薄板弯曲问题-浙江大学
第九章弹性薄板弯曲问题
§ 9-4
边界条件 扭矩的等效剪力
(u , v) z =0 = 0
§ 9-2
弹性曲面的微分方程
1、取w=w(x,y)为基本未知量。 为基本未知量。 2、用w来表示u,v。 来表示u
∂w u=− z ∂x
∂w v=− z ∂y
3、用w来表示主要应变:ε x , ε y , γ xy 来表示主要应变:
∂ w ∂ w ∂ w ε x = − 2 z, ε y = − 2 z, γ xy = −2 z ∂x ∂y ∂x∂y
§ 9-1
概念和假定
小挠度理论 薄板:1 8 ~ 1 5) > δ b ≥ (1 80 ~ 1 100) 薄板: ( 大挠度理论 薄膜: δ b < (1 80 ~ 1 100) 薄膜:
本章研究小挠度薄板的弯曲问题。 本章研究小挠度薄板的弯曲问题。
厚板: δ 厚板:பைடு நூலகம்
b ≥ (1 8 ~ 1 5)
由平衡方程 得
Eδ 3 D= 12(1 − µ 2 )
D∇ w = q
4
∂ w ∂ w ∂ w ∇ = 4 + 2 2+ 4 ∂x ∂x ∂y ∂y
4 4 4 4
§ 9-3
薄板横截面上的内力
梁的内力是指梁横截面上的内力合力和合力矩。 梁的内力是指梁横截面上的内力合力和合力矩。 板的内力是指单位宽度的横截面( x1)上的内力合力 板的内力是指单位宽度的横截面(δx1)上的内力合力 和合力矩。应力向中面简化合成的主矢量和主矩。 和合力矩。应力向中面简化合成的主矢量和主矩。 弯曲应力 σ x , σ y ,τ xy = τ yx 沿z方向线性分布,合成 方向线性分布,
薄板弯曲问题
物理方程
应变
位移函数
薄板在弯曲变形后,薄板的法线没有伸缩;
w z 0 z
w wx, y
位移函数
薄板的法线,在薄板弯扭以后,保持为薄 板弹性曲面的法线;
xz yz 0
w u 0 x z
w v 0 y z
位移函数
u w z x
利用12个结点位移条件,由广义坐标法可 建立形函数,显然十分麻烦。
位移函数
w( x, y ) 1 2 x 12 xy
3
f x, y
w f x, y x y y
w f x, y y x x
D Dz
薄板弯曲问题的有限元法
结点 位移函数 位移 用插值方法求 内部各点位移
几何方程
结点力
平衡方程
应力
物理方程
应变
内力与应力的关系
薄板内力微元体如图所示。
h/2
- h/2
yx zdxdz
h/2 - h/2
y
h/2
- h/2
x zdydz
h/2
- h/2
x xy zdydz
该转角的确定包含了单元全部结点位移参数,由于非公共 边上结点位移的协调关系不能保证,因此一般
综上所述,本节构造的位移场不能完全满足收敛的协调性 准则,具体为挠度及切向转角跨单元协调,法向转角跨单 元不协调,因此该单元不是完全协调元。
弹性薄板矩形(R12)单元
4) 非完全协调元的收敛性
4 i 1
w N i d i N d
已知支座位移问题时
薄板弯曲问题的有限元法
弹性力学:平板弯曲问题 (2) 薄板弯曲经典解法
16q0
6
Dmn
m2 a2
n2 b2
2
(m 1,3,5, ; n 1,3,5, )
代入式(10.22),即得挠度的表达式 (受均布载荷)
m x n y
w 16q0
sin sin
a
b
D 6 m1,3,5,n1,3,5,
mn
m2 a2
n2 b2
2
(10.24)
由此可以用公式(10.11)求得内力的表达式。
y
2
w
t2 4
z 2
(10.5)
其中,D称为板的抗弯刚度,其表达式为
D Et3
12(1 2 )
(10.6)
最后,次要应力分量σZ,可根据z方向的平衡方程求得。
z xz yz
z
x y
将式(10.5)代入上式得
x
z
6D t3
4
w
t2 4
z 2
积分上式得
z
6D t3
4
w
t2 4
在边界上
w n 0
D 4 w q
将式(10.18)代入式(10.8)得
D
24 m a4
16 m a2b2
24m
b4
q
解得m并代入式(10.18)得
w
q
x a
2 2
y2 b2
2 1
8D
3 a4
2 a2b2
3 b4
这就是夹支边椭圆薄板在均布载荷作用下的挠度 表达式。
有了挠度表达式,就可以求的内力。
y2 b2
2
1
(10.18)
o
a
y 图10.6 椭圆板
第9章薄板弯曲问题
1. 纵向位移用 w(x,y) 表示:
u w , z x v w z y
对z进行积分,并利用 uz0 0, vz0 0 ,得
u w z, v w z
x
y
u w z, v w z
x
y
