增城中学2015届高三数学综合测试二

合集下载

2015年广州市普通高中毕业班综合测试(二)文科数学参考答案及评分标准(无水印版,8页)

2015年广州市普通高中毕业班综合测试(二)文科数学参考答案及评分标准(无水印版,8页)

数学(文科)试题A 第 1 页 共 8 页2015年广州市普通高中毕业班综合测试(二)数学(文科)试题参考答案及评分标准一、选择题:本大题考查基本知识和基本运算.共10小题,每小题,满分50分.题号 12 34 5 6 7 8 9 10答案 D A C B C A D B BD二、填空题:本大题考查基本知识和基本运算,体现选择性.共5小题,每小题,满分20分.其中14~15题是选做题,考生只能选做一题.16.(本小题满分12分) 解:(1)因为::7:5:3a b c =,所以可设7a k =,5b k =,3c k =()0k >,…………………………………………………………2分 由余弦定理得,222cos 2b c aA bc +-=()()()222537253k k k k k+-=´´ (3)分12=-.………………………………………………………………………………………………4分(2)由(1)知,1cos 2A =-,因为A 是△ABC 的内角,所以sin 2A ==. (6)分 由正弦定理2sin a R A=,…………………………………………………………………………………7分 得2sin 2142a R A ==´´=…………………………………………………………………8分 由(1)设7a k =,即k =,所以5b k ==,3c k ==10分所以1sin 2ABC S bc A D =122=´……………………………………………………11分 =所以△ABC 的面积为12分数学(文科)试题A 第 2 页 共 8 页17.(本小题满分12分)解:(1)因为抽取总问卷为100份,所以()10040102030n =-++=.………………………………1分年龄在[)40,50中,抽取份数为10份,答对全卷人数为4人,所以4100.4b =¸=.……………2分 年龄在[]50,60中,抽取份数为20份,答对全卷的人数占本组的概率为0.1,所以200.1a ¸=,解得2a =.…………………………………………………………………………3分 根据频率直方分布图,得()0.040.030.01101c +++´=,解得0.02c =.……………………………………………………………………………………………4分 (2)因为年龄在[)40,50与[]50,60中答对全卷的人数分别为4人与2人.年龄在[)40,50中答对全卷的4人记为1a ,2a ,3a ,4a ,年龄在[]50,60中答对全卷的2人记为1b ,2b ,则从这6人中随机抽取2人授予“环保之星”奖的所有可能的情况是:()12,a a ,()13,a a ,()14,a a ,()11,a b ,()12,a b ,()23,a a ,()24,a a , ()21,a b ,()22,a b ,()34,a a ,()31,a b ,()32,a b ,()41,a b ,()42,a b , ()12,b b 共15种.…………………………………………………………………………………8分其中所抽取年龄在[]50,60的人中至少有1人被授予“环保之星”的情况是:()11,a b ,()12,a b ,()21,a b ,()22,a b ,()31,a b ,()32,a b ,()41,a b ,()42,a b ,()12,b b 共9种.……………………………………11分故所求的概率为53159=. ………………………………………………………………………………12分18.(本小题满分14分) (1)证明:连接1A B ,在四边形11A BCD 中,11A D BC P 且11A D BC =, 所以四边形11A BCD 是平行四边形.所以11A B D C P .…………………………………………2分 在△1ABA 中,1AM AN ==,13AA AB ==,所以1AM ANAA AB=,1 A数学(文科)试题A 第 3 页 共 8 页所以1MN A B P .…………………………………………………………………………………………4分 所以1MN D C P .所以M ,N ,C ,1D 四点共面.………………………………………………………………………6分 (2)解法一:记平面1MNCD 将正方体分成两部分的下部分体积为1V ,上部分体积为2V ,连接1D A ,1D N ,DN ,则几何体1D AMN -,1D ADN -,1D CDN -均为三棱锥, 所以1111D AMN D ADN D CDN V V V V ---=++1111111333AMN ADN CDN S D A S D D S D D D D D =++g g g ………9分111319333323232=´´+´´+´´132=.……………………………………………………………………………………………11分从而11111213412722ABCD A B C D AMN DD C V V V --=-=-=,…………………………………………………13分 所以121341V V =. 所以平面1MNCD 分此正方体的两部分体积的比为1341.……………………………………………14分1 A解法二:记平面1MNCD 将正方体分成两部分的下部分体积为1V ,上部分体积为2V , 因为平面11ABB A P 平面11DCC D ,所以平面AMN P 平面1DD C . 延长CN 与DA 相交于点P , 因为AN DC P ,所以AN PA DC PD =,即133PA PA =+,解得32PA =. 延长1D M 与DA 相交于点Q ,同理可得32QA =.所以点P 与点Q 重合.所以1D M ,DA ,CN 三线相交于一点.所以几何体1AMN DD C -是一个三棱台.……………………………………………………………9分数学(文科)试题A 第 4 页 共 8 页所以111191333222AMN DD C V V -æö==´+´=ç÷ç÷èø,………………………………………………11分 从而11111213412722ABCD A B C D AMN DD C V V V --=-=-=,…………………………………………………13分 所以121341V V =. 所以平面1MNCD 分此正方体的两部分体积的比为1341.……………………………………………14分 19.(本小题满分14分)解:(1)因为()111,P a b 是直线l :31y x =+与y 轴的交点()0,1,所以10a =,11b =.……………………………………………………………………………………2分 因为数列{}n a 是公差为1的等差数列,所以1n a n =-.……………………………………………………………………………………………4分 因为点(),n n n P a b 在直线l :31y x =+上, 所以31n n b a =+32n =-.所以数列{}n a ,{}n b 的通项公式分别为1n a n =-,32n b n =-()*n ÎN .………………………6分(2)因为()1,32,n n f n n n -ì=í-î为奇数为偶数,,假设存在k Î*N ,使()()34f k f k +=成立.………………………………………………………7分 ①当k 为奇数时,3k +为偶数, 则有()()33241k k +-=-,解得11k =,符合题意.………………………………………………………………………………10分 ②当k 为偶数时,3k +为奇数, 则有()()31432k k +-=-,解得1011k =,不合题意.………………………………………………………………………………13分 综上可知,存在11k =符合条件.………………………………………………………………………14分数学(文科)试题A 第 5 页 共 8 页20.(本小题满分14分)解:(1)函数()f x 的定义域为()0,+¥,……………………………………………………………………1分因为()2ln f x x ax x =++,所以()121f x ax x¢=++,………………………………………………………………………………2分 依题意有()10f ¢=,即1210a ++=,解得1a =-.………………………………………………3分此时()()()212121x x x x f x x x--+-++¢==, 所以当01x <<时,()0f x ¢>,当1x >时,()0f x ¢<,所以函数()f x 在()0,1上是增函数,在()1,+¥上是减函数,………………………………………5分 所以当1x =时,函数()f x 取得极大值,极大值为0.………………………………………………6分(2)因为()121f x ax x¢=++221ax x x ++=,(ⅰ)当0a ³时,………………………………………………………………………………………7分因为()0,x Î+¥,所以()f x ¢2210ax x x++=>, 此时函数()f x 在()0,+¥是增函数.……………………………………………………………………9分(ⅱ)当0a <时,令()0f x ¢=,则2210ax x ++=.因为180a D =->,此时()f x ¢()()212221a x x x x ax x x x--++==,其中114x a =-,214x a+=-.因为0a <,所以20x >,又因为12102x x a=<,所以10x <.……………………………………11分 所以当20x x <<时,()0f x ¢>,当2x x >时,()0f x ¢<,所以函数()f x 在()20,x 上是增函数,在()2,x +¥上是减函数.…………………………………13分数学(文科)试题A 第 6 页 共 8 页综上可知,当0a ³时,函数()f x 的单调递增区间是()0,+¥;当0a <时,函数()f x 的单调递增区间是10,4a æö-ç÷ç÷èø,单调递减区间是1,4a æö+-+¥ç÷ç÷èø.……………………………………14分21.(本小题满分14分)解:(1)方法一:设圆C 的方程为:()222x a y r-+=()0r >,………………………………………1分因为圆C 过点()0,0和()1,1-,所以()22222,11.a r a r ì=ïí--+=ïî………………………………………………………………………………3分 解得1a =-,1r =.所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分方法二:设()0,0O ,()1,1A -,依题意得,圆C 的圆心为线段OA 的垂直平分线l 与x 轴的交点C .………………………………1分 因为直线l 的方程为1122y x -=+,即1y x =+,……………………………………………………2分 所以圆心C 的坐标为()1,0-.…………………………………………………………………………3分 所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分(2)方法一:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=,即()2200440y x =--³,解得026x ££.…………………………………………………………………………………………5分 由圆C 与圆D 的方程可知,过点P 向圆C 所作两条切线的斜率必存在, 设PA 的方程为:()010y y k x x -=-,PB 的方程为:()020y y k x x -=-, 则点A 的坐标为()0100,y k x -,点B 的坐标为()0200,y k x -, 所以120AB k k x =-,数学(文科)试题A 第 7 页 共 8 页因为PA ,PB 是圆C 的切线,所以1k ,2k1=,即1k ,2k 是方程()()2220000022110x x k y x k y +-++-=的两根,………………………………7分即()0012200201220021,21.2y x k k x x y k k x xì++=ï+ïí-ï=ï+î所以120AB k k x =-x =9分 因为()220044y x =--,所以AB =10分设()()0020562x f x x -=+,则()()00305222x f x x -+¢=+.………………………………………………………………………………11分由026x ££,可知()0f x 在222,5éö÷êëø上是增函数,在22,65æùçúèû上是减函数,……………………12分 所以()0max2225564fx f æö==éùç÷ëûèø, ()()(){}min0131min 2,6min ,484f x f f ìü===éùíýëûîþ, 所以AB的取值范围为4ëû.…………………………………………………………………14分方法二:设圆D 上的动点P 的坐标为()00,x y , 则()220044x y -+=,即()2200440y x =--³,解得026x ££.…………………………………………………………………………………………5分 设点()0,A a ,()0,B b ,数学(文科)试题A 第 8 页 共 8 页则直线PA :00y ay a x x --=,即()0000y a x x y ax --+=, 因为直线PA 与圆C1=,化简得()2000220x a y a x +--=. ①同理得()2000220x b y b x +--=, ②由①②知a ,b 为方程()2000220x x y x x +--=的两根,…………………………………………7分即00002,2.2y a b x x ab x ì+=ï+ïí-ï=ï+î所以AB a b =-===.……………………………………………………………………9分因为()220044y x =--,所以AB =10分=.………………………………………………………………11分 令012t x =+,因为026x ££,所以1184t ££.所以AB ==,………………………………………12分 当532t =时,max 4AB =,当14t =时,min AB =所以AB的取值范围为4ëû.…………………………………………………………………14分。

广东省广州市2015届高三下学期综合测试(二)数学(理)试题 含解析

广东省广州市2015届高三下学期综合测试(二)数学(理)试题 含解析

2015年广州市普通高中毕业班综合测试(二)数学(理科)一、选择题:本大题共8个小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项 是符合题目要求的. 1。

命题“若2x =,则2320x x -+="的逆否命题是( )A .若2x ≠,则2320x x -+≠ B .若2320x x -+=,则2x =C .若2320xx -+≠,则2x ≠ D .若2x ≠,则2320xx -+=【答案】C 【解析】试题分析:命题“若2x =,则2320x x -+=”的逆否命题是“若2320x x -+≠,则2x ≠",故选C . 考点:逆否命题.2。

已知0a b >>,则下列不等关系式中正确的是( ) A .sin sin a b> B .22log log a b< C .1122a b<D .1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】试题分析:因为0a b >>,所以sin a 与sin b 的大小关系是sin sin a b >或sin sin a b=或sin sin a b <,22log log a b >,1122a b >,1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故选D .考点:基本初等函数的单调性.3。

已知函数()40,1,0,x f x x x x ⎧≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩则()2f f =⎡⎤⎣⎦( )A .14B .12C .2D .4【答案】A 【解析】试题分析:因为()2f =()(44124f f f ⎛⎛====⎡⎤ ⎣⎦⎝⎝,故选A .考点:1、分段函数;2、函数值.4.函数()sin y A x ωϕ=+()0,0,0A ωϕ>><<π的图象的一部分如图1所示,则此函数的解析 式为( )A .3sin y x ππ⎛⎫=+ ⎪44⎝⎭B .3sin y x π3π⎛⎫=+ ⎪44⎝⎭C .3sin y x ππ⎛⎫=+ ⎪24⎝⎭D .3sin y x π3π⎛⎫=+ ⎪24⎝⎭【答案】A 【解析】试题分析:由图象知:3A =,5142T=-=,所以8T =,因为28πωT ==,所以4πω=,所以()3sin 4f x x πϕ⎛⎫=+ ⎪⎝⎭,因为函数()f x 的图象过点()1,3,所以3sin 34πϕ⎛⎫+= ⎪⎝⎭,图1即sin 14πϕ⎛⎫+= ⎪⎝⎭,因为0ϕπ<<,所以5444πππϕ<+<,所以42ππϕ+=,解得:4πϕ=,所以函数()f x 的解析式是()3sin 44f x x ππ⎛⎫=+ ⎪⎝⎭,故选A .考点:三角函数的图象. 5。

[精品]广东省广州市2015高中毕业班综合测试(二)高中数学文科试题和答案

[精品]广东省广州市2015高中毕业班综合测试(二)高中数学文科试题和答案

试卷类型:A2015年广州市普通高中毕业班综合测试(二)数学(文科)2015.4本试卷共4页,21小题, 满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号.用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高.台体的体积公式()123hV S S =+,其中1S ,2S 分别是台体的上,下底面积,h 是台体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.sin 240 的值为A.12 C .12- D.2.已知函数()3x f x =()x ∈R 的反函数为()g x ,则12g ⎛⎫= ⎪⎝⎭A .3log 2-B .3log 2C .2log 3-D .2log 33.已知双曲线C :22214x y b-=经过点()4,3,则双曲线C 的离心率为A .12 BD4.执行如图1所示的程序框图,则输出的z 的值是A .21B .32C .34D .64 5.已知命题p :x ∀∈R ,20x >,命题q :,αβ∃∈R ,使()tan tan tan αβαβ+=+,则下列命 题为真命题的是A .p q ∧B .()p q ∨⌝C .()p q ⌝∧D .()p q ∧⌝ 6.设集合{}22A x a x a =-<<+,{}2450B x x x =--<,若A B ⊆,则实数a 的取值范围为A .[]1,3B .()1,3C .[]3,1--D .()3,1-- 7.已知数列{}n a 满足13a =,且143n n a a +=+()*n ∈N ,则数列{}n a 的通项公式为 A .2121n -+ B .2121n -- C .221n + D .221n - 8.已知函数(),若在区间[]上任取一个实数,则使()成立的概率为 A .425B .12C .23 D .19.如图2,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =, 有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是 ABCD10.设函数()3233f x x ax bx =++有两个极值点12x x 、,且[]11,0x ∈-,[]21,2x ∈,则点(),a b 在aOb平面上所构成区域的面积为A .14B .12C .34D .1 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题) 11.已知i 为虚数单位,复数1iiz -=,则z = . 12.已知向量(),1x =a ,()2,y =b ,若()1,1=-a +b ,则x y += .13.某种型号的汽车紧急刹车后滑行的距离y ()km 与刹车时的速度x ()km/h 的关14.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,4AB =,点E 为边DC 的中点,AE 与BC 的延长线交于点F,且AE 平分BAD ∠,作DG AE ⊥,垂足为G ,若1DG =,则AF 的长为 . 15.(坐标系与参数方程选做题)图3在在平面直角坐标系中,已知曲线1C 和2C 的方程分别为32,12x t y t =-⎧⎨=-⎩(t 为参数)和24,2x t y t =⎧⎨=⎩(t 为参数),则曲线1C 和2C 的交点有 个. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且::7:5:3a b c =. (1)求cos A 的值;(2)若△ABC 外接圆的半径为14,求△ABC 的面积. 17.(本小题满分12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了100份,统计结果如下面的图表所示.(n a b c (2)从年龄在[]40,60答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[]50,60的人中至少有人被授予“环保之星”的概率.18.(本小题满分14分)如图4,已知正方体1111ABCD A BC D -的棱长为3,M ,N分别是棱1AA ,AB 上的点,且1AM AN ==. (1)证明:M ,N ,C ,1D 四点共面;(2)平面1MNCD 将此正方体分为两部分,求这两部分的体积 之比.19.(本小题满分14分)已知点(),n n n P a b ()n ∈*N 在直线l :31y x =+上,1P 是直线l 与y 轴的交点,数列{}n a 是公差为1的等差数列.(1)求数列{}n a ,{}n b 的通项公式; (2)若(),,n n a n f n b n ⎧=⎨⎩为奇数为偶数,,是否存在k ∈*N ,使()()34f k f k +=成立?若存在,求出所有符合条件的k 值;若不存在,请说明理由.C 1ABA 1B 1D 1C DMN图420.(本小题满分14分)已知函数()2a∈R.=++()lnf x x ax x(1)若函数()f x在1f xx=处的切线平行于x轴,求实数a的值,并求此时函数()的极值;(2)求函数()f x的单调区间.21.(本小题满分14分)已知圆心在x 轴上的圆C 过点()0,0和()1,1-,圆D 的方程为()2244x y -+=.(1)求圆C 的方程;(2)由圆D 上的动点P 向圆C 作两条切线分别交y 轴于A ,B 两点,求AB 的取值范围.2015年广州市普通高中毕业班综合测试(二)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共10小题,每小题,满分50分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共5小题,每小16.(本小题满分12分) 解:(1)因为::7:5:3a b c =,所以可设7a k=,5b k=,3c k =()0k >, (2)分由余弦定理得,222cos 2b c a A bc +-=()()()222537253k k k k k+-=⨯⨯…………………………………………………………3分12=-.………………………………………………………………………………………………4分 (2)由(1)知,1cos 2A =-,因为A是△ABC的内角,所以s ic o s A ==6分 由正弦定理2si na R A =,…………………………………………………………………………………7分得2sin 214a R A ==⨯=由(1)设7a k =,即k =,所以51b k ==,3c k ==10分所以1s i2ABC S bc A ∆=12=⨯……………………………………………………11分=所以△ABC的面积为45312分17.(本小题满分12分)解:(1)因为抽取总问卷为100份,所以()10040102030n =-++=.………………………………1分 年龄在[)40,50中,抽取份数为10份,答对全卷人数为4人,所以4100.4b =÷=.……………2分年龄在[]50,60中,抽取份数为20份,答对全卷的人数占本组的概率为0.1, 所以2a ÷=,解得2a =.…………………………………………………………………………3分根据频率直方分布图,得()0.040.030.01101c +++⨯=, 解得0.02c =.……………………………………………………………………………………………4分(2)因为年龄在[)40,50与[]50,60中答对全卷的人数分别为4人与2人.年龄在[)40,50中答对全卷的4人记为1a ,2a ,3a ,4a ,年龄在[]50,60中答对全卷的2人记为1b ,2b ,则从这6人中随机抽取2人授予“环保之星”奖的所有()22,a b ,()34,a a ,()31,a b ,()32,a b ,()41,a b ,()42,a b , ()12,b b 共15种.…………………………………………………………………………………8分其中所抽取年龄在[]50,60的人中至少有1人被授予“环保之星”的情况是:()11,a b ,()12,a b ,()21,a b ,()22,a b ,()31,a b ,()32,a b ,()41,a b ,()42,a b ,()12,b b 共9种.……………………………………11分故所求的概率为53159=. ………………………………………………………………………………12分18.(本小题满分14分) (1)证明:连接1A B ,在四边形11A BCD 中,11A D BC 且11A D BC =, 所以四边形11A BCD 是平行四边形.所以11A B D C .…………………………………………2分 在△1ABA 中,1AM AN ==,13AA AB ==, 所以1AM ANAA AB=, 所以1M N.…………………………………………………………………………………………4分所以1MN DC . 所以M,N,C,1D 四点共面.………………………………………………………………………6分 (2)解法一:记平面1MNCD 将正方体分成两部分的下部分体积为1V ,上部分体积为2V ,连接1D A ,1D N ,DN ,C 1 ABA 1B 1D 1C DMNC 1 A 1B 1D 1DM则几何体1D AMN -,1D ADN -,1D CDN -均为三棱锥, 所以1111D AMN D ADN D CDN V V V V ---=++1111111333AMN ADN CDN S D A S D D S D D ∆∆∆=++ ………9分 111319333323232=⨯⨯+⨯⨯+⨯⨯132=.……………………………………………………………………………………………11分从而11212722ABCD A B C D AMN DD C V V V --=-=-=,…………………………………………………13分所以121341V V =. 所以平面1MNCD 分此正方体的两部分体积的比为1341.……………………………………………14分解法二:记平面1MNCD 将正方体分成两部分的下部分体积为1V ,上部分体积为2V ,因为平面11ABB A 平面11DCC D ,所以平面AMN 平面1DDC . 延长CN 与DA 相交于点P , 因为AN DC , 所以AN PA DC PD =,即133PA PA =+,解得32PA =. 延长1D M 与DA 相交于点Q ,同理可得32QA =.所以点P 与点Q 重合.所以1D M ,DA ,CN 三线相交于一点. 所以几何体1AMND D C -是一个三棱台.……………………………………………………………9分所以1111332AMV V -⎛⎫==⨯⨯=⎪ ⎪⎝⎭,………………………………………………11分从而11212722ABCD A B C D AMN DD C V V V --=-=-=,…………………………………………………13分所以121341V V =. 所以平面1MNCD 分此正方体的两部分体积的比为1341.……………………………………………14分19.(本小题满分14分)解:(1)因为()111,P a b 是直线l :31y x =+与y 轴的交点()0,1, 所以10a =,11b =.……………………………………………………………………………………2分因为数列{}n a 是公差为1的等差数列, 所以1n a n =-.……………………………………………………………………………………………4分因为点(),n n n P a b 在直线l :31y x =+上,所以31n n b a =+32n =-.所以数列{}n a ,{}n b 的通项公式分别为1n a n =-,32n b n =-()*n ∈N .………………………6分(2)因为()1,32,n n f n n n -⎧=⎨-⎩为奇数为偶数,,假设存在k ∈*N ,使()()34f k f k +=成立.………………………………………………………7分①当k 为奇数时,3k +为偶数, 则有()()33241k k +-=-, 解得11k =,符合题意.………………………………………………………………………………10分②当k 为偶数时,3k +为奇数, 则有()()31432k k +-=-, 解得1011k =,不合题意.………………………………………………………………………………13分综上可知,存在11k =符合条件.………………………………………………………………………14分20.(本小题满分14分) 解:(1)函数()f x 的定义域为()0,+∞,……………………………………………………………………1分因为()2ln f x x ax x =++, 所以()121f x ax x'=++,………………………………………………………………………………2分依题意有()10f '=,即12a ++=,解得1a =-.………………………………………………3分此时()()()212121x x x x f x x x--+-++'==,所以当01x <<时,()0f x '>,当1x >时,()0f x '<,所以函数()f x 在()0,1上是增函数,在()1,+∞上是减函数,………………………………………5分所以当1x =时,函数()f x 取得极大值,极大值为0.………………………………………………6分(2)因为()121f x ax x '=++221ax x x++=,(ⅰ)当a ≥时,………………………………………………………………………………………7分因为()0,x ∈+∞,所以()f x '2210ax x x++=>, 此时函数()f x 在()0,+∞是增函数.……………………………………………………………………9分(ⅱ)当0a <时,令()0f x '=,则2210ax x ++=. 因为180a ∆=->,此时()f x '()()212221a x x x x ax x x x--++==,其中114x a -=-,214x a=-. 因为0a <,所以20x >,又因为12102x x a=<,所以10x <.……………………………………11分所以当20x x <<时,()0f x '>,当2x x >时,()0f x '<,所以函数()f x 在()20,x 上是增函数,在()2,x +∞上是减函数.…………………………………13分综上可知,当0a ≥时,函数()f x 的单调递增区间是()0,+∞;当0a <时,函数()f x 的单调递增区间是0,⎛ ⎝⎭,单调递减区间是14a ⎛⎫+-+∞ ⎪ ⎪⎝⎭.……………………………………14分21.(本小题满分14分) 解:(1)方法一:设圆C的方程为:()222x a y r -+=()0r >,………………………………………1分因为圆C 过点()0,0和()1,1-, 所以()22222,11.a r a r ⎧=⎪⎨--+=⎪⎩………………………………………………………………………………3分解得1a =-,1r =. 所以圆C的方程为()2211x y ++=.…………………………………………………………………4分方法二:设()0,0O ,()1,1A -,依题意得,圆C 的圆心为线段OA 的垂直平分线l 与x 轴的交点C .………………………………1分因为直线l的方程为1122y x -=+,即1y x =+,……………………………………………………2分所以圆心C的坐标为()1,0-.…………………………………………………………………………3分所以圆C的方程为()2211x y ++=.…………………………………………………………………4分(2)方法一:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=, 即()2200440y x =--≥,解得026x ≤≤.…………………………………………………………………………………………5分由圆C 与圆D 的方程可知,过点P 向圆C 所作两条切线的斜率必存在, 设PA 的方程为:()010y y k x x -=-,PB 的方程为:()020y y k x x -=-, 则点A 的坐标为()0100,y k x -,点B 的坐标为()0200,y k x -, 所以120AB k k x =-,因为PA ,PB 是圆C 的切线,所以1k ,2k1=,即1k ,2k 是方程()()2220000022110xx k y x k y +-++-=的两根,………………………………7分即()0012200201220021,21.2y x k k x x y k k x x ⎧++=⎪+⎪⎨-⎪=⎪+⎩所以12A B =-x =9分因为()220044y x =--,所以AB =………10分设()()0020562x f x x -=+,则()()00305222x f x x -+'=+.………………………………………………………………………………11分由026x ≤≤,可知()0f x 在222,5⎡⎫⎪⎢⎣⎭上是增函数,在22,65⎛⎤⎥⎝⎦上是减函数,……………………12分所以()0max2225564f x f ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭, ()()(){}min0131min 2,6min ,484f x f f ⎧⎫===⎡⎤⎨⎬⎣⎦⎩⎭, 所以AB的取值范围为4⎦.…………………………………………………………………14分 方法二:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=, 即()2200440y x =--≥,解得026x ≤≤.…………………………………………………………………………………………5分设点()0,A a ,()0,B b , 则直线PA :00y ay a x x --=,即()0000y a x x y ax --+=,因为直线PA 与圆C1=,化简得()2000220x a y a x +--=. ① 同理得()2000220x b y b x +--=, ② 由①②知a,b为方程()2000220x x y x x +--=的两根,…………………………………………7分即00002,2.2y a b x x ab x ⎧+=⎪+⎪⎨-⎪=⎪+⎩所以AB a b =-===…9分因为()220044y x =--, 所以AB =………10分=.………………………………………………………………11分令012t x =+,因为026x ≤≤,所以1184t ≤≤.所以AB ==, (12)分当532t =时,max AB =, 当14t =时,min AB = 所以AB的取值范围为4⎦.…………………………………………………………………14分。

