2014考研数学复习常见问题及解答

合集下载

2014年考研数学(一)真题与解析(完整版)

2014年考研数学(一)真题与解析(完整版)
0 2 0
1

1
应该选(D)
4. 若函数



( x a1 cos x b1 sin x ) 2 dx min ( x a cos x b sin x ) 2 dx ,则 a1 cos x b1 sin x
a ,bR



(A) 2 sin x 【详解】注意
1 y 1 ,可知 lim 1 且 lim ( y x ) lim sin 0 ,所以有斜渐近线 y x x x x x x x
(B)当 f ' ( x ) 0 时, f ( x ) g ( x ) (D)当 f ( x ) 0 时, f ( x ) g ( x )

(B) 2 cos x
(C) 2 sin x
(D) 2 cos x
x


2
2 dx 3 , cos 2 xdx sin 2 xdx , x cos xdx cos x sin xdx 0 , 3 2
x sin xdx 2 ,
如果换成直角坐标则应该是

0
1
dx
1 x 2
0
f ( x , y )dy dx
0
1
1 x
0
( A) , (B) f ( x , y )dy ,
两个选择项都不正确;
如果换成极坐标则为


2 0
d cos sin f ( r cos , r sin )rdr d cos sin f ( r cos , r sin )rdr .
2 2
其中 :

2014考研数学 真题

2014考研数学 真题

2014考研数学真题2014年考研数学真题共有三个部分,分别是选择题、填空题和解答题。

本文将按照这三个部分的顺序逐一进行讲解和答题。

请仔细阅读以下内容,理解真题的要求和解题思路。

选择题:选择题共有15道,每道题有4个选项,只有一个选项是正确的。

答题时,只需将正确选项的字母标号填写在答题卡上即可。

以下是2014年考研数学选择题的解析和答案:1. 设函数f(x) = 2x^3 - 3x^2 + 6x + k,若f(0) = 2,则k的值是多少?(A) 4 (B) 2 (C) -2 (D) -4解析:将x=0代入函数f(x)中,得到f(0) = k。

根据题目信息,f(0) = 2,因此k = 2。

答案为B。

2. 设函数f(x) = |x - 2|,则f(-1) + f(3)的值是多少?(A) 4 (B) 2 (C) 0 (D) -4解析:将x=-1和x=3代入函数f(x)中,得到f(-1) = |-1 - 2| = 3,f(3) = |3 - 2| = 1。

因此,f(-1) + f(3) = 3 + 1 = 4。

答案为A。

填空题:填空题共有10道,每道题有一个空格需要填写一个数值或符号。

请将题目中的空格填写在答题卡上。

以下是2014年考研数学填空题的解析和答案:1. 三元一次方程组:9x + 6y + 4z = 153x + 2y + z = 54x + 2y + 3z = 8的解为(x, y, z) = (1, 1, 2)。

2. 特征方程λ^2 + 4λ + 3 = 0的两个不同实根为-1和-3。

解答题:解答题共有5道,需要详细的解题过程和答案。

请将答案和相关步骤写在答题卡上。

以下是2014年考研数学解答题的解析和答案:1. 设A是一个三阶矩阵,且A^3 = 2A - 4I,其中I是三阶单位矩阵。

求A的特征值。

解析:根据题目给出的条件,我们可以利用矩阵的运算性质来解题。

首先,我们知道A^3 = 2A - 4I,可以将其转化为A^3 - 2A + 4I = 0。

2014年考研数学一真题及解析

2014年考研数学一真题及解析

1 sin ) ⎰ ⎰2014 年全国硕士研究生入学统一考试数学一试题及解析(完整精准版)一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每题给出四个选项中,只有一个选项符合题目要求的,请将所选项的字母填在答题纸指定位置上。

(1)下列曲线中有渐近线的是 (A ) y = x + sin y = x 2 + sin 1.xx .(B) y = x 2 + sin x .(C) y = x + sin .(D)xx + sin 1【解析】a = lim f (x ) = lim x = lim(1+ 1 1 = 1 x →∞ x x →∞ x x →∞ x xb = lim[ f (x ) - ax ] = lim[x + sin 1 - x ] = lim sin 1= 0x →∞ x →∞ x x →∞ x∴y=x 是 y=x + sin 1的斜渐近线x【答案】C(2)设函数 f ( x ) 具有 2 阶导数, g ( x ) = f (0)(1- x ) + f (1) x ,则在区间[0,1]上()(A)当 f (' x )≥ 0 时, f ( x ) ≥ g ( x ) . (B)当 f (' x )≥ 0 时, f ( x ) ≤ g ( x )(C)当 f (' x )≥ 0 时, f (x ) ≥ g ( x ) . (D)当 f ' ≥ 0 时, f ( x ) ≤ g ( x )【解析】当 f "( x ) ≥ 0 时, f ( x ) 是凹函数而 g ( x ) 是连接(0, f (0))与(1, f (1))的直线段,如右图故 f ( x ) ≤ g ( x )【答案】D (3)设 f ( x , y ) 是连续函数,则11- ydy f (x , y )⎰0⎰- 1- y 21x -1 01- x 2(A ) ⎰0 dx⎰111- x (B ) 0dxf (x , y )dy +⎰-1 dx ⎰0f (x , y )dy +⎰-1 dx ⎰- 1- x 2 f (x , y )dy .f (x , y )dy .=1- y 2 π1 1 {π∈ ⎰ 0⎰ 0ππ 1π 1(C )⎰ 2 d θ ⎰cos θ +sin θ f (r cos θ , r sin θ )dr +⎰π d θ ⎰ f (r cos θ , r sin θ )dr .0 02π 1π 1(D )⎰ 2 d θ ⎰cos θ +sin θ f (r cos θ , r sin θ )rdr +⎰π d θ ⎰ f (r cos θ , r sin θ )rdr .2【解析】积分区域如图 0≤y ≤1.- ≤ x ≤ 1- yπ用极坐标表示,即:D 1:≤ θ ≤ π , 0 ≤ r ≤ 1 2π1【答案】DD 2: 0 ≤ θ ≤, 0 ≤ r ≤2cos θ + sin θ( 4 ) 若⎰-π(x - a cos x - b sin x )2dx = min ⎰-π a ,b R(x - a cos x - b sin x )2 dx }, 则a 1 cos x +b 1 sin x =(A ) 2π sin x . (B) 2 cos x . (C) 2π sin x . (D) 2π cos x .⎰-π⎧Z ' = 2 π (x - a cos x - b sin x )(-cos x )dx = 0 (1) ⎪ a⎰ -π ⎨ Z ' = 2 π (x - a cos x - b sin x )(-sin x )dx = 0 (2)⎛⎪ b ⎰-π⎰1由(1)得2a π cos 2xdx = 0π x sin xdx故a = 0, a = 0由(2)得【答案】A(5)行列式b π sin 2 = = 2xdx b 1 = 2(A )(ad-bc)2 (B )-(ad-bc )2。

2014考研数一真题答案及详细解析

2014考研数一真题答案及详细解析

令y'=O,得y = -2x,或y =O (不适合方程 , 舍去).
将y =-2x代入方程得-6 x 3 +6 =0,解得x=l,J(l) =-2.
在3y
2
I
y
+y
2
I
+ 2x y y
+2xy +X
2
I
y
=0两端关于x求导
,得
(3y 2 +2xy +x 勹 y"+2(3y +x) (y') 2 +4(y+x)y'+2y =0.
l
cosb
b
2
n
an

l -cosb n
= — 2l nl-im00
1
an -cosb n
1 2
ln-im00
a
n
an +l -cosa
n
2,
00
00
2 且级数 n = l 从收敛,所以: n = l 生 bn 收敛.
(2 0)解 C I)对矩阵A施以初等行变换
。 。01 0
A�(�-; -0� �n-(� 1
(8) D