2. 主要应变分量用 w(x,y) 表示:
xz
2(1
E
2
)
z
2
h2 4
x
2w
在y=常数的前面这个截面上,也可推导出三个
公式,共得到下面六个公式,如下:
1
Mx
D
2w x 2
2w y 2
h/2
1
Myx
Mx
x
My
D
2w y2
2w
x2
h2
M xy
h
z
(2) 不计
zx
,
zy
,
引起的形变
z
zx
0
u z
w x
0
u w z x
zy
0
v z
w y
0
v w z y
薄板的物理方程就变为:
x
1 E
x y
y
1 E
y
x
xy
2(1 E
y
A
Fsy
D
y
2w
M
yx
D1
第五章 薄板弯曲问题有限元讲义
第五章薄板弯曲问题有限元法第一节薄板弯曲问题的有关概念一、基本概念1.薄板的定义:薄板是由上下两个平行的表面所构成的片状结构,其间距称为板厚。
同时,定义等分板厚的面为中面,当中面为平面时,称为平板,当中面为曲面时则称为壳体。
2.挠度; 板结构在承受横向载荷(弯矩、扭矩和横向剪力)作用下,发生弯扭而使薄板中面上各个点沿垂直中面方向发生的横向变形称为挠度,记为w。
3.薄板的两类问题:(1)平面应力板问题,载荷作用于板面内—(薄膜单元);在拉、压力和面内切力作用下,板内将产生薄膜内力,从而使板产生面内变形。
(2)薄板弯曲问题:其特点为:a) 几何尺寸:板的厚度远较长与宽的几何尺寸为小(一般厚度与板面最小尺寸之比小于1/5-1/10);(否则称为厚板)b) 载荷条件:结构仅承受垂直于板中面的横向载荷作用。
c) 小挠度条件;即挠度与板厚之比值较小,一般为w/t ≤1/5。
研究薄板弯曲问题时,通常以未变形的板的中面为xoy平面,厚度方向为z轴方向,3.板的一般问题:一般情况下,板既可承受横向载荷作用,也可同时承受平行于板中面的膜载荷作用。
(1) 薄板:在小挠度情况下,当两种载荷同时作用时,可认为两种变形互不影响,因此膜载荷的作用可按平面应力问题进行处理,而横向载荷的作用则按薄板弯曲问题来分析,两种问题引起的薄膜内力和弯曲内力的叠加便是一般载荷综合作用的结果。
(2)厚板:当1<w/t<5时为大挠度板,w/t≥5时为特大挠度板。
在大挠度情况下,薄板面内变形和弯扭变形之间将相互影响,即横向载荷也可能产生膜内力和面内变形,而膜载荷也可能产生弯曲内力和弯曲变形。
这时描述薄板变形的数学方程是非线性的,应采用更复杂的理论分析方法。
二.薄板弯曲问题求解的假设:(克希霍夫假设)1.法线假设垂直板中面的法线在板变形后仍垂直于弯曲的挠曲面,且法线线段没有伸缩,板的厚度无变化。
这样,垂直于中面的正应变便可忽略,即εz=0根据几何方程,可得因此挠度只是x,y的函数,表示为w=w(x,y),也即薄板中面上法线的各点都有相同位移。
薄板弯曲问题
第五章薄板弯曲问题机场学院2011/11/21CAUCCAUC两个平行面和垂直于这两个平行面的柱面或棱柱面所围成的物体,称为平板,简称为板。
bhyxzCAUCCAUC垂直于板面——平板弯曲问题byxzCAUCCAUC1、小变形假设:虽然板很薄,但它的挠度远小于板的厚度。
byxz)(0==z u 0)(0==z v 因为:2、板中面各点都没有平行于中面的位移,只发生弯曲变形。
x u x ∂∂=εy v y ∂∂=εyu x v xy ∂∂+∂∂=γ所以:0)(0==z x ε0)(0==z y ε0)(0==z y x γCAUC CAUC3、沿板的厚度方向挤压变形忽略不计。
byxz=∂∂=zw z ε所以:),(y x w w =在薄板中面的任一根法线上,薄板全厚度内的所有各点都具有相同的挠度。
CAUCCAUC保持在挠曲面法线上。
byxz应力分量:zx τzy τzσ远小于其余三个应力分量,其引起的形变忽略不计。
0=zx γ0=zx γ0=∂∂+∂∂xw z u 0=∂∂+∂∂yw z v 即:等价于:这样=∂∂=z w z ε0=zx γ0=zx γ中面法线不伸缩,仍为变形后曲面的法线CAUC CAUCxyxy x y y y x x EEE τµγµσσεµσσε)1(2)(1)(1+=−=−=薄板弯曲与平面应力问题有相同的物理方程。