增城市2015届高中毕业班调研测试理科数学试题

增城市2015届高中毕业班调研测试理科数学试题

正视图侧视图俯视图图1 增城市2015届高中毕业班调研测试理科试题数学试题分第I卷(选择题)和第II卷(非选择题)两部分。

共150分,考试时间120分钟。

注意事项:1.第I卷(选择题)每小题选出答案后,用铅笔把答卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上;2.第II卷(非选择题)答案写在答卷上。

参考公式:24RSπ=球,3114,,(),333V Sh V Sh V S S h V Rπ'====柱锥台球如果事件A、B互斥,那么)()()(BPAPBAP+=+.如果事件A、B相互独立,那么)()()(BPAPBAP=⋅.第I卷(选择题,共40分)一、选择题:本大题共有8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.计算11ii+=-(A)i(B)i-(C)2i(D)2i-2.设集合{24},{3782},A x xB x x x=≤<=-≥-则A B⋂=(A)[3,4) (B) (3,4) (C) [2,3] (D) [2,4)3.下列等式中错误的是(A) sin()sinπαα+=- (B) cos()cosπαα-=(C)cos(2)cosπαα-= (D) sin(2)sinπαα+=4.化简12111334424(3)(6)x x y x y----÷-=(A)132xy (B) -132xy (C) 2y (D) 12y--5.若直线a不平行于平面α,则下列结论成立的是(A)平面α内的所有直线都与直线a异面.(B)平面α内存在与a平行的直线.(C)平面α内的直线都与直线a相交.(D)直线a与平面α有公共点.6.如图1是一个圆锥的三视图,则其侧面积是(A)π(B) 2π(C) 3π(D) 4π7.已知1log1(0,1)3aa a<>≠,则实数a的取值范围是(A) (1,)+∞ (B) 1(,1)3(C) 1(0,)3(D) 1(0,)(1,)3⋃+∞ 8.已知圆C :22(1)(2)25,x y -+-=直线l :(21)(1)740,m x m y m m R +++--=∈,当直线l 被圆C 截得的弦最短时的m 的值是 (A )34-(B ) 13- (C ) 43- (D ) 34第II 卷(非选择题,共110分)二、填空题:本大题共7小题,每小题5分,共30分.其中14~15题是选做题,只能做一题,两题全答的,只计算前一题得分.(一)必做题(9~13题)9.已知(,1),(4,)a n b n ==共线且方向相同,则n = . 10. 二项式91()x x-的展开式中3x 的项的系数是 . 11.如果函数2()21xf x a =++是奇函数,则a 的值是 . 12. 如图2,是一个问题的程序框图,输出的结果 是1717,则设定循环控制条件(整数)是. 13.已知实数,x y 满足1311x y x y ≤+≤⎧⎨-≤-≤⎩,则42x y +的取值范围是 .(二)选做题(14、15题)14(几何证明选讲选做题)已知圆o 内的 两条弦,AB CD 相交于圆内一点P ,且14,4PA PB PC PD ===, 则CD = .15(坐标系与参数方程选做题)曲线2cos (02)ρθθθπ=-≤<与极轴交点的极坐标为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.16(12分)一个箱子里装有5个大小相同的球,有3个白球,2个红球,从中摸出2个球.图2ODCVAB 图3(1)求摸出的两个球中有1个白球和1个红球的概率; (2)用ξ表示摸出的两个球中的白球个数,求ξ的分布列及数学期望.17(12分)已知函数()2sin (cos sin )1f x x x x =+-(1)求()f x 的最小正周期和最大值; (2)若α为三角形的内角且()28f απ-=,求()f α的值18(14分)如图3,在三棱锥V ABC -中,VO ⊥平面ABC,,3,5O CD VA VB AD BD BC ∈=====.(1)求证:VC AB ⊥;(2)当二面角V AB C --的平面角为60︒时,求三棱锥V ABC -的体积.19(14分)设3211()(1),32f x x b x bx x R =+--∈ (1)当1b =时,求()f x 的单调区间;(2)当()f x 在R 上有且仅有一个零点时,求b 的取值范围.20(14分)已知椭圆的中心在坐标原点,一个焦点坐标是1(0,1)F -,. (1)求椭圆的标准方程;(2)过1F 作直线交椭圆于,A B 两点,2F 是椭圆的另一个焦点,求2ABF S ∆的取值范围.21(14分)在数列{}n a 中,已知12,a =对任意正整数n 都有12(1)n n na n a +=+.(1)求{}n a 的通项公式; (2)求{}n a 的前n 项和n S ;(3)如果对任意正整数n 都有(2)(n n na k S k ≥-为实数)恒成立,求k 的最大值.增城市2015届高中毕业班调研测试 理科数学试题参考答案及评分标准一、选择题:AABAD BDA二、填空题:9. 2 10. -84 11. -1 12. 100或101或102 13. [2,10] 14. 10 15. (0,0),(2,0)三、解答题:16.解:(1)从5个球中摸出2个球有2510C =种方法 1分 摸出的2个球中有1个白球和1个红球有11326C C ⋅=种方法 2分所以所求的概率是63105= 4分 (2)0,1,2ξ= 5分当0ξ=时,摸出的2个球是红球的方法有1种 6分1110P ∴=7分 当1ξ=时,同(1),235P ∴= 8分当2ξ=时,摸出的2个球是白球的方法有233C =种3310P ∴=9分 所以ξ的分布列是10分ξ的数学期望是:133()01210510E ξ=⨯+⨯+⨯ 11分 65= 12分17.解:(1)2()2sin cos 2sin 1f x x x x =+- 1分sin 21cos 21x x =+-- 3分sin 2cos 2x x =-)4x π=- 4分所以()f x 的最小正周期是π 6分(2)()sin[2()]28284f απαππ-=-- 7分)2πα=-α= 8分c o s 3α∴=1c o s3α∴=-且α为钝角 9分sin α∴==10分 所以()2sin (cos sin )1f αααα=+-1213=-- 11分=12分 18.(1)证明:,,VA VB AD BD VD AB ==∴⊥ 1分 VO ⊥平面ABC ,VO AB ∴⊥ 2分 VD 与VO 相交于V 3分 AB ∴⊥平面VCD 4分 VC AB ∴⊥ 5分 (2)解:由(1)知VDC ∠是二面角V AB D --的平面角 6分 60VDC ∴∠=︒ 7分在VAB ∆中,3VA VB AD BD ====3VD ∴== 8分 在VDO ∆中,60,90VDC DOC ∠=︒∠=︒sin 60VO VD ∴=︒=9分在VDC ∆中,4DC =10分所以1(3V ABC ABC V S VO -∆=⋅或1)3VDC S AB ∆=⋅ 11分 1132DC VO AB =⋅⋅⋅ 12分16462=⨯⨯⨯13分= 14分 19.解(1)当1b =时,31()3f x x x =- 1分2()1(1)(1)0f x x x x '=-=+-= 2分121,1x x ∴=-= 3分因为5分 所以()f x 的单调区间是(,1),(1,1),(1,)-∞--+∞ 6分 (2)21()[23(1)6]06f x x x b x b =+--= 7分 0x ∴=或223(1)60x b x b +--= 8分 当方程223(1)60x b x b +--=无解时 9分 29(1)48b b ∆=-+ 10分 3(31)(3)b b =++ 11分 <0 12分 133b ∴-<<- 13分 所以当133b -<<-时函数()f x 有且只有一个零点. 14分 或解:2()(1)(1)()0f x x b x b x x b '=+--=-+=121,x x b ∴==- 7分当1b =-时,2()(1)0f x x '=-≥,所以()f x 在(,)-∞+∞上单调增又221()(33)0,0,3303f x x x x x x x =-+=∴=-+=无解 所以1b =-时函数()f x 有且只有一个零点. 8分 当1b >-时,1b -<,因为9分 及()0f x =有一解0x =()0(1)0f b f ->⎧∴⎨>⎩ 133b ∴-<<-, 113b ∴-<<- 10分 因为()f x 在(,)b -∞-上单调增,在[,)b -+∞上恒有()0f x >所以当113b -<<-时,()f x 在(,)-∞+∞上有且只有一个零点 11分当1b <-时,1b ->,因为12分 及()0f x =有一解0x = ()0(1)0f b f ->⎧∴⎨>⎩ 133b ∴-<<-, 31b ∴-<<- 因为()f x 在(,1)-∞上单调增,在[1,)+∞上恒有()0f x >所以当31b -<<-时,()f x 在(,)-∞+∞上有且只有一个零点 13分 所以()f x 在(,)-∞+∞上有且只有一个零点时,b 的取值范围是133b -<<-14分 20.解(1)由条件可设椭圆方程为22221(0)x y a b b a+=>>,则有 1分1,c e ==3c a a =∴ 2分b ∴== 3分所以所求椭圆方程是22123x y += 4分 (2)由条件设直线AB 的方程为1y kx +=,将1y kx =-代入椭圆方程得: 5分 22(23)440k x kx +--= 6分 设1122(,),(,)A x y B x y2221616(23)48(1)0k k k ∆=++=+> 7分 12122244,2123k x x x x k k ∴+==-++ 8分212121212ABF S F F x x x x ∆=-=- 9分 22121212()()4x x x x x x ∴-=+- 10分22221616(23)23k k k =+++ 22248(1)(23)k k +=+ 11分 令21,t k =+则1t ≥设(21)1()44t g t t t t+==++ 12分222141()4t g t t t-'=-=当1t ≥时,()0g t '≥,()g t ∴在[1,)+∞上单调增()(1)9g t g ∴≥= 4848160()93g t ∴<≤= 13分20ABF S ∆∴<≤ 14分 21.解(1)112(1),21n n n n a ana n a n n++=+∴=⋅+ 2分所以数列{}na n是以2为公比,首项为2的等比数列 3分 122n na n-∴=⋅ 4分 2n n a n ∴=⋅ 5分或解:12a =234234822,2432,6442a a a ∴==⋅==⋅==⋅ 2分 所以猜想得2n n a n =⋅ 3分 数学归纳法证明 5分 (2)23112122232(1)22n n n n n S a a a a n n --=++++=+⋅+⋅++-+⋅ 6分2341222232(1)22n n n S n n +∴=+⋅+⋅++-+⋅ 7分23122222n n n S n +∴-=++++-⋅ 8分112(21)2(1)221n n n n n ++-=-⋅=---- 1(1)22n n S n +∴=-+ 9分 (3)212(2),2(1)2,2(1)n n n n na k S n k n n k n +≥-∴⋅≥-∴≥- 10分当1n =时,k 为任意实数 11分当1n >时,222111(1)2(1)1212121n n n n k n n n -+-+≤⋅⋅=⋅--- 12分2111[(1)2]22212n n =-++=+≥-=,即2n =时等号成立 所以当1n >时,2k ≤,所以当n 为任意正整数时2k ≤, 13分 所以当n 为任意正整数时k 的最大值是2 14分 解(2)212(2),2(1)2,2(1)n n n n na k S n k n n k n +≥-∴⋅≥-∴≥- 10分当0k ≤时,上述不等式显然成立 11分 当0k >时,化为2221111111()2244n n k n n n --≥=--+≤ 110224k k ∴≥∴<≤,等号(2k =)成立时2n =,所以2k ≤ 13分所以当n 为任意正整数时k 的最大值是2 14分 解(3):21(2),2(1)2n n n n na k S n k n +≥-∴⋅≥-2(22)20n n k n k ∴-+≥ 2220n k n k ∴-+≥ 令2()22f n n kn k =-+ 10分222()22()2f n n k n k n k k k =-+=--+ 11分 当 220k k -+≥时,()0f n ≥02k ∴≤≤ 12分 当220k k -+<时, :(1)10,()0f f n =>=在[1,)+∞上无解的条件是1x k =≤ 13分所以2k ≤所以当n 为任意正整数时k 的最大值是2 14分 解(4):21(2),2(1)2n n n n na k S n k n +≥-∴⋅≥-2(22)20n n k n k ∴-+≥ 2220n kn k ∴-+≥ 10分 令2()22f n n kn k =-+,2484(2)k k k k =-=-当0<时,02,()0,02k f n k <<>∴<< 11分当0=时,0k =或22,()0,k f n n ==>所以0k =或 2.k = 12分当0>时,0k <或2k > 此时:(1)10,()0f f n =>=在[1,)+∞上无解的条件是1x k =≤ 13分 所以2k ≤所以当n 为任意正整数时k 的最大值是2 14分。

