二次函数与坐标轴的交点,待定系数法求一次函数解析式,轴对称最短的性质,勾股定理及其逆定理,以及利用图像解不等式等知识,本题难度不大.18.(1)抛物线的对称轴为直线x=﹣1.(2)见试题解析;(3)见试题解析试题分析:(1)根据抛物线21(1)4y x =-+,直接得出对称轴即可; (2)根据直线解析式分别得出对应函数的值即可; (3)利用(2)中所求的点,画出图象即可. 试题解析:(1)抛物线的对称轴为直线x=﹣1. (2)填表如下: x … ﹣7 ﹣5 ﹣3 ﹣1 1 3 5 … y … ﹣9 ﹣4 ﹣1 0 ﹣1 ﹣4 ﹣9 … (3)描点作图如下:【考点】二次函数的性质;二次函数的图象.19.(1) y=﹣x 2+2x+3;(2) ﹣1<x <3,y >0;(3) 当x=2时,y 的最大值是3.试题分析:(1)因为点(﹣1,0),(0,3)在抛物线y=﹣x 2+bx+c 上,可代入确定b 、c 的值;(2)求出抛物线与x 轴的交点坐标,根据图象确定y >0时,x 的取值范围;(3)根据二次函数的增减性,确定2≤x ≤4时,y 的最大值. 试题解析:(1)把(﹣1,0),(0,3)代入y=﹣x 2+bx+c ,得103b c c --+=⎧⎨=⎩ 解得32c b =⎧⎨=⎩, 所以二次函数的解析式为:y=﹣x 2+2x+3(2)把x=0代入y=﹣x 2+bx+c 中,得﹣x 2+bx+c=0,解得x 1=﹣1,x 2=3, 所以当﹣1<x <3,y >0;(3)由y=﹣x 2+2x+3=﹣(x ﹣1)2+4,抛物线的对称轴为直线x=1,则当2≤x ≤4时,y 随着x 的增大而减小,∴当x=2时,y的最大值是3.考点:抛物线与x轴的交点;二次函数的图象;二次函数的最值;待定系数法求二次函数解析式.20.(1)y=x2﹣6x+5;(2);(3) P(4,﹣3).试题分析:(1)根据一次函数求出A、B两点的坐标,然后代入反比例解析式进行求解;(2)过点C作CH⊥x轴,求出CH、AH、AC、OC、OA的长度,将∠OAC转化成∠OCA,然后进行计算;(3)过点P作PQ⊥x轴并延长角直线于点Q,设出点P和点Q的坐标,求出PQ的长度,根据三角形的面积关系列出方程,然后进行求解,根据点P在x轴下方进行舍根.试题解析:(1)由直线y=-x+5得点B(0,5),A(5,0),将A、B两点的坐标代入,得,解得∴抛物线的解析式为(2)过点C作CH⊥x轴交x轴于点H 把配方得∴点C (3,-4),∴CH=4,AH=2,AC=∴OC=5,∵OA=5 ∴OA=OC ∴∠OAC=∠OCAsin∠OCA=sin∠OAC=(3)过P点作PQ x轴并延长交直线y=-x+5于Q设点P(m,-6m+5),Q(m,-m+5)∴PQ=-m+5-(-6m+5)=-+5m∵∴∴∴∴P(1,0)(舍去),P(4,-3)考点:(1)待定系数法求函数解析式;(2)三角形函数的计算;(3)一元二次方程的应用.。

最新苏科版八年级数学上册第二次月考质量检测试卷1(含答案)

最新苏科版八年级数学上册第二次月考质量检测试卷1(含答案)