CAUCCAUC1、几何方程byxz0=∂∂+∂∂x w z u 0=∂∂+∂∂y w z v xw z u ∂∂−=∂∂y w z v ∂∂−=∂∂),(2y x f z yw v +∂∂−=),(1y x f z xwu +∂∂−=0)(0==z u 0)(0==z v 因为:),(),(21==y x f y x fCAUCCAUCzxu ∂−=zyv ∂−=zxwx u x 22∂∂−=∂∂=εzyw y v y 22∂∂−=∂∂=εz yx w y u x v xy∂∂∂−=∂∂+∂∂=22γ221xw x ∂∂−=ρ221ywy ∂∂−=ρyx wxy ∂∂∂−=221ρ令:xx zρε=yy z ρε=xyxyz ργ=得:CAUCCAUCw y x y x xy y x ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂−=⎪⎪⎪⎭⎪⎪⎪⎬⎪⎪⎪⎩⎪⎪⎪⎨=⎭⎬⎫⎩⎨⎧222221111ρρρρ{}w y x y x z xy y x ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=222222γεεε写成列阵形式:应变列阵:CAUCCAUCxyxy x y y y x x EEE τµγµσσεµσσε)1(2)(1)(1+=−=−=xyxy x y y y x x EEE γµτµεεµσµεεµσ)1(2)(1)(122+=+−=+−={}w y x y x z xy y x ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=222222γεεεyx w Ez x w y w Ez y wx w Ez xy y x ∂∂∂+−=∂∂+∂∂−−=∂∂+∂∂−−=222222222221)(1)(1µτµµσµµσCAUCCAUCyx w Ez xw y w Ez yx xyy x ∂∂∂+−=∂∂+∂∂−−=∂+∂−−=2222222221)(1)(1µτµµσµµσ其它几项应力:w yh z E w xh z E zy zx22222222)4()1(2)4()1(2∇∂∂−−=∇∂∂−−=µτµτw hz h z Eh z 4223)1()21()1(6∇+−−−=µσCAUCCAUC在薄板的上表面有:qh z z −==2)(σ得:q w Eh =∇−423)1(12µ令:)1(1223µ−=Eh D qw D =∇42、微分方程CAUCCAUC xyab边界条件:0)(,0)(0)(,0)(0)(,0)(0)(,0)(220220220220=∂∂==∂∂==∂∂==∂∂=========b y b y y y a x a x x x xww x ww x ww x w w qw D =∇4微分方程:四边简支矩形薄板的重三角级数解答——纳维叶解法CAUCCAUC设重三角级数解为:b yn a x m A w m n mn ππsinsin 11∑∑∞=∞==代入微分方程:qb yn a x m A b n am D m n mn =+∑∑∞=∞=πππsin sin )(1122224b yn a x m C q m n mn ππsinsin 11∑∑∞=∞==将),(y x q q =也展成重三角级数:CAUCCAUC222226)(16bn a m Dmn q A mn +=π(m=1,3,5, m=1,3,5, ………… n=1,3,5, n=1,3,5, …………)∑∑∞=∞=+=...5,3,1,...5,3,12222260)(sin sin 16m n bn a m mn b yn a x m D q w πππ得挠度的表达式:CAUC CAUC荷代替q ,得:dxdyP q =b n a m bn a m abD P dxdy b n a m dxdy P b n a m abD A mn ηπξππηπξππsin sin )(4sin sin )(4222224222224+=+=CAUC CAUC集中载荷作用下的简支矩形板挠度表达式:b y n a x m bn a m b m a m abD P w m n ππηπξππsin sin )(sin sin 411222224∑∑∞=∞=+=M x yxzM y{}[]zDxyyx⎭⎬⎫⎩⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=ρτσσσ1zdzMhhxx∫−=22σ1、弯曲应力zdzMhhyy∫−=22σzdzMhhxyxy∫−=22τCAUC CAUCCAUC CAUC{}zdzM M M M h xy y x ∫−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=22}{σ完成积分:⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=ρρ1][1][12}{3D