广东省增城中学高三数学普通高中毕业班综合测试(二)(文) 新人教版【会员独享】

广东省增城中学高三数学普通高中毕业班综合测试(二)(文) 新人教版【会员独享】

2010年增城中学普通高中毕业班综合测试(二)数学(文) 本试卷共4页,21小题,满分150分.考试用时120分钟.一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于A .[1,4)-B .(2,3)C .(2,3]D .(1,4)-2.下列函数中,在其定义域内既是奇函数又是减函数的是 A. R x x y ∈-=,3 B. R x x y ∈=,sin C. R x x y ∈=, D. R x x y ∈=,)21(3.3x >”是24x >“的A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.已知向量),2,1(),,2(==b t a 若1t t =时,a ∥b ;2t t =时,b a ⊥,则A .1,421-=-=t t B. 1,421=-=t tC. 1,421-==t tD. 1,421==t t5.若,,l m n 是互不相同的空间直线,,αβ是不重合的平面,则下列命题中为真命题的是A .若//,,l n αβαβ⊂⊂,则//l nB .若,l αβα⊥⊂,则l β⊥C. 若,l n m n ⊥⊥,则//l m D .若,//l l αβ⊥,则//αβ6.若等差数列{n a }的前三项和93=S 且11=a ,则2a 等于A .3 B.4 C. 5 D. 67.已知a 是实数,2a i i-+是纯虚数,则a =A.12B.12-8.某校共有学生2000名,各年级男、女生人数表1,已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. 现用分层抽样的方法在全校抽取64名学生,则应在初三年A.24B.18C.16D.129.曲线313y x x =+在点413⎛⎫ ⎪⎝⎭,处的切线与坐标轴围成的三角形面积为 A.19 B.29 C.13 D.2310.设函数()y f x =在(,)-∞+∞内有定义,对于给定的正数K ,定义函数(),(),(),().K f x f x K f x K f x K ≤⎧=⎨>⎩取函数()2x f x -=.当K =12时,函数()K f x 的单调递增区间为 A .(,0)-∞ B .(0,)+∞ C .(,1)-∞- D .(1,)+∞二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分)(一)必做题(11~13题)11.在ABC △中,5cos 13B =-,4cos 5C =. 则sin A 的值是 . 12.若变量,x y 满足240,250,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩则32z x y =+的最大值是 .13.执行右边的程序框图1,若p =0.8,则输出的n = .(二)选做题(14、15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图所示,圆O 的直径,6=AB ,C 为圆周上一点,3=BC ,过C 作圆的切线l ,过A 作l 的垂线AD ,AD 分别与直线l 、圆交于点D 、E ,则∠DAC = , 线段AE 的长为 .15.(坐标系与参数方程选做题) 已知曲线12,C C 的极坐标方程分别为cos 3,4cos ρθρθ==0,0,2πρθ⎛⎫≥≤<⎪⎝⎭则曲线1C 与2C 交点的极坐标为 .三、解答题(本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤)16.(本小题满分12分)已知函数1)4()cos x f x xπ-=, (Ⅰ)求()f x 的定义域及最小正周期; 图1(Ⅱ)设α是第四象限的角,且4tan 3α=-,求()f α的值.17.(本小题满分12分)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.(I )求该总体的平均数;(II )用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.18.(本小题满分14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AOC --的直二面角.D 是AB 的中点.(I )求证:平面COD ⊥平面AOB ;(II )求异面直线AO 与CD 所成角的大小.(Ⅲ)求三棱锥A OCD -的体积.19.(本小题满分14分)已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个项点到两个焦点的距离分别是7和1.(I)求椭圆C 的方程;(II)若P 为椭圆C 的动点,M 为过P 且垂直于x 轴的直线上的点,OP e OM =(e 为椭圆C的离心率),求点M 的轨迹方程,并说明轨迹是什么曲线. OC A DB20.(本小题满分14分)设函数.0),1ln()1()(>++-=a x a ax x f 其中(1)求函数)(x f 的单调区间;(2)当x>0时,证明不等式;)1ln(1x x x x <+<+ (3)设)(x f 的最小值为(),g a 证明不等式:1()0g a a -<<.21.(本小题满分14分)设向量b a b a ⋅=∈-+==+y N n x n x x 函数),)(12,(),2,(在[0,1]上的最大值与最小值的和为a n ,又数列}{n b 满足:.1109)109()109(2)1(21121++++=+++-+--- n n n n b b b n nb (1)求证:1+=n a n ;(2)求n b 的表达式;(3)}{,n n n n c b a c 试问数列⋅-=中,是否存在正整数k ,使得对于任意的正整数n ,都有k n c c ≤成立?证明你的结论.2010年增城中学普通高中毕业班综合测试(二)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于A .[1,4)-B .(2,3)C .(2,3]D .(1,4)-2.下列函数中,在其定义域内既是奇函数又是减函数的是 A. R x x y ∈-=,3 B. R x x y ∈=,sin C. R x x y ∈=, D. R x x y ∈=,)21(3.3x >”是24x >“的A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.已知向量),2,1(),,2(==b t a 若1t t =时,a ∥b ;2t t =时,b a ⊥,则A .1,421-=-=t t B. 1,421=-=t tC. 1,421-==t tD. 1,421==t t5.若,,l m n 是互不相同的空间直线,,αβ是不重合的平面,则下列命题中为真命题的是A .若//,,l n αβαβ⊂⊂,则//l nB .若,l αβα⊥⊂,则l β⊥C. 若,l n m n ⊥⊥,则//l m D .若,//l l αβ⊥,则//αβ6.若等差数列{n a }的前三项和93=S 且11=a ,则2a 等于A .3 B.4 C. 5 D. 67.已知a 是实数,2a i i-+是纯虚数,则a =A.12B.12-8.某校共有学生2000名,各年级男、女生人数表1,已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. 现用分层抽样的方法在全校抽取64名学生,则应在初三年A.24B.18C.16D.129.曲线313y x x =+在点413⎛⎫ ⎪⎝⎭,处的切线与坐标轴围成的三角形面积为 A.19 B.29 C.13 D.2310.设函数()y f x =在(,)-∞+∞内有定义,对于给定的正数K ,定义函数(),(),(),().K f x f x K f x K f x K ≤⎧=⎨>⎩取函数()2x f x -=.当K =12时,函数()K f x 的单调递增区间为 A .(,0)-∞ B .(0,)+∞ C .(,1)-∞- D .(1,)+∞二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分)(一)必做题(11~13题)11.在ABC △中,5cos 13B =-,4cos 5C =. 则sin A 的值是 . 12.若变量,x y 满足240,250,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩则32z x y =+的最大值是 .13.执行右边的程序框图1,若p =0.8,则输出的n = .(二)选做题(14、15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图所示,圆O 的直径,6=AB ,C 为圆周上一点,3=BC ,过C 作圆的切线l ,过A 作l 的垂线AD ,AD 分别与直线l 、圆交于点D 、E ,则∠DAC = , 线段AE 的长为 .15.(坐标系与参数方程选做题) 已知曲线12,C C 的极坐标方程分别为cos 3,4cos ρθρθ==0,0,2πρθ⎛⎫≥≤<⎪⎝⎭则曲线1C 与2C 交点的极坐标为 .三、解答题(本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤)16.(本小题满分12分)已知函数1)4()cos x f x xπ-=,(Ⅰ)求()f x 的定义域及最小正周期;(Ⅱ)设α是第四象限的角,且4tan 3α=-,求()f α的值.17.(本小题满分12分)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体. 图1(I )求该总体的平均数;(II )用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.18.(本小题满分14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AOC --的直二面角.D 是AB 的中点.(I )求证:平面COD ⊥平面AOB ;(II )求异面直线AO 与CD 所成角的大小.(Ⅲ)求三棱锥A OCD -的体积.19.(本小题满分14分)已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个项点到两个焦点的距离分别是7和1.(I)求椭圆C 的方程;(II)若P 为椭圆C 的动点,M 为过P 且垂直于x 轴的直线上的点,OP e OM =(e 为椭圆C的离心率),求点M 的轨迹方程,并说明轨迹是什么曲线.20.(本小题满分14分)设函数.0),1ln()1()(>++-=a x a ax x f 其中(1)求函数)(x f 的单调区间; (2)当x>0时,证明不等式;)1ln(1x x x x <+<+ (3)设)(x f 的最小值为(),g a 证明不等式:1()0g a a -<<.OC A DB21.(本小题满分14分)设向量b a b a ⋅=∈-+==+y N n x n x x 函数),)(12,(),2,(在[0,1]上的最大值与最小值的和为a n ,又数列}{n b 满足:.1109)109()109(2)1(21121++++=+++-+--- n n n n b b b n nb (1)求证:1+=n a n ;(2)求n b 的表达式;(3)}{,n n n n c b a c 试问数列⋅-=中,是否存在正整数k ,使得对于任意的正整数n ,都有k n c c ≤成立?证明你的结论.。

2015广东省广州市高考数学二模试卷(理科)(含解析)

2015广东省广州市高考数学二模试卷(理科)(含解析)

2015年广东省广州市高考数学二模试卷(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“若2x =,则2320x x +=-”的逆否命题是( ).A .若2x ≠,则2320x x +≠-B .若2320x x +=-,则2x =C .若2320x x +≠-,则2x ≠D .若2x ≠,则2320x x +=-【答案】C【解答】解:命题“若2x =,则2320x x +=-”的逆否命题是 “若2320x x +≠-,则2x ≠”.故选C . 2.(5分)已知0a b >>,则下列不等关系式中正确的是( ).A .sin sin a b >B .22log log a b <C .1122a b <D .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】D【解答】解:选项A 错误,比如取πa =,π2b =,显然满足0a b >>,但不满足sin sin a b >; 选项B 错误,由函数2log y x =在(0,)+∞上单调递增可得22log log a b >; 选项C错误,由函数12y x ==[0,)+∞上单调递增可得1122a b >; 选项D 正确,由函数13xy ⎛⎫= ⎪⎝⎭在R 上单调递减可得1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;故选D .3.(5分)已知函数40()1,0x f x x x x ⎧⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩≥,则)[](2f f =( ). A .14B .12C .2D .4【答案】A【解答】解:函数40()1,0x f x x x x ⎧⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩≥,则(2)f =441[(2)](4f f f ⎛⎛==== ⎝⎝.故选A .4.(5分)函数sin()(0,0,0π)y A x A ωϕωϕ=+>><<的图象的一部分如图所示,则此函数的解析式为( ).A .ππ3sin 44y x ⎛⎫=+ ⎪⎝⎭B .π3π3sin 44y x ⎛⎫=+ ⎪⎝⎭C .ππ3sin 24y x ⎛⎫=+ ⎪⎝⎭D .π3π3sin 24y x ⎛⎫=+ ⎪⎝⎭【答案】A【解答】解:根据函数的图象,得知:3A =, 2(51)8T =-=,所以:2ππ84ω==,当1x =时,(1)3f =,0πϕ<<, 解得:π4ϕ=, 所以函数的解析式:ππ()3sin 44f x x ⎛⎫=+ ⎪⎝⎭.故选A .5.(5分)已知函数2()23f x x x =-++,若在区间[]4,4-上任取一个实数0x ,则使0)(0f x ≥成立的概率为( ).A .425B .12C .23D .1【答案】B【解答】解:已知区间[]4,4-长度为8,满足0)(0f x ≥,200()230f x x x =-++≥,解得013x -≤≤,对应区间长度为4, 由几何概型公式可得,使0)(0f x ≥成立的概率是4182=. 故选B . 6.(5分)如图,圆锥的底面直径2AB =,母线长3VA =,点C 在母线长VB 上,且1VC =,有一只蚂蚁沿圆锥的侧面从点A 到点C ,则这只蚂蚁爬行的最短距离是( ).VCBAABC D 【答案】B【解答】解:由题意知,底面圆的直径为2,故底面周长等于2π, 设圆锥的侧面展开后的扇形圆心角为α,根据底面周长等于展开后扇形的弧长得,2π3α=,解得:2π3α=, ∴2π2AOA '∠=,则π13∠=,过C 作CF OA ⊥, ∵C 为OB 的三等分点,3BO =, ∴1OC =, ∵160∠=︒, ∴30OCF ∠=︒,∴12FO =,∴22234CF CO OF -==,∵3AO =,12FO =,∴52AF =, 在Rt AFC △中,利用勾股定理得:2227AC AF FC =+=,则AC = 故选B .1FCBAO A'7.(5分)已知两定点(1,0)A -,(1,0)B ,若直线l 上存在点M ,使得||||3MA MB +=,则称直线l 为“M 型直线”,给出下列直线:①2x =;②3y x =+;③21y x =--;④1y =;⑤23y x =+.其中是“M 型直线”的条数为( ).A .1B .2C .3D .4【答案】C【解答】解:由题意可知,点M 的轨迹是以A ,B 为焦点的椭圆,其方程是2219544x y +=,①把2x =代入2219544x y +=,无解,∴2x =不是“M 型直线”;②把3y x =+代入2219544x y +=,无解,∴3y x =+不是“M 型直线”;③把21y x =--代入22144x y +=,有解,∴21y x =--是“M 型直线”;④把1y =代入22144x y +=,有解,∴1y =是“M 型直线”; ⑤23y x =+代入2219544x y +=,有解,∴23y x =+是“M 型直线”. 故选C .8.(5分)设(,)P x y 是函数()y f x =的图象上一点,向量5(1,(2))a x =-r ,(1,2)b y x =-r,且满足a b r r ∥,数列{}n a 是公差不为0的等差数列,若129))(((6)3f a f a f a +++=L ,则129a a a +++=L ( ).A .0B .9C .18D .36【答案】C【解答】解:∵向量5(1,(2))a x =-r ,(1,2)b y x =-r ,且a b r r ∥,∴52(2)0y x x ---=, 即5(2)2y x x =-+, ∴5()(2)2f x x x =-+; 令5()(2)42g x f x x x =+-=+,则函数()g x 为奇函数,且是定义域内的增函数, 由129))(((6)3f a f a f a +++=L , 得129(2)(2)(2)0g a g a g a +++---=L , 又数列{}n a 是公差不为0的等差数列, ∴5(2)0g a -=,即520a -=,52a =, ∴129599218a a a a +++==⨯=L .故选C .二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题) 9.(5分)已知i 为虚数单位,复数1i1iz -=+,则||z =__________. 【答案】1【解答】解:i 为虚数单位,复数1i1i z -=+,则1i |1i|||11i |1i |z --====++. 故答案为:1. 10.(5分)执行如图所示的程序框图,输出的S 值为__________.【答案】10【解答】解:由已知可得该程序的功能是计算并输出 22221234S -=-++的值∵2222123410S -=-++=. 故答案为:10.11.(5分)已知π()sin 6f x x ⎛⎫=+ ⎪⎝⎭,若3πcos 052αα⎛⎫=<< ⎪⎝⎭,则π12f α⎛⎫+= ⎪⎝⎭__________.【解答】解:∵3cos 5α=,且π02α<<,∴4sin 5,又∵π()sin 6f x x ⎛⎫=+ ⎪⎝⎭,∴πππsin 12126f αα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭πsin 4α⎛⎫=+ ⎪⎝⎭cos )αα+=,. 12.(5分)5名志愿者中安排4人在周六、周日两天参加社区公益活动.若每天安排2人,则不同的安排方案共有__________种(用数字作答). 【答案】30【解答】解:先从5人中任取4人,共有45C 种不同的取法.再把4人分成两部分,每部分2人,共有224222C C A 种分法.最后排在周六和周日两天,有22A 种排法,∴2242425222C C C A 30A ⨯⨯=种.故答案为:30.13.(5分)在边长为1的正方形ABCD 中,以A 为起点,其余顶点为终点的向量分别为1a u u r ,2a u u r ,3a u u r;以C 为起点,其余顶点为终点的向量分别为1c u r ,2c u u r ,3c u u r.若m 为()()i j s t a a c c +⋅+u u r u u r u u r u r 的最小值,其中{}{},1,2,3i j ⊆,{}{},1,2,3s t ⊆,则m =__________.【答案】5-【解答】解:不妨记以A 为起点,其余顶点为终点的向量为1a u u r ,2a u u r ,3a u u r分别为AB u u u r ,AC u u u r ,AD u u u r ,以C为起点,其余顶点为终点的向量为1c u r ,2c u u r,分别为CD u u u r ,CA u u u r ,CB u u u r .如图建立坐标系.(1)当1i =,2j =,1s =,2t =时,则()()[1,0)(1,1)][1,0)(1,1)5(((]i j s t a a c c +⋅+=+=-⋅+---u u r u u r u u r u r;(2)当1i =,2j =,1s =,3t =时,则()()[1,0)(1,1)][1,0)(0,1)]3(((i j s t a a c c +⋅+=+⋅+-=--u u r u u r u u r u r;(3)当1i =,2j =,2s =,3t =时,则()()[1,0)(1,1)][1,1)(0,1)4(((]i j s t a a c c +⋅+=++-⋅--=-u u r u u r u u r u r;(4)当1i =,3j =,1s =,2t =时,则()()[1,0)(0,1)][1,0)(1,1)3(((]i j s t a a c c +⋅+=+=-⋅+---u u r u u r u u r u r;同样地,当i ,j ,s ,t 取其它值时,()()5i j s t a a c c +⋅+=-u u r u u r u u r u r,4-或3-.则()()i j s t a a c c +⋅+u u r u u r u u r u r的最小值是5-.故答案为:5-.(二)选做题(14~15题,考生只能从中选做一题)(几何证明选讲选做题)14.(5分)如图,在平行四边形ABCD 中,4AB =,点E 为边DC 的中点,AE 与BC 的延长线交于点F ,且AE 平分BAD ∠,作DG AE ⊥,垂足为G ,若1DG =,则AF 的长为__________.FCBAGD【答案】【解答】解:∵AE 为DAB ∠的平分线, ∴DAF BAF ∠=∠, ∵DC AB ∥, ∴BAF DEA ∠=∠, ∴DAF DEA ∠=∠, ∴AD ED =, 又E 为DC 的中点, ∴DE CE =,∴11222AD DE DC AB ====,在Rt ADG △中,根据勾股定理得:AG则2AE AG == ∵平行四边形ABCD , ∴AD BC ∥,∴DAE F ∠=∠,ADE FCE ∠=∠, 在ADE △和FCE △中,DAE FADE FCE DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE △≌()FCE AAS △, ∴AE FE =,则2AF AE ==.故答案是:.E DGABCF(坐标系与参数方程选做题)15.在平面直角坐标系中,已知曲线1C 和2C 的方程分别为3212x ty t =-⎧⎨=-⎩(t 为参数)和242x t y t =⎧⎨=⎩(t 为参数),则曲线1C 和2C 的交点有__________个. 【答案】1【解答】1解:已知曲线1C 方程3212x ty t =-⎧⎨=-⎩(t 为参数)转化为直角坐标方程为:20x y --=.曲线2C 的方程242x t y t =⎧⎨=⎩(t 为参数),转化为直角坐标方程为:28x y = 所以:2820x yx y ⎧=⎨--=⎩,整理得:28160x x +=-, 所以:64640∆=-=, 则:曲线1C 和2C 的交点有1个.故答案为:1.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(12分)已知ABC △的三边a 、b 、c 所对的角分别为A 、B 、C ,且::7:5:3a b c =. (1)求cos A 的值.(2)若ABC △的面积为ABC △的外接圆半径的大小. 【答案】见解析.【解答】解:(1)根据题意设7a k =,5b k =,3c k =,∴2222222259491cos 2302b c a k k k A bc k +-+-===-, 则2π3A =.(2)∵1sin 2ABC S bc A ==△∴21152k ⋅=k =,∴7a k == 由正弦定理2sin aR A =,得:142sin a R A ==. 17.(12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在2060:岁的问卷中随机抽取了n 份,统计结果如图表所示.(1)分别求出a ,b ,c (2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环保之星”,记X 为第3组被授予“环保之星”的人数,求X 的分布列与数学期望.年龄【答案】见解析.【解答】(本小题满分12分)解:(1)根据频率直方分布图,得(0.0100.0250.035)101c +++⨯=, 解得0.03c =.第3组人数为50.510÷=,所以100.1100n =÷=. 第1组人数为1000.3535⨯=,所以28350.8b =÷=. 第4组人数为1000.2525⨯=,所以250.410a =⨯=. (2)因为第3,4组答对全卷的人的比为5:101:2=, 所以第3,4组应依次抽取2人,4人. 依题意X 的取值为0,1,2.002426C C 2(0)C 5P X ===, 112426C C 8(1)5C 1P X ===, 202426C C 1(2)5C 1P X ===, 所以X 的分布列为:所以2812012515153EX =⨯+⨯+⨯=.18.(14分)如图,已知六棱柱111111ABCDEF A B C D E F -的侧棱垂直于底面,侧棱长与底面边长都为3,M ,N 分别是棱AB ,1AA 上的点,且1AM AN ==.(1)证明:M ,N ,1E ,D 四点共面. (2)求直线BC 与平面1MNE D 所成角的正弦值.F 1E 1C 1D 1A 1B 1N F ECB A D【答案】见解析.【解答】(1)证明:连接1A B ,11D B ,BD ,11A E , 在四边形1111A B D E 中,1111A E B D =,且1111A E B D ∥, 在四边形11BB D D 中,11BD B D ∥,且11BD B D =, 所以:11A E BD ∥,且11A E BD =, 则四边形11A BDE 是平行四边形. 所以11A B E D ∥.在1ABA △中,1AM AN ==,13AB AA ==, 所以:1AM ANAB AA = 则:1MN BA ∥, 且:1MN DE ∥,所以:M ,N ,1E ,D 四点共面;D A B CEFN B 1A 1D 1C 1E 1F 1(2)解:以点E 坐标原点,EA ,ED ,1EE 线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则B,9,,02C ⎫⎪⎪⎝⎭,(0,3,0)D ,10,(0,3)E,M .3,,02BC ⎛⎫= ⎪ ⎪⎝⎭u u u r ,1(0,3,3)DE =-u u u u r,2,0)DM =-u u u u r , 设平面1MNE D 的法向量为:(,,)m x y z =u r ,则:100m DE m DM ⎧⋅=⎪⎨⋅=⎪⎩u r u u u u r u r u u u u r ,即:33020y z y -+=⎧⎪⎨-=⎪⎩,解得:m =,设直线BC 与平面1MNE D 所成的角为θ,则sin ||||m BC m BC θ⋅=u r u u u r u r u u u r , 故直线BC 与平面1MNE DFF19.(14分)已知点*(,)()n n n P a b n ∈N 在直线:31l y x =+上,1P 是直线l 与y 轴的交点,数列{}n a 是公差为1的等差数列.(1)求数列{}n a ,{}n b 的通项公式.(2)求证:2221213111111||||||6n PP PP PP ++++<L . 【答案】见解析.【解答】(1)解:∵点*(,)()n n n P a b n ∈N 在直线:31l y x =+上,∴31n n b a =+,直线l 与y 轴的交点为(0,1),∴10a =,11b =.∵数列{}n a 是公差为1的等差数列,∴1n a n =-.∴3(1)132n b n n =-+=-.∴数列{}n a ,{}n b 的通项公式分别为:1n a n =-,32n b n =-.(2)证明:∵1)(0,1P ,1,3(2)n P n n --,∴1,31()n P n n ++.∴222211||(3)10n PP n n n +=+=, ∴1221111111111||1010521214n PP n n n n +⎛⎫=<⋅=- ⎪-+⎝⎭-. ∴当2n ≥时,22212131111111111111||||||10535572121n PP PP PP n n +⎡⎤⎛⎫⎛⎫⎛⎫+++<+-+-++- ⎪ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎝⎭⎣⎦ 111111110532110156n ⎛⎫=+-<+< ⎪+⎝⎭. 又当1n =时,212111||106PP =<. ∴2221213111111||||||6n PP PP PP ++++<L . 20.(14分)已知圆心在x 轴上的圆C 过点(0,0)和(1,1)-,圆D 的方程为22(4)4x y -+=. (1)求圆C 的方程.(2)由圆D 上的动点P 向圆C 作两条切线分别交y 轴于A ,B 两点,求||AB 的取值范围.【答案】见解析.【解答】解:(1)过两点(0,0)A 和(1,1)B -的直线的斜率为1-, 则线段AB 的中垂线方程为:11122y x ⎛⎫-=⨯+ ⎪⎝⎭,整理得:1y x =+. 取0y =,得1x =-.∴圆C 的圆心坐标为(1,0)-,半径为1,∴圆C 的方程为:22(1)1x y ++=;(2)设00)(,P x y ,(0,)A a ,(0,)B b ,则直线PA 方程为00y a x y a x -=-,整理得:000()0y a x x y ax -+=-.∵直线PA 与圆C1=,化简得2000(2)20x a y a x +--=;同理可得PB 方程2000(2)20x b y b x +--=, 因而a ,b 为2000(2)20x x y x x +--=的两根,∴||||AB a b =-== 令02[,8]4t x =+∈,则||AB =,配方可求得min ||AB,max ||AB =.故答案为:⎦21.(14分)已知函数1()ln 1x f x a x x -=-+,()e x g x =(其中e 为自然对数的底数). (1)若函数()f x 在区间(0,1)内是增函数,求实数a 的取值范围; (2)当0b >时,函数()g x 的图象C 上有两点(e ),b P b 、(,)e b Q b --,过点P 、Q 作图象C 的切线分别记为1l 、2l ,设1l 与2l 的交点为00)(,M x y ,证明:00x >.【答案】见解析.【解答】解:(1)∵2()ln 11f x a x x =+-+, ∴22(1)2()(1)a x x f x x x +-'=+, 若函数()f x 在区间(0,1)内是增函数, 则2(1)20a x x -+≥,∴2222(1)4x a x =++≥, ∴12a ≥. (2)∵()e x g x '=,∴()()e b g b g b '==,∴1:(e )e b b l y x b =-+…①,()()e b g b g b -'-=-=,∴2:(e )e b b l y x b --=++…②,由①②得:e )e e ()e (b b b b x b x b ---+=++,两边同乘以e b 得:22e )e (1b b x b x b -+=++,∴222(e 1)e e 1b b b x b b =-+-⋅+,∴2202e e 1e 1b b b b b x -++=-, 分母2e 10b ->, 令22()e e 1b b h b b b -=++, ∴22()2e e 1b b h b b -'=+, ∴2()4e 10b h b b ''=+>, ∴min ()(0)0h b h +''→→,∴min ()(0)0h b h b →→>, ∴00x >.。

