第二章.泵

合集下载

第二章泵与风机性能教材

第二章泵与风机性能教材

1 1 0.68n
2 3 s
随着比转数减少(叶轮 直径增加),叶轮间隙 两侧压差增加,容积损 失增加,容积效率减小。
3、流动损失

是指流体在流道中流动时,由于流动阻力而产生的机械能损失。 流体与各部分流道壁面摩擦所产生的摩擦阻力损失 边界层分离、二次涡流所产生的漩涡损失 流量改变,流动角不等于安装角时,产生的冲击损失
流动损失流动损失流体与各部分流道壁面摩擦所产生的流体与各部分流道壁面摩擦所产生的摩擦阻力损失摩擦阻力损失边界层分离边界层分离二次涡流所产生的二次涡流所产生的漩涡损失漩涡损失流量改变流量改变流动角不等于安装角时流动角不等于安装角时产生的产生的冲击损失冲击损失摩擦损失摩擦损失涡流损失涡流损失冲击损失冲击损失与流体输与流体输送量有关送量有关不仅与流体输送量有关还与该流量与设计流量的偏差有关vt摩擦涡流损失冲击损失冲击损失泄漏损失以后弯式为例实际实际hhqqvv曲线曲线叶片有限时环流系数k1是结构参数的函数与叶片数r由于泄漏损失曲线向左移动

H(p)—qv,P—qv,η —qv 的 关 系 曲 线 。 用 于 合理选择泵与风机,使其工作在最高效率范围 内。
离心式泵与风机性能曲线 轴流式泵与风机性能曲线
1、流与扬程(H—qv)曲线
无限多叶片,理想流体时HT∞—qvT曲线
H T
2 u 2 cot 2a u2 u2 1 u 2 v2u (u 2 v2m cot 2a ) qvT g g g gD2 b2
第二章泵与风机的性能
• 理解并掌握泵与风机的各种功率、损失、效率及相互关系;
• 理解泵与风机的理论性能曲线与实际性能曲线,以及两者之
间的差异和差异产生的原因; • 熟悉并掌握叶片式泵与风机实际性能曲线的特性。

第二章 叶片泵基本理论

第二章 叶片泵基本理论

第二章 叶片泵基本理论2.1 泵的主要性能的参数1 流量 流量是泵在单位时间内输送出去的液体量(体积或质量)体积流量用q 表示,单位是:m 3/s ,m 3/h ,l /s 等。

质量流量用m q 表示,单位是:t /h , kg /s 等。

流量和体积流量的关系为 ρq q m =2 扬程 H 扬程是泵所抽送的单位重量液体从泵进口处(泵进口法兰)到泵出口处兰)能量的增值。

也就是一牛顿液体通过泵获得的有效能量。

其单位是m N /m N =⋅,即被抽送液体的液柱高度、习惯简称为米。

根据定义、泵的扬程可以写为s d E E H -= (2-1)式中:d E —在泵出口处单位重量液体的能量(m);s E —在泵进口处单位重量液体的能量(m)。

单位重量液体的能量在水力学中称为水头,通常由压力水头、速度水头和位置水头三部分组成,即d 2d d d z 2g v g p E ++=ρ,s 2s s s z 2gv g p E ++=ρ,得22d s d d d s p p v v E z z g 2g()ρ--=++- (2-2)式中 p d 、p s ——泵出口、进口处液体的静压力v d 、v s ——泵出口、进口处液体的速度z d 、z s ——泵出口、进口到任选的测量基准面的距离图1—1是计算泵扬程的简图。

泵的扬程表征泵本身的性能,只和泵进、出口法兰处的液体的能量有关,而和泵装置无直接关系。

但是,利用能量方程,可以用泵装置中液体的能量表示泵的扬程。

3 转速n转速是泵轴单位时间的转数,单位:r /min4 汽蚀余量 NPSH汽蚀余量又叫净正吸头,是表示汽蚀性能的主要参数。

5 功率和效率泵的功率通常指输入功率。

即原动机传到泵轴上的功率,故又称轴功率。

用P 表示。

泵的有效功率又称输出功率,用P e 表示。

它是单位时间内从泵中输送出去的液体在泵中获得的有效能量。

因为扬程是泵输出的单位重量液体从泵中获得的有效能量,所以扬程是质量流量及重力加速度的乘积,就是单位时间内从泵中输出液体所获得的有效能量——泵的有效功率。

第二章 回转泵

第二章  回转泵
wangke
武汉理工大学 轮机工程系
第一节 齿轮泵 gear pump
七、齿轮泵的管理
1. 注意泵的转向和连接; 2. 齿轮泵虽有自吸能力,干磨擦会造成严重磨损; 3. 机械轴封为精密部件,拆装时要防止损伤; 4. 工作时,不宜超出额定压力; 5. 防止吸口真空度大于允许吸上真空度; 6. 工作时应保持合适的油温和粘度; 7. 工作时要防止吸入空气; 8. 保持合适的端面间隙(用压铅法测量),外齿轮泵0.04~0.08mm、 内齿轮泵0.02~0.03mm。 9. 低压齿轮泵对污染敏感度较低,吸口可用150目滤网。
三、困油现象(齿封现象)
2. 困油现象的消除
消除困油现象的原则: 使困油空间在达到最小值以前与排油腔 相通;在达到最大值以前与吸油腔相通;在 达到最小值时与吸、排油腔均不相通。 1)卸压(荷)槽 在齿轮泵的泵盖上或浮 动轴套上开卸荷槽。 对称卸荷槽 非对称卸荷槽 单卸荷槽
武汉理工大学 轮机工程系
与吸油腔相通
三片式:一壳、两轮、两盖 齿 型:直齿、斜齿、人字齿(均为渐开线齿形)
武汉理工大学 轮机工程系
wangke
第一节 齿轮泵 gear pump
一、结构组成
武汉理工大学 轮机工程系
wangke
第一节 齿轮泵 gear pump
二、工作原理
啮合点处的齿面接触线一直起着分隔高、低压腔的作用,因此在齿轮泵中不 需要设置专门的配流机构。
武汉理工大学 轮机工程系
wangke
第一节 齿轮泵 gear pump
二、工作原理
A external-gear pump (called as gear pump) consists essentially of two intermeshing gears which are identical and which are surrounded by a closely fitting casing. One of the gears is driven directly by the prime mover(原动机) while the other is allowed to rotate freely. The fluid enters the spaces between the teeth and the casing and moves with the teeth along the outer periphery(外围) until it reaches the outlet where it is expelled from the pump.