D hM ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−=21000101)1(12][23µµµµEh DCAUCCAUC2b2ayxzlmn kw θ yθ x(1)节点位移单元任一节点有三个位移分量:{}⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂−∂∂=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=i i i yi xi i i x w y w w w )()(θθδ{}{}Tyk xk k ynxn n ymxm m yl xl li w w w w θθθθθθθθδ={}{}T T kT nT mTli δδδδδ=CAUCCAUC31231131029283726524321xya y x a y a xy a y x a xa y a xy a x a y a x a a w +++++++++++=写成矩阵形式:{}a xy yx yxyyx xy xy xy xw ]1[33322322=或:{}a y x M w )],([=CAUCCAUC{}a xy yx yxy yx xy xy xy xw ]1[33322322={}a xy xyxy xy x yw x ]332020100[2322=∂∂=θ{}a y y x y xy xy x xw y ]302302010[3222−=∂∂−=θCAUC CAUC⎪⎪⎪⎪⎭⎪⎪⎬⎪⎪⎪⎪⎩⎪⎪⎨⎥⎥⎥⎥⎥⎥⎦⎢⎢⎢⎢⎢⎢⎣=⎪⎪⎪⎪⎭⎪⎪⎬⎪⎪⎪⎪⎩⎪⎪⎨654310000110000001a a a a y x y x y x y x v u v u n nn n m m m m n n m m {}[]{}a A e=δ[]{}[][]{}a A A A e 11−−=δ{}[]{}eA a δ1−=[]{}[][]{}{}eey x N A y x M a y x M w δδ)],([),(),(1===−A[][]k nm lN N N N y x N =),(形函数CAUCCAUC⎥⎥⎦⎤⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−++⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=111,111,21181][2222222222222222a x x b y y a x x x b y y b y y a x x y b y a x b y y a x x b y y a x x N i i i i i i i i ii i i i (i =l ,m ,n ,k )单元刚度阵:ee xy y x B N y x y x w y x y x }]{[}]{[2211112222222222δδρρρρ=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂−=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂−=⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎭⎬⎫⎩⎨⎧CAUCCAUC][][k n m l B B B B B =单元内力:eB D M }]{][[}{δ=[][][][]dxdy B D B k Ts ee∫=单元刚度阵:[]{}{}Q K =δ整体方程:。
薄板弯曲问题弹性理论分析及数值计算资料
薄板弯曲问题弹性理论分析及数值计算课程设计指导教师:孙秦学院:航空学院姓名:程云鹤学号: 2011300092班级: 01011105薄板弯曲问题弹性理论分析及数值计算一、一般三维体弹性系统求解微分方程体系总结1、弹性力学中的基本假定(1)连续性,即假定整个物体的体积都被组成这个物体的介质所填满。
(2)完全弹性,物体在引起形变的外力被除去后可完全恢复原形 (3)均匀性,即假定物体是由同一材料组成的。
(4)各向同性,物体的弹性在所有各个方向都相同。
(5)和小变形假定,即假定位移和形变是微小的。
2、平衡微分方程在一般空间问题中,包含15个未知函数,即6个应力分量、6个形变分量和3个位移分量,它们都是x,y,z 坐标变量的函数。
