广西自治区玉林市2019届中考数学三模试卷(含答案解析)
广西壮族自治区玉林市广西2019届数学中考模拟试卷及参考答案
A . 0 B . ﹣π C . ﹣4 D .
4. 下列几何体中,主视图是三角形的是( )
A.
B.
C.
D.
5. 下列计算正确的是( ) A . 3x+3y=3xy B . (2x3)2=4x5 C . ﹣3x+2x=﹣x D . y2•2y3=2y6 6. 如图,▱ABCD中,BC=BD,∠C=74°,则∠ADB的度数是( )
A . 16° B . 22° C . 32° D . 68° 7. 用四舍五入法得到的近似数2.18×104 , 下列说法正确的是( )
A . 它精确到百分位 B . 它精确到百位 C . 它精确到万位 D . 它精确到0.01 8. 某多边形的内角和是其外角和的4倍,则此多边形的边数是( ) A . 10 B . 9 C . 8 D . 7 9. 在学校乒乓球比赛中,从甲、乙、丙、丁这四人中,随机抽签一组对手,正好抽到乙与丁的概率是(排列下去,若用有序数对(m,n)表示第m排,从左到右第n个数,如(3,2)表示正 整数5,(4,3)表示正整数9,则(20,19)表示的正整数是________.
三、解答题
19. 计算:
.
20. 解方程:
21. 如图,在Rt△ABC中,∠BAC=90°,∠C=30°
(1) 请在图中用尺规作图的方法作出AC的垂直平分线交BC于点D,交AC于点E(不写作法,保留作图痕迹) (2) 连接AD,求证:△ABD是等边三角形. 22. 在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下 男女生等级情况折线统计图和全班等级情况扇形统计图.
1.
2.
3.
4.
5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.
2019年广西玉林市中考数学试卷以及逐题解析版
2019年广西玉林市中考数学试卷以及逐题解析一、选择题:本大题共12小题,每小题3分,共36分. 1.(3分)9的倒数是( ) A .19B .19-C .9D .9-2.(3分)下列各数中,是有理数的是( ) A .πB .1.2C .2D .333.(3分)如图,圆柱底面圆半径为2,高为2,则圆柱的左视图是( )A .平行四边形B .正方形C .矩形D .圆4.(3分)南宁到玉林城际铁路投资约278亿元,将数据278亿用科学记数法表示是( ) A .827810⨯B .927.810⨯C .102.7810⨯D .82.7810⨯5.(3分)若2945α=︒',则α的余角等于( ) A .6055︒'B .6015︒'C .15055︒'D .15015︒'6.(3分)下列运算正确的是( ) A .2325a a a += B .232a a a -=C .325()()a a a --=-D .324222(24)(2)2a b ab ab b a -÷-=- 7.(3分)菱形不具备的性质是( ) A .是轴对称图形 B .是中心对称图形 C .对角线互相垂直D .对角线一定相等8.(3分)若一元二次方程220x x --=的两根为1x ,2x ,则121(1)(1)x x x ++-的值是() A .4B .2C .1D .2-9.(3分)如图,////AB EF DC ,//AD BC ,EF 与AC 交于点G ,则是相似三角形共有()A .3对B .5对C .6对D .8对10.(3分)定义新运算:(0)(0)pq q p q p q q ⎧>⎪⎪=⎨⎪-<⎪⎩⊕,例如:3355=⊕,33(5)5-=⊕,则2(0)y x x =≠⊕的图象是( )A .B .C .D .11.(3分)如图,在Rt ABC ∆中,90C ∠=︒,4AC =,3BC =,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .812.(3分)已知抛物线21:(1)12C y x =--,顶点为D ,将C 沿水平方向向右(或向左)平移m 个单位,得到抛物线1C ,顶点为1D ,C 与1C 相交于点Q ,若160DQD ∠=︒,则m 等于( )A .43±B .23±C .2-或23D .4-或43二、填空题(共6小题,每小题3分,满分18分) 13.(3分)计算:(6)(4)--+= .14.(3分)样本数据2-,0,3,4,1-的中位数是 .15.(3分)我市博览馆有A ,B ,C 三个入口和D ,E 两个出口,小明入馆游览,他从A 口进E 口出的概率是 .16.(3分)如图,一次函数1(5)y k x b =-+的图象在第一象限与反比例函数2ky x=的图象相交于A ,B 两点,当12y y >时,x 的取值范围是14x <<,则k = .17.(3分)设01ba<<,则22242a b m a ab -=+,则m 的取值范围是 .18.(3分)如图,在矩形ABCD 中,8AB =,4BC =,一发光电子开始置于AB 边的点P 处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR 方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45︒,若发光电子与矩形的边碰撞次数经过2019次后,则它与AB 边的碰撞次数是 .三、解答题(共8小题,满分66分) 19.(6分)计算:301231|(2)(cos60)π--+-︒.20.(6分)解方程:31 1(1)(2)xx x x-=--+.21.(6分)如图,已知等腰ABC∆顶角30A∠=︒.(1)在AC上作一点D,使AD BD=(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:BCD∆是等腰三角形.22.(8分)某校有20名同学参加市举办的“文明环保,从我做起”征文比赛,成绩分别记为60分、70分、80分、90分、100分,为方便奖励,现统计出80分、90分、100分的人数,制成如图不完整的扇形统计图,设70分所对扇形圆心角为α.(1)若从这20份征文中,随机抽取一份,则抽到试卷的分数为低于80分的概率是;(2)当180α=︒时,求成绩是60分的人数;(3)设80分为唯一众数,求这20名同学的平均成绩的最大值.23.(9分)如图,在ABC∆中,5AB AC==,6BC=,以AB为直径作O分别交于AC,BC于点D,E,过点E作O的切线EF交AC于点F,连接BD.(1)求证:EF是CDB∆的中位线;(2)求EF的长.24.(9分)某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产蛋量分别是2.5万kg 与3.6万kg ,现假定该养殖场蛋鸡产蛋量的月增长率相同. (1)求该养殖场蛋鸡产蛋量的月平均增长率;(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万kg .如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点?25.(10分)如图,在正方形ABCD 中,分别过顶点B ,D 作//BE DF 交对角线AC 所在直线于E ,F 点,并分别延长EB ,FD 到点H ,G ,使BH DG =,连接EG ,FH . (1)求证:四边形EHFG 是平行四边形;(2)已知:22AB =,4EB =,tan 23GEH ∠=,求四边形EHFG 的周长.26.(12分)已知二次函数:2(21)2(0)y ax a x a =+++<. (1)求证:二次函数的图象与x 轴有两个交点;(2)当二次函数的图象与x 轴的两个交点的横坐标均为整数,且a 为负整数时,求a 的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x 轴的两个交点A ,(B A 在B 的左侧),与y 轴的交点C 及其顶点D 这四点画出二次函数的大致图象,同时标出A ,B ,C ,D 的位置); (3)在(2)的条件下,二次函数的图象上是否存在一点P 使75PCA ∠=︒?如果存在,求出点P 的坐标;如果不存在,请说明理由.2019年广西玉林市中考数学试卷答案与解析一、选择题:本大题共12小题,每小题3分,共36分. 1.(3分)9的倒数是( ) A .19B .19-C .9D .9-【分析】直接利用倒数的定义得出答案. 【解答】解:9的倒数是:19.故选:A .【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键. 2.(3分)下列各数中,是有理数的是( ) A .πB .1.2C .2D .33【分析】直接利用有理数的定义分析得出答案. 【解答】解:四个选项中只有1.2是有理数. 故选:B .【点评】此题主要考查了实数,正确把握有理数的定义是解题关键. 3.(3分)如图,圆柱底面圆半径为2,高为2,则圆柱的左视图是( )A .平行四边形B .正方形C .矩形D .圆【分析】根据圆柱底面圆半径为2,高为2,即可得到底面直径为4,进而得出圆柱的左视图是长方形.【解答】解:圆柱底面圆半径为2,高为2,∴底面直径为4,∴圆柱的左视图是一个长为4,宽为2的长方形,故选:C .【点评】本题主要考查了简单几何体的三视图,左视图是从物体的左面看得到的视图. 4.(3分)南宁到玉林城际铁路投资约278亿元,将数据278亿用科学记数法表示是( ) A .827810⨯B .927.810⨯C .102.7810⨯D .82.7810⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:278亿用科学记数法表示应为102.7810⨯, 故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.(3分)若2945α=︒',则α的余角等于( ) A .6055︒'B .6015︒'C .15055︒'D .15015︒'【分析】根据互为余角的定义作答. 【解答】解:2945α=︒',α∴的余角等于:9029456015︒-︒'=︒'.故选:B .【点评】本题考查了互为余角的定义:如果两个角的和为90︒,那么这两个角互为余角. 6.(3分)下列运算正确的是( ) A .2325a a a += B .232a a a -=C .325()()a a a --=-D .324222(24)(2)2a b ab ab b a -÷-=-【分析】直接利用合并同类项法则以及整式的乘除运算法则分别化简得出答案. 【解答】解:A 、325a a a +=,故此选项错误;B 、232a a -,无法计算,故此选项错误;C 、325()()a a a --=,故此选项错误;D 、324222(24)(2)2a b ab ab b a -÷-=-,正确.故选:D .【点评】此题主要考查了合并同类项以及整式的乘除运算,正确掌握相关运算法则是解题关键.7.(3分)菱形不具备的性质是( ) A .是轴对称图形B .是中心对称图形C .对角线互相垂直D .对角线一定相等【分析】根据菱形的性质对各个选项进行分析,从而得到答案. 【解答】解:A 、是轴对称图形,故正确;B 、是中心对称图形,故正确;C 、对角线互相垂直,故正确;D 、对角线不一定相等,故不正确;故选:D .【点评】本题考查了菱形的性质,熟练掌握菱形的性质是解题的关键.8.(3分)若一元二次方程220x x --=的两根为1x ,2x ,则121(1)(1)x x x ++-的值是() A .4B .2C .1D .2-【分析】根据根与系数的关系得到121x x +=,122x x =-,然后利用整体代入的方法计算121(1)(1)x x x ++-的值.【解答】解:根据题意得121x x +=,122x x =-, 所以1211212(1)(1)111(2)4x x x x x x x ++-=++-=+--=. 故选:A .【点评】本题考查了根与系数的关系:若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠的两根时,12b x x a +=-,12c x x a=.9.(3分)如图,////AB EF DC ,//AD BC ,EF 与AC 交于点G ,则是相似三角形共有()A .3对B .5对C .6对D .8对【分析】图中三角形有:AEG ∆,ADC ∆,CFG ,CBA ∆,因为////AB EF DC ,//AD BC ,所以AEG ADC CFG CBA ∆∆∆∽∽∽,有6种组合【解答】解:图中三角形有:AEG ∆,ADC ∆,CFG ,CBA ∆,////AB EF DC ,//AD BC AEG ADC CFG CBA ∴∆∆∆∽∽∽共有6个组合分别为:AEG ADC ∴∆∆∽,AEG CFG ∆∽,AEG CBA ∆∆∽,ADC CFG ∆∽,ADC CBA ∆∆∽,CFG CBA ∆∽故选:C .【点评】本题主要考查相似三角形的判定.10.(3分)定义新运算:(0)(0)pq q p q p q q ⎧>⎪⎪=⎨⎪-<⎪⎩⊕,例如:3355=⊕,33(5)5-=⊕,则2(0)y x x =≠⊕的图象是( )A .B .C .D .【分析】根据题目中的新定义,可以写出2y x =⊕函数解析式,从而可以得到相应的函数图象,本题得以解决.【解答】解:(0)(0)pq q p q p q q⎧>⎪⎪=⎨⎪-<⎪⎩⊕,2(0)22(0)x xy x x x⎧>⎪⎪∴==⎨⎪-<⎪⎩⊕, 故选:D .【点评】本题考查函数的图象,解答本题的关键是明确题意,利用反比例函数的性质解答. 11.(3分)如图,在Rt ABC ∆中,90C ∠=︒,4AC =,3BC =,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .8【分析】设O 与AC 相切于点D ,连接OD ,作OP BC ⊥垂足为P 交O 于F ,此时垂线段OP 最短,MN 最小值为53OP OF -=,当N 在AB 边上时,M 与B 重合时,MN 最大值1013133=+=,由此不难解决问题. 【解答】解:如图,设O 与AC 相切于点D ,连接OD ,作OP BC ⊥垂足为P 交O 于F , 此时垂线段OP 最短,PF 最小值为OP OF -, 4AC =,3BC =, 5AB ∴=90OPB ∠=︒, //OP AC ∴点O 是AB 的三等分点, 210533OB ∴=⨯=,23OP OB AC AB ==,83OP ∴=, O 与AC 相切于点D , OD AC ∴⊥, //OD BC ∴,∴13OD OQ BC AB ==, 1OD ∴=,MN ∴最小值为85133OP OF -=-=,如图,当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长, MN 最大值1013133=+=, MN ∴长的最大值与最小值的和是6.【点评】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点MN 取得最大值、最小值时的位置,属于中考常考题型.12.(3分)已知抛物线21:(1)12C y x =--,顶点为D ,将C 沿水平方向向右(或向左)平移m 个单位,得到抛物线1C ,顶点为1D ,C 与1C 相交于点Q ,若160DQD ∠=︒,则m 等于( )A .43±B .23±C .2-或23D .4-或43【分析】根据平移的性质求得交点Q 的横坐标,代入C 求得纵坐标,然后根据题意和勾股定理得到,22222(1)(11)28m m m +-+-+=,解方程即可求得. 【解答】解:抛物线21:(1)12CC y x =--沿水平方向向右(或向左)平移m 个单位得到21(1)12y x m =---, (1,1)D ∴-,(1,1)D m +-,Q ∴点的横坐标为:22m +, 代入21(1)12y x =--求得2(2m Q +,21)8m -, 若160DQD ∠=︒,则1DQD ∆是等腰直角三角形,1||QD DD m ∴==,由勾股定理得,22222(1)(11)28m m m +-+-+=, 解得43m =±,【点评】本题考查了二次函数的性质,平移的性质,求得Q的坐标是解题的关键.二、填空题(共6小题,每小题3分,满分18分)13.(3分)计算:(6)(4)--+=10-.【分析】根据有理数的减法法则:减去一个数,等于加上这个数的相反数.【解答】解:(6)(4)(6)(4)10--+=-+-=-.故答案为:10-【点评】本题主要考查了有理数的加减法,熟练掌握法则是解答本题的关键.14.(3分)样本数据2-,0,3,4,1-的中位数是0.【分析】根据中位数的定义求解.【解答】解:按从小到大的顺序排列是:2-,1-,0,3,4.中间的是1.则中位数是:0.故答案是:0.【点评】本题考查中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.15.(3分)我市博览馆有A,B,C三个入口和D,E两个出口,小明入馆游览,他从A口进E口出的概率是16.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:根据题意画树形图:共有6种等情况数,其中“A口进D口出”有一种情况,从“A口进D口出”的概率为16;故答案为:16. 【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)如图,一次函数1(5)y k x b =-+的图象在第一象限与反比例函数2k y x=的图象相交于A ,B 两点,当12y y >时,x 的取值范围是14x <<,则k = 4 .【分析】根据题意知,将反比例函数和一次函数联立,A 、B 的横坐标分别为1、4,代入方程求解得到k 的值.【解答】解:由已知得A 、B 的横坐标分别为1,4,所以有54(5)4k b k k k b -+=⎧⎪⎨-+=⎪⎩ 解得4k =, 故答案为4.【点评】本题考查了一次函数和二次函数的交点问题,交点坐标适合两个解析式是解题的关键.17.(3分)设01b a<<,则22242a b m a ab -=+,则m 的取值范围是 11m -<< . 【分析】把22242a b a ab -+的分子、分母分别因式分解,约分后可得221a b b m a a-==-,再根据01b a <<即可确定m 的取值范围. 【解答】解:2224(2)(2)2212(2)a b a b a b a b b m a ab a a b a a-+--====-++, 01b a<<, 220b a ∴-<-<,2111b a∴--<, 即11m -<<.故答案为:11m -<<【点评】本题主要考查了分式的约分以及不等式的基本性质,熟练掌握分解因式的方法是解答本题的关键.18.