化工原理第二章 泵习 答案

化工原理第二章 泵习 答案

二流体输送机械习题解答1.解:(1)离心泵内有高速旋转的叶轮向液体传送动能,此动能即而又转变为液体的压力能,靠此压力能输送液体; 正位移泵利用活塞或转子挤压液体使其升压而输送液体.(2)叶轮将机械能传给液体,平衡孔平衡轴向推力, 泵壳即为收集液体又为转能装置,密封圈是防止空气漏入泵内或液体漏出泵外.2.解:在真空表与压强表截面间列柏努利方程z1+u12/2g+p1/ρg+H=z2+p2/ρg+u22/2g+H fu1=u2, z2-z1=0.4m, h f =0p1=-185×133.3=-24660.5(N/m2), p2=1.55×9.81×104 =1.52×105 (N/m2)∴ H=0.4+(1.52+0.2466)/(1000×9.81)×105 =18.41(mH2O)Ne=QHρg=(26/3600)×18.41×1000×9.81=1.3(kw)η=Ne/N=1.3/2.45=53.2%3.解:(1)流量,扬程均够,电机功率不够.因为:有效功率N=HQPg=15×(38/3600)×1800×9.81=2.8(kw)如效率仍按0.8考虑,则轴功率Ne为:N e =2.8/0.8=3.5(kw)故应换一台功率大于3.5KW的电机即可.(2)主要是扬程不够,可用改变转速的办法来解决.H'/H=(n'/n)2 , n'=n(H'/H)1/2=2900(25/15)1/2 =3741(转/分)Q'=Q(n'/n)=39.6×1.29=51.1(m3/h)N'=N(n'/n)3=2.02(3741/2900)3=4.34(kw)转速提高到3741r/min,电机功率大于4.34kw即可.4.解:Hs'=Hs-(10.0-9.16)=6.5-(10.0-9.16)=5.66(m)Zs =Hs'-H f=5.66-3=2.66(m)3m>2.66m,故泵不能正操作.5.解:(1)从附录查得,65Y-60B型油泵性能参数为H=38m,Q=19.8m3/h,△h=2.6m管路所需压头:H=△z+△p/ρg+Σh f=5+(1.8×9.81×104 )/(800×9.81)+5=32.5(m)管路所需流量Q=15m3/h,故该泵所提供的压头和流量均能保证要求.(2)安装高度:Zs=p O/ρg-p v/ρg-△h-H f=(760×133.3)/(800×9.81)-(600×133.3)/(800×9.81)-2.6-1=-0.88(m)即安装高度需低于液面0.88m,现低于液面1.2m,当然可行.6解:库存泵的Hs =6mH2O,由此可求得该泵入口处的充许最低压强为:p A/ρg-p e/ρg=Hs∴p e/ρg=p A/ρg-Hs =10.33-6=4.33(m)p e=4.33×1000×9.81=4.25×104 (N/m2)(绝压)原泵操作时,泵进口的绝压为:(p e)操=0.95×105-294×133.3=5.58×104(N/m2)(p e)操>p e,故不会发生气蚀.7解:Zs≥p O/ρg-p v/ρg-△h-h fs , 由于液体处于沸腾状.p O=p v ,则:-2.1≤-2-λ(L/0.05)(u2/2g)u=5.8/(0.785×0.052×3600)=0.821(m/s)∴L=(0.1×0.05×2×9.81)/(0.02×0.8212)=7.3(m)8解:查得60℃的水p v=0.203(kgf/cm2)=2.03mH2O;吸上高度要比(p A-p v)/ρg=10.33-2.03=8.3m低,但图(c)中的吸上高度已有8m,考虑到吸入管阻力等因素,此种安装方式可能发生气蚀,而不能将水送到高位槽.(a).(b)两种方式可以送到.流量与泵之性能及管路特性有关,此两种方式中, 管路情况都是一样的,故此两种方式都可达到相同的流量. N=QHρg/η,既然(a).(b)两种安装方式的Q.H都一样,其它条件亦同,故输送所需之轴功率亦相等.9.解:H=△z+△p/ρg+h f△z=20m, △p=0, h f=[8/(π2g)](λ)[(l+∑le)/d5]Q2将数据代入并化简:H=20+0.00062Q23:以表中数据作图得管路特性曲线,并与泵特性曲线交于工作点M, 分别求得工作点的流量:Q=142m3/h,H=32m,η=0.74,N=18kw.10.解:H=△z+△p/ρg+u2/2g+h f=5+0+0+λ(L/d)(u2/2g)+ζ(u2/2g)=5+1.186u2u=Q/(0.785d2×3600)=Q/(0.785×0.122×3600)H=5+0.00072Q2=5+2.59×10-6Q'2Q单位:m3/h; Q'单位:l/min 工作点M之H=32.5m, Q=3200 l/minN轴=Ne/η=32.5×3200×10-3×1000×9.81/(60×0.55)=30.9(kw)∴每小时耗电费为30.9×0.12=3.71(元)(1)求阀全开时泵的有效功率H=△z+△p/ρg+△u2/2g+H f ,△z+△p/ρg=10(mH2O); △u2/2g=0u=0.0039/(0.785×0.052)=1.99(m/s)将数据代入上式:H=10+0.03(150/0.05)×(1.992/(2×9.81))=28.2(m)Ne=QHρg=0.0039×28.2×1000×9.81=1.08(kw)(2)求H=A-BQ2中的A.B值当Q=0时,H=A.又在泵入、出口处列柏努力方程:H=He=△z+△p/ρg+△u2/2g+H f当Q=0时,u=0,h f=0,△z为泵入口真空表与出口压强表之间距离,可忽略.故H=He =(3.2×9.81×104+200×133.3)/ρg=34.72(m)∴A=34.72; 于是得到:H=34.72-BQ2由本题第1问得到:当Q=0.0039m3/s=14m3/h时,H=28.2m 代入此式,得:B=(34.72-28.2)/142=0.033泵的特性曲线方程可表示为H=34.72-0.033Q212.解:He=△z+△p/ρg+△u2/2g+∑h f=16+0.3×9.81×104(1000×9.81)+2.1=21.1(m)根据H=21.1m,Q=30m3/h,于附录中选用3B33A型泵比较安全,(H=25m,Q=35m3/h)13.解:He=△z+△p/ρg+△u2/2g+∑h f=8+400×103/(1500×9.81)+30×103/(1500×9.81)=35.4(m)Q=7.5(m3/h)根据H=35.4m,Q=7.5m3可选耐腐蚀泵40F-40型(Q=7.2m3/h,H=39.5m),尽管额定流量较7.5m3/h小一些,但压头H=39.5m,较所需35.4m有较大裕量,实际操作时,H可以降一点, 致使流量增大,可望满足需要.但需指出,该操作条件下,泵的效率会低一些.14.解:(1)求送水量:管路所需压头相等,即泵工作点之流量为:40-0.01Q2=20+0.04Q2∴Q=20m3/h(2)关小阀门的压头损失:关小阀门后流量为Q'=3/4×20=15(m3/h)将Q'=15代入管路曲线.得H=20+0.04×152=29(m)将Q'=15代入泵特性曲线得He=40-0.01×152=37.75(m)额外增加压头损失为△H=37.75-29=8.75(m)H=△z+△p/ρg+△u2/2g+∑h f=4.8+0+0+λ(355/0.068)(u2/2g)=4.8+1.68×10-4Q2(Q单位:l/min)于是:得一系列数值:Q=400 l/min.如泵转速改为1600(r/min)时,这时流量为Q',压头为H',则Q'/Q=n'/n=1600/1450=1.1; Q'=1.1QH'/H=(n'/n)2=(1600/1450)2=1.22;H'=1.22H作新条件下的泵特性曲线:(Q的单位: l/min;H的单得到新的工作点M',该点对应的流量Q'=445 l/min 题15附图16.解:单泵使用时:Q=1m3/min, 则:H=20-2×12=18(m)管路特性曲线H=△z+△p/ρg+BQ2=10+0+BQ2,在泵的工作点:18=10+BQ2, 则:B=(18-10)/12=8得到管路特性曲线方程为: H=10+8Q2若Q增加为1.5[m3/分],根据题意λ保持不变即B值不变.则管路所需压头为H=10+8×1.52=28(m)而单泵操作时,泵提供压头数为H=20-2×1.52=15.5(m)两泵并联时特性曲线为H=20-2/22×Q2=20-0.5Q2并联泵提供压头为:H=20-0.5×1.52=18.98(m)两泵串联时特性曲线为:H=40-4×Q2=40-4×1.52=31(m)串联泵提供压头为31m,显然只有两泵串联可望满足要求.17.解:并联时,H不变,Q增加一倍Q并=2Q单, Q单=Q并/2原单泵特性曲线H=50-0.085Q2H并=50-0.085(Q并/2)2=50-0.0213Q并2二泵串联时,流量不变,压头加倍,即:H串=2H单故二泵串联时的特性曲线为:H串=2(50-0.085Q2)=100-0.17Q218.解:全风压: H T=△zρg +△p+△u2ρ/2+ρ∑h f=0+15+15+155=185(mmH2O) 将全风压换算成标准状况(规定状况)值:H TC=H Tρc/ρ=185×1.2/1=222(mmH2O)已知风量Q=40000m3/h,根据H TC =222mmH2O,可选用4-72-11 10C型风机.全压为: 227(mm水柱),Q=41300(m3/h)19.解:Ws =Υ/(Υ-1)×p1V1[(p2/p1(Υ-1)/Υ-1]p1V1=(G/M)RT=1/29×8314×278将数据代入上式,得到:Ws=1.4/(1.4-1)×1/29×8314×278[324/101.3)(1.4-1)/1.4-1]=111.6(KJ) 在密闭筒中压缩:Ws=∫V2V1 pdV=1/(Υ-1)p1V1[(p2/p1)(Υ-1)/Υ-1]=1/(1.4-1)×1/29×8314×278[324/101.3] (1.4-1)/1.4 -1]=79.7(KJ) 20.解:N ad=n×1/(r-1)p1V1[(p2/p1)(r-1)/nr -1]V1=p0V0/T0×T1/p1代入上式N ad=n×1/(r-1)p0V0T1/T0[(p2/p1)(r-1)/nr -1]=(4×1.4/0.4)×(101300×3.5/60)×(303/273)[(150)0.4/(4×1.4)-1]=39482(w)=39.5(kw)N=N ad/η=39.5/0.85=46.5(kw)由于采取4级压缩,每级压缩比为i=(150)1/4 =3.5故T2=T1(p2/p1)(r-1)/r=303(3.5)0.4/1.4=433.6K=161(℃)21.解:(1)P点为工况点,P点对应的流量为该泵在系统中所提供的最大流量30-0.01Q2=10+0.04Q2解得Q max=20 m3/h此时泵的压头为26m(2)当供水量为最大输水量的75%时,即:Q'=20×0.75=15(m3/h)(a)图中△H 为出口节流调节所产生的节流损失增加量H'=30-0.01Q2=30-0.01×152=27.75(m);He'=10+0.04Q2=10+0.04×152=19(m)△H=H'-He'=8.75m(b)根据比例定律:Q/Q'=(n/n');H/H'=(n/n')2故得: 泵的性能曲线上: H=H'(n/n')2, Q=Q'(n/n')于是泵性能曲线变为:H'(n/n')2=30-0.01Q'2(n/n')2,即:H'=(n'/n)2×30-0.01Q'2新的工作点处: (n'/n)2×30-0.01Q'2=10+0.04Q'2当Q'=15m3/h解出∴ n'=2900×0.8416 =2440r/min22.解取截面1-1,2-2如题图所示,列柏努利方程z1+p1/ρg+u12/2g+He=z2+p2/ρg+u22/2g+H f +△p器/ρgu2=V/A=18/(3600×0.785×0.0532)=2.27(m/s), p1=p2u1=0He=(23-3)+(2.272/(2×9.81))+19×2.272/2/9.81+73.6×2.272/(2×9.81)×1000/(1000×9.81)=27.2(mH2o) 由2B-31型离心泵性能曲线图查得: Q=18m3/h时,H=31.5m(>27.2m) 且η=62%,而ηmax =65%; 65%×92%=59.8%(<62%)故此泵适用。

