比较器原理

比较器原理
比较器原理

比较器原理,比较器的工作原理

电压比较器(以下简称比较器)是一种常用的集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。

什么是电压比较器以其原理

简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)是比较器,它有两个输入端:同相输入端(“+”端)及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。VA和VB的变化如图1(b)所示。在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。在这种情况下,Vout的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout输出低电平。根据输出电平的高低便可知道哪个电压大。

比较器原理:对两个或多个数据项进行比较,以确定它们是否相等,或确定它们之间的大小关系及排列顺序称为比较。能够实现这种比较功能的电路或装置称为比较器。比较器是将一个模拟电压信号与一个基准电压相比较的电路。比较器的两路输入为模拟信号,输出则为二进制信号,当输入电压的差值增大或减小时,其输出保持恒定。

比较器两大类别

1.模拟比较器

将模拟量与一标准值进行比较,当高于该值时,输出高(或低)电平.反之,则输出低(或高)电平.例如,将一温度信号接于运放的同相端,反相端接一电压基准(代表某一温度),当温度高于基准值时,运放输出高电平,控制加热器关闭,反之当温度信号低于基准值时,运放输出低电平,将加热器接通.这一运放就是一个简单的比较器,因为输入与输出同相,称为同相比较器..有的模拟比较器具有迟滞回线,称为迟滞比较器,用这种比较器,有助于消除寄生在信号上的干扰.

2.数字比较器

用来比较二组二进制数是否相同,相同时输出(或低)高电平,反之,则输出相反的电平.

最简单的数字比较器是一位二进制数比较器,是一个异或门(或同或门).

比较器的工作原理

比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。

图4(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4个电阻的关系式为:Vout= (1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。若R1=R2,R3=RF,则Vout=RF/R1(VA-VB),RF/R1为放大器的增益。当R1=R2=0(相当于R1、R2短路),R3=RF=∞(相当于R3、R F开路)时,Vout=∞。增益成为无穷大,其电路图就形成图4(b)的样子,差分放大器处于开环状态,它就是比较器电路。实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。

从图4中可以看出,比较器电路就是一个运算放大器电路处于开环状态的差分放大器电路。

同相放大器电路如图5所示。如果图5中RF=∞,R1=0时,它就变成与图3(b)一样的比较器电路了。图5中的Vin 相当于图3(b)中的VA。

相关文章推荐:

运放与比较器的区别

电压比较器原理介绍

一、电压比较器原理 电压比较器是集成运放非线性应用电路,常用于各种电子设备中,那么什么是电压比较器呢? 它将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。比较器可以组成非正弦波形变换电路及应用于模拟与数字信号转换等领域。 图1所示为一最简单的电压比较器,UR为参考电压,加在运放的同相的输入端,输入电压ui加在反相的输入端。 图1电压比较器原理图(a)及传输特性(b) (a)电路图 (b)传输特性当ui<U R时,运放输出高电平,稳压管Dz反向稳压工作。输出端电位被其箝位在稳压管的稳定电压U Z,即 u O=U Z 当ui>U R时,运放输出低电平,DZ正向导通,输出电压等于稳压管的正向压降U D,即 uo=-U D 因此,以U R为界,当输入电压ui变化时,输出端反映出两种状态,高电位和低电位。 表示输出电压与输入电压之间关系的特性曲线,称为传输特性。图1(b)为(a)图比较器的传输特性。 常用的电压比较器有过零电压比较器、具有滞回特性的过零比较器、滞回电压比较器,窗口(双限)电压比较器。 二、集成电压比较器简介 作用:可将模拟信号转换成二值信号,即只有高电平和低电平两种状态的离散信号。应用:作为模拟电路和数字电路的接口电路。 特点:比集成运放的开环增益低,失调电压大,共模抑制比小;但其响应速度快,传输延迟时间短,而且不需外加限幅电路就可直接驱动TTL、CMOS和ECL等集成数字电路;有些芯片带负载能力很强,还可直接驱动继电器和指示灯(例如LM311)。 三、电压比较器的应用 电压比较器(以下简称比较器)是一种常用的集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。 电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这是个单电源比较器),同相端输入电压V A,反相端输入V B。V A和V B的变化如图1(b)所示。

