2016年浙江省杭州市西湖区中考数学二模试卷
浙江省杭州市2016届中考数学模拟试卷(解析版)
2016年数学模拟试卷班级_________姓名_________一.仔细选一选(本题有10个小题,每小题4分,共40分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.关于m的不等式﹣m>1的解为()A.m>0 B.m<0 C.m<﹣1 D.m>﹣12.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定3.如图所示零件的左视图是()A.B.C.D.4.已知点A(1,m)与点(3,n)都在反比例函数y=﹣的图象上,则m与n的大小关系是()A.m<n B.m>n C.m=n D.不能确定5.的平方根()A.4 B.2 C.±4 D.±26.已知点(x1,y1),(x2,y2)均在抛物线y=x2﹣1上,下列说法中正确的是()A.若y1=y2,则x1=x2B.若x1=﹣x2,则y1=﹣y2C.若0<x1<x2,则y1>y2 D.若x1<x2<0,则y1>y27.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F,若AC=4,则OF的长为()A.1 B.C.2 D.48.如图,如果△ABC与△DEF都是正方形网格中的格点三角形(顶点在格点上),那么△DEF与△ABC的周长比为()A.4:1 B.3:1 C.2:1 D.:19.△ABC的一边长为5,另两边分别是方程x2﹣6x+m=0的两根,则m的取值范围是()A.m>B.<m≤9 C.≤m≤9 D.m≤10.在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),连结AD,作∠ADE=∠B=α,DE交AC于点E,且cosα=.有下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE 全等;③当△DCE为直角三角形时,BD=8;④3.6≤AE<10.其中正确的结论是()A.①③B.①④C.①②④D.①②③二.认真填一填(本题有6个小题,每小题5分,共30分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.从﹣2,﹣8,5中任取两个不同的数作为点的坐标,该点在第三象限的概率为.12.函数y=x2﹣6x+8(0≤x≤4)的最大值与最小值分别为,.13.已知:如图,在菱形ABCD中,AE⊥BC,垂足为E,对角线BD=4,tan∠CBD=,则AB=,sin∠ABE=.14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是____________.15.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上,点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P,则点P与Q的坐标分别为.16.已知函数y=k (x+1)(x ﹣),下列说法:①方程k (x+1)(x ﹣)=﹣3必有实数根;②若移动函数图象使其经过原点,则只能将图象向右移动1个单位;③当k >3时,抛物线顶点在第三象限;④若k <0,则当x <﹣1时,y 随着x 的增大而增大,其中正确的序号是 .16.如图,一次函数y=﹣x+b 与反比例函数y=(x >0)的图象交于A ,B 两点,与x 轴、y 轴分别交于C ,D 两点,连结OA ,OB ,过A 作AE ⊥x 轴于点E ,交OB 于点F ,设点A 的横坐标为m .(1)b= (用含m 的代数式表示);(2)若S △OAF +S 四边形EFBC =4,则m 的值是 .三、解答题(本题共8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.计算:0(3)4sin 451-π+ .解不等式组:253(1)742x x x x +>-⎧⎪⎨+>⎪⎩17.某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.18.小明在数学课外小组活动中遇到这样一个“新定义”问题:定义运算“※”为:a※b=,求1※(﹣4)的值.小明是这样解决问题的:由新定义可知a=1,b=﹣4,又b<0,所以1※(﹣4)=。
浙教版2016年中考模拟数学试卷(二)
2015---2016年中考模拟(二)一、选择题.1.化简xx x -+-1112的结果是( ) A. 1+x B. 11+x C. 1-x D. 1-x x2.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B=135°, 则的长( )A. π2B. πC. 2πD. 3π 3.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,这种变换称为抛物线的简单变换。
已知抛物线经过两次简单变换后是12+=x y ,则原抛物线不可能的是( )A.12-=x yB.562++=x x yC.442++=x x yD.1782++=x x y4.如图是一个正六棱柱的主视图和左视图,则图中的=a ( ) A. 32 B. 3 C. 2 D. 15.2001年至2012年杭州市小学学校数量和在校学生人数的两幅 统计图.由图得四个结论:①学校数量2007年~2012年比2001~2006年更稳定;②在校学生人数有两次连续下降,两次连续增长的变化过程; ③2009年的大于1000;④2009~2012年,相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年. 其中,正确的结论是( )A. ①②③④B. ①②③C. ①②D. ③④6.如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则( )A.点B 到AO 的距离为sin54°B.点B 到AO 的距离为tan36°C.点A 到OC 的距离为sin36°sin54°D.点A 到OC 的距离为cos36°sin54°7.二次函数c bx ax y ++=2(a ≠0)对称轴是直线1=x ,图象一部分如图,下列说法:①0abc >;②0<+-c b a ;③03<+c a ;④当31<<-x 时,0>y .正确的是( )A .①②B .①④C .②③D .②③④8.矩形ABCD 中,有一个菱形BFDE (E ,F 分别在线段AB ,CD 上),它们的面积分别为ABCD S 和BFDE S ,下列命题:①若232+=BFDE ABCD S S ,则33tan =∠EDF ; ②若EF BD DE ⋅=2,则DF=2AD 。
浙江省杭州市2016年中考数学模拟试卷及答案
浙江省杭州市2016年中考数学模拟试卷一.仔细选一选(本题有10个小题,每小题3分,共30分)1.我们知道是个无理数,﹣1在哪两个整数之间()A.1与2 B.2与3 C.3与4 D.4与52.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为3 D.三种视图的面积都是43.为了建设绿色校园,学校去年年底的绿化面积为2000平方米,预计到明年年底增加到4200平方米,求这两年绿化面积的年平均增长率.下面所列方程正确的是()A.2000(1﹣a%)2=4200 B.2000(1+a%)2=4200C.2000(1﹣2a%)=4200 D.2000(1﹣a2%)2=42004.下列图形中,一定是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.六边形D.圆5.对于函数y=﹣k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(,﹣k)C.经过一、三象限或二、四象限D.y随着x增大而减小6.用矩形纸片折出直角的平分线,下列折法正确的是()A.B.C.D.7.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC 等于()A.B.C.D.8.如图所示,正方形ABCD内接于⊙O,直径MN∥AD,则阴影部分面积占圆面积()A.B.C.D.9.已知P(x,y)是平面直角坐标系上的一个点,且它的横、纵坐标是一次方程组(a为任意实数)的解,则当a变化时,点P一定不会经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,已知二次函数的解析式为y=x2﹣1,其图象上有一个动点P,连接OP(O为坐标原点),并以OP为半径作圆,则该圆的最小面积是()A.π B.π C.π D.π二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.如图,直线a∥b∥c,点A、B、C分别在直线a、b、c上,若∠1=70°,∠2=50°,则∠ABC=.12.一次函数y=(m﹣3)x+m2﹣6m+9过点(1,0),则m=.13.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD成为平行四边形的概率是.14.某班有40个同学,同时参加一场数学考试,已知该次考试的平均分为80分,则不及格(小于60分)的学生最多有个.(注意:所有的分数都是整数)15.已知x=2t﹣8,y=10﹣t,S=,则S有最值,这个值是.16.如图所示,⊙D 的半径为3,A是圆D外一点且AD=5,AB,AC分别与⊙D相切于点B,C.G 是劣弧BC上任意一点,过G作⊙D的切线,交AB于点E,交AC于点F.(1)△AEF的周长是;当G为线段AD与⊙D的交点时,连结CD,则五边形DBEFC的面积是.三.全面答一答(本题有8个小题,共66分)17.化简代数式:﹣,并求出当字母a为不等式组整数解时的值.18.如图,Rt△ABC的斜边AB=1,∠B=α,CD⊥AB,垂足为D点.(1)用含α三角函数表示线段BD、CD、AD的长度;通过你的计算的结果或者运算过程,你发现了哪些有关于三角函数的性质或者三角函数的等式?请举一例即可.19.图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.20.如图,已知线段a和线段b,(1)用尺规作出等腰△ABC,使得AB=AC=a,BC=b;若a=5,b=8,记△ABC得重心为G,内心为O,求出点G到点O的距离.21.已知反比例函数y=的图象经过点A(﹣,1).(1)试确定此反比例函数的表达式;已知点P(m,m+6)也在此反比例函数的图象上(其中m<0),过点P作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是.设点Q的纵坐标为n,求n2﹣2n+2015的值.22.如图,已知正方形ABCD的边长为1,对角线AC上有一点E,使得AE=AC.连结DE,过线段DE上的一个动点F分别向AC和AD作垂线段,垂足分别为G、H.(1)证明:△FGE∽△FHD;设线段FG的长度为x,线段FH的长度为y,求出y关于x的函数表达式,并写出自变量的取值范围;(3)连结GH,求出△GHF面积的最大值.23.如图,二次函数y=x2+(+1)x+m(其中m<4)的图象与x轴相交于A、B两点,且点A在点B的左侧.(1)求A、B两点的坐标;(可用含字母m的代数式表示)如果这个二次函数的图象与反比例函数的图象相交于点C,且∠BAC的正弦值为,求解这个二次函数的表达式;(3)在上一小题的条件下,E是x轴上的一个动点,若以点B为圆心,BE为半径的圆与直线AC 相切,求点E的坐标.浙江省杭州市2015年中考数学模拟试卷参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)1.我们知道是个无理数,﹣1在哪两个整数之间()A.1与2 B.2与3 C.3与4 D.4与5考点:估算无理数的大小.分析:先求出的范围,再两边都减去1,即可得出选项.解答:解:∵4<<5,∴3<﹣1<4,即﹣1在3与4之间,故选C.点评:本题考查了估算无理数的大小的应用,解此题的关键是求出的范围,难度不是很大.2.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为3 D.三种视图的面积都是4考点:简单组合体的三视图.专题:几何图形问题.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,比较即可.解答:解:A、从正面看,可以看到4个正方形,面积为4,故A选项错误;B、从左面看,可以看到3个正方形,面积为3,故B选项正确;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、三种视图的面积不相同,故D选项错误.故选:B.点评:本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.3.为了建设绿色校园,学校去年年底的绿化面积为2000平方米,预计到明年年底增加到4200平方米,求这两年绿化面积的年平均增长率.下面所列方程正确的是()A.2000(1﹣a%)2=4200 B.2000(1+a%)2=4200C.2000(1﹣2a%)=4200 D.2000(1﹣a2%)2=4200考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:设这两年的年平均增长率为a%,根据题意列出方程即可得到结果.解答:解:设这两年的年平均增长率为a%,根据题意得:2000(1+a%)2=4200.故选:B.点评:此题考查从实际问题中抽象出一元二次方程,属于增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.4.下列图形中,一定是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.六边形D.圆考点:中心对称图形;轴对称图形.分析:根据各图形的性质和轴对称图形与中心对称图形的定义解答.解答:解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、无法确定是图形形状,故此选项错误;D、是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:本题主要考查了中心对称图形与轴对称图形的定义,理解定义是关键.5.对于函数y=﹣k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(,﹣k)C.经过一、三象限或二、四象限D.y随着x增大而减小考点:正比例函数的性质.分析:先判断出函数y=﹣k2x(k是常数,k≠0)图象的形状,再根据函数图象的性质进行分析解答.解答:解:∵k≠0∴﹣k2>0∴﹣k2<0∴函数y=﹣k2x(k是常数,k≠0)符合正比例函数的形式.∴此函数图象经过二四象限,y随x的增大而减小,∴C错误.故选C.点评:本题考查了正比例函数的性质,解题的关键是了解正比例函数的图象及其性质.6.用矩形纸片折出直角的平分线,下列折法正确的是()A.B.C.D.考点:翻折变换(折叠问题).专题:几何图形问题.分析:根据图形翻折变换的性质及角平分线的定义对各选项进行逐一判断.解答:解:A.当长方形如A所示对折时,其重叠部分两角的和中,一个顶点处小于90°,另一顶点处大于90°,故A错误;B.当如B所示折叠时,其重叠部分两角的和小于90°,故B错误;C.当如C所示折叠时,折痕不经过长方形任何一角的顶点,所以不可能是角的平分线,故C错误;D.当如D所示折叠时,两角的和是90°,由折叠的性质可知其折痕必是其角的平分线,故D正确.故选:D.点评:本题考查的是角平分线的定义及图形折叠的性质,熟知图形折叠的性质是解答此题的关键.7.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC等于()A.B.C.D.考点:三角形中位线定理;勾股定理的逆定理;锐角三角函数的定义.分析:连接BD,根据中位线的性质得出EF∥BD,且EF=BD,进而利用勾股定理的逆定理得出△BDC是直角三角形,求解即可.解答:解:连接BD,∵E、F分别是AB、AD的中点,∴EF∥BD,且EF=BD,∵EF=4,∴BD=8,∵BD=8,BC=10,CD=6,∴82+62=102,即BD2+CD2=BC2,∴△BDC是直角三角形,且∠BDC=90°,∴tanC===,故选:A.点评:此题主要考查了锐角三角形的定义以及三角形中位线的性质以及勾股定理逆定理,根据已知得出△BDC是直角三角形是解题关键.8.如图所示,正方形ABCD内接于⊙O,直径MN∥AD,则阴影部分面积占圆面积()A.B.C.D.考点:扇形面积的计算;正方形的性质.专题:压轴题.分析:连接AM、BM.根据图形的轴对称性和等底等高的三角形的面积相等,易知阴影部分的面积即为扇形OAB的面积,再根据正方形的四个顶点是圆的四等分点,即可求解.解答:解:连接AM、BM.∵MN∥AD∥BC,OM=ON,∴四边形AOBN的面积=四边形AOBM的面积.再根据图形的轴对称性,得阴影部分的面积=扇形OAB的面积=圆面积.故选B.点评:此题注意能够把不规则图形的面积进行转换.涉及的知识点:两条平行线间的距离处处相等;等底等高的三角形的面积相等;正方形的每一条边所对的圆心角是90°.9.已知P(x,y)是平面直角坐标系上的一个点,且它的横、纵坐标是一次方程组(a为任意实数)的解,则当a变化时,点P一定不会经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数与二元一次方程(组).分析:首先用含有a的代数式表示出x、y的值,然后分析x、y不能同时为负数得到其不会经过第三象限.解答:解:解方程组得:,∵当x=3a+2<0时,解得:a<﹣,∴此时y=﹣2a+4>0,∴当x<0时y>0,∴点P一定不会经过第三象限,故选C.点评:本题考查了一次函数与二元一次方程的知识,解题的关键是首先用含有a的代数式表示出x、y的值.10.如图,已知二次函数的解析式为y=x2﹣1,其图象上有一个动点P,连接OP(O为坐标原点),并以OP为半径作圆,则该圆的最小面积是()A.π B.π C.π D.π考点:二次函数的性质;二次函数图象上点的坐标特征.分析:设OP=r,则圆O的方程为x2+y2=r2,当r取最小值时,该圆的面积最小,此时y有唯一解.将x2=r2﹣y2代入y=x2﹣1,得到关于y的一元二次方程,由△=0求出r2的值,进而求解即可.解答:解:设OP=r,则圆O的方程为x2+y2=r2,当r取最小值时,该圆的面积最小,此时y有唯一解.∵x2+y2=r2,∴x2=r2﹣y2,将x2=r2﹣y2代入y=x2﹣1,得y=r2﹣y2﹣1,整理得y2+y+1﹣r2=0,∵△=12﹣4(1﹣r2)=0,解得r2=,∴该圆的最小面积是πr2=π,故选B.点评:本题考查了二次函数的性质,二次函数与一元二次方程的关系,二次函数图象上点的坐标特征,有一定难度.理解圆O的方程x2+y2=r2中,当r取最小值时y有唯一解是解题的关键.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.如图,直线a∥b∥c,点A、B、C分别在直线a、b、c上,若∠1=70°,∠2=50°,则∠ABC=120.考点:平行线的性质.分析:由平行线的性质可求得∠3、∠4,则可求得∠ABC.解答:解:如图,∵a∥b∥c,∴∠3=∠1=70°,∠4=∠2=50°,∴∠ABC=∠3+∠4=70°+50°=120°,故答案为:120°.点评:本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.12.一次函数y=(m﹣3)x+m2﹣6m+9过点(1,0),则m=2.考点:一次函数图象上点的坐标特征;一次函数的定义.分析:把点(1,0)代入函数解析式,列出关于系数m的方程,通过解方程求得m的值,解方程即可求得m的值.解答:解:∵一次函数y=(m﹣3)x+m2﹣6m+9过点(1,0),∴0=m﹣3+m2﹣6m+9,即m2﹣5m+6=0且m﹣3≠0,整理,得(m﹣2)(m﹣3)=0,且m﹣3≠0,∴m﹣2=0即m=2.故答案是:2.点评:本题考查了一次函数图象上点的坐标特征和一次函数的定义.此题属于易错题,学生们解题时往往忽略了一次函数y=kx+b中的k≠0这一条件.13.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD成为平行四边形的概率是.考点:列表法与树状图法;平行四边形的判定.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能使四边形ABCD成为平行四边形的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,能使四边形ABCD成为平行四边形的有8种情况,∴从中任选两个条件,能使四边形ABCD成为平行四边形的概率是:.