数学建模及典型案例分析共30页文档
数学建模及典型案例分析
数学模型是人们为了认识客观对象在数量方面的特 征、定量地分析对象的内在规律、用数学的语言和符号 去近似地刻画要研究的那一部分现象时,所得到的一个 数学表述。 例如在牛顿力学中的公式f=ma, s=vt. 爱因斯坦 的质能方程E=mc2. 这些都是数学模型. 数学建模就是建立数学模型的过程。
数学模型的分类
按应用领域分类: 人口模型,环境模型、交通模型、生
态模型…… 按建模方法分类:初等模型、微分方程模型、差分方 法模型、统计回归模型、数学规划模型…… 按是否考虑随机因素分类:确定性模型和随机模型 按变量的连续性分类:连续模型和离散模型 按对对象内部规律了解程序分类:白箱模型、灰箱模 型和黑箱模型 按变量的基本关系分类:线性模型和非线性模型 按是否考虑时间变化分类:静态模型和动态模型
李志林,欧宜贵编著
化学工业出版社
广西民族大学数学与计算机科学学院
曹敦虔制作
目录
数学建模导言 2. 插值与拟合 3. 微分方程建模方法 4. 差分法建模 5. 计算机模拟 6. 层次分析法 7. 数据的统计描述与分析 8. 回归分析方法 9. 优化模型 10. 确定型时间序列预测法 11. 随机型时间序列预测法
示例1 鸭子过河
有只鸭子想游到河对岸的某个位置O,如果它的方向
始终朝着目标O。求这只鸭子的游动曲线。
示例1 鸭子过河
模型假设
1. 假设河的两岸为平行直线,河宽为h; 2. 鸭子游水的速率为b, 水流速率为a, 均为常数;
3. 初始时鸭子的位置为A;
4. 鸭子游动的方向始终指向O.
示例1 鸭子过河
数学建模的基本方法和步骤
实现对象
假设、抽象、表达
数学模型
验 证 、 应 用
典型建模案例
化工数学建模典型案例分析1.天有不测风云——全球气候变化与碳排放问题的争论与是非简介:气候变暖与温室气体排放之间的关系已成为不同国家博弈的政治议题,从京都议定书、哥本哈根、德班会议到新进欧盟征收航空“碳排放税“。
2012年2月8日,16位世界知名的科学家联名质疑气候变暖的推论,其理由就是这一预测是根据数学模型计算得到的,而模型过分强调了CO2排放的作用,忽视了其它因素对气候的影响,同时与近年来的极寒天气趋势不符。
作业要求:1)介绍问题的背景及其与数学模型的关系2)介绍预测气候变化的数学模型3)对该数学模型进行评价并对“气候变暖说”进行评论2.雾里看花——南亚蘑菇云背后的技术动因简介:1998年5月,印度与巴基斯坦相继进行了多次核试验,引爆了南亚核危机。
为什么印巴会在这一敏感时机进行多批次连续的核试验?有关内幕报道揭示出其主要的技术需求就是为了建立模拟核爆炸与核武器的数学模型。
作业要求:1)与化工过程开发类比,介绍核武器与核装置的开发步骤与开发内容 2)介绍模拟核试验的数学模型3.追本溯源——单事件模型:从量子化学到复杂体系动力学(文献)简介:G. Froment 针对炼油和FCC 过程,抛弃了传统化工动力学研究的“集总”做法,从量子化学分析出发,将数千个组分和数十万个基元反应归结为六类基本反应,用33个本怔反应参数描述,据此重构了接近真实过程的复杂反应过程,开发了商业炼油软件获得很大成功,其采用的方法论颇具启发性,对于化工动力学的研究具有开创性的意义。
作业要求:1)介绍single event 的概念、方法和模型2)用这种动力学研究方法处理MTO与其它复杂反应过程4.超越极限——微观混合模型与混合强化技术(课题成果+文献)(微观混合,MDI撞击流,四喷嘴煤气化炉,超重力反应器,微反应器)简介:混合强化技术的目的是为了突破常规混合方法的限制,满足快速反应的需求。
试给出一个快速反应的例子,给出其本征动力学;给出混合反应器流动与混合的定量描述;建立反应器模型模拟快速反应结果。
数学建模经典案例分析以葡萄酒质量评价为例
数学建模经典案例分析以葡萄酒质量评价为例一、本文概述本文旨在通过深入剖析数学建模在葡萄酒质量评价中的应用,展示数学建模的经典案例。
我们将首先简要介绍数学建模的基本概念及其在各个领域的应用,然后聚焦葡萄酒质量评价这一具体问题,阐述如何通过数学建模对其进行科学、客观的分析。
文章将详细分析数据的收集与处理、模型的建立与求解、模型的验证与优化等关键环节,并探讨不同数学模型在葡萄酒质量评价中的优缺点。
我们将总结数学建模在葡萄酒质量评价中的实际应用效果,展望其在未来葡萄酒产业中的发展前景。
通过阅读本文,读者将能够了解数学建模在葡萄酒质量评价中的重要作用,掌握相关数学建模方法和技术,为类似问题的解决提供有益的参考和借鉴。
本文也将促进数学建模在葡萄酒产业中的应用与发展,推动葡萄酒产业的科技进步和产业升级。
二、数学建模基础数学建模是一种将实际问题抽象化、量化的过程,通过数学工具和方法来求解问题的近似解。
在葡萄酒质量评价这一案例中,数学建模提供了从复杂的实际生产环境中提取关键信息,并建立预测模型的可能。
这需要我们具备一定的数学基础,如统计学、线性代数、微积分等,同时也需要理解并掌握数据处理的基本技术,如数据清洗、特征提取和选择等。
在葡萄酒质量评价问题中,我们首先需要收集大量的葡萄酒样本数据,这些数据可能包括葡萄品种、产地、气候、土壤、酿造工艺、化学成分等多个方面的信息。
然后,我们需要对这些数据进行预处理,如去除缺失值、异常值,进行数据标准化等,以提高模型的稳定性和准确性。
接下来,我们可以选择适合的模型进行训练。
在这个案例中,我们可以选择线性回归、决策树、随机森林、神经网络等模型进行尝试。
我们需要根据数据的特性和问题的需求,选择最合适的模型。
同时,我们还需要进行模型的训练和验证,通过调整模型的参数,提高模型的预测能力。
我们需要对模型进行评估和优化。
这可以通过交叉验证、ROC曲线、AUC值等评估指标来进行。
如果模型的预测能力不足,我们需要对模型进行优化,如改进模型的结构、增加更多的特征等。
数学建模案例分析【精选文档】
案例分析1:自行车外胎的使用寿命问题:目前,自行车在我国是一种可缺少的交通工具。
它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。
但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。
扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。
为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换?分析:分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断.若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。
这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。
产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。
我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。
寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。
本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。
如换成自行车的路程寿命来比较,就好得多。
产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。
弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。
自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。
数学建模的实例分析
数学建模的实例分析数学建模是一种将实际问题转化为数学模型进行求解的方法。
通过对问题的分析、建立适当的模型,运用数学方法进行求解,从而得到对实际问题的理解和解决方案。
本文将通过一个实例来具体分析数学建模在实际问题中的应用。
一、问题描述假设某城市的道路交通堵塞问题日益严重,市政府计划对交通信号灯进行优化。
为了合理地调配交通信号灯的时长,需要考虑到车辆流量、道路长度、红绿灯周期等多个因素。
具体问题如下:如何合理地设置交通信号灯的时长,以最大程度地提高交通效率并减少交通拥堵。
二、问题分析针对上述的问题,我们可以首先将道路网络抽象为一个图论模型。
将路口作为节点,道路作为边,通过各个路口之间的连接关系来描述交通情况。
而交通信号灯的时长则可以视为图论中边的权重,表示车辆通过该边所需要的时间。
基于上述分析,我们将问题进行数学建模:1. 定义变量:- $N$:路口数量- $G = (V, E)$:图,其中 $V$ 表示路口的集合,$E$ 表示道路的集合- $L$:红绿灯周期长度- $T(e)$:边 $e$ 的通过时间2. 建立模型:- 目标函数:最小化车辆的平均通过时间 $C$,即\[C = \frac{1}{N} \sum_{e \in E} \frac{T(e)}{T(L)}\]- 约束条件:- 路口的通过时间必须满足红绿灯周期长度 $L$,即对于任意路口 $i \in V$,有\[\sum_{e \in E(i)} T(e) = L\]其中 $E(i)$ 表示与路口 $i$ 相关联的道路集合。
3. 求解方法:- 利用优化算法,如遗传算法、模拟退火算法等,求解上述问题模型,得到最优的交通信号灯时长。
三、实例分析以某城市的一个交通繁忙的路口为例来具体分析。
1. 数据采集:- 通过交通监控摄像头,采集车辆通过路口的数据,并记录通过时间。
- 统计各个道路的车辆流量、道路长度等信息。
2. 建模过程:- 根据采集到的数据,构建图模型。
数学建模 第四篇 典型案例分析
0
5
10
15
20
25
32 30 28 26 24 22 20 18
n=(5,6)的拟合流量曲线
16 14
0
5
10
15
20
25
§2.6 计算结果
各时段和一天总用水量 及两个供水时段水泵的功率
(n1,n2) y1 (3,4)
(5,6)
y2
y12
y3
y 1263.4
1252.5
p1
p2
146.18 258.10 48.50 78.50
§2
§2.1 问题的提出
水塔流量估计
圆柱形水塔 :高12.2、直径17.4米
水位降至约8.2米升到约10.8米时,水泵工作.