第二章 液压泵

第二章 液压泵
的措施:
▪ 采用浮动配流盘实现端面
间隙补偿
▪ 减小通往吸油区叶片根部
的油液压力(↓p)
▪ 减小吸油区叶片根部的有
效作用面积 –阶梯式叶片(↓s ) –子母叶片(↓b ) –柱销式叶片 (↓b )
单作用叶片泵
工作原理
• 定子 内环为圆
• 转子 与定子存在 偏心e,铣有z 个叶 片槽
• 叶片 在转子叶片 槽内自由滑动,宽度 为B
• 转子 铣有Z个叶片 槽,且与定子同心, 宽度为B
• 叶片 在叶片槽内 能自由滑动
• 左、右配流盘 开 有对称布置的吸、压 油窗口
• 传动轴
双作用叶片泵工作原理
工作原理 由定子内环、
转子外圆和左右配流盘组成的 密闭工作容积被叶片分割为四 部分,传动轴带动转子旋转, 叶片在离心力作用下紧贴定子 内表面,因定子内环由两段大 半径圆弧、两段小半径圆弧和 四段过渡曲线组成,故有两部 分密闭容积将减小,受挤压的 油液经配流窗口排出,两部分 密闭容积将增大形成真空,经
• 齿轮泵又分外啮合齿轮泵和内啮合齿轮泵 • 叶片泵又分双作用叶片泵,单作用叶片泵和凸轮转子泵 • 柱塞泵又分径向柱塞泵和轴向柱塞泵
按排量能否变量分定量泵和变量泵。
• 单作用叶片泵,径向柱塞泵和轴向柱塞泵可以作变量泵
选用原则:
• 是否要求变量 要求变量选用变量泵。 • 工作压力 柱塞泵的额定压力最高。 • 工作环境 齿轮泵的抗污能力最好。 • 噪声指标 双作用叶片泵和螺杆泵属低噪声泵。 • 效率 轴向柱塞泵的总效率最高。
• 容积效率ηv:ηv= q /q t =(q t - Δq)/ q t
=1-Δq /qt=1-kp /nV 式中 k 为泄漏系数。
泵的功率和效率

第二章 叶片泵基本理论

第二章 叶片泵基本理论

第二章 叶片泵基本理论2.1 泵的主要性能的参数1 流量 流量是泵在单位时间内输送出去的液体量(体积或质量)体积流量用q 表示,单位是:m 3/s ,m 3/h ,l /s 等。

质量流量用m q 表示,单位是:t /h , kg /s 等。

流量和体积流量的关系为 ρq q m =2 扬程 H 扬程是泵所抽送的单位重量液体从泵进口处(泵进口法兰)到泵出口处兰)能量的增值。

也就是一牛顿液体通过泵获得的有效能量。

其单位是m N /m N =⋅,即被抽送液体的液柱高度、习惯简称为米。

根据定义、泵的扬程可以写为s d E E H -= (2-1)式中:d E —在泵出口处单位重量液体的能量(m);s E —在泵进口处单位重量液体的能量(m)。

单位重量液体的能量在水力学中称为水头,通常由压力水头、速度水头和位置水头三部分组成,即d 2d d d z 2g v g p E ++=ρ,s 2s s s z 2gv g p E ++=ρ,得22d s d d d s p p v v E z z g 2g()ρ--=++- (2-2)式中 p d 、p s ——泵出口、进口处液体的静压力v d 、v s ——泵出口、进口处液体的速度z d 、z s ——泵出口、进口到任选的测量基准面的距离图1—1是计算泵扬程的简图。