比较器原理

比较器原理,比较器的工作原理 电压比较器(以下简称比较器)是一种常用的集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。 什么是电压比较器以其原理 简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)是比较器,它有两个输入端:同相输入端(“+”端)及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。VA和VB的变化如图1(b)所示。在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。在这种情况下,Vout的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout输出低电平。根据输出电平的高低便可知道哪个电压大。 比较器原理:对两个或多个数据项进行比较,以确定它们是否相等,或确定它们之间的大小关系及排列顺序称为比较。能够实现这种比较功能的电路或装置称为比较器。比较器是将一个模拟电压信号与一个基准电压相比较的电路。比较器的两路输入为模拟信号,输出则为二进制信号,当输入电压的差值增大或减小时,其输出保持恒定。 比较器两大类别 1.模拟比较器 将模拟量与一标准值进行比较,当高于该值时,输出高(或低)电平.反之,则输出低(或高)电平.例如,将一温度信号接于运放的同相端,反相端接一电压基准(代表某一温度),当温度高于基准值时,运放输出高电平,控制加热器关闭,反之当温度信号低于基准值时,运放输出低电平,将加热器接通.这一运放就是一个简单的比较器,因为输入与输出同相,称为同相比较器..有的模拟比较器具有迟滞回线,称为迟滞比较器,用这种比较器,有助于消除寄生在信号上的干扰. 2.数字比较器 用来比较二组二进制数是否相同,相同时输出(或低)高电平,反之,则输出相反的电平. 最简单的数字比较器是一位二进制数比较器,是一个异或门(或同或门). 比较器的工作原理 比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。 图4(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4个电阻的关系式为:Vout= (1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。若R1=R2,R3=RF,则Vout=RF/R1(VA-VB),RF/R1为放大器的增益。当R1=R2=0(相当于R1、R2短路),R3=RF=∞(相当于R3、R F开路)时,Vout=∞。增益成为无穷大,其电路图就形成图4(b)的样子,差分放大器处于开环状态,它就是比较器电路。实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。

电压比较器原理分析(学年论文)

电压比较器原理分析 目录 第一章绪论 (2) 第二章电压比较器原理图 (2) 第三章电压比较器工作原理及应用 (3) 3.1 什么是电压比较器 (3) 3.2 电压比较器的工作原理 (5) 3.3 比较器与运放的差别 (5) 第四章比较器典型应用电路分析 (6) 4.1 散热风扇自动控制电路 (6) 4.2窗口比较器 (9) 参考文献 (11)

第一章绪论 电压比较器是对输入信号进行鉴幅与比较的电路,是组成非正弦波发生电路的基本单元电路,在测量和控制中有着相当广泛的应用。本文主要讲述各种电压比较器及其对应的应用电路,讲述各种电压比较器的特点及其电压传输特性,同时阐述电压比较器的组成特点和分析方法。 电压比较器是集成运放非线性应用电路,他常用于各种电子设备中,那么什么是电压比较器呢?下面我给大家介绍一下,它将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。比较器可以组成非正弦波形变换电路及应用于模拟与数字信号转换等领域。 图1 图1所示为一最简单的电压比较器,UR为参考电压,加在运放的同相的输入端,输入电压UI加在反相的输入端。 第二章电压比较器原理图 电压比较器可将模拟信号转换成二值信号,即只有高电平和低电平两种状态的离散信号。因此,可用电压比较器作为模拟电路和数字电路的接口电路。集成电压比较器虽然比集成运放的开环增益低,失调电压大,共模抑制比小,但其响应速度快,传输延迟时间短,而且一般不需要加限幅电路就可以直接驱动TTL、CMOS和ECL等集成数字电路;有些芯片带负载能力强,还可以直接驱动继电器和指示灯。 按一个器件上所含有电压比较器的个数,可分为单、双和四电压比较器;按功能,可分为通用性高速型低功耗型低电压型和高精度型电压比较器;按输出方式,可分为普通集电极(或漏极)开路输出或互补输出三种情况。集电极(或漏极)开路输出电压必须在输出端接一个电阻至电源,若一个为高电平,则另一个必为低电平。 此外,还有的集成电压比较器带有选通断,用来控制电路是处于工作状态,还是处于禁止状态。所谓工作状态,是指点乱编电压传输特性工作;所谓禁止状态,是指电路不按电压传输特性工作,从输出端看进去相当于开路,即处于高阻状态。 下面是对具体电压比较器的功能电路分析:(A)电路图1传输特性当UI<UR时,运放输出高电平,稳压管DZ反向稳压工作。输出端电位被其箝位在稳压管的稳定电压UZ,即UO=UZ

运算放大器组成的比较器

1. 功能及应用:主要用来判断输入信号电位之间的相对大小,它至少有两个输入端及一个输出端,通常用一个输入端接被比较信号U i,另一个则接基准电压V R定门限电压(或称阀值)的U T。输出通常仅且仅有二种可能即高、低二电平的矩形波,应用于模-数转换,波形产生及变换,及越限警等。 2. 运放的工作状态:开环和正反馈应用:运放在线性运用时,由于开环增益一般在105以上,所以其对应的输入的线性范围很小,U i数量级,为了拓宽其线性范围就必须引入负反馈,降低其开环增益。而比较器则希望其输入的线性范围越小越好(即比较灵敏度越高)采用开环或使开环增益更高的正反馈应用。在这儿有必要重复展现运放开环电压传输特性。见图8.2.1,请注意横、纵坐标标度的不同 (1) 从途中可化称 (2) 若U i发出变化,使Uo从负波饱和值突变到正饱和值,只在经过极窄的线性区 时,才遵循在线性工作时才特有的“虚短”,其它时刻“虚短”不复存在。 (3) 若横坐标采用与纵坐标相同的标尺,则线性部分特性与纵轴合拢。 (4) 若用正反馈使Aod↑,则可缩短状态的转换时间。 3. 分类: (1) 单限比较器