水泵每天供水一两次,每次约两小时.
已知一天水位测量记录. 估计任何时刻流水量、一天总用水量.
时刻(h) 水位(cm) 时刻(h) 水位(cm) 时刻(h) 水位(cm) 0 0.92 1.84 2.95 3.87 4.98 5.90 7.01 7.93 8.97 968 948 931 913 898 881 869 852 839 822 9.98 10.92 10.95 12.03 12.95 13.88 14.98 15.90 16.83 // // 1082 1050 1021 994 965 941 918 17.93 19.04 19.96 20.84 22.014 22.96 23.88 24.99 25.91 892 866 843 822 // // 1059 1035 1018
§1.2
问题的分析
球心偏前
0 △x D
d
0 D
d
数学建模案例分析
线性代数建模案例汇编法正系,思想政治教育13-1汗克孜·亚森2015年6月目录案例一. 交通网络流量分析问题 (1)案例二. 配方问题 (4)案例三. 投入产出问题 (6)案例四. 平板的稳态温度分布问题 (8)案例五. CT图像的代数重建问题 (10)案例六. 平衡结构的梁受力计算 (12)案例七. 化学方程式配平问题 (14)案例八. 互付工资问题 (16)案例九. 平衡价格问题 (18)案例十. 电路设计问题 (20)案例十一. 平面图形的几何变换 (22)案例十二. 太空探测器轨道数据问题 (24)案例十三. 应用矩阵编制Hill密码 (25)案例十四. 显示器色彩制式转换问题 (27)案例十五. 人员流动问题 (29)案例十六. 金融公司支付基金的流动 (31)案例十七. 选举问题 (33)案例十八. 简单的种群增长问题 (34)案例十九. 一阶常系数线性齐次微分方程组的求解 (36)案例二十. 最值问题 (38)附录数学实验报告模板 (39)这里收集了二十个容易理解的案例. 和各类数学建模竞赛的题目相比, 这些案例确实显得过于简单. 但如果学生能通过这些案例加深对线性代数基本概念、理论和方法的理解, 培养数学建模的意识, 那么我们初步的目的也就达到了.案例一. 交通网络流量分析问题城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。
根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。
图1 某地交通实况图2 某城市单行线示意图【模型准备】某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).图3 某城市单行线车流量(1) 建立确定每条道路流量的线性方程组.(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计?(3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.(4) 若x 4 = 200, 则单行线应该如何改动才合理?【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足500 = x 1 + x 2 ①400 + x 1 = x 4 + 300 ②x 2 + x 3 = 100 + 200 ③x 4 = x 3 + 300 ④【模型求解】根据上述等式可得如下线性方程组12142334500100300300x x x x x x x x +=⎧⎪-=-⎪⎨+=⎪⎪-+=⎩其增广矩阵(A , b ) =1100500100110001103000011300⎛⎫ ⎪-- ⎪ ⎪ ⎪-⎝⎭−−−−→初等行变换10011000101600001130000000--⎛⎫ ⎪ ⎪-- ⎪ ⎪⎝⎭ 由此可得142434100600300x x x x x x -=-⎧⎪+=⎨⎪-=-⎩即142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩.为了唯一确定未知流量, 只要增添x4统计的值即可.当x4 = 350时, 确定x1 = 250, x2 = 250, x3 = 50.若x4 = 200, 则x1 = 100, x2 = 400, x3 = 100 < 0. 这表明单行线“③④”应该改为“③④”才合理.【模型分析】(1) 由(A, b)的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.(2) 由142434100600300x xx xx x=-⎧⎪=-+⎨⎪=-⎩可得213141500200100x xx xx x=-+⎧⎪=-⎨⎪=+⎩,123242500300600x xx xx x=-+⎧⎪=-+⎨⎪=-+⎩,132343200300300x xx xx x=+⎧⎪=-+⎨⎪=+⎩, 这就是说x1, x2, x3, x4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码: 16-17.Matlab实验题某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组.(2)分析哪些流量数据是多余的.(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.案例二. 配方问题在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模.图5 日常膳食搭配图6 几种常见的作料【模型准备】一种佐料由四种原料A、B、C、D混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?【模型假设】(1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A、B、C、D四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A、B、C、D四种原料分别为1克, 2克, 1克, 2克).【模型建立】根据已知数据和上述假设, 可以进一步假设将x袋第一种规格的佐料与y袋第二种规格的佐料混合在一起, 得到的混合物中A、B、C、D四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组24,327,3,2 5.x yx yx yx y+=⎧⎪+=⎨+=⎪+=⎩【模型求解】上述线性方程组的增广矩阵(A, b) =214327113125⎛⎫⎪⎪⎪⎪⎝⎭−−−−→初等行变换101012000000⎛⎫⎪⎪⎪⎪⎝⎭,可见{1,2.x y==又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成.【模型分析】(1) 若令α1 = (2, 3, 1, 1)T, α2 = (1, 2, 1, 1)T, β = (4, 7, 5, 3)T, 则原问题等价于“线性方程组Ax = b是否有解”, 也等价于“β能否由α1, α2线性表示”.(2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x克第一种规格的佐料与y克第二种规格的佐料混合得第三种规格的佐料, 则有下表因而有如下线性方程组214(),7619327(),7619113(),7619125().7619x y x y x y x y x y x y x y x y ⎧+=+⎪⎪⎪+=+⎪⎨⎪+=+⎪⎪⎪+=+⎪⎩ (*) 【模型检验】把x = 7, y = 12代入上述方程组(*), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性. Matlab 实验题蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.问怎样安排饮食和运动才能实现每日的营养需求?案例三. 投入产出问题在研究多个经济部门之间的投入产出关系时, W. Leontief提出了投入产出模型. 这为经济学研究提供了强有力的手段. W. Leontief因此获得了1973年的Nobel经济学奖.图7 三个经济部门这里暂时只讨论一个简单的情形.【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求?【模型假设】假设不考虑价格变动等其他因素.【模型建立】设煤矿, 电厂, 铁路分别产出x元, y元, z元刚好满足需求. 则有下表根据需求, 应该有(0.60.5)60000(0.30.10.1)100000(0.20.1)0x y zy x y zz x y-+=⎧⎪-++=⎨⎪-+=⎩,即0.60.5600000.30.90.11000000.20.10x y zx y zx y z--=⎧⎪-+-=⎨⎪--+=⎩【模型求解】在Matlab命令窗口输入以下命令>> A = [1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1]; b = [60000;100000;0]; >> x = A\bMatlab执行后得x =1.0e+005 *1.99661.84150.5835可见煤矿要生产1.9966⨯105元的煤, 电厂要生产1.8415⨯105元的电恰好满足需求.【模型分析】令x =xyz⎛⎫⎪⎪⎝⎭, A =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭, b =60000100000⎛⎫⎪⎪⎝⎭, 其中x称为总产值列向量, A称为消耗系数矩阵, b称为最终产品向量, 则Ax =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭xyz⎛⎫⎪⎪⎝⎭=0.60.50.30.10.10.20.1y zx y zx y+⎛⎫⎪++⎪+⎝⎭根据需求, 应该有x Ax = b, 即(E A)x = b. 故x = (E A )1b.Matlab实验题某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?案例四. 平板的稳态温度分布问题在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.图8 一块平板的温度分布图【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.图9 一块平板的温度分布图【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.【模型建立】根据已知条件和上述假设, 有如下线性方程组1232143144231(90100)41(8060)41(8060)41(5050)4T T T T T T T T T T T T ⎧=+++⎪⎪⎪=+++⎪⎨⎪=+++⎪⎪=+++⎪⎩ 【模型求解】将上述线性方程组整理得1231241342344190414041404100T T T T T T T T T T T T --=⎧⎪-+-=⎪⎨-+-=⎪--+=⎪⎩. 