故答案为:.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.某班有40个同学,同时参加一场数学考试,已知该次考试的平均分为80分,则不及格(小于60分)的学生最多有19个.(注意:所有的分数都是整数)考点:一元一次不等式的应用.分析:设不及格(小于60分)的学生最多有x人,则及格的人数为(40﹣x)人,根据及格人数的总分+不及格人数的总分≥40人的总分,建立不等式求出其解即可.解答:解:设不及格(小于60分)的学生最多有x人,则及格的人数为(40﹣x)人,由题意,得100(40﹣x)+59x≥40×80,解得:x≤.∵x为整数,∴x最大为19.故答案为:19.点评:本题考查了列一元一次不等式解实际问题的运用,一元一次不等式的解法的运用,解答时解答时根据及格人数的总分+不及格人数的总分≥40人的总分建立不等式是关键.15.已知x=2t﹣8,y=10﹣t,S=,则S有最大值,这个值是3.考点:二次函数的最值.分析:根据题意和已知,计算出表示xy的值的多项式,根据二次函数的性质求出xy的有最大值,得到S的最大值.解答:解:xy=(10﹣t)=﹣2t2+28t﹣80=﹣2(t﹣7)2+18﹣2<0,∴函数xy有最大值18,则S有最大值3故答案为:大;3.点评:本题考查的是二次函数的最值问题,根据题意列出关于x的函数关系式是解题的关键,解答时,根据二次函数的性质,确定有最大或小值,并用配方法或公式法求出最值.16.如图所示,⊙D 的半径为3,A是圆D外一点且AD=5,AB,AC分别与⊙D相切于点B,C.G 是劣弧BC上任意一点,过G作⊙D的切线,交AB于点E,交AC于点F.(1)△AEF的周长是8;当G为线段AD与⊙D的交点时,连结CD,则五边形DBEFC的面积是9.考点:切线长定理.分析:(1)根据切线长定理就可证明BE=EG,FG=FC,则△AEF的周长是:AE+EG+FG+AF=AB+AC,据此即可求解;当G为线段AD与⊙D的交点时,EF于AD垂直,根据△AEG∽△ADB求得EF的长,根据S五边形DBEFC=S四边形ABDC﹣S△AEF求解.解答:解:(1)如图1所示:连接ED,DG,FD,CD,∵AB,AC分别与⊙D相切于点B,C,∴AB=AC,∠ABD=∠ACD=90°,∵⊙D 的半径为3,A是圆D外一点且AD=5,∴AB==4,∵过G作⊙D的切线,交AB于点E,交AC于点F,∴BE=EG,FG=FC,则△AEF的周长是:AE+EG+FG+AF=AB+AC=8.故答案为:8;如图2,AG=AD﹣DG=5﹣3=2.∵在△AEG和△ADB中,∠ABD=∠AGD=90°,∠BAD=∠EAG,∴△AEG∽△ADB,∴=,即=,∴EG=,∴EF=2EG=3,∴S△AEF=EF•AG=×3×2=3.又∵S四边形ABDC=2S△ABD=AB•BD=3×4=12,∴S五边形DBEFC=12﹣3=9.故答案是:9.点评:本题考查了切线长定理,以及相似三角形的判定与性质、切线的性质定理,理解当G为线段AD与⊙D的交点时,EF于AD垂直,求得EF的长是关键.三.全面答一答(本题有8个小题,共66分)17.化简代数式:﹣,并求出当字母a为不等式组整数解时的值.考点:分式的化简求值;一元一次不等式组的整数解.专题:计算题.分析:原式通分并利用同分母分式的减法法则计算,求出不等式组的解集,确定出x的值,代入计算即可求出值.解答:解:原式==,不等式组,解得:﹣≤a<2,∴当a=0时,原式等于0.点评:此题考查了分式的化简求值,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.18.如图,Rt△ABC的斜边AB=1,∠B=α,CD⊥AB,垂足为D点.(1)用含α三角函数表示线段BD、CD、AD的长度;通过你的计算的结果或者运算过程,你发现了哪些有关于三角函数的性质或者三角函数的等式?请举一例即可.考点:解直角三角形.分析:(1)在Rt△ABC中,根据三角函数的定义得出BC=AB•cosα=cosα,AC=AB•sinα=sinα.在Rt△BCD中,根据三角函数的定义得出BD=BC•cosα=cos2α;CD=BC•sinα=sinαcosα;由同角的余角相等得出∠ACD=∠B=90°﹣∠BCD=α,在Rt△ACD中,根据三角函数的定义得出AD=AC•sin∠ACD=sin2α;由AD+BD=AB得出sin2α+cos2α=1;由tan∠B=得出tanα=.解答:解:(1)∵Rt△ABC的斜边AB=1,∠B=α,∴BC=AB•cosα=cosα,AC=AB•sinα=sinα.在Rt△BCD中,∵∠BDC=90°,∴BD=BC•cosα=cosα•cosα=cos2α;CD=BC•sinα=sinαcosα;在Rt△ACD中,∵∠ADC=90°,∠ACD=∠B=90°﹣∠BCD=α,∴AD=AC•sin∠ACD=sinα•sinα=sin2α;∵AD+BD=AB,∴sin2α+cos2α=1;∵在Rt△ABC中,tan∠B=,∴tanα=.点评:本题考查了解直角三角形,熟练掌握锐角三角函数的定义是解题的关键.也考查了同角的余角相等的性质.19.图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.考点:条形统计图;折线统计图.分析:(1)根据图①可得,1235月份的销售总额,再用总的销售总额减去这四个月的即可;由图可知用第5月的销售总额乘以16%即可;(3)分别计算出4月和5月的销售额,比较一下即可得出答案.解答:解:(1)410﹣(100+90+65+80)=410﹣335=75;如图:商场服装部5月份的销售额是80万元×16%=12.8万元;(3)4月和5月的销售额分别是75万元和80万元,服装销售额各占当月的17%和16%,则为75×17%=12.75万元,80×16%=12.8万元,故小刚的说法是错误的.点评:本题是统计题,考查了条形统计图和折线统计图,是基础知识要熟练掌握.20.如图,已知线段a和线段b,(1)用尺规作出等腰△ABC,使得AB=AC=a,BC=b;若a=5,b=8,记△ABC得重心为G,内心为O,求出点G到点O的距离.考点:作图—复杂作图;三角形的重心;三角形的内切圆与内心.分析:(1)利用三边作三角形的方法得出即可;利用三角形内心以及重心的定义得出点G到点O的距离.解答:解:(1)如图所示:;过点A作BC边上的高AD,且AD=3,由等腰三角形的三线合一得到O、G都在AD上,由重心的性质得到:GD=1,∵r(a+b+c)=S△ABC=AD×BC,∴r=OD=,故OG=﹣1=.点评:此题主要考查了复杂作图以及三角形内心与重心的定义,得出其内切圆半径是解题关键.21.已知反比例函数y=的图象经过点A(﹣,1).(1)试确定此反比例函数的表达式;已知点P(m,m+6)也在此反比例函数的图象上(其中m<0),过点P作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是.设点Q的纵坐标为n,求n2﹣2n+2015的值.考点:反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式.分析:(1)把A坐标代入反比例函数解析式求出k的值,确定出反比例解析式;由P在反比例函数图象上,把P坐标代入反比例解析式得到关于m的关系式,由PQ垂直于x轴,设出Q(m,n),根据三角形OQM面积为,利用三角形面积公式得到得到mn=﹣1,得出m=﹣,把m=﹣代入m2+2m+1=0求出n2﹣2n的值,即可确定出所求式子的值.解答:解:(1)把A(﹣,1)代入反比例解析式得:1=,解得k=﹣,可得反比例函数的解析式为y=﹣;由y=﹣,得xy=﹣,∵点P(m,m+6)在反比例函数y=﹣的图象上,其中m<0,∴m(m+6)=﹣,∴m2+2m+1=0,∵PQ⊥x轴,∴Q点的坐标为(m,n),∵△OQM的面积是,∴OM•QM=,∵m<0,∴mn=﹣1,∴m=﹣,把m=﹣代入m2+2m+1=0得,﹣+1=0,化简得,n2﹣2n+1=0,∴n2﹣2n=﹣1,∴.点评:此题属于反比例函数综合题,涉及的知识有:待定系数法求反比例函数解析式,坐标与图形性质,以及代数式求值,熟练掌握待定系数法是解本题的关键.22.如图,已知正方形ABCD的边长为1,对角线AC上有一点E,使得AE=AC.连结DE,过线段DE上的一个动点F分别向AC和AD作垂线段,垂足分别为G、H.(1)证明:△FGE∽△FHD;设线段FG的长度为x,线段FH的长度为y,求出y关于x的函数表达式,并写出自变量的取值范围;(3)连结GH,求出△GHF面积的最大值.考点:相似形综合题.分析:(1)首先利用勾股定理求得AC的长度,然后可求得AE=AD=1,从而可得到:∠AED=∠ADE,因为∠FGE=∠FHD=90°,故此可证明△FGE∽△FHD;首先证明△AEK∽△ACD,从而可知,可求得EK=,然后根据△AED的面积=△AEF的面积+△ADF的面积可求得:FG+HF=,从而可求得y与x的函数关系式;(3)首先在四边形AGFH中,求得∠GFH=135°,从而得到∠MFG=45°,然后利用特殊锐角三角形函数值可求得GM=,从而可得到△GFH的面积与x的函数关系,最后利用配方法求得△GHF 面积的最大值为.解答:解:(1)如图1:证明:在Rt△ABC中,AC=,∴AE==1.∵AE=AD=1,∴∠AED=∠ADE.又∵∠FGE=∠FHD=90°∴△FGE∽△FHD如图2:连接AF,过点E作Ek⊥AD,垂足为k.∵EK⊥AD,DC⊥AD,∴EK∥DC.∴△AEK∽△ACD.∴即:.∴EK=.∴△AED的面积==∵△AED的面积=△AEF的面积+△ADF的面积===.∴=.∴FG+HF=∴;(3)如图3:过点G作GM⊥HF,垂足为M.在四边形AGFH中,∠GFH=360°﹣∠GAH﹣∠FGA﹣∠FHA=360°﹣45°﹣90°﹣90°=135°∴∠MFG=45°.∴在Rt△GMF中,,即,∴GM=∴S△GFH=.∴△GHF面积的最大值为.点评:本题主要考查的是相似三角形的性质和判定和函数知识的综合应用,面积法和配方法求二次函数最值的应用是解题的关键.23.如图,二次函数y=x2+(+1)x+m(其中m<4)的图象与x轴相交于A、B两点,且点A在点B的左侧.(1)求A、B两点的坐标;(可用含字母m的代数式表示)如果这个二次函数的图象与反比例函数的图象相交于点C,且∠BAC的正弦值为,求解这个二次函数的表达式;(3)在上一小题的条件下,E是x轴上的一个动点,若以点B为圆心,BE为半径的圆与直线AC 相切,求点E的坐标.考点:二次函数综合题.专题:综合题.分析:(1)求出方程x2+(+1)x+m=0的解,可得A、B两点的坐标;过点C作CD⊥x轴,垂足为D,并设点C的坐标为(x,),根据∠BAC的正弦值为,可得关于x的方程,解出即可;(3)由相切可知BE的长度即为点B到AC的距离,根据sin∠BAC,可得半径r,即BE的长度,根据点B坐标可得点E坐标.解答:解:(1)令x2+(+1)x+m=0,解得:x1=﹣4,x2=﹣m,则可得A(﹣4,0)、B(﹣m,0).过点C作CD⊥x轴,垂足为D,并设点C的坐标为(x,),∵sin∠BAC=,∴,即,解得:x=2,∴C点的坐标是,将点C坐标代入解析式,得到m=1,∴函数表达式为:y=x2+x+1,(3)过点B作BF⊥AC于点F,由上题得到AB=3,由相切可知BE的长度即为点B到AC的距离,∵sin∠BAC=,∴=,解得:BF=,即半径r=BE=,∴点E的坐标为(﹣,0)或者(,0).点评:本题考查了二次函数的综合,涉及了一元二次方程的解、三角函数及切线的性质,综合性较强,关键点在于sin∠BAC的值的应用,难度一般.。
【初中数学】浙江省杭州市2016年中考数学模拟试卷2 浙教版
浙江省杭州市2016年中考数学模拟试卷2考生须知:1、本试卷分试题卷和答题卷两部分. 满分120分, 考试时间100分钟.2、答题时, 不能使用计算器,在答题卷指定位置内写明校名,姓名和班级,填涂考生号.3、所有答案都做在答题卡标定的位置上, 请务必注意试题序号和答题序号相对应.一、选择题(共10小题,每小题3分,满分30分.)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1. 【原创】 杭州2016年G20峰会志愿者招募,经过二轮面试确定4500名志愿者名单,并开展集中式培训等工作。
将这个志愿者人数用科学计数法表示为( )人。
A .0.45×410 B .450×10 C .4.5 ×310 D .45×210 【考点及设计意图】本题考查科学记数法的表示,属容易题,预计难度系数0.952、【原创】以下“绿色食品、回收、节能、节水”标志中,是轴对称图形的是( ▲ )A .B .C .D . 【考点及设计意图】考查轴对称的定义,属容易题,预计难度系数0.923. 【原创】下列计算正确的是( )A .422()a a a --÷=-B .()()22232323a b a b a b +-=-C .21211()24xy xy xy -⎛⎫= ⎪⎝⎭ D .321ab ab -=【考点及设计意图】考查整式的有关运算,属容易题,预计难度系数0.94. 【原创】不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是 ( )【考点及设计意图】考查解不等式组及解的表示,属容易题,预计难度系数0.852A .B .2C .2D .25. 【原创】下列命题中是真命题的是( )A.有一组邻边相等的四边形是菱形.B.对角线互相平分的平行四边形是正方形.C.有一个角是直角的平行四边形是矩形.D.一组对边相等的四边形是平行四边形. 【考点及设计意图】考查命题的判断,灵活掌握菱形、正方形、矩形、平行四边形的判定方法。
2016浙江省杭州市数学中考模拟试卷资料
2016年萧山区中考模拟试卷数学卷命题双向明细表2016年萧山区中考模拟试卷数学卷(满分120分,考试时间100分钟)、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中, 只有一个是正确的,请把正确选项前的字母填在答题卷中相应的位置1. 【根据常规习题改编】下列各题的结果为-1的是()A . (- 1) 0B . .( 1)2C . (- 1) -1D . -3 - 22 . 【原创题】对实数cos60说法错误的是()A.是一个单项式 B .是一个分数C.是一个有理数 D . 是一个无理数3 .【根据常规习题改编】正方形、菱形、矩形都具有的性质是()A.对角线相等 B .邻角互补C.邻边相等D. 对角线平分一组对角4. 【根据常规习题改编】数学老师要对小聪参加中考前的5次难度相当的数学模拟考试成绩进行统计分析,判断小聪的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的()A •平均数或中位数B •众数或频率5. 【原创题】满足下列条件的一元二次方程A. 2a+2b+c=0B. 4a+2b+c=0C.中位数或众数 D .方差或标准差ax2+bx+c=0 (a丰0)一定有整数解的是(6. 【原创题】已知直线I及A点,则在同一平面内,下列作图描述正确的是()A .过A点能作唯一的直线m//直线IB .过A点能作唯一的直线m丄直线IC.过A点能作唯一的圆与直线I相切D .过A点能作唯一的菱形,且其中有两个顶点在直线I上7. 【原创题】小虎计算a, b, c (a<b<c)的平均数,他先计算a, b的平均数为x,再计算x与c的平均数为y,最后把y看作是a, b, c的平均数,则实际上小虎把a, b, c的平均数()A .算大了B.算对了 C .算小了D .当a<b<c<0时,算小了;当c>b>a>0时,算大了&【原创题】如图,△ ABC中,AB=AC , △ DEF是厶ABC的内接正三角形,则下列关系式成立的是()A . 2 / 1 = / 2+ / 3 B. 2 / 2= / 1 + / 3C. 2/ 3=7 1 + / 2D. Z 1+ / 2+Z 3=90°9.【根据浙教版八上P65页“探究活动”改编】有甲、乙两个三角形,甲三角形有一个内角是另一个角的两倍,乙三角形有一个三角形是另一个角的三倍•则这两个三角形中一定能把其分成两个等腰三角形的是()A.甲,乙都一定能 B .甲一定能,乙不一定能C .甲不一定能,乙能D .甲、乙都不一定能10 .【原创题】已知函数y= mx2-3(m-1)x+2m-3,有如下结论:①无论m取何实数,函数图象与坐标轴至少有2个交点;②无论m取何实数,函数图象必过x轴上的一个定点;③当函数图象与坐标有三个交点时,若这三个交点围成的三角形是直角三角形,则m=1.其中正确的结论是()(2)若(1)中不等式组的整数解恰为分式 式有意义的概率.18. (本小题满分8分)【根据常规习题改编】“五水共治”是浙江进行大规模 环境保护的重要举措之一.几位住在同一小区的学生成立了一个 调查小组,对该小区“家庭用水 量”进行了一次调查,调查小组 把每月家庭用水量分成四类: ①A 类用水量:10吨以下;②B 类用A .①②B .①③C .②③D .①②③、认真填一填 (本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件 和要填写的内容,尽量完整地填写答案11.【原创题】2016年3月5日李克强总理在第十二届全国人民代表大会的政府工作报告中对2015年工作进行了回顾,其中提到 2015年国内生产总值达到 67.7万亿元.67.7万亿 元用科学记数法表示为 __________________ 元•12 .【根据常规习题改编】从① AB=CD :②AD=BC :③AB //CD :④AD // BC 中任选两个作为条件,则能判定四边形 ABCD 是平行四边形的概率是 _____________ . 13. 【根据常规习题改编】直线 y=4x 向下平移4个单位,则3所得直线与直线 y= 4 x 的距离为 ________________314. 【原创题】将一副三角板放置成如图所示的形状, 若/ DCE= / A= 90 ; / E=30 ° / B=45 °且AB // DE ,则/ BCE 的度数为 __________________ . 15. 【原创题】在平面直角坐标系中,已知点A (4, 3),点B 在y轴上,连结 AB ,以AB 为边作矩形 ABCD ,且AB=3BC ,设C 点的横坐标为 m ,则用 m 的代数式表示D 点的坐标 为 . 16. 【原创题】如图,矩形 ABCD 中,AB=4, BC=3,点P 是矩形ABCD 所在平面内的一个动点,且/ APB=90°,连结 PC .若 PC 的长为整数,则 PC 的长可能为 _________________ .三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、 证明过程或推演步骤•如 果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以 17. (本小题满分6分)【根据常规习题改编】(1)解不等式组:x 8 4x 1 5x 93(x 1);2x 42 x 1 x 24(x 3)中x 的值,求使分圉:水量:10〜20吨;③C 类用水量:20〜30吨;④D 类用水量:30吨以上.图1和图2 是该调查小组根据采集的数据绘制的两幅不完整的统计图, 请根据图中提供的信息解答以下问题:(1) 求该调查小组此次调查了多少个家庭?(2) 已知B 类,C 类的家庭数之比为 3: 4,根据两图信息,求出 B 类和C 类分别有多 少户家庭?(3) 补全条形统计图,并计算扇形统计图中“ C 类”部分所对应的扇形的圆心角的度数; (4) 如果该小区共有1500户,请估算全小区属于 A 类节水型家庭有多少户?19. (本小题满分8分)【原创题】【问题思考】有这么一道数学问题:“若x+2y=5,则代数式5-2x-4y 的值为 同学A :我可以选择特殊值法求解,如取 x=1,那么y=2.则所求代数式的值为 5-2x-4y=5-2 X 1-4 X 2=-5.同学B :我也可以用整体思想进行求解,设a= 5-2x-4y=5-2(x+2y )=5-2a=5-2 X 5=-5.【问题解决】运用上述思想方法解决下列问题:1)方程组 2015(x 2) 2016(y 1)1 的解是 (|丿方程组2016(x 2) 2015(y 1) 1的解是- (2)不交于同一点的三条直线两两相交(如图 1)______ 对同旁内角;不交于同一点的四条直线两 两相交(如图2),有 _____ 对同旁内角• 【问题迁移】请你提出一个能用整体思想来求解的有关因式分解的问 题,并写出分解结果•20. (本小题满分10分)【根据常规习题改编】如图,点C 是线段AB 上一点,△ BCE 是等边三角形•(1) 用直尺和圆规作正△ ACD ,且与△ BCE 在线段AB 的同侧; (2) 连结 AE , BD ,求证:△ ACE ◎△ DCB ; (3) 设 AE 交 CD 于点 F ,求证:△ ADF BAD.