(2) 迟滞比较器(Schmitt) (3) 双限比较器(窗口比较器) 二. 单限比较器 1. U i与U R分别接运放两输入端的开环串接比较器,见图8. 2.2 ΔU i>U R Uo=+Uom ΔU i

电压比较器实验报告

85 专业:电气工程卓越 人才 姓名:卢倚平 学号: ________ 验 … 一 二、实验内容 五、思考题及实验心得 一、实验目的 了解电压比较器与运算放大器的性能区别: 二、实验数据记录、处理与分析 ①【过零电压比较器电路】 过零电压比较器是电压比较电路的基本结构,它可将交流信号转化为同频率 的双极性矩形波。常用于测量正弦波的频率相位等。当输入电压in< 输出out = 0L ;反之,当输入电压in N out 时,输出out = OH 。 实验仿真: 课程名称: 电路打电r 技术实於 指导老师: 周箭 成绩: 实验名称: 电压比较器及其应用 实验类型: 电子电路实验同组 学生姓名: 邓江毅 三、主要仪器设备 四、实验数据记录、处理与分析 一、实验目的 2. 举握电压比较器的结构及特点; 3. 掌握电压比较器电圧传输特性的测试方法: 4. 学习比较器在电路设计中的应用。

不疲器?5(£C1I JS J 时同270.001ms 270.001 ms 0.000s JIf 「反向—] 通道 上 ?4.998 V -4.998 V 0.000 V 通道丿 -17.847V -17.847 V 0.000 V H as 12^1 时基_ 标度:10 msX)iv X轴位移(格):0 通ilA 刻度: 20 VQ2 Y轴位移 (格):0 通ilB ____ 刻度:5 VQiv Y轴位移 (榆:0 L保Q外触发 触发 边沿:SB 0回国] 水 平:0 ~ 实测实验记录: 由于时间不足,没有做过零比较器的相关实测 ②【基本单门限比较器电路】 单门限比较器的输入信号Vin接比较器的同相输入端,反相输入端接参考电 压Vref (门限电平)。当输入电压Vin>Vref 输出为高电平VOH:当输入电压Vin

电压比较器工作原理及应用实例

电压比较器工作原理及应用实例 时间:2011-11-24来源:作者:方佩敏 来源:https://www.360docs.net/doc/0017903621.html, 本文主要介绍电压比较器基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。 电压比较器(以下简称比较器)是一种常用的集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。 什么是电压比较器 简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)是比较器,它有两个输入端:同相输入端(“+”端)及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。VA和VB的变化如图1(b)所示。在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。在这种情况下,Vout 的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout 输出低电平。根据输出电平的高低便可知道哪个电压大。 如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。与图1(c)比较,其输出电平倒了一下。输出电平变化与VA、VB的输入端有关。 图2(a)是双电源(正负电源)供电的比较器。如果它的VA、VB输入电压如图

1(b)那样,它的输出特性如图2(b)所示。VB>VA时,Vout输出饱和负电压。 如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。此VB称为参考电压、基准电压或阈值电压。如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。 比较器的工作原理 比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。 图4(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4个电阻的关系式为: Vout=(1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。若R1=R2,R3=RF,则 Vout=RF/R1(VA-VB),RF/R1为放大器的增益。当R1=R2=0(相当于R1、R2短路),R3=RF=∞(相当于R3、RF开路)时,Vout=∞。增益成为无穷大,其电路图就形成图4(b)的样子,差分放大器处于开环状态,它就是比较器电路。实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。