在Matlab 命令窗口输入以下命令>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100];>> x = A\b; x ’Matlab 执行后得ans =82.9167 70.8333 70.8333 60.4167可见T 1 = 82.9167, T 2 = 70.8333, T 3 = 70.8333, T 4 = 60.4167.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码: 15-16.Matlab 实验题假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为16308209的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.图10 一块平板的温度分布图(1) 建立可以确定平板内节点温度的线性方程组.(2) 用Matlab 软件求解该线性方程组.(3) 用Matlab 中的函数mesh 绘制三维平板温度分布图.案例五. CT 图像的代数重建问题X 射线透视可以得到3维对象在2维平面上的投影, CT 则通过不同角度的X射线得到3维对象的多个2维投影, 并以此重建对象内部的3维图像. 代数重建方法就是从这些2维投影出发, 通过求解超定线性方程组, 获得对象内部3维图像的方法.图11双层螺旋CT 图12 CT 图像 这里我们考虑一个更简单的模型, 从2维图像的1维投影重建原先的2维图像.一个长方形图像可以用一个横竖均匀划分的离散网格来覆盖, 每个网格对应一个像素, 它是该网格上各点像素的均值. 这样一个图像就可以用一个矩阵表示,其元素就是图像在一点的灰度值(黑白图像). 下面我们以33图像为例来说明.表4 消耗与产出情况33图像水平方向上 的叠加值x 1 + x 2 + x 3 = 1x 4 + x 5 + x 6 = 1x 7 + x 8 + x 9 = 1.5的叠加值x 1 + x 4 + x 7 = 1.5 x 2 + x 5 + x 8 = 0.5 x 3 + x 6 + x 9 = 1.5 每个网格中的数字x i 代表其灰度值, 范围在[0, 1]内. 0表示白色, 1表示黑色, 0.5表示灰色. 如果我们不知道网格中的数值, 只知道沿竖直方向和水平方向的叠加值, 为了确定网格中的灰度值, 可以建立线性方程组(含有6个方程, 9个未知数)123456369111x x x x x x x x x ++=⎧⎪++=⎪⎨⎪++=⎪⎩ 显然该方程组的解是不唯一的, 为了重建图像, 必须增加叠加值. 如我们增加从右上方到左下方的叠加值, 则方程组将增加5个方程x 1 = 1,x 2 + x 4 = 0,x 3 + x 5 + x 7 = 1,x 6 + x 8 = 0.5,x 9 = 1,和上面的6个方程放在一起构成一个含有11个方程, 9个未知数的线性方程组.【模型准备】设33图像中第一行3个点的灰度值依次为x 1, x 2, x 3, 第二行3个点的灰度值依次为x 4, x 5, x 6, 第三行3个点的灰度值依次为x 7, x 8, x 9. 沿竖直方向的叠加值依次为1.5, 0.5, 1.5, 沿水平方向的叠加值依次为1, 1, 1.5, 沿右上方到左下方的叠加值依次为1, 0, 1, 0.5, 1. 确定x 1, x 2, …, x 9的值.【模型建立】由已知条件可得(含有11个方程, 9个未知数的)线性方程组1234569111x x x x x x x ++=⎧⎪++=⎪⎨⎪=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1;1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1;1,0,0,0,0,0,0,0,0;0,1,0,1,0,0,0,0,0;0,0,1,0,1,0,1,0,0;0,0,0,0,0,1,0,1,0;0,0,0,0,0,0,0,0,1];>> b = [1;1;1.5;1.5;0.5;1.5;1;0;1;0.5;1];>> x = A\b; x ’Matlab 执行后得Warning: Rank deficient, rank = 8 tol = 4.2305e-015.ans =1.0000 0.0000 0 -0.0000 0.5000 0.5000 0.5000 -0.0000 1.0000可见上述方程组的解不唯一. 其中的一个特解为x 1 = 1, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0.5, x 6 = 0.5, x 7 = 0.5, x 8 = 0, x 9 = 1.【模型分析】上述结果表明, 仅有三个方向上的叠加值还不够.可以再增加从左上方到右下方的叠加值. 在实际情况下, 由于测量误差, 上述线性方程组可能是超定的.这时可以将超定方程组的近似解作为重建的图像数据.Matlab 实验题给定一个33图像的2个方向上的灰度叠加值: 沿左上方到右下方的灰度叠加值依次为0.8, 1.2, 1.7, 0.2, 0.3; 沿右上方到左下方的灰度叠加值依次为0.6, 0.2,1.6, 1.2, 0.6.(1) 建立可以确定网格数据的线性方程组, 并用Matlab 求解.(2) 将网格数据乘以256, 再取整, 用Matlab 绘制该灰度图像.案例六. 平衡结构的梁受力计算在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情.图13埃菲尔铁塔全景图14 埃菲尔铁塔局部下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况.【模型准备】在图15所示的双杆系统中, 已知杆1重G1 = 200牛顿, 长L1 = 2米, 与水平方向的夹角为1 = /6, 杆2重G2 = 100牛顿, 长L2= 米, 与水平方向的夹角为2 = /4. 三个铰接点A, B, C所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力.图15双杆系统【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示.【模型建立】对于杆1:水平方向受到的合力为零, 故N1 = N3,竖直方向受到的合力为零, 故N2 + N4 = G1,以点A为支点的合力矩为零, 故(L1sin1)N3 + (L1cos1)N4 = (12L1cos1)G1.图16 两杆受力情况对于杆2类似地有N5 = N7, N6 = N8 + G2, (L2sin2)N7 = (L2cos2)N8 + (12L2cos2)G2.N5N6/6/4此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组:132414800N N N N G N N -=⎧⎪+=⎪⎨⎪⎪-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4;>> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0;0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0;0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2);0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1];>> b = [0;G1;0.5*L1*cos(theta1)*G1;0;G2;0.5*L2*cos(theta2)*G2;0;0];>> x = A\b; x ’Matlab 执行后得ans =95.0962 154.9038 95.0962 45.0962 95.0962 145.0962 95.0962 45.0962【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码: 157-158.Matlab 实验题有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45º.(1) 列出由各铰接点处受力平衡方程构成的线性方程组.(2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况.图17 一个平面结构的梁案例七. 化学方程式配平问题在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.图18 污水处理 【模型准备】某厂废水中含KCN, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:KCN + 2KOH + Cl 2 = KOCN + 2KCl + H 2O.投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:KOCN + KOH + Cl 2 === CO 2 + N 2 + KCl + H 2O.(注: 题目摘自福建省厦门外国语学校2008-2009学年高三第三次月考化学试卷)【模型建立】设x 1KOCN + x 2KOH + x 3Cl 2 === x 4CO 2 + x 5N 2 + x 6KCl + x 7H 2O,则1261247141527362222x x x x x x x x x x x x x x x +=⎧⎪+=+⎪⎪=⎪⎨=⎪⎪=⎪=⎪⎩, 即1261247141527360200202020x x x x x x x x x x x x x x x +-=⎧⎪+--=⎪⎪-=⎪⎨-=⎪⎪-=⎪-=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得ans =1 2 3/2 1 1/2 3 1可见上述齐次线性方程组的通解为x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下2KOCN + 4KOH + 3Cl 2 === 2CO 2 + N 2 + 6KCl + 2H 2O.【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax = 中所含方程的个数等于化学方程式中元素的种数s, 未知数的个数就是化学方程式中的项数n.当r(A) = n1时, Ax = 的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k为各分量分母的最小公倍数即可. 例如本例中1, 2, 3/2, 1, 1/2, 3, 1分母的最小公倍数为2, 故取k = 2.当r(A) n2时, Ax = 的基础解系中含有2个以上的线性无关的解向量. 这时可以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码: 84-85.Matlab实验题配平下列反应式(1) FeS + KMnO4 + H2SO4——K2SO4 + MnSO4 + Fe2(SO4)3 + H2O + S↓(2) Al2(SO4)3 + Na2CO3 + H2O ——Al(OH)3↓+ CO2↑+ Na2SO4案例八. 互付工资问题互付工资问题是多方合作相互提供劳动过程中产生的. 比如农忙季节, 多户农民组成互助组, 共同完成各户的耕、种、收等农活. 