泵的扬程表征泵本身的性能,只和泵进、出口法兰处的液体的能量有关,而和泵装置无直接关系。

但是,利用能量方程,可以用泵装置中液体的能量表示泵的扬程。

3 转速n转速是泵轴单位时间的转数,单位:r /min4 汽蚀余量 NPSH汽蚀余量又叫净正吸头,是表示汽蚀性能的主要参数。

5 功率和效率泵的功率通常指输入功率。

即原动机传到泵轴上的功率,故又称轴功率。

用P 表示。

泵的有效功率又称输出功率,用P e 表示。

它是单位时间内从泵中输送出去的液体在泵中获得的有效能量。

因为扬程是泵输出的单位重量液体从泵中获得的有效能量,所以扬程是质量流量及重力加速度的乘积,就是单位时间内从泵中输出液体所获得的有效能量——泵的有效功率。

泵和泵站第二章叶片式水泵

泵和泵站第二章叶片式水泵

4、泵座: 1)泵座上有与底板或基础固定用的法兰孔。 2)泵壳顶上设有充水和放气的螺孔,以便在泵起动前充水及排 走泵壳内的空气。 3)在泵吸水和压水锥管的法兰上,开设有安装真空表和压力表 的测压螺孔。 4)在泵壳的底部设有放水螺孔,在泵停车检修时用来放空积水。 5)在泵座的横向槽底开设有泄水螺孔,以便随时排走由填料盒 内流出的渗漏水滴。所有这些螺孔,如果在泵运动中暂时无用 时,可以用带螺纹的丝堵(又叫“闷头”)栓紧。
⑴填料密封
压盖填料型填料盒
1轴封套;2填料(盘根);3水封管;4水封环;5压盖(格兰)
(2)机械密封 DY101型系列机械密封
112型系列机械密封
平衡型机械密封:密封介质作用于动环上有效面积小于 动、静环接触面,可用于高压 非平衡型机械密封:密封介质作用于动环上有效面积大 于或等于动、静环接触面
2.2 离心泵的主要零件
单级单吸卧式离心泵 1-叶轮;2-泵轴;3-键;4-泵壳;5-泵座;6-灌水孔;7放水孔,8-接真空表孔,9-接压力表孔,10-泄水孔,11-填 料盒;12-减漏环;13-轴承座;14-压盖调节螺栓;15-传动 轮
单级单吸卧式离心泵
多级离心泵结构图
离心即在泵轴上只有一个叶轮。 2、多级泵:即在泵轴上有两个或两个以上的叶轮,这时泵
⑵敞口圆筒绕中心轴作等角速度旋转时圆筒内的水面呈抛 物线上升的旋转凹面,圆筒半径越大,转得越快时,液体 沿圆筒壁上升的高度越大。
旋转圆筒中的水流运动
⑶在垂直平面上旋转一个小桶,旋转的离心力给水以能 量,旋转的离心力把水甩走,如图所示。
2.1.2 工作原理 离心泵基本构造及工作原理
气缚、柏努利定律

单吸叶轮:单侧吸水,叶轮的前后盖板不对称,用于单吸离心泵。

化工原理第二章离心泵的工作原理教案

化工原理第二章离心泵的工作原理教案

化工原理第二章离心泵的工作原理教案一、引言离心泵是化工工程中常用的一种流体输送设备,广泛应用于石油、化工、冶金、电力等行业。

本教案将详细介绍离心泵的工作原理,包括离心泵的结构、工作原理和性能参数等方面的内容。

二、离心泵的结构离心泵主要由泵体、叶轮、轴、轴承和密封装置等部分组成。

1. 泵体:泵体是离心泵的主要承载部分,通常由铸铁或不锈钢制成。

泵体内部包含进口和出口两个管道,分别用于流体的进出。

2. 叶轮:叶轮是离心泵的核心部件,它通过转动产生离心力,将流体从进口处吸入并通过出口处排出。

叶轮通常由铸铁或不锈钢制成,形状有多种类型,如封闭式、半开放式和开放式等。

3. 轴:轴是连接叶轮和驱动装置的部分,通常由碳钢或不锈钢制成。

轴的强度和刚度对离心泵的工作稳定性和寿命有重要影响。

4. 轴承:轴承支撑轴的旋转运动,减少轴与泵体之间的摩擦。

常见的轴承类型有滚动轴承和滑动轴承。

5. 密封装置:密封装置用于防止流体泄漏,通常采用填料密封、机械密封或磁力密封等方式。

三、离心泵的工作原理离心泵的工作原理基于离心力的作用。

当泵启动后,驱动装置带动轴转动,轴上的叶轮也随之旋转。

叶轮的旋转产生离心力,使流体从进口处被吸入泵体内部,并在叶轮的作用下加速流动。

随着流体的加速,流体的压力也随之增加。

最终,流体通过出口管道被排出泵体,完成输送过程。

离心泵的工作原理可以简单概括为以下几个步骤:1. 叶轮旋转:驱动装置带动轴转动,叶轮也随之旋转。

2. 流体吸入:叶轮的旋转产生离心力,使流体从进口处被吸入泵体内部。

3. 流体加速:叶轮的作用下,流体被加速,流速增大,压力增加。

4. 流体排出:流体通过出口管道被排出泵体,完成输送过程。

四、离心泵的性能参数离心泵的性能参数主要包括流量、扬程、效率和功率等。

1. 流量:离心泵每单位时间内输送的流体体积,通常以立方米/小时或升/秒表示。

2. 扬程:离心泵输送流体时所需克服的总压力,通常以米或千帕表示。

第二章离心泵

第二章离心泵

其一,启动前没灌泵,此时应停泵、灌泵,关闭出口阀后 再启动。 其二,吸入管路被堵塞,此情况下应疏通管路后灌泵,关 闭出口阀,然后启动泵。
3:扬程与升扬高度的区别?
答:扬程又称压头(H):
是泵对单位重量(1N )液体所提供的有效能J/N(m);
升扬高度(△Z) :
指泵上、下游两液面的垂直高度,它只是扬程中位能差一项。
气蚀: 是指液体在泵的最低压强处(叶轮入口)汽化形成气泡,又
在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振 动和腐蚀的现象。
气缚
原因:泵启动前空气未排尽或运转中有空气漏入,使泵内流体平均密度下降, 导致叶轮进、出口压差减小。 后果:吸不上液体。 解决方法:离心泵工作时、尤其是启动时一定要保证液体连续的条件。可采 用设置底阀、启动前灌泵、使泵的安装位置低于吸入液面等措施。
2 1
答:将会,p1=8kPa< pv
12.离心泵的效率η和流量Q的关系为( A.Q增大,η增大 ; C.Q增大,η减小;
B.Q增大,η先增大后减小 ; D.Q增大,η先减小后增大 。 )。

)。
√A.Q增大,N增大;
13.离心泵的轴功率N和流量Q的关系为(
B.Q增大,N先增大后减小; D. Q增大,N先减小后增大 。
第二章 小结与练习
主要知识点: (离心泵)
①结构、工作原理;
②性能参数(H、Q、N、η)、特性曲线及影响特性曲线的因素; ③工作点的确定及流量调节; ④离心泵选择、安装和操作。 注意 “气蚀”与“气缚”现象的区别。
练习题
一、问答题 1、何谓离心泵的气缚与气蚀现象?
答:气缚:是指启动前没灌泵或吸入管路不严密,致使泵壳内被 气体占据,泵虽启动但因泵的入口不能造成足够的低压,从而不 能吸上液体。