[精品]广东省广州市2015高中毕业班综合测试(二)高中数学理科试题和答案

[精品]广东省广州市2015高中毕业班综合测试(二)高中数学理科试题和答案

试卷类型:A2015年广州市普通高中毕业班综合测试(二)数学(理科)2015.4本试卷共4页,21小题, 满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号.用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:球的表面积公式24S R =π,其中R 是球的半径.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.命题“若2x =,则2320x x -+=”的逆否命题是A .若2x ≠,则2320x x -+≠B .若2320x x -+=,则2x =C .若2320x x -+≠,则2x ≠D .若2x ≠,则2320x x -+= 2.已知0a b >>,则下列不等关系式中正确的是A .sin sin a b >B .22log log a b <C .1122a b <D .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭3.已知函数()40,1,0,x f x x x x ⎧≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩则()2f f =⎡⎤⎣⎦A .14B .12C .2D .44.函数()sin y A x ωϕ=+()0,0,0A ωϕ>><<π的图象的一部分如图1则此函数的解析式为A .3sin y x ππ⎛⎫=+ ⎪44⎝⎭ B .3sin y x π3π⎛⎫=+ ⎪44⎝⎭C .3sin y x ππ⎛⎫=+ ⎪24⎝⎭D .3sin y x π3π⎛⎫=+ ⎪24⎝⎭5.已知函数()223f x x x =-++,若在区间[]4,4-上任取一个实数0x ,则使()00f x ≥成立的概率为 A .425B .12C .23 D .16.如图2,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =, 有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是A C .3 D .27.已知两定点()1,0A -,()1,0B ,若直线l 上存在点M ,使得3MA MB +=, 则称直线l 为“M 型直线”.给出下列直线:①2x =;②3y x =+; ③21y x =--;④1y =;⑤23y x =+.其中是“M 型直线”的条数为 A .1 B .2 C .3 D .48.设(),P x y 是函数()y f x =的图象上一点,向量()()51,2x =-a ,()1,2y x =-b ,且//a b .数列{}n a是公差不为0的等差数列,且()()()12936f a f a f a ++⋅⋅⋅+=,则129a a a ++⋅⋅⋅+=图1AV CB图2A.0B.9C.18D.36 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题) 9.已知i 为虚数单位,复数1i1iz -=+,则z = . 10.执行如图3所示的程序框图,则输出的z 的值是 .11.已知()sin 6f x x π⎛⎫=+ ⎪⎝⎭,若3cos 5α=02απ⎛⎫<< ⎪⎝⎭,则12f απ⎛⎫+= ⎪⎝⎭.12.5名志愿者中安排4人在周六、周日两天参加社区公益活动.若每天安排2人,则不同的安排方案共有_________种(用数字作答).13.在边长为1的正方形ABCD 中,以A 为起点,其余顶点为终点的向量分别为1a ,2a ,3a ;以C()()ijst +∙+a a cc 的最小值,其中{}{},1,2,3i j ⊆,{}{},1,2,3s t ⊆(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图4,在平行四边形ABCD 中,4AB =,点E 为边DC 的中点,AE 与BC 的延长线交于点F,且AE 平分BAD ∠,作DG AE ⊥,垂足为G ,若1DG =,则AF 的长为 . 15.(坐标系与参数方程选做题)图4在平面直角坐标系中,已知曲线1C 和2C 的方程分别为32,12x t y t =-⎧⎨=-⎩(t 为参数)和24,2x t y t =⎧⎨=⎩(t 为参数),则曲线1C 和2C 的交点有 个. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且::7:5:3a b c =. (1)求cos A 的值;(2)若△ABC的面积为,求△ABC 外接圆半径的大小.17.(本小题满分12分)答一份).现从回收的年龄在20~60份,统计结果如下面的图表所示.(a b c n (2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环保之星”,记X 为第3组被授予“环保之星”的人数,求X 的分布列与数学期望.18.(本小题满分14分)如图5,已知六棱柱111111ABCDEF A BC D E F -的侧棱 垂直于底面,侧棱长与底面边长都为3,M ,N 分别 是棱AB ,1AA 上的点,且1AM AN ==. (1)证明:M ,N ,1E ,D 四点共面;(2)求直线BC 与平面1MNE D 所成角的正弦值.19.(本小题满分14分)已知点(),n n n P a b ()n ∈*N 在直线l :31y x =+上,1P 是直线l 与y 轴的交点,数列{}n a 是公差为1的等差数列.(1)求数列{}n a ,{}n b 的通项公式; (2)求证:22212131111116n PP PP PP ++++<.C 1ABA 1B 1D 1CDMNE FE 1F 1 图520.(本小题满分14分)已知圆心在x 轴上的圆C 过点()0,0和()1,1-,圆D 的方程为()2244x y -+=.(1)求圆C 的方程;(2)由圆D 上的动点P 向圆C 作两条切线分别交y 轴于A ,B 两点,求AB 的取值范围.21.(本小题满分14分)已知函数()ln f x a x =-11x x -+,()e xg x =(其中e 为自然对数的底数). (1)若函数()f x 在区间()0,1内是增函数,求实数a 的取值范围;(2)当0b >时,函数()g x 的图象C 上有两点(),e b P b ,(),e b Q b --,过点P ,Q 作图象C 的切线分别记为1l ,2l ,设1l 与2l 的交点为()00,M x y ,证明00x >.2015年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.16.解:(1)因为::7:5:3a b c=,所以可设7b k=,=,5a kk>,…………………………………………………………2分=()0c k3由余弦定理得,222cos 2b c a A bc +-=()()()222537253k k k k k+-=⨯⨯…………………………………………………………3分12=-.………………………………………………………………………………………………4分(2)由(1)知,1cos 2A =-,因为A 是△ABC 的内角, 所以s i A=………6分由(1)知5b k =,3c k =, 因为△ABC的面积为,所以1sin 2bc A =8分即15322k k ⨯⨯⨯= 解得k =…………10分由正弦定理2sina R A =,即71432s n2kR A==,…………………………………………………11分解得14R =. 所以△ABC外接圆半径的大小为14.…………………………………………………………………12分17.(本小题满分12分)解:(1)根据频率直方分布图,得()0.0100.0250.035101c +++⨯=, 解得0.03c =.……………………………………………………………………………………………1分 第3组人数为105.05=÷,所以1001.010=÷=n .…………………………………………………2分第1组人数为1000.3535⨯=,所以28350.8b =÷=.……………………………………………3分第4组人数为2525.0100=⨯,所以250.410a =⨯=.……………………………………………4分(2)因为第3,4组答对全卷的人的比为5:101:2=, 所以第3,4组应依次抽取2人,4人.…………………………………………………………………5分 依题意X的取值为0,1,2.……………………………………………………………………………6分()022426C C 20C 5P X ===,…………………………………………………………………………………7分()112426C C 81C 15P X ===,………………………………………………………………………………8分()202426C C 12C 15P X ===,………………………………………………………………………………9分所以X 的分布列为:………………………………………10分所以280151EX =⨯+⨯+⨯=. ………………………………………………………………12分18.(本小题满分14分)第(1)问用几何法,第(2)问用向量法: (1)证明:连接1A B ,11B D ,BD ,11A E ,在四边形1111A B D E 中,1111A E B D 且1111=A E B D ,在四边形11BB D D 中,11BD B D 且11=BD B D , 所以11A E BD 且11=A E BD ,所以四边形11A BDE 是平行四边形.所以11A B E D .………………………………2分 在△1ABA 中,1AM AN ==,13AB AA ==, 所以1AM ANAB AA =, 所以1MN.…………………………………………………………………………………………4分所以1MN DE .所以M,N,1E ,D四点共面.………………………………………………………………………6分 (2)解:以点E 为坐标原点,EA ,ED ,1EE 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系, 则()B ,9,02C ⎫⎪⎪⎝⎭,()0,3,0D , ()10,0,3E ,()M 1C 1A BA 1B 1D 1CDMN E FE 1F 1则3,02BC ⎛⎫= ⎪ ⎪⎝⎭,()10,3,3DE =-,()2,0DM =-.……………………………………10分设(),,x y z =n 是平面1MNE D 的法向量,则10,0.DE DM ⎧⋅=⎪⎨⋅=⎪⎩n n即330,20.y z y -+=⎧⎪⎨-=⎪⎩取y =2x =,z = 所以(23,33=n 是平面1MNE D的一个法向量.………………………………………………12分设直线BC 与平面1MNE D 所成的角为θ,则sin BC BCθ⋅=⋅n n116==. 故直线BC与平面1M NE D 所成角的正弦值为116. (14)第(1)(2)问均用向量法:(1)证明:以点E 为坐标原点,EA ,ED ,1EE 分别为x 轴,y 轴,z 则()B ,9,02C ⎫⎪⎪⎝⎭,()0,3,0D ,()10,0,3E ,()M ,()N ,……………2分所以()10,3,3DE =-,()0,1,1MN =-. ………………3分 因为13DE MN =,且MN 与1DE 不重合,所以1DE MN .…………………………………………5分 所以M,N,1E ,D四点共面.………………………………………………………………………6分 (2)解:由(1)知,02BC ⎛⎫= ⎪ ⎪⎝⎭,()10,3,3DE =-,()2,0DM =-.………………10分(特别说明:由于给分板(1)6分(2)8分,相当于把(1)中建系与写点坐标只给2分在此加2分)设(),,x y z =n 是平面1MNE D 的法向量,则10,0.DE DM ⎧⋅=⎪⎨⋅=⎪⎩n n即330,20.y z y -+=⎧⎪⎨-=⎪⎩取y =2x =,z = 所以(23,33=n 是平面1MNE D的一个法向量.………………………………………………12分设直线1BC 与平面1MNE D 所成的角为θ,则sin BC BCθ⋅=⋅n n==. 故直线BC与平面1MN E D 所成角的正弦值为.………………………………………………14分 第(1)(2)问均用几何法:(1)证明:连接1A B ,11B D ,BD ,11A E ,在四边形1111A B D E 中,1111A E B D 且1111=A E B D , 在四边形11BB D D 中,11BD B D 且11=BD B D , 所以11A E BD 且11=A E BD ,C 1BA 1B 1D 1CDNEFE 1F 1所以四边形11A BDE 是平行四边形.所以11A B E D .………………………………2分 在△1ABA 中,1AM AN ==,13AB AA ==, 所以1AM ANAB AA =, 所以1MN.…………………………………………………………………………………………4分所以1MN DE .所以M,N,1E ,D四点共面.………………………………………………………………………6分 (2)连接AD ,因为BCAD ,所以直线AD 与平面1MNE D 所成的角即为直线BC 与平面1MNE D 所成的角.…………………7分连接DN ,设点A 到平面DMN 的距离为h ,直线AD 与平面1MNE D 所成的角为θ,则sin hADθ=.……………………………………………………………………………………………8分因为A V V--=,即1133DMN AMN S h S DB ∆∆⨯⨯=⨯⨯.…………………………………………9分 在边长为3的正六边形ABCDEF中,DB =6DA =, 在△ADM 中,6DA =,1AM =,60DAM ∠=,由余弦定理可得,DM =在Rt △DAN 中,6DA =,1AN =,所以DN 在Rt △AMN 中,1AM =,1AN =,所以MN =在△DMN中,DM =DN =MN =由余弦定理可得,cos DMN ∠=,所以sin DMN ∠=. 所以1s 22DMN S MN DM DMN ∆=⨯⨯⨯∠=.…………………………………………………11分又12AMN S ∆=,……………………………………………………………………………………………12分所以AMN DMN S DB h S ∆∆⨯==.…………………………………………………………………………13分所以sin h AD θ==故直线BC与平面1MN E D 所成角的正弦值为116.………………………………………………14分 19.(本小题满分14分)(1)解:因为()111,P a b 是直线l :31y x =+与y 轴的交点()0,1, 所以10a =,11b =.……………………………………………………………………………………2分因为数列{}n a 是公差为1的等差数列, 所以1n a n =-.……………………………………………………………………………………………4分因为点(),n n n P a b 在直线l :31y x =+上, 所以31n n b a =+32n =-.所以数列{}n a ,{}n b 的通项公式分别为1n a n =-,32n b n =-()*n ∈N .………………………6分(2)证明:因为()10,1P ,()1,32n P n n --,所以()1,31n P n n ++.所以()222211310n PP n n n +=+=.………………………………………………………………………7分所以221211n P P +++211n ⎛⎫=+++⎪⎝⎭.……………………………………8分因为()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-,……………………………10分所以,当2n ≥时,222121311111n PP PP PP ++++111111210352121n n ⎡⎤⎛⎫<+-++- ⎪⎢⎥-+⎝⎭⎣⎦……………………………………………………………11分15110321n ⎛⎫=- ⎪+⎝⎭………………………………………………………………………………………12分16<. 又当1n =时,212111106PP =<.………………………………………………………………………13分所以2212116nP P ++.……………………………………………………………14分20.(本小题满分14分) 解:(1)方法一:设圆C的方程为:()222x a y r -+=()0r >,………………………………………1分因为圆C 过点()0,0和()1,1-, 所以()22222,11.a r a r ⎧=⎪⎨--+=⎪⎩………………………………………………………………………………3分解得1a =-,1r =. 所以圆C的方程为()2211x y ++=.…………………………………………………………………4分方法二:设()0,0O ,()1,1A -,依题意得,圆C 的圆心为线段OA 的垂直平分线l 与x 轴的交点C .………………………………1分因为直线l的方程为1122y x -=+,即1y x =+,……………………………………………………2分所以圆心C的坐标为()1,0-.…………………………………………………………………………3分 所以圆C的方程为()2211x y ++=.…………………………………………………………………4分(2)方法一:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=, 即()2200440y x =--≥,解得026x ≤≤.…………………………………………………………………………………………5分由圆C 与圆D 的方程可知,过点P 向圆C 所作两条切线的斜率必存在, 设PA 的方程为:()010y y k x x -=-, 则点A 的坐标为()0100,y k x -, 同理可得点B 的坐标为()0200,y k x -, 所以120AB k k x =-,因为PA ,PB 是圆C 的切线,所以1k ,2k1=,即1k ,2k 是方程()()2220000022110xx k y x k y +-++-=的两根,………………………………7分即()0012200201220021,21.2y x k k x x y k k x x ⎧++=⎪+⎪⎨-⎪=⎪+⎩所以12A B =-x =9分因为()220044y x =--, 所以AB =………10分设()()0020562x f x x -=+,则()()00305222x f x x -+'=+.………………………………………………………………………………11分由026x ≤≤,可知()0f x 在222,5⎡⎫⎪⎢⎣⎭上是增函数,在22,65⎛⎤⎥⎝⎦上是减函数,……………………12分所以()0max2225564f x f ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭, ()()(){}min0131min 2,6min ,484f x f f ⎧⎫===⎡⎤⎨⎬⎣⎦⎩⎭, 所以AB的取值范围为4⎦.…………………………………………………………………14分 方法二:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=,即()2200440y x =--≥, 解得026x ≤≤.…………………………………………………………………………………………5分设点()0,A a ,()0,B b , 则直线PA :00y ay a x x --=,即()0000y a x x y ax --+=,因为直线PA 与圆C1=,化简得()2000220x a y a x +--=. ① 同理得()2000220x b y b x +--=, ② 由①②知a,b为方程()2000220x x y x x +--=的两根,…………………………………………7分即00002,2.2y a b x x ab x ⎧+=⎪+⎪⎨-⎪=⎪+⎩所以AB a b =-===…9分因为()220044y x =--, 所以AB =………10分=.………………………………………………………………11分令012t x =+,因为026x ≤≤,所以1184t ≤≤.所以AB ==,………………………………………12分 当532t =时,max AB =, 当14t =时,min AB =所以AB 的取值范围为4⎦.…………………………………………………………………14分 21.(本小题满分14分)(1)解法一:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '=-≥+()01x <<.……………………………………………………………1分即()2120a x x +-≥()01x <<,即()221x a x ≥+……………………………………………………………………………………………2分212x x=++()01x <<, 因为21122x x<++在()0,1x ∈内恒成立, 所以12a ≥.故实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.……………………………………………………………………4分 解法二:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '-+≥=()01x <<.……………………………………………………………1分即()2120a x x +-≥()01x <<,即()2210ax a x a +-+≥()01x <<,…………………………………………………………………2分设()()221g x ax a x a =+-+,当0a =时,得20x -≥,此时不合题意.当0a <时,需满足()()00,10,g g ≥⎧⎪⎨≥⎪⎩即()0,210,a a a a ≥⎧⎪⎨+-+≥⎪⎩解得12a ≥,此时不合题意. 当0a >时,需满足()222140a a --≤⎡⎤⎣⎦或()()00,10,10,g g a a ⎧⎪≥⎪≥⎨⎪-⎪-<⎩或()()00,10,11,g g a a⎧⎪≥⎪≥⎨⎪-⎪->⎩ 解得12a ≥或1a >, 所以12a ≥.综上所述,实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.……………………………………………………………4分 (2)证明:因为函数()e x g x =,所以()e xg x '=. 过点(),e b P b ,(),e b Q b --作曲线C 的切线方程为:1l :()e e b b y x b =-+,2l :()e e b b y x b --=++,因为1l 与2l 的交点为()00,M x y ,由()()e e ,e e ,b b b b y x b y x b --⎧=-+⎪⎨=++⎪⎩ ………………………………………………………………………………6分消去y ,解得()()()0e +e e e e e b b b b b b b x -----=-. ①…………………………………………7分下面给出判定00x >的两种方法:方法一:设e b t =,………………………………………………………………………………………8分因为0b >,所以1t >,且ln b t =.所以()()2202+1ln 11t t t x t --=-.…………………………………………………………………………9分设()()()22+1ln 1h t t t t =--()1t >,则()12ln h t t t t t'=-+()1t >.………………………………………………………………………10分令()12ln u t t t t t =-+()1t >,则()212ln 1u t t t '=+-. 当1t >时,l n t >,2110t ->,所以()212ln 10u t t t '=+->,………………………………11分 所以函数()u t 在()1,+∞上是增函数,所以()()10u t u >=,即()0h t '>,…………………………………………………………………12分所以函数()h t 在()1,+∞上是增函数,所以()()10h t h >=.…………………………………………………………………………………13分因为当1t >时,210t ->,所以()()2202+1ln 101t t t x t --=>-.…………………………………………………………………14分方法二:由①得0x ()221+e 11e b b b --=--. 设2e b t -=,…………………………………………………………………………………………………8分因为0b >,所以01t <<,且ln 2t b =-.于是21ln b t-=,……………………………………………………………………………………………9分所以()01+221ln 1ln 1b t b t x b t t t t +⎛⎫=+=+ ⎪--⎝⎭.…………………………………………………………10分由(1)知当12a =时,()1ln 2f x x =-11x x -+在区间()0,1上是增函数,…………………………11分所以()ln 2t f t =-()1101t f t -<=+, 即ln 2t <11t t -+. …………………………………………………………………………………………12分 即210ln 1t t t++>-,………………………………………………………………………………………13分已知0b >,所以0210ln 1t x b t t +⎛⎫=+> ⎪-⎝⎭.…………………………………………………………………………14分。