运放与比较器的用法

运放与比较器的用法 NE5532是双极型双运放,剩下的一个不用,可以将它们的输入端全部悬空即可,跟该运放相似的还有LM358、LM324,它们不用的输入端都可以悬空。而对于CMOS运放,由于输入阻抗极高,若将输入端悬空,很容易受干扰,故对于像ICL7642、MC14573这类CMOS 运放,内部用不完的运放,输入端一般要接高电平或地。 1、运放可以连接成为比较输出,比较器就是比较。 2、比较器输出一般是OC,便于电平转换;比较器没有频补,Slew Rate比同级运放大, 但接成放大器易自激。 比较器的开环增益比一般放大器高很多,因此比较器正负端小的差异就引起输出端变化. 3、频响是一方面,另外运放当比较器时输出不稳定,不一定能满足后级逻辑电路的要求。 4、比较器为集电极开路输出,容易输出TTL电平,而运放有饱和压降,使用不便。 关于运算放大器与专用比较器的区别可分为以下几点: 1.比较器的翻转速度快,大约在ns数量级,而运放翻转速度一般为us数量级(特殊高速运放 除外); 2.运放输入可以接成负反馈电路,而比较器不能使用负反馈,虽然比较器也有同相和反相两 个输入端,但因为其内部没有相位补偿电路,如果输入负反馈,电路不能稳定工作,内部无相位补偿电路.这也是比较器比运放速度快的原因. 3.运放的初级一般采用推挽电路,双极性输出,而多数比较器输出极为集电级开路结构,所 以需要上拉电阻,单极性输出,容易和数字电路连接. 加法器和减法器就是用运算放大器搭的运算电路. 电压比较器 电压比较器可以看作是放大倍数接近―无穷大‖的运算放大器。 电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系): 当‖+‖输入端电压高于‖-‖输入端时,电压比较器输出为高电平; 当‖+‖输入端电压低于‖-‖输入端时,电压比较器输出为低电平; 电压比较器的作用:它可用作模拟电路和数字电路的接口,还可以用作波形产生和变换电路等。利用简单电压比较器可将正弦波变为同频率的方波或矩形波。 简单的电压比较器结构简单,灵敏度高,但是抗干扰能力差,因此我们就要对它进行改进。改进后的电压比较器有:滞回比较器和窗口比较器。 运放,是通过反馈回路和输入回路的确定―运算参数‖,比如放大倍数,反馈量可以是输出的电流或电压的部分或全部。而比较器则不需要反馈,直接比较两个输入端的量,如果同相输入大于反相,则输出高电平,否则输出低电平。电压比较器输入是线性量,而输出是开关(高低电平)量。一般应用中,有时也可以用线性运算放大器,在不加负反馈的情况下,构成电压比较器来使用。

LM339电压比较器原理应用

四电压比较器LM339的8个典型应用例子 LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。 LM339集成块采用C-14型封装,图1为外型及管脚排列图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。 LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。 单限比较器电路 图2a给出了一个基本单限比较器。输入信号Uin,即待比较电压,它加到同相输入端,在反相输入端接一个参考电压(门限电平)Ur。当输入电压Uin>Ur时,输出为高电平UOH。图2b为其传输特性。

电压比较器原理及使用

实验十电压比较器的安装与测试 一.实验目的 1.了解电压比较器的工作原理。 2.安装和测试四种典型的比较器电路:过零比较器、电平检测器、滞回比较器和窗口比较器。 二.预习要求 1.预习过零比较器、电平检测器、滞回比较器和窗口比较器的工作原理。 2.预习使用示波器测量信号波形和电压传输特性的方法。 三.实验原理 电压比较器的基本功能是能对两个输入电压的大小进行比较,判断出其中那一个比较大。比较的结果用输出电压的高和低来表示。电压比较器可以采用专用的集成比较器,也可以采用运算放大器组成。由集成运算放大器组成的比较器,其输出电平在最大输出电压的正极限值和负极限值之间摆动,当要和数字电路相连接时,必须增添附加电路,对它的输出电压采取箝位措施,使它的高低输出电平,满足数字电路逻辑电平的要求。 下面讨论几种常见的比较器电路。 基本过零比较器(零电平比较器) 过零比较器主要用来将输入信号与零电位进行比较,+15V 以决定输出电压的极性。电路如图1所示:u i 2 7 放大器接成开环形式,信号u i从反向端输入,同μA7416u o 相端接地。当输入信号u i< 0时,输出电压u o为正极限34 值U OM;由于理想运放的电压增益A u→∞,故当输-15V 入信号由小到大,达到u i = 0 时,即u -= u + 的时刻, 输出电压u o 由正极限值U OM 翻转到负极限值-U OM。图 1 反向输入过零比较器 当u i >0时输出u o为负极限值-U OM。因此,输出翻转的临界条件是u + = u - = 0。 即:+U OM u i< 0 u o = (1) -U OM u i >0 其传输特性如图2(a)所示。所以通过该电路输出的电压值,就可以鉴别输入信号电压u i是大于零还是小于零,即可用做信号电压过零的检测器。

常见电压比较器分析比较

常见电压比较器分析比较 电压比较器通常由集成运放构成,与普通运放电路不同的是,比较器中的集成运放大多处于开环或正反馈的状态。只要在两个输入端加一个很小的信号,运放就会进入非线性区,属于集成运放的非线性应用范围。在分析比较器时,虚断路原则仍成立,虚短及虚地等概念仅在判断临界情况时才适应。?? 一、零电平比较器(过零比较器) 电压比较器是将一个模拟输入信号ui与一个固定的参考电压UR进行比较和鉴别的电路。 参考电压为零的比较器称为零电平比较器。按输入方式的不同可分为反相输入和同相输入两种零电位比较器,如图1(a)、(b)所示

图1 过零比较器 (a)反相输入;(b)同相输入 通常用阈值电压和传输特性来描述比较器的工作特性。 阈值电压(又称门槛电平)是使比较器输出电压发生跳变时的输入电压值,简称为阈值,用符号UTH表示。 估算阈值主要应抓住输入信号使输出电压发生跳变时的临界条件。这个临界条件是集成运放两个输入端的电位相等(两个输入端的电流也视为零),即U+=U–。对于图1(a)电路,U–=Ui, U+=0, UTH=0。