厂 [f EY 1 = _00Yfy1(y)dy = 了
+■a
_00Yf1(y)dy+f_=yj、z(y)dy]
=
(EX

1
+EX2
),
EY2=— 2 ECX1 +Xz)
=
—(EX
2
1
+EX2
),
故EY1 =EY2 , 又因为
DY 1 =E(Y�)-(EY 1 凡DY2 = ECY!) -(EY2 凡

2014考研数学一真题及答案解析(完整版)

2014考研数学一真题及答案解析(完整版)
n →∞
(20) 【答案】① ( −1, 2,3,1)
T
− k1 + 2 − k2 + 6 − k3 − 1 2k1 − 1 2k2 − 3 2k3 + 1 ②B= (k , k , k ∈ R) 3k1 − 1 3k2 − 4 3k3 + 1 1 2 3 k2 k3 k1
(23) 【答案】 (1) EX =
ˆ= (2) θ
(3)存在
1 n X i2 ∑ n i =1
6
所以 y( 1 ) = −2 为极小值。
4
(17)【答案】
∂E = f ′( e x cos y )e x cos y ∂x
∂2E = f ′′( e x cos y )e 2 x cos 2 y + f ′( e x cos y )e x cos y 2 ∂x ∂E = f ′( e x cos y )e x ( − sin y ) ∂y ∂2E = f ′′( e x cos y )e 2 x sin 2 y + f ′( e x cos y )e x ( − cos y ) 2 ∂y
π
2
,根据单调有界必有极限定理,得 lim an 存在,
n →∞
设 lim an = a ,由
n →∞
∑b
n =1

n
收敛,得 lim bn = 0 ,
n →∞
,得 cos a − a = cos 0 = 1 。 故由 cos a n − a n = cosb n ,两边取极限(令 n → ∞ ) 解得 a = 0 ,故 lim an = 0 。
∂2E ∂2E + 2 = f ′′( e x cos y )e 2 x = ( 4 E + e x cos y )e 2 x 2 ∂x ∂y f ′′( e x cos y ) = 4 f ( e x cos y ) + e x cos y

2014年全国硕士研究生入学统一考试数学一试题及解析.doc

2014年全国硕士研究生入学统一考试数学一试题及解析.doc

2014年全国硕士研究生入学统一考试数学一试题及解析一、选择题:1~8小题,每小题4分,共32分,下列每题给出四个选项中,只有一个选项符合题目要求的,请将所选项的字母填在答题纸指定位置上。

(1)下列曲线中有渐近线的是 (A )sin y x x =+.(B)2sin y x x =+.(C)1sin y x x =+.(D)21sin y x x=+.【解析】1sin()11lim lim lim(1sin )1x x x x f x x a x x x x→∞→∞→∞+===+= 11lim[()]lim[sin ]limsin 0x x x b f x ax x x x x→∞→∞→∞=-=+-==∴y=x 是y=x +1sin x的斜渐近线【答案】C(2)设函数()f x 具有2阶导数,()()()()011g x f x f x =-+,则在区间[0,1]上( ) (A)当0f x '≥()时,()()f x g x ≥. (B)当0f x '≥()时,()()f x g x ≤ (C)当0f x '≥()时,()()f x g x ≥.(D)当0f '≥时,()()f x g x ≤【解析】当() 0f x "≥时,()f x 是凹函数而()g x 是连接()()0,0f 与()1,1f ()的直线段,如右图 故()() f x g x ≤ 【答案】D(3)设(),f x y是连续函数,则110(,)ydy f x y -=⎰⎰(A)11110(,)(,)x dx f x y dy dx f x y dy --+⎰⎰⎰.(B)1101(,)(,)xdx f x y dy dx f x y dy --+⎰⎰⎰⎰.(C )112cos sin 02(cos ,sin )(cos ,sin ).d f r r dr d f r r dr ππθθπθθθθθθ++⎰⎰⎰⎰(D )112cos sin 02(cos ,sin )(cos ,sin ).d f r r rdr d f r r rdr ππθθπθθθθθθ++⎰⎰⎰⎰【解析】积分区域如图 0≤y ≤1.1x y ≤≤-用极坐标表示,即:D 1:,012r πθπ≤≤≤≤ D 2: 10,02cos sin r πθθθ≤≤≤≤+【答案】D (4)若{}2211,(cos sin )(cos sin )mina b Rx a x b x dx x a x b x dxππππ--∈--=--⎰⎰,则11cos sin a x b x +=(A )2sin x π.(B)2cos x .(C) 2sin x π. (D)2cos x π. 【解析】令2(,)(cos sin )Z a b x a x b x dx ππ-=--⎰2(cos sin )(cos )0(1)2(cos sin )(sin )0(2)a b Z x a x b x x dx Z x a x b x x dx ππππ--⎧'=---=⎪⎨'=---=⎪⎩⎰⎰由(1)得 202cos 0axdx π=⎰故10,0a a ==由(2)得 0120sin 22sin x xdx b b xdxππ===⎰⎰【答案】A(5)行列式00000000a b abc d c d= (A )(ad-bc )2(B )-(ad-bc )2。

2014试题研究数学答案

2014试题研究数学答案

2014试题研究数学答案在2014年的数学试题中,我们将重点研究每道题目的解答方法和答案。

以下是各题目的具体解析:题目一:计算题解析:这道计算题涉及到多位数的运算。

首先,我们将两个多位数竖式对齐,并从最低位开始逐位相加。

将每一位得到的结果写在下方,并进位到上方的数字。

最后,将得到的结果按照题目给定的格式写出来即可。

题目二:代数式求解解析:这道题目要求我们求解一个代数式的方程。

首先,我们将方程进行展开,然后移项得到方程的标准形式。

接着,我们可以通过因式分解、配方法、二次方程公式等方法来求解方程。

最后,将得到的解带入原方程进行验证,确保解符合题目要求。

题目三:几何问题解析:这道题目涉及到几何图形的性质和计算。

首先,我们要根据题目给出的信息画出几何图形,并标注出所需求的量。

然后,根据几何图形的性质和相关定理,我们可以利用相似三角形、勾股定理、正弦定理、余弦定理等方法来求解所需的量。

最后,将得到的结果按照题目的要求写出来。

题目四:概率问题解析:这道题目是一个概率问题,要求我们计算某个事件发生的可能性。

首先,我们需要明确问题中所涉及的事件和样本空间。

然后,根据概率的定义,我们可以利用排列组合、条件概率、加法原理、乘法原理等方法来计算所需的概率。

最后,将得到的结果按照题目的要求写出来。

题目五:函数图像分析解析:这道题目要求我们对一个函数的图像进行分析。

首先,我们需要根据函数的定义和性质来判断函数的变化趋势、极值点、零点、对称轴等。

然后,根据已知的信息,我们可以画出函数的图像,并标注出所需求的点和线段。

最后,将得到的图像和结果按照题目的要求写出来。

题目六:证明题解析:这道题目要求我们证明一个数学定理或性质。

首先,我们需要明确所要证明的内容,并列出相关的条件和已知信息。

然后,根据已知的定理和性质,我们可以逐步推导出所要证明的结论。

在推导过程中,需要注明每一步的理由和推理方法。

最后,将得到的证明过程和结论按照题目的要求写出来。

2014年考研数学一试题及完全解析(Word版)

2014年考研数学一试题及完全解析(Word版)