广东省增城市新塘中学2015届高三12月月考数学试题

广东省增城市新塘中学2015届高三12月月考数学试题

广东省增城市新塘中学2015届高三12月月考数学试题参考公式:锥体的体积公式:13V Sh =(其中S 是锥体的底面积,h 是锥体的高) 一、选择题(本大题共10小题,每小题5分,满分50分.每小题给出的四个选项中,只有一项是符合题目要求.)1.已知集合{}1,3,5,7,9U =,{}1,5,7A =,则U A =ð( ) A .{}1,3B .{}3,7,9C .{}3,5,9D .{}3,92.设,a b 为实数,若复数()()112i a bi i +⋅+=+,则( )A .31,22a b == B .3,1a b == C .13,22a b == D .1,3a b == 3.“1sin 2α=”是“1cos 22α=”的( )条件A .充分不必要B .必要不充分C .充要D .不充分也不必要 4.给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④ 5.等比数列{}n a 中,36a =,前三项和318S =,则公比q 的值为( )A .1B .12-C .1或12-D .-1或12- 6.函数()sin()(0,0,||)2f x A x A πωφωφ=+>><的部分图象 如图示,则将()y f x =的图象向右平移6π个单位后,得到的图象解析式为 ( )A .y =sin 2xB .y =cos 2xC .y =2sin(2)3x π+D .y =sin(2)6x- 7.设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点,若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为( )A .32 B .2 C .52D .3 8.已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),则(2011)(2012)f f -+的值为( ) A .2- B .1- C .1 D .29.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用,每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台,若每辆至多只运一次,则该厂所花的最少运输费用为( )A .2000元B .2200元C .2400元D .2800元 10.定义平面向量之间的一种运算“”如下:对任意的(,)a m n =,(,)b p q =,令a b mq np =-,下面说法错误的序号是( ). ①若a 与b 共线,则0a b = ②ab b a =③对任意的R λ∈,有()()a b ab λλ= ④2222()()||||ab a b a b +⋅=A .②B .①②C .②④D .③④ 二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(第11至13题为必做题,每道试题考生都必须作答。

2015广州二模文科数学试题及答案

2015广州二模文科数学试题及答案

试卷类型:A2015年广州市普通高中毕业班综合测试(二)数学(文科)2015.4本试卷共4页,21小题, 满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号.用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高.台体的体积公式()123hV S S =+,其中1S ,2S 分别是台体的上,下底面积,h 是台体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.sin 240的值为A.2 B .12 C .12- D.2-2.已知函数()3xf x =()x ∈R 的反函数为()g x ,则12g ⎛⎫=⎪⎝⎭A .3log 2-B .3log 2C .2log 3-D .2log 33.已知双曲线C :22214x y b-=经过点()4,3,则双曲线C 的离心率为 A .12 BCD4.执行如图1所示的程序框图,则输出的z 的值是 A .21 B .32 C .34D .645.已知命题p :x ∀∈R ,20x >,命题q :,αβ∃∈R ,使()tan tan tan αβαβ+=+,则下列命题为真命题的是A .p q ∧B .()p q ∨⌝C .()p q ⌝∧D .()p q ∧⌝6.设集合{}22A x a x a =-<<+,{}2450B x x x =--<,若A B ⊆,则实数a 的取值范围为A .[]1,3B .()1,3C .[]3,1--D .()3,1--7.已知数列{}n a 满足13a =,且143n n a a +=+()*n ∈N ,则数列{}n a 的通项公式为A .2121n -+ B .2121n -- C .221n +D .221n-8.已知函数()223f x x x =-++,若在区间[]4,4-上任取一个实数0x ,则使()00f x ≥成立的概率为A .425B .12C .23D .19.如图2,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =, 有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是 ABC D 10.设函数()3233f x x ax bx =++有两个极值点12x x 、,且[]11,0x ∈-,[]21,2x ∈,则点(),a b 在aOb平面上所构成区域的面积为 A .14 B .12 C .34D .1AVCB图2二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题) 11.已知i 为虚数单位,复数1iiz -=,则z = . 12.已知向量(),1x =a ,()2,y =b ,若()1,1=-a +b ,则x y += .13.某种型号的汽车紧急刹车后滑行的距离y ()km 与刹车时的速度x ()km/h 的关系可以用2y ax =来描述,已知这种型号的汽车在速度为60km /h 时,紧急刹车后滑行的距离为b ()km .一辆这种型号的14的长为 .15.(坐标系与参数方程选做题)在在平面直角坐标系中,已知曲线1C 和2C 的方程分别为32,12x t y t =-⎧⎨=-⎩(t 为参数)和24,2x t y t=⎧⎨=⎩(t 为参数),则曲线1C 和2C 的交点有 个.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且::7:5:3a b c =. (1)求cos A 的值;(2)若△ABC 外接圆的半径为14,求△ABC 的面积. 17.(本小题满分12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了100份,统计结果如下面的图表所示.(1)分别求出n ,a ,b ,c 的值;(2)从年龄在[]40,60答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[]50,60的人中至少有1人被授予“环保之星”的概率.图318.(本小题满分14分)如图4,已知正方体1111ABCD A BC D -的棱长为3,M ,N 分别是 棱1AA ,AB 上的点,且1AM AN ==. (1)证明:M ,N ,C ,1D 四点共面;(2)平面1MNCD 将此正方体分为两部分,求这两部分的体积之比.19.(本小题满分14分)已知点(),n n n P a b ()n ∈*N 在直线l :31y x =+上,1P 是直线l 与y 轴的交点,数列{}n a 是公差为1的等差数列.(1)求数列{}n a ,{}n b 的通项公式;(2)若(),,n n a n f n b n ⎧=⎨⎩为奇数为偶数,,是否存在k ∈*N ,使()()34f k f k +=成立?若存在,求出所有符合条件的k 值;若不存在,请说明理由.20.(本小题满分14分)已知函数()2ln f x x ax x =++()a ∈R .(1)若函数()f x 在1x =处的切线平行于x 轴,求实数a 的值,并求此时函数()f x 的极值; (2)求函数()f x 的单调区间.21.(本小题满分14分)已知圆心在x 轴上的圆C 过点()0,0和()1,1-,圆D 的方程为()2244x y -+=.(1)求圆C 的方程;(2)由圆D 上的动点P 向圆C 作两条切线分别交y 轴于A ,B 两点,求AB 的取值范围.C 1 ABA 1B 1D 1C DM N图42015年广州市普通高中毕业班综合测试(二)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共10小题,每小题,满分50分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共5小题,每小题,满分20分.其中14~15题是选做题,考生只能选做一题.16.(本小题满分12分) 解:(1)因为::7:5:3a b c =,所以可设7a k =,5b k =,3c k =()0k >,…………………………………………………………2分 由余弦定理得,222cos 2b c a A bc +-=()()()222537253k k k k k +-=⨯⨯…………………………………………………………3分 12=-.………………………………………………………………………………………………4分(2)由(1)知,1cos 2A =-,因为A 是△ABC 的内角,所以sin A ==.…………………………………………6分 由正弦定理2sin aR A=,…………………………………………………………………………………7分得2sin 2142a R A ==⨯⨯=…………………………………………………………………8分 由(1)设7a k =,即k =,所以5b k ==3c k ==10分所以1sin 2ABC S bc A ∆=12=⨯……………………………………………………11分=所以△ABC的面积为12分17.(本小题满分12分)解:(1)因为抽取总问卷为100份,所以()10040102030n =-++=.………………………………1分年龄在[)40,50中,抽取份数为10份,答对全卷人数为4人,所以4100.4b =÷=.……………2分 年龄在[]50,60中,抽取份数为20份,答对全卷的人数占本组的概率为0.1,所以200.1a ÷=,解得2a =.…………………………………………………………………………3分 根据频率直方分布图,得()0.040.030.01101c +++⨯=,解得0.02c =.……………………………………………………………………………………………4分 (2)因为年龄在[)40,50与[]50,60中答对全卷的人数分别为4人与2人.年龄在[)40,50中答对全卷的4人记为1a ,2a ,3a ,4a ,年龄在[]50,60中答对全卷的2人记为1b ,2b ,则从这6人中随机抽取2人授予“环保之星”奖的所有可能的情况是:()12,a a ,()13,a a ,()14,a a ,()11,a b ,()12,a b ,()23,a a ,()24,a a , ()21,a b ,()22,a b ,()34,a a ,()31,a b ,()32,a b ,()41,a b ,()42,a b , ()12,b b 共15种.…………………………………………………………………………………8分其中所抽取年龄在[]50,60的人中至少有1人被授予“环保之星”的情况是:()11,a b ,()12,a b ,()21,a b ,()22,a b ,()31,a b ,()32,a b ,()41,a b ,()42,a b ,()12,b b 共9种.……………………………………11分故所求的概率为53159=. ………………………………………………………………………………12分18.(本小题满分14分) (1)证明:连接1A B ,在四边形11A BCD 中,11A D BC 且11A D BC =,所以四边形11A BCD 是平行四边形. 所以11A BD C .…………………………………………2分在△1ABA 中,1AM AN ==,13AA AB ==,所以1AM ANAA AB=, 所以1MN A B .…………………………………………………………………………………………4分 所以1MNDC .所以M ,N ,C ,1D 四点共面.………………………………………………………………………6分 (2)解法一:记平面1MNCD 将正方体分成两部分的下部分体积为1V ,上部分体积为2V ,连接1D A ,1D N ,DN ,则几何体1D AMN -,1D ADN -,1D CDN -均为三棱锥, 所以1111D AMN D ADN D CDN V V V V ---=++1111111333A M N A D N C D N S D A S D D S D D ∆∆∆=++………9分 111319333323232=⨯⨯+⨯⨯+⨯⨯132=.……………………………………………………………………………………………11分从而11111213412722ABCD A B C D AMN DD C V V V --=-=-=,…………………………………………………13分 所以121341V V =. 所以平面1MNCD 分此正方体的两部分体积的比为1341.……………………………………………14分C 1 ABA 1B 1D 1C DMNC 1 A B A 1B 1D 1C D M N解法二:记平面1MNCD 将正方体分成两部分的下部分体积为1V ,上部分体积为2V , 因为平面11ABB A 平面11DCC D ,所以平面AMN平面1DD C .延长CN 与DA 相交于点P , 因为AN DC ,所以AN PA DC PD =,即133PAPA =+,解得32PA =.延长1D M 与DA 相交于点Q ,同理可得32QA =.所以点P 与点Q 重合.所以1D M ,DA ,CN 三线相交于一点.所以几何体1AMN DD C -是一个三棱台.……………………………………………………………9分所以111191333222AMN DD C V V -⎛⎫==⨯+⨯= ⎪ ⎪⎝⎭,………………………………………………11分 从而11111213412722ABCD A B C D AMN DD C V V V --=-=-=,…………………………………………………13分 所以121341V V =. 所以平面1MNCD 分此正方体的两部分体积的比为1341.……………………………………………14分 19.(本小题满分14分)解:(1)因为()111,P a b 是直线l :31y x =+与y 轴的交点()0,1, 所以10a =,11b =.……………………………………………………………………………………2分 因为数列{}n a 是公差为1的等差数列,所以1n a n =-.……………………………………………………………………………………………4分因为点(),n n n P a b 在直线l :31y x =+上,所以31n n b a =+32n =-.所以数列{}n a ,{}n b 的通项公式分别为1n a n =-,32n b n =-()*n ∈N .………………………6分(2)因为()1,32,n n f n n n -⎧=⎨-⎩为奇数为偶数,,假设存在k ∈*N ,使()()34f k f k +=成立.………………………………………………………7分 ①当k 为奇数时,3k +为偶数, 则有()()33241k k +-=-,解得11k =,符合题意.………………………………………………………………………………10分 ②当k 为偶数时,3k +为奇数, 则有()()31432k k +-=-,解得1011k =,不合题意.………………………………………………………………………………13分 综上可知,存在11k =符合条件.………………………………………………………………………14分20.(本小题满分14分)解:(1)函数()f x 的定义域为()0,+∞,……………………………………………………………………1分因为()2ln f x x ax x =++,所以()121f x ax x'=++,………………………………………………………………………………2分 依题意有()10f '=,即1210a ++=,解得1a =-.………………………………………………3分此时()()()212121x x x x f x x x--+-++'==,所以当01x <<时,()0f x '>,当1x >时,()0f x '<,所以函数()f x 在()0,1上是增函数,在()1,+∞上是减函数,………………………………………5分 所以当1x =时,函数()f x 取得极大值,极大值为0.………………………………………………6分(2)因为()121f x ax x '=++221ax x x++=,(ⅰ)当0a ≥时,………………………………………………………………………………………7分因为()0,x ∈+∞,所以()f x '2210ax x x++=>, 此时函数()f x 在()0,+∞是增函数.……………………………………………………………………9分(ⅱ)当0a <时,令()0f x '=,则2210ax x ++=.因为180a ∆=->,此时()f x '()()212221a x x x x ax x x x--++==,其中1x =,2x =.因为0a <,所以20x >,又因为12102x x a=<,所以10x <.……………………………………11分 所以当20x x <<时,()0f x '>,当2x x >时,()0f x '<,所以函数()f x 在()20,x 上是增函数,在()2,x +∞上是减函数.…………………………………13分 综上可知,当0a ≥时,函数()f x 的单调递增区间是()0,+∞;当0a <时,函数()f x 的单调递增区间是0,⎛ ⎝⎭,单调递减区间是⎛⎫+∞ ⎪ ⎪⎝⎭.……………………………………14分21.(本小题满分14分)解:(1)方法一:设圆C 的方程为:()222x a y r -+=()0r >,………………………………………1分因为圆C 过点()0,0和()1,1-,所以()22222,11.a r a r ⎧=⎪⎨--+=⎪⎩………………………………………………………………………………3分 解得1a =-,1r =.所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分方法二:设()0,0O ,()1,1A -,依题意得,圆C 的圆心为线段OA 的垂直平分线l 与x 轴的交点C .………………………………1分 因为直线l 的方程为1122y x -=+,即1y x =+,……………………………………………………2分 所以圆心C 的坐标为()1,0-.…………………………………………………………………………3分所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分(2)方法一:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=,即()2200440y x =--≥, 解得026x ≤≤.…………………………………………………………………………………………5分 由圆C 与圆D 的方程可知,过点P 向圆C 所作两条切线的斜率必存在, 设PA 的方程为:()010y y k x x -=-,PB 的方程为:()020y y k x x -=-, 则点A 的坐标为()0100,y k x -,点B 的坐标为()0200,y k x -, 所以120AB k k x =-,因为PA ,PB 是圆C 的切线,所以1k ,2k1=,即1k ,2k 是方程()()2220000022110x x k y x k y +-++-=的两根,………………………………7分 即()0012200201220021,21.2y x k k x x y k k x x ⎧++=⎪+⎪⎨-⎪=⎪+⎩所以120AB k k x =-x =9分 因为()220044y x =--,所以AB =10分 设()()0020562x f x x -=+,则()()00305222x f x x -+'=+.………………………………………………………………………………11分由026x ≤≤,可知()0f x 在222,5⎡⎫⎪⎢⎣⎭上是增函数,在22,65⎛⎤ ⎥⎝⎦上是减函数,……………………12分所以()0max 2225564f x f ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭, ()()(){}min 0131min 2,6min ,484f x f f ⎧⎫===⎡⎤⎨⎬⎣⎦⎩⎭, 所以AB的取值范围为4⎦.…………………………………………………………………14分 方法二:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=,即()2200440y x =--≥, 解得026x ≤≤.…………………………………………………………………………………………5分 设点()0,A a ,()0,B b ,则直线PA :00y a y a x x --=,即()0000y a x x y ax --+=, 因为直线PA 与圆C1=, 化简得()2000220x a y a x +--=. ① 同理得()2000220x b y b x +--=, ② 由①②知a ,b 为方程()2000220x x y x x +--=的两根,…………………………………………7分 即00002,2.2y a b x x ab x ⎧+=⎪+⎪⎨-⎪=⎪+⎩所以AB a b =-===9分因为()220044y x =--, 所以AB =10分=.………………………………………………………………11分 令012t x =+,因为026x ≤≤,所以1184t ≤≤.所以AB ==,………………………………………12分 当532t =时,max AB = 当14t =时,min AB =所以AB的取值范围为4⎦.…………………………………………………………………14分。