最新苏科版八年级数学上册第二次月考质量检测试卷1(含答案)时间:100分钟满分:120分学校:__________姓名:__________班级:__________考号:__________一、选择题1.下列图形中,不是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合, 这个图形叫做轴对称图形.2. 在下列实数中,无理数是( )A. 0B. 14C. 5D. 6【答案】C【解析】试题分析:有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.因此,选项A、B、D的0、14、6都是有理数,选项C5C.3.在平面直角坐标系中,点M(﹣2,1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B∵点P的横坐标为负,纵坐标为正,∴该点在第二象限.故选B.4.下列四组线段中,可以构成直角三角形的是()A. 1,2,3B. 2,3,4C. 3,4,5D. 4,5,6【答案】C【解析】【分析】根据勾股定理的逆定理逐项判断即可.【详解】A、12+22≠32,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、32+42=52,能构成直角三角形,故符合题意;D、42+52≠62,不能构成直角三角形,故不符合题意.故选:C.【点睛】本题考查勾股定理的逆定理,如果三角形的三边长为a,b,c,有下面关系:a2+b2=c2,那么这个三角形是直角三角形.5.当x=2时,函数112y x=+的值是()A. 3B. 2C. 1D. 0 【答案】B【解析】【分析】把x=2代入函数关系式进行计算即可得解.【详解】x=2时,y=12×2+1=1+1=2.故选B.【点睛】本题考查了函数值求解,把自变量的值代入进行计算即可,比较简单.6.到△ABC的三条边距离相等的点是△ABC的().A. 三条中线的交点B. 三条边的垂直平分线的交点C. 三条高的交点D. 三条角平分线的交点【解析】【分析】根据角平分线的性质求解即可.【详解】到△ABC 的三条边距离相等的点是△ABC 的三条角平分线的交点故答案为:D .【点睛】本题考查了到三角形三条边距离相等的点,掌握角平分线的性质是解题的关键. 7.等腰三角形的周长为80,腰长为 x ,底边长为y ,y 是x 的函数,则 x 的取值范围是( )A. x>0B. 020x <<C. 040x <<D. 2040x <<【答案】D【解析】【分析】根据已知列方程,化为函数关系式,再根据三角形三边的关系确定x 的取值范围即可.【详解】∵2x+y=80,∴y=80-2x ,∵y >0,∴80-2x >0,即x <40,∵两边之和大于第三边,∴2x >y ,即2x >80-2x,解得x >20,综上可得20<x <40,故选D.【点睛】本题考查了等腰三角形的性质及三角形三边关系,运用方程的思想列出关系式、根据三角形三边关系求得x 的取值范围是解答本题的关键.8.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )A. 3B. 4C. 5D. 6【答案】A【解析】正确理解函数图象横纵坐标表示的意义.解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y 在AB段随x的增大而增大;在CD段,△ABP的底边不变,高不变,因而面积y不变化.由图2可以得到:BC=2,CD=3,△BCD的面积是×2×3=3.故选A.理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.二、填空题9.18的立方根是__.【答案】1 2【解析】试题分析:根据立方根的定义,求数a的立方根,也就是求一个数x,使得x3=a,则x就是a 的一个立方根:∵31128⎛⎫=⎪⎝⎭,∴18的立方根是12.10.用四舍五入法把9.456精确到百分位,得到的近似值是.【答案】9.46【解析】试题分析:把千分位上的数字6进行四舍五入即可.解:9.456≈9.46(精确到百分位).故答案为9.46.考点:近似数与有效数字.11. 等腰三角形一个底角是30°,则它的顶角是__________.【答案】120°【解析】本题主要考查“等腰三角形的两底角相等”与“三角形的内角和定理”等腰三角形一个底角是30°,则它的另一个底角也是30°,则它的顶角是180°-30°-30°=120°12.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.【答案】20【解析】试题分析:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20.13.已知一次函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是______.x【答案】2【解析】【分析】直接利用一次函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2.故答案为:x<2.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键. 14.已知函数y=3x 的图象经过点A(-1,y 1),点B(-2,y 2),则y 1____y 2(填“>”或“<”或“=”).【答案】>【解析】【分析】分别把点A (-1,y 1),点B (-2,y 2)的坐标代入函数y =3x ,求出点y 1,y 2的值,并比较出其大小即可.【详解】∵点A (-1,y 1),点B (-2,y 2)是函数y =3x 的图象上的点,∴y 1=-3,y 2=-6,∵-3>-6,∴y 1>y 2.15.一次函数1y x =+与3y ax =+的图象交于点P ,且点P 的横坐标为1,则关于x ,y 的方程组1,3y x y ax =+⎧⎨=+⎩的解是______. 【答案】12x y =⎧⎨=⎩【解析】【分析】把1x =代入1y x =+,得2y =,得出两直线的交点坐标为(1,2),从而得到方程组的解.【详解】解:把1x =代入1y x =+,得2y =,则函数1y x =+和3y ax =+的图象交于点(1,2)P ,即x=1,y=2同时满足两个一次函数的解析式. 所以关于x ,y 的方程组1,3y x y ax =+⎧⎨=+⎩的解是1,2.x y =⎧⎨=⎩故答案为12x y =⎧⎨=⎩【点睛】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16.如图,在△ABC 中,∠BAC =90°,AB =5,AC =12,点D 是BC 的中点,将△ABD 沿AD翻折得到△AED,连接BE,CE.则CE=___________。