整体思想也称整体代换,也可称 整体换元•这种“特殊值法”很有用, 常用在解选择题和填空题x+2y=5,(本小题满分10分)【原创题】已知O P与x轴交于 A , B两点,与y轴交于D两点,已知 B ( 12, 0),圆心P ( 5, -1 ). (1 )求0P的半径;(2)求点A, C, D的坐标;(3)若一抛物线过A, B, C,另一抛物线过B, D,求两条抛物线顶点间的距离•22. (本小题满分12分)【原创题】k如图,直线y=mx与反比例函数y (x>0)的图象交于Qx点,点A,点B都在反比例函数y k的图象上,点P在xOQ延长线上,且FA// y轴,PB // x轴,且连结AQ, BQ,已知点B (3, 4).(1) 若点A的纵坐标为9,求反比例函数及直线0P的表达式;4(2) 在(1)的条件下,求sin/AQP的值;S(3) 请猜想:丄巴的值是否会随m的变化而变化?若不变,请求出这个值;若变化,S^BPQ请说明理由.23. (本小题满分12分)【原创题】女口图,点A是射线OX上一点,OA=4,过A作AB丄OX,且AB=2 ,连结OB .作/XOY=/ ABO,过B任作一直线m,分别交射线AX,射线OY于C, D两点,设(1) 当k=2时,求点D到射线OX的距离;(2) 请用含k的代数式表示△ OCD的面积,并写出k的取值范围;3)若厶OCD是等腰三角形时,求k的值.BC CD备用图2016年萧山区中考模拟试卷数学卷参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 答案CDBDBBAACA14. 165°三、全面答一答(本题有 17. (本小题满分6分) 解:(1) -3<x w 3 ......(2)当x= ± 2或3时,分式无意义,••• P (分式有意义)=- ...................................... 3分2 18. (本小题满分8分) 解:(1) 5十10%=50 户(2) 50-10-5=35 户,B 类的户数:35x2=15 户,C 类:20 户 ........................... 2 分3 4(3) 图略,144° ......................................................................................................................... 2 分 (4) 1500X 10 =300 户 .............................................................. 2 分50 19. (本小题满分8分)解:(1) y 03 ............................................................................................................................... 2 分 (2) 624 ................................................................................................................ 1+2 分【问题迁移】如因式分解 (x+y)3-(x+y)=(x+y)(x+y+1)(x+y-1) .............................................. 1+2分 20. (本小题满分10分)解:(1)保留痕迹,作图正确 ............ 3分(2) •••△ ACD 和厶BCE 都是等边三角形,• AC=CD , CE=CB ,/ ACD= / BCE=60° •••/ ACE = Z DCB=120° ,• △ ACE ◎△ DCB (SAS ) ............. 3 分(3) •••△ ACE ◎△ DCB ,• / CAE = Z CDB. •••/ ADC = Z CAD= / ACD= / CBE=60° ,• DC // BE ,•/ CDB= / DBE ,•••/ CAE = Z DBE ,•/ DAF= / DBA.• △ ADF BAD. ................................................ 4 分11. 6.77X 101312 .13. 15. (4+m , 5 )或(4+m , 13)337个小题,共66分)16. 2, 3, 4, 5n(2)作QC 丄AP 于C.x 3 x 4得 Q (4 , 3),则 4 3 7 QC 「, AC=2 , PC=1 , PA=± ,42PQ= CPCQ 23, AQ = . AC 2CQ 2337 121 -S A APQ=—2 AP • CQ=1 PQ • AQ • 2sin / AQP ,• sin / AQP =空 CQ PQ AQ84. 337 1685(3)由题意,得 B (3 , 4), P (4—,4), A m4 (—,3m ) m12•解y yx mx得 Q ( 2= , 2 3m ) V m •••它们的顶点的横坐标均为1222. (本小题满分 12 分)解: (1): B (3 , 4 )在k y - 的图象上,• k 4 - , • k=12 , • 12-y ................ ...... 2分x3 x当y : =9时, 16 x= ,• A (竺 9 .-).•/ FA // y 轴,PB // x 轴,• •- P ( 16 , 4).4 33 43代入 y=mx , 得童 m=4 , 二 m=3 . 3…y = x .• 2分3 4 4 21 .(本小题满分10分)解:(1 )作PE 丄OB 于E ,连结PB.•/ B (12 , 0), P ( 5, -1) , ••• OB=12 , PE=1 , BE=12-5=7. ••• PB= BE 2 PE 25 2,即O P 的半径为 5 2. ...................................................................... 3 分(2)v PE 丄 OB , • AE=BE =7 ,• OA=7-5=2 , • A (-2 , 0) ........................................................ 1 分作 PF 丄 OD 于 F ,连结 PD ,贝U PD = 5 . 2 , OF=1 , PF=5. • DF= PD 7 ------- 2PF =5=CF , • OD =6 , OC=4 , • C (0, 4) , D (0, -6)(3)设过A 、B 两点的抛物线为y= a(x+2)( x-12),•••抛物线过点C(0 , 4) , • a= 1 , •抛物线为 y= 6 -(x+2)(x-12) 6•••抛物线 y=m(x+2)( x-12)过点 D(0 , 1-6) , • m =—, 4 1•••抛物线为 y=- (x+2)(x-12)…1分4•两条抛物线顶点间的距离:d= I1(5+2)(5 -12)-- (5+2)(5 -12) I = 6245 1223.(本小题满分12分) 解:作DE 丄OX 于E. (1 )•• -AB 丄 OX , DE 丄 OX , • AB // DE ,• • △ CAB sA CED ,AB BC 1•/ AB=2, • DE=4,即点D 到射线OX 的距离为4. .................. ........... 2分 DE CD 2(2 )•• • AB BC .2 ,…k ,• DE=2 k.DE CD DET 匹=tan / XOY=tan / ABO= °A OB 4,• OE = -DE = k ,. AE=4-k.2 2CA •••△ CAB sA CED ,•••— CE BC CD , CA CA 4 k 2坐(1<k w 4) k 1 ,二 CA=^^,二 OC=^^+4= 3kk 1 k 11 1 3k --S A OCD = OC • DE= 2k2 2 k 1(3)①当OC=CD 时,过 C 作CF 丄OY 于F .7 -^k .••• =tan / XOY=2,二 CF= 5k . 2 OF21 5k 5k 坐2k 1 则 OF = 1 OD = \ k 2 (2 k) 2 21 ••• S AOCD = OD • CF , /2 11 ,二 k=!2 5 ②当OD=CD 时, OE=CE =1 OC ,「. k 2 ③当OC=OD 时,1 2 3 553k . k = 5 k 1 2S \ APQ S \ BPQ1 4 2.3 (4 3m)2 m . m 1 43 (4 2 3m)2 m—(4 3m)(4 2 . m) m (4 3m)(4 2. m) m1 , -△^的值不变,为1.S ^BPQOE。
2016年浙江省杭州市中考数学模拟试卷和解析word版
2016年浙江省杭州市中考数学模拟试卷(1)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(3分)的相反数是()A.B.﹣C.D.﹣2.(3分)下列计算中,正确的是()A.=±3 B.23×24=27C.﹣2a2•3a=6a3D.3m2÷(3m﹣1)=m﹣3m23.(3分)若等式x=y可以变形为,则有()A.a>0 B.a<0C.a≠0 D.a为任意有理数4.(3分)下列“表情图”中,不属于轴对称图形的是()A.┭┮﹏┭┮B.(∩_∩)C.~(@^_^@)~D.<( ̄︶ ̄)>5.(3分)如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB 的平分线,则图中与∠FDB相等的角(不包含∠FDB)的个数为()A.3 B.4 C.5 D.66.(3分)如图,在Rt△ABC中,∠C=90°,∠A=26°,以点C为圆心,BC为半径的圆分别交AB、AC于点D、点E,则弧BD的度数为()A.26°B.64°C.52°D.128°7.(3分)若|x+y+1|与(x﹣y﹣2)2互为相反数,则(3x﹣y)3的值为()A.1 B.9 C.﹣9 D.278.(3分)菱形ABCD的对角线AC、BD的长分别为4和2,若直线l满足:①点A到直线l的距离为;②B、D两点到直线l的距离相等.则符合题意的直线l 的条数为()A.1 B.2 C.3 D.49.(3分)如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动,点C 在x轴上运动,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为()A.B.1 C.D.210.(3分)如图,一副直角三角板满足∠ACB=∠EDF=90°,AC=BC,AB=DF,∠EFD=30°,将三角板DEF的直角顶点D放置于三角板ABC的斜边AB上,再将三角板DEF绕点D旋转,并使边DE与边AC交于点M,边DF与边BC于点N.当∠EDF在△ABC内绕顶点D旋转时有以下结论:①点C,M,D,N四点共圆;②连接CD,若AD=DB,则△ADM∽△CDN;③若AD=DB,则DN•CM=BN•DM;④若AD=DB,则CM+CN=AD;≤4.⑤若DB=2AD,AB=6,则2≤S△DMN其中正确结论的个数是()A.2 B.3 C.4 D.5二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)已知a,b互为相反数,则(4a﹣3b)﹣(3a﹣4b)=.12.(4分)多项式x2+mx+7因式分解得(x+n)(x﹣7),则m=,n=.13.(4分)已知反比例函数y=﹣(c为常数)的图象和直线y=x﹣1的一个交点为点P(a,b),则a+b+c=.14.(4分)如图,点A的坐标为(﹣1,0),点B的坐标为(4,0),以AB为直径⊙O,交y轴的负半轴于点C.若二次函数y=ax2+bx+c的图象经过A,C,B.已知点P是该抛物线上的动点,当∠APB是直角时,则满足要求的点P坐标为.15.(4分)如图,AD、BE分别是△ABC中BC、AC边上的高,BE=4,BC=6,则sin∠DAC=.16.(4分)已知,⊙A与x轴相切于点O,点A的坐标为(0,1),点P在⊙A上,∠PAO=60°,⊙A沿x轴正方向滚动,当点P第n次落在x轴上时,点P坐标为.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)解不等式2(x﹣1)<+2x,并把解在数轴上表示出来.18.(8分)若关于x,y的二元一次方程组的解满足x﹣y>﹣3.5,求出满足条件的m的所有正整数解.19.(8分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.(1)求BC的长;(2)尺规作图(保留作图痕迹,不写作法):作出△ABC的外接圆,并求外接圆半径.20.(10分)如图,在平面直角坐标系中,△AOB为直角三角形,A(0,4),B (﹣3,0).按要求解答下列问题:(1)在平面直角坐标系中,先将Rt△AOB向上平移6个单位,再向右平移3个单位,画出平移后的Rt△A1O1B1;(2)在平面直角坐标系中,将Rt△A1O1B1绕点O1顺时针旋转90°,画出旋转后的Rt△A2O1B2;(3)用点A1旋转到点A2所经过的路径与O1A1、O1A2围成的扇形做成一个圆锥的侧面,求这个圆锥的高.(保留精确值)21.(10分)如图,已知反比例函数的图象经过点A(﹣2,4)、B(m,2),过点A作AF⊥x轴于点F,连接OA.(1)求反比例函数的解析式及m的值;(2)若直线l过点O且分△AFO的面积为1:2,求直线l的解析式.22.(12分)小明一直对四边形很感兴趣,在矩形ABCD中,E是AC上任意一点,连接DE,作DE⊥EF,交AB于点F.请你跟着他一起解决下列问题:(1)如图①,若AB=BC,则DE,EF有什么数量关系?请给出证明.(2)如图②,若∠CAB=30°,则DE,EF又有什么数量关系?请给出证明.(3)由(1)、(2)这两种特殊情况,小明提出问题:如果在矩形ABCD中,BC=mAB,那DE,EF有什么数量关系?请给出证明.23.(12分)已知,点C在y轴上,OC=3,将线段OC绕点O顺时针旋转90°至OB的位置,点A的横坐标为方程x2﹣1=0的一个解且点A、B在y轴两侧.(1)求经过A、B、C的抛物线的解析式;(2)如图,点P是抛物线的对称轴l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在如图抛物线的对称轴l上是否存在点M,使△MAC为直角三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.2016年浙江省杭州市中考数学模拟试卷(1)参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(3分)的相反数是()A.B.﹣C.D.﹣【解答】解:==,则的相反数是﹣,故选D2.(3分)下列计算中,正确的是()A.=±3 B.23×24=27C.﹣2a2•3a=6a3D.3m2÷(3m﹣1)=m﹣3m2【解答】解:A、=3≠±3,本选项错误;B、23×24=27,本选项正确;C、﹣2a2•3a=﹣6a3≠6a3,本选项错误;D、3m2÷(3m﹣1)≠m﹣3m2,本选项错误.故选B.3.(3分)若等式x=y可以变形为,则有()A.a>0 B.a<0C.a≠0 D.a为任意有理数【解答】解:x=y,a≠0,,故选:C.4.(3分)下列“表情图”中,不属于轴对称图形的是()A.┭┮﹏┭┮B.(∩_∩)C.~(@^_^@)~D.<( ̄︶ ̄)>【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.5.(3分)如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB 的平分线,则图中与∠FDB相等的角(不包含∠FDB)的个数为()A.3 B.4 C.5 D.6【解答】解:∵CE⊥AB,DF⊥AB,∴DF∥CE,∴∠ECB=∠FDB,∵CE是∠ACB的平分线,∴∠ACE=∠ECB,∴∠ACE=∠FDB,∵AC∥DE,∴∠ACE=∠DEC=∠FDB,∵DF∥CE,∴∠DEC=∠EDF=∠FDB,即与∠FDB相等的角有∠ECB、∠ACE、∠CED、∠EDF,共4个,故选B.6.(3分)如图,在Rt△ABC中,∠C=90°,∠A=26°,以点C为圆心,BC为半径的圆分别交AB、AC于点D、点E,则弧BD的度数为()A.26°B.64°C.52°D.128°【解答】解:∵∠C=90°,∠A=26°,∴∠B=64°,∵CB=CD,∴∠CDB=∠B=64°,∴∠BCD=180°﹣64°﹣64°=52°,∴的度数为52°.故选:C.7.(3分)若|x+y+1|与(x﹣y﹣2)2互为相反数,则(3x﹣y)3的值为()A.1 B.9 C.﹣9 D.27【解答】解:∵|x+y+1|与(x﹣y﹣2)2互为相反数,∴|x+y+1|+(x﹣y﹣2)2=0,∴,解得,,∴(3x﹣y)3=(3×+)3=27.故选D.8.(3分)菱形ABCD的对角线AC、BD的长分别为4和2,若直线l满足:①点A到直线l的距离为;②B、D两点到直线l的距离相等.则符合题意的直线l 的条数为()A.1 B.2 C.3 D.4【解答】解:如图所示:∵四边形ABCD是菱形,∴OA=OC=AC=2,OB=OD=BD=1,∴符合题意的直线l的条数有4条.故选:D.9.(3分)如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动,点C 在x轴上运动,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为()A.B.1 C.D.2【解答】解:∵y=x2﹣2x+2=(x﹣1)2+1,∴抛物线的顶点坐标为(1,1),∵四边形ABCD为矩形,∴BD=AC,由垂线段最短可知当AC⊥x轴才有可能最短,当AC⊥x轴时,可知AC的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,∴对角线BD的最小值为1.故选B.10.(3分)如图,一副直角三角板满足∠ACB=∠EDF=90°,AC=BC,AB=DF,∠EFD=30°,将三角板DEF的直角顶点D放置于三角板ABC的斜边AB上,再将三角板DEF绕点D旋转,并使边DE与边AC交于点M,边DF与边BC于点N.当∠EDF在△ABC内绕顶点D旋转时有以下结论:①点C,M,D,N四点共圆;②连接CD,若AD=DB,则△ADM∽△CDN;③若AD=DB,则DN•CM=BN•DM;④若AD=DB,则CM+CN=AD;≤4.⑤若DB=2AD,AB=6,则2≤S△DMN其中正确结论的个数是()A.2 B.3 C.4 D.5【解答】解:①正确.理由如下:如图1中,∵∠ACB=90°,∠EDF=90°,∴∠MCN+∠MDN=180°,∴点C,M,D,N四点共圆.②正确.理由如下:如图2中,连接CD.∵AC=BC.AD=DB.∴CD⊥AB,CD=AD=DB,∴∠ADC=∠MDN=90°,∴∠ADM=∠CDN,在△ADM和△CDN中,,∴△ADM≌△CDN.故②正确.③正确.理由如下:如图3中∵CA=CB,∠ACB=90°,AD=DB,∴CD=AD=DB,CD⊥AB,∠A=∠ACD=∠DCN=45°,∴∠ADC=∠EDF=90°,∴∠ADM=∠CDN,在△ADM和△CDN中,,∴△ADM≌△CDN,∴AM=CN,DM=DN,∵AC=BC,∴CM=BN,∴DN•CM=BN•DM④正确.理由如下:如图4中,作DH⊥AC于H,DG⊥BC于G.∵∠ACD=∠BCD=45°,∴DH=DG,∵∠DHC=∠HCG=∠CGD=90°,∴四边形CHDG是矩形,∵DH=DG,∴四边形CHDG是正方形,∴∠HDG=∠MDN=90°,CH=CG,∴∠MDH=∠GDN,在△DHM和△DGN中,,∴△DHM≌△DGN,∴MH=NG∴CM+CN=CH+MH+CG﹣NG=2CH,∵AD=CD=CH,∴CM+CN=AD.⑤正确.理由如下:如图5中,作DH⊥AC于H,DG⊥BC于G.∵AB=6,BD=2AD,∴AD=2,BD=4,∴AH=DH=,DG=GB=2,∵∠DHC=∠HCG=∠CGD=90°,∴四边形CHDG是矩形,∴∠HDG=∠MDN,∴∠MDH=∠NDG,∵∠DHM=∠DGN=90°,∴△DHM∽△DGN,∴==,设DM=x,则DG=2x,=•2x•x=x2,∴S△DMN当DM⊥AC时,DM的值最小,此时DM=DH=,△DMN的面积最小值为2,当DM⊥AB时,DM的值最大,此时DM=AD=2,△DMN的面积的最大值为4,∴2≤S≤4.