对于空间问题,在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立平衡微分方程、几何方程和物理方程;并在给定约束面或面力的边界上,建立位移边界条件或应力边界条件。
然后在边界条件下根据所建立的三套方程求解应力分量、形变分量和位移分量。
在物体内的任一点P ,割取一个微小的平行六面体,如图1-1所示。
根据平衡条件即可建立方程。
(1)分别以连接六面体三对相对面中心的直线为矩轴,列出力矩的平衡方程0=∑M ,可证明切应力的互等性:yx xy xz zx zy yz ττττττ===,,(2)分别以轴轴、轴、z y x 为投影轴,列出投影的平衡方程0=∑x F ,0=∑y F ,0=∑z F ,对方程进行约简和整理后,得到空间问题的平衡微分方程如下⎪⎪⎪⎭⎪⎪⎪⎬⎫=+∂∂+∂∂+∂∂=+∂∂+∂∂+∂∂=+∂∂+∂∂+∂∂000z yzxz z y xyzy y x zx yx x f y x z f x z y f z y x ττσττσττσ (1-1)3、物体内任一点的应力状态现在,假定物体在任一点P 的6个直角坐标面上的应力分量 ,,z y x ,σσσyx xy xz zx zy yz ττττττ===,,为已知,试求经过P 点的任一斜面上的应力。
薄板弯曲问题-浙江大学共36页PPT资料
从薄板内取出一个平行六面体,
它的三边长度分别为d x , d y和板的厚度
图(9-2)
在x为常量的横截面上,作用着 x , y , xz 在该截面的每单位宽度上,应力分量 x
a
对中面合成为弯矩 M x
2 a
z
x
dz
2
将式(9-4)中的第一式代入并对z进行积分,得
M x 1 E 2 2 x w 2 2 y w 2 a 2 a 2 z 2 d z 1 2 ( 1 E 32 ) 2 x w 2 2 y w 2
0 取 z
由几何方程的第三式得 w0wwx,y
z
结论:中面的任一根法线上的各点都有相同的横向位移,也就等于挠度
2)应力分量 xz , yz , z 远小于其余的3个应力分量
所引起的形变可以忽略不计
z 0,zx 0,yz 0
从而有 u w,v w z x z y
可见:中面的法线在薄板弯曲时保持不伸缩,并且成为弹性曲面的法线
x
12M 3
x
z,
y
12M 3
y
z,
xy
yx
12M 3
xy
z,
zx
6 FSx 3
2
4
z2
,
yz
6 FSy 3
2 4
z2
,
z
2
q
1 2
z
2
1
z
。
(9-11)
• 由内力表示的平衡微分方程
Qx Qy q0 x y
Mx x
M yyxQx
0
MxyMy x y
Qy
0
2M x2x22x M yxy 2M y2yq0
薄板的物
薄板弯曲问题
7.2 矩形薄板单元分析
• 式中的9 个元素如下:
上一页 下一页 返回
7.2 矩形薄板单元分析
• 其中
• 7.2.3 矩形单元的等效节点力和内力矩计算
• 若平板单元受到分布横向载荷q 的作用,则其等效节点力为:
上一页 下一页 返回
7.2 矩形薄板单元分析
• 当q = q0 为常量时,将式(7.14)代入式(7.33)并进行积分,于是 得:
• 7.2.1 矩形单元的位移模式
• 将平板中面用一系列矩形单元划分,则得到一个离散的系统以代替原 来的平板,要使各单元至少在节点上存在挠度及其斜率的连续性,必 须把挠度及其在x 和y 方向的一阶偏导数指定为节点位移(或称广义 位移)。通常将节点i 的位移列阵写成以下的形式:
下一页 返回
7.2 矩形薄板单元分析
不挤压、不拉伸,则沿z 向的正应力可忽略,即: • 4. 小挠度假设 • 薄板中面内的各点都没有平行于中面的位移,即:
上一页 下一页 返回
7.1 薄板的弯曲变形
•因
• 故有
• 因此,中面的任意一部分虽然弯曲成弹性曲面的一部分,但其在xy 面上的投影形状却保持不变。
上一页
返回
7.2 矩形薄板单元分析
上一页 下一页 返回
7.2 矩形薄板单元分析
• 最后两项的选取是使单元在边界上有三次式的形式。按照式(7.20) 可以算出转角,即:
上一页 下一页 返回
7.2 矩形薄板单元分析
• 将矩形单元的4 个节点坐标(ξ i , η i ) 分别代入式(7.20),就可以得 到用12 个参数来表示的节点位移分量的联立方程组,求解这12 个方 程,从中解出a1~a12,再代入式(7.21),经归纳并整理后就可以改 写成如下的形式:
第五章薄板弯曲问题有限元讲义
第五章薄板弯曲问题有限元讲义第五章薄板弯曲问题有限元法第⼀节薄板弯曲问题的有关概念⼀、基本概念1.薄板的定义:薄板是由上下两个平⾏的表⾯所构成的⽚状结构,其间距称为板厚。