又如木工, 电工, 油漆工等组成互助组, 共同完成各家的装潢工作. 由于不同工种的劳动量有所不同, 为了均衡各方的利益, 就要计算互付工资的标准.图19 农忙互助 图20 装修互助【模型准备】现有一个木工, 电工, 油漆工. 相互装修他们的房子, 他们有如下协议:(1) 每人工作10天(包括在自己家的日子),(2) 每人的日工资一般的市价在60~80元之间,(3) 日工资数应使每人的总收入和总支出相等.求每人的日工资. 【模型假设】假设每人每天工作时间长度相同. 无论谁在谁家干活都按正常情况工作, 既不偷懒, 也不加班.【模型建立】设木工, 电工, 油漆工的日工资分别为x , y , z 元, 则由下表可得2610451044310x y z x x y z y x y z z ++=⎧⎪++=⎨⎪++=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [-8,1,6;4,-5,1;4,4,-7];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得ans = 31/36 8/9 1可见上述齐次线性方程组的通解为x = k (31/36, 8/9, 1)T . 因而根据“每人的日工资一般的市价在60~80元之间”可知 60 3631k <98k < k 80, 即 312160 k 80. 也就是说, 木工, 电工, 油漆工的日工资分别为3631k 元, 98k 元, k 元, 其中312160 k 80.为了简便起见, 可取k = 72, 于是木工, 电工, 油漆工的日工资分别为62元, 64元, 72元.【模型分析】事实上各人都不必付自己工资, 这时各家应付工资和各人应得收入如下由此可得6845447y z x x z y x y z +=⎧⎪+=⎨⎪+=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩ 可见这样得到的方程组与前面得到的方程组是一样的.Matlab 实验题甲, 乙, 丙三个农民组成互助组, 每人工作6天(包括为自己家干活的天数), 刚好完成他们三人家的农活, 其中甲在甲, 乙, 丙三家干活的天数依次为: 2, 2.5, 1.5; 乙在甲, 乙, 丙三家各干2天活, 丙在甲, 乙, 丙三家干活的天数依次为: 1.5, 2, 2.5. 根据三人干活的种类, 速度和时间, 他们确定三人不必相互支付工资刚好公平. 随后三人又合作到邻村帮忙干了2天(各人干活的种类和强度不变), 共获得工资500元.问他们应该怎样分配这500元工资才合理?案例九. 平衡价格问题为了协调多个相互依存的行业的平衡发展, 有关部门需要根据每个行业的产出在各个行业中的分配情况确定每个行业产品的指导价格, 使得每个行业的投入与产出都大致相等.图21 三个行业【模型准备】假设一个经济系统由煤炭、电力、钢铁行业组成, 每个行业的产出在各个行业中的分配如下表所示:等的平衡价格.【模型假设】假设不考虑这个系统与外界的联系.【模型建立】把煤炭、电力、钢铁行业每年总产出的价格分别用x1, x2, x3表示, 则123212331230.40.60.60.10.20.40.50.2x x xx x x xx x x x=+⎧⎪=++⎨⎪=++⎩, 即1231231230.40.600.60.90.200.40.50.80x x xx x xx x x--=⎧⎪-+-=⎨⎪--+=⎩.【模型求解】在Matlab命令窗口输入以下命令>> A = [1,-0.4,-0.6;-0.6,0.9,-0.2;-0.4,-0.5,0.8];>> x = null(A,’r’); format short, x’Matlab执行后得ans =0.9394 0.8485 1.0000可见上述齐次线性方程组的通解为x = k(0.9394, 0.8485, 1)T.这就是说, 如果煤炭、电力、钢铁行业每年总产出的价格分别0.9394亿元, 0.8485亿元, 1亿元, 那么每个行业的投入与产出都相等.【模型分析】实际上, 一个比较完整的经济系统不可能只涉及三个行业, 因此需要统计更多的行业间的分配数据.Matlab实验题假设一个经济系统由煤炭、石油、电力、钢铁、机械制造、运输行业组成, 每个行业的产出在各个行业中的分配如下表所示:等的平衡价格.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译, 北京: 人民邮电出版社, 2009. 页码: 49-50.案例十. 电路设计问题电路是电子元件的神经系统. 参数的计算是电路设计的重要环节. 其依据来自两个方面: 一是客观需要, 二是物理学定律.图22 USB 扩展板 【模型准备】假设图23中的方框代表某类具有输入和输出终端的电路. 用11v i ⎛⎫ ⎪⎝⎭记录输入电压和输入电流(电压v 以伏特为单位, 电流i 以安培为单位), 用22v i ⎛⎫ ⎪⎝⎭记录输出电压和输入电流. 若22v i ⎛⎫ ⎪⎝⎭= A 11v i ⎛⎫ ⎪⎝⎭, 则称矩阵A 为转移矩阵.图23 具有输入和输出终端的电子电路图图24给出了一个梯形网络, 左边的电路称为串联电路, 电阻为R 1(单位: 欧姆). 右边的电路是并联电路, 电路R 2. 利用欧姆定理和楚列斯基定律, 我们可以得到串联电路和并联电路的转移矩阵分别是1101R -⎛⎫ ⎪⎝⎭和2101/1R ⎛⎫ ⎪-⎝⎭串联电路 并联电路图24 梯形网络设计一个梯形网络, 其转移矩阵是180.55-⎛⎫ ⎪-⎝⎭. v 2【模型假设】假设导线的电阻为零.【模型建立】设A 1和A 2分别是串联电路和并联电路的转移矩阵, 则输入向量x 先变换成A 1x , 再变换到A 2(A 1x ). 其中A 2A 1 =2101/1R ⎛⎫ ⎪-⎝⎭1101R -⎛⎫ ⎪⎝⎭=121211/1/R R R R -⎛⎫ ⎪-+⎝⎭就是图22中梯形网络的转移矩阵.于是, 原问题转化为求R 1, R 2的值使得121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭.【模型求解】由121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭可得121281/0.51/5R R R R -=-⎧⎪-=-⎨⎪+=⎩.根据其中的前两个方程可得R 1 = 8, R 2 = 2. 把R 1 = 8, R 2 = 2代入上面的第三个方程确实能使等式成立. 这就是说在图22中梯形网络中取R 1 = 8, R 2 = 2即为所求.【模型分析】若要求的转移矩阵改为180.54-⎛⎫ ⎪-⎝⎭, 则上面的梯形网络无法实现. 因为这时对应的方程组是121281/0.51/4R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据前两个方程依然得到R 1 = 8, R 2 = 2,但把R 1 = 8, R 2 = 2代入上第三个方程却不能使等式成立.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译, 北京: 人民邮电出版社, 2009. 页码: 129-130.练习题根据基尔霍夫回路电路定律(各节点处流入和流出的电流强度的代数和为零, 各回路中各支路的电压降之和为零), 列出下图所示电路中电流i 1, i 2, i 3所满足的线性方程组, 并用矩阵形式表示:图25 简单的回路E 12③案例十一. 平面图形的几何变换随着计算机科学技术的发展, 计算机图形学的应用领域越来越广, 如仿真设计、效果图制作、动画片制作、电子游戏开发等.图26 计算机图形学的广泛应用图形的几何变换, 包括图形的平移、旋转、放缩等, 是计算机图形学中经常遇到的问题. 这里暂时只讨论平面图形的几何变换.【模型准备】平面图形的旋转和放缩都很容易用矩阵乘法实现, 但是图形的平移并不是线性运算, 不能直接用矩阵乘法表示. 现在要求用一种方法使平移、旋转、放缩能统一用矩阵乘法来实现.【模型假设】设平移变换为(x, y ) (x+a, y+b)旋转变换(绕原点逆时针旋转θ角度)为(x, y ) (x cosθy sinθ, x sinθ + y cosθ)放缩变换(沿x轴方向放大s倍, 沿y轴方向放大t倍)为(x, y ) (sx, ty)【模型求解】R2中的每个点(x, y)可以对应于R3中的(x, y, 1). 它在xOy平面上方1单位的平面上. 我们称(x, y, 1)是(x, y)的齐次坐标. 在齐次坐标下, 平移变换(x, y ) (x+a, y+b)可以用齐次坐标写成(x, y , 1) (x+a, y+b, 1).于是可以用矩阵乘积1001001ab⎛⎫⎪⎪⎝⎭1xy⎛⎫⎪⎪⎝⎭=1x ay b+⎛⎫⎪+⎪⎝⎭实现.旋转变换(x, y ) (x cosθy sinθ, x sinθ + y cosθ)可以用齐次坐标写成(x, y , 1) (x cosθy sinθ, x sinθ + y cosθ, 1).于是可以用矩阵乘积cos sin0sin cos0001θθθθ-⎛⎫⎪⎪⎝⎭1xy⎛⎫⎪⎪⎝⎭=cos sinsin cos1x yx yθθθθ-⎛⎫⎪+⎪⎝⎭实现.放缩变换(x, y ) (sx, ty)可以用齐次坐标写成(x, y , 1) (sx, ty, 1).于是可以用矩阵乘积0000001s t ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1sx ty ⎛⎫⎪ ⎪⎝⎭实现. 【模型分析】由上述求解可以看出, R 2中的任何线性变换都可以用分块矩阵1⎛⎫ ⎪⎝⎭A O O 乘以齐次坐标实现, 其中A 是2阶方阵. 这样, 只要把平面图形上点的齐次坐标写成列向量, 平面图形的每一次几何变换, 都可通过左乘一个3阶变换矩阵来实现.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译, 北京: 人民邮电出版社, 2009. 页码: 139-141.Matlab 实验题在Matlab 命令窗口输入以下命令>>clear all , clc,>>t = [1,3,5,11,13,15]*pi/8;>>x = sin(t); y=cos(t);>>fill(x,y,'r');>>grid on ;>>axis([-2.4, 2.4, -2, 2])运行后得图25.图26 Matlab 绘制的图形(1) 写出该图形每个顶点的齐次坐标;(2) 编写Matlab 程序, 先将上面图形放大0.9倍; 再逆时针旋转3π; 最后进行横坐标加0.8, 纵坐标减1的图形平移. 分别绘制上述变换后的图形.案例十二. 太空探测器轨道数据问题太空航天探测器发射以后, 可能需要调整以使探测器处在精确计算的轨道里. 雷达监测到一组列向量x 1, …, x k , 它们给出了不同时刻探测器的实际位置与预定轨道之间的偏差的信息.图28 火星探测器 【模型准备】令X k = [x 1, …, x k ]. 在雷达进行数据分析时需要计算出矩阵G k = X k X k T . 一旦接收到数据向量x k +1, 必须计算出新矩阵G k +1. 因为数据向量到达的速度非常快, 随着k 的增加, 直接计算的负担会越来越重. 现需要给出一个算法, 使得计算G k 的负担不会因为k 的增加而加重.【模型求解】因为G k = X k X k T = [x 1, …, x k ]T 1T k ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦x x =T 1k i i i =∑x x ,G k +1 = X k +1T 1k +X = [X k , x k +1]T T 1k k +⎡⎤⎢⎥⎣⎦X x = X k X k T + x k +1T 1k +x = G k + x k +1T 1k +x ,所以一旦接收到数据向量x k +1, 只要计算x k +1T 1k +x , 然后把它与上一步计算得到的G k相加即可. 这样计算G k 的负担不会因为k 的增加而加重.【模型分析】计算机计算加法的时间与计算乘法的时间相比可以忽略不计. 因此在考虑计算矩阵乘积的负担时, 只要考察乘法的次数就可以了. 设x k 的维数是n , 则X k = [x 1, …, x k ]是n k 的矩阵, G k = X k X k T 是n n 的矩阵. 直接计算G k = X k X k T 需要做n 2k 次乘法. 因而计算的负担会随着k 的增加而增加. 但是对于每一个k , 计算x k T k x 始终只要做n 2次乘法.Matlab 实验题用Matlab 编写一个程序用于处理这个问题.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译, 北京: 人民邮电出版社, 2009. 页码: 123.。