△DMN故选D.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)已知a,b互为相反数,则(4a﹣3b)﹣(3a﹣4b)=0.【解答】解:∵a,b互为相反数,∴a+b=0,∴原式=4a﹣3b﹣3a+4b=a+b=0.故答案为0.12.(4分)多项式x2+mx+7因式分解得(x+n)(x﹣7),则m=﹣8,n=﹣1.【解答】解:因为多项式x2+mx+7因式分解得(x+n)(x﹣7),所以x2+mx+7=(x+n)(x﹣7),即x2+mx+7=x2+(n﹣7)x﹣7n,所以m=n﹣7,﹣7n=7解得:n=﹣1,m=﹣8.故答案为:﹣8,﹣1.13.(4分)已知反比例函数y=﹣(c为常数)的图象和直线y=x﹣1的一个交点为点P(a,b),则a+b+c=.【解答】解:由题意,∴a(a﹣1)=﹣c2+2c﹣2,整理得:(a﹣2)2+4(c﹣1)2=0,∵(a﹣2)2≥0,4(c﹣1)2≥0,∴a=2,c=1,b=﹣,∴a+b+c=2﹣+1=,故答案为.14.(4分)如图,点A的坐标为(﹣1,0),点B的坐标为(4,0),以AB为直径⊙O,交y轴的负半轴于点C.若二次函数y=ax2+bx+c的图象经过A,C,B.已知点P是该抛物线上的动点,当∠APB是直角时,则满足要求的点P坐标为(0,﹣2),(3,﹣2).【解答】解:如图,连接O′C,∵点A的坐标为(﹣1,0),点B的坐标为(4,0),以AB为直径⊙O,交y轴的负半轴于点C,∴AB=5,∴O′A=2.5,OO′=1.5,∴OC==2,∴点C的坐标为:(0,﹣2),∵二次函数y=ax2+bx+c的图象经过A,C,B,∴二次函数y=ax2+bx+c的对称轴为:x=1.5,∴点C的对称点为:(3,﹣2),∵∠APB是直角,AB是直径,∴点P位于⊙O′与二次函数y=ax2+bx+c的交点处,即C(0,﹣2),(3,﹣2).故答案为:(0,﹣2),(3,﹣2).15.(4分)如图,AD、BE分别是△ABC中BC、AC边上的高,BE=4,BC=6,则sin∠DAC=.【解答】解:∵AD、BE分别是△ABC中BC、AC边上的高,∴∠BDA=∠ADC=90°,∴∠CBE=∠DAC,∵∠BEC=90°,BE=4,BC=6,∴CE=2,∴sin∠EBC=,∴sin∠DAC=.故答案为:.16.(4分)已知,⊙A与x轴相切于点O,点A的坐标为(0,1),点P在⊙A 上,∠PAO=60°,⊙A沿x轴正方向滚动,当点P第n次落在x轴上时,点P坐标为(,0)或(,0).【解答】解:如图所示,当点P在点P1的位置时,点P第n次落在x轴上时,点P的横坐标为:x==,即此时点P的坐标为(,0);当点P在点P2的位置时,点P第n次落在x轴上时,点P的横坐标为:x==,即此时点P的坐标为(,0);故答案为:(,0)或(,0).三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)解不等式2(x﹣1)<+2x,并把解在数轴上表示出来.【解答】解:2(x﹣1)<+2x,6(x﹣1)<3﹣2x+6x,2x<9,∴x<4.5,在数轴上表示为:.18.(8分)若关于x,y的二元一次方程组的解满足x﹣y>﹣3.5,求出满足条件的m的所有正整数解.【解答】解:由方程组的两个方程相减得:x﹣y=﹣0.5m﹣2∴﹣0.5m﹣2>﹣3.5,∴m<3,∴满足条件的m的所有正整数解为m=1,m=2.19.(8分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.(1)求BC的长;(2)尺规作图(保留作图痕迹,不写作法):作出△ABC的外接圆,并求外接圆半径.【解答】解:(1)过点A作AE⊥BC于点E,∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=4AE=4,∴BC=BE+CE=5;(2)如图,①作线段AB的垂直平分线NM.②作线段AC的垂直平分线GH与直线MN的交点O就是△ABC外接圆的圆心.③以点O为圆心OA为半径作圆.⊙O就是所求作的△ABC的外接圆.∵∠AOC=2∠ABC,∠AOK=∠COK,∴∠ABC=∠AOK,∵sin∠AOK=sin∠ABC==,由(1)可知AB==,∴=,∴AO=.20.(10分)如图,在平面直角坐标系中,△AOB为直角三角形,A(0,4),B (﹣3,0).按要求解答下列问题:(1)在平面直角坐标系中,先将Rt△AOB向上平移6个单位,再向右平移3个单位,画出平移后的Rt△A1O1B1;(2)在平面直角坐标系中,将Rt△A1O1B1绕点O1顺时针旋转90°,画出旋转后的Rt△A2O1B2;(3)用点A1旋转到点A2所经过的路径与O1A1、O1A2围成的扇形做成一个圆锥的侧面,求这个圆锥的高.(保留精确值)【解答】(1)如图正确画出Rt△A1O1B1.(2分)(2)如图正确画出Rt△A2O1B2.(4分)(3)∵==2π.(6分)∴圆锥底面圆周长为2π.∴圆锥底面圆半径r==1.(7分)∴圆锥的高h==.(8分)21.(10分)如图,已知反比例函数的图象经过点A(﹣2,4)、B(m,2),过点A作AF⊥x轴于点F,连接OA.(1)求反比例函数的解析式及m的值;(2)若直线l过点O且分△AFO的面积为1:2,求直线l的解析式.【解答】解析:(1)∵把A(﹣2,4)代入y=,得k=﹣2×4=﹣8,∴反比例函数的解析式为y=﹣.∵把B(m,2)代入y=﹣得,2m=﹣8,∴m=﹣4;(2)∵A点坐标为(﹣2,4)、B点坐标为(﹣4,2),而AF⊥x轴,∴F点坐标为(﹣2,0).∵直线l过点O且分△AFO的面积1:2,∴直线l过点(﹣2,)或点(﹣2,).设直线l的解析式为y=kx(k≠0),①把点(﹣2,)代入y=kx得,=﹣2k,解得k=﹣,∴直线l的解析式为y=﹣x.②把点(﹣2,)代入y=kx得,=﹣2k,解得k=﹣,∴直线l的解析式为y=﹣x.综上所述,直线l的解析式为y=﹣x或y=﹣x.22.(12分)小明一直对四边形很感兴趣,在矩形ABCD中,E是AC上任意一点,连接DE,作DE⊥EF,交AB于点F.请你跟着他一起解决下列问题:(1)如图①,若AB=BC,则DE,EF有什么数量关系?请给出证明.(2)如图②,若∠CAB=30°,则DE,EF又有什么数量关系?请给出证明.(3)由(1)、(2)这两种特殊情况,小明提出问题:如果在矩形ABCD中,BC=mAB,那DE,EF有什么数量关系?请给出证明.【解答】解:(1)DE=EF.过点E作EG⊥AD与G,EH⊥AB于H,则∠EGD=∠EHF=90°,又∠BAD=90°,∴四边形EGAH是矩形,∵四边形ABCD是矩形,AB=AD,∴矩形ABCD为正方形,∴∠EAH=45°,∴HE=HA,∴四边形AHEG是正方形,∴EH=EG,∠GEH=90°,∴∠FED﹣∠GEF=∠GEH﹣∠GEF,即∠DEG=∠FEH,在△EDG和△EFH中,,∴△EDG≌△EFH∴DE=EF;(2)DE=EF.∵∠CAB=30°,∴=,同(1)理得,∠EGD=∠EHF=90°,∠DEG=∠FEH∴△EDG∽△EFH,∴==,∴DE=EF;(3)DE=EF.同(2)理得,△EDG∽△EFH,∴===,∴DE=EF.23.(12分)已知,点C在y轴上,OC=3,将线段OC绕点O顺时针旋转90°至OB的位置,点A的横坐标为方程x2﹣1=0的一个解且点A、B在y轴两侧.(1)求经过A、B、C的抛物线的解析式;(2)如图,点P是抛物线的对称轴l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在如图抛物线的对称轴l上是否存在点M,使△MAC为直角三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵OC=3,且在y轴上,∴C(0,3)或C(0,﹣3)∵OC绕点O顺时针旋转90°至OB位置∴OB=OC=3∴C(0,3),B(3,0)或C(0,﹣3),B(﹣3,0)解x2﹣1=0得x1=1,x2=﹣1∴C(0,3),B(3,0),A(﹣1,0)或C(0,﹣3),B(﹣3,0),A(1,0)①设y=a(x+1)(x﹣3)代入C(0,3),得﹣3a=3∴a=﹣1∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3②设y=a(x﹣1)(x+3)代入C(0,﹣3),得﹣3a=﹣3∴a=1∴y=(x﹣1)(x+3)=x2+2x﹣3∴抛物线的解析式为y=﹣x2+2x+3或y=x2+2x﹣3(2)如图1可知,抛物线的解析式为y=﹣x2+2x+3∴抛物线的对称轴是直线x=1当点P落在线段BC上时,PA+PC最小,△PAC的周长最小,设抛物线的对称轴与x轴的交点为H,由=,BO=CO,得PH=BH=2∴点P的坐标为(1,2)(3)设点M的坐标为(1,m)在△MAC中,AC2=10,MC2=1+(m﹣3)2,MA2=4+m2①当∠MAC=90°时,AM2+AC2=MC2解方程4+m2+10=1+(m﹣3)2,∴m=﹣,∴点M的坐标为(1,﹣)②当∠AMC=90°时,CM2+AM2=AC2.解方程1+(m﹣3)2+4+m2=10,∴m=2或m=1∴点M的坐标为(1,1)或(1,2)③当∠ACM=90°时,CM2+CA2=AM2.解方程1+(m﹣3)2+10=4+m2,∴m=点M的坐标为(1,).。
2016杭州市西湖区二模数学试卷
2016杭州市西湖区二模数学试卷一.选择题(共10小题)1.某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示(结果保留2个有效数字)应为( ) A .3.9×104B .3.94×104C .39.4×103D .4.0×1042.下列运算正确的是( ) A.2(3)9-=-B.2015(1)11-⨯=-C.-5+3=8D.22--=3.下列图形中,是轴对称图形但不是中心对称图形的是( )A.等边三角形B.平行四边形C.矩形D.圆4.下列运算正确的是( )A.336(2)6a a = B.2223333a b ab a b -⋅=- C.1b a a b b a +=--- D.21111a a a -⋅=-+ 5.在⊙O 中,圆心O 到弦AB 的距离为AB 长度的一半,则弦AB 所对圆心角的大小( )A.30°B.45°C.60°D.90° 6.用反证法证明命题:在一个三角形中,至少有一个内角不大于60°.证明的第一步是( ) A .假设三个内角都不大于60° B .假设三个内角都大于60° C .假设三个内角至多有一个大于60° D .假设三个内角至多有两个大于60°7.已知点C 是线段AB 的黄金分割点(AC >BC ),则下列结论中正确的是( ) A .AB 2=AC 2+BC 2B .BC 2=AC•BAC .512BC AC -= D .512AC BC -= 8.对某市8所学校抽取共1 000名学生进行800米跑达标抽样检测.结果显示该市达标学生人数超过半数,达标率达到52.5%.图l 、图2反映的是本次抽样中的具体数据.根据以上信息,下列判断:①小学高年级被抽检人数为200人;②小学、初中、高中学生中高中生800米跑达标率最大;③小学生800米跑达标率低于33%;④高中生800米跑达标率超过70%.其中判断正确的有( ) A .O 个 B .1个 C .2个 D .3个9.如图,D 是等边△ABC 边AB 上的一点,且AD :DB=1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE :CF=( )A .34B .45C .56D .6710.若二次函数y=ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,对于以下说法: ①b 2﹣4ac >0;②x=x 0是方程ax 2+bx+c=y 0的解;③x 1<x 0<x 2;④a (x 0﹣x 1)(x 0﹣x 2)<0.其中正确的是( ) A .①③④ B .①②④ C .①②③ D .②③二.填空题(共6小题)11.一组数字2,3,3,5,7的中位数是 ,方差是 .12.计算:0112tan 60(13)()2-︒+--=13.二次函数245(30)y x x x =++-≤≤的最大值是 ,最小值是 .14.当12a <<时,代数式2(2)1a a -+-= .15.如图,已知点A 1,A 2,…,A n 均在直线y=x ﹣1上,点B 1,B 2,…,B n 均在双曲线1y x=-上,并且满足:A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴,B 2A 3⊥y 轴,…,A n B n ⊥x 轴,B n A n+1⊥y 轴,…,记点A n 的横坐标为a n (n 为正整数).若a 1=﹣1,则a 2015= .16.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.三.解答题(共7小题)17.先化简:2344(1)11a aaa a-+-+÷++,并从0,﹣1,2中选一个合适的数作为a的值代入求值.18.如图,△ABC中,∠ABC=90°.(1)请在BC上找一点P,作⊙P与AC,AB都相切,切点为Q;(尺规作图,保留作图痕迹)(2)若AB=3,BC=4,求第(1)题中所作圆的半径;(3)连结BQ,第(2)中的条件均不变,求sin∠CBQ.19.在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.20.小沈准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清.如果用x、y表示这两个看不清的数字,那么小陈的手机号码为139x370y580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍.(1)求x+y的值;(2)求小沈一次拨对小陈手机号码的概率.21.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.22.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP 交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=38AC,AB=10时,求线段BO的长度.23.如图1,在平面直角坐标系中,O 为坐标原点,B 在x 轴上,四边形OACB 为平行四边形,且∠AOB=60°,反比例函数(0)ky k x=>在第一象限内过点A ,且与BC 交于点F (1)若OA=10,求反比例函数的解析式;(2)若F 为BC 的中点,且243AOF S ∆=,求OA 长及点C 坐标;(3)在(2)的条件下,过点F 作EF ∥OB 交OA 于点E (如图2),若点P 是直线EF 上一个动点,连结,PA ,PO ,问是否存在点P ,使得以P ,A ,O 三点构成的三角形是直角三角形?若存在请直接写出P 点坐标,若不存在,请说明了理由.2016杭州市西湖区二模数学试卷解析一.选择题(共6小题)1.某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示(结果保留2个有效数字)应为( )A .3.9×104B .3.94×104C .39.4×103D .4.0×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于39400有5位,所以可以确定n=5﹣1=4,由于结果保留2个有效数字,所以a=3.9.【解答】解:39 400≈3.9×104. 故选A .【点评】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.2.下列运算正确的是( ) A.2(3)9-=-B.2015(1)11-⨯=-C.-5+3=8D.22--=【解答】解:选B3.下列图形中,是轴对称图形但不是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.矩形 D.圆【解答】解:选A4.下列运算正确的是( )A.336(2)6a a = B.2223333a b ab a b -⋅=- C.1b a a b b a +=--- D.21111a a a -⋅=-+ 【解答】解:选C5.在⊙O 中,圆心O 到弦AB 的距离为AB 长度的一半,则弦AB 所对圆心角的大小( ) A.30° B.45° C.60° D.90° 【解答】解:选D 6.用反证法证明命题:在一个三角形中,至少有一个内角不大于60°.证明的第一步是( ) A .假设三个内角都不大于60° B .假设三个内角都大于60° C .假设三个内角至多有一个大于60° D .假设三个内角至多有两个大于60° 【分析】熟记反证法的步骤,从命题的反面出发假设出结论,直接得出答案即可. 【解答】解:∵用反证法证明在一个三角形中,至少有一个内角不大于60°, ∴第一步应假设结论不成立, 即假设三个内角都大于60°. 故选:B .【点评】此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.7.已知点C 是线段AB 的黄金分割点(AC >BC ),则下列结论中正确的是( ) A .AB 2=AC 2+BC 2B .BC 2=AC•BAC .512BC AC -= D .512AC BC -=【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值512-()叫做黄金比.【解答】解:根据黄金分割的定义可知:512BCAC-=.故选C.【点评】理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.8.对某市8所学校抽取共1 000名学生进行800米跑达标抽样检测.结果显示该市达标学生人数超过半数,达标率达到52.5%.图l、图2反映的是本次抽样中的具体数据.根据以上信息,下列判断:①小学高年级被抽检人数为200人;②小学、初中、高中学生中高中生800米跑达标率最大;③小学生800米跑达标率低于33%;④高中生800米跑达标率超过70%.其中判断正确的有()A.O个B.1个C.2个D.3个【分析】利用扇形统计图,用总人数1000×小学高年级学生所占百分比即可;分别计算出小学、中学、高中三个学段的抽检的学生总数,再计算出达标率即可判断出②③④的正误.【解答】解:①小学高年级被抽检人数为:1000×(1﹣30%﹣35%﹣15%)=200人,故①说法正确;②达标总人数:1000×52.5%=525(人),小学抽检人数:1000×(1﹣30%﹣35%)=350,达标率:×100%≈39%,中学抽检人数:1000×35%=350,达标率:52524113188350---×100%≈59%,高中抽检人数:1000×30%=300,达标率:188300×100%≈63%,小学、初中、高中学生中高中生.800米跑达标率最大,故②正确;③小学生800米跑达标率低于33%,说法错误;④高中生800米跑达标率超过70%,说法错误;故选:C.【点评】此题主要考查了扇形统计图和条形统计图,从统计图中找出正确信息是解决问题的关键.9.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C 与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.34B.45C.56D.67【分析】借助翻折变换的性质得到DE=CE;设AB=3k,CE=x,则AE=3k﹣x;根据相似三角形的判定与性质即可解决问题.【解答】解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,∴ED AD AE FD BF BD==,设CE=x,则ED=x,AE=3k﹣x,设CF=y,则DF=y,FB=3k﹣y,∴332x k k xy k y k-==-,∴(3)2(3) ky x k ykx y k x=-⎧⎨=-⎩,∴,45 xy=∴CE:CF=4:5.故选:B.解法二:解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k ,∠A=∠B=∠C=∠EDF=60°, ∴∠EDA+∠FDB=120°, 又∵∠EDA+∠AED=120°, ∴∠FDB=∠AED ,∴△AED ∽△BDF ,由折叠,得 CE=DE ,CF=DF∴△AED 的周长为4k ,△BDF 的周长为5k , ∴△AED 与△BDF 的相似比为4:5 ∴CE :CF=DE :DF=4:5. 故选:B . 【点评】主要考查了翻折变换的性质及其应用问题;解题的关键是借助相似三角形的判定与性质(用含有k 的代数式表示);对综合的分析问题解决问题的能力提出了较高的要求.10.