传输特性是比较器的输出电压uo与输入电压ui在平面直角坐标上的关系。 画传输特性的一般步骤是:先求阈值,再根据电压比较器的具体电路,分析在输入电压由最低变到最高(正向过程)和输入电压由最高到最低(负向过程)两种情况下,输出电压的变化规律,然后画出传输特性。 二、任意电平比较器(俘零比较器) 将零电平比较器中的接地端改接为一个参考电压UR(设为直流电压),由于UR的大小和极性均可调整,电路成为任意电平比较器或称俘零比较器。

图2 任意电平比较器及传输特性 (a)任意电平比较器;(b)传输特性 图 3 电平检测比较器信传输特性 (a)电平检测比较器;(b)传输特性 电平电压比较器结构简单,灵敏度高,但它的抗干扰能力差。也就是说,如果输入信号因干扰在阈值附近变化时,输出电压将在高、低两

比较器工作原理及应用

电压比较器(以下简称比较器)就是一种常用得集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A /D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用得电压比较器。 什么就是电压比较器 简单地说,电压比较器就是对两个模拟电压比较其大小(也有两个数字电压比较得,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)就是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“—”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这就是个单电源比较器),同相端输入电压VA,反相端输入VB。VA与VB得变化如图1(b)所示。在时间0~t1时,VA〉VB;在t1~t2时,VB〉VA;在t2~t3时,V A〉VB。在这种情况下,Vout得输出如图1(c)所示:VA>VB 时,Vout输出高电平(饱与输出);VB>VA时,Vout输出低电平。根据输出电平得高低便可知道哪个电压大.

如果把VA输入到反相端,VB输入到同相端,VA及VB得电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示.与图1(c)比较,其输出电平倒了一下。输出电平变化与VA、VB得输入端有关。 图2(a)就是双电源(正负电源)供电得比较器.如果它得VA、VB输入电压如图1(b)那样,它得输出特性如图2(b)所示。VB〉VA时,Vout输出饱与负电压。

如果输入电压VA与某一个固定不变得电压VB相比较,如图3(a)所示。此VB称为参考电压、基准电压或阈值电压.如果这参考电压就是0V(地电平),如图3(b)所示,它一般用作过零检测。 比较器得工作原理 比较器就是由运算放大器发展而来得,比较器电路可以瞧作就是运算放大器得一种应用电路。由于比较器电路应用较为广泛,所以开发出了专门得比较器集成电路。 图4(a)由运算放大器组成得差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与V A、VB及4个电阻得关系式为:Vout=(1+RF/R1)·R3/(R2+R3)VA—(RF/R1)VB。若R1=R2,R3=RF,则Vout=RF/R1(VA—VB),RF/R1为放大器得增益.当R1=R2=0(相当于R1、R2短路),

电压比较器教程文件

电压比较器

实验十集成运放基本应用之三——电压比较电路 姓名:班级:学号:实验时间: 一、实验目的 1、掌握比较器的电路构成及特点 2、学会测试比较器的方法 二、实验原理 1、图1所示为一最简单的电压比较器,UR为参考电压,输入电压Ui加在反相输入端。图1(b)为(a)图比较器的传输特性。 (a) 图1 电压比较器 (b) 当UiUR时,运放输出低电平,Dz正向导通,输出电压等于稳压管的正向压降UD,即:Uo=-UD。 因此,以UR为界,当输入电压Ui变化时,输出端反映两种状态。高电位和低电位。 2、常用的幅度比较器有过零比较器、具有滞回特性的过零比较器(又称Schmitt触发器)、双限比较器(又称窗口比较器)等。 (1)、图2过零比较器 D1D2为幅稳压管。信号从运放的反相端输入,参考电压为零。当u1>0 时,u0=-(Uz+U D),当u1<0时,u0=+(Uz+U D)

(a) 图2 过零比较器 (b) (2)、图3为滞回比较器。 过零比较器在实际工作时,如果Ui恰好在过零值附近,则由于零点漂移的存在,Uo将不断由一个极限值转换到另一个极限值,这在控制系统中,对执行机构将是很不利的。为此就需要输出特性具有滞回现象。如图3所示: (a) (b) 图3 滞回比较器 从输出端引入一个电阻分压支路到同相输入端,若Uo 改变状态,U∑ 点也随着改变点位,使过零点离开原来位置。当Uo 为正(记作U D )U∑=[ R2/( R2+ R f )]* U D ,则当UD> U∑后,Uo 再度回升到UD,于是出现图(b)中所示的滞回特性。- U∑ 与U∑ 的差别称为回差。改变R2 的数值可以改变回差的大小。 三、实验设备与器件 1、±12V直流电源 2、直流电压表 3、函数信号发生器 4、交流毫伏表 5、双踪示波器 6、运算放大器μA741×2 7、稳压管2CW231×1 8、二极管4148×2 9、电阻器等