(3分)如图,在矩形ABCD 中,8AB =,4BC =,一发光电子开始置于AB 边的点P 处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR 方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45︒,若发光电子与矩形的边碰撞次数经过2019次后,则它与AB 边的碰撞次数是 672 .【分析】根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,发光电子回到起始的位置,即可求解.【解答】解:如图根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB 边的碰撞有2次,201963363÷=⋯,当点P 第2019次碰到矩形的边时为第337个循环组的第3次反弹,点P 的坐标为(6,4) ∴它与AB 边的碰撞次数是3362672=⨯=次故答案为672【点评】本题主要考查了矩形的性质,点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.三、解答题(共8小题,满分66分)19.(6分)计算:3012|31|(2)(cos60)2π----+-︒. 【分析】先取绝对值符号、乘方、二次根式和零指数幂,再计算加减可得.【解答】解:原式31831=-+-+8=.【点评】本题主要考查实数的运算,解题的关键是掌握乘方的定义、绝对值性质、算术平方根的定义及零指数幂的规定.20.(6分)解方程:311(1)(2)x x x x -=--+. 【分析】化简所求方程为2231(2)(1)x x x x +-=+-,将分式方程转化为整式方程223(1)(2)x x x x +-=-+,解得1x =,检验方程的根即可求解;【解答】解:23(2)32311(1)(2)(1)(2)(2)(1)x x x x x x x x x x x x +-+--===--+-++-, 223(1)(2)x x x x ∴+-=-+,1x ∴=,经检验1x =是方程的增根,∴原方程无解;【点评】本题考查分式方程的解法;熟练掌握分式方程的解法,验根是关键.21.(6分)如图,已知等腰ABC ∆顶角30A ∠=︒.(1)在AC 上作一点D ,使AD BD =(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:BCD ∆是等腰三角形.【分析】(1)作AB 的垂直平分线交AC 于D ;(2)利用等腰三角形的性质和三角形内角和计算出72ABC C ∠=∠=︒,再利用DA DB =得到36ABD A ∠=∠=︒,所以72BDC ∠=︒,从而可判断BCD ∆是等腰三角形.【解答】(1)解:如图,点D 为所作;(2)证明:AB AC =, 1(18036)722ABC C ∴∠=∠=︒-︒=︒, DA DB =,36ABD A ∴∠=∠=︒,363672BDC A ABD ∴∠=∠+∠=︒+︒=︒,BDC C ∴∠=∠,BCD ∴∆是等腰三角形.【点评】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的判定与性质.22.(8分)某校有20名同学参加市举办的“文明环保,从我做起”征文比赛,成绩分别记为60分、70分、80分、90分、100分,为方便奖励,现统计出80分、90分、100分的人数,制成如图不完整的扇形统计图,设70分所对扇形圆心角为α.(1)若从这20份征文中,随机抽取一份,则抽到试卷的分数为低于80分的概率是25; (2)当180α=︒时,求成绩是60分的人数;(3)设80分为唯一众数,求这20名同学的平均成绩的最大值.【分析】(1)求出低于80分的征文数量,再根据概率公式计算可得;(2)当180α=︒时,成绩是70分的人数为10人,据此求解可得;(3)根据题意得出各组人数进而求出平均数.【解答】解:(1)低于80分的征文数量为20(130%20%10%)8⨯---=,则抽到试卷的分数为低于80分的概率是82205=, 故答案为:25.(2)当180α=︒时,成绩是70分的人数为10人,则成绩是60分的人数201020(10%20%30%)2--⨯++=(人);(3)80分的人数为:2030%6⨯=(人),且80分为成绩的唯一众数,所以当70分的人数为5人时,这个班的平均数最大,∴最大值为:(2010%1002020%902030%80570360)2078.5⨯⨯+⨯⨯+⨯⨯+⨯+⨯÷=(分). 【点评】此题主要考查了概率公式以及扇形统计图的应用,正确获取信息得出各组人数是解题关键.23.(9分)如图,在ABC ∆中,5AB AC ==,6BC =,以AB 为直径作O 分别交于AC ,BC 于点D ,E ,过点E 作O 的切线EF 交AC 于点F ,连接BD .(1)求证:EF 是CDB ∆的中位线;(2)求EF 的长.【分析】(1)连接AE ,由圆周角定理得90ADB AEB ∠=∠=︒,由等腰三角形的性质得出3BE CE ==,证出OE 是ABC ∆的中位线,得出//OE AC ,得出//BD EF ,即可得出结论; (2)由勾股定理得出224AE AB BE =-=,由三角形面积得出245BC AE BD AC ⨯==,由三角形中位线定理即可得出11225EF BD ==. 【解答】(1)证明:连接AE ,如图所示:AB 为O 的直径,90ADB AEB ∴∠=∠=︒,AE BC ∴⊥,BD AC ⊥,AB AC =,3BE CE ∴==, EF 是O 的切线,OE EF ∴⊥,OA OB =,OE ∴是ABC ∆的中位线,//OE AC ∴,OE BD ∴⊥,//BD EF ∴,BE CE =,CF DF ∴=,EF ∴是CDB ∆的中位线;(2)解:90AEB ∠=︒, 2222534AE AB BE ∴=-=-=,ABC ∆的面积1122AC BD BC AE =⨯=⨯, 642455BC AE BD AC ⨯⨯∴===, EF 是CDB ∆的中位线,11225EF BD ∴==.【点评】本题考查了切线的性质、圆周角定理、等腰三角形的性质、三角形中位线定理、勾股定理等知识;熟练掌握切线的性质和圆周角定理是解题的关键.24.(9分)某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产蛋量分别是2.5万kg 与3.6万kg ,现假定该养殖场蛋鸡产蛋量的月增长率相同.(1)求该养殖场蛋鸡产蛋量的月平均增长率;(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万kg .如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点?【分析】(1)设该养殖场蛋鸡产蛋量的月平均增长率为x ,根据题意列方程即可得到结论;(2)设至少再增加y 个销售点,根据题意列不等式即可得到结论.【解答】解:(1)设该养殖场蛋鸡产蛋量的月平均增长率为x ,根据题意得,22.5(1) 3.6x +=,解得:0.2x =, 2.2x =-(不合题意舍去),答:该养殖场蛋鸡产蛋量的月平均增长率为20%;(2)设至少再增加y 个销售点,根据题意得,3.60.32 3.6(120%)y +⨯+, 解得:94y , 答:至少再增加3个销售点.【点评】本题考查了一元二次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.25.(10分)如图,在正方形ABCD 中,分别过顶点B ,D 作//BE DF 交对角线AC 所在直线于E ,F 点,并分别延长EB ,FD 到点H ,G ,使BH DG =,连接EG ,FH .(1)求证:四边形EHFG 是平行四边形;(2)已知:22AB =,4EB =,tan 23GEH ∠=,求四边形EHFG 的周长.【分析】(1)证明()ABE CDF AAS ∆≅∆,得BE DF =,根据一组对边平行且相等的四边形是平行四边形可得结论;(2)如图,连接BD ,交EF 于O ,计算EO 和BO 的长,得30OEB ∠=︒,根据三角函数可得HM 的长,从而得EM 和EH 的长,利用勾股定理计算FH 的长,最后根据四边的和计算结论.【解答】解:(1)四边形ABCD 是正方形,AB CD ∴=,//AB CD ,DCA BAC ∴∠=∠,//DF BE,CFD BEA∴∠=∠,BAC BEA ABE∠=∠+∠,DCA CFD CDF∠=∠+∠,ABE CDF∴∠=∠,在ABE∆和CDF∆中,ABE CDFAEB CFDAB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE CDF AAS∴∆≅∆,BE DF∴=,BH DG=,BE BH DF DG∴+=+,即EH GF=,//EH GF,∴四边形EHFG是平行四边形;(2)如图,连接BD,交EF于O,四边形ABCD是正方形,BD AC∴⊥,90AOB∴∠=︒,22AB=2OA OB∴==,Rt BOE∆中,4EB=,30OEB∴∠=︒,23EO∴=OD OB=,EOB DOF∠=∠,//DF EB,DFC BEA ∴∠=∠,()DOF BOE AAS ∴∆≅∆,OF OE ∴==EF ∴=,FM ∴=,6EM =,过F 作FM EH ⊥于M ,交EH 的延长线于M ,//EG FH ,FHM GEH ∴∠=∠,tan tan FM GEH FHM HM ∠=∠==,∴= 1HM ∴=,615EH EM HM ∴=-=-=,FH∴四边形EHFG 的周长222510EH FH =+=⨯++【点评】此题主要考查了正方形的性质,平行四边形的判定和性质,三角函数和全等三角形的判定等知识.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题,第二问有难度,恰当地作出辅助线是关键.26.(12分)已知二次函数:2(21)2(0)y ax a x a =+++<.(1)求证:二次函数的图象与x 轴有两个交点;(2)当二次函数的图象与x 轴的两个交点的横坐标均为整数,且a 为负整数时,求a 的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x 轴的两个交点A ,(B A 在B 的左侧),与y 轴的交点C 及其顶点D 这四点画出二次函数的大致图象,同时标出A ,B ,C ,D 的位置); (3)在(2)的条件下,二次函数的图象上是否存在一点P 使75PCA ∠=︒?如果存在,求出点P 的坐标;如果不存在,请说明理由.【分析】(1)将解析式右边因式分解得抛物线与x 轴的交点为(2,0)-、1(a-,0),结合0a <即可得证;(2)结合(1)中一个交点坐标1(a -,0)及横坐标均为整数,且a 为负整数可得a 的值,从而得出抛物线解析式,继而求出点C 、D 坐标,从而画出函数图象;(3)分点P 在AC 上方和下方两种情况,结合45ACO ∠=︒得出直线PC 与x 轴所夹锐角度数,从而求出直线PC 解析式,继而联立方程组,解之可得答案.【解答】解:(1)2(21)2(2)(1)y ax a x x ax =+++=++,且0a <,∴抛物线与x 轴的交点为(2,0)-、1(a -,0), 则二次函数的图象与x 轴有两个交点;(2)两个交点的横坐标均为整数,且a 为负整数,1a ∴=-,则抛物线与x 轴的交点A 的坐标为(2,0)-、B 的坐标为(1,0),∴抛物线解析式为(2)(1)y x x =+-+22x x =--+219()24x =-++, 当0x =时,2y =,即(0,2)C ,函数图象如图1所示:(3)存在这样的点P ,2OA OC ==,45ACO ∴∠=︒,如图2,当点P 在直线AC 上方时,记直线PC 与x 轴的交点为E ,75PCA ∠=︒,120PCO ∴∠=︒,60OCB ∠=︒,则30OEC ∠=︒,23tan 3OC OE OEC ∴==∠ 则(23E ,0),求得直线CE 解析式为32y =+, 联立2322y y x x ⎧=+⎪⎨⎪=--+⎩,解得02x y =⎧⎨=⎩或333353x y ⎧-=⎪⎪⎨-⎪=⎪⎩, 33(3P -∴,35)3-; 如图3,当点P 在直线AC 下方时,记直线PC 与x 轴的交点为F ,75ACP ∠=︒,45ACO ∠=︒,30OCF ∴∠=︒, 则323tan 2OF OC OCF =∠==, 23(F ∴,0), 求得直线PC 解析式为32y x =-+,联立2322y x y x x ⎧=-+⎪⎨=--+⎪⎩, 解得:02x y =⎧⎨=⎩或3131x y ⎧=⎪⎨=⎪⎩, (31P ∴,31),综上,点P 的坐标为33(-35-或(3131). 【点评】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的图象和性质、直线与抛物线相交的问题等.。
广西玉林市中考数学三模试卷
广西玉林市中考数学三模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列说法正确的是()A . 正整数、负整数统称为整数B . 正分数、负分数统称为分数C . 零既属于正整数又属于负整数D . 有理数是正数和负数的统称2. (2分) (2018七上·惠东期中) 下列说法错误的是()A . 3.14×103是精确到十位B . 4.609万精确到万位C . 近似数0.8和0.80表示的意义不同D . 用科学记数法表示的数2.5×104 ,其原数是250003. (2分)(2017·广州模拟) 如图是一个由4个相同的长方体组成的立体图形,它的左视图是()A .B .C .D .4. (2分)点N(a,﹣b)关于y轴的对称点是坐标是()A . (﹣a,b)B . (﹣a,﹣b)C . (a,b)D . (﹣b,a)5. (2分) (2018八上·营口期末) 下列计算正确的是()A . (x﹣y)2=x2﹣y2B . (﹣a2b)3=a6b3C . a10÷a2=a5D . (﹣3)﹣2=6. (2分)如图,AB∥CD,∠DCE=80°,则∠BEF=()A . 120°B . 110°C . 100°D . 80°7. (2分)(2018·福建) 投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A . 两枚骰子向上一面的点数之和大于1B . 两枚骰子向上一面的点数之和等于1C . 两枚骰子向上一面的点数之和大于12D . 两枚骰子向上一面的点数之和等于128. (2分)(2014·遵义) 已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A .B .C .D .9. (2分)(2018·富阳模拟) 如图,在平面直角坐标系中,四边形是菱形,∠B=60°,反比例函数的图象经过点,若将菱形向下平移2个单位,点恰好落在反比例函数的图象上,则反比例函数的表达式为()A .B .C .D .10. (2分)如图,菱形的顶点的坐标为,顶点在轴的正半轴上.反比例函数的图象经过顶点,则K的值为()A . 12B . 20C . 24D . 32二、填空题 (共6题;共8分)11. (1分)(2017·邹平模拟) 从﹣1,1,2这三个数中,任取两个不同的数作为一次函数y=kx+b的系数k,b,则一次函数y=kx+b的图象不经过第四象限的概率是________.12. (1分)抛物线y=(x﹣1)2﹣1的顶点在直线y=kx﹣3上,则k=________ .13. (1分) (2019九上·虹口期末) 如图,正方形的边长为4,点为对角线的交点,点为边的中点,绕着点旋转至,如果点在同一直线上,那么的长为________.14. (1分)在Rt△ABC中,斜边AB=5,直角边BC= ,则△ABC的面积是________.15. (2分) (2019九上·博白期中) 如图,是由绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB上,且,则的度数是________°.16. (2分)(2019·石景山模拟) 如图,⊙O的弦AB=8cm,点C为优弧上的动点,且∠ACB=30°.若弦DE经过弦AC、BC的中点M、N,则DM+EN的最大值是________cm.三、综合题 (共8题;共27分)17. (5分)(2019·合肥模拟) 先化简,再求值:,其中x=﹣2.18. (2分) (2019八下·乌兰察布期中) 如图,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点C出发.以每秒1个单位长度的速度沿CB匀速运动,动点Q从点D出发,以每秒2个单位长度的速度沿x轴的负方向匀速运动,P,Q两点同时运动,当Q点到达O点时两点同时停止运动.设运动时间为t秒,(1)当t为何值时,四边形OCPQ为矩形?(2)当t为何值时,以C,P,Q,A为顶点的四边形为平行四边形?(3) E点坐标(5,0),当△OEP为等腰三角形时,请直接写出所有符合条件的点P的坐标.19. (2分)根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其他共五类.根据调查的部分相关数据,绘制的统计图表如下:根据所给信息解答下列问题(1)请补全条形统计图并在图中标明相应数据.(2)若菏泽市约有880万人口,请你估计最关注环保问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.20. (10分)在某超市小明买了1千克甲种糖果和2千克乙种糖果,共付38元;小强买了2千克甲种糖果和0.5千克乙种糖果,共付27元.(1)求该超市甲、乙两种糖果每千克各需多少元?(2)某顾客到该超市购买甲、乙两种糖果共20千克混合,欲使总价不超过240元,问该顾客混合的糖果中甲种糖果最少多少千克?21. (2分)如图所示,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.22. (2分) (2018九上·大洼月考) 如图,△ABC内接于⊙O, BC是⊙O 的直径,点A是⊙O上的定点,AD 平分∠BAC交⊙O于点D,DG∥BC,交AC延长线于点G.(1)求证:DG与⊙O相切;(2)作BE⊥AD于点E,CF⊥AD于点F,试判断线段BE,CF、EF三者之间的数量关系,并证明你的结论(不用尺规作图的方法补全图形).23. (2分) (2017八上·弥勒期末) 如图,已知在中,,为边的中点,过点作,垂足分别为.(1)求证:;(2)若, = ,求的周长.24. (2分)如图,经过点C(0,﹣4)的抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣2,0),B两点(1)a________ 0,b2﹣4ac________ 0(填“>”或“<”)(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、综合题 (共8题;共27分)17-1、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。