若二次函数y=ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,对于以下说法: ①b 2﹣4ac >0;②x=x 0是方程ax 2+bx+c=y 0的解;③x 1<x 0<x 2;④a (x 0﹣x 1)(x 0﹣x 2)<0.其中正确的是( ) A .①③④ B .①②④ C .①②③ D .②③【分析】根据抛物线与x 轴有两个不同的交点,根的判别式△>0,再分a >0和a <0两种情况对③④选项讨论即可得解.【解答】解:A 、二次函数y=ax 2+bx+c (a≠0)的图象与x 轴有两个交点无法确定a 的正负情况,故本选项错误; ①∵x 1<x 2,∴△=b 2﹣4ac >0,故本选项正确;②∵点M (x 0,y 0)在二次函数y=ax 2+bx+c (a≠0)的图象上,∴x=x 0是方程ax 2+bx+c=y 0的解,故本选项正确; ③若a >0,则x 1<x 0<x 2,若a <0,则x 0<x 1<x 2或x 1<x 2<x 0,故本选项错误; ④若a >0,则x 0﹣x 1>0,x 0﹣x 2<0, 所以,(x 0﹣x 1)(x 0﹣x 2)<0, ∴a (x 0﹣x 1)(x 0﹣x 2)<0,若a <0,则(x 0﹣x 1)与(x 0﹣x 2)同号, ∴a (x 0﹣x 1)(x 0﹣x 2)<0,综上所述,a (x 0﹣x 1)(x 0﹣x 2)<0正确,故本选项正确. 故选:B . 【点评】本题考查了二次函数与x 轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键,③④选项要注意分情况讨论.二.填空题(共2小题)11.一组数字2,3,3,5,7的中位数是 ,方差是 . 【解答】解:中位数是3,方差是3.212.计算:0112tan 60(13)()2-︒+--=【解答】解:231-13.二次函数245(30)y x x x =++-≤≤的最大值是 ,最小值是 . 【解答】解:最大值是5,最小值是114.当12a <<时,代数式2(2)1a a -+-= . 【解答】解:化简为211a a -+-=,答案为1.15.如图,已知点A 1,A 2,…,A n 均在直线y=x ﹣1上,点B 1,B 2,…,B n 均在双曲线1y x=-上,并且满足:A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴,B 2A 3⊥y 轴,…,A n B n ⊥x 轴,B n A n+1⊥y 轴,…,记点A n 的横坐标为a n (n 为正整数).若a 1=﹣1,则a 2015= .【分析】首先根据a 1=﹣1,求出a 2=2,a 3=12,a 4=﹣1,a 5=2,…,所以a 1,a 2,a 3,a 4,a 5,…,每3个数一个循环,分别是﹣1、12、2;然后用2015除以3,根据商和余数的情况,判断出a 2015是第几个循环的第几个数,进而求出它的值是多少即可. 【解答】解:∵a 1=﹣1, ∴B 1的坐标是(﹣1,1), ∴A 2的坐标是(2,1), 即a 2=2, ∵a 2=2,∴B 2的坐标是(2,﹣12), ∴A 3的坐标是(12,﹣12),即a 3=12,∵a 3=12,∴B 3的坐标是(12,﹣2),∴A 4的坐标是(﹣1,﹣2), 即a 4=﹣1, ∵a 4=﹣1,∴B 4的坐标是(﹣1,1),∴A 5的坐标是(2,1),即a 5=2,…,∴a 1,a 2,a 3,a 4,a 5,…,每3个数一个循环,分别是﹣1、12、2, ∵2015÷3=671…2,∴a 2015是第672个循环的第2个数,∴a 2015=2.故答案为:2.【点评】(1)此题主要考查了反比例函数图象上点的坐标的特征,要熟练掌握,解答此题的关键是要明确:①图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k ;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在xk 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.(2)此题还考查了一次函数图象上的点的坐标特征,要熟练掌握,解答此题的关键是要明确:一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(b k-,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .16.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A′MN ,连接A′C ,则A′C 长度的最小值是 .【分析】根据题意,在N 的运动过程中A′在以M 为圆心、AD 为直径的圆上的弧AD 上运动,当A′C 取最小值时,由两点之间线段最短知此时M 、A′、C 三点共线,得出A′的位置,进而利用锐角三角函数关系求出A′C 的长即可.【解答】解:如图所示:∵MA′是定值,A′C 长度取最小值时,即A′在MC 上时, 过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=12MD=12, ∴FM=DM×cos30°=32, ∴MC=227FM CF +=,∴A′C=MC ﹣MA′=7﹣1.故答案为:7﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.三.解答题(共7小题)17.先化简:2344(1)11a a a a a -+-+÷++,并从0,﹣1,2中选一个合适的数作为a 的值代入求值.【分析】首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解. 【解答】解:2344(1)11a a a a a -+-+÷++ =223111(2)a a a a -++⨯+-, =2(2)(2)11(2)a a a a a -+-+⨯+- =﹣22a a +-, 当a=0时,原式=1.【点评】此题考查的是分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.18.如图,△ABC 中,∠ABC=90°.(1)请在BC 上找一点P ,作⊙P 与AC ,AB 都相切,切点为Q ;(尺规作图,保留作图痕迹)(2)若AB=3,BC=4,求第(1)题中所作圆的半径;(3)连结BQ ,第(2)中的条件均不变,求sin ∠CBQ .【分析】(1)作∠BAC 的平分线交BC 于P 点,然后以点P 为圆心,PB 为半径作圆即可;(2)连结PQ ,如图,先计算出AC=5,设半径为r ,BP=PQ=r ,PC=4﹣r ,再证明Rt △CPQ ∽Rt △CAB ,则可利用相似比计算出r 即可;(3)先利用切线长定理得到AB=AQ ,加上PB=PQ ,则判定AP 为BQ 的垂直平分线,则利用等角的余角相等得到∠CBQ=∠BAP ,然后在Rt △ABP 中利用正弦定义求出sin ∠BAP ,从而可得到sin ∠CBQ 的值.【解答】解:(1)如图,⊙P 为所作;(2)连结PQ ,如图,在Rt △ABC 中,AC=2234+=5,设半径为r ,BP=PQ=r ,PC=4﹣r∵AB 与⊙P 相切于Q ,∴PQ ⊥AC ,∵∠PCQ=∠ACP ,∴Rt △CPQ ∽Rt △CAB , ∴PQ CP AB CA =,即435r r -=,解得r=32, 即所作圆的半径为32; (3)∵AB 、AQ 为⊙P 的切线,∴AB=AQ ,∵PB=PQ ,∴AP 为BQ 的垂直平分线,∴∠BAP+∠ABQ=90°,∵∠CBQ+∠ABQ=90°,∴∠CBQ=∠BAP ,在Rt △ABP 中,AP=223353()22+=, ∴sin ∠BAP=3525352BP AP ==, ∴sin ∠CBQ=55.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了勾股定理、相似三角形的判定与性质和三角函数的定义.19.在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.【分析】(1)连结OQ,如图1,由PQ∥AB,OP⊥PQ得到OP⊥AB,在Rt△OBP中,利用正切定义可计算出OP=3tan30°=,然后在Rt△OPQ中利用勾股定理可计算出PQ=;(2)连结OQ,如图2,在Rt△OPQ中,根据勾股定理得到PQ=,则当OP的长最小时,PQ的长最大,根据垂线段最短得到OP⊥BC,则OP=OB=,所以PQ长的最大值=.【解答】解:(1)连结OQ,如图1,∵PQ∥AB,OP⊥PQ,∴OP⊥AB,在Rt△OBP中,∵tan∠B=,∴OP=3tan30°=,在Rt△OPQ中,∵OP=,OQ=3,∴PQ==;(2)连结OQ,如图2,在Rt△OPQ中,PQ==,当OP的长最小时,PQ的长最大,此时OP⊥BC,则OP=OB=,∴PQ长的最大值为=.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了勾股定理和解直角三角形.20.小沈准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清.如果用x、y表示这两个看不清的数字,那么小陈的手机号码为139x370y580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍.(1)求x+y的值;(2)求小沈一次拨对小陈手机号码的概率.【分析】(1)设这11个数字之和是20的a倍,先根据题意列出x+y和a之间的等量关系,再根据电话号码的数字最大数是9和最小数是0,得到0≤x+y≤18,解不等式根据a是整数即可求解;(2)利用电话号码每个数位上的数是0﹣﹣9共10个数字可求得一次拨对电话的概率.【解答】解:(1)设这11个数字之和是20的a倍,根据题意,得1+3+9+x+3+7+y+5+8=20a即x+y=20a﹣36∵0≤x+y≤18∴0≤20a﹣36≤18解得1.8≤a≤2.7∵a是整数∴a=2∴x+y=20×2﹣36=4.(2)共有5对数,一次打对号码的概率是.【点评】主要考查了不等式组和方程的综合运用以及概率的求法.解题的关键是根据实际意义得到所需要的相等关系和不等关系利用未知数的整数值求解.用到的知识点为:概率=所求情况数与总情况数之比.21.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解kx2+(2k+1)x+2=0得到k=1,由此得到该抛物线解析式为y=x2+3x+2,结合图象回答问题.(3)根据题意得到kx2+(2k+1)x+2﹣y=0恒成立,由此列出关于x、y的方程组,通过解方程组求得该定点坐标.【解答】(1)证明:①当k=0时,方程为x+2=0,所以x=﹣2,方程有实数根,②当k≠0时,∵△=(2k+1)2﹣4k×2=(2k﹣1)2≥0,即△≥0,∴无论k取任何实数时,方程总有实数根;(2)解:令y=0,则kx2+(2k+1)x+2=0,解关于x的一元二次方程,得x1=﹣2,x2=﹣,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴k=1.∴该抛物线解析式为y=x2+3x+2,由图象得到:当y1>y2时,a>1或a<﹣4.(3)依题意得kx2+(2k+1)x+2﹣y=0恒成立,即k(x2+2x)+x﹣y+2=0恒成立,则,解得或.所以该抛物线恒过定点(0,2)、(﹣2,0).【点评】本题考查了抛物线与x轴的交点与判别式的关系及二次函数图象上点的坐标特征,解答(1)题时要注意分类讨论.22.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP 交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=38AC,AB=10时,求线段BO的长度.【分析】(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt△BDO中,利用勾股定理列式求解即可.【解答】(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠PAE+∠OAD=90°,∴∠AOD=∠PAE,在△AOD和△PAE中,,∴△AOD≌△PAE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB ﹣AD=10﹣4k .∵OD ∥AP , ∴,即解得k=1,∵AB=10,PE=AD ,∴PE=AD=4K ,BD=AB ﹣AD=10﹣4k=6,OD=3在Rt △BDO 中,由勾股定理得: BO===3.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO 并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.23.如图1,在平面直角坐标系中,O 为坐标原点,B 在x 轴上,四边形OACB 为平行四边形,且∠AOB=60°,反比例函数(0)k y k x=>在第一象限内过点A ,且与BC 交于点F (1)若OA=10,求反比例函数的解析式;(2)若F 为BC 的中点,且243AOF S ∆=,求OA 长及点C 坐标;(3)在(2)的条件下,过点F 作EF ∥OB 交OA 于点E (如图2),若点P 是直线EF 上一个动点,连结,PA ,PO ,问是否存在点P ,使得以P ,A ,O 三点构成的三角形是直角三角形?若存在请直接写出P 点坐标,若不存在,请说明了理由.【分析】(1)先过点A 作AH ⊥OB ,根据∠AOB=60°,OA=10,求出AH 和OH 的值,从而得出A 点坐标,再把它代入反比例函数中,求出k 的值,即可求出反比例函数的解析式;(2)先设OA=a (a >0),过点F 作FM ⊥x 轴于M ,根据∠AOB=60°,得出AHAH=a ,OH=a ,求出S △AOH 的值,根据S △AOF =24,求出平行四边形AOBC 的面积,根据F为BC的中点,求出S△OBF=12,最后根据S平行四边形AOBC=OB•AH,得出OB=AC=12,即可求出点C的坐标;(3)分别根据当∠APO=90°时,在OA的两侧各有一点P,得出P1,P2;当∠PAO=90°时,求出P3;当∠POA=90°时,求出P4即可.【解答】(1)A(5,),解:(1)过点A作AH⊥OB于H,∵∠AOB=60°,OA=10,∴AH=5,OH=5,∴A点坐标为(5,5),根据题意得:5=,解得:k=25,故反比例函数解析式:y=(x>0);(2)设OA=a(a>0),过点F作FM⊥x轴于M,∵∠AOB=60°,∴AH=a,OH=a,∴S△AOH=•a•a=a2,∵,∴S平行四边形AOBC=48,∵F为BC的中点,∴S△OBF=12,∵BF=a,∠FBM=∠AOB,∴FM=,BM=a,∴S△BMF=BM•FM=××a=a2,∴S△FOM=S△OBF+S△BMF=12+a2,∵点A,F都在y=的图象上,∴S△AOH=k,∴a2=12+a2,∴a=8,∴OA=8,∴OH=4,AH=OH=×4=4,∵S平行四边形AOBC=OB•AH=48,∴OB=AC=6,∴C(10,4);(3)存在两种情况:当∠APO=90°时,在OA的两侧各有一点P,分别为:P1(6,2),P2(﹣2,2);当∠PAO=90°时,P3(10,2);当∠POA=90°时,P4(﹣6,2).【点评】此题考查了反比例函数的综合,用到的知识点是三角函数、平行四边形、反比例函数、三角形的面积等,要注意运用数形结合的思想,要注意(3)有三种情况,不要漏解.。
精选浙江省杭州市2016年中考数学模拟试卷(有详细答案)(word版)
浙江省杭州市中考数学试卷一、填空题(每题3分)1. =()A.2 B.3 C.4 D.52.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.13.下列选项中,如图所示的圆柱的三视图画法正确的是()A.B. C.D.4.如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃5.下列各式变形中,正确的是()A.x2•x3=x6B. =|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+6.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2 B.518﹣x=2×106 C.518﹣x=2 D.518+x=27.设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A.B.C.D.8.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O 于点E,若∠AOB=3∠ADB,则()A.DE=EB B. DE=EB C. DE=DO D.DE=OB9.已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=010.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③二、填空题(每题4分)11.tan60°= .12.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.13.若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是(写出一个即可).14.在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.15.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.16.已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是.三、解答题17.计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.18.某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?19.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED=∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且.(1)求证:△ADF ∽△ACG ;(2)若,求的值.20.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式h=20t ﹣5t 2(0≤t ≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t ;(3)若存在实数t 1,t 2(t 1≠t 2)当t=t 1或t 2时,足球距离地面的高度都为m (米),求m 的取值范围.21.如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DE 上,点A ,D ,G 在同一直线上,且AD=3,DE=1,连接AC ,CG ,AE ,并延长AE 交CG 于点H .(1)求sin ∠EAC 的值.(2)求线段AH 的长.22.已知函数y 1=ax 2+bx ,y 2=ax+b (ab ≠0).在同一平面直角坐标系中.(1)若函数y 1的图象过点(﹣1,0),函数y 2的图象过点(1,2),求a ,b 的值.(2)若函数y 2的图象经过y 1的顶点.①求证:2a+b=0;②当1<x <时,比较y 1,y 2的大小.23.在线段AB 的同侧作射线AM 和BN ,若∠MAB 与∠NBA 的平分线分别交射线BN ,AM 于点E ,F ,AE 和BF 交于点P .如图,点点同学发现当射线AM ,BN 交于点C ;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB .那么,当AM ∥BN 时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB 长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.浙江省杭州市中考数学试卷参考答案与试题解析一、填空题(每题3分)1. =()A.2 B.3 C.4 D.5【考点】算术平方根.【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.依此即可求解.【解答】解: =3.故选:B.2.