数学建模典型例题
数学建模典型例题暂无明显问题的段落。
一、人体重变化假设某人每天的食量为焦耳,其中基本新陈代谢消耗了5038焦耳,体育运动消耗的热量为69焦耳/(千克•天)乘以他的体重(千克)。
假设以脂肪形式贮存的热量100%有效,1千克脂肪含热量焦耳。
我们需要研究此人体重随时间变化的规律。
一、问题分析人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的。
假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。
二、模型假设1.以脂肪形式贮存的热量100%有效;2.当补充能量多于消耗能量时,多余能量以脂肪形式贮存;3.假设体重的变化是一个连续函数;4.初始体重为W。
三、模型建立假设在△XXX时间内:体重的变化量为W(t+△t)-W(t);身体一天内的热量的剩余为(-5038-69*W(t));将其乘以△XXX即为一小段时间内剩下的热量;转换成微分方程为:d[W(t+△t)-W(t)]=(-5038-69*W(t))dt;四、模型求解d(5429-69W)/(5429-69W)=-69dt/;W(0)=W;解得:69t/)5429-69W=(5429-69W)e;即:69t/)W(t)=5429/69-(5429-69W)/5429e;当t趋于无穷时,w=81.二、投资策略模型一、问题重述一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。
5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。
在策划下一个5年计划时,这家公司评估在年i的开始买进汽车并在年j的开始卖出汽车,将有净成本aij(购入价减去折旧加上运营和维修成本)。
以千元计数aij的由下面的表给出:年2 | 年3 | 年4 | 年5 | 年6 |年1 | 46 | 5 | 9 | 7 | 6 |年2 | 12 | 11 | 8 | 8 | 20 |年3 | 16 | 13 | 11 | 10 |。
|请寻找什么时间买进和卖出汽车的最便宜的策略。
五年级数学建模案例
五年级数学建模案例先请两位同学在黑板的两边同时相向而行,可以让学生重复多走几次。
接着可以问同学们看到了什么。
学生的回答会有很多,如:他们在中间碰到了;两个人面对面在走;两个人背对背在走,此时就可以引入相遇问题中的一些条件:同时出发、相向而行、相背而行、途中相遇。
当学生对此有一定的了解之后就可以举一个具体的例子来进入教学重点了。
例如:甲乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A 地后均立即返回,第二次在距A地60千米处相遇。
求A、B两地间的路程。
抽象概括,建立模型,导入学习课题。
此题可以将整个过程用线段图来形象地描述,这就是这个相遇问题建立的数学模型。
研究模型,形成数学知识。
总结出一般规律之后可以举个例子让学生做,看看学生是否已经掌握,是否会应用这个规律来解决实际问题。
如:两艘渡轮在同一时刻垂直驶离H河的甲、乙两岸相向而行,它们在距离甲岸720米处相遇。
到达预定地点后,每艘船都要停留10分钟,以便让乘客上船下船,然后返航。
这两艘在距离乙岸400米处又重新相遇。
问:该河的宽度是多少可以请两位同学到黑板上来做,其他同学做在作业本上,然后讲解,并充分肯定学生的表现,增强学生的学习积极性。
案例二:小学高年级数学教学时会遇到“牛吃草问题”牛吃草问题又称消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存里随牛吃的天数不断变化。
例:牧场上一片青草,每天牧草都匀速生长,这片草地可供10头牛吃20天,或者可以供15头牛吃10天,问:可供25头牛吃几天?分析:这类题目难就难在牧场上草的数里每天都在发生变化,我们要想办法从变化当中找到不变的量。
总草里可以分为牧场上原有的草和新长出来的草两部分。
matlab数学建模30个案例分析
案例4:基于微分方程的最优捕鱼策略
为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度,一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。考虑对某种鱼的最优捕鱼策略:假设这种鱼分4个年龄组:称1龄鱼,…,4龄组,各年龄组每条鱼的平均重量分别为5.07,11.55,17.86,22.99(克)各年龄组鱼的自然死亡率均为0.8(1/年)这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为1.109× 个,3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵 产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22 × /1.22× +n)
案例12:基于主成分分析的长江水质的评价和预测模型
运用主成分分析法对长江流域主要城市水质检测报告进行分析,选取主成分,并把主成分得分按方差贡献率加权求和,得出每个地区的污染综合评价指数,进而可以计算每个月长江流域的污染综合评价指数。
第三部分 优化问题
案例13:基于线性规划求解飞行管理模型
第二部分 评价问题
案例7:基于层次分析法的高考志愿选择策略
一年一度的高考结束后,许多考生面临估分后填写志愿的决策过程。这个决策关系重大,请你建立一个数学模型,帮考生考虑到各种决策因素使之能轻松应对这一重大决策。成都丙、重庆丁四所大学。
现有某市直属单位因工作需要,拟向社会公开招聘8名公务员。该单位拟将录用的8名公务员安排到所属的7个部门,并且要求每个部门至少安排一名公务员。这7个部门按工作性质可分为四类:(1)行政管理、 (2)技术管理、(3)行政执法、(4)公共事业。
招聘领导小组在确定录用名单的过程中,本着公平、公开的原则,同时考虑录用人员的合理分配和使用,有利于发挥个人的特长和能力。招聘领导小组将7个用人单位的基本情况(包括福利待遇、工作条件、劳动强度、晋升机会和学习深造机会等)和四类工作对聘用公务员的具体条件的希望达到的要求都向所有应聘人员公布。每一位参加面试人员都可以申报两个自己的工作类别志愿。
数学建模与实例分析的案例展示
数学建模与实例分析的案例展示数学建模是一种将实际问题通过数学方法进行描述、分析、求解的过程。
通过建立数学模型,可以对问题进行系统、科学的研究和分析。
本文将通过实例展示数学建模的应用,以及如何进行实例分析。
【引言】数学建模的目的在于用数学的语言和方法来解释和解决实际问题,可以应用于各个领域,如经济、金融、环境、物流等。
下面将分别从不同领域的实例进行展示。
【实例一:经济领域】在经济领域中,数学建模可以帮助我们理解经济运行机制、预测市场走势等。
以股票市场为例,我们可以通过建立数学模型来分析股市变动的规律和预测未来的趋势。
通过对历史数据的分析和统计,我们可以选取合适的模型,并通过参数估计和预测方法来得出结果。
这种方法可以为投资者提供决策依据,帮助其降低风险、提高收益。
【实例二:环境领域】在环境领域中,数学建模可以帮助我们分析和解决一些环境问题,如空气质量监测、水资源管理等。
以空气质量监测为例,我们可以利用数学建模来预测和评估空气质量的变化趋势。
通过对大量的监测数据进行分析,我们可以建立空气质量模型,并通过模型的模拟和验证来预测和评估不同因素对空气质量的影响。
这种方法可以帮助环保部门及时采取措施,改善和保护环境质量。
【实例三:物流领域】在物流领域中,数学建模可以帮助我们提高物流效率、降低成本。
以物流路径规划为例,我们可以利用数学建模来确定最优的物流路径和调度方案。
通过建立数学模型,我们可以考虑到不同的约束条件,如时间、成本、距离等,以及考虑不同的变量和参数,如车辆数量、货物数量等。
通过模型求解的过程,我们可以得到最优的物流路径和调度方案,从而提高物流效率、降低成本。
【结论】数学建模是一种将实际问题转化为数学问题的过程,通过建立数学模型来分析和解决问题。
本文通过经济、环境和物流领域的实例展示,说明了数学建模的应用和意义。
通过数学建模,我们可以更加科学地理解和解决实际问题,为决策提供参考和支持。
因此,数学建模在现代社会中具有重要的推广和应用价值。
数学建模及典型案例分析
d dt [ p(t)V (t)] p1(t)r1(t) p2 (t)r2 (t)
下面讨论池中盐水体积的变化。
t t
t t
V (t t) V (t) t
r1( )d t
r2 ( )d
由积分中值定理,存在η∈(t, t+Δt), 使得
进一步讨论
如果只测量一次尸体的温度, 你能估计出死亡的时间吗?
例2 湖水污染浓度
有一个小湖, 水容量为2000m3, 分别有一 入水口和出水口, 水流量都为0.1m3/s. 在 上午11:05时, 因交通事故一个盛有毒性 化学物质Z的容器倾翻, 在入口处注入湖 中. 于11:35时事故得到控制, 但已有数量 不详的化学物质泻入湖中, 初步估计为 5~20m3. 建立一个模型, 估计湖水污染程 度随时间的变化规律, 并估计
z rT
rT
(e V
1).
这样就可以得到物质Z在时刻t的浓度为
c(t)
z
rT
z
rT
rt
(1- e V ), 0 t
rT
rt
(e V -1)e V , T
T, t.
c(t)在[0,T]内是增函数,在[T,∞)内是减函数, 且c(t)是连续
的, 所以c(t)的最大值为
V (t t) V (t) [r1(t t) r2 (t t)]t
于是有
d dt
V
(t
)
r1
(t
)
r2
(t
)
t
V (t) V0 0 [r1( ) r2 ( )]d
d dt
数学建模及典型案例分析
天数
3
9
13
22
32
35
20
15
8
2
假设
报童天购进量为n, 平均每天收入为G(n). 设报纸每份的购进价为b,零售价为 a,退回价为c. 报纸每天的需求量r是随机的, 概率为f(r).