广西省玉林市2019-2020学年中考三诊数学试题含解析
广西省玉林市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知正多边形的一个外角为36°,则该正多边形的边数为( ). A .12B .10C .8D .62.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=o ,90C o ∠=,45A ∠=o ,30D ∠=o ,则12∠+∠等于( )A .150oB .180oC .210oD .270o3.如图,二次函数y =ax 2+bx +c(a≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC .则下列结论:①abc <0;②2404b aca->;③ac -b +1=0;④OA·OB =c a -.其中正确结论的个数是( )A .4B .3C .2D .14.甲、乙、丙三家超市为了促销同一种定价为m 元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A .甲B .乙C .丙D .都一样5.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子( ) A .1颗B .2颗C .3颗D .4颗6.计算(-18)÷9的值是( ) A .-9B .-27C .-2D .27.已知反比例函数,下列结论不正确的是( )A .图象必经过点(﹣1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若,则8.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A.16B.13C.12D.239.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列结论:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正确的结论有()A.1个B.2个C.3个D.4个10.2017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为()A.7.49×107B.74.9×106C.7.49×106D.0.749×10711.二次函数2y ax bx c=++(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是()A.4ac<b2B.abc<0 C.b+c>3a D.a<b12.分式方程213xx=-的解为()A.x=-2 B.x=-3 C.x=2 D.x=3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.14.如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=12xx,连接CE,CF,则△CEF周长的最小值为_____.15.当03x≤≤时,直线y a=与抛物线2(1)3y x=﹣﹣有交点,则a的取值范围是_______.16.分解因式:2x2﹣8=_____________17.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.18.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有_____个.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:(1)A组的频数a比B组的频数b小24,样本容量,a为:(2)n为°,E组所占比例为%:(3)补全频数分布直方图;(4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有名.20.(6分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:组别身高A x<160B 160≤x<165C 165≤x<170D 170≤x<175E x≥175根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的有人,E组所在扇形的圆心角度数为;(3)已知该校共有男生600人,女生480人,请估让身高在165≤x<175之间的学生约有多少人?21.(6分)鲜丰水果店计划用12元/盒的进价购进一款水果礼盒以备销售.()1据调查,当该种水果礼盒的售价为14元/盒时,月销量为980盒,每盒售价每增长1元,月销量就相应减少30盒,若使水果礼盒的月销量不低于800盒,每盒售价应不高于多少元?()2在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了25%,而每盒水果礼盒的售价比(1)中最高售价减少了1%5m,月销量比(1)中最低月销量800盒增加了%m,结果该月水果店销售该水果礼盒的利润达到了4000元,求m的值.22.(8分)如图,在平行四边形ABCD中,过点A作AE⊥DC,垂足为点E,连接BE,点F为BE上一点,连接AF,∠AFE=∠D.(1)求证:∠BAF=∠CBE;(2)若AD=5,AB=8,sinD=45.求证:AF=BF.23.(8分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?24.(10分)新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A 逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”(特例感知)(1)①若△ABC是等边三角形(如图2),BC=1,则AD=;②若∠BAC=90°(如图3),BC=6,AD=;(猜想论证)(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;(拓展应用)(3)如图1.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.25.(10分)如图,AB AE =,12∠=∠,C D ∠=∠,求证:ABC AED ≌△△。
广西玉林市2019年中考[数学]考试真题与答案解析
广西玉林市2019年中考[数学]考试真题与答案解析一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填(涂)在答题卡内相应的位置上.1.2的倒数是( )A.B.C.2D.﹣2答案解析:2的倒数是.故选:A.2.sin45°的值是( )A.B.C.D.1答案解析:sin45°.故选:B.3.2019新型冠状病毒的直径是0.00012mm,将0.00012用科学记数法表示是( )A.120×10﹣6B.12×10﹣3C.1.2×10﹣4D.1.2×10﹣5答案解析:0.00012=1.2×10﹣4.故选:C.4.如图是由4个完全相同的正方体搭成的几何体,则( )A.三视图都相同B.俯视图与左视图相同C.主视图与俯视图相同D.主视图与左视图相同答案解析:如图所示:,故该几何体的主视图和左视图相同.故选:D.5.下列计算正确的是( )A.8a﹣a=7B.a2+a2=2a4C.2a•3a=6a2D.a6÷a2=a3答案解析:A.因为8a﹣a=7a,所以A选项错误;B.因为a2+a2=2a2,所以B选项错误;C.因为2a•3a=6a2,所以C选项正确;D.因为a6÷a2=a4,所以D选项错误.故选:C.6.下列命题中,其逆命题是真命题的是( )A.对顶角相等B.两直线平行,同位角相等C.全等三角形的对应角相等D.正方形的四个角都相等答案解析:A,其逆命题是:两个相等的角是对顶角,故是假命题;B,其逆命题是:同位角相等,两直线平行,故是真命题;C,其逆命题是:对应角相等的两个三角形是全等三角形.大小不同的两个等边三角形虽然对应角相等但不全等,故是假命题;D,其逆命题是:四个角都相等的四边形是正方形,故是假命题;故选:B.7.在对一组样本数据进行分析时,小华列出了方差的计算公式:s2,由公式提供的信息,则下列说法错误的是( )A.样本的容量是4B.样本的中位数是3C.样本的众数是3D.样本的平均数是3.5答案解析:由题意知,这组数据为2、3、3、4,所以这组数据的样本容量为4,中位数为3,众数为3,平均数为3,故选:D.8.已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.求证:DE∥BC,且DE BC.证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又AE=EC,则四边形ADCF是平行四边形,接着以下是排序错误的证明过程:①∴DF BC;②∴CF AD.即CF BD;③∴四边形DBCF是平行四边形;④∴DE∥BC,且DE BC.则正确的证明顺序应是:( )A.②→③→①→④B.②→①→③→④C.①→③→④→②D.①→③→②→④答案解析:证明:延长DE到点F,使EF=DE,连接FC,DC,AF,∵点D,E分别是△ABC的边AB,AC的中点,∴AD=BD,AE=EC,∴四边形ADCF是平行四边形,∴CF AD.即CF BD,∴四边形DBCF是平行四边形,∴DF BC,∴DE∥BC,且DE BC.∴正确的证明顺序是②→③→①→④,故选:A.9.如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A 岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个( )A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形答案解析:如图,过点C作CD∥AE交AB于点D,∴∠DCA=∠EAC=35°,∵AE∥BF,∴CD∥BF,∴∠BCD=∠CBF=55°,∴∠ACB=∠ACD+∠BCD=35°+55°=90°,∴△ABC是直角三角形.∴∠ACD=∠ACB﹣∠BCD=90°﹣55°,=35°,∵CD∥AE,∴∠EAC=∠ACD=35°,∴∠CAD=∠EAD﹣∠CAE=80°﹣35°=45°,∴∠ABC=∠ACB﹣∠CAD=45°,∴CA=CB,∴△ABC是等腰直角三角形.故选:A.10.观察下列按一定规律排列的n个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n等于( )A.499B.500C.501D.1002答案解析:由题意,得第n个数为2n,那么2n+2(n﹣1)+2(n﹣2)=3000,解得:n=501,故选:C.11.一个三角形木架三边长分别是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm和120cm的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有( )A.一种B.两种C.三种D.四种答案解析:长120cm的木条与三角形木架的最长边相等,则长120cm的木条不能作为一边,设从120cm的木条上截下两段长分别为xcm,ycm(x+y≤120),由于长60cm的木条不能与75cm的一边对应,否则x、y有大于120cm,当长60cm的木条与100cm的一边对应,则,解得:x=45,y=72;当长60cm的木条与120cm的一边对应,则,解得:x=37.5,y=50.答:有两种不同的截法:把120cm的木条截成45cm、72cm两段或把120cm 的木条截成37.5cm、50cm两段.故选:B.12.把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是( )A.﹣4B.0C.2D.6答案解析:∵把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,∴原二次函数的顶点为(1,﹣4a),∴原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,∴b=﹣2a,c=﹣3a,∵(m﹣1)a+b+c≤0,∴(m﹣1)a﹣2a﹣3a≤0,∵a>0,∴m﹣1﹣2﹣3≤0,即m≤6,∴m的最大值为6,故选:D.二、填空题本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上.13.计算:0﹣(﹣6)= 6 .答案解析:原式=0+6=6.故答案为:6.14.分解因式:a3﹣a= a(a+1)(a﹣1) .答案解析:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).15.如图,将两张对边平行且等宽的纸条交叉叠放在一起,则重合部分构成的四边形ABCD 是 菱形(填“是”或“不是”).答案解析:如图,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,作AE⊥BC于点E,AF⊥DC于点F,∵两张等宽的长方形纸条交叉叠放在一起,∴AE=AF,∴S平行四边形ABCD=BC•AE=DC•AF,∴BC=DC,∴▱ABCD是菱形.故答案为:是.16.经过人民中路十字路口红绿灯处的两辆汽车,可能直行,也可能向左转,如果这两种可能性大小相同,则至少有一辆向左转的概率是 .答案解析:画树状图如下:由树状图知,共有4种等可能结果,其中至少有一辆向左转的有3种等可能结果,所以至少有一辆向左转的概率为,故答案为:.17.如图,在边长为3的正六边形ABCDEF中,将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,此时边AD′与对角线AC重叠,则图中阴影部分的面积是 3π .答案解析:∵在边长为3的正六边形ABCDEF中,∠DAC=30°,∠B=∠BCD =120°,AB=BC,∴∠BAC=∠BCA=30°,∴∠ACD=90°,∵CD=3,∴AD=2CD=6,∴图中阴影部分的面积=S四边形ADEF+S扇形DAD′﹣S四边形AF′E′D′,∵将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,∴S四边形ADEF=S四边形AD′E′F′∴图中阴影部分的面积=S扇形DAD′3π,故答案为:3π.18.已知:函数y1=|x|与函数y2的部分图象如图所示,有以下结论:①当x<0时,y1,y2都随x的增大而增大;②当x<﹣1时,y1>y2;③y1与y2的图象的两个交点之间的距离是2;④函数y=y1+y2的最小值是2.则所有正确结论的序号是 ②③④ .答案解析:补全函数图象如图:①当x<0时,y1随x的增大而增大,y2随x的增大而减小;故①错误;②当x<﹣1时,y1>y2;故②正确;③y1与y2的图象的两个交点之间的距离是2;故③正确;④由图象可知,函数y=y1+y2的最小值是2,故④正确.综上所述,正确的结论是②③④.故答案为②③④.三、解答题本大题共8小题,满分共66分.解答应写出证明过程成演算步骤(含相应的文字说明).将解答写在答题卡上.19.计算:•(π﹣3.14)0﹣|1|+()2.答案解析:原式1﹣(1)+91+9=10.20.解方程组:.答案解析:,①+②×3得:7x=7,解得:x=1,把x=1代入①得:y=1,则方程组的解为.21.已知关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等的实数根是a,b,求的值.答案解析:(1)∵方程有两个不相等的实数根,∴△=b2﹣4ac=4+4k>0,解得k>﹣1.∴k的取值范围为k>﹣1;(2)由根与系数关系得a+b=﹣2,a•b=﹣k,1.22.在镇、村两委及帮扶人大力扶持下,贫困户周大叔与某公司签订了农产品销售合同,并于今年春在自家荒坡上种植了A,B,C,D四种不同品种的果树苗共300棵,其中C品种果树苗的成活率为90%,几个品种的果树苗种植情况及其成活情况分别绘制在如图图①和图②两个尚不完整的统计图中.(1)种植B品种果树苗有 75 棵;(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个品种的果树苗成活率最高?答案解析:(1)300×(1﹣35%﹣20%﹣20%)=300×25%=75(棵).故答案为:75;(2)300×20%×90%=54(棵),补全统计图如图所示:(3)A品种的果树苗成活率:100%=80%,B品种的果树苗成活率:100%=80%,C品种的果树苗成活率:90%,D品种的果树苗成活率:100%=85%,所以,C品种的果树苗成活率最高.23.如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.答案解析:(1)证明:连接OF,如图1所示:∵CD⊥AB,∴∠DBC+∠C=90°,∵OB=OF,∴∠DBC=∠OFB,∵EF=EC,∴∠C=∠EFC,∴∠OFB+∠EFC=90°,∴∠OFE=180°﹣90°=90°,∴OF⊥EF,∵OF为⊙O的半径,∴EF是⊙O的切线;(2)解:连接AF,如图2所示:∵AB是⊙O的直径,∴∠AFB=90°,∵D是OA的中点,∴OD=DA OA AB4=1,∴BD=3OD=3,∵CD⊥AB,CD=AB=4,∴∠CDB=90°,由勾股定理得:BC5,∵∠AFB=∠CDB=90°,∠FBA=∠DBC,∴△FBA∽△DBC,∴,∴BF,∴CF=BC﹣BF=5.24.南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x千立方米,总需用时间y天,且完成首期工程限定时间不超过600天.(1)求y与x之间的函数关系式及自变量x的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?答案解析:(1)根据题意可得:y,∵y≤600,∴x≥1;(2)设实际挖掘了m天才能完成首期工程,根据题意可得:0.2,解得:m=﹣600(舍)或500,检验得:m=500是原方程的根,答:实际挖掘了500天才能完成首期工程.25.如图,四边形ABCD中,对角线AC与BD交于点O,且OA=OB=OC=OD AB.(1)求证:四边形ABCD是正方形;(2)若H是边AB上一点(H与A,B不重合),连接DH,将线段DH绕点H 顺时针旋转90°,得到线段HE,过点E分别作BC及AB延长线的垂线,垂足分别为F,G.设四边形BGEF的面积为s1,以HB,BC为邻边的矩形的面积为s2,且s1=s2.当AB=2时,求AH的长.答案解析:(1)证明:∵OA=OB=OC=OD,∴AC=BD,∴平行四边形ABCD是矩形,∵OA=OB=OC=OD AB,∴OA2+OB2=AB2,∴∠AOB=90°,即AC⊥BD,∴四边形ABCD是正方形;(2)解:∵EF⊥BC,EG⊥AG,∴∠G=∠EFB=∠FBG=90°,∴四边形BGEF是矩形,∵将线段DH绕点H顺时针旋转90°,得到线段HE,∴∠DHE=90°,DH=HE,∴∠ADH+∠AHD=∠AHD+∠EHG=90°,∴∠ADH=∠EHG,∵∠DAH=∠G=90°,∴△ADH≌△GHE(AAS),∴AD=HG,AH=EG,∵AB=AD,∴AB=HG,∴AH=BG,∴BG=EG,∴矩形BGEF是正方形,设AH=x,则BG=EG=x,∵s1=s2.∴x2=2(2﹣x),解得:x1(负值舍去),∴AH1.26.(12分)如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.答案解析:(1)对于y1=﹣x2﹣2x+3,令y1=0,得到﹣x2﹣2x+3=0,解得x=﹣3或1,∴A(﹣3,0),B(1,0),令x=0,得到y=3,∴C(0,3).(2)设平移后的抛物线的解析式为y=﹣(x﹣a)2+b,如图1中,过点D′作D′H⊥OB′于H.,连接BD′,B′D′.∵D′是抛物线的顶点,∴D′B=D′B′,D′(a,b),∵∠BD′B′=90°,D′H⊥BB′,∴BH=HB′,∴D′H=BH=HB′=b,∴a=1+b,又∵y=﹣(x﹣a)2+b,经过B(1,0),∴b=(1﹣a)2,解得a=2或1(不合题意舍弃),b=1,∴B′(3,0),y2=﹣(x﹣2)2+1=﹣x2+4x﹣3.(3)如图2中,观察图象可知,当点P的纵坐标为3或﹣3时,存在满足条件的平行四边形.对于y1=﹣x2﹣2x+3,令y=3,x2+2x=0,解得x=0或﹣2,可得P1(﹣2,3),令y=﹣3,则x2+2x﹣6=0,解得x=﹣1,可得P2(﹣1,﹣3),P3(﹣1,﹣3),对于y2=﹣x2+4x﹣3,令y=3,方程无解,令y=﹣3,则x2﹣4x=0,解得x=0或4,可得P4(0,﹣3),P5(4,﹣3),综上所述,满足条件的点P的坐标为(﹣2,3)或(﹣1,﹣3)或(﹣1,﹣3)或(0,﹣3)或(4,﹣3).。
