Quantum computing Hamiltonian cycles
汉密尔顿原理
汉密尔顿原理The Hamiltonian principle, also known as Hamilton's principle, is a fundamental principle in classical mechanics. It states that the dynamics of a physical system are determined by a single function, known as the Hamiltonian. This principle was formulated by Sir William Rowan Hamilton in 1834 and is a powerful tool for understanding the behavior of a wide range of physical systems.汉密尔顿原理,也称为汉密尔顿原则,是古典力学中的基本原理。
它表明物理系统的动力学是由一个称为汉密尔顿量的单个函数所决定的。
这一原理是由威廉·罗恩·汉密尔顿爵士于1834年提出的,是理解各种物理系统行为的有力工具。
One of the key insights of the Hamiltonian principle is that it provides a more general formulation of the laws of motion than the standard Newtonian approach. While Newton's laws are suitable for describing the motion of simple, low-energy systems, the Hamiltonian approach can be applied to more complex systems, including those involving relativistic effects and quantum mechanics.汉密尔顿原理的一个关键见解是,它提供了比标准牛顿方法更一般的运动定律公式。
薛定谔方程与波函数的意义
薛定谔方程与波函数的意义量子力学(Quantum Mechanics)是一种描述微观世界的理论框架,薛定谔方程(Schrodinger Equation)是其中最为基本的方程之一,而波函数(Wave Function)则是薛定谔方程的解。
薛定谔方程的提出和波函数的出现,彻底改变了人们对微观粒子行为的认识,揭示了粒子实物性质背后的波动性质。
薛定谔方程的形式为:{{Hψ = Eψ}}其中,{{H}} 是系统的哈密顿算符(Hamiltonian Operator),{{ψ}} 是波函数,{{E}} 是系统的能量。
薛定谔方程通常应用于描述微观粒子的运动和相互作用。
通过求解薛定谔方程,可以得到粒子的波函数,而波函数是描述粒子状态的数学函数。
波函数的意义体现在以下几个方面:1. 描述微观粒子的性质:波函数是描述微观粒子行为的工具。
通过波函数,可以获得粒子在空间中的分布概率和动量分布等信息。
波函数是一个复数函数,其模的平方表示在某一时刻发现粒子的概率密度。
波函数的平方和为1,意味着粒子必然处于某个位置。
2. 质点的波粒二象性:根据波动粒子二象性,粒子不仅可以表现出粒子性,还可表现出波动性。
波函数是描述波动性的数学工具,能够描述质点的位置、速度、动量和能量等经典物理量。
3. 波函数的求解:波函数通过薛定谔方程的求解得到。
不同的系统具有不同的哈密顿算符{{H}},因此对于不同的物理系统,薛定谔方程的形式也会不同。
求解薛定谔方程可以得到粒子的能量和相应的波函数,从而揭示了粒子的量子性质。
4. 波函数的演化:根据薛定谔方程,波函数会随着时间的演化而变化。
在没有外界干扰的情况下,波函数的演化是由方程中的哈密顿算符所决定的。
通过对波函数的演化研究,可以得到粒子在不同时间下的状态信息。
5. 量子力学基本原理的体现:薛定谔方程和波函数是量子力学基本原理的数学表述。
通过方程的求解,可以计算粒子的行为,比如能谱、波包展开和散射等。
材料科学与工程专业英语词汇
材料科学与工程专业英语词汇1. 物理化学物理化学是研究物质结构、性质、变化规律及其机理的基础科学,是材料科学与工程的重要理论基础之一。
物理化学主要包括以下几个方面:热力学:研究物质状态和过程中能量转换和守恒的规律。
动力学:研究物质变化过程中速率和机理的规律。
电化学:研究电流和物质变化之间的相互作用和关系。
光化学:研究光和物质变化之间的相互作用和关系。
表面化学:研究物质表面或界面处发生的现象和规律。
结构化学:研究物质分子或晶体结构及其与性质之间的关系。
统计力学:用统计方法处理大量微观粒子行为,从而解释宏观物理现象。
中文英文物理化学physical chemistry热力学thermodynamics动力学kinetics电化学electrochemistry光化学photochemistry表面化学surface chemistry结构化学structural chemistry统计力学statistical mechanics状态方程equation of state熵entropy自由能free energy化学势chemical potential相平衡phase equilibrium化学平衡chemical equilibrium反应速率reaction rate反应级数reaction order反应机理reaction mechanism活化能activation energy催化剂catalyst电池battery电极electrode电解质electrolyte电位potential电流密度current density法拉第定律Faraday's law腐蚀corrosion中文英文光敏材料photosensitive material光致变色photochromism光致发光photoluminescence光催化photocatalysis表面张力surface tension润湿wetting吸附adsorption膜membrane分子轨道理论molecular orbital theory晶体结构crystal structure点阵lattice空间群space group对称元素symmetry element对称操作symmetry operationX射线衍射X-ray diffraction2. 量子与统计力学量子与统计力学是物理学的两个重要分支,是材料科学与工程的重要理论基础之一。
量子力学英语
量子力学英语
随着量子力学的发展和应用,许多新的概念和术语相继出现。
掌握量子力学英语不仅有利于学习和研究,还可以更好地沟通和交流。
以下是一些常用的量子力学英语词汇:
1. Quantum mechanics 量子力学
2. Wave function 波函数
3. Schrdinger equation 薛定谔方程
4. Uncertainty principle 不确定性原理
5. Superposition principle 叠加原理
6. Entanglement 纠缠
7. Quantum state 量子态
8. Eigenvalue 特征值
9. Eigenfunction 特征函数
10. Hamiltonian 哈密顿量
11. Operator 算符
12. Commutation relation 对易关系
13. Quantum tunneling 量子隧穿
14. Quantum entanglement 量子纠缠
15. Quantum superposition 量子叠加
以上是一些常用的量子力学英语词汇,学习量子力学英语需要不断积累和运用。
- 1 -。
绝热量子计算的物理学原理和实现
绝热量子计算的物理学原理和实现摘要:绝热量子计算(Adiabatic Quantum Computation,简称AQC)是一种使用量子物理系统实现计算的方法,它的物理实现基于绝热定理和量子退相干的原理。
本文将介绍AQC的物理学原理、实现方法以及优缺点,并且讨论了AQC在量子计算领域中的应用前景和研究方向。
关键词:绝热量子计算,绝热定理,量子退相干,量子计算一、引言随着计算机技术的不断发展,人们对于计算速度和计算能力的要求也越来越高。
量子计算机作为一种全新的计算模型,由于其超越传统计算机的计算能力而备受关注。
绝热量子计算(Adiabatic Quantum Computation,简称AQC)是量子计算领域中的一种重要方法,它通过利用量子系统的演化来实现计算。
AQC具有对噪声和误差具有一定的容忍度等优点,因此在理论和实践中都受到了广泛的关注。
本文将介绍AQC的物理学原理和实现方法。
在第二部分中,我们将简要介绍AQC的基本原理。
在第三部分中,我们将详细讨论AQC的实现方法,包括量子比特的实现、哈密顿量的构造、演化时间的选择等。
在第四部分中,我们将讨论AQC的优缺点。
在第五部分中,我们将探讨AQC在量子计算领域中的应用前景和研究方向。
最后,我们将对本文进行总结。
二、AQC的物理学原理AQC的物理学原理基于绝热定理和量子退相干的原理。
绝热定理指的是,在物理系统的演化过程中,如果演化速度足够慢,那么系统将始终保持在一个能量本征态中。
因此,如果我们将系统从一个能量本征态演化到另一个能量本征态,只要演化速度足够慢,那么系统就可以保持在一个能量本征态中,从而实现量子计算。
量子退相干是另一个AQC的关键物理原理。
量子退相干指的是,在量子系统中,由于与环境的相互作用,系统的相位关系将会受到破坏。
这种相位关系的破坏可以被视为噪声,会对量子计算的准确性和稳定性造成影响。
为了避免这种噪声的影响,AQC使用了绝热演化,从而保持系统的相位关系不受干扰。
量子力学哈密顿
量子力学哈密顿量子力学哈密顿(Hamiltonian in Quantum Mechanics)量子力学是关于微观世界行为的理论,描述了原子和分子等微观粒子的性质和相互作用。
哈密顿量是量子力学中最重要的数学工具之一,用于描述物理系统的能量和演化规律。
本文将介绍量子力学哈密顿量的概念、性质以及在物理学中的重要应用。
1. 哈密顿量的概念和性质在量子力学中,哈密顿量是一个算符(Operator),用于描述一个物理系统的总能量。
它通常由动能项和势能项组成,可以写作哈密顿算符的矩阵形式。
哈密顿量的本征态和本征值是描述系统可能状态和相应能量的重要工具。
根据量子力学的基本假设,系统的状态可以用波函数表示,而哈密顿量则是描述波函数时间演化的基础算符。
2. 哈密顿量的数学表达在量子力学中,哈密顿量通常用简化的形式来描述系统的动能和势能项。
例如,对于一个质量为m的自由电子,其哈密顿量可以写作:H = (p^2/2m) + V(x)其中,p是动量算符,x是位置算符,V(x)是电子受到的势能。
这个哈密顿量描述了电子在无外力作用下的能量和动态演化。
3. 哈密顿量的重要应用哈密顿量在量子力学中有着广泛的应用。
它可以用来研究原子、分子、固体和基本粒子等微观系统。
例如,在原子物理中,利用薛定谔方程和哈密顿量可以推导出原子的能级结构和谱线。
在固体物理中,哈密顿量可以用来描述电子在晶格中的行为,解释材料的导电性和磁性等性质。
在量子信息科学中,利用哈密顿量可以实现量子比特之间的相互作用,用于构建量子计算和量子通信系统。
4. 哈密顿量的扩展除了常见的哈密顿量形式之外,对于复杂的量子系统,还存在一些特殊的哈密顿算符。
例如,对于多粒子系统,可以使用相互作用哈密顿量来描述粒子之间的相互作用。
对于自旋系统,可以引入自旋哈密顿量来描述粒子的自旋行为。
此外,还有一些非常规的哈密顿量,如哈密顿量的延拓和广义哈密顿量,这些扩展形式在量子力学的研究中也有重要的应用。
一维磁性原子链系统中的Majorana费米子态
一维磁性原子链系统中的Majorana费米子态杨双波【摘要】对处于螺旋形磁场及横向均匀磁场的一维磁性原子链模型,在平均场近似下通过自洽地求解Bogoliubov-de-Genes方程我们计算了系统的能谱.我们发现在一定参数值的范围内能谱随螺旋形磁场振幅值演化呈现能量为零的Majorana 费米子态.我们计算了局域态密度发现对Majorana费米子其态密度的峰值出现在链的两端(或中点)位置.我们计算了波函数其空间分布,发现它与局域态密度的结果一致.%For a model of one dimensional magnetic atomic chain in both a helical magnetic field and a transverse uniform magnetic field,we calculate its energy spectrum by solving Bogoliubov-de-Genes equation selfconsistently in the mean field approximation. We find that for a certain parameter setting,energy spectrum evolving with amplitude of helical magnetic field,appears Majorana fermion eigenstates. We calculate local density of states,and find that the local density of states for Majorana fermion shows peaks at the both ends(or at middle)of the magnetic atomic chain. We calculate wave function,and its spatial distribution agrees with local density of states.【期刊名称】《南京师大学报(自然科学版)》【年(卷),期】2017(040)003【总页数】8页(P110-117)【关键词】Majorana费米子;磁性原子链;BdG方程;局域态密度【作者】杨双波【作者单位】南京师范大学物理科学与技术学院,江苏省大规模复杂系统数值模拟重点实验室,江苏南京210023【正文语种】中文【中图分类】O413.1Majorana fermion[1] which is a particle of the same as its own antiparticle,has been attracting great attention. Firstly,because of Majorana fermion being connected with topological phase concept,secondly because of its topological character,it provides a platform of potential application in topological quantum computing and quantum storing[2-4]. So experimentally and theoretically search for physical system of Majorana fermion has been a very hot research topic. The purpose of all these researches is to generate a topological superconductor,so that the Majorana fermion appears as a single excitation at the boundary. Recently,Majorana fermion has been studied for a model of an atomic chain in a helical magnetic field in close proximity to a s-wave superconductor[5-7],and the result shows that at a certain parameter setting,the Majorana fermion is localized at the both end of the magnetic atomic chain. This is a spatially uniform system,after a gauge transformation,the Hamiltonian of the system will become an invariant form for space displacement. In this paper we modified this system by adding a new Zeeman term in the original Hamiltonian,which correspondsto a uniform magnetic field h perpendicular to the atomic chain being applied to the original system. Because of the new Zeeman term,the system is nonuniform spatially,we will study the structure of the Majorana fermion for the system of h≠0.In this paper,we get the system eigenenergies and eigenvectors by numerically solving BdG equation,and then we study the birth and the localization in space of the Majorana fermion by calculating the spatially resolved local density of states and wave function. The structure of the paper is as the following,the Model and theory is in section 1,the result of numerical calculation and discussion is in section 2,the summary of the paper is in section 3.Consider a N-atom atomic chain in a helical magnetic filed or magnetic structure. The magnetic filed at site n is =B0(cosnθ+sinnθ),where θ is the angle made by the magnetic fields at the adjacent sites of the atomic chain,the whole atomic chain is in proximity to the surface of a s-wave superconductor,and in the transverse direction of the atomic chain a uniform magnetic field h is applied. The Hamiltonian of this magnetic atomic chain in mean field approximation is given byH=tx(cn+1α+h.c.)-μcnα+(cnβ+Δ(n)(+h.c.)+h(σz)ααcnα,where tx is the jumping amplitude for electron between two adjacent sites,μ is chemical potential,Δ(n)is the superconductor pairing potential or order parameter at sit n,h is the weak uniform magnetic field for tuning system energy spectrum. or cnα is the operator to creat or annihilate an electron of spin α respectively at site n, is pauli matrix vec tor,and h.c. standfor complex conjugate. By introducing Nambu spinor representationψi=(ci↑,ci↓,,-)T,then Hamiltonian(1)can be written as BdG form,i.e.H=Hijψj,where Hij is the BdG Hamiltonian at site i,which can be written as where Kij=tx(δi+1,j+δi-1,j)-μδij,γij=(h-B0cosiθ)δij. This is a 4N×4N matrix,whose energy eigenvalue εn and eigenfunctionψn(i)=(un(↑,i),un(↓,i),vn(↓,i),vn(↑,i))T, for i=1,2,…,N,is determined by eigenvalue equationand boundary condition. In mean field approximation the order parameter at site i takes the form[8]and the mean number of electron at site i iswhere fn=1/(1+eεn/kBT) is the Fermi distribution,T is temperature in Kelvin. The total number of electron isincluding spin up and spin down electrons. To determine eigenenergy,eigenfunction,order parameter,we need to selfconsistently solve eigenvalue equation(3)with(4)-(6). In this paper,we deal with the case of temperature T=0,then the order parameter and the mean number of electron in site i are given bySpecial case:h=0 and Δ(i)=Δ0,a constant. The Hamiltonian in(1)can be transformed into spatially unform form by a gauge transformation. The topologically nontrivial region of the parameter set is given bywhere Majorana fermion corresponds to εn=0. As |h|≠0,Hamiltonian in(1)is nonuniform in space,and the nontrivial region of parameter set can not be obtained analytically.In this paper we deal with open boundary condition with and without themiddle magnetic domain wall,and at the magnetic domain wall we replace θ by -θ. We have also studied under the periodic boundary condition,and found the result has no significant changes.We first study the character of the Majorana fermion as the order parameter Δ and chemical potential μ are constants,then we study the influence of nonuniform Δ(i)on the result of Majorana fermion by doing selfconsistent calculation. In calculation,we choose the number of site N for the atomic chain according to the angle θ,so that the magnetic field at the both ends of the atomic chain points to the same direction.2.1 Energy Spectrum and Wave FunctionsFor a one-dimensional magnetic atomic chain with magnetic domain wall in the middle,the parameter set is chosen asΔ0=1.0,tx=1.0,μ=2.5,h=0.1,θ=π/2,and length of the chain is chosen asN=81 sites. For every value of B0 in the interval[1.0,4.0],we diagonalize the 4N×4N BdG Hamiltonian matrix(2),we get 4N energy eigenvalues and 4N eigenvectors. In open boundary condition,the energy spectrum is shown in Fig.1. For B0 in the interval[1.486 6,3.996 8],we can see that thereexists eigenstates whose eigenenergy εn=0,and these eigenstates are Majorana fermions. The interval for the existense of Majorana fermion in the case of h=0.1 is very close to the interval[1.476,4.039]calculatedfrom(9)for the h=0 case. For Majorana fer mion at B0=2.1,εn=0,shown in red dot in Fig.1,we calculate its wave functionun(↑,i),un(↓,i),vn(↑,i),vn(↓,i),the result is shown in Fig.2(a-d). We can see that the amplitude of the wave function concentrates on the both ends and themiddle of the atomic chain. In Fig.3,we show wave function for the same magnetic atomic chain without magnetic domain wall in the middle,the amplitude of