模型建立
报童每天购进n份报纸时的平均收入为G(n),如果这天 的需求量r≤n,则他售出r份,退回n-r份;如果这天的 需求量r>n,则n份将全部售出.考虑到需求量为r的概 率是f(r),所以
P( k ) Cnk pk qnk
二项分布
称该随机变量服从二项分布。 0.25
0.2
0.15
0.1
0.05
0
0
1
2
3
4
5
6
7
8
9 10
常见概率分布
泊松分布
设离散型随机变量x的概率为
P(x k) ke , k 0,1,2,
k! 泊松分布
则称随机变量x服从参数为λ的 0.35 0.3
布可以用它来近似;还有一些常用的概率分布是由它直 接导出的,例如对数正态分布、t分布、F分布等.
1.伯努利试验(或称贝努里试验)概念:是在同样的条件下重复
几何分布地2(.特、G征各e:次o这之m种间e试t相ri验互c中独d,i立s每t地ri一进b次u行t试i的o验一n只)种有试两验种。结果,即某事件A要么 几何分发布生是,要离么散不发型生概。并率且分每次布发。生其的概中率一都是种相定同的义。为:在
总体可看作一个随机变量,记作x,每个个体作为这 个随机变量的一个实现,记作xi(i=1,2,…,n), 看作与总体 有相同分布的随机变量, 样本则是一组相互独立的、同 分布的随机变量,记作x=(x1,x2,…,xn).
数学建模案例分析Word版
线性代数建模案例汇编法正系,思想政治教育13-1汗克孜·亚森2015年6月目录案例一. 交通网络流量分析问题 (1)案例二. 配方问题 (4)案例三. 投入产出问题 (6)案例四. 平板的稳态温度分布问题 (8)案例五. CT图像的代数重建问题 (10)案例六. 平衡结构的梁受力计算 (12)案例七. 化学方程式配平问题 (14)案例八. 互付工资问题 (16)案例九. 平衡价格问题 (18)案例十. 电路设计问题 (20)案例十一. 平面图形的几何变换 (22)案例十二. 太空探测器轨道数据问题 (24)案例十三. 应用矩阵编制Hill密码 (25)案例十四. 显示器色彩制式转换问题 (27)案例十五. 人员流动问题 (29)案例十六. 金融公司支付基金的流动 (31)案例十七. 选举问题 (33)案例十八. 简单的种群增长问题 (34)案例十九. 一阶常系数线性齐次微分方程组的求解 (36)案例二十. 最值问题 (38)附录数学实验报告模板 (39)这里收集了二十个容易理解的案例. 和各类数学建模竞赛的题目相比, 这些案例确实显得过于简单. 但如果学生能通过这些案例加深对线性代数基本概念、理论和方法的理解, 培养数学建模的意识, 那么我们初步的目的也就达到了.案例一. 交通网络流量分析问题城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。
根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。
图1 某地交通实况图2 某城市单行线示意图【模型准备】某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).图3 某城市单行线车流量(1) 建立确定每条道路流量的线性方程组.(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计?(3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.(4) 若x 4 = 200, 则单行线应该如何改动才合理?【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足500 = x 1 + x 2 ①400 + x 1 = x 4 + 300 ②x 2 + x 3 = 100 + 200 ③x 4 = x 3 + 300 ④【模型求解】根据上述等式可得如下线性方程组12142334500100300300x x x x x x x x +=⎧⎪-=-⎪⎨+=⎪⎪-+=⎩其增广矩阵(A , b ) =1100500100110001103000011300⎛⎫ ⎪-- ⎪ ⎪ ⎪-⎝⎭−−−−→初等行变换10011000101600001130000000--⎛⎫ ⎪ ⎪-- ⎪ ⎪⎝⎭由此可得142434100600300x x x x x x -=-⎧⎪+=⎨⎪-=-⎩即142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩.为了唯一确定未知流量, 只要增添x4统计的值即可.当x4 = 350时, 确定x1 = 250, x2 = 250, x3 = 50.若x4 = 200, 则x1 = 100, x2 = 400, x3 = -100 < 0. 这表明单行线“③←④”应该改为“③→④”才合理.【模型分析】(1) 由(A, b)的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.(2) 由142434100600300x xx xx x=-⎧⎪=-+⎨⎪=-⎩可得213141500200100x xx xx x=-+⎧⎪=-⎨⎪=+⎩,123242500300600x xx xx x=-+⎧⎪=-+⎨⎪=-+⎩,132343200300300x xx xx x=+⎧⎪=-+⎨⎪=+⎩, 这就是说x1, x2, x3, x4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码: 16-17.Matlab实验题某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组.(2)分析哪些流量数据是多余的.(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.案例二. 配方问题在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模.图5 日常膳食搭配 图6 几种常见的作料【模型准备】一种佐料由四种原料A 、B 、C 、D 混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A 、B 、C 、D 四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A 、B 、C 、D 四种原料分别为1克, 2克, 1克, 2克).【模型建立】 根据已知数据和上述假设, 可以进一步假设将x 袋第一种规格的佐料与y 袋第二种规格的佐料混合在一起, 得到的混合物中A 、B 、C 、D 四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组24,327,3,2 5.x y x y x y x y +=⎧⎪+=⎨+=⎪+=⎩【模型求解】上述线性方程组的增广矩阵(A, b) =214327113125⎛⎫⎪⎪⎪⎪⎝⎭−−−−→初等行变换101012000000⎛⎫⎪⎪⎪⎪⎝⎭,可见{1,2.x y==又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成. 【模型分析】(1) 若令α1 = (2, 3, 1, 1)T, α2 = (1, 2, 1, 1)T, β = (4, 7, 5, 3)T, 则原问题等价于“线性方程组Ax = b是否有解”, 也等价于“β能否由α1, α2线性表示”. (2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x克第一种规格的佐料与y克第二种规格的佐料混合得第三种规格的佐料, 则有下表因而有如下线性方程组214(),7619327(),7619113(),7619125().7619x y x y x y x y x y x y x y x y ⎧+=+⎪⎪⎪+=+⎪⎨⎪+=+⎪⎪⎪+=+⎪⎩ (*) 【模型检验】把x = 7, y = 12代入上述方程组(*), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性.Matlab 实验题蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.问怎样安排饮食和运动才能实现每日的营养需求?案例三. 投入产出问题在研究多个经济部门之间的投入产出关系时, W. Leontief 提出了投入产出模型. 这为经济学研究提供了强有力的手段. W. Leontief 因此获得了1973年的Nobel 经济学奖.图7 三个经济部门这里暂时只讨论一个简单的情形. 【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求?【模型假设】假设不考虑价格变动等其他因素.【模型建立】设煤矿, 电厂, 铁路分别产出x 元, y 元, z 元刚好满足需求. 则有下表 产出(1元) 产出 消耗 订单 煤 电 运消耗 煤 0 0.6 0.5 x 0.6y + 0.5z60000 电 0.3 0.1 0.1 y 0.3x + 0.1y + 0.1z100000 运 0.2 0.1 0 z 0.2x + 0.1y0 根据需求, 应该有(0.60.5)60000(0.30.10.1)100000(0.20.1)0x y z y x y z z x y -+=⎧⎪-++=⎨⎪-+=⎩,即0.60.5600000.30.90.11000000.20.10x y z x y z x y z --=⎧⎪-+-=⎨⎪--+=⎩【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1]; b = [60000;100000;0]; >> x = A\bMatlab执行后得x =1.0e+005 *1.99661.84150.5835可见煤矿要生产1.9966⨯105元的煤, 电厂要生产1.8415⨯105元的电恰好满足需求.【模型分析】令x =xyz⎛⎫⎪⎪⎝⎭, A =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭, b =60000100000⎛⎫⎪⎪⎝⎭, 其中x称为总产值列向量, A称为消耗系数矩阵, b称为最终产品向量, 则Ax =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭xyz⎛⎫⎪⎪⎝⎭=0.60.50.30.10.10.20.1y zx y zx y+⎛⎫⎪++⎪+⎝⎭根据需求, 应该有x-Ax = b, 即(E-A)x = b. 故x = (E-A)-1b.Matlab实验题某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?案例四. 平板的稳态温度分布问题在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.图8 一块平板的温度分布图【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.图9 一块平板的温度分布图【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.【模型建立】根据已知条件和上述假设, 有如下线性方程组1232143144231(90100)41(8060)41(8060)41(5050)4T T T T T T T T T T T T ⎧=+++⎪⎪⎪=+++⎪⎨⎪=+++⎪⎪=+++⎪⎩ 【模型求解】将上述线性方程组整理得T 1 T 2 T 3T 4 100 8090 80 60 50 60501231241342344190414041404100T T T T T T T T T T T T --=⎧⎪-+-=⎪⎨-+-=⎪--+=⎪⎩. 