同时,定义等分板厚的⾯为中⾯,当中⾯为平⾯时,称为平板,当中⾯为曲⾯时则称为壳体。
2.挠度; 板结构在承受横向载荷(弯矩、扭矩和横向剪⼒)作⽤下,发⽣弯扭⽽使薄板中⾯上各个点沿垂直中⾯⽅向发⽣的横向变形称为挠度,记为w。
3.薄板的两类问题:(1)平⾯应⼒板问题,载荷作⽤于板⾯内—(薄膜单元);在拉、压⼒和⾯内切⼒作⽤下,板内将产⽣薄膜内⼒,从⽽使板产⽣⾯内变形。
(2)薄板弯曲问题:其特点为:a) ⼏何尺⼨:板的厚度远较长与宽的⼏何尺⼨为⼩(⼀般厚度与板⾯最⼩尺⼨之⽐⼩于1/5-1/10);(否则称为厚板)b) 载荷条件:结构仅承受垂直于板中⾯的横向载荷作⽤。
c) ⼩挠度条件;即挠度与板厚之⽐值较⼩,⼀般为w/t ≤1/5。
研究薄板弯曲问题时,通常以未变形的板的中⾯为xoy平⾯,厚度⽅向为z轴⽅向,3.板的⼀般问题:⼀般情况下,板既可承受横向载荷作⽤,也可同时承受平⾏于板中⾯的膜载荷作⽤。
(1) 薄板:在⼩挠度情况下,当两种载荷同时作⽤时,可认为两种变形互不影响,因此膜载荷的作⽤可按平⾯应⼒问题进⾏处理,⽽横向载荷的作⽤则按薄板弯曲问题来分析,两种问题引起的薄膜内⼒和弯曲内⼒的叠加便是⼀般载荷综合作⽤的结果。
(2)厚板:当1⼆.薄板弯曲问题求解的假设:(克希霍夫假设)1.法线假设垂直板中⾯的法线在板变形后仍垂直于弯曲的挠曲⾯,且法线线段没有伸缩,板的厚度⽆变化。
这样,垂直于中⾯的正应变便可忽略,即εz=0根据⼏何⽅程,可得因此挠度只是x,y的函数,表⽰为w=w(x,y),也即薄板中⾯上法线的各点都有相同位移。
2.正应⼒假设在平⾏于中⾯的截⾯上,应⼒分量ζz、τzx及τyz远⼩于其他三个应⼒分量,可忽略不计。
3.⼩挠度假设板中⾯只发⽣弯曲变形⽽没有⾯内变形,即中⾯内各点没有平⾏于中⾯的位移,表⽰为:在这些假设前提下,薄板的位移、应变和应⼒都可⽤挠度w表⽰。
薄板弯曲问题
(板面)上,三个应力边界条件也已精
确满足。
⑷ 只有板边的边界条件尚未考虑,它 们将作为求解微分方程(f)的边界条件。
第九章 薄板弯曲问题
思考题
试比较梁的弯曲问题和薄板弯曲
问题的异同。
第九章 薄板弯曲问题
薄板内力
§9-3 薄板横截面上的内力
薄板内力,是薄板每单位宽度的横截面 上 ( 1) ,由应力合成的主矢量和主矩。 求薄板内力的目的:
故
( x , y , xy ) z 0 0.
因此,中面在变形后,其线段和面积 在xy面上的投影形状保持不变。
第九章 薄板弯曲问题
类似于梁的弯曲理论,在薄板弯曲问 题中提出了上述三个计算假定,并应用这 三个计算假定,简化空间问题的基本方程, 建立了小挠度薄板弯曲理论。 实践证明,只要是小挠度的薄板,薄 板的弯曲理论就可以应用,并具有足够的 精度。
第九章 薄板弯曲问题
内力符号
My
x
Mx
M yx M xy
M xy
M yx M yx dy y
Mx
z
M y My dy y
M x dx x
M xy dx x
y
FSy
FSx
FSy FSy dy y
FSx FSx dx x
第九章 薄板弯曲问题
中面内力平衡条件
w 取 εz 0 ,由 z 0 ,得 z
w w( x, y).
故中面法线上各点,都具有相同 的横向位移,即挠度w。(直法线假设)
第九章 薄板弯曲问题
2. 次要应力分量 zx , zy 和 z 远小于其他应力 分量,它们引起的形变可以不计。 薄板中的应力,与梁相似,也分为三个 数量级: 弯应力 ζ x ,ζ(合成弯矩 M x ,M y) y
薄板的弯曲破坏分析与预测
薄板的弯曲破坏分析与预测薄板是一种常见的结构材料,广泛应用于建筑、航空航天、汽车等领域。
然而,在使用过程中,薄板可能会遭受弯曲破坏,导致结构的失效。
因此,对薄板的弯曲破坏进行分析与预测,对于设计和使用薄板结构具有重要意义。
首先,我们来探讨薄板弯曲破坏的原因。
薄板在受到外力作用时,会发生弯曲变形。
当外力超过薄板的承载能力时,薄板可能会发生破坏。
薄板的弯曲破坏主要包括弯曲变形和局部破坏两个方面。
在弯曲变形方面,薄板在受到外力作用时,会发生曲率变化,即薄板的中部会凸起或凹陷。
这种变形会导致薄板的强度和刚度下降,进而影响结构的稳定性和安全性。
因此,对于薄板的弯曲变形进行分析与预测,可以帮助我们更好地评估薄板结构的承载能力。
而在局部破坏方面,薄板在受到外力作用时,可能会出现局部的破坏现象,如薄板的边缘开裂、孔洞扩展等。
这种局部破坏会导致薄板的强度降低,进而引发整体结构的失效。
因此,对于薄板的局部破坏进行分析与预测,可以帮助我们更好地评估薄板结构的寿命和可靠性。
接下来,我们来探讨薄板弯曲破坏的分析与预测方法。