2014年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)下列曲线中有渐近线的是( )(A )sin y x x =+ (B )2sin y x x =+ (C )1sin y x x =+ (D )21sin y x x=+ 【答案】C【考点】函数图形的渐近线【解析】对于选项A , lim(sin )x x x →∞+ 不存在,因此没有水平渐近线,同理可知,选项A 没有铅直渐近线, 而sinxlimlim x x y x x x→∞→∞+=不存在,因此选项A 中的函数没有斜渐近线; 对于选项B 和D ,我们同理可知,对应的函数没有渐近线;对于C 选项,1siny x x=+.由于1sin lim lim1x x x yx x x→∞→∞+==,又()1lim 1lim sin0x x y x x →∞→∞-⋅==.所以1sin y x x=+存在斜渐近线y x =.故选C. (2)设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]内( ) (A )当()0f x '≥时,()()f x g x ≥ (B )当()0f x '≥时,()()f x g x ≤ (C )当()0f x ''≥时,()()f x g x ≥ (D )当()0f x ''≥时,()()f x g x ≤ 【答案】D【考点】函数图形的凹凸性 【解析】令()()()()(0)(1)(1)F x f x g x f x f x f x =-=---有(0)(1)0F F ==,()()(0)(1)F x f x f f ''=+-,()()F x f x ''''=当()0f x ''≥时,()F x 在[0,1]上是凹的,所以()0F x ≤,从而()()f x g x ≤.选D. (3)设(,)f x y 是连续函数,则21101(,)yy dy f x y dx ---=⎰⎰( )(A )21110010(,)(,)x x dx f x y dy dx f x y dy ---+⎰⎰⎰⎰(B )211011(,)(,)xx dx f x y dy dx f x y dy ----+⎰⎰⎰⎰(C )112cos sin 02(cos ,sin )(cos ,sin )d f r r dr d f r r dr ππθθπθθθθθθ++⎰⎰⎰⎰(D )112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ++⎰⎰⎰⎰【答案】D【考点】交换累次积分的次序与坐标系的变换 【解析】画出积分区域.21101(,)yy dy f x y dx ---=⎰⎰21111(,)+(,)x xdx f x y dy dx f x y dy ---⎰⎰⎰⎰或112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ++⎰⎰⎰⎰.故选D.(4)若{}2211,(cos sin )min (cos sin )a b Rx a x b x dx x a x b x dx ππππ--∈--=--⎰⎰,则11cos sin a x b x +=( )(A )2sin x (B )2cos x (C )2sin x π (D )2cos x π 【答案】A【考点】定积分的基本性质 【解析】222(cos sin )[2(cos sin )(cos sin )]x a x b x dx x x a x b x a x b x dx ππππ----=-+++⎰⎰22222[2cos 2sin cos 2sin cos sin ]x ax x bx x a x ab x x b x dx ππ-=--+++⎰22222[2sin cos sin ]x bx x a x b x dx ππ-=-++⎰2222202[2sin cos sin ]x bx x a x b x dx π=-++⎰333222222222(2)(4)[(2)4]32233b a b a b b a b ππππππππ=-++=+-+=+--+故当0,2a b ==时,积分最小.故选A.(5)行列式0000000a b abc d c d=( )(A )2()ad bc - (B )2()ad bc -- (C )2222a dbc - (D )2222b c a d - 【答案】B【考点】行列式展开定理 【解析】2141000000(1)0(1)000000000a b a b a b a ba c d cbcd d c d c d++=⨯-+⨯- 3323(1)(1)a b a b a d c b c d c d ++=-⨯⨯--⨯⨯-a b a bad bcc d c d=-+ 2()()a bbc ad ad bc c d=-=--.故选B. (6)设123,,ααα均为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的( )(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件 (D )既非充分也非必要条件 【答案】A【考点】向量组的线性无关的充要条件【解析】132312310(,)(,,)01k l k l ααααααα⎛⎫ ⎪++= ⎪ ⎪⎝⎭记132312310(,),(,,),01A k l B C k l ααααααα⎛⎫⎪=++== ⎪ ⎪⎝⎭若123,,ααα线性无关,则1323()()()2,r A r BC r C k l αααα===⇒++线性无关. 由1323,k l αααα++线性无关不一定能推出123,,ααα线性无关.如:123100=0=1=0000ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,1323,k l αααα++线性无关,但此时123,,ααα线性相关.故选A.(7)设随机事件A 与B 相互独立,且3.0)(,5.0)(=-=B A P B P ,则=-)(A B P ( ) (A )0.1 (B)0.2 (C)0.3 (D)0.4 【答案】B【考点】概率的基本公式 【解析】()()()()()()P A B P A P AB P A P A P B -=-=- ()0.5()0.5()0.3()0.6P A P A P A P A =-==⇒=.()()()()()()0.50.50.60.2P B A P B P AB P B P A P B -=-=-=-⨯=.故选B.(8)设连续型随机变量21,X X 相互独立,且方差均存在,21,X X 的概率密度分别为)(),(21x f x f ,随机变量1Y 的概率密度为)]()([21)(211y f y f y f Y +=,随机变量)(21212X X Y +=,则(A )2121,DY DY EY EY >> (B )2121,DY DY EY EY == (C )2121,DY DY EY EY <= (D )2121,DY DY EY EY >= 【答案】D【考点】统计量的数学期望【解析】2121()2Y X X =+,2121211[()]()22EY E X X EX EX =+=+, 2121211[()]()24DY D X X DX DX =+=+.1121()[()()]2Y f y f y f y =+,1121221[()()]()22y EY f y f y dy EX EX EY +∞-∞=+=+=⎰.2222112121[()()]()22y EY f y f y dy EX EX +∞-∞=+=+⎰, 22222111121211()()()24DY EY EY EX EX EX EX =-=+-+ 2222121212122()()24EX EX EX EX EX EX ⎡⎤=+---⋅⎣⎦ 22121212124DX DX EX EX EX EX ⎡⎤=+++-⋅⎣⎦ 221212121()()24DX DX EX EX EX EX ⎡⎤≥+++-⋅⎣⎦ 2121221()4DX DX EX EX DY ⎡⎤=++-≥⎣⎦ 1212,EY EY DY DY ∴=>二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)曲面)sin 1()sin 1(22x y y x z -+-=在点)1,0,1(处的切平面方程为【答案】210x y z ---= 【考点】曲面的切平面【解析】22(,,)(1sin )(1sin )F x y z x y y x z =-+--22(1sin )cos x F x y x y '=--⋅,2cos 2(1sin )y F y x y x '=-⋅+-,1z F '=-∴(1,0,1)2x F '=,(1,0,1)1y F '=-,(1,0,1)1z F '=-曲面在点)1,0,1(处的切平面方程为2(1)(1)(0)(1)(1)0x y z -+--+--=,即210x y z ---=(10)设)(x f 是周期为4的可导奇函数,且]2,0[),1(2)(∈-='x x x f ,则=)7(f【答案】1【考点】函数的周期性 【解析】由于]2,0[),1(2)(∈-='x x x f ,所以2()(1),[0,2]f x x C x =-+∈ 又)(x f 是奇函数,(0)0f =,解得1C =-2()(1)1,[0,2]f x x x ∴=--∈)(x f 是以4为周期的奇函数,故2(7)(3)(1)(1)[(11)1]1f f f f ==-=-=---=(11)微分方程0)ln (ln =-+'y x y y x 满足条件3)1(e y =的解为=y【答案】21x y xe +=【考点】变量可分离的微分方程 【解析】(ln ln )0ln 0y xxy y x y y x y''+-=⇒+= ① 令yu x=,则y ux =,y u u x ''=+ 代入①,得ln 0u u x u u '+-=即(ln 1)u u u x-'=分离变量,得(ln 1)(ln 1)ln 1du d u dxu u u x-==--两边积分得1ln ln 1ln u x C -=+,即ln 1u Cx -=即ln1yCx x-= 代入初值条件3)1(e y =,可得2C =,即ln12yx x-= 整理可得21x y xe+=.(12)设L 是柱面122=+y x 与平面0=+z y 的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分⎰=+Lydz zdx【答案】π【考点】斯托克斯公式 【解析】由斯托克斯公式,得0xyLD dydz dzdx dxdy zdx ydz dydz dzdx dydz dzdx x y z z yπ∑∑∂∂∂+==+=+=∂∂∂⎰⎰⎰⎰⎰⎰⎰其中{}22(,)1xy D x y x y =+≤(13)设二次型3231222132142),,(x x x ax x x x x x f ++-=的负惯性指数为1,则a 的取值范围是【答案】]2,2[-【考点】惯性指数、矩阵的特征值、配方法化二次型为标准形 【详解】 【解法一】二次型对应的系数矩阵为:O a a ≠⎪⎪⎪⎭⎫⎝⎛-0221001,记特征值为321,,λλλ则0011)(321=+-==++A tr λλλ,即特征值必有正有负,共3种情况; 故二次型的负惯性指数为⇔1特征值1负2正或1负1正1零;0402210012≤+-=-⇔a a a,即]2,2[-∈a【解法二】2222222212312132311332233(,,)2424f x x x x x ax x x x x ax x a x x x x a x =-++=++-+- 2222222213233123()(2)(4)(4)x ax x x a x y y a y =+--+-=-+-若负惯性指数为1,则240[2,2]a a -≥⇒∈-(14)设总体X 的概率密度为⎪⎩⎪⎨⎧<<=其他,02,32),(2θθθθx xx f ,其中θ是未知参数,n X X X ,,,21 为来自总体X 的简单随机样本,若∑=ni i X c 12是2θ的无偏估计,则=c【答案】n52 【考点】统计量的数字特征 【解析】根据题意,有322222112()()()3n ni i i i x E c X c E X ncE X nc dx θθθ=====∑∑⎰4222221523425nc nc x c nθθθθθ=⋅==∴= 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限)11ln(])1([lim2112xx dtt e t xtx +--⎰+∞→【考点】函数求极限、变限积分函数求导、等价无穷小、洛必达法则 【详解】11221122((1))((1))limlim11ln(1)xxttx x t e t dt t e t dtx x xx→+∞→+∞----=+⋅⎰⎰1122(1)1lim lim (1)1xx x x x e x x e x→+∞→+∞--==-- 2001111lim lim 22t t t t e t e t x t t ++→→---===令 (16)(本题满分10分)设函数)(x f y =由方程322+60y xy x y ++=确定,求)(x f 的极值【考点】极值的必要条件【解析】对方程两边直接求导:2223220y y x y xy y xyy '''++++= ① 令0y '=,得2y x =-,或0y =(舍去)将2y x =-代入原方程得 3660x -+= 解得1x =,此时2y =-. 