泵和泵站第二章 叶片式水泵1

泵和泵站第二章 叶片式水泵1

⑴填料密封
压盖填料型填料盒
1轴封套;2填料(盘根);3水封管;4水封环;5压盖(格兰)
(2)机械密封
DY101型系列机械密封
112型系列机械密封
平衡型机械密封:密封介质作用于动环上有效面积小于 动、静环接触面,可用于高压 非平衡型机械密封:密封介质作用于动环上有效面积大 于或等于动、静环接触面
e a
P
b
P
6
1
P
2
g
P
d
m ( C c o s RC c o s R ) M 2 2 2 1 1 1 d t
动量矩定理:单位时间里控制面内恒定总流的动量矩变化(流 出液体的动量矩与流入液体的动量矩之矢量差)等于作用于该 控制面内所有液体质点的外力矩之和。
P
3
f b
P
静压能。
3)泵壳顶上设有充水和放气的螺孔,以便在泵起动前用来 充水及排走泵壳内的空气。在泵壳的底部设有放水螺孔, 以便在泵停车检修时用来放空积水
4、泵座: 1)泵座上有与底板或基础固定用的法兰孔。 2)泵壳顶上设有充水和放气的螺孔,以便在泵起动前充水及排 走泵壳内的空气。
3)在泵吸水和压水锥管的法兰上,开设有安装真空表和压力表
泵用机械密封主要泄漏点: (l)轴套与轴间的密封; (2)动环与轴套间的密封; (3)动、静环间密封; (4)对静环与静环座间的密封; (5)密封端盖与泵体间的密封。
6、减漏环(承磨环)
为什么要装减漏环?(减漏环作用) 减漏环位置:叶轮吸入口的外圆与泵壳内壁的接缝处
(a)单环型;(b)双环型;(c)双环迷宫型 1、泵壳;2、镶在泵壳上的减漏环;3、叶轮;4、镶在叶轮上的减漏环
单级单吸卧式离心泵

化原第二章泵习题答案

化原第二章泵习题答案

解:
He
p1 p0
g
u12 u02 2g
(z1 z0 )
hf 01
He
314000 29300 850 9.8
0.4=41.6
m
Pe
Heqv g
41.6 71 3600
850 9.8 103
6.84
kW
P Pe 6.84 11.39kW
0.6
4.某厂所用离心泵,转数 n=1000 r/min,流量为100L/s时,压头 H=16 m, 当流量增加到120L/s,H=20m时,问泵的转数应当提高到多少?
当 qv = 16 m3/h 时, B = 0.068
此时:L = 10 + 0.068 qv2 (m), H = 30 – 0.01qv2 (m)
解: qv n qv n
n qv n 120 1000 1200 r / min
qv
100
H (n)2 Hn
n ( H )0.5 n ( 20)0.5 1000 1118r / min
H
16
转速应达到 1200 r / min
6.离心泵的特性曲线为 H = 30 – 0.01qv2 (m),输水管路的特性曲线为 L = 10 + 0.05 qv2 (m), qv2 的单位为 m3/h。试求:
第二章 离心泵习题
1.密度为1200kg/m3的碱液从碱池送到塔内,塔顶压力为5.98×104Pa,流量
为30m3/h,泵吸入管阻力为2m碱液柱,泵排出管阻力为5m碱液柱(包括出
口阻力)。求:(1)泵的杨程;(2)轴功率为3.6kW时,泵的效率;(3)吸入管
流速为1m/s时,真空表读数?
解:(1)

泵与泵站第二章

泵与泵站第二章
当Q=0时,功率最小。因此,为了保护电机, 水泵采用“闭闸启动”。
2019/10/25
泵与泵站第2章
32
例宽题度:b2=离18心m泵m,,安叶装轮角外β径2D=23=02°0,0m转m速,
n2=2900r/min,试求特性曲线。
解:
HT

R2
g
(R2

Q F2
cot 2 )
2 n 303.7rad / s
泵与泵站第2章
22
2. 扬程与管道水头损失的关系 对断面0-0和3-3应用伯努利方程:
z0

pa
g

v02 2g

H

z3

pa
g

v32 2g

hw
H z3 z0 hw H ST hw
2019/10/25
泵与泵站第2章
23
例 2-1 水泵抽水,已知:流量Q=120 l长d/1s==度00.l.321=52m3m03,0/ms,压,吸水采水管用管直铸长径铁度d管2=l1,0=.23吸00mm水,,管吸压直水水径井管 水面标高58.00m,泵轴线标高60.00m,水 厂混合池水面标高90.00M。
2019/10/25
泵与泵站第2章
15
水泵的扬程
设单位重量水体获得的功率为HT ,即:

NT = gQ HT
则有
HT

NT
gQ

1 g
(u2C2u
u1C1u )
HT 称为水泵的(理论)扬程。
2019/10/25
泵与泵站第2章
16
水泵的扬程
在水泵设计时,使C1u =0,即C1与圆周垂直。