广西玉林市2019年中考一模数学试卷及答案(word版)
广西玉林市2019年中考一模数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上).3.06年,我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停,整改324.把不等式组的解集表示在数轴上,正确的是()....5.小明和小亮玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜;若和为偶数则小7.若与|x﹣y﹣3|互为相反数,则x+y的值为()8.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计)....9.已知关于x的一元二次方程x2﹣2x﹣m=0有两个相等的实数根,则常数m的值是().﹣10.在纸上剪下一个圆形和一个扇形纸片,使之恰好能够围成一个圆锥模型,若圆的半径为r,扇形的半径为R,扇形的圆心角等于120°(如图),则r与R之间的关系是()11.如图,在菱形ABCD中,∠BAD=2∠B,E、F分别为BC,CD的中点,连接AE、AC、AF,则图中是全等的三角形有()12.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上)13.在平面直角坐标系中,点(0,2)到x轴的距离是_________.14.一组数据:2,5,7,3,5的众数是_________.15.△ABC中,∠C=90°,AB=8,cosA=,则BC的长_________.16.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是_________.17.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是_________(结果保留π).18.定义:a是不为1的有理数,我们把称为称为a的差倒数.如2的差倒数是=﹣1,﹣1的差倒数是=,已知a1=﹣3,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2004= _________.三、解答题(本大题共8小题,满分共66分.解答过程写在答题卡上,解答应写出文字说明、证明过程或演算步骤)19.计算:|﹣3|+(﹣π)0﹣()﹣1.20.先化简,然后从﹣2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.21.如图,在▱ABCD中,E为BC的中点,连接DE并延长DE交AB的延长线于点F.求证:点B是AF的中点.22.某校九年级所有学生参加2011年初中毕业英语口语、听力自动化考试,我们从中随机抽取了部分学生的考试成绩,将他们的成绩进行统计后分为A、B、C、D四等,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:25分~30分;B级:20分~24分;C级:15分~19分;D级:15分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所占的百分比是_________;(3)扇形统计图中A级所在的扇形的圆心角度数是_________;(4)若该校九年级有850名学生,请你估计全年级A级和B级的学生人数共约为_________人.23.如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).24.如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.(1)求证:∠PAC=∠B;(2)若BC=6,⊙O半径为5,求PA的长.25.已知:如图,在△ABC中,∠ACB=90°,∠CAB的平分线交BC于D,DE⊥AB,垂足为E,连结CE,交AD于点H.(1)求证:AD⊥CE;(2)如果过点E作EF∥BC交AD于点F,连结CF,猜想四边形是什么图形?并证明你的猜想.26.在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.。
广西省玉林市2019-2020学年中考数学三月模拟试卷含解析
广西省玉林市2019-2020学年中考数学三月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若一组数据2,3,4,5,x 的平均数与中位数相等,则实数x 的值不可能是( )A .6B .3.5C .2.5D .12.某市2017年国内生产总值(GDP )比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是( )A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+3.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .4.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q5.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( ) A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x6.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )A.13 B.14 C.15 D.167.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )A.30°B.36°C.54°D.72°8.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,9.下列二次根式,最简二次根式是( )A.B.C.D.10.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE 和正方形ACFG,则图中阴影部分的最大面积为()A.6 B.9 C.11 D.无法计算11.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A .监测点AB .监测点BC .监测点CD .监测点D12.如图,ABC ∆为等边三角形,要在ABC ∆外部取一点D ,使得ABC ∆和DBC ∆全等,下面是两名同学做法:( )甲:①作A ∠的角平分线l ;②以B 为圆心,BC 长为半径画弧,交l 于点D ,点D 即为所求; 乙:①过点B 作平行于AC 的直线l ;②过点C 作平行于AB 的直线m ,交l 于点D ,点D 即为所求.A .两人都正确B .两人都错误C .甲正确,乙错误D .甲错误,乙正确二、填空题:(本大题共6个小题,每小题4分,共24分.)13.阅读理解:引入新数i ,新数i 满足分配律、结合律、交换律,已知i 2=﹣1,那么(1+i )•(1﹣i )的平方根是_____.14.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).15.分解因式:4a 2﹣1=_____.16.分解因式:mx 2﹣6mx+9m=_____.17.如图,在平面直角坐标系中有一正方形AOBC,反比例函数k y x=经过正方形AOBC 对角线的交点,半径为(422-的圆内切于△ABC ,则k 的值为________.18.方程6x x-=+的解是_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.求每个月生产成本的下降率;请你预测4月份该公司的生产成本.20.(6分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.21.(6分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN.22.(8分)解不等式313212xx+->-,并把解集在数轴上表示出来.23.(8分)2018年大唐芙蓉园新春灯会以“鼓舞中华”为主题,既有新年韵味,又结合“一带一路”展示了丝绸之路上古今文化经贸繁荣的盛况。
广西省玉林市2019-2020学年中考第三次模拟数学试题含解析
广西省玉林市2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列4个点,不在反比例函数图象上的是( )A .( 2,-3)B .(-3,2)C .(3,-2)D .( 3,2)2.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差3.已知二次函数2(0)y x x a a =-+>,当自变量x 取m 时,其相应的函数值小于0,则下列结论正确的是( )A .x 取1m -时的函数值小于0B .x 取1m -时的函数值大于0C .x 取1m -时的函数值等于0D .x 取1m -时函数值与0的大小关系不确定4.如图是由四个小正方体叠成的一个几何体,它的左视图是( )A .B .C .D .5.如图,在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,下列四个判断中不正确的是( )A .四边形AEDF 是平行四边形B .若∠BAC =90°,则四边形AEDF 是矩形 C .若AD 平分∠BAC ,则四边形AEDF 是矩形 D .若AD ⊥BC 且AB =AC ,则四边形AEDF 是菱形 6.如图所示的图形,是下面哪个正方体的展开图( )A.B.C.D.7.如图所示的几何体,它的左视图是()A.B.C.D.8.一元二次方程(x+2017)2=1的解为( )A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣2017 9.以下各图中,能确定12∠=∠的是()A.B.C. D.10.已知常数k<0,b>0,则函数y=kx+b,kyx=的图象大致是下图中的()A.B.C.D.11.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B 的大小是()A.27°B.34°C.36°D.54°12.若分式11a-有意义,则a的取值范围是()A.a≠1B.a≠0C.a≠1且a≠0D.一切实数二、填空题:(本大题共6个小题,每小题4分,共24分.)13.二次函数y=ax 2+bx+c (a 、b 、c 是常数,且a≠0)的图象如图所示,则a+b+2c__________0(填“>”“=”或“<”).14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?意思是:今有美酒一斗,价格是50钱;普通酒一斗,价格是10钱.现在买两种酒2斗共付30钱,问买美酒、普通酒各多少?设买美酒x 斗,买普通酒y 斗,则可列方程组为______________. 15.如图,在△ABC 中,AB=AC ,tan ∠ACB=2,D 在△ABC 内部,且AD=CD ,∠ADC=90°,连接BD ,若△BCD 的面积为10,则AD 的长为_____.16.如图,PA ,PB 分别为O e 的切线,切点分别为A 、B ,P 80∠=o ,则C ∠=______.17.如图,矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为____________.18.如图,折叠长方形纸片ABCD ,先折出对角线BD ,再将AD 折叠到BD 上,得到折痕DE ,点A 的对应点是点F ,若AB=8,BC=6,则AE 的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为保护环境,我市公交公司计划购买A 型和B 型两种环保节能公交车共10辆.若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.求购买A 型和B 型公交车每辆各需多少万元?预计在某线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?20.(6分)如图,水渠边有一棵大木瓜树,树干DO (不计粗细)上有两个木瓜A 、B (不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O 处于同一水平面的C 处测得木瓜A 的仰角为45°、木瓜B 的仰角为30°.求C 处到树干DO 的距离CO .(结果精确到1米)(参考数据:3 1.73≈,2 1.41≈)21.(6分)如图,⊙O 是△ABC 的外接圆,FH 是⊙O 的切线,切点为F ,FH ∥BC ,连结AF 交BC 于E ,∠ABC 的平分线BD 交AF 于D ,连结BF .(1)证明:AF 平分∠BAC ;(2)证明:BF=FD ;(3)若EF=4,DE=3,求AD 的长.22.(8分)化简:()()2a b a 2b a -+-.23.(8分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A :很好,95分;B :较好75分;C :一般,60分;D :较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(Ⅰ)该教师调查的总人数为,图②中的m 值为 ; (Ⅱ)求样本中分数值的平均数、众数和中位数.24.(10分)新定义:如图1(图2,图3),在△ABC 中,把AB 边绕点A 顺时针旋转,把AC 边绕点A 逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC 是△AB′C′的“旋补三角形”,△AB'C′的中线AD 叫做△ABC 的“旋补中线”,点A 叫做“旋补中心”(特例感知)(1)①若△ABC 是等边三角形(如图2),BC=1,则AD= ; ②若∠BAC=90°(如图3),BC=6,AD= ;(猜想论证)(2)在图1中,当△ABC 是任意三角形时,猜想AD 与BC 的数量关系,并证明你的猜想; (拓展应用)(3)如图1.点A ,B ,C ,D 都在半径为5的圆上,且AB 与CD 不平行,AD=6,点P 是四边形ABCD 内一点,且△APD 是△BPC 的“旋补三角形”,点P 是“旋补中心”,请确定点P 的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC 的长.25.(10分)解不等式组:426113x x x x >-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解.26.(12分)将二次函数2241y x x =+-的解析式化为2()y a x m k =++的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.27.(12分)某品牌手机去年每台的售价y (元)与月份x 之间满足函数关系:y =﹣50x+2600,去年的月销量p (万台)与月份x 之间成一次函数关系,其中1﹣6月份的销售情况如下表: 月份(x ) 1月 2月 3月 4月 5月 6月 销售量(p )3.9万台4.0万台4.1万台4.2万台4.3万台4.4万台(1)求p 关于x 的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:根据得k=xy=-6,所以只要点的横坐标与纵坐标的积等于-6,就在函数图象上.解答:解:原式可化为:xy=-6,A、2×(-3)=-6,符合条件;B、(-3)×2=-6,符合条件;C、3×(-2)=-6,符合条件;D、3×2=6,不符合条件.