the wave function concentrates on both ends of the magnetic atomic chain. This is similar to the previous result for the 1-dimensional magnetic atomic chain without uniform magnetic field,h=0.2.2 Local Density of States and Total Density of StatesIn this subsection,we study the space distribution of density ofstates(DOS),which is called local density of states(LDOS)and is defined as ρ(ε,i)is a function of energy and space position,and the total density of states(TDOS)can be written as,i.e.,the arithmetic mean of local density of states,a function of energy only. In numerical calculation,we replace δ by a Lorentz function. Fo r parameter setting h=0.1,tx=1.0,Δ=1.0,μ=2.5,θ=π/2,N=81,and B0=2.1,the local density of states for a Majorana fermion and the mean number of electrons on each site are shown in Fig.4(a-d)for the magnetic atomic chain with magnetic domain wall in the middle. Fig.4(a)shows the local density of states ρ(ε,i)in a 3D-plot;Fig.4(b)shows the local density of states ρ(ε,i)in a 2D contour plot;Fig.4(c)shows the local density of states for Majorana fermion ρ(ε=0,i);Fig.4(d)shows the mean number of electron on each si te of atomic chain<n(i)>. We can see from the Fig.4 that the Majorana fermion is localized at two ends and middle for the magnetic atomic chain with magnetic domain wall in the middle. The mean number of electrons on each site of the atomic chain is around 1.5. In Fig.5(a-d)we show theresult for the same magnetic atomic chain without magnetic domain wall in the middle,then we see density of states for Majorana fermion is peaked only at both ends of the magnetic atomic chain.2.3 The Self-consistent ResultAs the order parameter Δ(i)is space position i dependent,we calculate the energy spectrum and local density of states by selfconsistently solving the eigenvalue equation(3)with equations(7)and(8). For parameter seth=0.1,tx=1.0,μ=2.5,U0=4.0,θ=π/2,N=81,the selfconsistently calculated energy spectrum is shown in Fig.6,the Majorana fermion region can be seen,is still there,but the interval is shorten. The local density of states and mean numbers of electron on each site for Majorana fermion at B0=1.57 are shown in Fig.7(a-d)and Fig.9(a-d). By comparison with Fig.4(a-d),we find the main characters are same,but peak position for selfconsistent result moved inside a little bit. We calculate the selfconsistent wave function for Majorana fermion,and the results are shown in Fig.8(a-d)and Fig.10(a-d). The amplitude is significiently large at both ends for magnetic atomic chain without magnetic domain wall,and significiently large at both ends and middle for a magnetic chain with magnetic domain wall in the middle. This agrees with the result of local density of states.In mean field approximation,and by numerically solving Bogoliubov-de-Genes(BdG)equation,this paper studies the birth,and the localization in space of the Majorana fermion in a one dimensional atomic chain in helical magnetic field,and a uniform magnetic field h which is perpendicular to the atomic chain. Studies find that at a certain parameter setting,theevolution of the energy spectrum with helical magnetic field amplitude B0 appears the zero energy eigenstates,which corresponding to the Majorana fermion. We calculate the local density of states,and find that the local density of states for the Majorana fermion has two peaks on the both end of the magnetic atomic chain. When a magnetic domain wall is applied at the middle of the maqgnetic atomic chain,the Majorana fermion shows peaks at both ends and the middle of the magnetic chain. As the order parameter is a function of space coordinate,we do selfconsistent calculation,and find that by comparing with the result of nonselfconsistent calculation,the energy spectrum and the shape of the local density of states are changed a little bit,but the main character does not change. [1] MAJORANA E. Symmetric theory of electron and positrons[J]. Nuovo Cimento,1937,14(1):171-181.[2] WILCZEK F. Majorana returns[J]. Nat Phys,2009,5(9):614-618.[3] NAYAK C,SIMON S H,STERN A,et al. Non-Abelian anyons and topological quantum computation[J]. Rev Mod Phys,2008,80(3):1 083-1 159.[4] ALICEA J. New directions in the persuit of Majorana fermions in solid state system[J]. Rep Prog Phys,2012,75(7):076501-1-36.[5] NADJ-PERGE S,DROZDOV I K,BERNEVIG B A,et al. Proposal for realizing Majorana fermions in chain of magnetic atoms on a superconductor [J]. Phys Rev B,2013,88(2):020407-1-5(R).[6] PÖYHÖNEN K,WESTSTRÖM A,RÖNTYNEN J,et al. Majorana state in helical shiba chain and ladders[J]. Phys Rev B,2014,89(11):115109-1-7.[7] VAZIFEH M M,FRANZ M. Self-organized topological state with Majorana fermions[J]. Phys Rev Lett,2013,111(20):206802-1-5.[8] SACRAMENTO P D,DUGAEV V K,VIEIRA V R. Magnetic impurities in a superconductors:effect of domainwall and interference[J]. Phys RevB,2007,76(1):014512-1-21.[9] EBISU H,YADA K,KASAI H,et al. Odd frequency pairing in topological superconductivity in a one dimensional magnetic chain[J]. Phys RevB,2015,91(5):054518-1-15.【相关文献】Received data:2016-11-17.Corresponding author:Yang Shuangbo,professor,majored in nonlinear physics and low dimensionalsystem.E-mail:*********************.cndoi:10.3969/j.issn.1001-4616.2017.03.016CLC number:O413.1 Document codeA Article ID1001-4616(2017)03-0110-08。
外国教材量子力学概论2ndedition课后练习题含答案
Introduction to Quantum MechanicsOverviewQuantum Mechanics is a branch of Physics that describes the behavior of matter and energy at a microscopic level. This discipline has had a significant impact on modern science and technology, and its principles have been applied to the development of various fields, such as computing, cryptography and medicine. The study of Quantum Mechanics requires a basic understanding of the principles of Mathematics and Physics. The m of this document is to provide an introduction to Quantum Mechanics and to provide a set of practice exercises with answers that will allow students to test their knowledge and understanding of the subject.Fundamental PrinciplesThe fundamental principles of Quantum Mechanics are based on the concept of a wave-particle duality, which means that particles can behave as both waves and particles simultaneously. The behavior of particles at the microscopic level is probabilistic, and it is described by a wave function. A wave function is a complex function that describes the probability of finding a particle at a givenlocation. The square of the amplitude of the wave function gives the probability density of finding the particle at that point in space. The wave function can be used to calculate various physical quantities, such as the position, momentum and energy of a particle.Operators and ObservablesIn Quantum Mechanics, physical quantities are represented by operators. An operator is a mathematical function that acts on a wave function and generates a new wave function as a result. Operators are used to represent physical observables, such as the position, momentum and energy of a particle. The eigenvalues of an operator correspond to the possible results of a measurement of the corresponding observable. The eigenvectors of an operator correspond to the possible states of a particle. The state of a particle is described by a linear combination of its eigenvectors, which is called a superposition.Schrödinger EquationThe Schrödinger Equation is a mathematical equation that describes the time evolution of a wave function. It is based on the principle of conservation of energy, and it representsthe motion of a quantum system in terms of its wave function. The equation is given by:$$\\hat{H}\\Psi=E\\Psi$$where $\\hat{H}$ is the Hamiltonian operator, $\\Psi$ is the wave function, and E is the energy of the system. The Schrödinger Equation is the foundation of Quantum Mechanics, and it is used to calculate various physical properties of a particle, such as its energy and momentum.Practice Exercises1.Calculate the wave function for a particle that isin a 1D box of length L.–Answer: The wave function for a particle in a 1D box is given by:$$\\Psi(x)=\\sqrt{\\frac{2}{L}}\\sin{\\frac{n\\pi x}{L}}$$where n is a positive integer.2.Derive the time-dependent Schrödinger Equation.–Answer: The time-dependent SchrödingerEquation is given by:$$i\\hbar\\frac{\\partial\\Psi}{\\partialt}=\\hat{H}\\Psi$$3.Calculate the momentum operator for a particle in1D.–Answer: The momentum operator for a particle in 1D is given by:$$\\hat{p_x}=-i\\hbar\\frac{\\partial}{\\partial x}$$4.What is the uncertnty principle?–Answer: The uncertnty principle is afundamental principle of Quantum Mechanics thatstates that the position and momentum of a particlecannot be measured simultaneously with arbitraryprecision. Mathematically, it is given by: $$\\Delta x\\Delta p_x\\geq\\frac{\\hbar}{2}$$5.Calculate the energy of a particle in a 1D box oflength L with quantum number n.–Answer: The energy of a particle in a 1D box is given by:$$E_n=\\frac{n^2\\pi^2\\hbar^2}{2mL^2}$$ConclusionQuantum Mechanics is a fascinating and challenging fieldof study that has provided a deeper understanding of the behavior of matter and energy at the microscopic level. Theprinciples of Quantum Mechanics have been applied to various fields of study, including computing, cryptography and medicine, and they have contributed to significant advances in these fields. The practice exercises provided in this document are intended as a tool for students to test their knowledge and understanding of Quantum Mechanics. By solving these exercises, students will gn a deeper understanding of the fundamental principles of Quantum Mechanics and strengthen their problem-solving skills in this exciting field of study.。
Quantum Computing for Computer Scientists
More informationQuantum Computing for Computer ScientistsThe multidisciplinaryfield of quantum computing strives to exploit someof the uncanny aspects of quantum mechanics to expand our computa-tional horizons.Quantum Computing for Computer Scientists takes read-ers on a tour of this fascinating area of cutting-edge research.Writtenin an accessible yet rigorous fashion,this book employs ideas and tech-niques familiar to every student of computer science.The reader is notexpected to have any advanced mathematics or physics background.Af-ter presenting the necessary prerequisites,the material is organized tolook at different aspects of quantum computing from the specific stand-point of computer science.There are chapters on computer architecture,algorithms,programming languages,theoretical computer science,cryp-tography,information theory,and hardware.The text has step-by-stepexamples,more than two hundred exercises with solutions,and program-ming drills that bring the ideas of quantum computing alive for today’scomputer science students and researchers.Noson S.Yanofsky,PhD,is an Associate Professor in the Departmentof Computer and Information Science at Brooklyn College,City Univer-sity of New York and at the PhD Program in Computer Science at TheGraduate Center of CUNY.Mirco A.Mannucci,PhD,is the founder and CEO of HoloMathics,LLC,a research and development company with a focus on innovative mathe-matical modeling.He also serves as Adjunct Professor of Computer Sci-ence at George Mason University and the University of Maryland.QUANTUM COMPUTING FORCOMPUTER SCIENTISTSNoson S.YanofskyBrooklyn College,City University of New YorkandMirco A.MannucciHoloMathics,LLCMore informationMore informationcambridge university pressCambridge,New York,Melbourne,Madrid,Cape Town,Singapore,S˜ao Paulo,DelhiCambridge University Press32Avenue of the Americas,New York,NY10013-2473,USAInformation on this title:/9780521879965C Noson S.Yanofsky and Mirco A.Mannucci2008This publication is in copyright.Subject to statutory exceptionand to the provisions of relevant collective licensing agreements,no reproduction of any part may take place withoutthe written permission of Cambridge University Press.First published2008Printed in the United States of AmericaA catalog record for this publication is available from the British Library.Library of Congress Cataloging in Publication dataYanofsky,Noson S.,1967–Quantum computing for computer scientists/Noson S.Yanofsky andMirco A.Mannucci.p.cm.Includes bibliographical references and index.ISBN978-0-521-87996-5(hardback)1.Quantum computers.I.Mannucci,Mirco A.,1960–II.Title.QA76.889.Y352008004.1–dc222008020507ISBN978-0-521-879965hardbackCambridge University Press has no responsibility forthe persistence or accuracy of URLs for external orthird-party Internet Web sites referred to in this publicationand does not guarantee that any content on suchWeb sites is,or will remain,accurate or appropriate.More informationDedicated toMoishe and Sharon Yanofskyandto the memory ofLuigi and Antonietta MannucciWisdom is one thing:to know the tho u ght by which all things are directed thro u gh allthings.