2015年高考理科数学试题全国卷2及解析word完美版

2015年高考理科数学试题全国卷2及解析word完美版

2015年高考全国新课标卷Ⅱ理科数学真题一、选择题1、已知集合A={–2,–1,0,1,2},B={x|(x –1)(x+2)<0},则A∩B=() A .{–1,0} B .{0,1} C .{–1,0,1} D .{0,1,2}2、若a 为实数,且(2+ai)(a –2i)=–4i ,则a=() A .–1 B .0 C .1 D .23、根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图,以下结论中不正确的是()A .逐年比较,2008年减少二氧化硫排放量的效果最显着B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫排放量呈减少趋势D .20064、已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则A .21 B .42 C .63 D .84 5、设函数f(x)=,则f(–2)+f(log 212)=() A .3 B .6 C .9 D .12 6.一个正方体被一个平面截去一部分后,分体积的比值为()A .B .C .D .7、过三点A .2 8、如上左2a=() A .0 9、已知A ,C 为该球上的动点,若三棱锥O –ABC 的体积最大值为36A .36π.256π10、如上左O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x x 的函数,则y=f(x)的图像大致为()A .B .C .D . 11、已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为()A .B .2C .D .12、设函数f’(x)是奇函数f(x)(x R)的导函数,f(–1)=0,当x>0时,xf’(x)–f(x)<0,则使得f(x)>0成立的x 的取值范围是() A .(–∞,–1)∪(0,1) B .(,0)∪(1,+∞)C .(–∞,–1)∪(–1,0) D .(,1)∪(1,+∞) 二、填空题13、设向量a,b 不平行,向量λa+b 与a+2b 平行,则实数λ=. 14、若x ,y 满足约束条件,则z=x+y 的最大值为.15、(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a=.16、设S n 是数列{a n }的前n 项和,且a 1=–1,a n+1=S n S n+1,则S n =________________. 三、解答题17、△ABC 中,D 是BC 上的点,AD 平分∠BAC,△ABD 面积是△ADC 面积的2倍. (1)求.(2)若AD=1,DC=,求BD 和AC 的长.18.某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机抽查了20个用户,得到用户对产品的满意度评分如下: A 地区:62738192958574645376 78869566977888827689B 地区:73836251914653736482 93486581745654766579(1)均值及分散程度(记事件C :“A 地区用户的满意等级高于B 19、如图,长方形ABCD –A 1B 1C 1D 1中,AB=16,BC=101F=4.过点E ,F 的平面α(1)在途中画出这个正方形(不必说明画法和理由(2)求直线AF 与α平面所成角的正弦值.20、已知椭圆C :9x 2+y 2=M 2(m>0).直线l A ,B ,线段AB 的中点为M .(1)(2)若l l 的21、设函数(1)证明:(2)2)|≤e –1,求m 的取值范围.22、[选修4ABC 内一点,⊙O 与△ABC 的底边BC 交于M ,N E ,F 两点. (1)(2)若AG EBCF 的面积. 23、[选修4xOy 中,曲线C 1:(t 为参数,t≠0),其中0≤α<π. 在以O C 2:ρ=2sinθ,C 3:ρ=2cosθ. (1)求C 2与C (2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB|的最大值24、[选修4–5:不等式选讲]设a ,b ,c ,d 均为正数,且a+b=c+d ,证明: (1)若ab>cd ,则+>+;(2)+>+是|a –b|<|c –d|的充要条件. 2015年高考全国新课标卷Ⅱ理科数学真题 一、选择题1、答案:A .∵(x–1)(x+2)<0,解得–2<x<1,∴B={x|–2<x<1},∴A∩B={–1,0}.2、答案:B .∵(2+ai)(a–2i)=(2a+2a)+(a 2–4)i=–4i ,∴a 2–4=–4,解得a=0.3、答案:D .由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关.4、答案:B .∵a 1+a 3+a 5=a 1+a 1q 2+a1q 4=3(1+q 2+q 4)=21,∴1+q 2+q 4=7,整理得(q 2+3)(q 2–2)=0.解得q 2=2,∴a 3+a 5+a 7=a 1q 2+a 1q 4+a 1q 6=a 1q 2(1+q 2+q 4)=3×2×7=42. 5、答案:C .∵f(–2)=1+log 2(2+2)=3,()222log 121log 3log 412log 1222f -+-==222log 3log 2log 6226+===,∴f(–2)+f(log 212)=9.6、答案:D .如图所示截面为ABC ,设边长为a ,则截取部分体积为S △ADC ·|DB|=a 3, 所以截去部分体积与剩余部分体积的比值为=.7、答案:C .由题可得,解得,所以圆方程为x 2+y 2–2x+4y –20=0,令x=0,解得y=–2±2, 所以|MN|=|–2+2–(–2–2)|=4. 8、答案:B .输入a=14,b=18.第一步a≠b 成立,执行a>b ,不成立执行b=b –a=18–14=4; 第二步a≠b第三步a≠b 第四步a≠b 第四步a≠b 第五步a≠b 9、答案:C 点C 到平面10、答案:当点P 在CD 当x=时,从点P B . 11、答案:过点M 作, 12、答案:因为当x>0 又因为函数且g(–, 二、填空题131415、答案:所以Ca+Ca+C+C+C=32,解得a=3.16、答案:–.∵a n+1=S n+1–S n =S n S n+1,∴–=1.即–=–1,∴{}是等差数列, ∴=–(n –1)=–1–n+1=–n ,即S n =–. 三、解答题17、答案:(1);(2)|BD|=,|AC|=1.(1)如图,由题意可得S △ABD =|AB||AD|sin ∠BAD,S △ADC =|AC||AD|sin ∠CAD, ∵S △ABD =2S △ADC ,∠BAD=∠DAC,∴|AB |=2|AC|,∴==. (2)设BC 边上的高为h ,则S △ABD =|BD|·h=2S △ADC =2××h ,解得|BD|=,设|AC|=x ,|AB|=2x ,则cos ∠BAD=,cos ∠DAC=.∵cos∠DAC=cos ∠BAD ,∴=,解得x=1或x=–1(舍去).∴|AC|=1. 18、(1)如图所示.通过茎叶图可知A 地区的平均值比B 地区的高,A地区的分散程度大于B地区.(2)记事件不满意为事件A1,B1,满意为事件A2,B2,非常满意为事件A3,B3.则由题意可得P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,则P(C)=P(A2)P(B1)+P(A3)(P(B1)+P(B2))=×+×(+)=.19、(1)如图所示(2)建立空间直角坐标系.由题意和(1)可得A(10,0,0),F(0,4,8),E(10,4,8),G(10,10,0),则向量AF=(–10,4,8),EF=(–10,0,0),EG=(0,6,–8).设平面EFHG的一个法向量为n=(x,y,z),则,即,解得x=0,令y=4,z=3,则n=(0,4,3).所以直线AF与α平面所成角的正弦值为sinθ=|cos<AF,n>|===.20、(1)设直线l的方程为y=kx+b(k≠0),点A(x1,y1),B(x2,y2),则M(,),联立方程,消去y整理得(9+k2)x2+2kbx+b2–m2=0(*),∴x1+x2=–,y1+y2=k(–)+2b=,∴kOM ·kAB=·k=·(–)·k=–9.k=4±,有21∴∴,所以此时当令e–m–2m 在而.当当22则∵.在在Rt△AEO中,sin∠OAE===.∴∠OAE=60°,∵∠OAE=∠OAF=∠EAF,AE=AF,∴∠EAF=2∠OAE=60°,∴△AEF、△ABC是等边三角形.连接OM,∴OM=2.∵OD⊥MN,∴MD=ND=MN=.在Rt△ODM中,OD===1,∴AD=OA+AD=4+1=5.在Rt△ADB中,AB===.∴四边形EBCF的面积为S△ABC –S△AEF=×()2–×(2)2=.23、(1)将曲线C2,C3化为直角坐标系方程C2:x2+y2–2y=0,C3:x2+y2–2x=0.联立,解得或.所以交点坐标为(0,0),(,).(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.∵A的极坐标为(2sinα,α),B的极坐标为(2cosα,α).∴|AB|=|2sinα–2 cosα|=4|sin(α–)|.当α=时,|AB|取得最大值,最大值为4.24、(1)由题意可得(+)2=a+b+2,(+)2=c+d+2,∵ab>cd,∴>,而a+b=c+d,∴(+)2>(+)2,即+>+.(2)+>+,即a+b+2>c+d+2,∴>,∴ab>cd,∴–4ab<–4cd,∴(a+b)2–4ab<(c+d)2–4cd,∴(a–b)2<(c–d)2,∴|a–b|<|c–d|.。

增城中学第一学期高三年级综合测试(二).docx

增城中学第一学期高三年级综合测试(二).docx

马鸣风萧萧马鸣风萧萧高中数学学习材料马鸣风萧萧*整理制作增城中学2015-2016学年度第一学期高三年级综合测试(二)数学(文科)命题人:党红亮 审题人:倪华梁说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{0,1,2,3,4,5}U =,集合{2,4}A =,2{|540,}B x x x x U =-+<∈,则集合()()U U C A C B ⋂=( )(A ){0,4,5,2} (B ){0,4,5} (C ){2,4,5} (D ){0,1,5}2.复数122ii+-的共轭复数是( ) (A )35i (B )35i -(C )i (D )—i3.“0ab <”是“0a >且0b <”的( ) (A )必要不充分条件 (B )充要条件(C )充分不必要条件 (D )既不充分也不必要条件4.执行如图所示的程序框图,若输入3x =,则输出y 的值为( ) (A )5 (B )7(C )15(D )315.为了得到函数sin(2)2y x π=-的图像,只需把函数sin 2y x =的图像( )(A )向左平移4π个单位 (B )向右平移4π个单位 (C )向左平移2π个单位 (D )向右平移2π个单位 6.已知双曲线221x ky -=的一个焦点是(5,0),则其渐近线的方程为( )(A )14y x =± (B )4y x =± (C )12y x =± (D )2y x =±7.如图2,三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥,若2AB BC CD ===,则该三棱锥的侧视图(投影线平行于BD )的面积为( ) (A )2 (B )2 (C )22 (D )238.在ABC ∆中,,,A B C 所对的边分别为c b a ,,,若060=A ,3=a ,3=+c b ,则ABC ∆的面积为( ) (A )34 (B )32(C )3 (D )2 9.若实数x ,y 满足条件0,10,01,x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩则3y x -的最大值为( )(A )6(B )5(C )4(D )310.已知函数()=sin ()cos()22f x x x ππ+-,其中正确说法为( ) (A )若)()(21x f x f -=,则21x x -=(B ))(x f 在区间3[,]44ππ--上是增函数 (C ))(x f 的最小正周期是2π(D ))(x f 的图象关于直线43π=x 对称 11.若[0,1],[0,1]a b ∈∈,则函数322y x ax bx =+++为增函数的概率为( )(A )56 (B )23 (C )13 (D )1612.已知22(0)()(1)(0)a x x x f x f x x ⎧--<=⎨-≥⎩,且函数()y f x x =-恰有3个不同的零点,则a 的取值范围是( )马鸣风萧萧(A )[1,)-+∞ (B )[1,0)- (C) (0,)+∞ (D) [2,)-+∞第Ⅱ卷二.填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.13.圆22430x y x +-+=的圆心到直线30x y -=的距离是_____.14.已知向量(1,2)=a ,(,2)λ=-b .若向量,-a b a 夹角为90︒,则实数λ=_____.15.已知矩形ABCD 的顶点都在半径为R 的球O 的球面上,6AB =,23BC =,棱锥O-ABCD 的体积为83,则球O 的表面积为___________.16.海事救护船A 在基地的北偏东60o ,与基地相距1003海里,渔船B 被困海面,已知B 距离基地100海里,而且在救护船A 正西方,则渔船B 与救护船A 的距离是___________海里.三.解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(I )求{}n a ,{}n b 的通项公式; (II )求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .18(本小题满分共12分)如图5,在四棱锥S ABCD -中,底面ABCD 是平行四边形,侧面SBC 是正三角形,点E 是SB 的中点,且AE ⊥平面CBS (I )证明:BS AC ⊥;(II )若AS AB ⊥,2=BC ,求点S 到平面ABC 的距离。

增城中学学年度第一学期高三年级综合测试(二)

增城中学学年度第一学期高三年级综合测试(二)

增城中学2015--2016学年度第一学期高三年级综合测试(二)数学(理科)命题人:钟康生 审题人:李勋说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.1. 已知b 是实数,若12bi i+-是纯虚数,则b =( ) A .2 B .2- C .21 D .21- 2. 设cos(α+ππ<α<23π),那么sin(2)πα-的值为( ) A .12- B. 12 C.2- D.23. 由直线6x π=-,曲线cos y x =,x 轴和y 轴所围成的封闭图形的面积是( ) A. 2πB.2C. 2D. 12 4. 已知两向量a 、b 满足1a =,2b =,3a b +=,则a 与b 的夹角为( ) A. 45o B. 60o C. 120o D. 90o5. 执行右边的程序框图,若p =0.8,则输出的n =( )A .4B .5C .6D .36. “lg ,lg ,lg x y z 成等差数列”是“2y xz =”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 设已知数列{}n a 对任意的N n m ∈,,满足n m n m a a a +=+,且12=a ,那么10a 等于( )A.3B.5C.7D.98. 设变量x ,y 满足约束条件:4,,20,x y x x ⎧⎪⎨⎪+≥⎩+y ≤≥则21z x y =-+的最大值为( )A .2B .1-C .4D .3。

2015年广州市普通高中毕业班综合测试(理科)(二)

2015年广州市普通高中毕业班综合测试(理科)(二)

1试卷类型:A2015年广州市普通高中毕业班综合测试(二)数学(理科)2015.4本试卷共4页,21小题, 满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号.用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:球的表面积公式24S R =π,其中R 是球的半径.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.命题“若2x =,则2320x x -+=”的逆否命题是A .若2x ≠,则2320x x -+≠ B .若2320x x -+=,则2x = C .若2320x x -+≠,则2x ≠ D .若2x ≠,则2320x x -+=2.已知0a b >>,则下列不等关系式中正确的是A .sin sin a b >B .22log log a b <C .1122a b < D .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭3.已知函数()40,1,0,x f x x x x ⎧≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩则()2f f =⎡⎤⎣⎦ A .14 B .12C .2D .424.函数()sin y A x ωϕ=+()0,0,0A ωϕ>><<π的图象的一部分如图1所示, 则此函数的解析式为A .3sin y x ππ⎛⎫=+ ⎪44⎝⎭B .3sin y x π3π⎛⎫=+ ⎪44⎝⎭C .3sin y x ππ⎛⎫=+ ⎪24⎝⎭D .3sin y x π3π⎛⎫=+ ⎪24⎝⎭5.已知函数()223f x x x =-++,若在区间[]4,4-上任取一个实数0x ,则使()00f x ≥成立的概率为A .425 B .12 C .23D .1 6.如图2,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是A BC D7.已知两定点()1,0A -,()1,0B ,若直线l 上存在点M ,使得3MA MB +=,则称直线l 为“M 型直线”.给出下列直线:①2x =;②3y x =+;③21y x =--;④1y =;⑤23y x =+.其中是“M 型直线”的条数为A .1B .2C .3D .48.设(),P x y 是函数()y f x =的图象上一点,向量()()51,2x =-a ,()1,2y x =-b ,且//a b .数列{}na 是公差不为0的等差数列,且()()()12936f a f a f a ++⋅⋅⋅+=,则129a a a ++⋅⋅⋅+= A .0 B .9 C .18 D .36二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.已知i 为虚数单位,复数1i1iz -=+,则z = . 10.执行如图3所示的程序框图,则输出的z 的值是 .图1AV CB图2311.已知()sin 6f x x π⎛⎫=+⎪⎝⎭,若3cos 5α=02απ⎛⎫<< ⎪⎝⎭,则12f απ⎛⎫+= ⎪⎝⎭ .12.5名志愿者中安排4人在周六、周日两天参加社区公益活动.若每天安排2人,则不同的安排方案共有_________种(用数字作答). 13.在边长为1的正方形ABCD 中,以A 为起点,其余顶点为终点的向量分别为1a ,2a ,3a ;以C 为起点,其余顶点为终点的向量分别为1c ,2c ,3c .若m 为()()i j s t +∙+a a c c 的最小值,其中{}{},1,2,3i j ⊆,{}{},1,2,3s t ⊆,则m = .(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图4,在平行四边形ABCD 中,4AB =,点E 为边DC的中点, AE 与BC 的延长线交于点F ,且AE 平分BAD ∠,作DG AE ⊥,垂足为G ,若1DG =,则AF 的长为 . 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知曲线1C 和2C 的方程分别为32,12x t y t =-⎧⎨=-⎩(t 为参数)和24,2x t y t=⎧⎨=⎩(t 为参数),则曲线1C 和2C 的交点有 个.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且::7:5:3a b c =. (1)求cos A 的值;(2)若△ABC 的面积为ABC 外接圆半径的大小. 17.(本小题满分12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了n 份,统计结果如下面的图表所示. (1)分别求出a ,b ,c ,n 的值;(2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环保之星”,记X 为第3组被授予“环保之星”的人数,求X 的分布列与数学期望.18.(本小题满分14分) BACDE FG 图4C 1A 1B 1D 1 DEE 1F 14如图5,已知六棱柱111111ABCDEF A B C D E F -的侧棱 垂直于底面,侧棱长与底面边长都为3,M ,N 分别 是棱AB ,1AA 上的点,且1AM AN ==. (1)证明:M ,N ,1E ,D 四点共面; (2)求直线BC 与平面1MNE D 所成角的正弦值. 19.(本小题满分14分)已知点(),n n n P a b ()n ∈*N在直线l :31y x =+上,1P 是直线l 与y 轴的交点,数列{}n a 是公差为1的等差数列.(1)求数列{}n a ,{}n b 的通项公式; (2)求证:22212131111116n PP PP PP ++++<. 20.(本小题满分14分)已知圆心在x 轴上的圆C 过点()0,0和()1,1-,圆D 的方程为()2244x y -+=.(1)求圆C 的方程;(2)由圆D 上的动点P 向圆C 作两条切线分别交y 轴于A ,B 两点,求AB 的取值范围. 21.(本小题满分14分)已知函数()ln f x a x =-11x x -+,()e xg x =(其中e 为自然对数的底数). (1)若函数()f x 在区间()0,1内是增函数,求实数a 的取值范围; (2)当0b >时,函数()g x 的图象C 上有两点(),ebP b ,(),e bQ b --,过点P ,Q 作图象C 的切线分别记为1l ,2l ,设1l 与2l 的交点为()00,M x y ,证明00x >.52015年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.16.(本小题满分12分) 解:(1)因为::7:5:3a b c =,所以可设7a k =,5b k =,3c k =()0k >,…………………………………………………………2分 由余弦定理得,222cos 2b c a A bc +-=()()()222537253k k k k k+-=⨯⨯…………………………………………………………3分 12=-.………………………………………………………………………………………………4分 (2)由(1)知,1cos 2A =-,因为A 是△ABC 的内角,所以sin A =6分 由(1)知5b k =,3c k =,6因为△ABC的面积为1sin 2bc A =8分即1532k k ⨯⨯=解得k =10分由正弦定理2sin a R A =,即72sin k R A ==,…………………………………………………11分 解得14R =.所以△ABC 外接圆半径的大小为14.…………………………………………………………………12分 17.(本小题满分12分)解:(1)根据频率直方分布图,得()0.0100.0250.035101c +++⨯=,解得0.03c =.……………………………………………………………………………………………1分 第3组人数为105.05=÷,所以1001.010=÷=n .…………………………………………………2分 第1组人数为1000.3535⨯=,所以28350.8b =÷=.……………………………………………3分 第4组人数为2525.0100=⨯,所以250.410a =⨯=.……………………………………………4分 (2)因为第3,4组答对全卷的人的比为5:101:2=,所以第3,4组应依次抽取2人,4人.…………………………………………………………………5分 依题意X 的取值为0,1,2.……………………………………………………………………………6分()022426C C 20C 5P X ===,…………………………………………………………………………………7分 ()112426C C 81C 15P X ===,………………………………………………………………………………8分()202426C C 12C 15P X ===,………………………………………………………………………………9分所以X 的分布列为:所以281012515153EX =⨯+⨯+⨯=. ………………………………………………………………12分 ………………………………………10分718.(本小题满分14分)第(1)问用几何法,第(2)问用向量法: (1)证明:连接1A B ,11B D ,BD ,11A E ,在四边形1111A B D E 中,1111A E B D 且1111=A E B D , 在四边形11BB D D 中,11BD B D 且11=BD B D ,所以11A E BD 且11=A E BD ,所以四边形11A BDE 是平行四边形. 所以11A BE D .………………………………2分在△1ABA 中,1AM AN ==,13AB AA ==, 所以1AM ANAB AA =, 所以1MN BA .…………………………………………………………………………………………4分 所以1MNDE .所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分 (2)解:以点E 为坐标原点,EA ,ED ,1EE 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则()B,9,02C ⎫⎪⎪⎝⎭,()0,3,0D , ()10,0,3E,()M ,…………………………8分则3,02BC ⎛⎫= ⎪ ⎪⎝⎭,()10,3,3DE =-,()2,0DM =-.……………………………………………………………………………………10分设(),,x y z =n 是平面1MNE D 的法向量,则10,0.DE DM ⎧=⎪⎨=⎪⎩n nC 1A BA 1B 1D 1CDMNEFE 1F 18即330,20.y z y -+=⎧⎪⎨-=⎪⎩取y =2x =,z =所以(=n 是平面1MNE D 的一个法向量.………………………………………………12分 设直线BC 与平面1MNE D 所成的角为θ, 则sin BC BCθ=n n116==. 故直线BC 与平面1MNE D 所成角的正弦值为116.………………………………………………14分 第(1)(2)问均用向量法:(1)证明:以点E 为坐标原点,EA ,ED ,1EE所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则()B ,9,02C ⎫⎪⎪⎝⎭,()0,3,0D ,()10,0,3E ,()M ,()N ,……………2分所以()10,3,3DE =-,()0,1,1MN =-. ………………3分 因为13DE MN =,且MN 与1DE 不重合, 所以1DE MN .…………………………………………5分所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分(2)解:由(1)知3,,022BC ⎛⎫=- ⎪ ⎪⎝⎭,()10,3,3DE =-,()2,0DM =-.………………10分(特别说明:由于给分板(1)6分(2)8分,相当于把(1)中建系与写点坐标只给2分在此加2分)设(),,x y z =n 是平面1MNE D 的法向量,9则10,0.DE DM ⎧=⎪⎨=⎪⎩n n即330,20.y z y -+=⎧⎪⎨-=⎪⎩取y =2x =,z =所以(=n 是平面1MNE D 的一个法向量.………………………………………………12分 设直线1BC 与平面1MNE D 所成的角为θ, 则sin BC BCθ=n n116==. 故直线BC 与平面1MNE D 所成角的正弦值为116.………………………………………………14分 第(1)(2)问均用几何法:(1)证明:连接1A B ,11B D ,BD ,11A E ,在四边形1111A B D E 中,1111A E B D 且1111=A E B D , 在四边形11BB D D 中,11BD B D 且11=BD B D ,所以11A E BD 且11=A E BD ,所以四边形11A BDE 是平行四边形. 所以11A BE D .………………………………2分在△1ABA 中,1AM AN ==,13AB AA ==, 所以1AM ANAB AA =, C 1A BA 1B 1 D 1CDMNEFE 1F 110所以1MN BA .…………………………………………………………………………………………4分 所以1MNDE .所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分 (2)连接AD ,因为BCAD ,所以直线AD 与平面1MNE D 所成的角即为直线BC 与平面1MNE D 所成的角.…………………7分 连接DN ,设点A 到平面DMN 的距离为h ,直线AD 与平面1MNE D 所成的角为θ,则sin hADθ=.……………………………………………………………………………………………8分 因为A DMN D AMN V V --=,即1133DMN AMN S h S DB ∆∆⨯⨯=⨯⨯.…………………………………………9分在边长为3的正六边形ABCDEF中,DB =6DA =, 在△ADM 中,6DA =,1AM =,60DAM ∠=,由余弦定理可得,DM =在Rt △DAN 中,6DA =,1AN =,所以DN =. 在Rt △AMN 中,1AM =,1AN =,所以MN = 在△DMN中,DM =DN =MN =由余弦定理可得,cos DMN ∠=,所以sin DMN ∠=所以1sin 22DMN S MN DM DMN ∆=⨯⨯⨯∠=.…………………………………………………11分 又12AMN S ∆=,……………………………………………………………………………………………12分所以AMN DMN S DB h S ∆∆⨯==.…………………………………………………………………………13分所以sin 116h AD θ==.11故直线BC 与平面1MNE D14分19.(本小题满分14分) (1)解:因为()111,P a b 是直线l :31y x =+与y 轴的交点()0,1,所以10a =,11b =.……………………………………………………………………………………2分 因为数列{}n a 是公差为1的等差数列,所以1n a n =-.……………………………………………………………………………………………4分 因为点(),n n n P a b 在直线l :31y x =+上,所以31n n b a =+32n =-.所以数列{}n a ,{}n b 的通项公式分别为1n a n =-,32n b n =-()*n ∈N .………………………6分(2)证明:因为()10,1P ,()1,32n P n n --,所以()1,31n P n n ++. 所以()222211310n PP n n n +=+=.………………………………………………………………………7分 所以222121311111n PP PP PP ++++22211111012n ⎛⎫=+++ ⎪⎝⎭.……………………………………8分 因为()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-,……………………………10分 所以,当2n ≥时,222121311111n PP PP PP ++++111111210352121n n ⎡⎤⎛⎫<+-++- ⎪⎢⎥-+⎝⎭⎣⎦……………………………………………………………11分 15110321n ⎛⎫=- ⎪+⎝⎭………………………………………………………………………………………12分 16<.12又当1n =时,212111106PP =<.………………………………………………………………………13分 所以22212131+111116n PP PP PP +++<.……………………………………………………………14分 20.(本小题满分14分)解:(1)方法一:设圆C 的方程为:()222x a y r -+=()0r >,………………………………………1分因为圆C 过点()0,0和()1,1-,所以()22222,11.a r a r ⎧=⎪⎨--+=⎪⎩………………………………………………………………………………3分 解得1a =-,1r =.所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分 方法二:设()0,0O ,()1,1A -,依题意得,圆C 的圆心为线段OA 的垂直平分线l 与x 轴的交点C .………………………………1分 因为直线l 的方程为1122y x -=+,即1y x =+,……………………………………………………2分 所以圆心C 的坐标为()1,0-.…………………………………………………………………………3分 所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分 (2)方法一:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=, 即()2200440y x =--≥, 解得026x ≤≤.…………………………………………………………………………………………5分 由圆C 与圆D 的方程可知,过点P 向圆C 所作两条切线的斜率必存在,设PA 的方程为:()010y y k x x -=-,则点A 的坐标为()0100,y k x -,同理可得点B 的坐标为()0200,y k x -,所以120AB k k x =-,13因为PA ,PB 是圆C 的切线,所以1k ,2k1=,即1k ,2k 是方程()()2220000022110x x k y x k y +-++-=的两根,………………………………7分 即()0012200201220021,21.2y x k k x x y k k x x ⎧++=⎪+⎪⎨-⎪=⎪+⎩所以120AB k k x =-x =9分 因为()220044y x =--,所以AB =10分 设()()0020562x f x x -=+,则()()00305222x f x x -+'=+.………………………………………………………………………………11分由026x ≤≤,可知()0f x 在222,5⎡⎫⎪⎢⎣⎭上是增函数,在22,65⎛⎤ ⎥⎝⎦上是减函数,……………………12分 所以()0max 2225564f x f ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭, ()()(){}min 0131min 2,6min ,484f x f f ⎧⎫===⎡⎤⎨⎬⎣⎦⎩⎭,所以AB 的取值范围为4⎦.…………………………………………………………………14分 方法二:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=, 即()2200440y x =--≥, 解得026x ≤≤.…………………………………………………………………………………………5分14设点()0,A a ,()0,B b ,则直线PA :00y a y a x x --=,即()0000y a x x y ax --+=, 因为直线PA 与圆C1=,化简得()2000220x a y a x +--=. ①同理得()2000220x b y b x +--=, ②由①②知a ,b 为方程()2000220x x y x x +--=的两根,…………………………………………7分 即00002,2.2y a b x x ab x ⎧+=⎪+⎪⎨-⎪=⎪+⎩所以AB a b =-===.……………………………………………………………………9分 因为()220044y x =--,所以AB =10分=.………………………………………………………………11分 令012t x =+,因为026x ≤≤,所以1184t ≤≤.所以AB ==,………………………………………12分 当532t =时,max 4AB =,15 当14t =时,min AB = 所以AB的取值范围为⎦.…………………………………………………………………14分 21.(本小题满分14分)(1)解法一:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '=-≥+()01x <<.……………………………………………………………1分 即()2120a x x +-≥()01x <<,即()221xa x ≥+……………………………………………………………………………………………2分212x x=++()01x <<, 因为21122x x<++在()0,1x ∈内恒成立, 所以12a ≥. 故实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.……………………………………………………………………4分 解法二:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '-+≥=()01x <<.……………………………………………………………1分 即()2120a x x +-≥()01x <<,即()2210ax a x a +-+≥()01x <<,…………………………………………………………………2分设()()221g x ax a x a =+-+, 当0a =时,得20x -≥,此时不合题意.当0a <时,需满足()()00,10,g g ≥⎧⎪⎨≥⎪⎩即()0,210,a a a a ≥⎧⎪⎨+-+≥⎪⎩解得12a ≥,此时不合题意.16当0a >时,需满足()222140a a --≤⎡⎤⎣⎦或()()00,10,10,g g a a ⎧⎪≥⎪≥⎨⎪-⎪-<⎩或()()00,10,11,g g a a⎧⎪≥⎪≥⎨⎪-⎪->⎩ 解得12a ≥或1a >, 所以12a ≥. 综上所述,实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.……………………………………………………………4分(2)证明:因为函数()e x g x =,所以()e x g x '=. 过点(),e b P b ,(),e b Q b --作曲线C 的切线方程为: 1l :()e e b b y x b =-+,2l :()e e b b y x b --=++,因为1l 与2l 的交点为()00,M x y ,由()()e e ,e e ,b b b b y x b y x b --⎧=-+⎪⎨=++⎪⎩ ………………………………………………………………………………6分 消去y ,解得()()()0e +e e e e e b b b b b b b x -----=-. ①…………………………………………7分 下面给出判定00x >的两种方法:方法一:设e b t =,………………………………………………………………………………………8分 因为0b >,所以1t >,且ln b t =.所以()()2202+1ln 11t t t x t --=-.…………………………………………………………………………9分设()()()22+1ln 1h t t t t =--()1t >,则()12ln h t t t t t'=-+()1t >.………………………………………………………………………10分 令()12ln u t t t t t =-+()1t >,17 则()212ln 1u t t t '=+-. 当1t >时,ln 0t >,2110t ->,所以()212ln 10u t t t '=+->,………………………………11分 所以函数()u t 在()1,+∞上是增函数,所以()()10u t u >=,即()0h t '>,…………………………………………………………………12分 所以函数()h t 在()1,+∞上是增函数,所以()()10h t h >=.…………………………………………………………………………………13分 因为当1t >时,210t ->, 所以()()2202+1ln 101t t t x t --=>-.…………………………………………………………………14分方法二:由①得0x ()221+e 11e b b b --=--. 设2e b t -=,…………………………………………………………………………………………………8分 因为0b >,所以01t <<,且ln 2t b =-. 于是21ln b t -=,……………………………………………………………………………………………9分 所以()01+221ln 1ln 1b t b t x b t t t t +⎛⎫=+=+ ⎪--⎝⎭.…………………………………………………………10分 由(1)知当12a =时,()1ln 2f x x =-11x x -+在区间()0,1上是增函数,…………………………11分 所以()ln 2t f t =-()1101t f t -<=+, 即ln 2t <11t t -+. …………………………………………………………………………………………12分 即210ln 1t t t++>-,………………………………………………………………………………………13分 已知0b >, 所以0210ln 1t x b t t +⎛⎫=+>⎪-⎝⎭.…………………………………………………………………………14分。