薄板的弯曲破坏是一个复杂的力学问题,需要运用弹性力学、塑性力学、断裂力学等多个学科的知识进行分析。
其中,有限元分析是一种常用的分析方法,可以通过建立薄板的数值模型,计算薄板的应力和变形,进而评估薄板的弯曲破坏情况。
此外,实验方法也是分析薄板弯曲破坏的重要手段。
通过设计合适的试验装置和加载方式,可以模拟薄板在实际使用中的受力情况,从而观察薄板的弯曲变形和破坏过程。
通过实验数据的分析,可以得到薄板的弯曲破坏特征和破坏机制,为薄板结构的设计和使用提供参考依据。
此外,还可以借助计算机模拟和人工智能等新技术手段,对薄板的弯曲破坏进行预测。
通过建立合适的模型和算法,可以预测薄板在不同工况下的弯曲破坏情况,从而指导薄板结构的设计和使用。
这种方法不仅可以提高分析和预测的准确性,还可以节省时间和成本,提高工作效率。
综上所述,薄板的弯曲破坏分析与预测对于设计和使用薄板结构具有重要意义。
有限元 第7讲 薄板弯曲问题有限元法
利用几何方程,可以得到板内各点的应变分量是
u x x v y y xy u v y x
2w 2 x 2 w z 2 y 2w 2 xy
图 7-1
得
u w , z x
v w z y
w w , 上面两式分别对z积分,并注意 ,即与z无关,得 x y
w w u z f1 ( x , y ) , v z f2 ( x, y ) x y
式中 f 1 ( x , y ) 和 f 2 ( x , y ) 是x,y的任意函数。
绕y轴转角
2w u 2 x x 2w v z 2 z y y 2w u v 2 y x xy
2
下面将讨论弹性板弯曲的有限单元法。当平板的厚度h远小于
其长度a与宽度 b ( h b ) 时,称为薄板。对于薄板小挠度问题 5 h ( w ) ,它的变形完全由横向挠度w所确定。因此,可以取w和它 5 的若干阶导数作为结点参数建立平板单元。目前已经提出了非常多 的平板单元,但是这里将着重介绍比较常用的矩形单元和一种三角 形单元,都不是完全协调的单元,但是所得到的计算结果表明,它 们的收敛性和精确度是良好的。
2)厚度不变假设:即忽略板厚变化。即 z 0 。由于板内各点 的挠度与 z坐标无关,只是x,y的函数,即 w w( x, y) 3)中面上正应力远小于其它应力分量假设:平行于中面的各层 相互不挤压,不拉伸,沿z向的正应力可忽略,即 z 0
4)中面无伸缩假设:弯曲过程中,中面无伸缩,(薄板中面 内的各点都没有平行中面的位移)即 u z0 0 vz0 0 u v v u 因为: x , y , xy x y x y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(9-10)
FSx D
x
w , FSy D
y
薄板内力正负方向的规定,是从应力的正负的方向的规定来得出的:
正的应力合成的主矢量为正,正的应力乘以正的矩臂合成的主矩为正; 反之为负 所有内力的正方向,如图(9-3)所示
M
M
y
yx
x
dx
M
dx
M
x
M
x
M x
xy
M
xy
从而有
u z w v w , x z y
可见:中面的法线在薄板弯曲时保持不伸缩,并且成为弹性曲面的法线
薄板的物理方程
x
1 E 1 E 2
y
xy
x y , y x , 1 x y。 E
(9-4)
4)将次要应力分量
xz , yz 用
w。
(9-5)
zx
zy
2 2 2 w, z 2 4 x 2 1 2 2 E 2 z w。 2 4 y 2 1
z 1
4
w。
6)导出微分方程
根据薄板的上板面的边界条件
z z
2
q,
将
z
3 2
的表达式代入上式,得到薄板的弹性曲面微分方程
E
12 1
其中 D
wq
4
3 2
或
D w q,
4
E
1 2 1
称为薄板的弯曲刚度
w w 2 2 x y
2 2
=0 xa
w w (2 ) 3 2 xy x
3 3
=0 xa
w w 2 2 x y
2 2
=0 y b
w w (2 v) 2 3 x y y
w
2
x
2
z, y w
2
v y
w
2
y
2
u y
2
xy
z,
(a)
3)将主要应力分量
x , y , xy
用
w
x
2 2w w 2 2 2 1 x y
y
xy
, 2 2 Ez w w , 2 2 2 1 y x 2 Ez w 。 1 xy Ez
§9-3薄板横截面上的内力
薄板内力: 指薄板横截面的每单位宽度上,由应力合成的主矢量和主矩
注意: 由于在板的侧面,很难使应力分量精确地满足应力边界条件,但板的 侧面是板的次要边界,可应用圣维南原理,用内力的边界条件来代替 应力的边界条件