故选D.2.B【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选:C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.3.B【解析】【分析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:∵抛物线的对称轴x=12,设抛物线与x轴交于点A、B,∴AB<1,∵x取m时,其相应的函数值小于0,∴观察图象可知,x=m-1在点A的左侧,x=m-1时,y>0,故选B.【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.4.A【解析】试题分析:如图是由四个小正方体叠成的一个几何体,它的左视图是.故选A.考点:简单组合体的三视图.5.C【解析】A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.6.D【解析】【分析】根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;故选D.【点睛】本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.7.A【解析】【分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:A.【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.8.A【解析】【分析】利用直接开平方法解方程.【详解】(x+2017)2=1x+2017=±1,所以x 1=-2018,x 2=-1. 故选A . 【点睛】本题考查了解一元二次方程-直接开平方法:形如x 2=p 或(nx+m )2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程. 9.C 【解析】 【分析】逐一对选项进行分析即可得出答案. 【详解】A 中,利用三角形外角的性质可知12∠>∠,故该选项错误;B 中,不能确定12∠∠,的大小关系,故该选项错误;C 中,因为同弧所对的圆周角相等,所以12∠=∠,故该选项正确;D 中,两直线不平行,所以12∠≠∠,故该选项错误. 故选:C . 【点睛】本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键. 10.D 【解析】 【分析】当k <0,b >0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项. 【详解】解:∵当k <0,b >0时,直线与y 轴交于正半轴,且y 随x 的增大而减小, ∴直线经过一、二、四象限,双曲线在二、四象限. 故选D . 【点睛】本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系. 11.C 【解析】 【分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°. 【详解】解:∵AB 与⊙O 相切于点A ,∴OA ⊥BA . ∴∠OAB=90°. ∵∠CDA=27°, ∴∠BOA=54°. ∴∠B=90°-54°=36°. 故选C .考点:切线的性质. 12.A 【解析】分析:根据分母不为零,可得答案 详解:由题意,得10a -≠,解得 1.a ≠故选A.点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.< 【解析】 【分析】由抛物线开口向下,则a <0,抛物线与y 轴交于y 轴负半轴,则c <0,对称轴在y 轴左侧,则b <0,因此可判断a+b+2c 与0的大小 【详解】 ∵抛物线开口向下 ∴a <0∵抛物线与y 轴交于y 轴负半轴, ∴c <0∵对称轴在y 轴左侧 ∴﹣2ba<0 ∴b <0 ∴a+b+2c <0 故答案为<. 【点睛】本题考查了二次函数图象与系数的关系,正确利用图象得出正确信息是解题关键.14.2 501030 x yx y+=⎧⎨+=⎩【解析】【分析】设买美酒x斗,买普通酒y斗,根据“美酒一斗的价格是50钱、买两种酒2斗共付30钱”列出方程组.【详解】依题意得:2 501030x yx y+=⎧⎨+=⎩.故答案为2 501030x yx y+=⎧⎨+=⎩.【点睛】考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.15.52【解析】【分析】作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=10a,AG=CH=a+10a,根据AM=AG+MG,列方程可得结论.,AG=CH=a+10a,根据AM=AG+MG,列方程可得结论.【详解】解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,设CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴AMCM=2,∴AM=2a,由勾股定理得:AC,S△BDC=12BC•DH=10,12•2a•DH=10,DH=10a,∵∠DHM=∠HMG=∠MGD=90°,∴四边形DHMG为矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵90AGD CHDADG CDHAD CD∠∠︒⎧⎪∠∠⎨⎪⎩====,∴△ADG≌△CDH(AAS),∴DG=DH=MG=10a,AG=CH=a+10a,∴AM=AG+MG,即2a=a+10a+10a,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=或−(舍),故答案为.【点睛】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AG=CH是解决问题的关键,并利用方程的思想解决问题.16.50°【解析】【分析】由PA 与PB 都为圆O 的切线,利用切线长定理得到PA PB =,再利用等边对等角得到一对角相等,由顶角P ∠的度数求出底角BAP ∠的度数,再利用弦切角等于夹弧所对的圆周角,可得出BAP C ∠∠=,由BAP ∠的度数即可求出C ∠的度数.【详解】解:PA Q ,PB 分别为O e 的切线,PA PB ∴=,AP CA ⊥,又P 80∠=o ,()1BAP 18080502o o o ∠∴=-=, 则C BAP 50∠∠==o .故答案为:50o【点睛】此题考查了切线长定理,切线的性质,以及等腰三角形的性质,熟练掌握定理及性质是解本题的关键.17.【解析】试题解析:∵四边形ABCD 是矩形,∴OB=OD ,OA=OC ,AC=BD ,∴OA=OB ,∵AE 垂直平分OB ,∴AB=AO ,∴OA=AB=OB=3,∴BD=2OB=6,∴=【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.18.3【解析】【分析】先利用勾股定理求出BD ,再求出DF 、BF ,设AE=EF=x .在Rt △BEF 中,由EB 2=EF 2+BF 2,列出方程即可解决问题.【详解】∵四边形ABCD是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD22=+=1.68∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.设AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.故答案为:3.【点睛】本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.【解析】【详解】详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得,解得:6≤a≤8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.20.解:设OC=x,在Rt△AOC中,∵∠ACO=45°,∴OA=OC=x.在Rt△BOC中,∵∠BCO=30°,∴3OB OC?tan30x3=︒=.∵AB=OA﹣OB=3x x=2-,解得x=3+31+1.73=4.735≈≈.∴OC=5米.答:C处到树干DO的距离CO为5米.【解析】解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值.【分析】设OC=x,在Rt△AOC中,由于∠ACO=45°,故OA=x,在Rt△BOC中,由于∠BCO=30°,故3OB OC?tan30x3=︒=,再根据AB=OA-OB=2即可得出结论.21.【小题1】见解析【小题2】见解析【小题3】【解析】证明:(1)连接OF∴FH切·O于点F∴OF⊥FH ………………………… 1分∵BC | | FH∴OF⊥BC ………………………… 2分∴BF="CF" ………………………… 3分∴∠BAF=∠CAF即AF平分∠BAC…………………4分(2)∵∠CAF=∠CBF又∠CAF=∠BAF∴∠CBF=∠BAF ………………………… 6分∵BD 平分∠ABC∴∠ABD=∠CBD∴∠BAF+∠ABD=∠CBF+∠CBD即∠FBD=∠FDB………………………… 7分∴BF="DF" ………………………… 8分(3) ∵∠BFE=∠AFB ∠FBE=∠FAB∴ΔBEF ∽ΔABF………………………… 9分 ∴即BF 2=EF·AF …………………… 10分∵EF=4 DE=3 ∴BF="DF" =4+3=7AF=AD+7即4(AD+7)=49 解得AD=22.2b【解析】【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.【详解】解:原式2222a 2ab b 2ab a b =-++-=.23.(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.【解析】【分析】(1)由直方图可知A 的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B 的人数为10及总人数可知m 的值;(2)根据平均数、众数和中位数的定义求解即可.【详解】(Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人), m%=×100%=40%,即m=40, 故答案为:25、40;(Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人, 则样本分知的平均数为955751060630468.225⨯+⨯+⨯+⨯=(分),众数为75分,中位数为第13个数据,即75分.【点睛】理解两幅统计图中各数据的含义及其对应关系是解题关键.24.(1)①2;②3;(2)AD=BC;(3)作图见解析;BC=4;【解析】【分析】(1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD的长度;②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=A C′,进而可得出△ABC≌△AB′C′(SAS),根据全等三角形的性质可得出B′C′=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,进而可证出△BAC≌△AB′E(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外角圆圆心,过点P作PF⊥BC于点F,由(2)的结论可求出PF的长度,在Rt△BPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度.【详解】(1)①∵△ABC是等边三角形,BC=1,∴AB=AC=1,∠BAC=60,∴AB′=AC′=1,∠B′AC′=120°.∵AD为等腰△AB′C′的中线,∴AD⊥B′C′,∠C′=30°,∴∠ADC′=90°.在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,∴AD=AC′=2.②∵∠BAC=90°,∴∠B′AC′=90°.在△ABC和△AB′C′中,,∴△ABC≌△AB′C′(SAS),∴B′C′=BC=6,∴AD=B′C′=3.故答案为:①2;②3.(2)AD=BC.证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,∴∠BAC=∠AB′E.在△BAC和△AB′E中,,∴△BAC≌△AB′E(SAS),∴BC=AE.∵AD=AE,∴AD=BC.(3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P 作PF⊥BC于点F.∵PB=PC,PF⊥BC,∴PF为△PBC的中位线,∴PF=AD=3.在Rt△BPF中,∠BFP=90°,PB=5,PF=3,∴BF==1,∴BC=2BF=4.【点睛】本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)①利用解含30°角的直角三角形求出AD=AC′;②牢记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC ;(3)利用(2)的结论结合勾股定理求出BF 的长度.25.﹣2,﹣1,0,1,2;【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.【详解】解:解不等式(1),得x 3>-解不等式(2),得x≤2所以不等式组的解集:-3<x≤2它的整数解为:-2,-1,0,1,226.开口方向:向上;点坐标:(-1,-3);称轴:直线1x =-.【解析】【分析】将二次函数一般式化为顶点式,再根据a 的值即可确定该函数图像的开口方向、顶点坐标和对称轴.【详解】解:()2221y x x =+-, ()222121y x x =++--,()2213y x =+-,∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线1x =-.【点睛】熟练掌握将一般式化为顶点式是解题关键.27.(1)p=0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m的值为1.【解析】【分析】(1)直接利用待定系数法求一次函数解析式即可;(2)利用销量×售价=销售金额,进而利用二次函数最值求法求出即可;(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可.【详解】(1)设p=kx+b,把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b中,得:3.9 24.0, k bk b+=⎧⎨+=⎩解得:0.13.8 kb=⎧⎨=⎩,∴p=0.1x+3.8;(2)设该品牌手机在去年第x个月的销售金额为w万元,w=(﹣50x+2600)(0.1x+3.8)=﹣5x2+70x+9880=﹣5(x﹣7)2+10125,当x=7时,w最大=10125,答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)当x=12时,y=100,p=5,1月份的售价为:100(1﹣m%)元,则2月份的售价为:0.8×100(1﹣m%)元;1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台;∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,解得:m1%=53(舍去),m2%=15,∴m=1,答:m的值为1.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键.。
广西省玉林市2019-2020学年中考第三次适应性考试数学试题含解析