2015年广州市普通高中毕业班综合测试(理科)(二)

2015年广州市普通高中毕业班综合测试(理科)(二)

试卷类型:A2015年广州市普通高中毕业班综合测试(二)数学(理科)2015.4本试卷共4页,21小题, 满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号.用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:球的表面积公式24S R =π,其中R 是球的半径.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.命题“若2x =,则2320x x -+=”的逆否命题是A .若2x ≠,则2320x x -+≠ B .若2320x x -+=,则2x = C .若2320x x -+≠,则2x ≠ D .若2x ≠,则2320x x -+=2.已知0a b >>,则下列不等关系式中正确的是A .sin sin a b >B .22log log a b <C .1122a b < D .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭3.已知函数()40,1,0,x f x x x x ⎧≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩则()2f f =⎡⎤⎣⎦ A .14 B .12C .2D .44.函数()sin y A x ωϕ=+()0,0,0A ωϕ>><<π的图象的一部分如图1所示, 则此函数的解析式为图1A .3sin y x ππ⎛⎫=+⎪44⎝⎭ B .3sin y x π3π⎛⎫=+ ⎪44⎝⎭C .3sin y x ππ⎛⎫=+⎪24⎝⎭ D .3sin y x π3π⎛⎫=+ ⎪24⎝⎭5.已知函数()223f x x x =-++,若在区间[]4,4-上任取一个实数0x ,则使()00f x ≥成立的概率为A .425 B .12 C .23D .1 6.如图2,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是A BC D 7.已知两定点()1,0A -,()1,0B ,若直线l 上存在点M ,使得3MA MB +=,则称直线l 为“M 型直线”.给出下列直线:①2x =;②3y x =+;③21y x =--;④1y =;⑤23y x =+.其中是“M 型直线”的条数为A .1B .2C .3D .48.设(),P x y 是函数()y f x =的图象上一点,向量()()51,2x =-a ,()1,2y x =-b ,且//a b .数列{}na 是公差不为0的等差数列,且()()()12936f a f a f a ++⋅⋅⋅+=,则129a a a ++⋅⋅⋅+= A .0 B .9 C .18 D .36二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.已知i 为虚数单位,复数1i1iz -=+,则z = . 10.执行如图3所示的程序框图,则输出的z 的值是 .11.已知()sin 6f x x =+⎪⎝⎭,若cos 5α=02α<< ⎪⎝⎭,则12f α+= ⎪⎝⎭ .12.5名志愿者中安排4人在周六、周日两天参加社区公益活动.若每天安排2人,则不同的安排方案共有_________种(用数字作答). 13.在边长为1的正方形ABCD 中,以A 为起点,其余顶点为终点的向量分别为1a ,2a ,3a ;以C 为起AV CB图2点,其余顶点为终点的向量分别为1c ,2c ,3c .若m 为()()i j s t +•+a a c c 的最小值,其中{}{},1,2,3i j ⊆,{}{},1,2,3s t ⊆,则m = .(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图4,在平行四边形ABCD 中,4AB =,点E 为边DC 的中点, AE 与BC 的延长线交于点F ,且AE 平分BAD ∠,作DG AE ⊥,垂足为G ,若1DG =,则AF 的长为 . 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知曲线1C 和2C 的方程分别为32,12x t y t =-⎧⎨=-⎩(t 为参数)和24,2x t y t=⎧⎨=⎩(t 为参数),则曲线1C 和2C 的交点有 个.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且::7:5:3a b c =. (1)求cos A 的值;(2)若△ABC 的面积为453,求△ABC 外接圆半径的大小. 17.(本小题满分12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了n 份,统计结果如下面的图表所示. 组号年龄 分组 答对全卷 的人数 答对全卷的人数占本组的概率 1 [20,30) 28 b2 [30,40) 27 0.93 [40,50) 50.5 4[50,60]a0.4(1)分别求出a ,b ,c ,n 的值;(2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环保之星”,记X 为第3组被授予“环保之星”的人数,求X 的分布列与数学期望.18.(本小题满分14分) 如图5,已知六棱柱111111ABCDEF A B C D E F -的侧棱 垂直于底面,侧棱长与底面边长都为3,M ,N 分别 是棱AB ,1AA 上的点,且1AM AN ==. (1)证明:M ,N ,1E ,D 四点共面;(2)求直线BC 与平面1MNE D 所成角的正弦值.BACDE FG 图4年龄频率/组距 20 30 40 50 600.010c 0.035 0.025 0C 1ABA 1B 1D 1 CDM NEFE 1F 1图519.(本小题满分14分)已知点(),n n n P a b ()n ∈*N在直线l :31y x =+上,1P 是直线l 与y 轴的交点,数列{}n a 是公差为1的等差数列.(1)求数列{}n a ,{}n b 的通项公式; (2)求证:22212131111116n PP PP PP ++++<L . 20.(本小题满分14分)已知圆心在x 轴上的圆C 过点()0,0和()1,1-,圆D 的方程为()2244x y -+=.(1)求圆C 的方程;(2)由圆D 上的动点P 向圆C 作两条切线分别交y 轴于A ,B 两点,求AB 的取值范围. 21.(本小题满分14分)已知函数()ln f x a x =-11x x -+,()e xg x =(其中e 为自然对数的底数). (1)若函数()f x 在区间()0,1内是增函数,求实数a 的取值范围;(2)当0b >时,函数()g x 的图象C 上有两点(),e b P b ,(),e b Q b --,过点P ,Q 作图象C 的切线分别记为1l ,2l ,设1l 与2l 的交点为()00,M x y ,证明00x >.2015年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.16.(本小题满分12分) 解:(1)因为::7:5:3a b c =,所以可设7a k =,5b k =,3c k=()0k >,…………………………………………………………2分 由余弦定理得,222cos 2b c a A bc +-=()()()222537253k k k k k+-=⨯⨯…………………………………………………………3分12=-.………………………………………………………………………………………………4分 (2)由(1)知,1cos 2A =-,因为A 是△ABC 的内角,所以sin A2=. (6)分 由(1)知5b k =,3c k =, 因为△ABC 的面积为1sin 2bc A =8分 即1532k k ⨯⨯= 解得k =10分由正弦定理2sin a R A =,即72sin k R A ==,…………………………………………………11分 解得14R =.所以△ABC 外接圆半径的大小为14.…………………………………………………………………12分 17.(本小题满分12分)解:(1)根据频率直方分布图,得()0.0100.0250.035101c +++⨯=,解得0.03c =.……………………………………………………………………………………………1分 第3组人数为105.05=÷,所以1001.010=÷=n .…………………………………………………2分 第1组人数为1000.3535⨯=,所以28350.8b =÷=.……………………………………………3分 第4组人数为2525.0100=⨯,所以250.410a =⨯=.……………………………………………4分 (2)因为第3,4组答对全卷的人的比为5:101:2=,所以第3,4组应依次抽取2人,4人.…………………………………………………………………5分 依题意X 的取值为0,1,2.……………………………………………………………………………6分()022426C C 20C 5P X ===,…………………………………………………………………………………7分 ()112426C C 81C 15P X ===,………………………………………………………………………………8分()202426C C 12C 15P X ===,………………………………………………………………………………9分所以X 的分布列为:所以281012515153EX =⨯+⨯+⨯=. ………………………………………………………………12分 18.(本小题满分14分)第(1)问用几何法,第(2)问用向量法: (1)证明:连接1A B ,11B D ,BD ,11A E ,在四边形1111A B D E 中,1111A E B D P 且1111=A E B D , 在四边形11BB D D 中,11BD B D P 且11=BD B D , 所以11A E BD P 且11=A E BD , 所以四边形11A BDE 是平行四边形.所以11A B E D P .………………………………2分 在△1ABA 中,1AM AN ==,13AB AA ==,………………………………………10分 C 1BA 1B 1D 1CDMNEF E 1F 1所以1AM ANAB AA =, 所以1MN BA P .…………………………………………………………………………………………4分 所以1MN DE P .所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分 (2)解:以点E 为坐标原点,EA ,ED ,1EE 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则()B,9,02C ⎫⎪⎪⎝⎭,()0,3,0D ,()10,0,3E,()M ,…………………………8分则3,02BC ⎛⎫= ⎪ ⎪⎝⎭u u u r ,()10,3,3DE =-u u u ur ,()2,0DM =-u u u u r.……………………………………………………………………………………10分设(),,x y z =n 是平面1MNE D 的法向量,则10,0.DE DM ⎧=⎪⎨=⎪⎩u u u u r g u u u u r g n n即330,20.y z y -+=⎧⎪⎨-=⎪⎩取y =2x =,z =所以(=n 是平面1MNE D 的一个法向量.………………………………………………12分 设直线BC 与平面1MNE D 所成的角为θ,则sin BCBCθ=u u u rg u u u r g n n==116第(1)(2)问均用向量法:(1)证明:以点E 为坐标原点,EA ,ED ,1EE 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则()B,9,02C ⎫⎪⎪⎝⎭,()0,3,0D ,()10,0,3E,()M,()N ,……………2分 所以()10,3,3DE =-u u u u r ,()0,1,1MN =-u u u u r. ………………3分因为13DE MN =u u u u r u u u u r,且MN 与1DE 不重合,所以1DE MN P .…………………………………………5分所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分(2)解:由(1)知3,,022BC ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,()10,3,3DE =-u u u ur,()2,0DM =-u u u u r .………………10分(特别说明:由于给分板(1)6分(2)8分,相当于把(1)中建系与写点坐标只给2分在此加2分)设(),,x y z =n 是平面1MNE D 的法向量,则10,0.DE DM ⎧=⎪⎨=⎪⎩u u u u rg u u u u r g n n即330,20.y z y -+=⎧⎪⎨-=⎪⎩取y =2x =,z =所以(=n 是平面1MNE D 的一个法向量.………………………………………………12分 设直线1BC 与平面1MNE D 所成的角为θ,则sin BCBCθ=u u u rg u u u r g n n==116第(1)(2)问均用几何法:(1)证明:连接1A B ,11B D ,BD ,11A E ,在四边形1111A B D E 中,1111A E B D P 且1111=A E B D , 在四边形11BB D D 中,11BD B D P 且11=BD B D , 所以11A E BD P 且11=A E BD , 所以四边形11A BDE 是平行四边形.所以11A B E D P .………………………………2分在△1ABA 中,1AM AN ==,13AB AA ==,所以1AM ANAB AA =, 所以1MN BA P .…………………………………………………………………………………………4分所以1MN DE P .所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分 (2)连接AD ,因为BC AD P ,所以直线AD 与平面1MNE D 所成的角即为直线BC 与平面1MNE D 所成的角.…………………7分 连接DN ,设点A 到平面DMN 的距离为h ,直线AD 与平面1MNE D 所成的角为θ,则sin hADθ=.……………………………………………………………………………………………8分 因为A DMN D AMN V V --=,即1133DMN AMN S h S DB ∆∆⨯⨯=⨯⨯.…………………………………………9分在边长为3的正六边形ABCDEF中,DB =6DA =, 在△ADM 中,6DA =,1AM =,60DAM ∠=o,由余弦定理可得,DM =在Rt △DAN 中,6DA =,1AN =,所以DN =.C 1BA 1B 1D 1CDMNEFE 1F 1在Rt △AMN 中,1AM =,1AN =,所以MN = 在△DMN中,DM =DN =MN =由余弦定理可得,cos DMN ∠=,所以sin DMN ∠=所以1sin 2DMN S MN DM DMN ∆=⨯⨯⨯∠=.…………………………………………………11分 又12AMN S ∆=,……………………………………………………………………………………………12分所以AMN DMN S DB h S ∆∆⨯==.…………………………………………………………………………13分所以sin 116h AD θ==. 故直线BC 与平面1MNE D所成角的正弦值为116.………………………………………………14分 19.(本小题满分14分)(1)解:因为()111,P a b 是直线l :31y x =+与y 轴的交点()0,1,所以10a =,11b =.……………………………………………………………………………………2分 因为数列{}n a 是公差为1的等差数列,所以1n a n =-.……………………………………………………………………………………………4分 因为点(),n n n P a b 在直线l :31y x =+上, 所以31n n b a =+32n =-.所以数列{}n a ,{}n b 的通项公式分别为1n a n =-,32n b n =-()*n ∈N .………………………6分(2)证明:因为()10,1P ,()1,32n P n n --,所以()1,31n P n n ++. 所以()222211310n PP n n n +=+=.………………………………………………………………………7分 所以222121311111n PP PP PP ++++L 22211111012n ⎛⎫=+++ ⎪⎝⎭L .……………………………………8分因为()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-,……………………………10分 所以,当2n ≥时,222121311111n PP PP PP ++++L111111210352121n n ⎡⎤⎛⎫<+-++- ⎪⎢⎥-+⎝⎭⎣⎦L ……………………………………………………………11分 15110321n ⎛⎫=- ⎪+⎝⎭………………………………………………………………………………………12分 16<. 又当1n =时,212111106PP =<.………………………………………………………………………13分 所以22212131+111116n PP PP PP +++<L .……………………………………………………………14分 20.(本小题满分14分)解:(1)方法一:设圆C 的方程为:()222x a y r -+=()0r >,………………………………………1分因为圆C 过点()0,0和()1,1-,所以()22222,11.a r a r ⎧=⎪⎨--+=⎪⎩………………………………………………………………………………3分 解得1a =-,1r =.所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分 方法二:设()0,0O ,()1,1A -,依题意得,圆C 的圆心为线段OA 的垂直平分线l 与x 轴的交点C .………………………………1分 因为直线l 的方程为1122y x -=+,即1y x =+,……………………………………………………2分 所以圆心C 的坐标为()1,0-.…………………………………………………………………………3分 所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分 (2)方法一:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=,即()2200440y x =--≥,解得026x ≤≤.…………………………………………………………………………………………5分 由圆C 与圆D 的方程可知,过点P 向圆C 所作两条切线的斜率必存在,设PA 的方程为:()010y y k x x -=-,则点A 的坐标为()0100,y k x -,同理可得点B 的坐标为()0200,y k x -, 所以120AB k k x =-,因为PA ,PB 是圆C 的切线,所以1k ,2k1=,即1k ,2k 是方程()()2220000022110x x k y x k y +-++-=的两根,………………………………7分 即()0012200201220021,21.2y x k k x x y k k x x ⎧++=⎪+⎪⎨-⎪=⎪+⎩所以120AB k k x =-x =9分 因为()220044y x =--,所以AB =10分 设()()0020562x f x x -=+,则()()00305222x f x x -+'=+.………………………………………………………………………………11分由026x ≤≤,可知()0f x 在222,5⎡⎫⎪⎢⎣⎭上是增函数,在22,65⎛⎤ ⎥⎝⎦上是减函数,……………………12分 所以()0max 2225564f x f ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭, ()()(){}min 0131min 2,6min ,484f x f f ⎧⎫===⎡⎤⎨⎬⎣⎦⎩⎭,所以AB的取值范围为4⎦.…………………………………………………………………14分 方法二:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=,即()2200440y x =--≥, 解得026x ≤≤.…………………………………………………………………………………………5分 设点()0,A a ,()0,B b ,则直线PA :00y a y a x x --=,即()0000y a x x y ax --+=, 因为直线PA 与圆C1=,化简得()2000220x a y a x +--=. ① 同理得()2000220x b y b x +--=, ② 由①②知a ,b 为方程()2000220x x y x x +--=的两根,…………………………………………7分 即00002,2.2y a b x x ab x ⎧+=⎪+⎪⎨-⎪=⎪+⎩所以AB a b =-===.……………………………………………………………………9分 因为()220044y x =--,所以AB =10分=.………………………………………………………………11分令012t x =+,因为026x ≤≤,所以1184t ≤≤.所以AB ==,………………………………………12分 当532t =时,max 4AB =, 当14t =时,min AB = 所以AB的取值范围为4⎦.…………………………………………………………………14分 21.(本小题满分14分)(1)解法一:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '=-≥+()01x <<.……………………………………………………………1分 即()2120a x x +-≥()01x <<,即()221xa x ≥+……………………………………………………………………………………………2分 212x x=++()01x <<, 因为21122x x<++在()0,1x ∈内恒成立, 所以12a ≥. 故实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.……………………………………………………………………4分 解法二:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '-+≥=()01x <<.……………………………………………………………1分 即()2120a x x +-≥()01x <<,即()2210ax a x a +-+≥()01x <<,…………………………………………………………………2分设()()221g x ax a x a =+-+,当0a =时,得20x -≥,此时不合题意.当0a <时,需满足()()00,10,g g ≥⎧⎪⎨≥⎪⎩即()0,210,a a a a ≥⎧⎪⎨+-+≥⎪⎩解得12a ≥,此时不合题意. 当0a >时,需满足()222140a a --≤⎡⎤⎣⎦或()()00,10,10,g g a a ⎧⎪≥⎪≥⎨⎪-⎪-<⎩或()()00,10,11,g g a a⎧⎪≥⎪≥⎨⎪-⎪->⎩ 解得12a ≥或1a >, 所以12a ≥. 综上所述,实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.……………………………………………………………4分(2)证明:因为函数()e x g x =,所以()e x g x '=. 过点(),e b P b ,(),e b Q b --作曲线C 的切线方程为: 1l :()e e b b y x b =-+,2l :()e e b b y x b --=++,因为1l 与2l 的交点为()00,M x y ,由()()e e ,e e ,b b b b y x b y x b --⎧=-+⎪⎨=++⎪⎩ ………………………………………………………………………………6分 消去y ,解得()()()0e +e e e e e b b b b b b b x -----=-. ①…………………………………………7分 下面给出判定00x >的两种方法:方法一:设e b t =,………………………………………………………………………………………8分 因为0b >,所以1t >,且ln b t =.所以()()2202+1ln 11t t t x t --=-.…………………………………………………………………………9分设()()()22+1ln 1h t t t t =--()1t >,则()12ln h t t t t t'=-+()1t >.………………………………………………………………………10分 令()12ln u t t t t t=-+()1t >, 则()212ln 1u t t t'=+-. 当1t >时,ln 0t >,2110t ->,所以()212ln 10u t t t '=+->,………………………………11分 所以函数()u t 在()1,+∞上是增函数,所以()()10u t u >=,即()0h t '>,…………………………………………………………………12分 所以函数()h t 在()1,+∞上是增函数,所以()()10h t h >=.…………………………………………………………………………………13分 因为当1t >时,210t ->, 所以()()2202+1ln 101t t t x t --=>-.…………………………………………………………………14分方法二:由①得0x ()221+e 11e b b b --=--. 设2e b t -=,…………………………………………………………………………………………………8分因为0b >,所以01t <<,且ln 2t b =-. 于是21ln b t-=,……………………………………………………………………………………………9分 所以()01+221ln 1ln 1b t b t x b t t t t +⎛⎫=+=+ ⎪--⎝⎭.…………………………………………………………10分 由(1)知当12a =时,()1ln 2f x x =-11x x -+在区间()0,1上是增函数,…………………………11分 所以()ln 2t f t =-()1101t f t -<=+, 即ln 2t <11t t -+. …………………………………………………………………………………………12分 即210ln 1t t t++>-,………………………………………………………………………………………13分 已知0b >, 所以0210ln 1t x b t t +⎛⎫=+>⎪-⎝⎭.…………………………………………………………………………14分。