在Matlab 命令窗口输入以下命令>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100]; >> x = A\b; x ’Matlab 执行后得ans =82.9167 70.8333 70.8333 60.4167可见T 1 = 82.9167, T 2 = 70.8333, T 3 = 70.8333, T 4 = 60.4167.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码: 15-16.Matlab 实验题假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为16308209的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.图10 一块平板的温度分布图(1) 建立可以确定平板内节点温度的线性方程组.(2) 用Matlab 软件求解该线性方程组.(3) 用Matlab 中的函数mesh 绘制三维平板温度分布图.案例五. CT 图像的代数重建问题X 射线透视可以得到3维对象在2维平面上的投影, CT 则通过不同角度的X 射线得到3维对象的多个2维投影, 并以此重建对象内部的3维图像. 代数重建方法就是从这些2维投影出发, 通过求解超定线性方程组, 获得对象内部3维图像的方法.图11双层螺旋CT 图12 CT 图像 这里我们考虑一个更简单的模型, 从2维图像的1维投影重建原先的2维图像. 一个长方形图像可以用一个横竖均匀划分的离散网格来覆盖, 每个网格对应一个像素, 它是该网格上各点像素的均值. 这样一个图像就可以用一个矩阵表示,其元素就是图像在一点的灰度值(黑白图像). 下面我们以3⨯3图像为例来说明. 3⨯3图像 各点的灰度值 水平方向上 的叠加值x 1 = 1 x 2 = 0 x 3 = 0 x 1 + x 2 + x 3 = 1x 4 = 0 x 5 = 0.5 x 6 = 0.5 x 4 + x 5 + x 6 = 1x 7 = 0.5 x 8 = 0 x 9 = 1 x 7 + x 8 + x 9 = 1.5竖直方向上的叠加值x 1 + x 4 + x 7 = 1.5 x 2 + x 5 + x 8 = 0.5 x 3 + x 6 + x 9 = 1.5 i 表示灰色. 如果我们不知道网格中的数值, 只知道沿竖直方向和水平方向的叠加值, 为了确定网格中的灰度值, 可以建立线性方程组(含有6个方程, 9个未知数)123456369111x x x x x x x x x ++=⎧⎪++=⎪⎨⎪++=⎪⎩ 显然该方程组的解是不唯一的, 为了重建图像, 必须增加叠加值. 如我们增加从右上方到左下方的叠加值, 则方程组将增加5个方程x 1 = 1,x 2 + x 4 = 0,x 3 + x 5 + x 7 = 1,x 6 + x 8 = 0.5,x 9 = 1,和上面的6个方程放在一起构成一个含有11个方程, 9个未知数的线性方程组.【模型准备】设3⨯3图像中第一行3个点的灰度值依次为x 1, x 2, x 3, 第二行3个点的灰度值依次为x 4, x 5, x 6, 第三行3个点的灰度值依次为x 7, x 8, x 9. 沿竖直方向的叠加值依次为1.5, 0.5, 1.5, 沿水平方向的叠加值依次为1, 1, 1.5, 沿右上方到左下方的叠加值依次为1, 0, 1, 0.5, 1. 确定x 1, x 2, …, x 9的值.【模型建立】由已知条件可得(含有11个方程, 9个未知数的)线性方程组1234569111x x x x x x x ++=⎧⎪++=⎪⎨⎪=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1;1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1;1,0,0,0,0,0,0,0,0;0,1,0,1,0,0,0,0,0;0,0,1,0,1,0,1,0,0;0,0,0,0,0,1,0,1,0;0,0,0,0,0,0,0,0,1];>> b = [1;1;1.5;1.5;0.5;1.5;1;0;1;0.5;1];>> x = A\b; x ’Matlab 执行后得Warning: Rank deficient, rank = 8 tol = 4.2305e-015.ans =1.0000 0.0000 0 -0.0000 0.5000 0.5000 0.5000 -0.0000 1.0000 可见上述方程组的解不唯一. 其中的一个特解为x 1 = 1, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0.5, x 6 = 0.5, x 7 = 0.5, x 8 = 0, x 9 = 1.【模型分析】上述结果表明, 仅有三个方向上的叠加值还不够.可以再增加从左上方到右下方的叠加值. 在实际情况下, 由于测量误差, 上述线性方程组可能是超定的. 这时可以将超定方程组的近似解作为重建的图像数据.Matlab 实验题给定一个3⨯3图像的2个方向上的灰度叠加值: 沿左上方到右下方的灰度叠加值依次为0.8, 1.2, 1.7, 0.2, 0.3; 沿右上方到左下方的灰度叠加值依次为0.6, 0.2, 1.6,1.2, 0.6.(1) 建立可以确定网格数据的线性方程组, 并用Matlab 求解.(2) 将网格数据乘以256, 再取整, 用Matlab 绘制该灰度图像.案例六. 平衡结构的梁受力计算在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情.图13埃菲尔铁塔全景 图14 埃菲尔铁塔局部下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况.【模型准备】在图15所示的双杆系统中, 已知杆1重G 1 = 200牛顿, 长L 1 = 2米, 与水平方向的夹角为θ1 = π/6, 杆2重G 2 = 100牛顿, 长L 2 = 2米, 与水平方向的夹角为θ2 = π/4. 三个铰接点A , B , C 所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力.图15双杆系统【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示.【模型建立】对于杆1:水平方向受到的合力为零, 故N 1 = N 3,竖直方向受到的合力为零, 故N 2 + N 4 = G 1,以点A 为支点的合力矩为零, 故(L 1sin θ1)N 3 + (L 1cos θ1)N 4 = (12L 1cos θ1)G 1.图16 两杆受力情况对于杆2类似地有 A C 杆1 杆2 C N 1 N 2N 3N 5N 6 G 1G 2 A B杆1杆2 π/6 π/41 2L2cosθ2)G2.N5 = N7, N6 = N8 + G2, (L2sinθ2)N7 = (L2cosθ2)N8 + (此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组:132414800N N N N G N N -=⎧⎪+=⎪⎨⎪⎪-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4;>> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0;0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0;0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2);0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1];>> b = [0;G1;0.5*L1*cos(theta1)*G1;0;G2;0.5*L2*cos(theta2)*G2;0;0]; >> x = A\b; x ’Matlab 执行后得ans =95.0962 154.9038 95.0962 45.0962 95.0962 145.0962 95.0962 45.0962【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码: 157- 158. Matlab 实验题有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45º.(1) 列出由各铰接点处受力平衡方程构成的线性方程组.(2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况.图17 一个平面结构的梁案例七. 化学方程式配平问题在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.图18 污水处理 【模型准备】某厂废水中含KCN, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:KCN + 2KOH + Cl 2 = KOCN + 2KCl + H 2O.投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:KOCN + KOH + Cl 2 === CO 2 + N 2 + KCl + H 2O.(注: 题目摘自福建省厦门外国语学校2008-2009学年高三第三次月考化学试卷)【模型建立】设x 1KOCN + x 2KOH + x 3Cl 2 === x 4CO 2 + x 5N 2 + x 6KCl + x 7H 2O,则1261247141527362222x x x x x x x x x x x x x x x +=⎧⎪+=+⎪⎪=⎪⎨=⎪⎪=⎪=⎪⎩, 即1261247141527360200202020x x x x x x x x x x x x x x x +-=⎧⎪+--=⎪⎪-=⎪⎨-=⎪⎪-=⎪-=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得ans =1 2 3/2 1 1/2 3 1可见上述齐次线性方程组的通解为x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下2KOCN + 4KOH + 3Cl 2 === 2CO 2 + N 2 + 6KCl + 2H 2O.【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax= θ中所含方程的个数等于化学方程式中元素的种数s, 未知数的个数就是化学方程式中的项数n.当r(A) = n-1时, Ax = θ的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k为各分量分母的最小公倍数即可. 例如本例中1, 2, 3/2, 1, 1/2, 3, 1分母的最小公倍数为2, 故取k = 2.当r(A) ≤n-2时, Ax = θ的基础解系中含有2个以上的线性无关的解向量. 这时可以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码: 84-85.Matlab实验题配平下列反应式(1) FeS + KMnO4 + H2SO4——K2SO4 + MnSO4 + Fe2(SO4)3 + H2O + S↓(2) Al2(SO4)3 + Na2CO3 + H2O ——Al(OH)3↓+ CO2↑+ Na2SO4案例八. 互付工资问题互付工资问题是多方合作相互提供劳动过程中产生的. 