广西省玉林市2019-2020学年中考第三次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球B .摸出的三个球中至少有一个球是白球C .摸出的三个球中至少有两个球是黑球D .摸出的三个球中至少有两个球是白球2.不等式组123122x x -<⎧⎪⎨+≤⎪⎩的正整数解的个数是( ) A .5 B .4 C .3 D .23.如图,AOB V 是直角三角形,90AOB ∠=o ,2OB OA =,点A 在反比例函数1y x=的图象上.若点B 在反比例函数k y x=的图象上,则k 的值为( )A .2B .-2C .4D .-44.如图所示图形中,不是正方体的展开图的是( )A .B .C .D .5.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A .(3,2)B .(3,1)C .(2,2)D .(4,2)6.已知21xy=⎧⎨=⎩是二元一次方程组71mx nynx my+=⎧⎨-=⎩的解,则m+3n的值是()A.4 B.6 C.7 D.87.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,AD=7,BF=6,则四边形ABEF的面积为()A.48 B.35 C.30 D.248.如图,正方形ABCD中,对角线AC、BD交于点O,∠BAC的平分线交BD于E,交BC于F,BH⊥AF 于H,交AC于G,交CD于P,连接GE、GF,以下结论:①△OAE≌△OBG;②四边形BEGF是菱形;③BE=CG;④PG2AE=﹣1;⑤S△PBC:S△AFC=1:2,其中正确的有()个.A.2 B.3 C.4 D.59.分式2231x xx+--的值为0,则x的取值为( )A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-110.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AB=c,∠A=α,则CD长为()A.c•sin2αB.c•cos2αC.c•sinα•tanαD.c•sinα•cosα11.如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A .30°B .40°C .50°D .60°12.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x 辆,则根据题意可列方程为( )A .1600x +4000(120%)x +=18B .1600x 40001600(120%)x -++=18C .1600x +4000160020%x -=18D .4000x40001600(120%)x -++=18 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n 个图中正方形和等边三角形的个数之和为______个.14.如图,点A ,B ,C 在⊙O 上,∠OBC=18°,则∠A=_______________________.15.若关于x 的一元二次方程x 2+mx+2n =0有一个根是2,则m+n =_____.16.一个正方形AOBC 各顶点的坐标分别为A (0,3),O (0,0),B (3,0),C (3,3).若以原点为位似中心,将这个正方形的边长缩小为原来的12,则新正方形的中心的坐标为_____. 17.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =V ,则图中阴影部分面积是 .18.分解因式:2x +xy =_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某班为确定参加学校投篮比赛的任选,在A 、B 两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图.(1)根据图中所给信息填写下表:投中个数统计平均数中位数众数A 8B 7 7(2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明.20.(6分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.21.(6分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.22.(8分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,求ADAB的值.23.(8分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0t 2≤<,2t 3≤<,3t 4≤<,t 4≥分为四个等级,并依次用A ,B ,C ,D 表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:1()求本次调查的学生人数;2()求扇形统计图中等级B 所在扇形的圆心角度数,并把条形统计图补充完整; 3()若该校共有学生1200人,试估计每周课外阅读时间满足3t 4≤<的人数. 24.(10分)先化简分式: (a -3+4+3a a )÷-2+3a a ∙+3+2a a ,再从-3、5-3、2、-2 中选一个你喜欢的数作为a 的值代入求值.25.(10分)如图,AB 是半径为2的⊙O 的直径,直线l 与AB 所在直线垂直,垂足为C ,OC =3,P 是圆上异于A 、B 的动点,直线AP 、BP 分别交l 于M 、N 两点.(1)当∠A =30°时,MN 的长是 ;(2)求证:MC•CN 是定值;(3)MN 是否存在最大或最小值,若存在,请写出相应的最值,若不存在,请说明理由;(4)以MN 为直径的一系列圆是否经过一个定点,若是,请确定该定点的位置,若不是,请说明理由.26.(12分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本). 若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x (元)取整数,用y (元)表示该店每天的利润.若每份套餐售价不超过10元.①试写出y 与x 的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.27.(12分)某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.求A、B两种品牌套装每套进价分别为多少元?若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.2.C【解析】【分析】先解不等式组得到-1<x≤3,再找出此范围内的正整数.【详解】解不等式1-2x<3,得:x>-1,解不等式12x≤2,得:x≤3,则不等式组的解集为-1<x≤3,所以不等式组的正整数解有1、2、3这3个,故选C .【点睛】本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集.3.D【解析】【分析】要求函数的解析式只要求出B 点的坐标就可以,过点A 、B 作AC x ⊥轴,BD x ⊥轴,分别于C 、D ,根据条件得到ACO ODB ~V V ,得到:2BD OD OB OC AC OA===,然后用待定系数法即可. 【详解】过点A 、B 作AC x ⊥轴,BD x ⊥轴,分别于C 、D ,设点A 的坐标是(),m n ,则AC n =,OC m =,Q 90AOB ∠=︒,∴90AOC BOD ∠+∠=︒,Q 90DBO BOD ∠+∠=︒,∴DBO AOC ∠=∠,Q 90BDO ACO ∠=∠=︒,∴BDO OCA ~V V , ∴BD OD OB OC AC OA==, Q 2OB OA =,∴2BD m =,2OD n =,因为点A 在反比例函数1y x=的图象上,则1mn =, Q 点B 在反比例函数k y x=的图象上,B 点的坐标是()2,2n m -, ∴2244k n m mn =-⋅=-=-.故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.4.C【解析】【分析】由平面图形的折叠及正方形的展开图结合本题选项,一一求证解题.【详解】解:A、B、D都是正方体的展开图,故选项错误;C、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图.故选C.【点睛】此题考查正方形的展开图,难度不大,但是需要空间想象力才能更好的解题5.A【解析】【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴ADBG=13,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴OAOB=13,∴2OAOA=13,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.6.D【解析】分析:根据二元一次方程组的解,直接代入构成含有m、n的新方程组,解方程组求出m、n的值,代入即可求解.详解:根据题意,将21x y =⎧⎨=⎩代入71mx ny nx my +=⎧⎨-=⎩,得:2721m n m n +=⎧⎨-+=⎩①②, ①+②,得:m+3n=8,故选D .点睛:此题主要考查了二元一次方程组的解,利用代入法求出未知参数是解题关键,比较简单,是常考题型.7.D【解析】分析:首先证明四边形ABEF 为菱形,根据勾股定理求出对角线AE 的长度,从而得出四边形的面积. 详解:∵AB ∥EF ,AF ∥BE , ∴四边形ABEF 为平行四边形, ∵BF 平分∠ABC ,∴四边形ABEF 为菱形, 连接AE 交BF 于点O , ∵BF=6,BE=5,∴BO=3,EO=4,∴AE=8,则四边形ABEF 的面积=6×8÷2=24,故选D .点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型.解决本题的关键就是根据题意得出四边形为菱形.8.C【解析】【分析】根据AF 是∠BAC 的平分线,BH ⊥AF ,可证AF 为BG 的垂直平分线,然后再根据正方形内角及角平分线进行角度转换证明EG =EB ,FG =FB ,即可判定②选项;设OA =OB =OC =a ,菱形BEGF 的边长为b ,由四边形BEGF 是菱形转换得到CFGF=BF ,由四边形ABCD 是正方形和角度转换证明△OAE ≌△OBG ,即可判定①;则△GOE 是等腰直角三角形,得到GEOG ,整理得出a ,b 的关系式,再由△PGC ∽△BGA ,得到BG PG=,从而判断得出④;得出∠EAB =∠GBC 从而证明△EAB ≌△GBC ,即可判定③;证明△FAB ≌△PBC 得到BF =CP ,即可求出PBC AFCS S V V ,从而判断⑤. 【详解】解:∵AF 是∠BAC 的平分线,∴∠GAH =∠BAH ,∵BH ⊥AF ,∴∠AHG =∠AHB =90°,在△AHG 和△AHB 中GAH BAH AH AHAHG AHB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AHG ≌△AHB (ASA ),∴GH =BH ,∴AF 是线段BG 的垂直平分线,∴EG =EB ,FG =FB ,∵四边形ABCD 是正方形,∴∠BAF =∠CAF =12×45°=22.5°,∠ABE =45°,∠ABF =90°, ∴∠BEF =∠BAF+∠ABE =67.5°,∠BFE =90°﹣∠BAF =67.5°, ∴∠BEF =∠BFE ,∴EB =FB ,∴EG =EB =FB =FG ,∴四边形BEGF 是菱形;②正确;设OA =OB =OC =a ,菱形BEGF 的边长为b , ∵四边形BEGF 是菱形,∴GF ∥OB ,∴∠CGF =∠COB =90°,∴∠GFC =∠GCF =45°,∴CG =GF =b ,∠CGF =90°,∴CFGFBF ,∵四边形ABCD 是正方形,∴OA =OB ,∠AOE =∠BOG =90°,∵BH ⊥AF ,∴∠GAH+∠AGH =90°=∠OBG+∠AGH , ∴∠OAE =∠OBG ,在△OAE 和△OBG 中OAE OBG OA OBAOE BOG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAE ≌△OBG (ASA ),①正确;∴OG =OE =a ﹣b ,∴△GOE 是等腰直角三角形,∴GEOG ,∴b(a ﹣b ),整理得a, ∴AC =2a =()b ,AG =AC ﹣CG =()b ,∵四边形ABCD 是正方形,∴PC ∥AB , ∴BG PG =AG C G=(1b b+=, ∵△OAE ≌△OBG ,∴AE =BG , ∴AE PG=, ∴PG AE=1,④正确; ∵∠OAE =∠OBG ,∠CAB =∠DBC =45°,∴∠EAB =∠GBC ,在△EAB 和△GBC 中EAB GBC AB BCABE BCG 45︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△EAB ≌△GBC (ASA ),∴BE =CG ,③正确;在△FAB 和△PBC 中FAB PBC AB BCABF BCP 90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△FAB ≌△PBC (ASA ),∴BF =CP , ∴PBC AFC S S V V =1212BC CP AB CF ⋅⋅=CP CF=2,⑤错误; 综上所述,正确的有4个,故选:C .【点睛】本题综合考查了全等三角形的判定与性质,相似三角形,菱形的判定与性质等四边形的综合题.该题难度较大,需要学生对有关于四边形的性质的知识有一系统的掌握.9.A【解析】【分析】分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】∵原式的值为2,∴2230 {10x xx+--≠=,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故选:A.【点睛】此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.10.D【解析】【分析】根据锐角三角函数的定义可得结论.【详解】在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根据锐角三角函数的定义可得sinα=BC AB,∴BC=c•sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt△DCB中,∠CDB=90°,∴cos∠DCB= CD BC,∴CD=BC•cosα=c•sinα•cosα,故选D.11.D【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选D .点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.12.B【解析】【分析】根据前后的时间和是18天,可以列出方程.【详解】若设原来每天生产自行车x 辆,根据前后的时间和是18天,可以列出方程()16004000160018120x x -+=+%. 故选B【点睛】本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.9n+1.【解析】【分析】【详解】∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+1;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+1;∵第1个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=10=9×1+1,…,∴第n 个图中正方形和等边三角形的个数之和=9n+1.故答案为9n+1.14.72°.【解析】【详解】解:∵OB=OC ,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=12∠BOC=12×144°=72°.故答案为72°.【点睛】本题考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是本题的解题关键.15.﹣1【解析】【分析】根据一元二次方程的解的定义把x=1代入x1+mx+1n=0得到4+1m+1n=0得n+m=−1,然后利用整体代入的方法进行计算.【详解】∵1(n≠0)是关于x的一元二次方程x1+mx+1n=0的一个根,∴4+1m+1n=0,∴n+m=−1,故答案为−1.【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.16.(34,34)或(﹣34,﹣34).【解析】【分析】分点A、B、C的对应点在第一象限和第三象限两种情况,根据位似变换和正方形的性质解答可得.【详解】如图,①当点A 、B 、C 的对应点在第一象限时,由位似比为1:2知点A′(0,32)、B′(32,0)、C′(32,32), ∴该正方形的中心点的P 的坐标为(34,34); ②当点A 、B 、C 的对应点在第三象限时,由位似比为1:2知点A″(0,-32)、B″(-32,0)、C″(-32,-32), ∴此时新正方形的中心点Q 的坐标为(-34,-34), 故答案为(34,34)或(-34,-34). 【点睛】本题主要考查位似变换,解题的关键是熟练掌握位似变换的性质和正方形的性质.17.4【解析】试题分析:由中线性质,可得AG=2GD ,则11212111222232326BGF CGE ABG ABD ABC S S S S S ===⨯=⨯⨯=⨯=V V V V V ,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.考点:中线的性质.18.()x x+y .【解析】【分析】将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】直接提取公因式x 即可:2x xy x(x y)+=+.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)7,9,7;(2)应该选派B ;【解析】【分析】(1)分别利用平均数、中位数、众数分析得出答案;(2)利用方差的意义分析得出答案.【详解】(1)A 成绩的平均数为16(9+10+4+3+9+7)=7;众数为9; B 成绩排序后为6,7,7,7,7,8,故中位数为7;故答案为:7,9,7;(2)2A S =16[(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7; 2B S =16 [(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]= 13; 从方差看,B 的方差小,所以B 的成绩更稳定,从投篮稳定性考虑应该选派B .【点睛】此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 20.(1)12;(2)规则是公平的; 【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可; (2)分别计算出小王和小李去植树的概率即可知道规则是否公平.试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P (小王)=34; (2)不公平,理由如下:∵P (小王)=34,P (小李)=14,34≠14, ∴规则不公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21.(1):()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解析】【分析】(1)利用列举法,列举所有的可能情况即可;(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【详解】(1)所有可能出现的结果如下:()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,∴在规划1中,P (小黄赢)59=; 红心牌点数是黑桃牌点数的整倍数有4种可能, ∴在规划2中,P (小黄赢)49=. ∵5499>,∴小黄要在游戏中获胜,小黄会选择规则1. 【点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比. 22.12【解析】【分析】根据翻折的性质可得∠BAC=∠EAC ,再根据矩形的对边平行可得AB ∥CD ,根据两直线平行,内错角相等可得∠DCA=∠BAC ,从而得到∠EAC=∠DCA ,设AE 与CD 相交于F ,根据等角对等边的性质可得AF=CF ,再求出DF=EF ,从而得到△ACF 和△EDF 相似,根据相似三角形得出对应边成比,设DF=3x ,FC=5x ,在Rt △ADF 中,利用勾股定理列式求出AD ,再根据矩形的对边相等求出AB ,然后代入进行计算即可得解.