化工原理第二章离心泵的工作原理教案

化工原理第二章离心泵的工作原理教案

化工原理第二章离心泵的工作原理教案一、引言离心泵是化工工艺中常用的一种流体输送设备,广泛应用于化工、石油、制药、冶金等行业。

本教案旨在介绍离心泵的工作原理,包括离心泵的结构、工作原理和性能参数等内容,匡助学生深入理解离心泵的工作原理及其在化工过程中的应用。

二、离心泵的结构1. 泵体:离心泵的泵体通常由铸铁、不锈钢等材料制成,具有良好的耐腐蚀性和机械强度。

2. 叶轮:离心泵的叶轮是离心泵工作的关键部件,其结构通常分为前叶片、中叶片和后叶片三部份。

叶轮的形状和叶片的数量会影响泵的性能。

3. 泵轴:离心泵的泵轴是连接机电和叶轮的部件,通常由不锈钢制成,具有足够的强度和刚性。

4. 机械密封:离心泵的机械密封用于防止泵体与泵轴之间的泄漏,通常采用填料密封或者机械密封装置。

三、离心泵的工作原理1. 吸入过程:当离心泵开始工作时,泵体内部形成一个低压区域。

泵轴带动叶轮旋转,叶轮叶片的离心力使液体被吸入泵体。

2. 压送过程:当液体被吸入泵体后,叶轮的旋转使液体获得动能,液体在离心力的作用下被迅速推向出口。

3. 排出过程:液体经过泵体和出口管道后,被排出到目标位置。

四、离心泵的性能参数1. 流量:离心泵的流量是指单位时间内通过泵的液体体积。

流量的大小取决于泵的转速和叶轮的结构。

2. 扬程:离心泵的扬程是指液体通过泵时所能达到的最大高度差。

扬程的大小取决于泵的转速、叶轮的结构和泵的工作状态。

3. 功率:离心泵的功率是指泵所需要的电力或者机械能。

功率的大小取决于流量、扬程和泵的效率。

4. 效率:离心泵的效率是指泵转换输入能量为输出能量的比例。

效率的大小取决于泵的结构、材料和工作状态。

五、离心泵在化工过程中的应用1. 液体输送:离心泵广泛应用于液体的输送过程中,如化工生产中的原料输送、产品输送等。

2. 冷却循环:离心泵可用于化工设备的冷却循环系统中,通过循环流动的冷却液体将热量带走,保持设备的正常运行。

3. 混合搅拌:离心泵可用于化工过程中的混合搅拌,将不同的液体通过离心泵混合搅拌,实现反应物料的均匀混合。

第二章往复泵

第二章往复泵
一、基本结 电动机 减速器曲柄连杆 机构
曲轴为整体锻造,由三个滚子轴承支承,
阀箱 滑油泵 安全阀 泵体轴封 试验
用40号机油。滑油压力应保持0.08—0.12MPa, 泵出口的安全阀16安装在阀箱上,用以限制 则经十字头9与活塞杆相连。 复 上层是排出室,与排出管相通;中层通泵缸 油温不应超过70°C。 泵的最大排出压力。调整安全阀弹簧张力即 泵 上下空间,通过泵阀(共8个)与吸入室和排出 泵缸、缸盖、安全阀阀体、阀箱等受 可改变其开启压力。其开启压力应为泵额定 C 室相通。下层是吸入室,与吸入管相通,吸 压零件在工厂应进行水压试验,试验 排出压力的1.1—1.15倍。当泵排出管路阀门 D 排阀皆为盘阀。 压力为前述安全阀排放压力的1.5倍。 全闭时,安全阀的排放压力(全流压力)一般应 W 不大于额定排出压力加0.25MPa。安全阀在 25 试验时间不少于5min,且无渗漏现 泵出厂时即经试验合格并加以铅封。 -
四、填料函与填料
填料函的构造由内 套、填料和压盖组成。 填料一般用浸油棉 纱、麻丝或石棉等材 料制成,叫软填料。
压盖螺栓 压盖 填料(盘根) 活塞杆 活塞杆 填料(盘根)
作用: 填料函与填料的作用是防止泵缸中液体沿活塞杆孔处漏出,或外部 空气从杆孔处漏入,以保证泵的正常吸、排工作。 更换: 1)更换填料时,新填料的宽度应按活塞杆与填料函的径向间隙选取, 稍宽可适当锤扁;2)长度应根据活塞杆直径周长截取填料,切口最好成 45°;3)填料要逐圈安装,相邻填料的切口要错开;4)填料圈数不要随 意增减;5)填料装满后其松紧可借压盖螺帽进行调整;6)上螺帽时要 注意用力平均,防止单边用力,使压盖倾斜,碰到活塞杆;7)填料的 松紧以填料箱不发热,并能有少许液体渗出以满足活塞杆的润滑和冷却 为宜(约每分钟60滴)。

H《化工过程流体机械》第1章概述&第2章泵_总结思考公式习题

H《化工过程流体机械》第1章概述&第2章泵_总结思考公式习题

《化工过程流体机械》总结、思考、公式、习题(第一、二章)2009.9.30(内容总结)第一章概述§ 1.1 流体机械的定义与分类§ 1.2 流体机械的工程应用§ 1.3 流体机械的技术发展小结:1.流体机械的分类叶片式、容积式;2.流体机械在石油化工行业的应用;3.(化工)过程流体机械。

(内容总结及思考题)第二章泵§ 2.1 离心泵的结构类型2.1.1 离心泵的基本结构2.1.2 离心泵的类型2.1.3 离心泵的典型结构2.1.4 主要零部件小结:1.离心泵的基本结构单级单吸悬臂式;2.离心泵的类型单级、多级;单吸、双吸;水平中开、节段式;3.叶轮开式、闭式。

§ 2.2 离心泵的工作原理2.2.1 离心泵的工作参数2.2.2 离心泵的工作原理2.2.3 叶轮中液体流动规律——速度三角形2.2.4 离心泵基本方程式2.2.5 叶片结构型式对能量转换的影响2.2.6 有限叶片对叶轮能量转换的影响小结:1.工作参数流量Q、扬程H、功率N、效率η等;2.速度三角形速度u、w、c,分速度c u、c r;液流角α、β,叶片安装角βA2等;3.基本方程欧拉方程(表达形式两种、物理意义三项)、理论扬程H T∞、静扬程H pol、动扬程H hyn等;4.叶片结构分析后弯、前弯、径向叶片型(βA2<=>90º);反作用度ρR∞,βA2极限值βA2min、βA2max等;5.叶片有限影响轴向涡流,β2<βA2、c u2<c2∞,滑移系数μ;(叶片有限无损失)理论扬程H T<H T∞等。

思考题:[2] 4-1.离心泵有哪些性能参数?其中扬程是如何定义的?它的单位是什么?[2] 4-2.试写出表达离心泵理论扬程的欧拉方程式和实际应用的半经验公式。

§ 2.3 离心泵的工作性能2.3.1 离心泵的吸入性能2.3.2 离心泵的特性曲线2.3.3 离心泵的性能换算小结:1.吸入特性汽蚀机理与危害,汽蚀参数(p、NPSH、H S、z g),汽蚀判别、安全条件,汽蚀特性([NPSH]、[H S]),抗汽蚀措施。

泵和泵站第二章 叶片式水泵1

泵和泵站第二章 叶片式水泵1
C2 W2 C2r α2 β2 C2U U2
2.4.2 基本方程式的推导 1.三点假设: ⑴液流是恒定流;
⑵叶槽中,液流均匀一致,叶轮同半径处液流同名速度相等。 ⑶液流为理想液体,也即无粘滞性。即叶轮功率全部传给液体
P 3
e a
P6 P 1
f
根据动量矩定理,恒定元流的动量 方程对某固定点取矩,可得到恒定 元流的动量矩方程:
平衡孔的优缺点:构造简单,但效率降低
10.IS型单级单吸离心泵主要零件
封闭式叶轮,填 料密封,刚性连 接
11.单级双吸式离心泵主要零件
单级双吸式离心泵图 1—吸入口;2—半螺旋形吸入室;3—蜗形压出室;4—出水口;5—泵盖6—泵体
2.3 叶片泵的基本性能参数
水泵的6个性能参数:
1.流量(抽水量)——水泵在单位时间内所输送的液体数量。
3.轴功率——泵轴得自原动机所传递来的功率称为轴功率, 以N表示。 原动机为电力拖动时,轴功率单位以kW表示。 有效功率——单位时间内流过水泵的液体从水泵那里得到
的能量叫做有效功率,以字母 u N
表示泵的有效功率为:
Nu QH
1000kg / m
Nu N
3
4.效率——水泵的有效功率与轴功率之比值,以η表示。
QH QH W t t (kwh) 100012 10212
5.转速——水泵叶轮的转动速度,通常以每分钟转动的次数
来表示,以字母n表示常用单位为r/min。 6.允许吸上真空高度(Hs)及气蚀余量(Hsv) 允许吸上真空高度(Hs)——指水泵在标准状况下(即水温为 20℃、表面压力为一个标推大气压)运转时,水泵所允许的 最大的吸上真空高度 (即水泵吸入口的最大真空度)。单位 为mH20。水泵厂一般常用Hs来反映离心泵的吸水性能。

水力学:第2章 叶片式泵和风机

水力学:第2章  叶片式泵和风机
型号意义:
200S63A
200 —— 泵吸入口直径为 200mm;
S—单级双吸离心泵; 63 —— 扬程为63m; A —— 叶轮外径第一次
切割。
S型图
单级双吸中开离心泵
便拆式管道离心泵
DL型立式多级离心泵
IS型单吸离心泵
叶轮
S型双吸离心泵
二、离心泵的主要零件,作用材料和组成
1.叶轮:了解叶轮作用,材料,组成,按吸入 口分类,按盖板情况分类
3、按叶轮进水方式分: 单侧进水式泵:又叫单吸泵,图2-2,即叶 轮上只有一个进水口 双侧进水式泵:又叫双吸泵,即叶轮两侧都 有一个进水口,它的流量比单吸式泵大一倍, 可以近似看作是两个单吸泵叶轮背靠背放在 一起。P101图2-93,图2-5。 4、按泵壳结合缝形式分: 水平中开式泵:即在通过轴心线的水平面上 开有结合缝 垂直结合面缝:即结合面与轴心线相垂直
1、泵壳;2、镶在泵壳上的减漏环; 3、叶轮;4、镶在叶轮上的减漏环
轴封装置
泵轴穿出泵壳时,在轴与壳之间存在 着间隙,如不采取措施,间隙处就会有泄 漏。当间隙处的液体压力大于大气压力(如 单吸式离心泵)时,泵壳内的高压水就会通 过此间隙向外大量泄漏;当间隙处的液体 压力为真空(如双吸式离心泵)时,则大气 就会从间隙处漏入泵内,从而降低泵的吸 水性能。为此,需在轴与壳之间的间隙处 设置密封装置,称之为轴封。目前,应用 较多的轴封装置有填料密封、机械密封。
立 式 轴 流 泵 结 构 图
ZLB型立式轴流泵
叶轮 1、固定式 2、半调节
四、混流泵
1、混流泵的工作原理 混流泵是介于离心泵和轴流泵之间的一种泵,
它是靠叶轮旋转而使水产生的离心力和叶片对水 产生的推力双重作用而工作的。 2、混流泵的构造