(精选试题附答案)高中数学第三章函数的概念与性质经典知识题库

(精选试题附答案)高中数学第三章函数的概念与性质经典知识题库

(名师选题)(精选试题附答案)高中数学第三章函数的概念与性质经典知识题库单选题1、已知函数f(x)在定义域R 上单调,且x ∈(0,+∞)时均有f(f(x)+2x)=1,则f(−2)的值为( )A .3B .1C .0D .−1答案:A分析:设f(x)+2x =t ,则f(x)=−2x +t ,即可由f(f(x)+2x)=1得f(t)=−2t +t =1,解出t ,从而得到f(x)=−2x −1,进而求出f(−2)的值.根据题意,函数f(x)在定义域R 上单调,且x ∈(0,+∞)时均有f(f(x)+2x)=1,则f(x)+2x 为常数,设f(x)+2x =t ,则f(x)=−2x +t ,则有f(t)=−2t +t =1,解可得t =−1,则f(x)=−2x −1,故f(−2)=4−1=3;故选:A.2、函数f (x )=x +4x+1在区间[−12,2]上的最大值为( )A .103B .152C .3D .4 答案:B分析:利用换元法以及对勾函数的单调性求解即可.设t =x +1,则问题转化为求函数g (t )=t +4t −1在区间[12,3]上的最大值.根据对勾函数的性质,得函数g (t )在区间[12,2]上单调递减,在区间[2,3]上单调递增,所以g (t )max =max {g (12),g (3)}=max {152,103}=152.故选:B3、定义在R 上的偶函数f(x)在[0,+∞)上单调递增,且f(2)=0,则不等式x ⋅f(x)>0的解集为( )A .(−∞,−2)∪(2,+∞)B .(−2,0)∪(0,2)C .(−2,0)∪(2,+∞)D .(−∞,−2)∪(0,2)答案:C分析:结合函数的单调性与奇偶性解不等式即可.义在R 上的偶函数f(x)在[0,+∞)上单调递增,且f(2)=0,所以f(x)在(−∞,0)上单调递减,且f(−2)=0,x ⋅f(x)>0⇒{x >0f (x )>0 或{x <0f (x )<0, 故x >2或−2<x <0,故选:C4、设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f(x)=ax 2+b .若f (0)+f (3)=6,则f (92)=( )A .−94B .−32C .74D .52答案:D分析:通过f (x +1)是奇函数和f (x +2)是偶函数条件,可以确定出函数解析式f (x )=−2x 2+2,进而利用定义或周期性结论,即可得到答案.[方法一]:因为f (x +1)是奇函数,所以f (−x +1)=−f (x +1)①;因为f (x +2)是偶函数,所以f (x +2)=f (−x +2)②.令x =1,由①得:f (0)=−f (2)=−(4a +b ),由②得:f (3)=f (1)=a +b ,因为f (0)+f (3)=6,所以−(4a +b )+a +b =6⇒a =−2,令x =0,由①得:f (1)=−f (1)⇒f (1)=0⇒b =2,所以f (x )=−2x 2+2.思路一:从定义入手.f (92)=f (52+2)=f (−52+2)=f (−12) f (−12)=f (−32+1)=−f (32+1)=−f (52) −f (52)=−f (12+2)=−f (−12+2)=−f (32) 所以f (92)=−f (32)=52.[方法二]:因为f (x +1)是奇函数,所以f (−x +1)=−f (x +1)①;因为f (x +2)是偶函数,所以f (x +2)=f (−x +2)②.令x =1,由①得:f (0)=−f (2)=−(4a +b ),由②得:f (3)=f (1)=a +b ,因为f (0)+f (3)=6,所以−(4a +b )+a +b =6⇒a =−2,令x =0,由①得:f (1)=−f (1)⇒f (1)=0⇒b =2,所以f (x )=−2x 2+2.思路二:从周期性入手由两个对称性可知,函数f (x )的周期T =4.所以f (92)=f (12)=−f (32)=52.故选:D .小提示:在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.5、下列图形中,不能表示以x 为自变量的函数图象的是( ) A .B .C .D .答案:B 分析:根据函数的定义判断即可.B 中,当x >0时,y 有两个值和x 对应,不满足函数y 的唯一性,A ,C ,D 满足函数的定义,故选:B6、已知幂函数y =x a 与y =x b 的部分图象如图所示,直线x =14,x =12与y =x a ,y =x b 的图象分别交于A 、B 、C 、D 四点,且|AB|=|CD|,则12a +12b =( )A .12B .1C .√2D .2 答案:B分析:把|AB |=|CD |用函数值表示后变形可得.由|AB |=|CD |得(14)a −(14)b =(12)a −(12)b ,即[(12)a −(12)b ][(12)a +(12)b ]=(12)a −(12)b ≠0,所以(12)a +(12)b=1,故选:B .7、下列图形能表示函数图象的是( )A .B .C .D .答案:D 分析:根据函数的定义,判断任意垂直于x 轴的直线与函数的图象的交点个数,即可得答案.