【详解】解:∵矩形沿直线AC 折叠,点B 落在点E 处,∴CE =BC ,∠BAC =∠CAE ,∵矩形对边AD =BC ,∴AD =CE ,设AE 、CD 相交于点F ,在△ADF 和△CEF 中,90ADF CEF AFD CFEAD CE ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△ADF ≌△CEF (AAS ),∴EF =DF ,∵AB ∥CD ,∴∠BAC =∠ACF ,又∵∠BAC =∠CAE ,∴∠ACF =∠CAE ,∴AF =CF ,∴AC ∥DE ,∴△ACF ∽△DEF , ∴35EFDE CF AC ==, 设EF =3k ,CF =5k ,由勾股定理得CE =()()22534k k k -=,∴AD =BC =CE =4k ,又∵CD =DF +CF =3k +5k =8k ,∴AB =CD =8k ,∴AD :AB =(4k ):(8k )=12.【点睛】本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出△ACF 和△DEF 相似是解题的关键,也是本题的难点.23.()1本次调查的学生人数为200人;()2B 所在扇形的圆心角为54o ,补全条形图见解析;()3全校每周课外阅读时间满足3t 4≤<的约有360人.【解析】【分析】()1根据等级A 的人数及所占百分比即可得出调查学生人数;()2先计算出C 在扇形图中的百分比,用()1[A D C -++在扇形图中的百分比]可计算出B 在扇形图中的百分比,再计算出B 在扇形的圆心角;()3总人数⨯课外阅读时间满足3t 4≤<的百分比即得所求.【详解】()1由条形图知,A 级的人数为20人,由扇形图知:A 级人数占总调查人数的10%, 所以:1002010%20200(10÷=⨯=人), 即本次调查的学生人数为200人;()2由条形图知:C 级的人数为60人,所以C 级所占的百分比为:60100%30%200⨯=, B 级所占的百分比为:110%30%45%15%---=,B 级的人数为20015%30(⨯=人),D 级的人数为:20045%90(⨯=人),B 所在扇形的圆心角为:36015%54⨯=o o ,补全条形图如图所示:;()3因为C 级所占的百分比为30%,所以全校每周课外阅读时间满足3t 4≤<的人数为:120030%360(⨯=人),答:全校每周课外阅读时间满足3t 4≤<的约有360人.【点睛】本题考查了扇形图和条形图的相关知识,从统计图中找到必要的信息进行解题是关键.扇形图中某项的百分比100%=⨯该项人数总人数,扇形图中某项圆心角的度数360=⨯o 该项在扇形图中的百分比.24.3a + ;5【解析】【详解】原式=((3)3a a a ++-3+4+3a a )32a a +⋅-∙+3+2a a=(3)343a a a a +--+32a a +⋅-∙+3+2a a =243a a -+32a a +⋅-∙+3+2a a =3a +a=2,原式=525.(1)833;(2)MC•NC =5;(3)a+b 的最小值为25;(4)以MN 为直径的一系列圆经过定点D ,此定点D 在直线AB 上且CD 的长为5.【解析】【分析】(1)由题意得AO =OB =2、OC =3、AC =5、BC =1,根据MC =ACtan ∠A = 533、CN =3tan BC BNC=∠可得答案; (2)证△ACM ∽△NCB 得MC AC BC NC=,由此即可求得答案; (3)设MC =a 、NC =b ,由(2)知ab =5,由P 是圆上异于A 、B 的动点知a >0,可得b =5a (a >0),根据反比例函数的性质得a+b 不存在最大值,当a =b 时,a+b 最小,据此求解可得;(4)设该圆与AC 的交点为D ,连接DM 、DN ,证△MDC ∽△DNC 得MC DC DC NC=,即MC •NC =DC 2=5,即DC =5,据此知以MN 为直径的一系列圆经过定点D ,此顶点D 在直线AB 上且CD 的长为5.【详解】(1)如图所示,根据题意知,AO =OB =2、OC =3,则AC =OA+OC =5,BC =OC ﹣OB =1,∵AC ⊥直线l ,∴∠ACM =∠ACN =90°,∴MC=ACtan∠A=5×3=533,∵∠ABP=∠NBC,∴∠BNC=∠A=30°,∴CN=3 tan3BCBNC==∠,则MN=MC+CN=533+3=83,故答案为:83;(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴MC AC BC NC=,即MC•NC=AC•BC=5×1=5;(3)设MC=a、NC=b,由(2)知ab=5,∵P是圆上异于A、B的动点,∴a>0,∴b=5a(a>0),根据反比例函数的性质知,a+b不存在最大值,当a=b时,a+b最小,由a=b得a=5a,解之得a=5(负值舍去),此时b=5,此时a+b的最小值为25;(4)如图,设该圆与AC的交点为D,连接DM、DN,∵MN为直径,∴∠MDN=90°,则∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,则△MDC∽△DNC,∴MC DCDC NC=,即MC•NC=DC2,由(2)知MC•NC=5,∴DC2=5,∴DC∴以MN为直径的一系列圆经过定点D,此定点D在直线AB上且CD【点睛】本题考查的是圆的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用、反比例函数的性质等知识点.26.(1)①y=400x﹣1.(5<x≤10);②9元或10元;(2)能,11元.【解析】【分析】(1)、根据利润=(售价-进价)×数量-固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x的值得出答案.【详解】解:(1)①y=400(x﹣5)﹣2.(5<x≤10),②依题意得:400(x﹣5)﹣2≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售价x(元)取整数,∴每份套餐的售价应不低于9元.(2)依题意可知:每份套餐售价提高到10元以上时,y=(x﹣5)[400﹣40(x﹣10)]﹣2,当y=1560时,(x﹣5)[400﹣40(x﹣10)]﹣2=1560,解得:x1=11,x2=14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意.故该套餐售价应定为11元.【点睛】本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型.理解题意,列出关系式是解决这个问题的关键.27.(1)A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元;(2)最少购进A品牌工具套装2套.【解析】试题分析:(1)利用两种套装的套数作为等量关系列方程求解.(2)利用总获利大于等于120,解不等式.试题解析:(1)解:设B种品牌套装每套进价为x元,则A种品牌套装每套进价为(x+2.5)元.根据题意得:2002.5x=2×75x,解得:x=7.5,经检验,x=7.5为分式方程的解,∴x+2.5=1.答:A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元.(2)解:设购进A品牌工具套装a套,则购进B品牌工具套装(2a+4)套,根据题意得:(13﹣1)a+(9.5﹣7.5)(2a+4)>120,解得:a>16,∵a为正整数,∴a取最小值2.答:最少购进A品牌工具套装2套.点睛:分式方程应用题:一设,一般题里有两个有关联的未知量,先设出一个未知量,并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验;五答,应用题要写答.。
广西省玉林市2019-2020学年中考数学教学质量调研试卷含解析
广西省玉林市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )A .B .C .D .2.等腰Rt ABC △中,90BAC ∠=︒,D 是AC 的中点,EC BD ⊥于E ,交BA 的延长线于F ,若12BF =,则FBC V 的面积为( )A .40B .46C .48D .503.tan45°的值等于( )A .33B .2C .32D .14.已知实数a <0,则下列事件中是必然事件的是( )A .a+3<0B .a ﹣3<0C .3a >0D .a 3>05.4的算术平方根为( )A .2±B .2C .2±D .26.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )A .0.8x ﹣10=90B .0.08x ﹣10=90C .90﹣0.8x=10D .x ﹣0.8x ﹣10=907.如图,在坐标系中放置一菱形OABC ,已知∠ABC=60°,点B 在y 轴上,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B 的落点依次为B 1,B 2,B 3,…,则B 2017的坐标为( )A.(1345,0)B.(1345.5,3)C.(1345,3)D.(1345.5,0)8.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是()A.圆锥B.圆柱C.球D.正方体9.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-1 10.在Rt△ABC中,∠C=90°,那么sin∠B等于()A.ACABB.BCABC.ACBCD.BCAC11.在武汉市举办的“读好书、讲礼仪”活动中,某学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图,根据图中信息,该班平均每人捐书的册数是()A.3 B.3.2 C.4 D.4.512.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是()A.P1(0,0),P2(3,﹣4),P3(﹣4,3)B.P1(﹣1,1),P2(﹣3,4),P3(4,3)C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若圆锥的母线长为4cm,其侧面积212cm,则圆锥底面半径为cm.14.|-3|=_________;15.“若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组a,b,c的值依次为_____.16.已知点P(a,b)在反比例函数y=2x的图象上,则ab=_____.17.如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_____.18.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.20.(6分)关于x的一元二次方程x2+(m-1)x-(2m+3)=1.(1)求证:方程总有两个不相等的实数根;(2)写出一个m的值,并求出此时方程的根.21.(6分)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=6,求DE的长.22.(8分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A31)在反比例函数k yx的图象上.求反比例函数k y x=的表达式;在x 轴的负半轴上存在一点P ,使得S △AOP =12S △AOB ,求点P 的坐标;若将△BOA 绕点B 按逆时针方向旋转60°得到△BDE ,直接写出点E 的坐标,并判断点E 是否在该反比例函数的图象上,说明理由.23.(8分)为响应学校全面推进书香校园建设的号召,班长李青随机调查了若干同学一周课外阅读的时间t (单位:小时),将获得的数据分成四组,绘制了如下统计图(A :07t <≤,B :714t <≤,C :1421t <≤,D :21t >),根据图中信息,解答下列问题:(1)这项工作中被调查的总人数是多少?(2)补全条形统计图,并求出表示A 组的扇形统计图的圆心角的度数;(3)如果李青想从D 组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或画树状图的方法求出选中甲的概率.24.(10分)如图,在平面直角坐标系中,函数的图象经过点,直线与x 轴交于点.求的值;过第二象限的点作平行于x 轴的直线,交直线于点C ,交函数的图象于点D . ①当时,判断线段PD 与PC 的数量关系,并说明理由; ②若,结合函数的图象,直接写出n 的取值范围.25.(10分)已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k≠0),直线l2:y=-x-2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N).(1)求抛物y=x2+bx+c线的解析式.(2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.(3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求点F、H的坐标(直接写出结果).26.(12分)计算:2193-⎛⎫--⎪⎝⎭=_____.27.(12分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【详解】A.不是轴对称图形,故本选项错误;B.是轴对称图形,故本选项正确;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选B.2.C【解析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=12×BF×AC=12×12×8=48,故选C.3.D【解析】【分析】根据特殊角三角函数值,可得答案.【详解】解:tan45°=1,故选D.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4.B【解析】A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;故选B.点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.B【解析】44=2,而22,42,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.6.A【解析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可.设某种书包原价每个x元,可得:0.8x﹣10=90考点:由实际问题抽象出一元一次方程.7.B【解析】连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移2.∵3=336×6+1,∴点B1向右平移1322(即336×2)到点B3.∵B1的坐标为(1.5,3),∴B3的坐标为(1.5+1322,32),故选B.点睛:本题是规律题,能正确地寻找规律“每翻转6次,图形向右平移2”是解题的关键.8.C【解析】【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;C. 球的主视图只能是圆,故符合题意;D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,故选C.【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键.9.C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.10.A【解析】【分析】根据锐角三角函数的定义得出sinB等于∠B的对边除以斜边,即可得出答案.【详解】根据在△ABC中,∠C=90°,那么sinB=B的对边斜边=ACAB,故答案选A.【点睛】本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.11.B【解析】七年级(1)班捐献图书的同学人数为9÷18%=50人,捐献4册的人数为50×30%=15人,捐献3册的人数为50-6-9-15-8=12人,所以该班平均每人捐书的册数为(6+9×2+12×3+15×4+8×5)÷50=3.2册,故选B.12.D【解析】【分析】把点P的横坐标减4,纵坐标减3可得P1的坐标;让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.【详解】∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).∵点P关于y轴的对称点是P2,∴P2(﹣3,4).∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).故选D.【点睛】本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】∵圆锥的母线长是5cm,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:l=2305srπ==6π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r=622lπππ==3cm,14.1【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-1|=1.故答案为1.15.答案不唯一,如1,2,3;【解析】分析:设a,b,c是任意实数.若a<b<c,则a+b<c”是假命题,则若a<b<c,则a+b≥c”是真命题,举例即可,本题答案不唯一详解:设a,b,c是任意实数.若a<b<c,则a+b<c”是假命题,则若a<b<c,则a+b≥c”是真命题,可设a,b,c的值依次1,2,3,(答案不唯一),故答案为1,2,3.点睛:本题考查了命题的真假,举例说明即可,16.2【解析】【分析】接把点P(a,b)代入反比例函数y=2x即可得出结论.。
2019年广西玉林市中考数学试卷含答案解析
23.(9 分)如图,在△ABC 中, AB AC 5 , BC 6 ,以 AB 为直径作 O 分别交于
在
AC,BC 于点 D,E,过点 E 作 O 的切线 EF 交 AC 于点 F,连接 BD. (1)求证:EF 是 △CDB 的中位线;
(2)求 EF 的长.