对①式两端再求导,得222(32)2(3)()4()20y xy x y y x y y x y y ''''+++++++=将1x =,2y =-,0y '=代入上式,得 409y ''=>,即4(1)09f ''=> ()y f x ∴=在1x =处取极小值,极小值为(1)2f =-.(17)(本题满分10分)设函数)(u f 具有2阶连续导数,)cos (y e f z x =满足22222(4cos )x x z zz e y e x y∂∂+=+∂∂,若0)0(,0)0(='=f f ,求)(u f 的表达式. 【考点】多元函数求偏导、二阶常系数非齐次线性微分方程 【解析】由)cos (y e f z x=,知(cos )cos x x z f e y e y x ∂'=⋅∂,(cos )(sin )x x zf e y e y y∂'=⋅-∂ 22(cos )cos cos (cos )cos x x x x x zf e y e y e y f e y e y x∂'''=⋅⋅+⋅∂, 22(cos )(sin )(sin )(cos )(cos )x x x x x zf e y e y e y f e y e y y∂'''=⋅-⋅-+⋅-∂ 由22222(4cos )x xz z z e y e x y∂∂+=+∂∂,代入得 22(cos )[4(cos )cos ]x x x x x f e y e f e y e y e ''⋅=+即(cos )4(cos )cos x x x f e y f e y e y ''-= 令cos x u e y =,则()4()f u f u u ''-= 特征方程212402,2r r r -=⇒==- 齐次方程通解为2212uu y C eC e -=+设特解*y au b =+,代入方程得1,04a b =-=,特解*14y u =-原方程的通解为221214uu y C eC e u -=+-由(0)0,(0)0f f '==,得 1211,1616C C ==- 22111()16164u u y f u e e u -∴==--(18)(本题满分10分)设∑为曲面)1(22≤+=z y x z 的上侧,计算曲面积分dxdy z dzdx y dydz x I )1()1()1(33-+-+-=⎰⎰∑【考点】高斯公式【解析】因∑不封闭,添加辅助面2211:1x y z ⎧+≤∑⎨=⎩,方向向上.133(x 1)(y 1)(z 1)dydz dzdx dxdy ∑+∑-+-+-⎰⎰22(3(1)3(1)1)x y dxdydz Ω=-+-+⎰⎰⎰22(3633631)x x y y dxdydz Ω=++++++⎰⎰⎰22(337)x y dxdydz Ω=++⎰⎰⎰1220(z)(337)D dz x y dxdy =++⎰⎰⎰1220(37)4zdz d r rdr πθπ=+=⎰⎰⎰(其中(66)0x y dxdydz Ω+=⎰⎰⎰,因为积分区域关于,xoz yoz对称,积分函数(,)66f x y x y =+分别是,y x 的奇函数.)在曲面1∑上,133(1)(1)(1)0x dydz y dzdx z dxdy ∑-+-+-=⎰⎰ 故33(1)(1)(1)4x dydz y dzdx z dxdy π∑-+-+-=-⎰⎰. (19)(本题满分10分) 设数列}{},{n n b a 满足n n n n n b a a b a cos cos ,20,20=-<<<<ππ,且级数1n n b ∞=∑收敛.(I )证明:;0lim =∞→n n a(II )证明:级数∑∞=1n nnb a 收敛. 【考点】级数敛散性的判别【解析】证明:(I )cos cos cos cos n n n n n n a a b a a b -=⇒=-0,022n n a b ππ<<<<,cos cos 00n n n n a b a b ∴->⇒<<级数1nn b∞=∑收敛,∴级数1nn a∞=∑收敛,lim 0n n a →∞=.(II )解法1:2sinsin cos cos 22n n n nn n nn nna b a ba ab b b b +---==02n a π<<,02n b π<<,sin ,sin 2222n n n n n n n n a b a b a b a b ++--∴≤≤222222n n n nn nn nn n a b a b a b a b b b +--⋅-∴≤=222n n n b b b ≤=02n a π<<,02n b π<<,且级数1nn b∞=∑收敛,∴级数∑∞=1n nnb a 收敛. 解法2:cos cos 1cos n n n nn n na ab b b b b --=≤21cos 1cos 1lim lim 2n n n n n n n b b b b b →∞→∞--== ∵同阶无穷小有相同的敛散性,∴由1n n b ∞=∑⇒ 11cos n n n b b ∞=-∑收敛⇒∑∞=1n n n b a收敛(20)(本题满分11分)设E A ,302111104321⎪⎪⎪⎭⎫⎝⎛----=为3阶单位矩阵.(I )求方程组0=Ax 的一个基础解系; (II )求满足E AB =的所有矩阵B .【考点】齐次线性方程组的基础解系、非齐次线性方程组的通解 【详解】对矩阵()A E 施以初等行变换1234100()0111010*******A E --⎛⎫⎪=- ⎪ ⎪-⎝⎭ 1205412301021310013141--⎛⎫⎪→--- ⎪ ⎪--⎝⎭ 100126101021310013141-⎛⎫⎪→--- ⎪ ⎪---⎝⎭ (I ) 方程组0=Ax 的同解方程组为⎪⎪⎩⎪⎪⎨⎧===-=4443424132x x x x xx x x ,即基础解系为⎪⎪⎪⎪⎪⎭⎫⎝⎛-1321(II )⎪⎪⎪⎭⎫ ⎝⎛=001Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=-=-=+-=01312244434241x x x x x x x x ,即通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-011213211k⎪⎪⎪⎭⎫ ⎝⎛=010Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=-=-=+-=04332644434241x x x x x x x x ,即通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-043613212k ⎪⎪⎪⎭⎫ ⎝⎛=100Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=+=+=--=01312144434241x x x x x x x x ,即通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-011113213k ,123123123123261212321313431k k k k k k B k k k k k k -+-+--⎛⎫⎪--+ ⎪∴= ⎪--+ ⎪⎝⎭,321,,k k k 为任意常数(21)(本题满分11分)证明:n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100 相似 【考点】矩阵的特征值、相似对角化 【详解】设111111111A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,00100200B n ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭因为()1r A =,()1r B =所以A 的特征值为:n A tr n n ======-)(,0121λλλλB 的特征值为:n B tr n n =='='=='='-)(,0121λλλλ 关于A 的0特征值,因为1)()()0(==-=-A r A r A E r ,故有1-n 个线性无关的特征向量,即A 必可相似对角化于⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00 同理,关于B 的0特征值,因为1)()()0(==-=-B r B r B E r ,故有1-n 个线性无关的特征向量,即B 必可相似对角化于⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n 00 由相似矩阵的传递性可知,A 与B 相似. (22)(本题满分11分)设随机变量X 的概率分布为21}2{}1{====X P X P ,在给定i X =的条件下,随机变量Y 服从均匀分布)2,1)(,0(=i i U ,(I )求Y 的分布函数)(y F Y ; (II )求EY【考点】一维随机变量函数的分布、随机变量的数字特征(期望) 【详解】(I )()()y F y P Y y =≤(1)(1)(2)(2)P X P Y y X P X P Y y X ==≤=+=≤=11(1)(2)22P Y y X P Y y X =≤=+≤= ① 当0y < 时,(y)0Y F =② 当01y ≤<时,1113(y)2224Y F y y y =+⨯= ③ 当12y ≤<时,1111(y)22224Y yF y =+⨯=+④ 当2y ≥时,11(y)122Y F =+=综上:003y 014(y)1122412Y y y F y y y <⎧⎪⎪≤<⎪=⎨⎪+≤<⎪⎪≥⎩(II )随机变量Y 的概率密度为'30141(y)(y)1240Y Y y f F y ⎧<<⎪⎪⎪==≤<⎨⎪⎪⎪⎩其他12-013131133()4442424Y EY yf y dy ydy ydy +∞∞==+=⨯+⨯=⎰⎰⎰ (23)(本题满分11分)设总体X 的分布函数21,0(;)00x e x F x x θθ-⎧⎪-≥=⎨⎪<⎩,,其中θ是未知参数且大于零,12,,,n X X X 为来自总体X 的简单随机样本.(Ⅰ)求EX 与2EX ;(Ⅱ)求θ的最大似然估计量ˆnθ;(Ⅲ)是否存在实数a ,使得对任何0ε>,都有{}ˆlim 0nn P a θε→∞-≥=? 【考点】统计量的数字特征、最大似然估计、估计量的评选标准(无偏性) 【解析】(Ⅰ)X 的概率密度为22,0(;)(;)0,0xx e x f x F x x θθθθ-⎧⎪≥'==⎨⎪<⎩222()(;)()x x xE X xf x dx x edx xd eθθθθ--+∞+∞+∞-∞==⋅=-⎰⎰⎰22200012222x x x xeedx edx θθθθπθπ+∞---+∞+∞=-+==⋅=⎰⎰ 22222202()(;)()x x x E X x f x dx x edx x d eθθθθ--+∞+∞+∞-∞==⋅=-⎰⎰⎰222220222x x x x xx ex edx x edx edx θθθθθθθ+∞----+∞+∞+∞=-+⋅=⋅=⋅=⎰⎰⎰(Ⅱ)设12,,,n x x x 为样本的观测值,似然函数为2112(),0(1,2,,),()(;)0,0ix n n ni i i i i x e x i n L f x x θθθθ-==⎧≥=⎪==⎨⎪<⎩∏∏当0(1,2,,)i x i n ≥=时,22111122()()()ni i i x nn x nni i i i L x ex eθθθθθ=--==∑==∏∏两边取对数,得2211112121ln ()lnln lnln nnnni ii ii i i i L n x x n x x θθθθθ=====+-=+-∑∑∑∏两边求导,得221ln ()1nii d L n xd θθθθ==-+∑令ln ()0d L d θθ=,得211n i i x n θ==∑ 所以,θ的最大似然估计量为211ˆn i i X n θ==∑.(Ⅲ)存在a θ=.因为{}2n X 是独立同分布的随机变量序列,且21EX θ=<+∞,所以根据辛钦大数定律,当n →∞时,211ˆnn i i X n θ==∑依概率收敛于21EX ,即θ. 所以对于任何0ε>都有{}ˆlim 0nn Pθθε→∞-≥=.。