由函数的定义:任意垂直于x 轴的直线与函数的图象至多有一个交点,所以A 、B 显然不符合,C 在x =0与函数图象有两个交点,不符合,只有D 符合要求.故选:D8、“幂函数f (x )=(m 2+m −1)x m 在(0,+∞)上为增函数”是“函数g (x )=2x −m 2⋅2−x 为奇函数”的( )条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要答案:A分析:要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,求出m =1,可得函数g (x )为奇函数,即充分性成立;函数g (x )=2x −m 2⋅2−x 为奇函数,求出m =±1,故必要性不成立,可得答案. 要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,则{m 2+m −1=1m >0,解得:m =1,当m =1时,g (x )=2x −2−x ,x ∈R , 则g (−x )=2−x −2x =−(2x −2−x )=−g (x ),所以函数g (x )为奇函数,即充分性成立;“函数g(x)=2x−m2⋅2−x为奇函数”,则g(x)=−g(−x),即2x−m2⋅2−x=−(2−x−m2⋅2x)=m2⋅2x−2−x,解得:m=±1,故必要性不成立,故选:A.9、若函数f(x+1x )=x2+1x2,且f(m)=4,则实数m的值为()A.√6B.√6或−√6C.−√6D.3答案:B分析:令x+1x=t,配凑可得f(t)=t2−2,再根据f(m)=4求解即可令x+1x =t(t≥2或t≤−2),x2+1x2=(x+1x)2−2=t2−2,∴f(t)=t2−2,f(m)=m2−2=4,∴m=±√6.故选;B10、如图,可以表示函数f(x)的图象的是()A.B.C.D.答案:D分析:根据函数的概念判断根据函数的定义,对于一个x,只能有唯一的y与之对应,只有D满足要求故选:D填空题11、已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______. 答案:(−12,23) 分析:结合函数定义域和函数的单调性列不等式求解即可.由题意得:{-2<m -1<2,-2<1-2m <2,m -1<1-2m ,解得−12<m <23. 所以答案是:(−12,23)12、幂函数y =f(x)的图象经过点(4,12),则f(14)=____.答案:2分析:根据幂函数过点(4,12),求出解析式,再有解析式求值即可. 设f(x)=x α,则f(4)=4α=22α=12=2−1,所以α=−12,故f(x)=x −12,所以f(14)=(14)−12=2.所以答案是:213、若幂函数y =f(x)的图像经过点(18,2),则f(−18)的值为_________.答案:−2分析:根据已知求出幂函数的解析式f(x)=x −13,再求出f(−18)的值得解.设幂函数的解析式为f(x)=x a ,由题得2=(18)a =2−3a ,∴−3a =1,∴a =−13,∴f(x)=x −13. 所以f(−18)=(−18)−13=(−12)3×(−13)=−2.所以答案是:−2.小提示:本题主要考查幂函数的解析式的求法和函数值的求法,意在考查学生对这些知识的理解掌握水平.14、设函数f (x )=x 3+(x+1)2x 2+1在区间[−2,2]上的最大值为M ,最小值为N ,则(M +N −1)2022的值为______. 答案:1分析:先将函数化简变形得f (x )=x 3+2xx 2+1+1,然后构造函数g (x )=x 3+2xx 2+1,可判断g (x )为奇函数,再利用奇函数的性质结合f(x)=g(x)+1可得M +N =2,从而可求得结果由题意知,f (x )=x 3+2x x 2+1+1(x ∈[−2,2]), 设g (x )=x 3+2xx 2+1,则f(x)=g(x)+1,因为g (−x )=−x 3−2xx 2+1=−g (x ),所以g (x )为奇函数,g (x )在区间[−2,2]上的最大值与最小值的和为0,故M +N =2,所以(M +N −1)2022=(2−1)2022=1.所以答案是:115、已知具有性质:f (1x )=−f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x −1x;②f (x )=x +1x ;③f (x )={x,0<x <10,x =1−1x ,x >1 ,其中满足“倒负”变换的函数是______. 答案:①③分析:验证①②③中的函数是否满足f (1x )=−f (x ),由此可得出结论.对于①,∵f (x )=x −1x ,该函数的定义域为{x |x ≠0 },对任意的x ∈{x |x ≠0 },f (1x )=1x −x =−f (x ),满足条件;对于②,∵f (x )=x +1x,该函数的定义域为{x |x ≠0 }, 对任意的x ∈{x |x ≠0 },f (1x )=1x +x =f (x ),不满足条件; 对于③,因为f (x )={x,0<x <10,x =1−1x,x >1 ,当0<x <1时,1x >1,则f (1x )=−x =−f (x ), 当x >1时,0<1x <1,f (1x )=−x =−f (x ),当x =1时,f (11)=0=−f (1). 