˜Heraclitu s of Ephe s u s(535–475B C E)a s quoted in Dio g ene s Laertiu s’sLives and Opinions of Eminent PhilosophersBook IX,1. More informationMore informationContentsPreface xi1Complex Numbers71.1Basic Definitions81.2The Algebra of Complex Numbers101.3The Geometry of Complex Numbers152Complex Vector Spaces292.1C n as the Primary Example302.2Definitions,Properties,and Examples342.3Basis and Dimension452.4Inner Products and Hilbert Spaces532.5Eigenvalues and Eigenvectors602.6Hermitian and Unitary Matrices622.7Tensor Product of Vector Spaces663The Leap from Classical to Quantum743.1Classical Deterministic Systems743.2Probabilistic Systems793.3Quantum Systems883.4Assembling Systems974Basic Quantum Theory1034.1Quantum States1034.2Observables1154.3Measuring1264.4Dynamics1294.5Assembling Quantum Systems1325Architecture1385.1Bits and Qubits138viiMore informationviii Contents5.2Classical Gates1445.3Reversible Gates1515.4Quantum Gates1586Algorithms1706.1Deutsch’s Algorithm1716.2The Deutsch–Jozsa Algorithm1796.3Simon’s Periodicity Algorithm1876.4Grover’s Search Algorithm1956.5Shor’s Factoring Algorithm2047Programming Languages2207.1Programming in a Quantum World2207.2Quantum Assembly Programming2217.3Toward Higher-Level Quantum Programming2307.4Quantum Computation Before Quantum Computers2378Theoretical Computer Science2398.1Deterministic and Nondeterministic Computations2398.2Probabilistic Computations2468.3Quantum Computations2519Cryptography2629.1Classical Cryptography2629.2Quantum Key Exchange I:The BB84Protocol2689.3Quantum Key Exchange II:The B92Protocol2739.4Quantum Key Exchange III:The EPR Protocol2759.5Quantum Teleportation27710Information Theory28410.1Classical Information and Shannon Entropy28410.2Quantum Information and von Neumann Entropy28810.3Classical and Quantum Data Compression29510.4Error-Correcting Codes30211Hardware30511.1Quantum Hardware:Goals and Challenges30611.2Implementing a Quantum Computer I:Ion Traps31111.3Implementing a Quantum Computer II:Linear Optics31311.4Implementing a Quantum Computer III:NMRand Superconductors31511.5Future of Quantum Ware316Appendix A Historical Bibliography of Quantum Computing319 by Jill CirasellaA.1Reading Scientific Articles319A.2Models of Computation320More informationContents ixA.3Quantum Gates321A.4Quantum Algorithms and Implementations321A.5Quantum Cryptography323A.6Quantum Information323A.7More Milestones?324Appendix B Answers to Selected Exercises325Appendix C Quantum Computing Experiments with MATLAB351C.1Playing with Matlab351C.2Complex Numbers and Matrices351C.3Quantum Computations354Appendix D Keeping Abreast of Quantum News:QuantumComputing on the Web and in the Literature357by Jill CirasellaD.1Keeping Abreast of Popular News357D.2Keeping Abreast of Scientific Literature358D.3The Best Way to Stay Abreast?359Appendix E Selected Topics for Student Presentations360E.1Complex Numbers361E.2Complex Vector Spaces362E.3The Leap from Classical to Quantum363E.4Basic Quantum Theory364E.5Architecture365E.6Algorithms366E.7Programming Languages368E.8Theoretical Computer Science369E.9Cryptography370E.10Information Theory370E.11Hardware371Bibliography373Index381More informationPrefaceQuantum computing is a fascinating newfield at the intersection of computer sci-ence,mathematics,and physics,which strives to harness some of the uncanny as-pects of quantum mechanics to broaden our computational horizons.This bookpresents some of the most exciting and interesting topics in quantum computing.Along the way,there will be some amazing facts about the universe in which we liveand about the very notions of information and computation.The text you hold in your hands has a distinctflavor from most of the other cur-rently available books on quantum computing.First and foremost,we do not assumethat our reader has much of a mathematics or physics background.This book shouldbe readable by anyone who is in or beyond their second year in a computer scienceprogram.We have written this book specifically with computer scientists in mind,and tailored it accordingly:we assume a bare minimum of mathematical sophistica-tion,afirst course in discrete structures,and a healthy level of curiosity.Because thistext was written specifically for computer people,in addition to the many exercisesthroughout the text,we added many programming drills.These are a hands-on,funway of learning the material presented and getting a real feel for the subject.The calculus-phobic reader will be happy to learn that derivatives and integrals are virtually absent from our text.Quite simply,we avoid differentiation,integra-tion,and all higher mathematics by carefully selecting only those topics that arecritical to a basic introduction to quantum computing.Because we are focusing onthe fundamentals of quantum computing,we can restrict ourselves to thefinite-dimensional mathematics that is required.This turns out to be not much more thanmanipulating vectors and matrices with complex entries.Surprisingly enough,thelion’s share of quantum computing can be done without the intricacies of advancedmathematics.Nevertheless,we hasten to stress that this is a technical textbook.We are not writing a popular science book,nor do we substitute hand waving for rigor or math-ematical precision.Most other texts in thefield present a primer on quantum mechanics in all its glory.Many assume some knowledge of classical mechanics.We do not make theseassumptions.We only discuss what is needed for a basic understanding of quantumxiMore informationxii Prefacecomputing as afield of research in its own right,although we cite sources for learningmore about advanced topics.There are some who consider quantum computing to be solely within the do-main of physics.Others think of the subject as purely mathematical.We stress thecomputer science aspect of quantum computing.It is not our intention for this book to be the definitive treatment of quantum computing.There are a few topics that we do not even touch,and there are severalothers that we approach briefly,not exhaustively.As of this writing,the bible ofquantum computing is Nielsen and Chuang’s magnificent Quantum Computing andQuantum Information(2000).Their book contains almost everything known aboutquantum computing at the time of its publication.We would like to think of ourbook as a usefulfirst step that can prepare the reader for that text.FEATURESThis book is almost entirely self-contained.We do not demand that the reader comearmed with a large toolbox of skills.Even the subject of complex numbers,which istaught in high school,is given a fairly comprehensive review.The book contains many solved problems and easy-to-understand descriptions.We do not merely present the theory;rather,we explain it and go through severalexamples.The book also contains many exercises,which we strongly recommendthe serious reader should attempt to solve.There is no substitute for rolling up one’ssleeves and doing some work!We have also incorporated plenty of programming drills throughout our text.These are hands-on exercises that can be carried out on your laptop to gain a betterunderstanding of the concepts presented here(they are also a great way of hav-ing fun).We hasten to point out that we are entirely language-agnostic.The stu-dent should write the programs in the language that feels most comfortable.Weare also paradigm-agnostic.If declarative programming is your favorite method,gofor it.If object-oriented programming is your game,use that.The programmingdrills build on one another.Functions created in one programming drill will be usedand modified in later drills.Furthermore,in Appendix C,we show how to makelittle quantum computing emulators with MATLAB or how to use a ready-madeone.(Our choice of MATLAB was dictated by the fact that it makes very easy-to-build,quick-and-dirty prototypes,thanks to its vast amount of built-in mathematicaltools.)This text appears to be thefirst to handle quantum programming languages in a significant way.Until now,there have been only research papers and a few surveyson the topic.Chapter7describes the basics of this expandingfield:perhaps some ofour readers will be inspired to contribute to quantum programming!This book also contains several appendices that are important for further study:Appendix A takes readers on a tour of major papers in quantum computing.This bibliographical essay was written by Jill Cirasella,Computational SciencesSpecialist at the Brooklyn College Library.In addition to having a master’s de-gree in library and information science,Jill has a master’s degree in logic,forwhich she wrote a thesis on classical and quantum graph algorithms.This dualbackground uniquely qualifies her to suggest and describe further readings.More informationPreface xiii Appendix B contains the answers to some of the exercises in the text.Othersolutions will also be found on the book’s Web page.We strongly urge studentsto do the exercises on their own and then check their answers against ours.Appendix C uses MATLAB,the popular mathematical environment and an es-tablished industry standard,to show how to carry out most of the mathematicaloperations described in this book.MATLAB has scores of routines for manip-ulating complex matrices:we briefly review the most useful ones and show howthe reader can quickly perform a few quantum computing experiments with al-most no effort,using the freely available MATLAB quantum emulator Quack.Appendix D,also by Jill Cirasella,describes how to use online resources to keepup with developments in quantum computing.Quantum computing is a fast-movingfield,and this appendix offers guidelines and tips forfinding relevantarticles and announcements.Appendix E is a list of possible topics for student presentations.We give briefdescriptions of different topics that a student might present before a class of hispeers.We also provide some hints about where to start looking for materials topresent.ORGANIZATIONThe book begins with two chapters of mathematical preliminaries.Chapter1con-tains the basics of complex numbers,and Chapter2deals with complex vectorspaces.Although much of Chapter1is currently taught in high school,we feel thata review is in order.Much of Chapter2will be known by students who have had acourse in linear algebra.We deliberately did not relegate these chapters to an ap-pendix at the end of the book because the mathematics is necessary to understandwhat is really going on.A reader who knows the material can safely skip thefirsttwo chapters.She might want to skim over these chapters and then return to themas a reference,using the index and the table of contents tofind specific topics.Chapter3is a gentle introduction to some of the ideas that will be encountered throughout the rest of the ing simple models and simple matrix multipli-cation,we demonstrate some of the fundamental concepts of quantum mechanics,which are then formally developed in Chapter4.From there,Chapter5presentssome of the basic architecture of quantum computing.Here one willfind the notionsof a qubit(a quantum generalization of a bit)and the quantum analog of logic gates.Once Chapter5is understood,readers can safely proceed to their choice of Chapters6through11.Each chapter takes its title from a typical course offered in acomputer science department.The chapters look at that subfield of quantum com-puting from the perspective of the given course.These chapters are almost totallyindependent of one another.We urge the readers to study the particular chapterthat corresponds to their favorite course.Learn topics that you likefirst.From thereproceed to other chapters.Figure0.1summarizes the dependencies of the chapters.One of the hardest topics tackled in this text is that of considering two quan-tum systems and combining them,or“entangled”quantum systems.This is donemathematically in Section2.7.It is further motivated in Section3.4and formallypresented in Section4.5.The reader might want to look at these sections together.xivPrefaceFigure 0.1.Chapter dependencies.There are many ways this book can be used as a text for a course.We urge instructors to find their own way.May we humbly suggest the following three plans of action:(1)A class that provides some depth might involve the following:Go through Chapters 1,2,3,4,and 5.Armed with that background,study the entirety of Chapter 6(“Algorithms”)in depth.One can spend at least a third of a semester on that chapter.After wrestling a bit with quantum algorithms,the student will get a good feel for the entire enterprise.