运算放大器可以用作比较器

运算放大器可以用作比较器 许多人偶尔会把运算放大器当比较器使用。一般而言,当您只需要一个简单的比较器,并且您在四运算放大器封装中还有一个“多余”的运算放大器时,这种做法是可行的。只是运算放大器需要相位补偿才能运行,因而把运算放大器用作比较器时其速度会非常低,但是如果对速度要求不高,则运算放大器可以满足需求。偶尔会有人问到我们运算放大器的这种使用方法,因为他们发现这种方法有时有效,有时却不如人们预期的那样效果好。为什么会出现这种情况呢? 许多运算放大器都在输入端之间有电压钳位,其大多数一般都使用背靠背二极管(有时使用两个或者更多的串联二极管)来实施。这些二极管保护输入晶体管免受其基极结点反向击穿的损害。许多IC工艺在差动输入约为6V时便会出现击穿,这会极大地改变或者损坏晶体管。图1显示了NPN输入级,D1和D2提供了这种保护功能。 图1 在大多数常见运算放大器应用中,输入电压均约为零伏,根本无法开启这些二极管。但是很明显,对于比较器的运行而言,这种保护便成了问题。在一个输入拖拽另一个输入(以一种讨厌的方式拉其电压)以前,差动电压范围(约0.7V)受限。尽管如此,我们还是可以把运算放大器用作比较器。但是,在我们这样做时必须小心谨慎。在一些电路中,这种做法可能是完全不能接受的。问题是我们(包括其他运算放大器厂商)并没有总是说明这些钳位的存在,即使有所说明,可能也不会做详细的解释或

者阐述。也许我们应该说:“用作比较器时,请小心谨慎!”产品说明书的作者们通常也只是假设您肯定会把运算放大器当作运算放大器用。 TI在美国亚利桑那州图森产品部召开了一个会议,会议决定,TI以后将会更加清楚地说明这种情况。但是,现在已经生产出来的运算放大器怎么办呢?下列指导建议可能会对您有所帮助: 一般而言,双极NPN晶体管运算放大器都有输入钳位,例如:OP07、OPA227和 OPA277等。uA741是一个例外,它具有NPN输入晶体管,并且有一些为NPN提供固有保护的附加串联横向PNP。 图2 使用横向PNP输入晶体管的通用运算放大器一般没有输入钳位,例如:LM324、LM358、OPA234、OPA2251和OPA244。这些运算放大器一般为“单电源”类型,意味着它们拥有扩展至负电源端(或者稍低)的共模范围。输入偏置电流为负数时,表示输入偏置电流自输入引脚流出。这时,通常可以认定它们为这类运算放大器。但是,需要注意的是,使用PNP输入的高速运算放大器一般有输入钳位,而这些PNP是一些具有更低击穿电压的垂直PNP。

电压比较器电路图

电压比较器电路。 电压比较器是比较两个电压和开关输出或高或低的状态,取决于电压较高的电路。一个基于运放电压比较器上显示。图1显示了一个电压比较器的反相模式图显示了在非反相模式下的电压比较。 电压比较器 非反相比较 在非反相比较器的参考电压施加到反相输入电压进行比较适用于非反相输入。每当进行比较的电压(Vin)以上的参考电压进入运放的输出摆幅积极饱和度(V+),和副反之亦然。实际上发生了什么是VIN和Vref(VIN-VREF)之间的差异,将是一个积极的价值和由运放放大到无穷大。由于没有反馈电阻Rf,运放是在开环模式,所以电压增益(AV)将接近无穷。+所以最大的可能值,即输出电压摆幅,V。请记住公式AV=1+(Rf/R1)。当VIN低于VREF,反向发生。 反相比较

在相比较的情况下,参考电压施加到非反相输入和电压进行比较适用于反相输入。每当输入电压(Vin)高于VREF,运放的输出摆幅负饱和。倒在这里,两个电压(VIN-VREF)之间的差异和由运放放大到无穷大。记住公式AV=-Rf/R1。在反相模式下的电压增益的计算公式是AV=-Rf/R1.Since没有反馈电阻,增益将接近无穷,输出电压将尽可能即负,V-。 实际电压比较器电路 一种实用的非基于UA741运放的反相比较器如下所示。这里使用R1和R2组成的分压器网络设置参考电压。该方程是VREF=(五+/(R1+R2)的)×R2的。代入这个方程电路图值,VREF=6V。当VIN高于6V,输出摆幅?+12V直流,反之亦然。从A+/-12V 直流双电源供电电路。 电压比较器的使用741

一些其他的运放,你可能会感兴趣的相关电路 1求和放大器:总结放大器可以用来找到一个信号给定数量的代数和。 2。集成使用运放:对于一个集成的电路,输出信号将输入信号的积分。例如,一个集成的正弦波使余弦波,方波一体化为三角波等。 3。反相放大器:在一个反相放大器,输出信号将输入信号的倒版,是由某些因素放大。 4,仪表放大器:这是一个类型的差分放大器输入额外的缓冲阶段。输入阻抗高,易于匹配结果。仪表放大器具有更好的稳定性,高共模抑制比(CMRR),低失调电压和高增益。