此
24.(9 分)某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,
A.4 效
B.2
C.1
数学试卷 第 1 页(共 18 页)
D. 2
9.如图, AB∥EF∥DC , AD∥BC ,EF 与 AC 交于点 G,则是相似三角形共有( )
A.3 对
B.5 对
C.6 对
D.8 对
10.定义新运算:p
q
p q p
(q (q
0) 0)
,例如:3
5
3 5
,3
5
3 5
,则
故选:B.
12.【答案】A 【 解 析 】 抛物 线 C : y 1 (x 1)2 1 沿 水平方 向 向右 ( 或向 左 )平 移 m 个 单位 得到
2
数学试卷 第 9 页(共 18 页)
y 1 x m 12 1 ,
2
∴ D(1,1) , D(m 1,1) ,
∴Q 点的横坐标为: m 2 , 2
y
2
x(x
0)
q
的图象是
()
A.
B.
C.
D.
11.如图,在 Rt△ABC 中,∠C 90 , AC 4 , BC 3 ,点 O 是 AB 的三等分点,半
圆 O 与 AC 相切,M,N 分别是 BC 与半圆弧上的动点,则 MN 的最小值和最大值之
广西省玉林市2019-2020学年中考数学第三次调研试卷含解析
广西省玉林市2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.AB CBBD CD=D.AD ABAB AC=2.函数1y+2x=中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣23.如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是()A.1m B.43m C.3m D.103m4.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A.12B.22C.32D.335.如图,淇淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,C地恰好位于A地正东方向上,则()①B地在C地的北偏西50°方向上;②A 地在B 地的北偏西30°方向上; ③cos ∠BAC=32; ④∠ACB=50°.其中错误的是( )A .①②B .②④C .①③D .③④6.人的头发直径约为0.00007m ,这个数据用科学记数法表示( ) A .0.7×10﹣4 B .7×10﹣5 C .0.7×104 D .7×1057.某城2014年底已有绿化面积300公顷,经过两年绿化,到2016年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程正确的是( ). A .300(1)363x +=B .2300(1)363x +=C .300(12)363x +=D .2300(1)363x -=8.比较4,17,363的大小,正确的是( ) A .4<17<363 B .4<363<17 C .363<4<17D .17<363<49.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数B .平均数C .中位数D .方差10.关于二次函数2241y x x =+-,下列说法正确的是( ) A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-311.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC=50°,则∠OAB 的度数为( )A .25°B .50°C .60°D .30°12.⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则n 的值为( ) A .3B .4C .6D .8二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2017年7月27日上映的国产电影《战狼2》,风靡全国.剧中“犯我中华者,虽远必诛”鼓舞人心,彰显了祖国的强大实力与影响力,累计票房56.8亿元.将56.8亿元用科学记数法表示为_____元. 14.圆锥的底面半径为6㎝,母线长为10㎝,则圆锥的侧面积为______cm 2 15.已知式子13xx -+有意义,则x 的取值范围是_____ 16.正五边形的内角和等于______度.17.如图,点O (0,0),B(0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1,再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,……,依次下去.则点B 6的坐标____________.18.如图,在平面直角坐标系中,抛物线y=﹣x 2+4x 与x 轴交于点A ,点M 是x 轴上方抛物线上一点,过点M 作MP ⊥x 轴于点P ,以MP 为对角线作矩形MNPQ ,连结NQ ,则对角线NQ 的最大值为_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分) 先化简,再求值:2213242x x x x --⎛⎫÷-- ⎪--⎝⎭,其中x 是满足不等式﹣12(x ﹣1)≥12的非负整数解.20.(6分)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,且DE=23BC .如果AC=6,求AE 的长;设AB a =u u u r r ,AC b =u u u r r ,求向量DE u u u r(用向量a r 、b r 表示).21.(6分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人?22.(8分)如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.(1)求证:四边形ABCD是菱形.(2)若AC=8,AB=5,求ED的长.23.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.24.(10分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.对雾霾了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:统计表中:m=,n=;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?25.(10分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是.26.(12分)计算:(﹣1)2018﹣29+|1﹣3|+3tan30°.27.(12分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.2.B【解析】要使y=所以x+1≥0且x+1≠0,解得x>-1.故选B.3.B【解析】【分析】由∠AGE=∠CHE=90°,∠AEG=∠CEH可证明△AEG∽△CEH,根据相似三角形对应边成比例求出GH 的长即BD的长即可.【详解】由题意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴EGAG=EHCH=EG GHCH+,即24.5=27.5GH+,解得:GH=43,则BD=GH=43 m,故选:B.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形. 4.B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则AB=2BD.cos∠ACB=222ADAB==,故选B.5.B【解析】【分析】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.【详解】如图所示,由题意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B在C处的北偏西50°,故①正确;∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A在B处的北偏西120°,故②错误;∵∠1=∠2=60°,∴∠BAC=30°,∴cos∠BAC=3,故③正确;∵∠6=90°﹣∠5=40°,即公路AC和BC的夹角是40°,故④错误.故选B.【点睛】本题考查的是方向角,平行线的性质,特殊角的三角函数值,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.6.B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m,这个数据用科学记数法表示7×10﹣1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.B【解析】【分析】先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可.【详解】由题意得,绿化面积平均每年的增长率为x,则2015年的绿化面积为300(1+x),2016年的绿化面积为300(1+x)(1+x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1+x)2=363.故选B.【点睛】本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.8.C【解析】【分析】根据且【详解】解:易得:4故选C.【点睛】本题主要考查开平方开立方运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届广西玉林市中考数学三模试卷一.选择题(共12小题,满分36分)1.a的倒数是3,则a的值是()A.B.﹣C.3D.﹣32.下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a2 3.2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为()A.2.536×104人B.2.536×105人C.2.536×106人D.2.536×107人4.下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.5.如图,右侧立体图形的俯视图是()A.B.C.D.6.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80人数232341则这些运动员成绩的中位数、众数分别是()A.4.65、4.70B.4.65、4.75C.4.70、4.75D.4.70、4.70 7.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是多少()A.30°B.15°C.18°D.20°8.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去的年收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.8万D.前年年收入不止①②③三种农作物的收入9.若不等式组无解,则m的取值范围是()A.m>2B.m<2C.m≥2D.m≤210.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.11.如图,平面直角坐标中,点A(1,2),将AO绕点A逆时针旋转90°,点O 的对应B点恰好落在双曲线y=(x>0)上,则k的值为()A.2B.3C.4D.612.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()A.y=﹣2x+1B.y=﹣x+2C.y=﹣3x﹣2D.y=﹣x+2二.填空题(共6小题,满分18分,每小题3分)13.分解因式:m3﹣m=.14.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.15.分式方程=1﹣的解是.16.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为.17.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半径为1,点P是斜边AB上的点,过点P作⊙C的一条切线PQ(点Q是切点),则线段PQ的最小值为.18.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,则2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,计算出1+3+32+33+…+32018的值为.三.解答题(共8小题,满分54分)19.(6分)﹣2sin45°.20.(6分)先化简,再求值:•﹣,其中x=2.21.(6分)如图,Rt△ABC中,∠C=90°,∠A=30°,BC=6.(1)实践操作:尺规作图,不写作法,保留作图痕迹.①作∠ABC的角平分线交AC于点D.②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.(2)推理计算:四边形BFDE的面积为.22.(8分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.球两红一红一白两白礼金券(元)182418(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.23.(9分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.24.(9分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?25.(10分)如图,在▱ABCD中,BD是对角线,∠ADB=90°,E、F分别为边AB、CD的中点.(1)求证:四边形DEBF是菱形;(2)若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为,并在图上标出此时点P的位置.26.如图,抛物线y=﹣+bx+c交x轴于点A(﹣2,0)和点B,交y轴于点C (0,3),点D是x轴上一动点,连接CD,将线段CD绕点D旋转得到DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF.(1)求抛物线解析式;(2)若线段DE是CD绕点D顺时针旋转90°得到,求线段DF的长;(3)若线段DE是CD绕点D旋转90°得到,且点E恰好在抛物线上,请求出点E的坐标.参考答案一.选择题1.A.2.C.3.C.4.C.5.A.6.C.7.C.8.C.9.D.10.B.11.解:作AC⊥y轴于C,AD⊥x轴,BD⊥y轴,它们相交于D,如图,∵A点坐标为(1,2),∴AC=1,OC=2,∵AO绕点A逆时针旋转90°,点O的对应B点,即把△AOC绕点A逆时针旋转90°得到△ABD,∴AD=AC=1,BD=OC=2,∴B点坐标为(3,1),∴k=3×1=3.故选:B.12.【解答】解:当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC 于点G,如图1所示,∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=2,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y轴上,此时OD=BE=2,即D(0,2),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:,解得:.则这条直线解析式为y=﹣x+2.故选:D.二.填空题13.m(m+1)(m﹣1).14.36°或37°.15.x=﹣1.16.5.17.【解答】解:连接CP、CQ;如图所示:∵PQ是⊙C的切线,∴CQ⊥PQ,∠CQP=90°,根据勾股定理得:PQ2=CP2﹣CQ2,∴当PC⊥AB时,线段PQ最短,∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是;故答案为:.18.三.解答题19.解:原式=2﹣﹣2=﹣.20.解:原式=•﹣=﹣=﹣=,当x=2时,原式==.21.解:(1)如图,DE、DF为所作;(2)∵∠C=90°,∠A=30°,∴∠ABC=60°,AB=2BC=12,∵BD为∠ABC的角平分线,∴∠DBC=∠EBD=30°,∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四边形BEDF为平行四边形,而FB=FD,∴四边形BEDF为菱形,在Rt△ADE中,DE=AE,而AE=AB﹣BE,∴12﹣BE=BE,解得BE=8,在Rt△BDC中,CD=BC=2,∴四边形BFDE的面积=×8×2=8.故答案为8.22.解:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,∴摇出一红一白的概率==;(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,∴摇奖的平均收益是:×18+×24+×18=22,∵22>20,∴选择摇奖.23.(1)证明:连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;(2)解:∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴,∵AD=5,∴OC=.24.解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:﹣=+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=80.答:软件升级后每小时生产80个零件.25.(1)证明:∵平行四边形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.∵△ABD中,∠ADB=90°,E时AB的中点,∴DE=AB=AE=BE.同理,BF=DF,∵平行四边形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四边形DEBF是菱形;(2)解:连接BF,∵菱形DEBF中,∠DEB=120°,∴∠EF=60°,∴△BEF是等边三角形,∵M是BF的中点,∴EM⊥BF.则EM=BE•sin60°=4=2.即PF+PM的最小值是2.故答案是:2.26.解:(1)∵抛物线y=﹣+bx+c交x轴于点A(﹣2,0)、C(0,3),∴,解得:,∴抛物线解析式为y=﹣+x+3;(2)如图1,∵∠CDE=90°、∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE,又∵DC=DE,∴△COD≌△DHE,∴DH=OC,又∵CF⊥FH,∴四边形OHFC是矩形,∴FH=OC=DH=3,∴DF=3;(3)如图2,设点D的坐标为(t,0),∵点E恰好在抛物线上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,①当CD绕点D顺时针旋转时,点E的坐标为(t+3,t),代入抛物线y=﹣+x+3,得:﹣(t+3)2+(t+3)+3=t,解得:t=1或t=﹣,所以点E的坐标E1(4,1)或E2(﹣,﹣);②当CD绕点D逆时针旋转时,点E的坐标为(t﹣3,﹣t),代入抛物线y=﹣+x+3得:﹣(t﹣3)2+(t﹣3)+3=﹣t,解得:t=或t=,所以点E的坐标E3(,﹣)或E4(,﹣);综上,点E的坐标为E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).。