(2)If breadth is preferred,pick and choose one or two sections from each of the advanced chapters.Such a course might look like this:(1),2,3,4.1,4.4,5,6.1,7.1,9.1,10.1,10.2,and 11.This will permit the student to see the broad outline of quantum computing and then pursue his or her own path.(3)For a more advanced class (a class in which linear algebra and some mathe-matical sophistication is assumed),we recommend that students be told to read Chapters 1,2,and 3on their own.A nice course can then commence with Chapter 4and plow through most of the remainder of the book.If this is being used as a text in a classroom setting,we strongly recommend that the students make presentations.There are selected topics mentioned in Appendix E.There is no substitute for student participation!Although we have tried to include many topics in this text,inevitably some oth-ers had to be left out.Here are a few that we omitted because of space considera-tions:many of the more complicated proofs in Chapter 8,results about oracle computation,the details of the (quantum)Fourier transforms,and the latest hardware implementations.We give references for further study on these,as well as other subjects,throughout the text.More informationMore informationPreface xvANCILLARIESWe are going to maintain a Web page for the text at/∼noson/qctext.html/The Web page will containperiodic updates to the book,links to interesting books and articles on quantum computing,some answers to certain exercises not solved in Appendix B,anderrata.The reader is encouraged to send any and all corrections tonoson@Help us make this textbook better!ACKNOLWEDGMENTSBoth of us had the great privilege of writing our doctoral theses under the gentleguidance of the recently deceased Alex Heller.Professor Heller wrote the follow-ing1about his teacher Samuel“Sammy”Eilenberg and Sammy’s mathematics:As I perceived it,then,Sammy considered that the highest value in mathematicswas to be found,not in specious depth nor in the overcoming of overwhelmingdifficulty,but rather in providing the definitive clarity that would illuminate itsunderlying order.This never-ending struggle to bring out the underlying order of mathematical structures was always Professor Heller’s everlasting goal,and he did his best to passit on to his students.We have gained greatly from his clarity of vision and his viewof mathematics,but we also saw,embodied in a man,the classical and sober ideal ofcontemplative life at its very best.We both remain eternally grateful to him.While at the City University of New York,we also had the privilege of inter-acting with one of the world’s foremost logicians,Professor Rohit Parikh,a manwhose seminal contributions to thefield are only matched by his enduring com-mitment to promote younger researchers’work.Besides opening fascinating vis-tas to us,Professor Parikh encouraged us more than once to follow new directionsof thought.His continued professional and personal guidance are greatly appre-ciated.We both received our Ph.D.’s from the Department of Mathematics in The Graduate Center of the City University of New York.We thank them for providingus with a warm and friendly environment in which to study and learn real mathemat-ics.Thefirst author also thanks the entire Brooklyn College family and,in partic-ular,the Computer and Information Science Department for being supportive andvery helpful in this endeavor.1See page1349of Bass et al.(1998).More informationxvi PrefaceSeveral faculty members of Brooklyn College and The Graduate Center were kind enough to read and comment on parts of this book:Michael Anshel,DavidArnow,Jill Cirasella,Dayton Clark,Eva Cogan,Jim Cox,Scott Dexter,EdgarFeldman,Fred Gardiner,Murray Gross,Chaya Gurwitz,Keith Harrow,JunHu,Yedidyah Langsam,Peter Lesser,Philipp Rothmaler,Chris Steinsvold,AlexSverdlov,Aaron Tenenbaum,Micha Tomkiewicz,Al Vasquez,Gerald Weiss,andPaula Whitlock.Their comments have made this a better text.Thank you all!We were fortunate to have had many students of Brooklyn College and The Graduate Center read and comment on earlier drafts:Shira Abraham,RachelAdler,Ali Assarpour,Aleksander Barkan,Sayeef Bazli,Cheuk Man Chan,WeiChen,Evgenia Dandurova,Phillip Dreizen,C.S.Fahie,Miriam Gutherc,RaveHarpaz,David Herzog,Alex Hoffnung,Matthew P.Johnson,Joel Kammet,SerdarKara,Karen Kletter,Janusz Kusyk,Tiziana Ligorio,Matt Meyer,James Ng,SeverinNgnosse,Eric Pacuit,Jason Schanker,Roman Shenderovsky,Aleksandr Shnayder-man,Rose B.Sigler,Shai Silver,Justin Stallard,Justin Tojeira,John Ma Sang Tsang,Sadia Zahoor,Mark Zelcer,and Xiaowen Zhang.We are indebted to them.Many other people looked over parts or all of the text:Scott Aaronson,Ste-fano Bettelli,Adam Brandenburger,Juan B.Climent,Anita Colvard,Leon Ehren-preis,Michael Greenebaum,Miriam Klein,Eli Kravits,Raphael Magarik,JohnMaiorana,Domenico Napoletani,Vaughan Pratt,Suri Raber,Peter Selinger,EvanSiegel,Thomas Tradler,and Jennifer Whitehead.Their criticism and helpful ideasare deeply appreciated.Thanks to Peter Rohde for creating and making available to everyone his MAT-LAB q-emulator Quack and also for letting us use it in our appendix.We had a gooddeal of fun playing with it,and we hope our readers will too.Besides writing two wonderful appendices,our friendly neighborhood librar-ian,Jill Cirasella,was always just an e-mail away with helpful advice and support.Thanks,Jill!A very special thanks goes to our editor at Cambridge University Press,HeatherBergman,for believing in our project right from the start,for guiding us through thisbook,and for providing endless support in all matters.This book would not existwithout her.Thanks,Heather!We had the good fortune to have a truly stellar editor check much of the text many times.Karen Kletter is a great friend and did a magnificent job.We also ap-preciate that she refrained from killing us every time we handed her altered draftsthat she had previously edited.But,of course,all errors are our own!This book could not have been written without the help of my daughter,Hadas-sah.She added meaning,purpose,and joy.N.S.Y.My dear wife,Rose,and our two wondrous and tireless cats,Ursula and Buster, contributed in no small measure to melting my stress away during the long andpainful hours of writing and editing:to them my gratitude and love.(Ursula is ascientist cat and will read this book.Buster will just shred it with his powerful claws.)M.A.M.。
给所有学物理的同学一份礼物物理经典书目
给所有学物理的同学一份礼物:物理经典书目来源:万门大学的日志精选物理教材给力大放送!主页君是北大物理本科加巴黎高师物理硕士,学了8年专业物理,收集了不少好书,希望能够和大家分享,一起提高物理水平。
个人认为国内好的物理教材不多,不少教材内容严谨但是易读性不强。
所以主页君特意精选了一些适宜自学且架构严谨的国外大学热门教材分享~每本都附带下载链接。
最重要的是,这套教材构成一个完整的物理教材体系,都是教得特别深入浅出的专著,特别适合自学提高。
学物理是一件难得的乐事,为什么不学得乐在其中呢?这些教材在保留了趣味的情况下不失学术水平,所以特别推荐。
以下是按照学习推荐进度排序的(从普通物理到弦论):普通物理:《费曼物理学讲义》卷1、卷2、卷3及《习题解答》(清华基科班普物选用教材)诺奖大师费曼乐趣横生的经典之作,读起来津津有味,没有大段令人畏惧的公式和推导,几乎全文都在解释物理思想和有趣的现象,对于理解物理思想的本质有极大帮助。
数学物理方法:《Mathematical methods for Physics and engineering》by Riley (香港科技大学数学物理方法选用教材)涵盖了几乎所有物理研究需要的数学知识,没有过度苛求证明严格性且解释形象有趣读起来超级有成就感,不像国内的数理方法写得过于太抽象,用户界面不太友好呵呵。
《All the Mathematics you missed but need to know》by Garrity轻松的读物,高屋建瓴地整合了之前学过的数学知识,使读者很容易看透其中的数学本质。
举重若轻地谈了很多深刻的数学领域,例如拓扑和“形式(form)”。
可以给大三看,也可以给研一看,一定会有很大收获。
四大力学:《Classical Mechanics- Systems of Particles and Hamiltonian Dynamics》by Greiner清晰地讲述了理论力学的内容,虽然书厚,但解释清晰没有冗余,非常适合自学。
哈密尔顿环 c算法
哈密尔顿环c算法全文共四篇示例,供读者参考第一篇示例:哈密尔顿环(Hamiltonian cycle)是图论中一个重要的概念,指的是图G中一条包含所有顶点且恰好经过一次的环。
哈密尔顿环问题是一个NP难题,即目前尚未找到有效的多项式时间算法来解决该问题。
寻找哈密尔顿环的有效算法一直是图论领域的热门研究方向之一。
在图论中,哈密尔顿环的存在性和性质一直备受关注。
给定一个图G,如果存在一个哈密尔顿环,那么这个图被称为哈密尔顿图;如果不存在哈密尔顿环,但是对于图中的任意两个不同的顶点u和v,存在经过这两个顶点的哈密尔顿路径(即包含u和v并且其余顶点均不重复的路径),则称之为哈密尔顿连通图。
哈密尔顿图和哈密尔顿连通图是图论中两个非常重要的概念,它们的研究对于理解各种应用问题具有重要的意义。
现在我们来介绍一种经典的哈密尔顿环算法——C算法。
C算法是一种基于回溯思想的搜索算法,它通过递归地搜索图中的所有可能的路径来找到哈密尔顿环。
虽然C算法在最坏情况下可能需要指数级的时间复杂度来解决哈密尔顿环问题,但是在实际应用中,它仍然是一种较为有效的方法。
C算法的基本思想是从图中的任意一个顶点开始,逐步向下一个未访问的顶点移动,并判断是否满足环的条件。
在搜索过程中,如果无法找到符合条件的路径,则回退到上一个节点,继续向其他未访问过的节点探索。
通过递归的方式,C算法最终可以找到所有可能的哈密尔顿环。
在实际应用中,C算法通常需要配合一些剪枝策略来提高搜索效率。
在搜索过程中,可以根据一些启发式规则来减少搜索空间,从而快速排除不可能存在哈密尔顿环的路径。
还可以利用一些局部优化技巧,如动态规划、记忆化搜索等,来加速查找哈密尔顿环的速度。
虽然C算法在最坏情况下的时间复杂度较高,但在实际应用中,它仍然是一种可行的方法。
通过合理设计剪枝策略和优化技巧,我们可以提高C算法的搜索效率,从而更快地找到哈密尔顿环。
在解决具体问题时,我们可以根据实际情况选择不同的搜索策略和优化方法,以达到更好的效果。
量子信息和量子纠缠理论
Multipartite Schmidt-correlated State
Fully separable
PPT
Fully separable (maximally entangled)
~ 1 (N)
M.J. Zhao, S.M. Fei and Z.X. Wang, Phys. Lett. A 372(2008)2552
S. Albeverio, S.M. Fei, Phys. Lett. A 276(2000)8 S. Albeverio, S.M. Fei and W.L. Yang, Comm. Theor. Phys. 38 (2002) 301
S. Albeverio, S.M. Fei and W.L. Yang, Phys. Rev. A 66 (2002) 012301 M. Horodecki, P. Horodecki and R. Horodecki, Phys. Rev. A 60, 1888 (1999)
Separable! Separable!
Separability of mixed states: no general criteria a) Peres (PPT) criterion:
Peres PRL 77, 1413 (1996)
2x2, 2x3:
PPT
Separable
Horodeckis, Phys. Lett. A 223,1 (1996)
Caltech (Kimble et al)
/~qoptics/teleport.html
Nature 390(1997) 575
Science 282(1998) 706
Wigner functions before &after
凝聚态物理材料物理专业考博量子物理领域英文高频词汇
凝聚态物理材料物理专业考博量子物理领域英文高频词汇1. Quantum Mechanics - 量子力学2. Wavefunction - 波函数3. Hamiltonian - 哈密顿量4. Schrödinger Equation - 薛定谔方程5. Quantum Field Theory - 量子场论6. Quantum Entanglement - 量子纠缠7. Uncertainty Principle - 不确定性原理8. Quantum Tunneling - 量子隧穿9. Quantum Superposition - 量子叠加10. Quantum Decoherence - 量子退相干11. Spin - 自旋12. Quantum Computing - 量子计算13. Quantum Teleportation - 量子纠缠传输14. Quantum Interference - 量子干涉15. Quantum Information - 量子信息16. Quantum Optics - 量子光学17. Quantum Dots - 量子点18. Quantum Hall Effect - 量子霍尔效应19. Bose-Einstein Condensate - 玻色-爱因斯坦凝聚态20. Fermi-Dirac Statistics - 费米-狄拉克统计中文翻译:1. Quantum Mechanics - 量子力学2. Wavefunction - 波函数3. Hamiltonian - 哈密顿量4. Schrödinger Equation - 薛定谔方程5. Quantum Field Theory - 量子场论6. Quantum Entanglement - 量子纠缠7. Uncertainty Principle - 不确定性原理8. Quantum Tunneling - 量子隧穿9. Quantum Superposition - 量子叠加10. Quantum Decoherence - 量子退相干11. Spin - 自旋12. Quantum Computing - 量子计算13. Quantum Teleportation - 量子纠缠传输14. Quantum Interference - 量子干涉15. Quantum Information - 量子信息16. Quantum Optics - 量子光学17. Quantum Dots - 量子点18. Quantum Hall Effect - 量子霍尔效应19. Bose-Einstein Condensate - 玻色-爱因斯坦凝聚态20. Fermi-Dirac Statistics - 费米-狄拉克统计。
石墨烯(graphene)中的几个基本物理问题
周光辉
湖南师范大学物理与信息科学学院 Electronic address: ghzhou@ 合作者: 丁开和博士、 程 芳博士 (长沙理工大学) 廖文虎博士(吉首大学) 付 喜博士(湖南科技学院) 周本胡、谌雄文、王海艳(博士生) 王书恒、郭雄杰 (硕士生)
Wenhu Liao, Guanghui Zhou and Fu Xi, J. Appl. Phys. 104, 126105 (2008)
介电函数为:
Fig.1: Band structure for one-dimensional-confined graphene
3 2 1 0 1 2 3
a
III. 石墨烯纳米带电光磁性质及应力调控 How to open and manipulate (gap ( engineering ) a gap?
1. Quantum confinement: Nanoribbon or nanostripe; 2. Disorder: lattice defects, impurities, chemical doping, etc; 3. Edge chemical modifications; 4. External field, static E B field, electromagnetic field (optical properties); 5. Mechanically, substrate or intentional applied strain, stress, deformation, etc.