运放与比较器的区别

运放与比较器的区别 运算放大器和比较器如出一辙,简单的讲,比较器就是运放的开环应用,但比较器的设计是针对电压门限比较而用的,要求的比较门限精确,比较后的输出边沿上升或下降时间要短,输出符合TTL/CMOS 电平/或OC等,不要求中间环节的准确度,同时驱动能力也不一样。一般情况:用运放做比较器,多数达不到满幅输出,或比较后的边沿时间过长,因此设计中少用运放做比较器为佳。 运放和比较器的区别 比较器和运放虽然在电路图上符号相同,但这两种器件确有非常大的区别,一般不可以互换,区别如下: 1、比较器的翻转速度快,大约在ns数量级,而运放翻转速度一般为us数量级(特殊的高速运放除外)。 2、运放可以接入负反馈电路,而比较器则不能使用负反馈,虽然比较器也有同相和反相两个输入端,但因为其内部没有相位补偿电路,所以,如果接入负反馈,电路不能稳定工作。内部无相位补偿电路,这也是比较器比运放速度快很多的主要原因。 3、运放输出级一般采用推挽电路,双极性输出。而多数比较器输出级为集电极开路结构,所以需要上拉电阻,单极性输出,容易和数字电路连接。 补充:比较器工作在非线性条件下,强调的是翻转速度,放大器用于放大,比较注重的是线性.当用比较器作放大时会发现放大输出失真,即使放大负反馈较深也非常明显,而用运放做比较器时,会发现翻转速度不够. 运放可以做比较器,同时也可以作为放大器,比较器只能做比较器。 比较器在最常用的简单集成电路中排名第二,仅次于排名第一的运算放大器。在各类 出版物中可以经常看到运算放大器的理论,关于运算放大器的设计和使用方法的图书也非 常多,可是我们却很难找到关于比较器的理论研究,究其原因,比较器本身功能十分简 单,只用于比较电压,然后根据比较结果,把输出电压设定在数字低态或高态。 很多人认为比较器类似于没有反馈引脚的运算放大器,真实情况并不是这样,当使用 比较器防止负面的意外事件时,我们应该了解更多的技术背景知识。 比较器可以用运算放大器代替吗吗???? a) 过零比较器 b) 电压传输特性 在开环或高增益配置中用运算放大器代替比较器是十分常见的,虽然最好是使用专门 优化的比较器,但是用运算放大器代替比较器也是可以的。运算放大器是一种为在负反馈 条件下工作设计的电子器件,设计重点是保证这种配置的稳定性,压摆率和最大带宽等其

比较器工作原理

电压比较器(以下简称比较器)是一种常用的集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。 什么是电压比较器 简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)是比较器,它有两个输入端:同相输入端(“+” 端) 及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。VA和VB的变化如图1(b)所示。在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。在这种情况下,Vout的输出如图1(c)所示:VA>VB时,Vout 输出高电平(饱和输出);VB>VA时,Vout输出低电平。根据输出电平的高低便可知道哪个电压大。 如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout 输出如图1(d)所示。与图1(c)比较,其输出电平倒了一下。输出电平变化与VA、VB的输入端有关。 图2(a)是双电源(正负电源)供电的比较器。如果它的VA、VB输入电压如图1(b)那样,它的输出特性如图2(b)所示。VB>VA时,Vout输出饱和负电压。

如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。此VB称为参考电压、基准电压或阈值电压。如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。 比较器的工作原理 比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。 图4(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4个电阻的关系式为:Vout=(1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。若R1=R2,R3=RF,则Vout=RF/R1(VA-VB),RF/R1为放大器的增益。当R1=R2=0(相当于R1、R2短路),R3=RF=∞(相当于R3、RF开路)时,Vout=∞。增益成为无穷大,其电路图就形成图4(b)的样子,差分放大器处于开环状态,它就是比较器电路。实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。

电压比较器原理分析

电压比较器原理分析 第一章绪论 电压比较器是对输入信号进行鉴幅与比较的电路,是组成非正弦波发生电路的基本单元电路,在测量和控制中有着相当广泛的应用。本文主要讲述各种电压比较器及其对应的应用电路,讲述各种电压比较器的特点及其电压传输特性,同时阐述电压比较器的组成特点和分析方法。 电压比较器是集成运放非线性应用电路,他常用于各种电子设备中,那么什么是电压比较器呢?下面我给大家介绍一下,它将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。比较器可以组成非正弦波形变换电路及应用于模拟与数字信号转换等领域。 图1 图1所示为一最简单的电压比较器,UR为参考电压,加在运放的同相的输入端,输入电压UI加在反相的输入端。