所以,对任意的x >0,f (1x)=−f (x ). 综上可知,满足“倒负”变换的函数是①③.所以答案是:①③.解答题16、已知f(x),g(x)分别是R 上的奇函数和偶函数,且f(x)+g(x)=3x 2−x +1,试求f(x)和g(x)的表达式. 答案:f(x)=−x ,g(x)=3x 2+1分析:本题考查函数的奇偶性的性质以及应用,关键是利用函数的奇偶性构造方程.解析: 以-x 代替条件等式中的x ,则有f(−x)+g(−x)=3x 2+x +1,又f (x ),g (x )分别是R 上的奇函数和偶函数,故−f(x)+g(x)=3x 2+x +1.又f(x)+g(x)=3x 2−x +1,联立可得f (x )=−x ,g(x)=3x 2+1.17、已知幂函数f(x)=(m −1)2x m2−4m+2在(0,+∞)上单调递增,函数g(x)=2x −k .(1)求m 的值;(2)当x ∈[1,2)时,记f(x),g(x)的值域分别为集合A ,B ,设p:x ∈A,q:x ∈B ,若p 是q 成立的必要条件,求实数k 的取值范围.(3)设F(x)=f(x)−kx +1−k 2,且|F(x)|在[0,1]上单调递增,求实数k 的取值范围.答案:(1)m =0;(2)0≤k ≤1;(3)[−1,0]∪[2,+∞)分析:(1)由幂函数的定义(m −1)2=1,再结合单调性即得解.(2)求解f(x),g(x)的值域,得到集合A ,B ,转化命题p 是q 成立的必要条件为B ⊆A ,列出不等关系,即得解.(3)由(1)可得F(x)=x 2−kx +1−k 2,根据二次函数的性质,分类讨论k 2≤0和k 2≥1两种情况,取并集即可得解.(1)由幂函数的定义得:(m −1)2=1,⇒m =0或m =2,当m =2时,f(x)=x −2在(0,+∞)上单调递减,与题设矛盾,舍去;当m =0时,f(x)=x 2在(0,+∞)上单调递增,符合题意;综上可知:m =0.(2)由(1)得:f(x)=x 2,当x ∈[1,2)时,f(x)∈[1,4),即A =[1,4),当x ∈[1,2)时,g(x)∈[2−k,4−k ),即B =[2−k,4−k ),由命题p 是q 成立的必要条件,则B ⊆A ,显然B ≠∅,则{2−k ≥14−k ≤4 ,即{k ≤1k ≥0, 所以实数k 的取值范围为:0≤k ≤1.(3)由(1)可得F(x)=x 2−kx +1−k 2,二次函数的开口向上,对称轴为x =k 2,要使|F(x)|在[0,1]上单调递增,如图所示: 或即{k2≤0F(0)≥0或{k2≥1F(0)≤0,解得:−1≤k≤0或k≥2.所以实数k的取值范围为:[−1,0]∪[2,+∞)小提示:关键点点睛:本题考查幂函数的定义及性质,必要条件的应用,已知函数的单调性求参数,理解p是q 的必要不充分条件,则q对应集合是p对应集合的真子集是解题的关键,考查学生的分析试题能力与分类讨论思想,及数形结合思想,属于较难题.18、已知幂函数f(x)=x m2−m−2(m∈Z)是偶函数,且在(0,+∞)上是减函数,求函数f(x)的解析式.答案:f(x)=x−2分析:根据幂函数的单调性,可知m2−m−2<0,又m∈Z,则m=0,1,再根据函数f(x)是偶函数,将m= 0,1分别代入验证可得答案.因为幂函数f(x)在区间(0,+∞)上单调递减,则m2−m−2<0,得m∈(−1,2),又∵m∈Z,∴m=0或1.因为函数f(x)是偶函数,将m=0,1分别代入,当m=0时,m2−m−2=−2,函数为f(x)=x−2是偶函数,满足条件.当m=1时,m2−m−2=−2,函数为f(x)=x−2是偶函数,满足条件.∴f(x)的解析式为f(x)=x−2.19、函数f(x)对任意x,y∈R,总有f(x+y)=f(x)+f(y),当x<0时,f(x)<0,且f(1)=13.(1)证明f(x)是奇函数;(2)证明f(x)在R上是单调递增函数;(3)若f(x)+f(x−3)≥−1,求实数x的取值范围.答案:(1)证明见解析;(2)证明见解析;(3)[0,+∞).分析:(1)先用赋值法求出f(0)=0,令y=−x,即可根据定义证明f(x)是奇函数;(2)利用定义法证明f(x)是R上的增函数;(3)先把f(x)+f(x−3)≥−1转化为f(2x−3)≥f(−3),利用单调性解不等式即可.(1)令x =y =0,则f (0)=f (0)+f (0),解得f (0)=0,令y =−x ,则f (0)=f (x )+f (−x ),即f (x )+f (−x )=0,即f (−x )=−f (x ), 易知f (x )的定义域为R ,关于原点对称,所以函数f (x )是奇函数;(2)任取x 1,x 2∈R ,且x 1<x 2,则x 1−x 2<0,因为当x <0时,f (x )<0,所以f (x 1−x 2)<0,则f (x 1)−f (x 2)=f (x 1)+f (−x 2)=f (x 1−x 2)<0,即f (x 1)<f (x 2),所以函数f (x )是R 上的增函数;(3)由f (1)=13,得f (2)=23,f (3)=1,又由f (x )是奇函数得f (−3)=−1. 由f (x )+f (x −3)≥−1,得f (2x −3)≥f (−3),因为函数f (x )是R 上的增函数, 所以2x −3≥−3,解得x ≥0,故实数x 的取值范围为[0,+∞).。