考研复习资料 2014考研数一真题及解析

考研复习资料  2014考研数一真题及解析

y
f ( ex
cos
y )ex( cos
y)
2E x 2
2E y 2
f ( ex
cos
y )e2x
( 4E ex
cos
y )e2x
f ( ex cos y ) 4 f ( ex cos y ) ex cos y
令 ex cos y u ,
则 f ( u ) 4 f ( u ) u ,
(9) 2x y z 1 0
(10) f ( 1) 1 (11) ln y 2x 1
x (12)
(13)[-2,2] (14)

三、解答题:15—23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说明、证 明过程或演算步骤.
(15)【答案】
1
x [ t 2( e x 1) t ]dt
lim 1
x
x2 ln(1 1 )
x
1
( e x 1) x t 2dt
x
tdt
lim
1
1
x
x
lim x2( e 1) x x
令u 1 , x
则 lim x2( e 1) x x
lim
u0
eu
1 u2
u
lim eu 1 1 u0 2u 2
(16)【答案】
3y2 y y2 x 2 yy 2xy x2 y 0 y2 2xy 0 y( y 2x ) 0
2014 年全国硕士研究生入学统一考试
数学一试题答案
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合 题目要求的,请将所选项前的字母填在答.题.纸.指定位置上. (1)C (2)D (3)D (4)B (5)B (6)A (7)(B) (8)(D) 二、填空题:914 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上.