广东省增城市新塘中学2015届高三12月月考数学试卷

广东省增城市新塘中学2015届高三12月月考数学试卷

参考公式:锥体的体积公式:(其中是锥体的底面积,是锥体的高) 一、选择题(本大题共10小题,每小题5分,满分50分.每小题给出的四个选项中,只有一项是符合题目要求.) 1.已知集合,,则() A. B. C.D. 2.设为实数,若复数,则() A. B. C. D. 3.“”是“”的()条件 A.充分不必要 B.必要不充分 C.充要 D.不充分也不必要 4.给定下列四个命题: ①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行; ④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是() A.①和② B.②和③ C.③和④ D.②和④ 5.等比数列中,,前三项和,则公比的值为() A.1 B. C.1或 D.-1或 6.函数的部分图象 如图示,则将的图象向右平移个单位后,得到的 图象解析式为() A. B. C. D. 7.设和为双曲线()的两个焦点,若,是正三角形的三个顶点,则双曲线的离心率为() A. B. C. D.3 8.已知函数是上的偶函数,若对于,都有,且当时,,则的值为() A. B. C. D. 9.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用,每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台,若每辆至多只运一次,则该厂所花的最少运输费用为() A.2000元 B.2200元 C.2400元 D.2800元 10.定义平面向量之间的一种运算“”如下:对任意的,,令,下面说法错误的序号是(). ①若与共线,则② ③对任意的,有④ A.② B.①② C.②④ D.③④ 二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(第11至13题为必做题,每道试题考生都必须作答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

增城中学2015届高三综合测试(二)理科数学试卷 (2014年9月28日)命题人: 李祥钧 审题人: 李雷第I 卷(选择题,共40分)一.选择题(本大题共有8小题,每小题 5 分,共40 分.每小题给出的4个选项中,只有一项是符合题目要求的.)1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B = ( ) A.{2}- B.{2} C.{2,2}- D.∅ 2. 下列函数为奇函数的是( )A.|sin |y x =B. 22x x y -=+C.ln ||y x =D. lnxy x1-=1+ 3.已知变量,x y 满足约束条件311y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则2z x y =-的最优解是 ( )A. (4,3)B. (2,3)-C. (4,3)或(2,3)-D. 5或7-4.已知等比数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公比是( )A.5 B.4 C.3 D.25. 要得到函数sin(2)4y x π=+的图象,只要将函数sin 2y x =的图象向 ( ) 单位A. 右平移8πB.左平移8πC.右平移4πD.左平移4π6. 一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能...为.①长方形;②正方形;③圆;④椭圆.其中正确的是A .①②B . ②③C .③④D . ①④7.设P 是双曲线2211620x y -=上一点,F 1,F 2分别是双曲线 左右两个焦点,若19PF =,则2PF 等于 ( )A.1B.17C.1或17D.以上答案均不对8.如图,向量(2,0),(,)a b x y == ,若b 与b a - 的夹角等于6π,则|b|的最大值为( )A.4 C.2 D.3bb a - (2,0)第II 卷(非选择题,共110分)二.填空题(每小题5分,共30分. 答案必须填写在答卷上.) (一)必做题(9-13题):9.12x -≤的解集是 ▲ 10.2sin x xdx ππ-=⎰ ▲ .11.已知02πα<<,3cos()65πα+=,则=αcos ▲ 12.若集合{}{}1,2,3,4,1,1,0A B ==-若建立函数:f A B →,且满足(1)(2)(3)f ff f +++=,这样的函数有▲ 个13. 若函数()f x 对任意x 都满足()2(2)1f x f x =-+,当[)0,2x ∈时2()f x x =,则[)2,4x ∈时()f x = ▲(二)选做题(14~15题,只能做一题,两题全答的,只计算前一题得分). 14.(坐标系与参数方程选做题)已知曲线1l 的极坐标系方程为s i n 42πρθ⎛⎫-=⎪⎝⎭(0,ρ>02)θπ≤≤,直线2l 的参数方程为{1222x t y t =-=+(t 为参数),若以直角坐标系的x 轴的非负半轴为极轴,则1l 与2l 的交点A 的直角坐标是 ▲15.(几何证明选讲选做题)如图,在Rt ABC ∆中,斜边12AB =,直角边6AC =,如果以C 为圆心的圆与AB 相切于D ,则圆C 的半径长为▲三. 解答题(本大题6个小题,共80分.各题解答必须答在答卷上,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分) 在ABC △中,内角A B C ,,所对边的边长分别是a b c ,,.(1) 若B 是钝角,且312cos ,sin 513A B ==,求sin C 的值;(2)若2c =,3C π=且ABC △cos()A B +和a b ,的值.17.(本小题满分13分)PM2. 5是指大气中直径小于或等于2. 5微米的颗粒物,也称为可入肺颗粒物. 虽然PM2.5只是地球大气成分中含量很少的组分,但它对空气质量和能见度等有重要的影响。

我国PM2. 5标准如表1所示.我市环保局从市区四个监测点2013年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图如图4所示。

(1)求这15天数据的中位数;(2)从这15天的数据中任取3天的数据,记表示其中空气质量达到一级的天数ξ,求ξ的分布列和数学期望;(3) 以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中大约有多少天的空气质量达到一级.18. (本小题满分13分)如图51-,在直角梯形ABCD 中,已知//AD BC ,1AD AB ==,90,45o o BAD BCD ∠=∠=,AE BD ⊥.将ABD ∆沿对角线BD 折起(图52-),记折起后点A 的位置为P 且使平面PBD ⊥平面BCD . (1)证明BP CD ⊥;(2)求平面PBC 与平面PCD 所成二面角的平面角的大小; (3)求三棱锥P BCD -的体积.19.(本小题满分14分)已知数列}{n a 的前n 项和为n S ,对一切正整数n ,点),(n n S n P 都在函数x x x f 2)(2+=的图像上,且过点),(n n S n P 的切线的斜率为n k . (1)求数列}{n a ,{}n k 的通项公式;(2)设},2{},,{**∈==∈==N n a x x R N n k x x Q n n ,等差数列}{n c 的任一项n c Q R ∈ ,其中1c 是Q R 中的最小数,11511010<<c ,求}{n c 的通项公式.20. (本小题满分14分)设椭圆22221(0,0)x y a b b a+=>>的离心率为12,其左焦点E 与抛物线2:4C y x =-的焦点相同. (Ⅰ)求此椭圆的方程;(Ⅱ)若过此椭圆的右焦点F 的直线l 与曲线C 只有一个交点P ,则(1)求直线l 的方程;(2)若点P 位于第三象限内,椭圆上是否存在点(,)M x y ,使得12MPF S ∆=,若存在,请说明一共有几个点;若不存在,请说明理由.21.(本小题满分14分)设函数()f x = 32x kx x -+ 且0k > (1)当2k =时,求函数()f x 的单调增区间;(2)求函数()f x 在[],k k -上的最小值m 和最大值M .班级 学号 姓名 考号密 封 线 内 不 得 答 题(18)(本小题满分13分)(19) (本小题满分14分)(20)(本小题满分14分)(21)(本小题满分14分)密封线内不得答题增城中学2015届高三综合测试(二)理科数学答案二.填空题:本大题共6小题,每小题5分,共30分.(一)必:(9){}13x x -≤≤ (10) 0 (11)521033+ (12) 25 (13)2289x x -+(二)选:(14) (1,2) (15)33.16解:(1)解:由B 是钝角得,A 是锐角,所以54cos ,sin 135B A =-=…………….3分 sin sin()sin cos cos sin C B A B A B A =+=+12354135135=⨯-⨯1665= (5分)(2)1cos()cos 2A B C +=-=- …………………………………………..7分2221cos 22a b c C ab +-== 所以224ab a b =+-……………….9分又面积12S abcinC == 所以4ab =,…..11分 解得2a =,2b =. (12分) 17解:(1)随机抽取15天的数据的中位数为45 (2分) (2)依据条件, ξ的可能值为0,1,2,3,(以下每一条式正确得1分) 当0ξ=时,0351031524(0)91C C P C ξ===,当1ξ=时,1251031545(1)91C C P C ξ===当2ξ=时,2151031520(2)91C C P C ξ=== ,当3ξ=时,305103152(0)91C C P C ξ===分布列(3)依题意可知,一年中每天空气质量达到一级的概率为51153P ==, (11分)班级 姓名 学号 考号密 封 线 内 不 得 答 题一年中空气质量达到一级的天数为η,则1(360,)3B η ,∴13601203E η=⨯=(天)所以一年中平均有120天的空气质量达到一级. (13分)18解:(1)平面PBD ⊥平面BCD ,且AE BD ⊥,所以PE BD ⊥ 则PE ⊥面BDC ,…………………………………(3分)得EP CD ⊥,又BD CD ⊥,且PE 和BD 相交,所以CD 垂直于面PBD ,所以BP CD ⊥ (6分) (2)BP PCD ⊥面 ,BP BPC ⊆面, 平面PBC 与平面PCD 垂直,所以平面PBC 与平面PCD 所成的二面角的平面角的大小为90o . (10分) (3)由已知得BCD 三角形是等腰直角三角形,PE 是高 ,∴三棱锥P BCD -的体积11133BCD V S PE ∆=⋅=⨯=. (13分)19解:(1)由已知得22n S n n =+,当1n =时,13a =…………(1分)当2n ≥时2212(1)2(1)2 1.n n n a S S n n n n n -=-=+----=+ ………………(4分) 综合有21n a n =+ (5分)由于2/()2,()22f x x x f x x =+=+ 所以22n k n =+ (7分) (2){22,},{42,}Q x x n n N R x x n n N **==+∈==+∈ ,Q R R ∴= . (8分) 又n c Q R ∈ ,其中1c 是Q R 中的最小数,16c ∴=. (10分){}n c 是公差是4的倍数,*1046()c m m N ∴=+∈.又10110115c << ,*11046115m m N <+<⎧∴⎨∈⎩,解得27m =,所以10114c =, (12分) 设等差数列的公差为d ,则1011146121019c cd --===-, 6(1)12126n c n n ∴=++⨯=-,所以{}n c 的通项公式为126n c n =- (14分)20解:(Ⅰ)抛物线2:4C y x =-的焦点为(1,0)-,所以1c =由12e =,所以2,3==b a ,故椭圆的方程为22143x y += (3分) (Ⅱ)(1)椭圆的右焦点为(1,0)F ,过点F 与y 轴平行的直线显然与曲线C 没有交点.设直线l 的斜率为k ,①若0k =,则直线0y =过点(1,0)F 且与曲线C 只有一个交点(0,0),此时直线l 的方程为0y =; (4分)②若0k ≠,因直线l 过点(1,0)F ,故可设其方程为(1)y k x =-,将其代入24y x =-消去y ,得22222(2)0k x k x k --+=.因为直线l 与曲线C 只有一个交点P ,所以判别式22224(2)40k k k --⋅=,于是1k =±,从而直线l 的方程为1y x =-或1y x =-+. 因此,所求的直线l 的方程为0y =或1y x =-或1y x =-+. (9分)(2)由题意有点P 的坐标是(1,2)--,则PF =(,)M x y 到直线l :1y x =-的距离是11122MPF S x y ∆==⨯=--,从而112x y --=±,与(*)式联立:22143112x y x y ⎧+=⎪⎪⎨⎪--=⎪⎩或22143112x y x y ⎧+=⎪⎪⎨⎪--=-⎪⎩,解之,可求出满足条件的点M 有4个:⎝⎭,⎝⎭,1115,714⎛⎫ ⎪⎝⎭,31,2⎛⎫-- ⎪⎝⎭. (14分)(使用判别式判定点的个数,没求出点的坐标也右以得分) 21题【解析】'2()321f x x kx =-+ ……………………………1分 (1) 当k=2时,'22()321341(31)(1)f x x kx x x x x =-+=-+=--令0)('>x f 得13x <或1x >………………………2分 所以f(x)的单调递增区间为1(,)(1,)3-∞+∞和 ……………………3分(2)当0k >时, '2()321f x x kx =-+,其开口向上,对称轴x=3k,且过(0,1).(i)当Δ=4k 2≤0,即0k <≤,f ′(x)≥0,f(x)在[-k,k]上单调递增,…………5分 从而当x k =时,()f x 取得最大值()M f k k ==,当x k =-时,f(x)取得最小值()3332m f k k k k k k =-=---=--…………6分(ⅱ)当Δ=4k 2即k >时,令'2()321f x x kx =-+令'2()3210f x x kx =-+=,解得1,23k x =(由对称轴3x π=和/(0)1f =结合图象判断),120x x k <<<,….8分()'f x 、()f x 随x 的变化如下表:所以M=max{f(k),f(x 1)},m =min{f(-k),f(x 2)},因为f(1x )-f(k)=32111x kx x -+ -k 3+k 3-k=(21x +1)(x 1-k)<0,故f(1x )<f(k), 所以f(x)的最大值M=f(k)=k,………………………………11分因为f(x 2)-f(-k)= 3232222()x kx x k kk k -+----=(x 2+k)·[(x 2-k)2+k 2+1]>0, 所以f(x)的最小值m =f(-k)=-2k 3-k …………………………13分 综上所述,当0k >时,f(x)的最大值M =f(k)=k,最小值m =f(-k)=-2k 3-k 方法二:当0k >时,对∀x ∈[-k,k],都有f(x)-f(k)=x 3-kx 2+x-k 3+k 3-k=(x 2+1)(x-k)≤ 0,故f(x) ≤ f(k),………14分 f(x)-f(-k)=x 3-kx 2+x+k 3+k 3+k=(x+k)(x 2-2kx+2k 2+1)=(x+k)[(x-k)2+k 2+1]≥ 0, 故f(x) ≥f(-k),而f(k)=k >0,f(-k)=-2k 3-k <0,所以M=f(x)max = f(k)=k f(x)min =m =f(-k)=-2k 3-k,。

相关文档
最新文档