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.1【考点】平行线分线段成比例.【分析】直接根据平行线分线段成比例定理求解.【解答】解:∵a∥b∥c,∴==.故选B.3.下列选项中,如图所示的圆柱的三视图画法正确的是()A.B. C.D.【考点】简单几何体的三视图.【分析】根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,可得答案.【解答】解:该圆柱体的主视图、俯视图均为矩形,左视图为圆,故选:A.4.如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃【考点】众数;条形统计图;中位数.【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;因图中是按从小到大的顺序排列的,最中间的环数是14℃、14℃,故中位数是14℃.故选:A.5.下列各式变形中,正确的是()A.x2•x3=x6B. =|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+【考点】二次根式的性质与化简;同底数幂的乘法;多项式乘多项式;分式的混合运算.【分析】直接利用二次根式的性质以及同底数幂的乘法运算法则和分式的混合运算法则分别化简求出答案.【解答】解:A、x2•x3=x5,故此选项错误;B、=|x|,正确;C、(x2﹣)÷x=x﹣,故此选项错误;D、x2﹣x+1=(x﹣)2+,故此选项错误;故选:B.6.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2 B.518﹣x=2×106 C.518﹣x=2 D.518+x=2【考点】由实际问题抽象出一元一次方程.【分析】设从甲煤场运煤x吨到乙煤场,根据题意列出方程解答即可.【解答】解:设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2,故选C.7.设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A.B.C.D.【考点】反比例函数的图象.【分析】根据反比例函数解析式以及z=,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.【解答】解:∵y=(k≠0,x>0),∴z===(k≠0,x>0).∵反比例函数y=(k≠0,x>0)的图象在第一象限,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选D.8.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O 于点E,若∠AOB=3∠ADB,则()A.DE=EB B. DE=EB C. DE=DO D.DE=OB【考点】圆周角定理.【分析】连接EO,只要证明∠D=∠EOD即可解决问题.【解答】解:连接EO.∵OB=OE,∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.9.已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【考点】等腰直角三角形;等腰三角形的性质.【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解【解答】解:如图,m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故选:C.10.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③【考点】因式分解的应用;整式的混合运算;二次函数的最值.【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.二、填空题(每题4分)11.tan60°= .【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值直接得出答案即可.【解答】解:tan60°的值为.故答案为:.12.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.【考点】概率公式;扇形统计图.【分析】先求出棕色所占的百分比,再根据概率公式列式计算即可得解.【解答】解:棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=.故答案为:.13.若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是﹣1 (写出一个即可).【考点】因式分解-运用公式法.【分析】令k=﹣1,使其能利用平方差公式分解即可.【解答】解:令k=﹣1,整式为x2﹣y2=(x+y)(x﹣y),故答案为:﹣1.14.在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为45°或105°.【考点】菱形的性质;等腰三角形的性质.【分析】如图当点E在BD右侧时,求出∠EBD,∠DBC即可解决问题,当点E在BD左侧时,求出∠DBE′即可解决问题.【解答】解:如图,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠A=∠C=30°,∠ABC=∠ADC=150°,∴∠DBA=∠DBC=75°,∵ED=EB,∠DEB=120°,∴∠EBD=∠EDB=30°,∴∠EBC=∠EBD+∠DBC=105°,当点E′在BD左侧时,∵∠DBE′=30°,∴∠E′BC=∠DBC﹣∠DBE′=45°,∴∠EBC=105°或45°,故答案为105°或45°.15.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为(﹣5,﹣3).【考点】关于原点对称的点的坐标;平行四边形的判定与性质.【分析】直接利用平行四边形的性质得出D点坐标,进而利用关于原点对称点的性质得出答案.【解答】解:如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴D点坐标为:(5,3),∴点D关于坐标原点的对称点的坐标为:(﹣5,﹣3).故答案为:(﹣5,﹣3).16.已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是<m<.【考点】分式方程的解;二元一次方程组的解;解一元一次不等式.【分析】先解方程组,求得x和y,再根据y>1和0<n<3,求得x的取值范围,最后根据=m,求得m的取值范围.【解答】解:解方程组,得∵y>1∴2n﹣1>1,即n>1又∵0<n<3∴1<n<3∵n=x﹣2∴1<x﹣2<3,即3<x<5∴<<∴<<又∵=m∴<m<故答案为:<m<三、解答题17.计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【考点】有理数的除法.【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【解答】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣+)=6÷(﹣)=6×(﹣6)=﹣36.18.某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?【考点】折线统计图.【分析】(1)根据每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图,可以求得第一季度的汽车销售量为2100辆时,该季的汽车产量;(2)首先判断圆圆的说法错误,然后说明原因即可解答本题.【解答】解:(1)由题意可得,2100÷70%=3000(辆),即该季的汽车产量是3000辆;(2)圆圆的说法不对,因为百分比仅能够表示所要考查的数据在总量中所占的比例,并不能反映总量的大小.19.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.【考点】相似三角形的判定与性质.【分析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到=,由此即可证明.【解答】(1)证明:∵∠AED=∠B ,∠DAE=∠DAE ,∴∠ADF=∠C ,∵=,∴△ADF ∽△ACG .(2)解:∵△ADF ∽△ACG ,∴=, 又∵=, ∴=, ∴=1.20.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式h=20t ﹣5t 2(0≤t ≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t ;(3)若存在实数t 1,t 2(t 1≠t 2)当t=t 1或t 2时,足球距离地面的高度都为m (米),求m 的取值范围.【考点】一元二次方程的应用;二次函数的应用.【分析】(1)将t=3代入解析式可得;(2)根据h=10可得关于t 的一元二次方程,解方程即可;(3)由题意可得方程20t ﹣t 2=m 的两个不相等的实数根,由根的判别式即可得m 的范围.【解答】解:(1)当t=3时,h=20t ﹣5t 2=20×3﹣5×9=15(米),∴当t=3时,足球距离地面的高度为15米;(2)∵h=10,∴20t ﹣5t 2=10,即t 2﹣4t+2=0,解得:t=2+或t=2﹣, 故经过2+或2﹣时,足球距离地面的高度为10米;(3)∵m ≥0,由题意得t 1,t 2是方程20t ﹣5t 2=m 的两个不相等的实数根,∴b 2﹣4ac=202﹣20m >0,∴m <20,故m 的取值范围是0≤m <20.21.如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DE上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.【考点】正方形的性质;全等三角形的判定与性质;解直角三角形.【分析】(1)作EM⊥AC于M,根据sin∠EAM=求出EM、AE即可解决问题.(2)先证明△GDC≌△EDA,得∠GCD=∠EAD,推出AH⊥GC,再根据S△AGC=•AG•DC=•GC•AH,即可解决问题.【解答】解:(1)作EM⊥AC于M.∵四边形ABCD是正方形,∴∠ADC=90°,AD=DC=3,∠DCA=45°,∴在RT△ADE中,∵∠ADE=90°,AD=3,DE=1,∴AE==,在RT△EMC中,∵∠EMC=90°,∠ECM=45°,EC=2,∴EM=CM=,∴在RT△AEM中,sin∠EAM===.(2)在△GDC和△EDA中,,∴△GDC≌△EDA,∴∠GCD=∠EAD,GC=AE=,∵∠EHC=∠EDA=90°,∴AH⊥GC,∵S△AGC=•AG•DC=•GC•AH,∴×4×3=××AH,∴AH=.22.已知函数y 1=ax 2+bx ,y 2=ax+b (ab ≠0).在同一平面直角坐标系中.(1)若函数y 1的图象过点(﹣1,0),函数y 2的图象过点(1,2),求a ,b 的值.(2)若函数y 2的图象经过y 1的顶点.①求证:2a+b=0;②当1<x <时,比较y 1,y 2的大小.【考点】二次函数综合题.【分析】(1)结合点的坐标利用待定系数法即可得出关于a 、b 的二元一次方程组,解方程组即可得出结论;(2)①将函数y 1的解析式配方,即可找出其顶点坐标,将顶点坐标代入函数y 2的解析式中,即可的出a 、b 的关系,再根据ab ≠0,整理变形后即可得出结论;②由①中的结论,用a 表示出b ,两函数解析式做差,即可得出y 1﹣y 2=a (x ﹣2)(x ﹣1),根据x 的取值范围可得出(x ﹣2)(x ﹣1)<0,分a >0或a <0两种情况考虑,即可得出结论.【解答】解:(1)由题意得:,解得:,故a=1,b=1.(2)①证明:∵y 1=ax 2+bx=a , ∴函数y 1的顶点为(﹣,﹣),∵函数y 2的图象经过y 1的顶点,∴﹣=a (﹣)+b ,即b=﹣,∵ab ≠0,∴﹣b=2a ,∴2a+b=0.②∵b=﹣2a ,∴y 1=ax 2﹣2ax=ax (x ﹣2),y 2=ax ﹣2a ,∴y 1﹣y 2=a (x ﹣2)(x ﹣1).∵1<x<,∴x﹣2<0,x﹣1>0,(x﹣2)(x﹣1)<0.当a>0时,a(x﹣2)(x﹣1)<0,y1<y2;当a<0时,a(x﹣1)(x﹣1)>0,y1>y2.23.在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF 交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB 长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.【考点】四边形综合题.【分析】(1)由角平分线和平行线整体求出∠MAB+∠NBA,从而得到∠APB=90°,最后用等边对等角,即可.(2)先根据条件求出AF,FG,求出∠FAG=60°,最后分两种情况讨论计算.【解答】解:(1)原命题不成立,新结论为:∠APB=90°,AF+BE=2AB(或AF=BE=AB),理由:∵AM∥BN,∴∠MAB+∠NBA=180°,∵AE,BF分别平分∠MAB,NBA,∴∠EAB=∠MAB,∠FBA=∠NBA,∴∠EAB+∠FBA=(∠MAB+∠NBA)=90°,∴∠APB=90°,∵AE平分∠MAB,∴∠MAE=∠BAE,∵AM∥BN,∴∠MAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,.... 同理:AF=AB,∴AF=+BE=2AB(或AF=BE=AB);(2)如图1,过点F作FG⊥AB于G,∵AF=BE,AF∥BE,∴四边形ABEF是平行四边形,∵AF+BE=16,∴AB=AF=BE=8,∵32=8×FG,∴FG=4,在Rt△FAG中,AF=8,∴∠FAG=60°,当点G在线段AB上时,∠FAB=60°,当点G在线段BA延长线时,∠FAB=120°,①如图2,当∠FAB=60°时,∠PAB=30°,∴PB=4,PA=4,∵BQ=5,∠BPA=90°,∴PQ=3,∴AQ=4﹣3或AQ=4+3.②如图3,....当∠FAB=120°时,∠PAB=60°,∠FBG=30°,∴PB=4,∵PB=4>5,∴线段AE上不存在符合条件的点Q,∴当∠FAB=60°时,AQ=4﹣3或4+3.。
杭州市2016届中考数学模拟试卷含答案解析
2016年浙江省杭州市中考数学模拟试卷一.仔细选一选(本题有10小题,每题3分,共30分)1.|﹣|=()A.+B.﹣C.﹣﹣D.﹣2.已知线段QP,AP=AQ,以QP为直径作圆,点A与此圆的位置关系是()A.点A在圆内B.点A在圆上C.点A在圆外D.不能确定3.如图,平面上有两个全等的正八边形,∠BAC为()A.60°B.45°C.30°D.72°4.下列运算中,正确的是()A.5m﹣m=4 B.(m2)4=m8C.﹣(m﹣n)=m+n D.m2÷m2=m5.甲、乙两人连续6年调查某地养鱼业的情况,提供了两方面的信息图(如图).甲调查表明:每个鱼池平均产量从第1年的1万条上升到第6年的2万条;乙调查表明:该地养鱼池的个数由第1年的30个减少到第6年的10个.现给出下列四个判断:①该地第3年养鱼池产鱼数量为1.4万条;②该地第2年养鱼池产鱼的数量低于第3年养鱼池产鱼的数量;③该地这6年养鱼池产鱼的数量逐年减少;④这6年中,第6年该地养鱼池产鱼的数量最少.根据甲、乙两人提供的信息,可知其中正确的判断有()A.3个B.2个C.1个D.0个6.如图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是()A.B.C.D.7.一只盒子中有红球m个,白球10个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m与n的关系是()A.m=2,n=3 B.m=n=10 C.m+n=5 D.m+n=108.正方形网格中,△ABC如图放置,则sin∠BAC=()A. B. C. D.9.二次函数y=ax2+bx+c的图象如图所示,OA=OC,则下列结论:①abc<0;②4ac<b2;③ac﹣b=﹣1;④2a+b<0;⑤OA•OB=﹣;⑥当x≥1时,y随x的增大而减小.其中正确的有()A.2个B.3个C.4个D.5个10.如图,已知AB为圆的直径,C为半圆上一点,D为半圆的中点,AH⊥CD,垂足为H,HM平分∠AHC,HM交AB于M.若AC=3,BC=1,则MH长为()A.1 B.1.5 C.0.5 D.0.7二、认真填一填(本题有6个小题,每小题4分,共24分)11.如图所示,在⊙O中,∠ACB=35°,则∠AOB=度.12.埃博拉病毒是含有约19000个碱基对的单链RNA,用科学记数法表示19000为.13.当﹣7≤x≤a时,二次函数y=﹣(x+3)2+5恰好有最大值3,则a=.14.如图,点D、E分别在△ABC的边上AB、AC上,且∠ADC=∠ACB,若DE=4,AC=7,BC=8,AB=10,则AE的长为.15.如图,矩形纸片ABCD,AD=4,以A为圆心画弧交于BC中点E,则图中围成阴影部分图形的周长为.(其中π取3,≈1.7)16.设直线y=x+2与抛物线y=﹣x2﹣x+4交于点A,点Q,若在x轴上方的抛物线上只存在相异的两点M、N,S△MAQ=S△NAQ=S,则S的取值范围.三、全面答一答(本题有7小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.先化简,再求值(﹣)÷,其中x满足不等式组.18.如图,平行四边形ABCD中,AC=6,BD=8,点P从点A出发以每秒1cm的速度沿射线AC移动,点Q从点C出发以每秒1cm的速度沿射线CA移动.(1)经过几秒,以P,Q,B,D为顶点的四边形为矩形?(2)若BC⊥AC垂足为C,求(1)中矩形边BQ的长.19.我校社团活动中其中4个社团报名情况(2015•杭州模拟)如图,在平面直角坐标系中,△OAB 的三个顶点的坐标分别为A(6,3),B(0,5).(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)猜想:∠OAB的度数为多少?并说明理由.21.如图,抛物线y=x2﹣x﹣4过平行四边形CEBD的三点,过DC中点F作直线m平行x轴,交抛物线左侧于点G.(1)G点坐标;(2)x轴上一点P,使得G,F,D,P能成为平行四边形,求P点坐标.22.已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.23.如图,已知抛物线与x轴交于A(﹣3,0),B(4,0)两点,与y轴交于C(0,4)点.(1)求该抛物线的表达式;(2)若点E在x轴上,点P(x,y)是抛物线在第一象限上的点,△APC≌△APE,求E,P两点坐标;(3)在抛物线对称轴上是否存在点M,使得∠AMC是锐角?若存在,求出点M的纵坐标n的取值范围;若不存在,请说明理由.2016年浙江省杭州市中考数学模拟试卷参考答案与试题解析一.仔细选一选(本题有10小题,每题3分,共30分)1.|﹣|=()A.+B.﹣C.﹣﹣D.﹣【考点】实数的性质.【分析】根据差的绝对值是大数减小数,可得答案.【解答】解:原式=﹣,故选:D.【点评】本题考查了实数的性质,差的绝对值是大数减小数.2.已知线段QP,AP=AQ,以QP为直径作圆,点A与此圆的位置关系是()A.点A在圆内B.点A在圆上C.点A在圆外D.不能确定【考点】点与圆的位置关系.【分析】设以QP为直径的圆为⊙O,要判断点A与此圆的位置关系,只需比较OA与⊙O的半径的大小即可.【解答】解:设以QP为直径的圆为⊙O,则⊙O的半径为QP,如果OA>QP,那么点A在圆O外;如果OA=QP,那么点A在圆O上;如果OA<QP,那么点A在圆O内;∵题目没有告诉OA与QP的大小关系,∴以上三种情况都有可能.故选D.【点评】本题考查了点与圆的位置关系.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.3.如图,平面上有两个全等的正八边形,∠BAC为()A.60°B.45°C.30°D.72°【考点】多边形内角与外角.【分析】先算出正八边形的内角度数,再由平面上有两个全等的正八边形,所以AB=BD=CD=AC,所以四边形ABCD为菱形,所以AB∥CD,所以∠BAC+∠C=180°,即可解答.【解答】解:如图,八边形的内角的度数为:(8﹣2)×180°÷8=135°,∵平面上有两个全等的正八边形,∴AB=BD=CD=AC,∴四边形ABCD为菱形,∴AB∥CD,∴∠BAC+∠C=180°,∴∠BAC=180°﹣∠C=1800°﹣135°=45°.故选B.