2014考研真题数学答案

2014考研真题数学答案

2014考研真题数学答案2014考研数学真题答案第一部分:数学分析1. (1) A解答:解:由题意可知,f(x) = sin x + ln x在(0, π/2)上连续,故f(x)在(0, π/2)上有充分大和充分小的展开式。

若f(x)在(0, π/2)上有充分大、充分小的展开式,则可得到下述不等式:sin x > x - x^3/6 (0 < x < π/2)ln x < x - x^2/2 (0 < x < 1)(2) B解答:解:根据题意可知,f(x) = sin x + ln x在(0, π/2)上连续,故f(x)在(0, π/2)上有充分大和充分小的展开式。

由于同时满足两个不等式并不容易,我们可以将两个不等式进行组合,得到一个新的不等式:sin x > x - x^3/6 (0 < x < π/2)ln x < x - x^2/2 (0 < x < 1)将两个不等式相加得到:sin x + ln x > 2x - x^2/2 - x^3/6即f(x) > 2x - x^2/2 - x^3/6从而选项B为正确答案。

2. A解答:解:由已知条件,f(x) = x^3 - 3x + 1在区间[-1, 1]上连续且满足f(-1) = f(1)。

根据介值定理,存在c属于(-1, 1),使得f(c) = (c^4 - 1) / 4 = 0故方程c^4 - 1 = 0在(-1, 1)内有解,选项A为正确答案。

3. D解答:解:由题意可知,设A表示事件“A是一个矩形”,B表示事件“P 是一个面积为100的矩形”,C表示事件“P是一个周长为40的矩形”,则要求的概率即为P(A|B∩C)。

根据条件概率的定义,P(A|B∩C) = P(A∩B∩C) / P(B∩C)根据独立性的性质,P(A|B∩C) = P(A∩B∩C) / P(B)P(C)根据给定的信息可得到:P(B) = 4/5,P(C) = 1/2,P(B∩C) = 1/10综上所述,P(A|B∩C) = (1/10) / [(4/5) * (1/2)] = 1/8故答案选项为D。

2014考研数学一真题及答案详解

2014考研数学一真题及答案详解

2014考研数学一真题及答案详解2014年全国硕士研究生入学考试数学一真题及答案详解Part A1. 设f(x) = sinx + cosx (0 ≤ x ≤ π),则f '(x) = _____解析:f(x) = sinx + cosx,则f '(x) = cosx - sinx 当x ∈ [0, π]时,cosx ≥ 0 且sinx ≥ 0,所以f '(x) = cosx - sinx ≥ 0答案:cosx - sinx2. 已知函数f(x) = sinx + cosx,定义在[0, π]上,则f(x)在[0, π]上的最大值为____,最小值为____。

解析:f(x)在[0, π]上的最大值和最小值分别为f(π/4)和f(π/4 + π)。

f(π/4) = sin(π/4) + cos(π/4) = √2f(π/4 + π) = sin(π/4 + π) + cos(π/4 + π) = -√2答案:最大值为√2,最小值为-√23. 设向量a = 2i - 3j + k,b = i + j + 2k,则向量a与向量b的夹角为____°。

解析:向量a与向量b的夹角cosθ为cosθ = (a·b)/(|a||b|) = (2 - 3 + 2)/(√4 + 9 + 1)√6 = 1/√6故θ = arccos(1/√6)答案:θ ≈ 32.5°4. 已知向量a,b,其大小分别为3和4,且它们的夹角为60°。

则向量a + b的大小为____。

解析:根据余弦定理,a + b的大小为|a + b|² = |a|² + |b|² + 2|a||b|cosθ = 9 + 16 + 2×3×4×1/2 = 25故|a + b| = √25 = 5答案:55. 设函数y = f(x)在点x = a处可导,且f '(a) > 0,则以下哪个极限一定存在?()(A) lim[x→a]f(x)/x(B) lim[x→a]f(x)(C) lim[x→a](f(x))^2(D) lim[x→a]f(x) - f(a)解析:由可导性可知,右导数和左导数存在且相等,则有lim[x→a]f(x)/x = lim[x→a](f(x) - f(a))/(x -a)×(x - a)/x = f '(a)×1 = f '(a)lim[x→a]f(x) = f(a)lim[x→a](f(x))^2 = (lim[x→a]f(x))² = (f(a))²lim[x→a]f(x) - f(a) = lim[x→a](f(x) - f(a)) = f '(a)×(a - a) = 0故正确选项为:(A) lim[x→a]f(x)/x答案:(A)6. 设函数y = x³ + px + q,则当p = 0 时,y = x³+ q有两个零点,一个为0,另一个为____。

2014年考研数学攻略解决你的困惑

2014年考研数学攻略解决你的困惑

2014年考研数学攻略解决你的困惑2014年考研数学攻略解决你的困惑 1.单调不减(不增)和单调增(减)有什么区别? 答:⼆者的区别见下图划线部分 单调不增(或不减)其实就是⽐严格递增递减多了⼀个等号! 2.⽆穷⼩是确定的函数值吗? 答:不是,见下图划线部分 和⽆穷⼤⼀样,⽆穷⼩是某⼀过程的函数,是变量(除0外)! 3.间断点的判定问题 答:间断点判定⽅法见 4.泰勒公式求极限问题 答:很多极限只需将泰勒公式展开⼀两阶即可。

翻了历年真题,好多⼩题⽤泰勒公式可以直接得到答案,因此记住常⽤的短形式泰勒公式可以在考试时节省很多时间!下⾯是常见的短形式泰勒公式,记住最好哈!接上: 5.(2n+1)!!中“!!”是什么表⽰? 答:表⽰双阶乘,(2n)!!=2*4*...*(2n) , (2n+1)!!=1*3*...*(2n+1) 6.可导的充要条件 答:按照定义,可导必须满⾜四个条件,见下图 7.函数在某点的性质与该点邻域性质的关系 答:关系见下图划线部分 9.求f(x)的很⾼阶导数 答:这类题有很多种问法,⽐如求f(x)的100阶导数,求n阶导数,或求各阶导数等等。

求解这类问题⼀般都不是硬来,⽽是借助泰勒公式的唯⼀性利⽤间接法求解,见下图划线部分: 10.证明题怎么破? 答:在本帖的末尾有⼀位学长的笔记分享,笔记第⼆章后⾯的“⽅法技巧”部分专门讲述了零点证明、构造辅助函数证明等等问题,看了很受⽤!证明题求助的帖⼦⽐较多,这⾥就不给链接了。

11.定积分的计算技巧 答:定积分有好⼏个计算技巧,下⾯只根据所回答问题给出其中⼀个 12.反常积分关于奇偶函数的积分性质的使⽤误区 答:见下图划线部分 定积分存在称为可积,反常积分存在称为收敛。

收敛是计算反常积分的前提,如果不收敛,计算⽆从谈起! 13.多元函数积分的有关对称性质 答:由于篇幅限制,下⾯只给出⼆重积分的重点。

2014考研数一真题解析

2014考研数一真题解析

【解析】由于 z x2 (1 sin y) y2(1 sin x) ,所以 zx 2x(1 sin y) cos x y2 , zx (1, 0) 2 ; zy x2 cos y 2y(1 sin x) , zy (1, 0) 1.
所以,曲面在点 (1, 0,1) 处的法向量为 n {2, 1, 1}.
又 F(0) F(1) 0 ,所以当 x [0,1]时, F(x) 0 ,从而 g(x) f (x) .
故选(D).
1
1 y
(3) 设 f (x, y) 是连续函数,则 dy
f (x, y)dx
0
1 y2
1
x1
0
1 x2
(A) dx f (x, y)dy dx f (x, y)dy
()
(A) 2sin x
【答案】(A) 【解析】
(B) 2cos x
(C) 2 sin x
(D) 2 cos x
(x a cos x bsin x)2 dx
(x
b
sin
x)2
2a
cos
x(x
b
sin
x)
a2
x
cos2
xdx
(x2 2bx sin x b2 sin2 x a2 cos2 x)dx
(A) 0.1
【答案】(B)
(B) 0.2
(C) 0.3
(D) 0.4
【解析】 已知 a , A与 f x1, x2, x3 x12 x2 2ax1x3 4x2x3 独立, a ,
P(A B) P(A) P(AB) P(A) P(A)P(B)
()
P(A) 0.5P(A) 0.5P(A) 0.3,
c00d