化工原理 第二章 离心泵

化工原理 第二章 离心泵

2016/9/28
2、离心泵的工作原理
(1)叶轮被泵轴带动旋转,对位于叶片间的流体做 功,流体受离心力的作用,由叶轮中心被抛向外围 。当流体到达叶轮外周时 ,流速非常高( 15 ~ 25 m/s),使流体获得动能。 (2)泵壳汇集从各叶片间被抛出的液体,这些液体 在壳内顺着蜗壳形通道逐渐扩大的方向流动,使流 体的动能转化为静压能。
2016/9/28
离心泵气缚现象.swf
气缚现象.ቤተ መጻሕፍቲ ባይዱvi
2016/9/28
二、离心泵的主要部件和构造
1、叶轮 (1)叶轮的作用 将电动机的机械能传给液体,使液体的静压能和动 能都有所提高。
2016/9/28
(2)叶轮的分类
闭式叶轮 叶片的内侧带有前后盖板,适于输
送干净流体,效率较高; 根据结构
3、离心泵的效率
离心泵输送液体时,通过电机的叶轮将电机的能量传给 液体。在这个过程中,不可避免的会有能量损失,也就是说 泵轴转动所做的功不能全部都为液体所获得,通常用效率η 来反映能量损失。这些能量损失包括:
①容积损失
②水力损失 ③机械损失 泵的效率反应了这三项能量损失的总和,又称为总效率。与 泵的大小、类型、制造精密程度和所输送液体的性质有关 。
(3)叶轮直径
某一尺寸的叶轮外周经过切削而使 D2变小,若切削使直径 D2减小的幅度在20%以内,效率可视为不变,并且切削前、
后叶轮出口的截面积也可认为大致相等, 此时有:
qV 2 D2 H 2 D2 P2 D2 ; ; ——切割定律 qV 1 D1 H 1 D1 P1 D1
式中:D ——叶轮的直径
2
3
2016/9/28
六、离心泵的工作点与流量调节

第二章 离心泵和轴流泵(4) 流体机械 教学课件(共7张PPT)

第二章 离心泵和轴流泵(4) 流体机械 教学课件(共7张PPT)
二、离心泵的最大允许吸人高度
第七页,共7页。
离心泵中液流的主要作用力是惯性力和粘性力,所以,就可用 雷诺数来作为判断相似性的准那么。如果两种流动的雷诺数相 同,就表示惯性力与粘性力比值相同,即符合动力(dònglì)相 似的条件。
第三页,共7页。
几何相似(xiānɡ sì)的离心泵,在工况相似(xiānɡ sì)下的
性能变化规律
1.压头ห้องสมุดไป่ตู้yā
第六页,共7页。
第八节 离心泵的汽蚀与允许(yǔnxǔ)吸入高度
一、汽蚀现象(xiànxiàng) 离心泵产生汽蚀的主要(zhǔyào)原因有
(1)吸入高度太高,有可能使较低; (2)当地大气压力较低,如泵在海拔较高处使用;
(3)泵内流道设计不完善引起液流速度过高等。
〔4〕泵送温度较高的液体时,极易引起汽蚀
tóHut) Ht'
2
(
n n'
)2
2.排量
Qt Qt'
3
(
n n'
)
3.功率(gōngNlǜt ) Nt'
3
(
n n'
)8
上述三个根本公式适用于一切叶片式水力机械,对这类
机械的设计、研究和使用都有重要的实际意义。
第四页,共7页。
研究(yánjiū)相似理论的重要意义 1.对于大型的新设计的叶片式水力机械,可以通过模型实验 来检测其预定性能。 2.根据一个比较成熟的叶片式水力机械,用相似理论来放大 或缩小其尽寸,制造出适合使用要求的实物,这是目前在叶 片式水力机械设计和研制中常用的方法,称直径选择法。
第五页,共7页。
二、离心泵在改变(gǎibiàn)转速时的特性曲线与通用特性 曲线 三、离心泵的相似(xiānɡ sì)准那么——比转数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-5-11
三.离心泵的主要性能参数与特性曲线
1、离心泵的性能参数
1)离心泵的流量 指离心泵在单位时间里排到管路系统的液体体积,一 般用Q表示,单位为m3/h。又称为泵的送液能力 。 2)离心泵的压头 泵对单位重量的液体所提供的有效能量,以 H 表 示,单位为m。又称为泵的扬程。
2015-5-11
2015-5-11
2015-5-11
单吸式叶轮 液体只能从叶轮一侧被吸入,结
按吸液方式
构简单。
双吸式叶轮 相当于两个没有盖板的单吸式叶
轮背靠背并在了一起,可以从两
侧吸入液体,具有较大的吸液能 力,而且可以较好的消除轴向推 力。
2015-5-11
2015-5-11
2)泵壳
A. 泵壳的作用 • 汇集液体,作导出液体的通道;
静止的壳体的速度,称为绝对速度,用c1、c2来表示。
单位重量理想液体,通过无数叶片的旋转,获得的能量
称作理论压头,用H∞表示。 单位重量液体由点1到点2获得的机械能为:
H H p Hc
2015-5-11
P2 P1 C 2 C1 g 2g
2
2
HC: 液体经叶轮后动能的增加 HP: 液体经叶轮后静压能的增加; 静压能增加项HP主要由于两方面的因素促成: 1)液体在叶轮内接受离心力所作的外功,单位质量液体所 接受的外功可以表示为:
硅铁、各种合金钢、塑料、玻璃等。(F型)
油泵 输送石油产品的泵 ,要求密封完善。(Y 型) 输送含有固体颗粒的悬浮液、稠厚的浆液等的泵 ,又细分为污水泵、砂泵、泥浆泵等 。要求不易 堵塞、易拆卸、耐磨、在构造上是叶轮流道宽、
杂质泵
叶片数目少。
2015-5-11
2015-5-11
2015-5-11
2015-5-11

• 了解流体输送机械的分类

• 掌握离心泵的构造、工作原理、性能参数及曲 线、安装高度、工作点的确定及调节、联合工 作、选用 • 了解其他类型的流体输送机械 • 了解空气输送机械
2015-5-11
离心泵
•离心泵的操作原理、构造与类型
第 一 节
液体输送机械
•离心泵的基本方程式
•离心泵的主要性能参数与特性曲 线
1 QT 2 ctg 2 H (r2 ) g 2b2 g
2015-5-11
前弯叶片产生的理论压头最高,这类叶片是最佳形式的叶
片吗?