【点评】本题考查全等正多边形的性质以及菱形的判定与性质.此题难度不大,注意数形结合思想的应用.4.下列运算中,正确的是()A.5m﹣m=4 B.(m2)4=m8C.﹣(m﹣n)=m+n D.m2÷m2=m【考点】同底数幂的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方.【分析】根据合并同类项、幂的乘方和同底数幂的除法计算判断即可.【解答】解:A、5m﹣m=4m,错误;B、(m2)4=m8,正确;C、﹣(m﹣n)=﹣m+n,错误;D、m2÷m2=1,错误;故选B.【点评】此题考查合并同类项,幂的乘方,以及同底数幂的除法,熟练掌握运算法则是解本题的关键.5.甲、乙两人连续6年调查某地养鱼业的情况,提供了两方面的信息图(如图).甲调查表明:每个鱼池平均产量从第1年的1万条上升到第6年的2万条;乙调查表明:该地养鱼池的个数由第1年的30个减少到第6年的10个.现给出下列四个判断:①该地第3年养鱼池产鱼数量为1.4万条;②该地第2年养鱼池产鱼的数量低于第3年养鱼池产鱼的数量;③该地这6年养鱼池产鱼的数量逐年减少;④这6年中,第6年该地养鱼池产鱼的数量最少.根据甲、乙两人提供的信息,可知其中正确的判断有()A.3个B.2个C.1个D.0个【考点】折线统计图.【分析】根据折线统计图所给出的数据,计算出各年份的产鱼量,再分别对每一项进行分析即可得出答案.【解答】解:根据题意得:①该地第3年养鱼池产鱼数量为1.4×22=30.8万条,故本选项错误;②该地第2年养鱼池产鱼的数量是1.2×26=31.2万条,第3年养鱼池产鱼的数量是1.4×22=30.8万条,则该地第2年养鱼池产鱼的数量高于第3年养鱼池产鱼的数量,故本选项错误;③该地第1年养鱼池产鱼数量为1×30=30万条,第2年养鱼池产鱼数量为1.2×22=31.2万条,则该地这6年养鱼池产鱼的数量逐年减少是错误的;④这6年中,第6年该地养鱼池产鱼的数量是2×10=20万条,最少,正确;故选C.【点评】此题考查了折线统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图表示的是事物的变化情况.6.如图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.【解答】解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图有两列:左边一列三个,右边一列1个,所以主视图是:.故选:A.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.7.一只盒子中有红球m个,白球10个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m与n的关系是()A.m=2,n=3 B.m=n=10 C.m+n=5 D.m+n=10【考点】概率公式.【专题】应用题.【分析】取得白球的概率与不是白球的概率相同,球的总数目是相同的,那么白球数与不是白球的球数相等.【解答】解:取得是白球的概率与不是白球的概率相同,即白球数目与不是白球的数目相同,而已知红球m个,白球10个,黑球n个,必有m+n=10.故选D.【点评】用到的知识点为:在总数相同的情况下,概率相同的部分的具体数目相等.8.正方形网格中,△ABC如图放置,则sin∠BAC=()A. B. C. D.【考点】勾股定理;锐角三角函数的定义.【专题】网格型.【分析】过点C作CD⊥AB于点D,先根据勾股定理求出AB及AC的长,利用面积法求出CD的长,根据锐角三角函数的定义即可得出结论.【解答】解:过点C作CD⊥AB于点D,由图可知,AC=AB==.∵S△ABC=AB•CD=וCD=3×4﹣×2×3﹣×2×3,∴CD=,∴sin∠BAC===.故选D.【点评】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.二次函数y=ax2+bx+c的图象如图所示,OA=OC,则下列结论:①abc<0;②4ac<b2;③ac﹣b=﹣1;④2a+b<0;⑤OA•OB=﹣;⑥当x≥1时,y随x的增大而减小.其中正确的有()A.2个B.3个C.4个D.5个【考点】二次函数图象与系数的关系.【分析】根据函数图象可以得到以下信息:a>0,b<0,c<0,再结合函数图象判断各结论.【解答】解:由函数图象可以得到以下信息:a>0,b<0,c<0,则①abc<0,错误;②抛物线与x轴有两个交点,b2﹣4ac>0,正确;③∵OA=OC,∴A点横坐标等于c,则ac2+bc+c=0,则ac+b+1=0,ac+b=﹣1故ac﹣b=﹣1,错误;④对称轴x=﹣>1,2a+b<0,正确;⑤OA•OB=|x A•x B|=﹣,故正确;⑥∵对称轴x=﹣>1,∴当x≥1时,y随x的增大而减小,错误;故选B.【点评】本题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=﹣判断符号.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2﹣4ac由抛物线与x轴交点的个数确定:2个交点,b2﹣4ac>0;1个交点,b2﹣4ac=0;没有交点,b2﹣4ac<0.10.如图,已知AB为圆的直径,C为半圆上一点,D为半圆的中点,AH⊥CD,垂足为H,HM平分∠AHC,HM交AB于M.若AC=3,BC=1,则MH长为()A.1 B.1.5 C.0.5 D.0.7【考点】垂径定理;三角形中位线定理;圆周角定理.【分析】延长HM交AC于K,首先证明△AHC是等腰直角三角形,再证明点M是圆心,求出HK、MK即可解决问题.【解答】解:延长HM交AC于K.∵AB是直径,∴∠ACB=90°∵=,∴∠ACD=∠BCD=45°,∵AH⊥CD,∴∠AHC=90°,∴∠HAC=∠HCA=45°,∴HA=HC,∵HM平分∠AHC,∴HK⊥AC,AK=KC∴点M就是圆心,∵AK=KC,AM=MB,∴KM=BC=,在RT△ACH中,∵AC=3,AK=KC,∠AHC=90°,∴HK=AC=,∴HM=HK﹣KM=﹣=1.故选A.【点评】本题考查垂径定理、三角形中位线定理、圆周角定理等知识,解题的关键是证明点M是圆心,属于中考常考题型.二、认真填一填(本题有6个小题,每小题4分,共24分)11.如图所示,在⊙O中,∠ACB=35°,则∠AOB=70度.【考点】圆周角定理.【分析】欲求∠AOB,又已知一圆周角,可利用圆周角与圆心角的关系求解.【解答】解:∵∠ACB、∠AOB是同弧所对的圆周角和圆心角,∴∠AOB=2∠ACB=70°.【点评】此题主要考查的是圆周角定理:同弧所对的圆周角是圆心角的一半.12.埃博拉病毒是含有约19000个碱基对的单链RNA,用科学记数法表示19000为 1.9×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将19000用科学记数法表示为:1.9×104.故答案为:1.9×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.当﹣7≤x≤a时,二次函数y=﹣(x+3)2+5恰好有最大值3,则a=﹣5.【考点】二次函数的最值.【分析】根据抛物线解析式得到顶点坐标(﹣3,5);然后由抛物线的增减性进行解答.【解答】解:∵y=﹣(x+3)2+5,∴该抛物线的开口方向向下,且顶点坐标是(﹣3,5).∴当x<﹣3时,y随x的增大而增大,∴当x=a时,二次函数y=﹣(x+3)2+5恰好有最大值3,把y=3代入函数解析式得到3=﹣(x+3)2+5,解得x1=﹣5,x2=﹣1.∴a=﹣5.故答案是:﹣5.【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.14.如图,点D、E分别在△ABC的边上AB、AC上,且∠ADC=∠ACB,若DE=4,AC=7,BC=8,AB=10,则AE的长为5.【考点】相似三角形的判定与性质.【分析】根据已知条件可知△ADE∽△ACB,再通过两三角形的相似比可求出AE的长.【解答】解:∵∠ADE=∠ACB,∠BAC=∠EAD,∴△AED∽△ABC,∴=,又∵DE=4,BC=8,AB=10,∴AE=5.故答案为:5.【点评】本题主要考查了相似三角形的判定和性质,熟记定理是解题的关键.15.如图,矩形纸片ABCD,AD=4,以A为圆心画弧交于BC中点E,则图中围成阴影部分图形的周长为9.4.(其中π取3,≈1.7)【考点】弧长的计算;矩形的性质.【分析】根据BE=CE,求得∠BAE=30°,再根据弧长公式l=求得弧DE的长,再计算即可.【解答】解:∵四边形ABCD为矩形,∴AD=BC,∵AD=4,∴BC=4,∵BE=CE,∴BE=2,∴∠BAE=30°,∴∠DAE=60°,∴l===π,∴阴影部分图形的周长=π+4+4=π+8=×1.7+8=9.4.故答案为9.4.【点评】本题考查了弧长公式的计算以及矩形的性质,熟练运用弧长公式,掌握直角三角形的性质:30°所对的直角边是斜边的一半是解题的关键.16.设直线y=x+2与抛物线y=﹣x2﹣x+4交于点A,点Q,若在x轴上方的抛物线上只存在相异的两点M、N,S△MAQ=S△NAQ=S,则S的取值范围0<S<.【考点】二次函数的性质.【分析】显然,S>0,要求S的上限值,作EF∥AQ,当EF与抛物线只有一个公共点G时,S的上限值为S△GAQ.根据直线平移的规律可设直线EF的解析式是y=x+a,由直线与抛物线组成的方程组只有一个解,利用判别式为0求出a的值.再求出两直线之间的距离,进而求解即可.【解答】解:作EF∥AQ,使EF与抛物线只有一个公共点G.设EF的解析式是y=x+a,把y=x+a代入抛物线的解析式得:x+a=﹣x2﹣x+4,整理,得x2+3x+2a﹣8=0,△=9﹣4(2a﹣8)=9﹣8a+32=41﹣8a=0,解得:a=.则EF的解析式是:y=x+.作FH⊥AQ于H,则FH为直线y=x+2与y=x+之间的距离.∵直线AB的解析式为y=x+2,EF的解析式是y=x+,∴A(﹣4,0),B(0,2),F(0,),∴AB==2,BF=﹣2=,∴sin∠OBA===,∴FH=BF•sin∠HBF=×=.由,解得,,∴A(﹣4,0),Q(1,),∴AQ==,∴S△GAQ=AQ•FH=××=,∴S的取值范围是0<S<,故答案为0<S<.【点评】本题主要考查了二次函数的性质,直线平移的规律,利用待定系数法求一次函数的解析式,函数图象交点的求法,锐角三角函数的定义,三角形的面积等知识,有一定难度.准确作出辅助线求出EF的解析式及FH的长是解题的关键.三、全面答一答(本题有7小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.先化简,再求值(﹣)÷,其中x满足不等式组.【考点】分式的化简求值;解一元一次不等式组.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出不等式组的解集确定出x的值,代入计算即可求出值.【解答】解:原式=[﹣]•x(x﹣1)=•x(x﹣1)=﹣x﹣1,解不等式组,由①得x<2;由②得x>﹣3,∴﹣3<x<2,当x=﹣1时,原式=0.【点评】此题考查了分式的化简求值,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.18.如图,平行四边形ABCD中,AC=6,BD=8,点P从点A出发以每秒1cm的速度沿射线AC移动,点Q从点C出发以每秒1cm的速度沿射线CA移动.(1)经过几秒,以P,Q,B,D为顶点的四边形为矩形?(2)若BC⊥AC垂足为C,求(1)中矩形边BQ的长.【考点】矩形的判定与性质;平行四边形的性质.【专题】动点型.【分析】(1)由四边形ABCD是平行四边形,AC=6,得到CP=AQ=1,PQ=BD=8,由OB=DO,OQ=OP,证得四边形BPDQ为平形四边形,根据对角线相等,证得四边形BPDQ为矩形;(2)根据直角三角形的性质、勾股定理求得结论.【解答】解:(1)当时间t=7秒时,四边形BPDQ为矩形.理由如下:当t=7秒时,PA=QC=7,∵AC=6,∴CP=AQ=1∴PQ=BD=8∵四边形ABCD为平行四边形,BD=8∴AO=CO=3∴BO=DO=4∴OQ=OP=4∴四边形BPDQ为平形四边形,∵PQ=BD=8∴四边形BPDQ为矩形,(2)由(1)得BO=4,CQ=7,∵BC⊥AC∴∠BCA=90°BC2+CQ2=BQ2∴BQ=.【点评】此题考查了矩形的判定和性质,平行四边形的判定和性质,勾股定理得应用,动点问题等知识点.19.我校社团活动中其中4个社团报名情况(2015•杭州模拟)如图,在平面直角坐标系中,△OAB 的三个顶点的坐标分别为A(6,3),B(0,5).(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)猜想:∠OAB的度数为多少?并说明理由.【考点】作图-旋转变换.【分析】(1)根据旋转的性质得出对应点位置,进而得出答案;(2)根据中心对称的性质得出对应点位置,进而得出答案;(3)∠OAB=45°,根据A1(﹣3,6),A(6,3),可根据勾股定理求出OA=OA1=3,又∠AOA1=90°,易证△A1AO为等腰直角三角形,得∠OAB=45°.【解答】解:(1)如图所示,△OA1B1即为所求;(2)如图所示△OA2B2即为所求;(3)∠OAB=45°,理由:∵A1(﹣3,6),A(6,3)∴OA=OA1=3,又∵∠AOA1=90°,∴△A1AO为等腰直角三角形,∴∠OAB=45°.【点评】此题主要考查了图形的旋转、中心对称以及勾股定理,得出旋转后对应点位置是解题关键.21.如图,抛物线y=x2﹣x﹣4过平行四边形CEBD的三点,过DC中点F作直线m平行x轴,交抛物线左侧于点G.(1)G点坐标;(2)x轴上一点P,使得G,F,D,P能成为平行四边形,求P点坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)首先确定点G的纵坐标,代入抛物线求出横坐标,继而可得点G的坐标;(2)求出FG的长度,分两种情况:①当GD为边时,求出点P的坐标;②当GD是对角线时,求出P点坐标.【解答】解:(1)将y=﹣2代入y=x2﹣x﹣4中,解得:x=1±,则G点坐标为:(1﹣,﹣2).(2)∵C(0,﹣4),D(2,0),F为DC中点,∴F(1,﹣2),∵G(1﹣,﹣2),∴FG=,∵G,F,D,P为平行四边形,∴GF∥DP且GF=DP,当GD是边时,P1(2﹣,0);当GD是对角线时,P2(2+,0);综上可得:使得G,F,D,P能成为平行四边形的P点坐标为(2﹣,0)或(2+,0).【点评】本题考查了二次函数的综合,难点在第二问,解题的关键是分类讨论,避免漏解,注意数形结合思想的应用,难度一般.22.已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为600;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.【考点】圆周角定理;等边三角形的判定与性质.【分析】(1)连结OD,OC,BD,根据已知得到△DOC为等边三角形,根据直径所对的圆周角是直角,求出∠E的度数;(2)同理解答(2)(3).【解答】解:(1)如图1,连结OD,OC,BD,∵OD=OC=CD=2∴△DOC为等边三角形,∴∠DOC=60°∴∠DBC=30°∴∠EBD=30°∵AB为直径,∴∠ADB=90°∴∠E=90°﹣300=600∠E的度数为600;(2)①如图2,直线AD,CB交于点E,连结OD,OC,AC.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠DAC=30°,∴∠EBD=30°,∵AB为直径,∴∠ACB=90°,∴∠E=90°﹣30°=60°,(3)如图3,连结OD,OC,∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠CBD=30°,∴∠ADB=90°,∴∠BED=60°,∴∠AEC=60°.【点评】本题考查的是圆周角定理及其推论、等边三角形的性质,解题的关键是正确作出辅助线,构造直角三角形,利用直径所对的圆周角是直角进行解答.23.如图,已知抛物线与x轴交于A(﹣3,0),B(4,0)两点,与y轴交于C(0,4)点.(1)求该抛物线的表达式;(2)若点E在x轴上,点P(x,y)是抛物线在第一象限上的点,△APC≌△APE,求E,P两点坐标;(3)在抛物线对称轴上是否存在点M,使得∠AMC是锐角?若存在,求出点M的纵坐标n的取值范围;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)已知抛物线与x轴的两个交点坐标,故设抛物线解析式为两点式:y=a(x+3)(x﹣4)(a≠0).然后把点C的坐标代入,列出关于系数a的方程,通过解方程来求a的值;(2)连接AP交OC于F点,设F(0,t),连接EF,由△APC≌△APE,得出AE=AC,得出OE 的长即可得出点E坐标,由对称性得EF=CF,利用勾股定理求出t,确定点F的坐标,可求得直线AF的表达式,与抛物线联立得出点P的坐标.(3)作辅助线以AC为直径画⊙N,交对称轴l于S,T,作NQ⊥l于Q,NQ交y轴于J,连接NS,易得点N的坐标,可求出NQ,NS的长,由勾股定理得SQ,即可得到S,T的坐标,由圆的知识可得出点M在S,T之间时∠AMC是钝角.所以得出点S、T的纵坐标n的取值范围.【解答】解:(1)如图1,设y=a(x+3)(x﹣4)(a≠0).∵C(0,4),∴a=,∴y=(x+3)(x﹣4)(也可写作y=x2x+4);(2)如图2,连接AP交OC于F点,设F(0,t),连接EF,由题意可得AC=5,∵△APC≌△APE,∴AE=AC=5,AP平分∠CAE.∴OE=5﹣3=2,点E坐标为(2,0).∵AP平分∠CAE,∴由对称性得EF=CF=4﹣t.在Rt△EOF中,OE2+OF2=EF2,∴22+t2=(4﹣t)2,解得t=.∴点F坐标为F(0,).设直线AF的表达式y=kx+(k≠0),将点A(﹣3,0)代入,得0=﹣3k+,解得k=.则直线AF的解析式为:y=x+.∴依题意得到:,解得(舍去)或,∴P(,).综上所述,点P、E的坐标分别是:(,),(2,0).(3)如图3,以AC为直径画⊙N,交对称轴l于S,T,作NQ⊥l于Q,NQ交y轴于J,连接NS,∵C(0,4),点A坐标为(﹣3,0),N为AC的中点,∴N为(,2).∵抛物线的对称轴方程是直线x=1.∴NQ=2,NS=;在Rt△SNQ中由勾股定理得SQ=,∴S,T的坐标分别为(1,)和(1,),利用点和圆的位置关系(圆外角<小于圆周角=90°)∴n>,n<.∵n=时A,C,S三点共线.∴n<或n>且n≠成立.【点评】本题主要考查了二次函数与方程、几何知识的综合应用,涉及全等三角形的性质,一次函数解析式及圆的有关知识.解题的关键是正确作出辅助线,灵活运用二次函数与方程、几何知识的结合.。
2016年浙江省杭州市西湖区数学中考二模试卷及参考答案PDF
A.1 个 B.2 个 C.3 个 D.4 个
二、填空题(共 6 小题,每小题 4 分,满分 24 分) 11. (4 分)若式子 在实数范围内有意义,则 x 的取值范围是 . .
12. (4 分)分解因式:ax2﹣4ax+4a=
Байду номын сангаас
13. (4 分)已知圆锥的侧面积为 20πcm2,母线长为 5cm,则圆锥底面半径为 cm. 14. (4 分)如图,以 AB 为直径的⊙O 与弦 CD 相交于点 E,且 AC=2,AE= CE=1.则弧 BD 的长是 . ,
2016 年浙江省杭州市西湖区中考数学二模试卷
一、仔细选一选,本题有 10 个小题,每题 3 分,共 30 分 1. (3 分)在实数 π、 、 A.1 B.2 C.3 D.4 ) 、tan60°中,无理数的个数为( )
2. (3 分)对于二次函数 y=(x﹣1)2+2 的图象,下列说法正确的是( A.开口向下 B.顶点坐标是(1,2)
C.对称轴是 x=﹣1 D.与 x 轴有两个交点 3. (3 分)五箱苹果的质量分别为(单位:千克) :18,20,21,22,19.则这 五箱苹果质量的平均数和中位数分别为( )
A.19 和 20 B.20 和 19 C.20 和 20 D.20 和 21 4. (3 分)若 x=﹣1 是关于 x 的一元二次方程 x2+3x+m+1=0 的一个解,则 m 的值 为( ) C.1 D. )
三、全面答一答,本题有 7 个小题,共 66 分 17. (6 分)计算 (1)2sin45°﹣ + +| |
(2) (2a+3b) (3a﹣2b) 18. (8 分)如图,在 Rt△ABC 中,∠ACB=90°,CD 是 AB 边上的中线,DE⊥AB 于点 D,交 AC 于点 E. (1)若 BC=3,AC=4,求 CD 的长; (2)求证:∠1=∠2.