2014年考研数学二真题与解析

2014年考研数学二真题与解析

2012年全国硕士研究生入学统一考试数学二试题
一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四
个选项中,只有一个选项符合题目要求的,请将所选项前的字
母填在答题纸指定位置上.
(1)曲线的渐近线条数
()
(A) 0
(B) 1(Cຫໍສະໝຸດ 2(D)3(2) 设函数,其中为正整数,则
()
(A)
(B)

三、解答题
15.(本题满分10分) 求极限.
16.(本题满分10分) 已知函数满足微分方程,且,求的极大值和极小值.
17.(本题满分10分) 设平面区域.计算 18.(本题满分10分) 设函数具有二阶连续导数,满足.若,求的表达式. 19.(本题满分10分) 设函数在区间上连续,且单调增加,,证明:
()
(A)
(B) 2
(C) -2
(D)
-
(7) 设, , , ,其中为任意常数,则下列向量组线性相关的为
()
(A)
(B)
(C)
(D)
(8) 设为3阶矩阵,为3阶可逆矩阵,且.若,则
()
(A)
(B)
(C)
(D)
二、填空题:9-14小题,每小题4分,共24分.请将答案写在答
题纸指定位置上.
(9) 设是由方程所确定的隐函数,则
2014年考研数学二真题与解析
一、选择题 1—8小题.每小题4分,共32分.
1.当时,若,均是比高阶的无穷小,则的可能取值范围是( ) (A) (B) (C) (D)
2.下列曲线有渐近线的是 (A) (B)(C) (D)
3.设函数具有二阶导数,,则在上( )
(A)当时, (B)当时,

考研数学真题2014

考研数学真题2014

考研数学真题20142014年考研数学真题是考生备战考研数学的重要参考材料。

本文将对2014年考研数学真题进行全面解析,帮助考生更好地理解和掌握数学知识。

第一部分:选择题1. 首先,我们来看2014年考研数学真题的选择题部分。

本年度的选择题共有40道,分为两个大题。

每题共4个选项,选择正确答案并在答题卡上涂黑。

2. 对于选择题部分,考生在答题过程中应注意以下几个方面:a. 仔细阅读题目,理解题意。

遇到不懂的词汇或概念,可以通过上下文推测或者猜测答案。

b. 注意题干中的关键词和条件,如“有且仅有”、“存在”、“充分必要条件”等,这些词汇会对答案的选择和解题思路产生重要影响。

c. 考虑选项之间的逻辑关系。

有时候,选项之间可能存在必然关系或者互斥关系,通过分析选项之间的逻辑关系,可以排除一些错误选项,提高正确选项的概率。

d. 注意用排除法。

对于某些复杂的选择题,可以通过排除明显错误的选项,缩小正确答案的范围。

第二部分:填空题1. 填空题是考研数学真题的第二部分,共有10道小题。

每道题有多个空格需要填写,考生要在答题卡上将正确答案填写上去。

2. 对于填空题,考生应注意以下几点:a. 仔细审题,理解题意。

特别要注意上下文的语境,以找到正确的填空词语或数字。

b. 根据题目给出的信息,运用相应的数学性质和公式进行计算或推导。

c. 注意计算的精度和有效数字。

遵循四舍五入或截断法则来确定最终填写在答题卡上的答案。

第三部分:解答题1. 解答题是考研数学真题的重点和难点。

2014年考研数学真题的解答题部分共有5道题目,涵盖了数学分析、高等代数、概率论和数理统计等内容。

2. 在解答题过程中,考生应注意以下几个方面:a. 分析题目,确定解题思路。

对于复杂的题目,可以先画图或列方程,辅助思考和解答。

b. 提炼问题,明确目标。

将题目中的问题或要求提炼出来,确保答案的准确性和完整性。

c. 运用相应的数学工具和技巧进行计算和推导。

2014考研数学:十问搞定概率论.doc

2014考研数学:十问搞定概率论.doc

率和高等数学联系起来。

关于第二个问题,概率统计怎么复习,今年的考试分配很不正常,明年不会是这样的情况。

我想明年数学一(统计)应该考一个八、九分的题是比较适中的。

从今年考试中心的样题统计这一块是九分。

数学三(统计)应该八分左右,统计这一块大家不要放弃,明年可能会考,分数应该是八、九分的题。

至于复习,它的内容占了四分之一的样子。

但是这一部分的题相对于概率题比较固定,做题的方法也比较固定,对考生来说比较好掌握,但这部分考生考得差,可能很多学校没有开这门课,或者开的话讲得比较简单,所以一些同学没有达到考试的水平。

其实这部分稍微花一点时间就可以掌握了。

主要就是这几块内容一是样本与抽样分布,就是三大分布搞清楚,把他们的结构搞清楚,把统计上的分布搞清楚。

然后是参数估计、矩估计、最大似然估计、区间估计、三种估计方法,三个评价标准,无偏性、有效性、一致性,重点是无偏性的考查,因为它是期望的计算,其次是有效性。

一致性一般不会考,考的可能性很小。

这三种估计方法重点也是前面两种,矩估计、最大似然估计,区间做了限制,考了很少,历年考试的情况也就是代代公式。

最后一部分是假设检验这部分,这一部分我个人推测明年有可能考一个概念性的小题。

一是了解U检验统计量、T检验统计量、卡方检验统计量,把这三个检验统计量的分布搞清楚。

另外假设检验的思想和四个步骤了解一下就可以了。

我想这部分考生少花一点时间,统计这个题是没有问题的,重点就是参数估计,就是三种估计方法,三个评价标准,重点在那个地方。

3.我概率这块掌握的不够扎实,复习很困难,我应该怎样才能更好的复习概率这部分内容?答:概率这门学科与别的学科是不太一样的,首先我建议这位同学你可以看一下教育部考试中心一本杂志,专门出了一个针对研究生考试的书,这个里面请我写了一篇文章,里面我举很多例子,你看了之后有一个详细复习方法。

概率这门学科与概率统计、微积分是不一样的,它要求对基本概念、基本性质的理解比较强,有个同学跟我说高等数学不存在把题看不懂的问题,但是概率统计的题尤其文字叙述的时候看不懂题,从这个意义上来说同学平常复习时候,只要针对每一个基本概念,要把它准确的理解,概念要理解准确,通过例子理解概念,通过实际物体理解概念。

2014考研数一真题答案

2014考研数一真题答案

2014考研数一真题答案由于题目要求使用合适的格式,我将按照考研数学一科的答案格式来回答这个问题。

下面是根据2014年考研数学一科真题的答案。

1. (1) 解:根据题意,要求证明x=1是方程x^3-3x+2=0的根。

首先,计算方程x^3-3x+2=0的导函数为f'(x)=3x^2-3。

将x=1带入f'(x)的表达式中,得到f'(1)=3(1)^2-3=3-3=0。

因此,x=1是方程x^3-3x+2=0的一个重根。

(2) 解:根据题意,要求证明x=2不是方程x^3-3x+2=0的根。

首先,计算方程x^3-3x+2=0的函数值为f(x)=x^3-3x+2。

将x=2带入f(x)的表达式中,得到f(2)=8-6+2=4。

因此,x=2不是方程x^3-3x+2=0的一个根。

2. (1) 解:由已知条件,设实数x的取值范围为D,根据题意求D 的值。

根据不等式|x-3|<2,可以得到两个条件:-2<x-3<2。

解第一个不等式:-2<x-3,将两边加上3,得到-2+3<x,即1<x。

解第二个不等式:x-3<2,将两边加上3,得到x<2+3,即x<5。

综上所述,x的取值范围D为1<x<5。

(2) 解:由已知条件,设实数x的取值范围为D,根据题意求D的值。

根据不等式|x-3|≥2,可以得到两个条件:x-3≥2 或者 x-3≤-2。

解第一个不等式:x-3≥2,将两边加上3,得到x≥2+3,即x≥5。

解第二个不等式:x-3≤-2,将两边加上3,得到x≤-2+3,即x≤1。

综上所述,x的取值范围D为x≥5 或者x≤1。

以上就是2014年考研数学一科的部分真题答案解析。

注意:在实际的考试中,需要根据题目的具体要求和答案格式来编写答案。

本文仅提供了一种可能的答案解析格式,具体情况还需根据题目要求来进行判断。

2014考研攻略:数学考前问与答.doc

2014考研攻略:数学考前问与答.doc

想,对数学信心很差,如何稳定情绪?
答:通过做高质量的模拟题使自己有做题实战的感觉,找到更好的“考试”的感觉。

只要你找到了这种感觉,就能够稳定自己的情绪,充满信心地迎接考试。

但是,模拟题的种类和数量纷多繁杂,毕竟不同于真题,因此,我们对每一套模拟题要有一个理性的态度,不要苛求自己模拟题每套都要做到很高的分数,针对一套题的不同难度的题也要有不同的心态,一方面不能因为大部分题难度不大而轻视,也没必要因为个别的难题而产生恐惧。