Εn,kx
0.2 0.1 0 0.1 0.2 kx a
Fig.1(a) : 173-AGNR金属型, 导带和价带关于费米能EF =0镜 像对称,导带在kx=0点自下而上 分别为n=0,1,2,3,4,5,6…13.
Hamiltonian (quantum mechanics)
Hamiltonian (quantum mechanics)From Wikipedia, the free encyclopediaIn quantum mechanics, the Hamiltonian is the operator corresponding to the total energy of the system. It is usually denoted by H, also Ȟ or Ĥ. Its spectrum is the set of possible outcomes when one measures the total energy of a system. Because of its close relation to the time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.The Hamiltonian is named after Sir William Rowan Hamilton (1805 – 1865), an Irish physicist, astronomer, and mathematician, best known for his reformulation of Newtonian mechanics, now called Hamiltonian mechanics.Contents1 Introduction2 The Schrödinger Hamiltonian2.1 One particle2.2 Many particles3 Schrödinger equation4 Dirac formalism5 Expressions for the Hamiltonian5.1 General forms for one particle5.2 Free particle5.3 Constant-potential well5.4 Simple harmonic oscillator5.5 Rigid rotor5.6 Electrostatic or coulomb potential5.7 Electric dipole in an electric field5.8 Magnetic dipole in a magnetic field5.9 Charged particle in an electromagnetic field6 Energy eigenket degeneracy, symmetry, and conservation laws7 Hamilton's equations8 See also9 ReferencesIntroductionThe Hamiltonian is the sum of the kinetic energies of all the particles, plus the potential energy of the particles associated with the system. For different situationsor number of particles, the Hamiltonian is different since it includes the sum ofkinetic energies of the particles, and the potential energy function corresponding tothe situation.The Schrödinger HamiltonianOne particleBy analogy with classical mechanics, the Hamiltonian is commonly expressed as the sum of operators corresponding to the kinetic and potential energies of a system in the formwhereis the potential energy operator andis the kinetic energy operator in which m is the mass of the particle, the dot denotes the dot product of vectors, andis the momentum operator wherein ∇ is the gradient operator. The dot product of ∇ with itself is the Laplacian ∇2. In three dimensions using Cartesian coordinates the Laplace operator isAlthough this is not the technical definition of the Hamiltonian in classical mechanics, it is the form it most commonly takes. Combining these together yields the familiar form used in the Schrödinger equation:which allows one to apply the Hamiltonian to systems described by a wave function Ψ(r, t). This is the approach commonly taken in introductory treatments of quantum mechanics, using the formalism of Schrödinger's wave mechanics.Many particlesThe formalism can be extended to N particles:whereis the potential energy function, now a function of the spatial configuration of the system and time (a particular set of spatial positions at some instant of time defines a configuration) and;is the kinetic energy operator of particle n, and ∇n is the gradient for particle n,∇n2 is the Laplacian for particle using the coordinates:Combining these yields the Schrödinger Hamiltonian for the N-particle case:However, complications can arise in the many-body problem. Since the potential energy depends on the spatial arrangement of the particles, the kinetic energy will also depend on the spatial configuration to conserve energy. The motion due to any one particle will vary due to the motion of all the other particles in the system. For this reason cross terms for kinetic energy may appear in the Hamiltonian; a mix of the gradients for two particles:where M denotes the mass of the collection of particles resulting in this extra kinetic energy. Terms of this form are known as mass polarization terms, and appear in the Hamiltonian of many electron atoms (see below).For N interacting particles, i.e. particles which interact mutually and constitute a many-body situation, the potential energy function V is not simply a sum of the separate potentials (and certainly not a product, as this is dimensionally incorrect). The potential energy function can only be written as above: a function of all the spatial positions of each particle.For non-interacting particles, i.e. particles which do not interact mutually and move independently, the potential of the system is the sum of the separate potential energy for each particle,[1] that isThe general form of the Hamiltonian in this case is:where the sum is taken over all particles and their corresponding potentials; the result is that the Hamiltonian of the system is the sum of the separate Hamiltonians for each particle. This is an idealized situation - in practice the particles are usually always influenced by some potential, and there are many-body interactions. One illustrative example of a two-body interaction where this form would not apply is for electrostatic potentials due to charged particles, because they certainly do interact with each other by the coulomb interaction (electrostatic force), shown below.Schrödinger equationThe Hamiltonian generates the time evolution of quantum states. If is the stateof the system at time t, thenThis equation is the Schrödinger equation. It takes the same form as the Hamilton–Jacobi equation, which is one of the reasons H is also called the Hamiltonian. Given the state at some initial time (t = 0), we can solve it to obtain the state at any subsequent time. In particular, if H is independent of time, thenThe exponential operator on the right hand side of the Schrödinger equation is usually defined by the corresponding power series in H. One might notice that taking polynomials or power series of unbounded operators that are not defined everywhere may not make mathematical sense. Rigorously, to take functions of unbounded operators, a functional calculus is required. In the case of the exponential function, the continuous, or just the holomorphic functional calculus suffices. We note again, however, that for common calculations the physicists' formulation is quite sufficient.By the *-homomorphism property of the functional calculus, the operatoris a unitary operator. It is the time evolution operator, or propagator, of a closed quantum system. If the Hamiltonian is time-independent, {U(t)} form a one parameter unitary group (more than a semigroup); this gives rise to the physical principle of detailed balance.Dirac formalismHowever, in the more general formalism of Dirac, the Hamiltonian is typically implemented as an operator on a Hilbert space in the following way:The eigenkets (eigenvectors) of H, denoted , provide an orthonormal basis for theHilbert space. The spectrum of allowed energy levels of the system is given by the set of eigenvalues, denoted {E a}, solving the equation:Since H is a Hermitian operator, the energy is always a real number.From a mathematically rigorous point of view, care must be taken with the above assumptions. Operators on infinite-dimensional Hilbert spaces need not have eigenvalues (the set of eigenvalues does not necessarily coincide with the spectrum of an operator). However, all routine quantum mechanical calculations can be done using the physical formulation.Expressions for the HamiltonianFollowing are expressions for the Hamiltonian in a number of situations.[2] Typical ways to classify the expressions are the number of particles, number of dimensions, and the nature of the potential energy function - importantly space and time dependence. Masses are denoted by m, and charges by q.General forms for one particleFree particleThe particle is not bound by any potential energy, so the potential is zero and this Hamiltonian is the simplest. For one dimension:and in three dimensions:Constant-potential wellFor a particle in a region of constant potential V = V0 (no dependence on space or time), in one dimension, the Hamiltonian is:in three dimensionsThis applies to the elementary "particle in a box" problem, and step potentials. Simple harmonic oscillatorFor a simple harmonic oscillator in one dimension, the potential varies with position (but not time), according to:where the angular frequency, effective spring constant k, and mass m of the oscillator satisfy:so the Hamiltonian is:For three dimensions, this becomeswhere the three-dimensional position vector r using cartesian coordinates is (x, y, z), its magnitude isWriting the Hamiltonian out in full shows it is simply the sum of the one-dimensional Hamiltonians in each direction:Rigid rotorFor a rigid rotor – i.e. system of particles which can rotate freely about any axes, not bound in any potential (such as free molecules with negligible vibrational degrees of freedom, say due to double or triple chemical bonds), Hamiltonian is:where I xx, I yy, and I zz are the moment of inertia components (technically the diagonalelements of the moment of inertia tensor), and , and are the total angular momentum operators (components), about the x, y, and z axes respectively.Electrostatic or coulomb potentialThe Coulomb potential energy for two point charges q1 and q2 (i.e. charged particles, since particles have no spatial extent), in three dimensions, is (in SI units - rather than Gaussian units which are frequently used in electromagnetism):However, this is only the potential for one point charge due to another. If there are many charged particles, each charge has a potential energy due to every other point charge (except itself). For N charges, the potential energy of charge q j due to all other charges is (see also Electrostatic potential energy stored in a configuration of discrete point charges):[3]where φ(r i) is the electrostatic potential of charge q j at r i. The total potential of the system is then the sum over j:so the Hamiltonian is:Electric dipole in an electric fieldFor an electric dipole moment d constituting charges of magnitude q, in a uniform, electrostatic field (time-independent) E, positioned in one place, the potential is:the dipole moment itself is the operatorSince the particle is stationary, there is no translational kinetic energy of the dipole, so the Hamiltonian of the dipole is just the potential energy:Magnetic dipole in a magnetic fieldFor a magnetic dipole moment μ in a uniform, magnetostatic field (time-independent) B, positioned in one place, the potential is:Since the particle is stationary, there is no translational kinetic energy of the dipole, so the Hamiltonian of the dipole is just the potential energy:For a Spin-½ particle, the corresponding spin magnetic moment is:[4]where g s is the spin gyromagnetic ratio (aka "spin g-factor"), e is the electron charge, S is the spin operator vector, whose components are the Pauli matrices, henceCharged particle in an electromagnetic fieldFor a charged particle q in an electromagnetic field, described by the scalar potential φ and vector potential A, there are two parts to the Hamiltonian to substitute for.