第二章电压比较器原理图 电压比较器可将模拟信号转换成二值信号,即只有高电平和低电平两种状态的离散信号。因此,可用电压比较器作为模拟电路和数字电路的接口电路。集成电压比较器虽然比集成运放的开环增益低,失调电压大,共模抑制比小,但其响应速度快,传输延迟时间短,而且一般不需要加限幅电路就可以直接驱动TTL、CMOS和ECL等集成数字电路;有些芯片带负载能力强,还可以直接驱动继电器和指示灯。 按一个器件上所含有电压比较器的个数,可分为单、双和四电压比较器;按功能,可分为通用性高速型低功耗型低电压型和高精度型电压比较器;按输出方式,可分为 普通集电极(或漏极)开路输出或互补输出三种情况。集电极(或漏极)开路输出电压必须在输出端接一个电阻至电源,若一个为高电平,则另一个必为低电平。 此外,还有的集成电压比较器带有选通断,用来控制电路是处于工作状态,还是处于禁止状态。所谓工作状态,是指点乱编电压传输特性工作;所谓禁止状态,是指电路不按电压传输特性工作,从输出端看进去相当于开路,即处于高阻状态。 下面是对具体电压比较器的功能电路分析:(A)电路图 1传输特性当UI<UR时,运放输出高电平,稳压管DZ反向稳压工作。输出端电位被其箝位在稳压管的稳定电压UZ,即UO=UZ 当UI>UR时,运放输出低电平,DZ正向导通,输出电压等于稳压管的正向压降UD,即 UO=-UD 因此,以UR为界,当输入电压UI变化时,输出端反映出两种状态,高电位和低电位。 表示输出电压与输入电压之间关系的特性曲线,称为传输特性。图3-1(B)为(A)

将运算放大器用作比较器

One Technology Wa y ? P .O. Box 9106 ? No rwood, MA 02062-9106, U.S.A. ? Tel: 781.329.4700 ? Fax: 781.461.3113 ? https://www.360docs.net/doc/0017903621.html, AN-849应用笔记 将运算放大器用作比较器 作者:James Bryant 06125-001 图1 为什么要将运算放大器用作比较器? ????方便 经济低I B 低V OS 为什么不要将运算放大器用作比较器? ?速度 ?不便的输入结构?不便的逻辑结构?稳定性/迟滞 简介 比较器是一种带有反相和同相两个输入端以及一个输出端的器件,该输出端的输出电压范围一般在供电的轨到轨之间。运算放大器同样如此。 然而,将运算放大器当作比较器使用却非常吸引人,其中原因有多种。本文余下部分将简要讨论将运算放大器用作比较器可能产生的各种意外后果,并总结其中的原因和注意事项。 不将运算放大器用作比较器的原因也有多种。最重要的原因是速度,不过也有输出电平、稳定性(和迟滞),以及多种输入结构考虑。以下各节将详细讨论这些因素。 将运算放大器用作比较器的原因有多种。有些属于技术范畴,而有个原因则纯属经济使然。运算放大器不但有单运放封装,同时提供双运放或四运放型号,即将两个或四个运算放大器集成在一个芯片上。这类双核和四核型号比两个或四个独立运算器便宜,而且占用电路板面积更小,进一步节省了成本。尽管将四运放器件中的闲置运算放大器用作比较器而不是单独购买比较器实为经济之举,但这并不符合良好设计规范。 比较器专门针对干净快速的切换而设计,因此其直流参数往往赶不上许多运算放大器。因而,在要求低V OS 、低I B 和宽CMR的应用中,将运算放大器用作比较器可能比较方便。如果高速度非常重要,将运算放大器用作比较器将得不偿失。 比较器具有低偏置电压、高增益和高共模抑制的特点。运算放大器亦是如此。 那么两者之间有何区别呢?比较器拥有逻辑输出端,可显示两个输入端中哪个电位更高。如果其输出端可兼容TTL 或CMOS(许多比较器的确如此),则比较器的输出始终为正负电源的轨之一,或者在两轨间进行快速变迁。运算放大器有一个模拟输出端,但输出电压通常不靠近两个供电轨,而是位于两者之间。这种器件设计用于各种闭环应用,来自输出端的反馈进入反相输入端。但多数现代运算放大器的输出端可以摆动到供电轨附近。为何不将它们用作比较器呢? 运算放大器具有高增益、低偏置和高共模抑制的特点。其偏置电流通常低于比较器,而且成本更低。此外,运算放大器一般提供两个或四个一组的封装模式。如果需要三个运算放大器和一个比较器,购买四个运算放大器,使其中之一闲置,然后再单独买一个比较器,这样做似乎毫无意义。 然而,把运算放大器用作比较器时,最好的建议其实非常简单,那就是切勿这样做! 比较器设计用于开环系统,用于驱动逻辑电路,用于高速工作,即使过载亦是如此。而这些均不是运算放大器的设计用途。运算放大器设计用于闭环系统,用于驱动简单的电阻性或电抗性负载,而且不能过载至饱和状态。

相关文档
最新文档