一套试题必然是大部分的基本题和个别的难题组成,我们要确保稳拿基本题(切忌初等错误),有效完成全部试题,尽量争取拿下难题。

带着这样有得有失的心态才能更好地稳定自己的情绪。

5、问:考场上答题有没有先后顺序呢?是从第一道题开始做吗?先做选择题还是最后做好呢?
答:大家拿到数学题以后不是埋头从第一题做到最后一题,而是应该展开试卷后从第一题看到最后一题,浏览一下。

这样做,通过浏览会找到你熟悉的题型,这时候做题就有信心了,能够消除紧张情绪。

关于做题的次序,如果里面出现了几乎完全做过的题,这样的题应该先做。

大体上来说,第一道题是选择题,第二道题是选择题,选择题八个、填空题六个,后面的是解答题。

填空题一般比较简单,同学们比较适应,先做填空题是一个不错的选择,然后再做选择题、解答题,解答题里先做熟悉的题,把不熟悉的题和难题放到后面做,这样才不会浪费时间。

不然一个难题想半天,到后面会做的题也没有时间做,这样就太可惜了。

选择题先做或者最后做可以根据个人解题习惯,考研数学教研老师提醒同学们需要注意的是,选择题遇到不会的可以暂且放过,做后面的题,这样做不至于浪费时间,一定要把会的题先做,先浏览一遍试卷,这是很有必要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014考研数学复习常见问题及解答
在每年的硕士研究生入学考试中,部分专业不用考数学,部分专业需要考数学,有些专业考数一,有的则考数二。

数学一、二、三的难易程度有所差别,目前已有不少同学展开了考研数学复习的准备,也有不少同学还在考察与了解信息中,尚未展开正式的复习,为了帮助心中存有疑惑的同学厘清思路,我们结合历年来考研数学的考试与复习情况,总结了八大问题并一一做了解答,相信能帮助更多同学清楚复习的目标和方向、内容,从而轻装上阵。

问题一:哪些专业需要考数学
解答:分别按照数学一、数学二、数学三进行分类列举
(一)需要考数学一的专业
工学门类的力学,机械工程,光学工程,仪器学与技术,冶金工程,动力学工程及工程物理,电气工程,电子科学与技术,信息与通信工程,控制科学与工程,计算机科学与技术,土木工程,水利工程,测绘科学与技术,交通运输工程,船舶与海洋工程,航空宇航科学与技术,兵器科学与技术,核科学与技术,生物医学工程等一级学科中所有的二级学科、专业。

工学门类的材料与工程,化学工程与技术,地质资源与地质工程,矿业工程,石油与天然气工程,环境科学与工程等一级学科中对数学要求较高的二级学科、专业。

管理学门类中的管理科学与工程一级学科。

(二)需要考数学二的专业
工学门类的纺织科学与工程,轻工食品科学与工程等一级学科中所有的二级学科、专业。

工程与天然气工程,环境科学与工程等一级学科中对数学要求较低的二级学科、专业。

(三)需要考数学三的专业
经济学门类的应用经济学一级学科中的统计学,数量经济学二级学科、专业。

管理学门类的工商管理一级学科中企业管理,技术经济管理二级学科、专业。

管理学门类的农林经济管理一级学科中对数学要求较高的二级学科、专业。

问题二:考研数学出题方向与考查重点是什么?
解答:考研数学主要考查以下几个方面:一是考查对基础知识的理解,基础知识包括基本概念、基本理论、基本运算等,二是考查简单的分析综合能力,三是考查数学理论在经济和理工学科中的运用,四是考查考生解题速度和解题的准确程度。

试题的综合性比较强,也有一定的灵活性,没有过于专业和抽象难懂的内容;控制一定的及格率,要求以中等偏上题为主,没有通常意义下的所谓“难题”。

所以考生在数学复习中一定要重视基础知识。


概念和性质一定要理解其内涵和外延,对各个知识点一定要弄清楚其区别和联系。

同时要做一定数量的题目,要逐步提高运算的速度和准确度。

逐步培养解答综合试题的能力。

问题三:数一、数二、数三各自考什么内容?
解答:一般来讲,数学一考的内容是三门:高等数学、线性代数、概率论与数理统计,满分150分,三门的分值比例是高等数学占56%,线代和概率各占22%.
数学二考的内容是高等数学、线性代数22%,不包括概率论与数理统计,满分150分,分值比例是高等数学占78%,线代占22%.
数学三考的内容是微积分,线性代数,概率论与数理统计,满分150分,微积分约56%,线性代数约22%,概率论与数理统计约22%.
问题四:数学一、二、三相互间的难易程度差别怎么样?
比较起来,在高等数学部分,数学一最难,数二、三无显著差异;线性代数部分,数一二三无显著差异。

概率论部分,数学二不考,数三最难,数一相对比较容易。

问题五:应该选取哪些复习参考书?
解答:数学资料有两类,一类是复习教材,一类是考研辅导专家针对考研而编写的资料。

复习教材差别不大,可以选择同济版的《高等数学》(第六版)、浙大版的《概率论与数理统计》(第三版),同济版的《线性代数》(第三版)或北大版的《高等代数》(上册)。

考研辅导名师所著的参考书有几大系列,包括蔡子华系列、黄先开曹显兵系列、汤家凤系列、陈文灯系列、李永乐系列等,思维方式等是有区别的,优势各有不同,考生可以根据需要选择适合自己的资料。

问题六:复习依据的是什么
解答:考研数学复习的依据是教育部制定的“全国硕士研究生入学统一考试数学考试大纲”,不是依据教学大纲或某一本教材,所以考生在复习时应根据考试大纲进行复习,大纲就是考生复习的指挥棒,凡是考试大纲中不要求的内容,不管出现在什么样考研辅导书上,都不要花时间去钻研它。

不过,每年数学大纲变化不大,2010年考研的同学现在可以根据2009年的考研数学大纲复习。

问题七:何时开始复习合适
解答:对于数学基础比较差的同学,春季就可以投入复习了。

如果自己的复习效果不太理想,可以报数学春季基础班。

从暑假开始,就已经是强化阶段了。

如果基础比较好,数学解题能力较强的同学,可以到7月到8月开始进行第一轮复习,熟悉基本内容,整理清楚基本方法。

9月、10月、11月这三个月将复习重点放在综合能力的提高上,在这个阶段有必要做大量的题目,一是检查前一阶段复习当中的漏洞,二是熟练解题的套路。

12月份应当用最后的时间很好地整理一下,开始冲刺与模拟题、真题的限时演练。

相关文档
最新文档