[1] The momentum operator must be replaced by the kinetic momentum operator, which includes a contribution from the A field:where is the canonical momentum operator given as the usual momentum operator:so the corresponding kinetic energy operator is:and the potential energy, which is due to the φ field:Casting all of these into the Hamiltonian gives:Energy eigenket degeneracy, symmetry, and conservation lawsIn many systems, two or more energy eigenstates have the same energy. A simple example of this is a free particle, whose energy eigenstates have wavefunctions that are propagating plane waves. The energy of each of these plane waves is inversely proportional to the square of its wavelength. A wave propagating in the x direction is a different state from one propagating in the y direction, but if they have the same wavelength, then their energies will be the same. When this happens, the states are said to be degenerate.It turns out that degeneracy occurs whenever a nontrivial unitary operator U commutes with the Hamiltonian. To see this, suppose that is an energy eigenket. Then is an energy eigenket with the same eigenvalue, sinceSince U is nontrivial, at least one pair of and must represent distinct states. Therefore, H has at least one pair of degenerate energy eigenkets. In the case of the free particle, the unitary operator which produces the symmetry is the rotation operator, which rotates the wavefunctions by some angle while otherwise preserving their shape.The existence of a symmetry operator implies the existence of a conserved observable. Let G be the Hermitian generator of U:It is straightforward to show that if U commutes with H, then so does G:Therefore,In obtaining this result, we have used the Schrödinger equation, as well as its dual,Thus, the expected value of the observable G is conserved for any state of the system. In the case of the free particle, the conserved quantity is the angular momentum. Hamilton's equationsHamilton's equations in classical Hamiltonian mechanics have a direct analogy in quantum mechanics. Suppose we have a set of basis states , which need not necessarily be eigenstates of the energy. For simplicity, we assume that they are discrete, and that they are orthonormal, i.e.,Note that these basis states are assumed to be independent of time. We will assume that the Hamiltonian is also independent of time.The instantaneous state of the system at time t, , can be expanded in terms of these basis states:whereThe coefficients a n(t) are complex variables. We can treat them as coordinates which specify the state of the system, like the position and momentum coordinates which specify a classical system. Like classical coordinates, they are generally not constant in time, and their time dependence gives rise to the time dependence of the system as a whole.The expectation value of the Hamiltonian of this state, which is also the mean energy,iswhere the last step was obtained by expanding in terms of the basis states.Each of the a n(t)'s actually corresponds to two independent degrees of freedom, since the variable has a real part and an imaginary part. We now perform the following trick: instead of using the real and imaginary parts as the independent variables, we use a n(t) and its complex conjugate a n*(t). With this choice of independent variables, we can calculate the partial derivativeBy applying Schrödinger's equation and using the orthonormality of the basis states,this further reduces toSimilarly, one can show thatIf we define "conjugate momentum" variables πn bythen the above equations becomewhich is precisely the form of Hamilton's equations, with the s as the generalizedcoordinates, the s as the conjugate momenta, and taking the place of theclassical Hamiltonian.See alsoHamiltonian mechanicsOperator (physics)Bra-ket notationQuantum stateLinear algebraConservation of energyPotential theoryMany-body problemElectrostaticsElectric fieldMagnetic fieldLieb–Thirring inequalityReferences1. ^ a b Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (2nd Edition), R.Resnick, R. Eisberg, John Wiley & Sons, 1985, ISBN 978-0-471-87373-02. ^ Quanta: A handbook of concepts, P.W. Atkins, Oxford University Press, 1974, ISBN 0-19-855493-13. ^ Electromagnetism (2nd edition), I.S. Grant, W.R. Phillips, Manchester Physics Series, 2008ISBN 0-471-92712-04. ^ Physics of Atoms and Molecules, B.H. Bransden, C.J.Joachain, Longman, 1983, ISBN 0-582-44401-2Retrieved from "/w/index.php?title=Hamiltonian_(quantum_mechanics)&oldid=641030087"Categories: Hamiltonian mechanics Operator theory Quantum mechanics Quantum chemistry Theoretical chemistry Computational chemistryThis page was last modified on 5 January 2015, at 02:40.Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.。
量子计算中的哈达玛算子优化算法研究
量子计算中的哈达玛算子优化算法研究量子计算(Quantum Computing)是近年来备受瞩目的领域,被誉为未来计算机技术的重要方向之一。
其中一个重要的研究方向就是如何高效地解决复杂的优化问题。
哈达玛算子优化算法(Hadamard Optimization Algorithm)是对量子计算中哈达玛变换的一种优化算法,可以有效地提高计算效率和减少计算复杂度。
下面将对哈达玛算子优化算法的一些相关问题进行探讨。
1. 哈达玛算子优化算法的基本原理。
哈达玛变换(Hadamard Transform)是量子计算中最常用的变换之一,可将输入位的相干态(coherent)变换为绝对态(absolute)。
在哈达玛变换的基础上,可以通过逆变换将输出结果重新转换为原输入。
基于哈达玛变换的优化算法可以使用线性代数和概率分布等数学方法,将问题进行转换和处理。
这种算法可以通过哈达玛矩阵来实现,将原问题转化为一个求解特定变量的问题,并通过特定的技术进行求解。
2. 哈达玛算子优化算法在优化问题中的应用。
哈达玛算子优化算法在优化问题中具有广泛的应用价值,可用于多个不同类型的问题。
在哈达玛算子优化算法中,输入由一个向量集合组成,其中每个向量元素都有明确定义的范围。
然后,通过哈达玛矩阵对向量进行变换,转换为特殊形式的矩阵计算问题,该问题可以很容易地通过数学技术求解。
应用案例中,哈达玛算子优化算法被广泛使用于数据挖掘、信号处理、图像分析和计算机视觉等领域的特定问题求解中。
在这些应用场景中,哈达玛算子优化算法减少了计算复杂度和计算时间,提高了优化问题求解的效率和准确性,使得用户可以更加高效地解决问题。
3. 哈达玛算子优化算法的优势和未来挑战。
哈达玛算子优化算法具有多种优势,其中最显著的优势是在计算速度和效率方面,尤其是在优化问题中。
通过将问题转换为线性代数计算问题,可以实现时间复杂度和空间复杂度的优化。
测试表明,哈达玛算子优化算法的计算时间远远小于传统计算方法,并可以实现更高的计算准确率。
量子力学索引英汉对照
21-centimeter line, 21厘米线AAbsorption, 吸收Addition of angular momenta, 角动量叠加Adiabatic approximation, 绝热近似Adiabatic process, 绝热过程Adjoint, 自伴的Agnostic position, 不可知论立场Aharonov-Bohm effect, 阿哈罗诺夫-玻姆效应Airy equation, 艾里方程;Airy function, 艾里函数Allowed energy, 允许能量Allowed transition, 允许跃迁Alpha decay, 衰变;Alpha particle, 粒子Angular equation, 角向方程Angular momentum, 角动量Anomalous magnetic moment, 反常磁矩Antibonding, 反键Anti-hermitian operator, 反厄米算符Associated Laguerre polynomial, 连带拉盖尔多项式Associated Legendre function, 连带勒让德多项式Atoms, 原子Average value, 平均值Azimuthal angle, 方位角Azimuthal quantum number, 角量子数BBalmer series, 巴尔末线系Band structure, 能带结构Baryon, 重子Berry's phase, 贝利相位Bessel functions, 贝塞尔函数Binding energy, 束缚能Binomial coefficient, 二项式系数Biot-Savart law, 毕奥-沙法尔定律Blackbody spectrum, 黑体谱Bloch's theorem, 布洛赫定理Bohr energies, 玻尔能量;Bohr magneton, 玻尔磁子;Bohr radius, 玻尔半径Boltzmann constant, 玻尔兹曼常数Bond, 化学键Born approximation, 玻恩近似Born's statistical interpretation, 玻恩统计诠释Bose condensation, 玻色凝聚Bose-Einstein distribution, 玻色-爱因斯坦分布Boson, 玻色子Bound state, 束缚态Boundary conditions, 边界条件Bra, 左矢Bulk modulus, 体积模量CCanonical commutation relations, 正则对易关系Canonical momentum, 正则动量Cauchy's integral formula, 柯西积分公式Centrifugal term, 离心项Chandrasekhar limit, 钱德拉赛卡极限Chemical potential, 化学势Classical electron radius, 经典电子半径Clebsch-Gordan coefficients, 克-高系数Coherent States, 相干态Collapse of wave function, 波函数塌缩Commutator, 对易子Compatible observables, 对易的可观测量Complete inner product space, 完备内积空间Completeness, 完备性Conductor, 导体Configuration, 位形Connection formulas, 连接公式Conservation, 守恒Conservative systems, 保守系Continuity equation, 连续性方程Continuous spectrum, 连续谱Continuous variables, 连续变量Contour integral, 围道积分Copenhagen interpretation, 哥本哈根诠释Coulomb barrier, 库仑势垒Coulomb potential, 库仑势Covalent bond, 共价键Critical temperature, 临界温度Cross-section, 截面Crystal, 晶体Cubic symmetry, 立方对称性Cyclotron motion, 螺旋运动DDarwin term, 达尔文项de Broglie formula, 德布罗意公式de Broglie wavelength, 德布罗意波长Decay mode, 衰变模式Degeneracy, 简并度Degeneracy pressure, 简并压Degenerate perturbation theory, 简并微扰论Degenerate states, 简并态Degrees of freedom, 自由度Delta-function barrier, 势垒Delta-function well, 势阱Derivative operator, 求导算符Determinant, 行列式Determinate state, 确定的态Deuterium, 氘Deuteron, 氘核Diagonal matrix, 对角矩阵Diagonalizable matrix, 对角化Differential cross-section, 微分截面Dipole moment, 偶极矩Dirac delta function, 狄拉克函数Dirac equation, 狄拉克方程Dirac notation, 狄拉克记号Dirac orthonormality, 狄拉克正交归一性Direct integral, 直接积分Discrete spectrum, 分立谱Discrete variable, 离散变量Dispersion relation, 色散关系Displacement operator, 位移算符Distinguishable particles, 可分辨粒子Distribution, 分布Doping, 掺杂Double well, 双势阱Dual space, 对偶空间Dynamic phase, 动力学相位EEffective nuclear charge, 有效核电荷Effective potential, 有效势Ehrenfest's theorem, 厄伦费斯特定理Eigenfunction, 本征函数Eigenvalue, 本征值Eigenvector, 本征矢Einstein's A and B coefficients, 爱因斯坦A,B系数;Einstein's mass-energy formula, 爱因斯坦质能公式Electric dipole, 电偶极Electric dipole moment, 电偶极矩Electric dipole radiation, 电偶极辐射Electric dipole transition, 电偶极跃迁Electric quadrupole transition, 电四极跃迁Electric field, 电场Electromagnetic wave, 电磁波Electron, 电子Emission, 发射Energy, 能量Energy-time uncertainty principle, 能量-时间不确定性关系Ensemble, 系综Equilibrium, 平衡Equipartition theorem, 配分函数Euler's formula, 欧拉公式Even function, 偶函数Exchange force, 交换力Exchange integral, 交换积分Exchange operator, 交换算符Excited state, 激发态Exclusion principle, 不相容原理Expectation value, 期待值FFermi-Dirac distribution, 费米-狄拉克分布Fermi energy, 费米能Fermi surface, 费米面Fermi temperature, 费米温度Fermi's golden rule, 费米黄金规则Fermion, 费米子Feynman diagram, 费曼图Feynman-Hellman theorem, 费曼-海尔曼定理Fine structure, 精细结构Fine structure constant, 精细结构常数Finite square well, 有限深方势阱First-order correction, 一级修正Flux quantization, 磁通量子化Forbidden transition, 禁戒跃迁Foucault pendulum, 傅科摆Fourier series, 傅里叶级数Fourier transform, 傅里叶变换Free electron, 自由电子Free electron density, 自由电子密度Free electron gas, 自由电子气Free particle, 自由粒子Function space, 函数空间Fusion, 聚变Gg-factor, g-因子Gamma function, 函数Gap, 能隙Gauge invariance, 规范不变性Gauge transformation, 规范变换Gaussian wave packet, 高斯波包Generalized function, 广义函数Generating function, 生成函数Generator, 生成元Geometric phase, 几何相位Geometric series, 几何级数Golden rule, 黄金规则"Good" quantum number, "好"量子数"Good" states, "好"的态Gradient, 梯度Gram-Schmidt orthogonalization, 格莱姆-施密特正交化法Graphical solution, 图解法Green's function, 格林函数Ground state, 基态Group theory, 群论Group velocity, 群速Gyromagnetic railo, 回转磁比值HHalf-integer angular momentum, 半整数角动量Half-life, 半衰期Hamiltonian, 哈密顿量Hankel functions, 汉克尔函数Hannay's angle, 哈内角Hard-sphere scattering, 硬球散射Harmonic oscillator, 谐振子Heisenberg picture, 海森堡绘景Heisenberg uncertainty principle, 海森堡不确定性关系Helium, 氦Helmholtz equation, 亥姆霍兹方程Hermite polynomials, 厄米多项式Hermitian conjugate, 厄米共轭Hermitian matrix, 厄米矩阵Hidden variables, 隐变量Hilbert space, 希尔伯特空间Hole, 空穴Hooke's law, 胡克定律Hund's rules, 洪特规则Hydrogen atom, 氢原子Hydrogen ion, 氢离子Hydrogen molecule, 氢分子Hydrogen molecule ion, 氢分子离子Hydrogenic atom, 类氢原子Hyperfine splitting, 超精细分裂IIdea gas, 理想气体Idempotent operaror, 幂等算符Identical particles, 全同粒子Identity operator, 恒等算符Impact parameter, 碰撞参数Impulse approximation, 脉冲近似Incident wave, 入射波Incoherent perturbation, 非相干微扰Incompatible observables, 不对易的可观测量Incompleteness, 不完备性Indeterminacy, 非确定性Indistinguishable particles, 不可分辨粒子Infinite spherical well, 无限深球势阱Infinite square well, 无限深方势阱Inner product, 内积Insulator, 绝缘体Integration by parts, 分部积分Intrinsic angular momentum, 内禀角动量Inverse beta decay, 逆衰变Inverse Fourier transform, 傅里叶逆变换KKet, 右矢Kinetic energy, 动能Kramers' relation, 克莱默斯关系Kronecker delta, 克劳尼克LLCAO technique, 原子轨道线性组合法Ladder operators, 阶梯算符Lagrange multiplier, 