自变量和因变量关系的函数解法绘图及实际问题应用

自变量和因变量关系的函数解法绘图及实际问题应用

自变量和因变量关系的函数解法绘图及实际问题应用一、自变量和因变量的概念1.自变量:独立变量,自行变化的量。

2.因变量:依赖变量,随着自变量的变化而变化的量。

二、函数的定义和性质1.函数:自变量与因变量之间的一种对应关系。

2.函数的性质:一一对应、连续、可导、可积等。

三、函数解法绘图1.解析式法:根据函数的解析式,绘制函数图像。

2.列表法:根据自变量和因变量的值,绘制函数图像。

3.图象平移法:根据函数的平移规律,绘制函数图像。

4.函数变换法:根据函数的变换规律,绘制函数图像。

四、实际问题应用1.线性方程的应用:解决生活中的线性问题,如速度、路程、时间的关系。

2.二次函数的应用:解决生活中的二次问题,如抛物线、物体的运动等。

3.三角函数的应用:解决与角度、边长有关的实际问题。

4.反比例函数的应用:解决与比例、面积有关的实际问题。

五、函数解法绘图及实际问题应用的注意事项1.理解自变量和因变量的概念,明确它们之间的关系。

2.掌握函数的定义和性质,了解各种函数的特点。

3.学会使用函数解法绘图,熟练运用各种方法绘制函数图像。

4.将函数知识应用于实际问题,解决生活中的问题。

通过学习自变量和因变量关系的函数解法绘图及实际问题应用,学生可以更好地理解函数的概念和性质,提高解决实际问题的能力。

在教学过程中,教师应注重培养学生的动手操作能力和思维能力,使他们在学习过程中能够真正掌握函数知识,为今后的学习和生活打下坚实的基础。

习题及方法:1.习题一:已知自变量x的取值范围为0到10,求因变量y的值。

解析式:y = 2x + 1解题思路:将x的取值范围代入解析式,得到对应的y的值。

答案:当x=0时,y=1;当x=10时,y=21。

2.习题二:已知自变量x的取值范围为-5到5,求因变量y的值。

解析式:y = x^2解题思路:将x的取值范围代入解析式,得到对应的y的值。

答案:当x=-5时,y=25;当x=5时,y=25。

3.习题三:已知自变量x的取值范围为0到100,求因变量y的值。

2022届苏州市吴江区达标名校中考联考数学试题(含答案解析)

2022届苏州市吴江区达标名校中考联考数学试题(含答案解析)