比如农忙季节, 多户农民组成互助组, 共同完成各户的耕、种、收等农活. 又如木工, 电工, 油漆工等组成互助组, 共同完成各家的装潢工作. 由于不同工种的劳动量有所不同, 为了均衡各方的利益, 就要计算互付工资的标准.图19 农忙互助图20 装修互助【模型准备】现有一个木工, 电工, 油漆工. 相互装修他们的房子, 他们有如下协议:(1) 每人工作10天(包括在自己家的日子),(2) 每人的日工资一般的市价在60~80元之间,(3) 日工资数应使每人的总收入和总支出相等.在谁家工人木工电工油漆工木工家 2 1 6电工家 4 5 1油漆工家 4 4 3求每人的日工资【模型假设】假设每人每天工作时间长度相同. 无论谁在谁家干活都按正常情况工作, 既不偷懒, 也不加班.【模型建立】设木工, 电工, 油漆工的日工资分别为x, y, z元, 则由下表在谁家工人木工电工油漆工各家应付工资木工家2x1y6z2x + y + 6z 电工家4x5y1z4x + 5y + z 油漆工家4x4y3z4x + 4y + 3z 各人应得收入10x10y10z2610451044310x y z x x y z y x y z z ++=⎧⎪++=⎨⎪++=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [-8,1,6;4,-5,1;4,4,-7]; >> x = null(A,’r ’); format rat, x ’ Matlab 执行后得ans =31/36 8/9 1可见上述齐次线性方程组的通解为x = k (31/36, 8/9, 1)T . 因而根据“每人的日工资一般的市价在60~80元之间”可知60 ≤3631k <98k < k ≤ 80, 即 312160≤ k ≤ 80.也就是说, 木工, 电工, 油漆工的日工资分别为3631k 元, 98k 元, k 元, 其中312160≤ k ≤ 80. 为了简便起见, 可取k = 72, 于是木工, 电工, 油漆工的日工资分别为62元, 64元, 72元.【模型分析】事实上各人都不必付自己工资, 这时各家应付工资和各人应得收入如下6845447y z x x z y x y z +=⎧⎪+=⎨⎪+=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩ 可见这样得到的方程组与前面得到的方程组是一样的.Matlab 实验题甲, 乙, 丙三个农民组成互助组, 每人工作6天(包括为自己家干活的天数), 刚好完成他们三人家的农活, 其中甲在甲, 乙, 丙三家干活的天数依次为: 2, 2.5, 1.5; 乙在甲, 乙, 丙三家各干2天活, 丙在甲, 乙, 丙三家干活的天数依次为: 1.5, 2, 2.5. 根据三人干活的种类, 速度和时间, 他们确定三人不必相互支付工资刚好公平. 随后三人又合作到邻村帮忙干了2天(各人干活的种类和强度不变), 共获得工资500元.问他们应该怎样分配这500元工资才合理?案例九. 平衡价格问题为了协调多个相互依存的行业的平衡发展, 有关部门需要根据每个行业的产出在各个行业中的分配情况确定每个行业产品的指导价格, 使得每个行业的投入与产出都大致相等.图21 三个行业【模型准备】假设一个经济系统由煤炭、电力、钢铁行业组成, 每个行业的产出在各个行业中的分配如下表所示:产出分配购买者煤炭 电力 钢铁 0 0.4 0.6 煤炭 0.6 0.1 0.2 电力 0.4 0.5 0.2 钢铁等的平衡价格.【模型假设】假设不考虑这个系统与外界的联系.【模型建立】把煤炭、电力、钢铁行业每年总产出的价格分别用x 1, x 2, x 3表示, 则123212331230.40.60.60.10.20.40.50.2x x x x x x x x x x x =+⎧⎪=++⎨⎪=++⎩, 即1231231230.40.600.60.90.200.40.50.80x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩. 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.4,-0.6;-0.6,0.9,-0.2;-0.4,-0.5,0.8]; >> x = null(A,’r ’); format short, x ’ Matlab 执行后得ans =0.9394 0.8485 1.0000可见上述齐次线性方程组的通解为x = k (0.9394, 0.8485, 1)T .这就是说, 如果煤炭、电力、钢铁行业每年总产出的价格分别0.9394亿元, 0.8485亿元, 1亿元, 那么每个行业的投入与产出都相等.【模型分析】实际上, 一个比较完整的经济系统不可能只涉及三个行业, 因此需要统计更多的行业间的分配数据.Matlab实验题假设一个经济系统由煤炭、石油、电力、钢铁、机械制造、运输行业组成, 每个行业的产出在各个行业中的分配如下表所示:等的平衡价格.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译, 北京: 人民邮电出版社, 2009. 页码: 49-50.案例十. 电路设计问题电路是电子元件的神经系统. 参数的计算是电路设计的重要环节. 其依据来自两个方面: 一是客观需要, 二是物理学定律.图22 USB 扩展板【模型准备】假设图23中的方框代表某类具有输入和输出终端的电路. 用11v i ⎛⎫⎪⎝⎭记录输入电压和输入电流(电压v 以伏特为单位, 电流i 以安培为单位), 用22v i ⎛⎫⎪⎝⎭记录输出电压和输入电流. 若22v i ⎛⎫ ⎪⎝⎭= A 11v i ⎛⎫⎪⎝⎭, 则称矩阵A 为转移矩阵.图23 具有输入和输出终端的电子电路图图24给出了一个梯形网络, 左边的电路称为串联电路, 电阻为R 1(单位: 欧姆). 右边的电路是并联电路, 电路R 2. 利用欧姆定理和楚列斯基定律, 我们可以得到串联电路和并联电路的转移矩阵分别是1101R -⎛⎫ ⎪⎝⎭和2101/1R ⎛⎫ ⎪-⎝⎭串联电路 并联电路图24 梯形网络v 1v 2i 1 i 2 R 1v 3i 2i 3 R 2输入终端v 1输出终端v 2i 1i 2 电路设计一个梯形网络, 其转移矩阵是180.55-⎛⎫⎪-⎝⎭. 【模型假设】假设导线的电阻为零.【模型建立】设A 1和A 2分别是串联电路和并联电路的转移矩阵, 则输入向量x 先变换成A 1x , 再变换到A 2(A 1x ). 其中A 2A 1 =2101/1R ⎛⎫ ⎪-⎝⎭1101R -⎛⎫ ⎪⎝⎭=121211/1/R R R R -⎛⎫ ⎪-+⎝⎭就是图22中梯形网络的转移矩阵.于是, 原问题转化为求R 1, R 2的值使得121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭. 【模型求解】由121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭可得121281/0.51/5R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据其中的前两个方程可得R 1 = 8, R 2 = 2. 把R 1 = 8, R 2 = 2代入上面的第三个方程确实能使等式成立. 这就是说在图22中梯形网络中取R 1 = 8, R 2 = 2即为所求.【模型分析】若要求的转移矩阵改为180.54-⎛⎫⎪-⎝⎭, 则上面的梯形网络无法实现. 因为这时对应的方程组是121281/0.51/4R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据前两个方程依然得到R 1 = 8, R 2 =2, 但把R 1 = 8, R 2 = 2代入上第三个方程却不能使等式成立.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译, 北京: 人民邮电出版社, 2009. 页码: 129-130.练习题根据基尔霍夫回路电路定律(各节点处流入和流出的电流强度的代数和为零, 各回路中各支路的电压降之和为零), 列出下图所示电路中电流i 1, i 2, i 3所满足的线性方程组, 并用矩阵形式表示:E 12图25 简单的回路案例十一. 平面图形的几何变换随着计算机科学技术的发展, 计算机图形学的应用领域越来越广, 如仿真设计、效果图制作、动画片制作、电子游戏开发等.图26 计算机图形学的广泛应用图形的几何变换, 包括图形的平移、旋转、放缩等, 是计算机图形学中经常遇到的问题. 这里暂时只讨论平面图形的几何变换.【模型准备】平面图形的旋转和放缩都很容易用矩阵乘法实现, 但是图形的平移并不是线性运算, 不能直接用矩阵乘法表示. 现在要求用一种方法使平移、旋转、放缩能统一用矩阵乘法来实现.【模型假设】设平移变换为(x, y) → (x+a, y+b)旋转变换(绕原点逆时针旋转θ角度)为(x, y) → (x cosθ-y sinθ, x sinθ + y cosθ)放缩变换(沿x轴方向放大s倍, 沿y轴方向放大t倍)为(x, y) → (sx, ty)【模型求解】R2中的每个点(x, y)可以对应于R3中的(x, y, 1). 它在xOy平面上方1单位的平面上. 我们称(x, y, 1)是(x, y)的齐次坐标. 在齐次坐标下, 平移变换(x, y) → (x+a, y+b)可以用齐次坐标写成(x, y, 1) → (x+a, y+b, 1).于是可以用矩阵乘积1001001ab⎛⎫⎪⎪⎝⎭1xy⎛⎫⎪⎪⎝⎭=1x ay b+⎛⎫⎪+⎪⎝⎭实现.旋转变换(x, y) → (x cosθ-y sinθ, x sinθ + y cosθ)可以用齐次坐标写成(x, y, 1) → (x cosθ-y sinθ, x sinθ + y cosθ, 1).于是可以用矩阵乘积cos sin0sin cos0001θθθθ-⎛⎫⎪⎪⎝⎭1xy⎛⎫⎪⎪⎝⎭=cos sinsin cos1x yx yθθθθ-⎛⎫⎪+⎪⎝⎭实现.放缩变换(x, y) → (sx, ty)可以用齐次坐标写成(x, y, 1) → (sx, ty, 1).于是可以用矩阵乘积0000001s t ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1sx ty ⎛⎫⎪ ⎪⎝⎭实现.【模型分析】由上述求解可以看出, R 2中的任何线性变换都可以用分块矩阵1⎛⎫⎪⎝⎭A O O 乘以齐次坐标实现, 其中A 是2阶方阵. 这样, 只要把平面图形上点的齐次坐标写成列向量, 平面图形的每一次几何变换, 都可通过左乘一个3阶变换矩阵来实现.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译, 北京: 人民邮电出版社, 2009. 页码: 139-141.Matlab 实验题在Matlab 命令窗口输入以下命令 >>clear all , clc,>>t = [1,3,5,11,13,15]*pi/8; >>x = sin(t); y=cos(t); >>fill(x,y,'r'); >>grid on ;>>axis([-2.4, 2.4, -2, 2])运行后得图25.图26 Matlab 绘制的图形(1) 写出该图形每个顶点的齐次坐标;(2) 编写Matlab 程序, 先将上面图形放大0.9倍; 再逆时针旋转3π; 最后进行横坐标加0.8, 纵坐标减1的图形平移. 分别绘制上述变换后的图形.。
数学建模方法案例分析-精品文档共65页文档
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚Байду номын сангаас勤 勉。
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非