拉格朗日乘子Laguerre polynomial, 拉盖尔多项式Lamb shift, 兰姆移动Lande g-factor, 朗德g-因子Laplacian, 拉普拉斯的Larmor formula, 拉摩公式Larmor frequency, 拉摩频率Larmor precession, 拉摩进动Laser, 激光Legendre polynomial, 勒让德多项式Levi-Civita symbol, 列维-西维塔符号Lifetime, 寿命Linear algebra, 线性代数Linear combination, 线性组合Linear combination of atomic orbitals, 原子轨道的线性组合Linear operator, 线性算符Linear transformation, 线性变换Lorentz force law, 洛伦兹力定律Lowering operator, 下降算符Luminoscity, 照度Lyman series, 赖曼线系MMagnetic dipole, 磁偶极Magnetic dipole moment, 磁偶极矩Magnetic dipole transition, 磁偶极跃迁Magnetic field, 磁场Magnetic flux, 磁通量Magnetic quantum number, 磁量子数Magnetic resonance, 磁共振Many worlds interpretation, 多世界诠释Matrix, 矩阵;Matrix element, 矩阵元Maxwell-Boltzmann distribution, 麦克斯韦-玻尔兹曼分布Maxwell's equations, 麦克斯韦方程Mean value, 平均值Measurement, 测量Median value, 中位值Meson, 介子Metastable state, 亚稳态Minimum-uncertainty wave packet, 最小不确定度波包Molecule, 分子Momentum, 动量Momentum operator, 动量算符Momentum space wave function, 动量空间波函数Momentum transfer, 动量转移Most probable value, 最可几值Muon, 子Muon-catalysed fusion, 子催化的聚变Muonic hydrogen, 原子Muonium, 子素NNeumann function, 纽曼函数Neutrino oscillations, 中微子振荡Neutron star, 中子星Node, 节点Nomenclature, 术语Nondegenerate perturbationtheory, 非简并微扰论Non-normalizable function, 不可归一化的函数Normalization, 归一化Nuclear lifetime, 核寿命Nuclear magnetic resonance, 核磁共振Null vector, 零矢量OObservable, 可观测量Observer, 观测者Occupation number, 占有数Odd function, 奇函数Operator, 算符Optical theorem, 光学定理Orbital, 轨道的Orbital angular momentum, 轨道角动量Orthodox position, 正统立场Orthogonality, 正交性Orthogonalization, 正交化Orthohelium, 正氦Orthonormality, 正交归一性Orthorhombic symmetry, 斜方对称Overlap integral, 交叠积分PParahelium, 仲氦Partial wave amplitude, 分波幅Partial wave analysis, 分波法Paschen series, 帕邢线系Pauli exclusion principle, 泡利不相容原理Pauli spin matrices, 泡利自旋矩阵Periodic table, 周期表Perturbation theory, 微扰论Phase, 相位Phase shift, 相移Phase velocity, 相速Photon, 光子Planck's blackbody formula, 普朗克黑体辐射公式Planck's constant, 普朗克常数Polar angle, 极角Polarization, 极化Population inversion, 粒子数反转Position, 位置;Position operator, 位置算符Position-momentum uncertainty principles, 位置-动量不确定性关系Position space wave function, 坐标空间波函数Positronium, 电子偶素Potential energy, 势能Potential well, 势阱Power law potential, 幂律势Power series expansion, 幂级数展开Principal quantum number, 主量子数Probability, 几率Probability current, 几率流Probability density, 几率密度Projection operator, 投影算符Propagator, 传播子Proton, 质子QQuantum dynamics, 量子动力学Quantum electrodynamics, 量子电动力学Quantum number, 量子数Quantum statics, 量子统计Quantum statistical mechanics, 量子统计力学Quark, 夸克RRabi flopping frequency, 拉比翻转频率Radial equation, 径向方程Radial wave function, 径向波函数Radiation, 辐射Radius, 半径Raising operator, 上升算符Rayleigh's formula, 瑞利公式Realist position, 实在论立场Recursion formula, 递推公式Reduced mass, 约化质量Reflected wave, 反射波Reflection coefficient, 反射系数Relativistic correction, 相对论修正Rigid rotor, 刚性转子Rodrigues formula, 罗德里格斯公式Rotating wave approximation, 旋转波近似Rutherford scattering, 卢瑟福散射Rydberg constant, 里德堡常数Rydberg formula, 里德堡公式SScalar potential, 标势Scattering, 散射Scattering amplitude, 散射幅Scattering angle, 散射角Scattering matrix, 散射矩阵Scattering state, 散射态Schrodinger equation, 薛定谔方程Schrodinger picture, 薛定谔绘景Schwarz inequality, 施瓦兹不等式Screening, 屏蔽Second-order correction, 二级修正Selection rules, 选择定则Semiconductor, 半导体Separable solutions, 分离变量解Separation of variables, 变量分离Shell, 壳Simple harmonic oscillator, 简谐振子Simultaneous diagonalization, 同时对角化Singlet state, 单态Slater determinant, 斯拉特行列式Soft-sphere scattering, 软球散射Solenoid, 螺线管Solids, 固体Spectral decomposition, 谱分解Spectrum, 谱Spherical Bessel functions, 球贝塞尔函数Spherical coordinates, 球坐标Spherical Hankel functions, 球汉克尔函数Spherical harmonics, 球谐函数Spherical Neumann functions, 球纽曼函数Spin, 自旋Spin matrices, 自旋矩阵Spin-orbit coupling, 自旋-轨道耦合Spin-orbit interaction, 自旋-轨道相互作用Spinor, 旋量Spin-spin coupling, 自旋-自旋耦合Spontaneous emission, 自发辐射Square-integrable function, 平方可积函数Square well, 方势阱Standard deviation, 标准偏差Stark effect, 斯塔克效应Stationary state, 定态Statistical interpretation, 统计诠释Statistical mechanics, 统计力学Stefan-Boltzmann law, 斯特番-玻尔兹曼定律Step function, 阶跃函数Stem-Gerlach experiment, 斯特恩-盖拉赫实验Stimulated emission, 受激辐射Stirling's approximation, 斯特林近似Superconductor, 超导体Symmetrization, 对称化Symmetry, 对称TTaylor series, 泰勒级数Temperature, 温度Tetragonal symmetry, 正方对称Thermal equilibrium, 热平衡Thomas precession, 托马斯进动Time-dependent perturbation theory, 含时微扰论Time-dependent Schrodinger equation, 含时薛定谔方程Time-independent perturbation theory, 定态微扰论Time-independent Schrodinger equation, 定态薛定谔方程Total cross-section, 总截面Transfer matrix, 转移矩阵Transformation, 变换Transition, 跃迁;Transition probability, 跃迁几率Transition rate, 跃迁速率Translation,平移Transmission coefficient, 透射系数Transmitted wave, 透射波Trial wave function, 试探波函数Triplet state, 三重态Tunneling, 隧穿Turning points, 回转点Two-fold degeneracy , 二重简并Two-level systems, 二能级体系UUncertainty principle, 不确定性关系Unstable particles, 不稳定粒子VValence electron, 价电子Van der Waals interaction, 范德瓦尔斯相互作用Variables, 变量Variance, 方差Variational principle, 变分原理Vector, 矢量Vector potential, 矢势Velocity, 速度Vertex factor, 顶角因子Virial theorem, 维里定理WWave function, 波函数Wavelength, 波长Wave number, 波数Wave packet, 波包Wave vector, 波矢White dwarf, 白矮星Wien's displacement law, 维恩位移定律YYukawa potential, 汤川势ZZeeman effect, 塞曼效应。
专业英语单词汇总
第一单元1.Condensed matter physics 凝聚态物理2.Atomic, molecular and optical physics 原子、分子、光学物理3.Particle and nuclear physics 粒子与原子核物理4.Astrophysics and physical cosmology 天体物理学和物理宇宙学5.Current research frontiers 当前研究前沿6.natural philosophy 哲学7.natural science 自然科学8.matter 物质9.motion 运动10.space and time 时空11.energy 能量12.force 力13.the universe 宇宙14.academic disciplines 学科15.astronomy 天文学16.chemistry 化学17.mathematics 数学18.biology 生物19.Scientific Revolution 科学革命20.interdisciplinary各学科间的21.biophysics 生物物理22.quantum chemistry 量子化学23.mechanism 机制24.avenues 渠道;大街25.advances 前进26.electromagnetism电磁学27.nuclear physics原子核物理28.domestic appliances家用电器29.nuclear weapons核武器30.thermodynamics热力学31.industrialization工业化32.mechanics力学33.calculus微积分34.the theory of classical mechanics经典力学35.the speed of light 光速36.remarkable卓越的37.chaos混沌38.quantum mechanics量子力学39.statistical mechanics 统计力学40.special relativity狭义相对论41.acoustics声学42.statics静力学43.at rest静止44.kinematics运动学45.causes原因46.dynamics动力学47.solid mechanics 固体力学48.fluid mechanics 流体力学49.continuum mechanics 连续介质力学50.hydrostatics流体静力学51.hydrodynamics流体动力学52.aerodynamics气体动力学53.pneumatics气体力学54.sound 声音55.ultrasonics超声学56.sound waves 声波57.frequency 频率58.bioacoustics生物声学59.electroacoustics电声学60.manipulation操作61.audible听得见的62.electronics电子63.visible light 可见光64.infrared红外线65.ultraviolet radiation 紫外线辐射66.reflection 反射67.refraction折射68.interference干涉69.diffraction衍射70.dispersion色散71.polarization偏振72.Heat 热度73.the internal energy内能74.Electricity 电力75.magnetism磁学76.electric current电流77.magnetic field磁场78.Electrostatics静电学79.electric charges电荷80.electrodynamics电动力学81.magnetostatics静磁学82.poles磁极83.matter and energy 物质和能量84.on the very large or very small scale 非常大或非常小的规模85.atomic and nuclear physics 原子与核物理学86.chemical elements化学元素87.The physics of elementary particles基本粒子88.high-energy physics 高能物理学89.particle accelerators 粒子加速器90.Quantum theory 量子论91.discrete离散92.subatomic原子内plementary互补94.The theory of relativity 相对论95.a frame of reference参考系96.the special theory of relativity 狭义相对论97.general theory of relativity 广义相对论98.gravitation万有引力99.universal law 普遍规律100.absolute time and space 绝对的时间和空间101.space-time 时空ponents组成103.Max Planck 普朗克104.quantum mechanics 量子力学105.probabilistic概率性106.quantum field theory量子场107.dynamical动态的108.curved弯曲的109.massive巨大的110.candidate候选111.quantum gravity 量子重力112.macroscopic宏观113.properties属性114.solids 固体115.liquids 液体116.electromagnetic force电磁力117.atom 原子118.superconducting超导119.conduction electrons 传导电子120.ferromagnetic 铁磁体121.the ferromagnetic and antiferromagnetic phases of spins铁磁和反铁磁的阶段的旋转122.atomic lattices原子晶格123.solid-state physics 固体物理124.subfields分区;子域125.nanotechnology纳米技术126.engineering工程学127.quantum treatments 量子治疗128.Atomic physics 原子物理129.electron shells电子壳层130.trap捕获131.ions离子132.collision碰撞133.nucleus原子核134.hyperfine splitting超精细分裂135.fission and fusion 分裂与融合136.Molecular physics 分子物理137.optical fields 光场138.realm范围139.properties属性140.distinct区别141.Particle physics 粒子物理142.elementary constituents基本成分143.interactions 相互作用144.detectors探测器puter programs程序146.Standard Model 标准模型147.quarks and leptons轻子-夸克148.gauge bosons规范波色子149.gluons胶子150.photons光子151.nuclear power generation核发电152.nuclear weaponsh核武器153.nuclear medicine 核医学154.magnetic resonance imaging磁共振成像155.ion implantation离子注入156.materials engineering 材料工程157.radiocarbon dating放射性碳测定年代158.geology 地质学159.archaeology考古学.160.Astrophysics天体物理学161.astronomy天文学162.stellar structure恒星结构163.stellar evolution恒星演化164.solar system太阳系165.cosmology宇宙学166.disciplines学科167.emitted射出168.celestial bodies天体169.Perturbations扰动170.interference干扰171.Physical cosmology 宇宙物理学172.Hubble diagram哈勃图173.steady state 定态,稳恒态174.Big Bang nucleo-synthesis核合成175.cosmic microwave background宇宙微波背景176.cosmological principle 宇宙论原理;宇宙论原则177.cosmic inflation宇宙膨胀178.dark energy 暗能量179.dark matter暗物质of high-temperature superconductivity 高温超导180.spintronics自旋电子学181.quantum computers 量子电脑182.the Standard Model 标准模型183.neutrinos中微子184.solar太阳185.the TeV万亿电子伏186.the super-symmetric particles 超对称粒子187.quantum gravity 量子重力188.superstring超弦189.theory and loop圈190.ultra-high energy cosmic rays高能宇宙射线,191.the baryon asymmetry重子不对称,192.the acceleration of the universe and the anomalous宇宙的加速和异常193.rotation旋转194.galaxies星系.195.turbulence动荡196.water droplets 水滴197.mechanisms of surface tension catastrophes表面紧张灾难198.heterogeneous多相的199.aerodynamics 气体力学第二单元所有的红色单词,重要的我标有星号1.classical mechanics 经典力学*2.physical laws 物理定律3.forces 力4.macroscopic 宏观的5.Projectiles 抛射体6.Spacecraft 太空飞船7.Planets 行星8.Stars 恒星9.Galaxies 星系,银河系10.gases, liquids, solids 气体,液体固体11.the speed of light 光速12.quantum mechanics 量子力学*13.the atomic nature of matter 物质的原子性质14.wave–particle duality 波粒二象性*15.special relativity 狭义相对论*16.General relativity 广义相对论*17.Newton's law of universal gravitation 牛顿万有引力*18.Newtonian mechanics 牛顿力学*grangian mechanics 拉格朗日力学*20.Hamiltonian mechanics 哈密顿力学*21.analytical mechanics 分析力学*22.as point particles 质点*23.Negligible 微不足道的可忽略的24.position, mass 位置,质量25.Forces 力26.non-zero size 不计形状27.the electron 电子*28.quantum mechanics 量子力学*29.degrees of freedom 自由度*30.Spin 旋转posite 组合的32.center of mass 质心33.the principle of locality 局部性原理34.Position 位置35.reference point 参照点(参照物)*36.in space 在空间37.Origin 原点*38.the vector 矢量39.Particle 质点*40.Function 函数41.Galilean relativity 伽利略相对性原理*42.Absolute 绝对43.time interval 时间间隔44.Euclidean geometry 欧几里得几何学45.Velocity 速度46.rate of change 变化率47.Derivative 倒数*48.Vector 矢量49.Speed 速度50.Acceleration 加速度*51.second derivative 二阶导*52.Magnitude 大小(量级)53.the direction 方向54.or both55.Deceleration 加速度56.Observer 观察者57.reference frames 参考系*58.inertial frames 惯性系*59.at rest60.in a state of uniform motion 运动状态一致61.Straight 直的62.physical laws 物理学定理63.non-inertial 非惯性系64.accelerating 加速65.fictitious forces 虚拟力(达朗贝尔力)*66.equations of motion 运动学方程*67.the distant stars 遥远的恒星68.Newton 牛顿69.force and momentum 力和动量70.Newton's second law of motion 牛顿第二定律*71.