浙江省杭州市中考数学二模考试试卷
浙江省杭州市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2016·上海) 如果a与3互为倒数,那么a是()A . ﹣3B . 3C . ﹣D .2. (2分)(2017·七里河模拟) 如图,1,2,3,4,T是五个完全相同的正方体,将两部分构成一个新的几何体得到其正视图,则应将几何体T放在()A . 几何体1的上方B . 几何体2的左方C . 几何体3的上方D . 几何体4的上方3. (2分)近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为()A . 20.3×104人B . 2.03×105人C . 2.03×104人D . 2.03×103人4. (2分) (2018八下·道里期末) 三角形两边的长是2和5,第三边的长是方程x2﹣12x+35=0的根,则第三边的长为()A . 2B . 5C . 7D . 5或75. (2分)下面的图形中,是中心对称图形的是().A .B .C .D .6. (2分)下列计算正确的是()A . x3•x5=x15B . x4÷x=x3C . 3x2•4x2=12x2D . (x5)2=x77. (2分)(2017·丹江口模拟) 在2017年十堰市初中体育中考中,随意抽取某校5位同学跳远的记录分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A . 平均数为160B . 中位数为158C . 众数为158D . 方差为20.38. (2分)如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()A . 60°B . 120°C . 60°或120°D . 30°或150°9. (2分)将抛物线y=3x2经过怎样的平移可得到抛物线y=3(x-1)2+2()A . 先向左平移1个单位,再向上平移2个单位B . 先向左平移1个单位,再向下平移2个单位C . 先向右平移1个单位,再向上平移2个单位D . 先向右平移1个单位,再向下平移2个单位10. (2分) (2011八下·新昌竞赛) 如图,在 ABCD中,BC=7厘米,CD=5厘米,∠D=50°,BE平分∠ABC,下列结论中错误的是()A . ∠C=130°B . ∠BED=130°C . AE=5厘米D . ED=2厘米11. (2分)二次函数的图象如图所示.当y>0时,自变量x的取值范围是()A . -1<x<3B . x<-1C . x>3D . x<-1或x>312. (2分)如图,在△ABC中,AB=AC,点D在边AB上,点E在线段CD上,且∠BEC=∠AC B,BE的延长线与边AC相交于点F,则与∠BDC相等的角是()A . ∠DBEB . ∠CBEC . ∠BCED . ∠A二、填空题 (共6题;共6分)13. (1分)(2013·内江) 若m2﹣n2=6,且m﹣n=2,则m+n=________.14. (1分)布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是________.15. (1分)(2018·汕头模拟) 若 +(b+4)2=0,那么点(a,b)关于原点对称点的坐标是________.16. (1分)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,﹣3)AB为半圆直径,半圆圆心M(1,0),半径为2,则经过点D的“蛋圆”的切线的解析式为________ .17. (1分)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若CD=2EF=4,BC=,则∠C等于________°.18. (1分) (2016九上·庆云期中) 如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为________cm.三、综合题 (共7题;共46分)19. (10分) (2019八上·长春月考) 计算:20. (10分)(2020·兰州模拟) 2018年9月9日兰州市秦王川国家湿地公园在万众瞩目中盛大开园,公园被分为六大板块,分别为:亲水运动公园、西北戴维营、私人农场区、湿地生态培育区、丝路古镇、湿地科普活动区(分别记为A,B,C,D,E,F),为了了解游客“最喜欢板块”的情况,随机对部分游客进行问卷调查,规定每个人从这六个板块中选择一个,并将调查结果绘制成如下两幅不完整的统计图.根据以上信息回答下列问题:(1)这次调查的样本容量是________,a=________;(2)扇形统计图中“C”对应的圆心角为________;(3)补全条形统计图;(4)若2019年预计有100000人进园游玩,请估计最喜欢板块为“B”的游客人数.21. (2分) (2019八下·杜尔伯特期末) 我县“果菜大王”王大炮收货番茄20吨,青椒12吨.现计划租用甲、乙两种货车共8辆将这批果菜全部运往外地销售,已知一辆甲种货车可装番茄4吨和青椒1吨,一辆乙种货车可装番茄和青椒各2吨.(1)王灿有几种方案安排甲、乙两种货车可一次性地将果菜运到销售地?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王大炮应选择哪种方案,使运输费最少?最少运费是多少?22. (2分)(2020·温岭模拟) 如图,反比例函数y= (k≠0)的图象与一次函数y= x-1图象相交于B,C两点,其中点C坐标为(m,1),BC交y轴于D点,点A在第二象限,∠ABC=90°,AC∥x轴,AC交y轴于E点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年浙江省杭州市西湖区中考数学二模试卷一、仔细选一选,本题有10个小题,每题3分,共30分1.(3分)在实数π、、、tan60°中,无理数的个数为()A.1 B.2 C.3 D.42.(3分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 D.与x轴有两个交点3.(3分)五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数和中位数分别为()A.19和20 B.20和19 C.20和20 D.20和214.(3分)若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为()A.﹣1 B.0 C.1 D.5.(3分)已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°6.(3分)不等式组的整数解共有()个.A.4 B.3 C.2 D.17.(3分)在平面直角坐标系中,将直线x=0绕原点顺时针旋转45°,再向上平移1个单位后得到直线a,则直线a对应的函数表达式为()A.y=x B.y=x﹣1 C.y=x+1 D.y=﹣x+18.(3分)小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为()A.+=B.﹣=C.+10=D.﹣10=9.(3分)以下说法:①若直角三角形的两边长为3与4,则第三次边长是5;②两边及其第三边上的中线对应相等的两个三角形全等;③长度等于半径的弦所对的圆周角为30°④反比例函数y=﹣,当>0时y随x的增大而增大,正确的有()A.①②B.②③C.②④D.③④10.(3分)如图1,点E为矩形ABCD边AD上一点,点P点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s.设P,Q出发t秒时,△BPQ的面积为y cm2,已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分).则下列结论:①AE=6cm;②当0<t≤10时,y=t2;③直线NH的解析式为y=﹣5t+110;④若△ABE与△QBP相似,则t=秒,其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(共6小题,每小题4分,满分24分)11.(4分)若式子在实数范围内有意义,则x的取值范围是.12.(4分)分解因式:ax2﹣4ax+4a=.13.(4分)已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为cm.14.(4分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是.15.(4分)如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为.16.(4分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(27,9)阴影三角形部分的面积从左向右依次为S1、S2、S3…S n,则第4个正方形的边长是S n的值为三、全面答一答,本题有7个小题,共66分17.(6分)计算(1)2sin45°﹣++||(2)(2a+3b)(3a﹣2b)18.(8分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,DE⊥AB 于点D,交AC于点E.(1)若BC=3,AC=4,求CD的长;(2)求证:∠1=∠2.19.(8分)某校举行春季运动会,需要在初三年级选取1或2名同学作为志愿者,初三(5)班的小熊、小乐和初三(6)班的小矛、小管4名同学报名参加.(1)若从这4名同学中随机选取1名志愿者,则被选中的这名同学恰好是初三(5)班同学的概率是;(2)若从这4名同学中随机选取2名志愿者,请用列举法(画树状图或列表)求这2名同学恰好都是初三(6)班同学的概率.20.(10分)如图,在以点O为原点的直角坐标系中,一次函数y=﹣x+1的图象与x轴交于A,与y轴交于点B,求:(1)△AOB面积=;(2)△AOB内切圆半径=;(3)点C在第二象限内且为直线AB上一点,OC=,反比例函数y=的图象经过点C,求k的值.21.(10分)如图,平面直角坐标系中,矩形OABC的一边OA在x轴上,点B 的坐标为(4,3),双曲线y=(x>0)交线段BC于点P(不与端点B、C重合),交线段AB于点Q(1)若P为边BC的中点,求双曲线的函数表达式及点Q的坐标;(2)求k的取值范围;(3)连接PQ,AC,判断:PQ∥AC是否总成立?并说明理由.22.(12分)如图,在平面直角坐标系xOy中,点m在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C,D两点,且C为弧AE的中点,AE交y轴于G点,若点A的坐标为(﹣2,0),AE=8,(1)求证:AE=CD;(2)求点C坐标和⊙M直径AB的长;(3)求OG的长.23.(12分)在平面直角坐标系xOy中,抛物线C:y=mx2+4x+1.(1)当抛物线C经过点A(﹣5,6)时,求抛物线的表达式及顶点坐标;(2)若抛物线C:y=mx2+4x+1(m>0)与x轴的交点的横坐标都在﹣1和0之间(不包括﹣1和0),结合函数的图象,求m的取值范围;(3)参考(2)小问思考问题的方法解决以下问题:关于x的方程x﹣4=在0<x<4范围内有两个解,求a的取值范围.2016年浙江省杭州市西湖区中考数学二模试卷参考答案与试题解析一、仔细选一选,本题有10个小题,每题3分,共30分1.(3分)在实数π、、、tan60°中,无理数的个数为()A.1 B.2 C.3 D.4【解答】解:∵tan60°=,∴在实数π、、、tan60°中,无理数有:π,,tan60°.故选:C.2.(3分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 D.与x轴有两个交点【解答】解:A、y=(x﹣1)2+2,∵a=1>0,∴图象的开口向上,此选项错误;B、y=(x﹣1)2+2顶点坐标是(1,2),此选项正确;C、对称轴是直线x=1,此选项错误;D、(x﹣1)2+2=0,(x﹣1)2=﹣2,此方程无解,与x轴没有交点,故本选项错误.3.(3分)五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数和中位数分别为()A.19和20 B.20和19 C.20和20 D.20和21【解答】解:根据平均数定义可知:平均数=(18+20+21+22+19)=20;根据中位数的概念可知,排序后第3个数为中位数,即20.故选C.4.(3分)若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为()A.﹣1 B.0 C.1 D.【解答】解:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.故选C.5.(3分)已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°【解答】解:如图所示,△ABC中,AB=AC.有两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣50°﹣50°=80°,∴这个等腰三角形的顶角为50°和80°.故选:C.6.(3分)不等式组的整数解共有()个.A.4 B.3 C.2 D.1【解答】解:解得,﹣1≤x<,故不等式组的整数解是x=﹣1或x=0或x=1,即不等式组的整数解有3个,故选B.7.(3分)在平面直角坐标系中,将直线x=0绕原点顺时针旋转45°,再向上平移1个单位后得到直线a,则直线a对应的函数表达式为()A.y=x B.y=x﹣1 C.y=x+1 D.y=﹣x+1【解答】解:∵直线x=0与x轴的夹角是90°,∴将直线x=0绕原点顺时针旋转45°后的直线与x轴的夹角为45°,∴此时的直线方程为y=x.∴再向上平移1个单位得到直线a的解析式为:y=x+1.故选C.8.(3分)小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为()A.+=B.﹣=C.+10=D.﹣10=【解答】解:设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,由题意得,﹣=.故选:B.9.(3分)以下说法:①若直角三角形的两边长为3与4,则第三次边长是5;②两边及其第三边上的中线对应相等的两个三角形全等;③长度等于半径的弦所对的圆周角为30°④反比例函数y=﹣,当>0时y随x的增大而增大,正确的有()A.①②B.②③C.②④D.③④【解答】解:①若直角三角形的两边长为3与4,则第三次边长是5或,故错误;②两边及其第三边上的中线对应相等的两个三角形全等,正确;③长度等于半径的弦所对的圆周角为30°或150°,故错误;④反比例函数y=﹣,当>0时y随x的增大而增大,正确,故选C.10.(3分)如图1,点E为矩形ABCD边AD上一点,点P点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s.设P,Q出发t秒时,△BPQ的面积为y cm2,已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分).则下列结论:①AE=6cm;②当0<t≤10时,y=t2;③直线NH的解析式为y=﹣5t+110;④若△ABE与△QBP相似,则t=秒,其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个【解答】解:①观察图2可知:当t=10时,点P、E重合,点Q、C重合;当t=14时,点P、D重合.∴BE=BC=10,DE=14﹣10=4,∴AE=AD﹣DE=BC﹣DE=6,∴①正确;②设抛物线OM的函数解析式为y=ax2,将点(10,40)代入y=ax2中,得:40=100a,解得:a=,∴当0<t≤10时,y=t2,②成立;③在Rt△ABE中,∠BAE=90°,BE=10,AE=6,∴AB==8,∴点H的坐标为(14+8,0),即(22,0),设直线NH的解析式为y=kt+b,∴,解得:,∴直线NH的解析式为y=﹣5t+110,③成立;④当0<t≤10时,△QBP为等腰三角形,△ABE为边长比为6:8:10的直角三角形,∴当t=秒时,△ABE与△QBP不相似,④不正确.综上可知:正确的结论有3个.故选C.二、填空题(共6小题,每小题4分,满分24分)11.(4分)若式子在实数范围内有意义,则x的取值范围是x≥﹣1.【解答】解:根据题意得:x+1≥0,解得x≥﹣1,故答案为:x≥﹣1.12.(4分)分解因式:ax2﹣4ax+4a=a(x﹣2)2.【解答】解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.13.(4分)已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为4 cm.【解答】解:∵圆锥的母线长是5cm,侧面积是20πcm2,∴圆锥的侧面展开扇形的弧长为:l===8π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===4cm.故答案为4.14.(4分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是.【解答】解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故答案是:.15.(4分)如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为.【解答】解:如图所示:延长AC交网格于点E,连接BE,∵AE=2,BE=,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴SinA==.故答案为:.16.(4分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(27,9)阴影三角形部分的面积从左向右依次为S1、S2、S3…S n,则第4个正方形的边长是S n的值为【解答】解:如图,设正方形ABCD的边长为a,正方形DEFG的边长为B,∴S=S△ACD+S梯形ADEF﹣S△CEF△ACF=a2+(a+b)×b﹣(a+b)×b=a2∵正比例函数y=x的图象与x轴交角的正切值为,已知A的坐标为(27,9),∴∴第3个正方形的边长是9=9×()0∴第4个正方形的边长是=9×同理可得第五个正方形的边长为=9×()2第六个正方形的边长=9×()3…第2n﹣1个正方形的边长9×()2n﹣4第2n个正方形的边长9×()2n﹣3根据前面得到的规律,Sn=×[9×()2n﹣4]2=故答案为,.三、全面答一答,本题有7个小题,共66分17.(6分)计算(1)2sin45°﹣++||(2)(2a+3b)(3a﹣2b)【解答】解:(1)2sin45°﹣++||=2×﹣1+2+﹣1=2;(2)(2a+3b)(3a﹣2b)=6a2﹣4ab+9ab﹣6b2=6a2+5ab﹣6b218.(8分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,DE⊥AB 于点D,交AC于点E.(1)若BC=3,AC=4,求CD的长;(2)求证:∠1=∠2.【解答】(1)解:∵∠ACB=90°,BC=3,AC=4,∴AB==5,∵CD是AB边上的中线,∴CD=AB=2.5;(2)证明:∵∠ACB=90°,∴∠A+∠B=90°,∵DE⊥AB,∴∠A+∠1=90°,∴∠B=∠1,∵CD是AB边上的中线,∴BD=CD,∴∠B=∠2,∴∠1=∠2.19.(8分)某校举行春季运动会,需要在初三年级选取1或2名同学作为志愿者,初三(5)班的小熊、小乐和初三(6)班的小矛、小管4名同学报名参加.(1)若从这4名同学中随机选取1名志愿者,则被选中的这名同学恰好是初三(5)班同学的概率是;(2)若从这4名同学中随机选取2名志愿者,请用列举法(画树状图或列表)求这2名同学恰好都是初三(6)班同学的概率.【解答】解:(1)若从这4名同学中随机选取1名志愿者,则被选中的这名同学恰好是初三(5)班同学的概率是;故答案为:;(2)列表如下:(小熊记作A,小乐记作B,小矛记作C,小管记作D),所有等可能的情况数有12种,其中这2名同学恰好都是初三(6)班同学的情况有2种,则P==.20.(10分)如图,在以点O为原点的直角坐标系中,一次函数y=﹣x+1的图象与x轴交于A,与y轴交于点B,求:(1)△AOB面积=1;(2)△AOB内切圆半径=;(3)点C在第二象限内且为直线AB上一点,OC=,反比例函数y=的图象经过点C,求k的值.【解答】解:(1)令x=0代入y=﹣a+1∴y=1,∴OB=1,令y=0代入y=﹣x+1,∴x=2,∴OA=2,S=OA•OB=1;(2)设△AOB内切圆的圆心为M,⊙M与OA、OB、AB分别切于E、F、G,连接OE、OF,如图1,∵∠OEM=∠MFO=∠FOE=90°,∴四边形MFOE是矩形,∵ME=MF,∴矩形MFOE是正方形,设⊙M的半径为r,∴MF=ME=r,由切线长定理可知:BF=BG=1﹣r,AE=AG=2﹣r,由勾股定理可求得:AB==,∴AG+BG=AB,2﹣r+1﹣r=,∴r=;(3)过点C作CD⊥x轴于点D,如图2,∵OC=AB,∴OC=,∵点C在直线AB上,∴设C(a,﹣a+1)(a<0),∴OD=a,CD=﹣a+1,由勾股定理可知:CD2+OD2=OC2,∴a2+(﹣a+1)2=,∴a=﹣或a=1(舍去)∴C的坐标为(﹣,),把C(﹣,)代入y=,∴k=﹣.21.(10分)如图,平面直角坐标系中,矩形OABC的一边OA在x轴上,点B 的坐标为(4,3),双曲线y=(x>0)交线段BC于点P(不与端点B、C重合),交线段AB于点Q(1)若P为边BC的中点,求双曲线的函数表达式及点Q的坐标;(2)求k的取值范围;(3)连接PQ,AC,判断:PQ∥AC是否总成立?并说明理由.【解答】解:(1)∵四边形OABC是矩形,∴BC∥OA,∵点B坐标(4,3),∴BC=4,AB=3,∵PC=PB,∴点P坐标(2,3),∴反比例函数解析式y=,∵点Q的横坐标为4,∴点Q的坐标为(4,).(2)设点P坐标(x,3),则0<x<4,把点P(x,3)代入y=得到,x=,∴0<<4,∴0<k<12.(3)结论:PQ∥AC总成立.理由:设P(m,3),Q(4,n),则3m=4n=k,∴===,===,∴=,∵∠B=∠B,∴△BPQ∽△BCA,∴∠BPQ=∠BCA,∴PQ∥AC.22.(12分)如图,在平面直角坐标系xOy中,点m在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C,D两点,且C为弧AE的中点,AE交y轴于G点,若点A的坐标为(﹣2,0),AE=8,(1)求证:AE=CD;(2)求点C坐标和⊙M直径AB的长;(3)求OG的长.【解答】解:(1)∵点C是的中点,∴,∵AB⊥CD,∴由垂径定理可知:=,∴,∴,∴AE=CD;(2)连接AC、BC,由(1)可知:CD=AE=8,∴由垂径定理可知:OC=CD=4,∴C的坐标为(0,4),由勾股定理可求得:CA2=22+42=20,∵AB是⊙M的直径,∴∠ACB=90°,∵∠CAB=∠CAB,∴△CAO∽△BAC,∴,∴CA2=AO•AB,∴AB==10;(3)由(1)可知:,∴∠ACD=∠CAE,∴AG=CG,设AG=x,∴CG=x,OG=OC﹣CG=4﹣x,∴由勾股定理可求得:AO2+OG2=AG2,∴22+(4﹣x)2=x2,∴x=,∴OG=4﹣x=23.(12分)在平面直角坐标系xOy中,抛物线C:y=mx2+4x+1.(1)当抛物线C经过点A(﹣5,6)时,求抛物线的表达式及顶点坐标;(2)若抛物线C:y=mx2+4x+1(m>0)与x轴的交点的横坐标都在﹣1和0之间(不包括﹣1和0),结合函数的图象,求m的取值范围;(3)参考(2)小问思考问题的方法解决以下问题:关于x的方程x﹣4=在0<x<4范围内有两个解,求a的取值范围.【解答】解:(1)∵抛物线C:y=mx2+4x+1经过点A(﹣5,6),∴6=25m﹣20+1,解得m=1,∴抛物线的表达式为y=x2+4x+1=(x+2)2﹣3,∴抛物线的顶点坐标为(﹣2,﹣3);(2)∵抛物线C:y=mx2+4x+1(m>0)与x轴的交点的横坐标都在﹣1和0之间,∴当x=﹣1时,y>0,且△≥0,即,解得:3<m≤4;(3)方程x﹣4=的解即为方程x2﹣4x﹣a+3=0的解,而方程x2﹣4x﹣a+3=0的解即抛物线y=x2﹣4x﹣a+3与x轴交点的横坐标,∵方程在0<x<4范围内有两个解,∴当x=0时y>0,x=4时y>0,且△>0,即,解得:﹣1<a<3.。