2022届苏州市吴江区达标名校中考联考数学测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为12,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)2.估计26的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间3.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是()A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=44.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C 的度数为()A.48°B.40°C.30°D.24°5.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是()A.B.C.D.6.一个正比例函数的图象过点(2,﹣3),它的表达式为()A.3y-2x=B.2y3x=C.3y2x=D.2y-3x=7.下列图案中,是轴对称图形的是()A.B.C.D.8.不等式组1030xx+>⎧⎨->⎩的解集是()A.x>-1 B.x>3 C.-1<x<3 D.x<39.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)10.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.11.一个多边形内角和是外角和的2倍,它是( )A.五边形B.六边形C.七边形D.八边形12.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是()A .AB 两地相距1000千米B .两车出发后3小时相遇C .动车的速度为10003D .普通列车行驶t 小时后,动车到达终点B 地,此时普通列车还需行驶20003千米到达A 地 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若方程x 2﹣4x +1=0的两根是x 1,x 2,则x 1(1+x 2)+x 2的值为_____.14.分解因式:2x y 4y -= .15.二次函数()2y ax bx c a 0=++≠中的自变量x 与函数值y 的部分对应值如下表: x … 32- 1- 12- 0 12 132 … y … 54- 2- 94- 2- 54- 0 74 …则2ax bx c 0++=的解为________.16.一元二次方程x 2+mx+3=0的一个根为- 1,则另一个根为 .17.函数y =3x -中自变量x 的取值范围是________,若x =4,则函数值y =________.18.若二次函数y =-x 2-4x +k 的最大值是9,则k =______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,∠ABC ,射线BC 上一点D ,求作:等腰△PBD ,使线段BD 为等腰△PBD 的底边,点P 在∠ABC 内部,且点P 到∠ABC 两边的距离相等.20.(6分)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O 点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点C距守门员多少米?(取437)运动员乙要抢到第二个落点D,他应再向前跑多少米?21.(6分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.22.(8分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23.(8分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm ,下半身FG =100cm ,洗漱时下半身与地面成80°(∠FGK =80°),身体前倾成125°(∠EFG =125°),脚与洗漱台距离GC =15cm (点D ,C ,G ,K 在同一直线上).(cos80°≈0.17,sin80°≈0.98,2≈1.414)(1)此时小强头部E 点与地面DK 相距多少?(2)小强希望他的头部E 恰好在洗漱盆AB 的中点O 的正上方,他应向前或后退多少?24.(10分)如图,已知点A 、O 在直线l 上,且6AO =,OD l ⊥于O 点,且6OD =,以OD 为直径在OD 的左侧作半圆E ,AB AC ⊥于A ,且60CAO ∠=︒.若半圆E 上有一点F ,则AF 的最大值为________;向右沿直线l 平移BAC ∠得到'''B A C ∠;①如图,若''A C 截半圆E 的GH 的长为π,求'A GO ∠的度数;②当半圆E 与'''B A C ∠的边相切时,求平移距离.25.(10分)一艘观光游船从港口A 以北偏东60°的方向出港观光,航行80海里至C 处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C 处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)26.(12分)化简求值:212(1)211x x x x -÷-+++,其中x 是不等式组273(1)423133x x x x -<-⎧⎪⎨+≤-⎪⎩①②的整数解. 27.(12分)如图,二次函数y =12x 2+bx+c 的图象交x 轴于A 、D 两点,并经过B 点,已知A 点坐标是(2,0),B 点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D 点的坐标;二次函数的对称轴上是否存在一点C ,使得△CBD 的周长最小?若C 点存在,求出C 点的坐标;若C 点不存在,请说明理由.2022学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、D【答案解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k ,即可求得答案.【题目详解】∵点A (-4,2),B (-6,-4),以原点O 为位似中心,相似比为12,把△ABO 缩小, ∴点A 的对应点A′的坐标是:(-2,1)或(2,-1).故选D .【答案点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标比等于±k . 2、D寻找小于26的最大平方数和大于26的最小平方数即可.【题目详解】解:小于26的最大平方数为25,大于26的最小平方数为3656,故选择D.【答案点睛】本题考查了二次根式的相关定义.3、D【答案解析】解:由对称轴x=2可知:b=﹣4,∴抛物线y=x2﹣4x+c,令x=﹣1时,y=c+5,x=3时,y=c﹣3,关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,当△=0时,即c=4,此时x=2,满足题意.当△>0时,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,当c=﹣5时,此时方程为:﹣x2+4x+5=0,解得:x=﹣1或x=5不满足题意,当c=3时,此时方程为:﹣x2+4x﹣3=0,解得:x=1或x=3此时满足题意,故﹣5<c≤3或c=4,故选D.点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.4、D解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=12∠1=12×48°=24°.故选D.点睛:本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5、D【答案解析】测试卷分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.6、A【答案解析】利用待定系数法即可求解.【题目详解】设函数的解析式是y=kx,根据题意得:2k=﹣3,解得:k=32 -.∴函数的解析式是:32y x =-.故选A.7、B【答案解析】根据轴对称图形的定义,逐一进行判断.【题目详解】A、C是中心对称图形,但不是轴对称图形;B是轴对称图形;D不是对称图形. 故选B.【答案点睛】本题考查的是轴对称图形的定义.8、B根据解不等式组的方法可以求得原不等式组的解集.【题目详解】1030x x +>⎧⎨->⎩①②, 解不等式①,得x >-1,解不等式②,得x >1,由①②可得,x >1,故原不等式组的解集是x >1.故选B .【答案点睛】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.9、A【答案解析】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴AD BG =13, ∵BG =6,∴AD =BC =2,∵AD ∥BG ,∴△OAD ∽△OBG , ∴OA OB =13, ∴2OA OA +=13, 解得:OA =1,∴OB =3,∴C 点坐标为:(3,2),故选A .10、C【答案解析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系变为先快后慢.【题目详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢。