(canonical) momentum 动量* force 净力73.ordinary differential equation 常微分方程*74.the equation of motion 运动学方程*75.gravitational force 重力*76.Lorentz force 洛伦兹力*77.Electromagnetism 电磁学*78.Newton's third law 牛顿第三定律*79.opposite reaction force 反作用力80.along the line 沿直线81.displacement 位移*82.work done 做功83.scalar product 标极*84.the line integral 线积分*85.path 路径86.conservative. 守恒*87.Gravity 重力88.Hooke's law 胡克定律*89.Friction 摩擦力*90.kinetic energy 动能*91.work–energy theorem 功能关系(动能定理)*92.the change in kinetic energy 动能改变量93.gradient 梯度*94.potential energy 势能*95.Conservative 保守的,守恒的96.potential energy 势能97.total energy 总能量(机械能)*98.conservation of energy 能量守恒**99.linear momentum 线动量100.translational momentum 平移动量101.closed system 封闭系统*102.external forces 外力*103.total linear momentum 总(线)动量线动量就是动量区别于角动量104.center of mass 质心*105.Euler's first law 欧拉第一定律106.elastic collision 弹性碰撞*107.inelastic collision 非弹性碰撞*108.slingshot maneuver 弹弓机动109.Rigidity 硬度(刚性)*110.Dissipation 损耗**111.inelastic collision 非弹性碰撞112.heat or sound 热或声113.new particles 新粒子114.angular momentum 角动量*115.moment of momentum 瞬时动量*116.rotational inertia 转动惯量*117.rotational velocity 转速*118.rigid body 刚体**119.moment of inertia 惯性力矩*120.angular velocity 角速度*121.linear momentum 线动量122.Crossed 叉乘*123.Position 位置124.angular momentum 角动量125.pseudo-vector 赝矢量*126.right-hand rule 右手规则 external torque 净外力转矩128.neutron stars 中子星129.angular momentum 角动量*130.Conservation 守恒131.Gyrocompass 陀螺罗盘132.no external torque 无外力炬133.Isotropy 各向同性*134.Torque 转矩135.central force motion 中心力移动136.white dwarfs, neutron stars and black holes 白矮星,中子星,黑洞第三单元ThermodynamicsThermodynamics: 热力学;热力的Heat :热;热力;热度Work:功macroscopic variables:肉眼可见的;宏观的,粗观的,粗显的。
(完整版)量子力学英语词汇
(完整版)量子力学英语词汇1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator 线性谐振子41、zero proint energy 零点能42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-particle system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles 全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性本征矢量eigenvector本征态eigenstate本征值eigenvalue本征值方程eigenvalue equation本征子空间eigensubspace (可以理解为本征矢空间)变分法variatinial method标量scalar算符operator表象representation表象变换transformation of representation表象理论theory of representation波函数wave function波恩近似Born approximation玻色子boson费米子fermion不确定关系uncertainty relation狄拉克方程Dirac equation狄拉克记号Dirac symbol定态stationary state定态微扰法time-independent perturbation定态薛定谔方程time-independent Schro(此处上面有两点)dinger equation 动量表象momentum representation 角动量表象angular mommentum representation占有数表象occupation number representation坐标(位置)表象position representation角动量算符angular mommentum operator角动量耦合coupling of angular mommentum对称性symmetry对易关系commutator厄米算符hermitian operator厄米多项式Hermite polynomial分量component光的发射emission of light光的吸收absorption of light受激发射excited emission自发发射spontaneous emission轨道角动量orbital angular momentum自旋角动量spin angular momentum轨道磁矩orbital magnetic moment归一化normalization哈密顿hamiltonion黑体辐射black body radiation康普顿散射Compton scattering基矢basis vector基态ground state基右矢basis ket ‘右矢’ket基左矢basis bra简并度degenerancy精细结构fine structure径向方程radial equation久期方程secular equation量子化quantization矩阵matrix模module模方square of module内积inner product逆算符inverse operator欧拉角Eular angles泡利矩阵Pauli matrix平均值expectation value (期望值)泡利不相容原理Pauli exclusion principle氢原子hydrogen atom球鞋函数spherical harmonics全同粒子identical particles塞曼效应Zeeman effect上升下降算符raising and lowering operator 消灭算符destruction operator产生算符creation operator矢量空间vector space守恒定律conservation law守恒量conservation quantity投影projection投影算符projection operator微扰法pertubation method希尔伯特空间Hilbert space线性算符linear operator线性无关linear independence谐振子harmonic oscillator选择定则selection rule幺正变换unitary transformation幺正算符unitary operator宇称parity跃迁transition运动方程equation of motion正交归一性orthonormalization正交性orthogonality转动rotation自旋磁矩spin magnetic monent(以上是量子力学中的主要英语词汇,有些未涉及到的可以自由组合。
(完整版)量子力学英语词汇
1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator 线性谐振子41、zero proint energy 零点能42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-particle system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles 全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性本征矢量eigenvector本征态eigenstate本征值eigenvalue本征值方程eigenvalue equation本征子空间eigensubspace (可以理解为本征矢空间)变分法variatinial method标量scalar算符operator表象representation表象变换transformation of representation表象理论theory of representation波函数wave function波恩近似Born approximation玻色子boson费米子fermion不确定关系uncertainty relation狄拉克方程Dirac equation狄拉克记号Dirac symbol定态stationary state定态微扰法time-independent perturbation定态薛定谔方程time-independent Schro(此处上面有两点)dinger equation 动量表象momentum representation角动量表象angular mommentum representation占有数表象occupation number representation坐标(位置)表象position representation角动量算符angular mommentum operator角动量耦合coupling of angular mommentum对称性symmetry对易关系commutator厄米算符hermitian operator厄米多项式Hermite polynomial分量component光的发射emission of light光的吸收absorption of light受激发射excited emission自发发射spontaneous emission轨道角动量orbital angular momentum自旋角动量spin angular momentum轨道磁矩orbital magnetic moment归一化normalization哈密顿hamiltonion黑体辐射black body radiation康普顿散射Compton scattering基矢basis vector基态ground state基右矢basis ket ‘右矢’ket基左矢basis bra简并度degenerancy精细结构fine structure径向方程radial equation久期方程secular equation量子化quantization矩阵matrix模module模方square of module内积inner product逆算符inverse operator欧拉角Eular angles泡利矩阵Pauli matrix平均值expectation value (期望值)泡利不相容原理Pauli exclusion principle氢原子hydrogen atom球鞋函数spherical harmonics全同粒子identical particles塞曼效应Zeeman effect上升下降算符raising and lowering operator 消灭算符destruction operator产生算符creation operator矢量空间vector space守恒定律conservation law守恒量conservation quantity投影projection投影算符projection operator微扰法pertubation method希尔伯特空间Hilbert space线性算符linear operator线性无关linear independence谐振子harmonic oscillator选择定则selection rule幺正变换unitary transformation幺正算符unitary operator宇称parity跃迁transition运动方程equation of motion正交归一性orthonormalization正交性orthogonality转动rotation自旋磁矩spin magnetic monent(以上是量子力学中的主要英语词汇,有些未涉及到的可以自由组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
rudolph@helios.sci.yorku.ca
1
1
2
3 8 4 7 6 5
1
2
4
3
(a)
(b)
Figure 1: (a) A cubic, bipartite graph with Hamiltonian cycle in bold. (b)A simple 2-regular bipartite graph. Three qubits of the first register, denoted α, are involved in every step of the algorithm. The other n − 1 registers contain qubits which in the main are in the state |0 , except for the qubit corresponding to the walkers current position. To clarify the concepts consider the trivial but illustrative case of the square in Figure 1(b). We imagine a walker starting at vertex 1 and so prepare our quantum computer with register α in the state |1, 0, 0, 0 α, register 1 in the state |1, 0, 0, 0 1 ≡ |1 1 and the remaining registers empty. We envisage a controlled j j unitary operation Ri for the j th step from vertex i. Ri is conditioned on the ith qubit in register j being in the state 1. It acts onthe 2 qubits in registers α and j + 1 which correspond to vertices adjacent to i. In a series of three steps we wish the initial state |1, 0, 0, 0 α|1 1 to evolve as follows (empty registers not shown and register labelling dropped),
Register j
Qubit iα来自a b c a b c
V
U
j+1
Figure 2: A schematic showing a suitable form of operator Uij , where a, b, c label the three vertices adjacent to i in the graph being considered. The {}’s denote a superposition of those states enclosed (ignoring normalisation and phases for the moment). We see that only those paths which are possibly Hamiltonian cycles in the next step contain all 1’s in register α. This is because stepping back to an already passed vertex changes a pre-existing 1 at that site to a 0. Thus projecting out this state of register α will leave the quantum computer in an entanglement of states which correspond to the graph’s Hamiltonian cycles, if they exist. To progress to the slightly harder problem of cubic graphs we need to be more specific about the form of the unitary transform Uij required. It will act on 6 qubits, and also be conditioned on qubit i in register j being 1. It will apply elementary NOT type operations to the 3 qubits a, b, c in register α which label the vertices adjacent to i, and write 1’s into the same sites in the (previously empty) register j + 1 similarly to that discussed above. A schematic of such a transform is shown in Figure 2, using a version of Feynman’s [4] notation developed in [5]. The ⊕ is the elementary (1 bit) NOT operation given by the 0 matrix 1 0 1 . Time progresses from left to right. The 3 qubit transformation V is given in the lexicographically ordered basis |0, 0, 0 ; |0, 0, 1 , ...|1, 1, 1 by the matrix 0 1 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 −1 0 0 0 0 1 . √ (1) 3 1 0 0 0 0 1 −1 0 0 1 0 0 1 0 0 −1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 As an example of how the computation would proceed, consider again Fig3
{|0, 1, 0, 0 |1 |2 |1 ; |1, 1, 1, 0 |1 |2 |3 ; |0, 0, 0, 1 |1 |4 |1 ; |1, 0, 1, 1 |1 |4 |3 }
{|1, 1, 0, 0 |1 |2 ; |1, 0, 1, 0 |1 |3 }
|1, 1, 1, 1 |1 |2 |3 |4 ; |1, 1, 1, 1 |1 |4 |3 |2 }. 2
1 R1 : 2 2 R2 R4
:
3 3 R1 R3 : {|0, 0, 0, 0 |1 |2 |1 |2 ; |0, 1, 0, 1 |1 |2 |1 |4 ; |1, 0, 1, 0 |1 |2 |3 |2 ; |0, 0, 0, 0 |1 |4 |1 |4 ; |0, 1, 0, 1 |1 |4 |1 |2 ; |1, 0, 1, 0 |1 |4 |3 |4 ;
Abstract An algorithm for quantum computing Hamiltonian cycles of simple, cubic, bipartite graphs is discussed. It is shown that it is possible to evolve a quantum computer into an entanglement of states which map onto the set of all possible paths initiating from a chosen vertex, and furthermore to subsequently project out all states not corresponding to Hamiltonian cycles.
Quantum Computing Hamiltonian cycles.
arXiv:quant-ph/9603001v1 3 Mar 1996
T.Rudolph Department of Physics & Astronomy York University 4700 Keele St. Toronto Ontario M3J 1P3∗ 29th February 1995.
A Hamiltonian cycle is a path on a graph which visits each vertx 1..n exactly once, returning to the original vertex in the final step. Here we will discuss only simple (without loops or multiple edges), cubic (each vertex has only 3 edges), bipartite (each black vertex is connected only to white vertices) planar graphs. Such a graph is shown in Figure 1(a), with a Hamiltonian cycle indicated by the darker edges. Classically no efficient algorithm exists to resolve the question of whether any given such graph has a Hamiltonian cycle, although over the years many results in Graph Theory have isolated certain special cases. The fundamentals of Graph Theory and many associated classical algorithms are well explained in [1], and a comprehensive exposition of Hamiltonian cycles and the related Travelling Salesman Problem can be found in [2]. A good summary of quantum computing can be found in [3]. We shall see that the added power afforded us by a quantum computer’s ability to carry through parallel computations in a single step enables us to compute all possible paths on a given graph. To achieve this we require n registers each composed of n qubits, each qubit corresponding to one vertex.