NO
2015-5-11
H
u 2 u 1 1 2 静压头的增加: 2g 2g
2 2 2
2
c 2 c1 动压头的增加: 2g
2015-5-11
2015-5-11
3)轴封装置
A 轴封的作用
为了防止高压液体从泵壳内沿轴的四周而漏出,或者外界 空气漏入泵壳内。 B 轴封的分类
主要由填料函壳、软填料和填料压盖组 填料密封: 成,普通离心泵采用这种密封。 轴封装置
机械密封: 主要由装在泵轴上随之转动的动环和固定于泵 端面密封
壳上的静环组成,两个环形端面由弹簧的弹力 互相贴紧而作相对运动,起到密封作用。
生产的多级离心泵一般为2-9级。
2)按叶轮上吸入口的数目
单吸泵 叶轮上只有一个吸入口,适用于输送量不大的情况。 双吸泵 叶轮上有两个吸入口,适用于输送量很大的情况。
2015-5-11
2015-5-11
3)按离心泵的不同用途 输送清水和物性与水相近、无腐蚀性且杂质很 水泵 少的液体的泵, (B型) 耐腐蚀泵 接触液体的部件(叶轮、泵体)用耐腐蚀材料制 成。要求:结构简单、零件容易更换、维修方便 、密封可靠、用于耐腐蚀泵的材料有:铸铁、高
之内。 • 叶轮紧固于泵轴上 泵轴与电机相连, 可由电机带动旋转。
• 吸入口位于泵壳中央与吸入管路相连,并在吸入管底部装
一止逆阀。 • 泵壳的侧边为排出口,与排出管路相连,装有调节阀。
2015-5-11
2015-5-11
2. 离心泵的工作过程
• 开泵前,先在泵内灌满要输送的液体。
• 开泵后,泵轴带动叶轮一起高速旋转产 生离心力。液体在此作用下,从叶轮中 心被抛向叶轮外周,压力增高,并以很 高的速度(15-25 m/s)流入泵壳。
2015-5-11
1 2 u2QT ctg 2 u2 ) H (u2 c2 sin 2ctg 2 ) (u2 g 2r2b2 g 1 QT 2 (r2 ) ctg 2 ——离心泵基本方程式 g 2b2 g
对于某个离心泵(即其β2、γ2、b2固定),当转速 ω 一定时,理论压头与理论流量之间呈线形关系, 可表示为:
2015-5-11
理论压头与理论流量QT关系 流量可表示为叶轮出口处的径向速度与出口截面积的乘积
QT 2r2b2c2 sin
从点2处的速度三角形可以得出
c2 cos2 u2 c2 sin 2 ctg2
代入 H=u2c2cosα2/g
表示离心泵的理论压头与理论流量,叶轮的转速和直径、叶 轮的几何形状间的关系。
2015-5-11
• 在蜗形泵壳中由于流道的不断扩大,液体的流速减慢,使
大部分动能转化为压力能。最后液体以较高的静压强从排 出口流入排出管道。 • 泵内的液体被抛出后,叶轮的中心形成了真空,在液面压 强(大气压)与泵内压力(负压)的压差作用下,液体便
经吸入管路进入泵内,填补了被排除液体的位置。
离心泵之所以能输送液体,主要是依靠高速旋 转叶轮所产生的离心力,因此称为离心泵。
第二章
流体输送机械
2015-5-11
第 一 节
第 二章
液体输送机械 第二节 气体输送和压缩设备
流体输送机械
2015-5-11
• 在食品的生产加工中,常常需要将流体
• 从低处输送到高处;
• 从低压送至高压;
• 沿管道送至较远的地方。
• 为达到此目的,必须对流体加入外功,以克
服流体阻力及补充输送流体时所不足的能量。
安装角
工作 角
2015-5-11
• a)后弯叶片(β2<90°) ,
ctgβ2>0 。泵的理论压头随流量 QT的增大而减小 • b)径向叶片(β2=90°) ctgβ2=0 。泵的理论压头不随流
量QT而变化。
• c)前弯叶片(β2>90°)ctgβ2<0 。 泵的理论压头
• 随理论流量QT的增大而增大。
2015-5-11
一.离心泵的构造、操作原理与类型 1. 构造
2015-5-11
叶轮
蜗牛形通道; 叶轮偏心放; 可减少能耗,有利于动 能转化为静压能。
底阀(防止“气缚”)
叶轮
机壳


滤网(阻拦 固体杂质)
6~12片叶片
机壳等。
2015-5-11
• 由若干个弯曲的叶片组成的叶轮置于具有蜗壳通道的泵壳
液体随叶轮旋转 ;
经叶轮流道向外流动。
液体与叶轮一起旋转的速度u1或u2方向与所处圆周的切线方 向一致,大小为:
2r1n u1 60
2r2 n u2 60
2015-5-11
液体沿叶片表面运动的速度ω1、ω2,方向为液体质点所 处叶片的切线方向,大小与液体的流量、流道的形状等有关
两个速度的合成速度就是液体质点在点 1或点2处相对于
u2 u1 2 2 r2 r2 2 (r2 r1 ) r1 Fdr r1 r dr 2 2
2
2
2
2)叶轮中相邻的两叶片构成自中心向外沿逐渐扩大的液体 流道,液体通过时部分动能转化为静压能,这部分静
2 2 1 2 压能的增加可表示为:
2
2015-5-11
单位重量流体经叶轮后的静压能增加为:
2015-5-11
4. 基本部件和构造 1)叶轮 a)叶轮的作用 将电动机的机械能传给液体,使液体的动能有所提高。 b)叶轮的分类 闭式叶轮 叶片的内侧带有前后盖板,适于输送干 净流体,效率较高。
根据结构 开式叶轮 没有前后盖板,适合输送含有固体颗粒 的液体悬浮物。
半闭式叶轮只有后盖板,可用于输送浆料或含固体 悬浮物的液体,效率较低。
2
2
前弯叶片,动能的提高大于静压能的提高。 由于液体的流速过大,在动能转化为静压能的实际过 程中,会有大量机械能损失,使泵的效率降低。 一般都采用后弯叶片
2015-5-11
3、实际压头
离心泵的实际压头与理论压头有较大的差异,原因在于 流体在通过泵的过程中存在着压头损失,它主要包括: 1)叶片间的环流 2)流体的阻力损失 3)冲击损失
• 使液体的能量发生转换,一部分动能转变为静压能。 B. 导叶轮
为了减少液体直接进入蜗壳时的碰撞,在叶轮与泵壳之 间有时还装有一个固定不动的带有叶片的圆盘,称为导 叶轮。导叶轮上的叶片的弯曲方向与叶轮上叶片的弯曲
方向相反,其弯曲角度正好与液体从叶轮流出的方向相
适应,引导液体在泵壳的通道内平缓的改变方向,使能 量损失减小,使动能向静压能的转换更为有效。
•离心泵性能的改变
•离心泵的气蚀现象与允许吸上高 度
•离心泵的工作点与流量调节
其他类型的泵
2015-5-11
流体输送机械:向流体作功以提高流体机械能的装置。
流体输送机械种类: • 输送液体的机械通称为泵; 例如:离心泵、往复泵、旋转泵和漩涡泵。
• 输送气体的机械按不同的工况分别称为:
通风机、鼓风机、压缩机和真空泵。
H A BQT
2015-5-11
2、离心泵基本方程式的讨论
1)离心泵的理论压头与叶轮的转速和直径 的关系
H u 2 c2 cos 2 / g
• 当叶片几何尺寸(b2,β2)与理论流量一定时,
相关文档
最新文档