三角函数(正弦函数与余弦函数)图像的变换及三角函数解析式的求法

三角函数(正弦函数与余弦函数)图像的变换及三角函数解析式的求法

三⾓函数(正弦函数与余弦函数)图像的变换及三⾓函数解析式的求法1、(安徽卷⽂8)函数sin(2)3y x π=+图像的对称轴⽅程可能是()A .6x π=-B .12x π=-C .6x π=D .12x π=2、(⼴东卷⽂5)已知函数2()(1cos2)sin ,f x x x x R =+∈,则()f x 是() A 、最⼩正周期为π的奇函数 B 、最⼩正周期为2π的奇函数 C 、最⼩正周期为π的偶函数 D 、最⼩正周期为2π的偶函数 3、(全国Ⅰ卷⽂6)2(sin cos )1y x x =--是() A .最⼩正周期为2π的偶函数B .最⼩正周期为2π的奇函数C .最⼩正周期为π的偶函数D .最⼩正周期为π的奇函数4、(湖南卷理6)函数2()sin cos f x x x x =在区间,42ππ??上的最⼤值是( )A.1C. 325、(天津卷⽂6)把函数sin ()y x x =∈R 的图象上所有的点向左平⾏移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表⽰的函数是()=-∈ R ,B .sin 26x y x π??=+∈ R ,C .sin 23y x x π?=+∈ ??R ,D .sin 23y x x 2π?=+∈ ??R ,6、(全国Ⅰ卷⽂9)为得到函数πcos 3y x ?=+ 的图象,只需将函数sin y x =的图像()A .向左平移π6个长度单位B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位7、(全国Ⅰ卷理8)为得到函数πcos 23y x ?=+ 的图像,只需将函数sin 2y x =的图像()A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位1.(安徽卷⽂8)函数sin(2)3=+图像的对称轴⽅程可能是()A .6x π=-B .12x π=-C .6x π=D .12x π=解:sin(2)3y x π=+的对称轴⽅程为232x k πππ+=+,即212k x ππ=+,0,12k x π== 2.(⼴东卷⽂5)已知函数2()(1cos2)sin ,f x x x x R =+∈,则()f x 是() A 、最⼩正周期为π的奇函数 B 、最⼩正周期为2π的奇函数 C 、最⼩正周期为π的偶函数 D 、最⼩正周期为2π的偶函数【解析】222211cos 4()(1cos 2)sin 2cos sin sin 224xf x x x x x x -=+===,选D.9.(全国Ⅰ卷⽂6)2(sin cos )1y x x =--是() A .最⼩正周期为2π的偶函数B .最⼩正周期为2π的奇函数C .最⼩正周期为π的偶函数D .最⼩正周期为π的奇函数sinx cosx,2sinxcosx 2y=1sin 2x 1=sin 2x T D2ππ±解析:本题主要考查了三⾓函数的化简,主要应⽤了与的关系,同时还考查了⼆倍⾓公式和函数的奇偶性和利⽤公式法求周期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为了得到函数 的图像,只需把函数y =lgx 的图 像上所有的点 ( )
A .向左平移3个单位长度,再向上平移1个单位长度.
B .向右平移3个单位长度,再向上平移1个单位长度.
C .向左平移3个单位长度,再向下平移1个单位长度.
D .向右平移3个单位长度,再向下平移1个单位长度. 3 lg 10 x y + = 分析:本题的要点是函数y =f (x )与函数y =f (x +m )+n 的 图象之间的关系.
文件名
解:本题主要考查函数图象的平移变换. 属于基础知识、 基本运算的考查.
3 1 lg lg(3) lg(3)1lg10(3)
y x y x y x y x =¾¾¾¾¾¾¾
®=+ ¾¾¾¾¾¾®=++Þ=+ 向左平移 位 度 向上平移 位 度 个单 长 个单 长 A. 3 1 lg lg(3) lg(3)1lg10(3)
y x y x y x y x =¾¾¾¾¾¾¾
®=- ¾¾¾¾¾¾®=-+Þ=- 向右平移 位 度 向上平移 位 度 个单 长 个单 长 B. 3 1 lg lg(3) 3 lg(3)1lg 10 y x y x x y x y =¾¾¾¾¾¾¾
®=+ + ¾¾¾¾¾¾¾®=+-Þ= 向左平移 位 度 再向下平移 位 度 个单 长 个单 长 C. 3 1 lg lg(3) 3 lg(3)1lg 10 y x y x x y x y =¾¾¾¾¾¾¾®=- - ¾¾¾¾¾¾¾®=--Þ= 向右平移 位 度 再向下平移 位 度 个单 长 个单 长 D. 故应选C .。

相关文档
最新文档