从薄板内取出一个平行六面体, 它的三边长度分别为dx , dy和板的厚度
Vx Qx
M y
xy
及两端的集中力
RB=(Mxy)B,RC=(Mxy)C
O RB z B y RA C x
A
RC
最终角点B出现未抵消的的集中力应是
RB=(Myx)B+(Mxy)B=2(Myx)B
w w V x D 3 (2 v) 2 xy x
3 3
R B 2 D (1 v )(
w
2
xy
)
w w Vy D (2 v) 3 2 x y y
3 3
O
C
x
b
a A y B
(1)自由边 弯矩和合成剪力为零,因此, 在x=a上, Mx=0,Vx=0, 在y=b上,My=0,Vy=0,
( w
2
x
2
2
) x0 0
) xa 0
(w) y=0=0 (w) y=b=0
sin m x a
m x a
(
y
2
2
) y0 0
(w) x=a=0
(
w x
2
(
w y
2
) y b 0
q
c
4
mn
sin
ny b
利用三角级数的正交性,求得
c mn
ab
E
其中
2
2 2
x
2 2
y
5)将更次要应力分量
z
用
w
表示。
z
E 2 1 E
3 2 2
2 1 3 3 z z 2 3 8 4
2
4
w
6 1
z 1 2
薄板的小挠度弯曲问题是按位移求解,取挠 度 w w x , y 作为基本未知函数。
1)将纵向位移 u , v 用挠度 w 表示。
纵向位移表示为
u
w x
z, v
w y
z。
x 2)将主要应变分量 , y , xy
用 w
表示
x xy
u x v x
M x
xy
dx
dy
M y
M
y
dy
M
yx
M y
yx
dy
y
FS y
FS x
FSx
FSx x
dx
FSy
FSy y
dy
图(9-3)
各应力分量与内力的关系
x
12 M
x
3
z ,
y
12 M
y
3
z,
xy yx zx z
12 M
xy
3
z,
(9-11)
w 2 x
2
0 y0
所以,简支边的边界条件可写成
w 2 y
2
(w) y=0=0
0 y0
(3)固定边 在x=0的固定边上,挠度和转角为零,故边界条件可写成 (w) x=0=0 (4)角点条件 板边的分布扭矩代换为分布剪力后,在角点将出现一个集中力,这个集中 力就是支座对板角点的集中反力。在求得挠度后,这个集中力可由式求得 对于无支座支撑的角点,例如图中的两自由边界的交点B,则要求 RB =2(Myx)x=a, y=b = 0,
2 2w w 0 2 2 y xa x
自由边AB:
(My)y=b=0
2 2w w 0 2 2 x xb y
(Vy)y=b = q
3 3w w D (2 ) 3 2 y x y
薄板中面内的各点都没有平行于中面的位移,即
u z 0
由几何方程知
0, v
z0
0。
x z 0
0, y 0, xy
z
z0
0
可知,中间的任意一部分,虽然弯曲成为弹性曲面的一部分,但它在xy面上的 投影形状却保持不变
§9-2 弹性曲面的微分方程
3 3
=0 y b
(2)简支边 在y=0的简支边界上,挠度和弯矩应为零,即
w w 2 2 y x
2 2
(w) y=0=0, (My) y=0=
0 y0
由于(w) y=0=0表示沿x轴,w无变化,必然有
w 0, x y0
2 2 a 3 2 2
(a)
同理: M
xy
E 1 E
xy
3 2
w
2
a 2 a 2
z dz
2
E
3
w
2
1 2 (1 ) x y
(b)
FSx
1 2 (1 ) X
w
2
(c)
同样,在y为常数的横截面上,
M
y
2
2
(f)
将式(9-9)代入式(a)至(f),薄板的内力可简写成
2 2w w D 2 2 x y
M
x
,M w
2
y
2 2w w D 2 2 y x
,
M
xy
M
yx
D 1
2
xy
, w。
M
yx
M x
yx
dx
( M yx B )
B
A
( M yx A )
dx
dx
• 可用2个大小相等为Myx,方向相反,相距dx的垂直力代替
• 可用2个大小相等为 M
yx
M x
yx
dx
,方向相反,相距dx的垂直力代替
M x
yx
Vy Qy
此外,还有两端未抵消的集中剪力
RA=(Myx)A, RB=(Myx)B
0
a
b
q sin
sin
ny b
dxdy
0
代入方程22w=q
图(9-2)
在x为常量的横截面上,作用着 x , y , xz
在该截面的每单位宽度上,应力分量
a
x
对中面合成为弯矩
M
x
2 a 2
z x dz
将式(9-4)中的第一式代入并对z进行积分,得