全国2018年高中数学联合竞赛选拔赛(广东赛区)试题(扫描版)
2018年全国高中数学联合竞赛试题及解答.(B卷)
a 2018年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分。
2018B1、设集合{}8,1,0,2=A ,集合{}A a a B ∈=|2,则集合B A 的所有元素之和是 ◆答案: 31★解析:易知{}16,2,0,4=B ,所以{}16,8,4,2,1,0=B A ,元素之和为31.2018B 2、已知圆锥的顶点为P ,底面半径长为2,高为1.在圆锥底面上取一点Q ,使得直线PQ 与底面所成角不大于045,则满足条件的点Q 所构成的区域的面积为 ◆答案: π3★解析:记圆锥的顶点P 在底面的投影为O ,则O 为底面中心,且1tan ≤=∠OQOPOQP ,即1≥OQ ,故所以区域的面积为πππ31222=⨯-⨯。
2018B 3、将6,5,4,3,2,1随机排成一行,记为f e d c b a ,,,,,,则def abc +是奇数的概率为 ◆答案:101 ★解析:由def abc +为奇数时,abc ,def 一奇一偶,①若abc 为奇数,则c b a ,,为5,3,1的排列,进而f e d ,,为6,4,2的排列,这样共有3666=⨯种;②若abc 为偶数,由对称性得,也有3666=⨯种,从而def abc +为奇数的概率为101!672=。
2018B 4、在平面直角坐标系xOy 中,直线l 通过原点,)1,3(=n 是l 的一个法向量.已知数列{}n a 满足:对任意正整数n ,点),(1n n a a +均在l 上.若62=a ,则54321a a a a a 的值为 ◆答案: 32-★解析:易知直线l 的方程为x y 3-=,因此对任意正整数n ,有n n a a 311-=+,故{}n a 是以31-为a 公比的等比数列.于是23123-=-=a a ,由等比数列的性质知325354321-==a a a a a a2018B 5、设βα,满足3)3tan(-=+πα,5)6tan(=-πβ,则)tan(βα-的值为◆答案: 47-★解析:由两角差的正切公式可知7463tan =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+πβπα,即可得47)tan(-=-βα2018B 6、设抛物线x y C 2:2=的准线与x 轴交于点A ,过点)0,1(-B 作一直线l 与抛物线C 相切于点K ,过点A 作l 的平行线,与抛物线C 交于点N M ,,则KMN ∆的面积为为 ◆答案:21★解析:设直线l 与MN 的斜率为k ,:l 11-=y k x ,:MN 211-=y k x 分别联立抛物线方程得到:0222=+-y k y (*),和0122=+-y ky (**) 对(*)由0=∆得22±=k ;对(**)得2442=-=-k y y NM所以2121=-⋅⋅=-==∆∆∆∆N M KBAN BAM BMN KMN y y AB S S S S2018B 7、设)(x f 是定义在R 上的以2为周期的偶函数,在区间[]2,1上严格递减,且满足1)(=πf ,0)2(=πf ,则不等式组⎩⎨⎧≤≤≤≤1)(010x f x 的解集为◆答案:[]ππ--4,62★解析:由)(x f 为偶函数及在区间[]2,1上严格递减知,)(x f 在[]1,2--上递增,结合周期性知,)(x f 在[]1,0上递增,又1)()4(==-ππf f ,0)2()62(==-ππf f ,所以不等式等价于)4()()62(ππ-≤≤-f x f f ,又14620<-<-<ππ,即不等式的解集为a[]ππ--4,622018B 8、已知复数321,,z z z 满足1321===z z z ,r z z z =++321,其中r 是给定的实数,则133221z z z z z z ++的实部是 (用含有r 的式子表示) ◆答案: 232-r★解析:记133221z z z z z z w ++=,由复数的模的性质可知:111z z =,221z z =,331z z =,因此 133221z z z z z z w ++=。
[实用参考]2018年全国高中数学联合竞赛试题与解答(B卷).doc
2016年全国高中数学联赛(B 卷)一试一、选择题:(每小题8分,共64分)1.等比数列{}n a 的各项均为正数,且213263236,a a a a a ++=则24a a +的值为 .2.设{}|12A a a =-≤≤,则平面点集(){},|,,0B x y x y A x y =∈+≥的面积为 .3.已知复数z 满足22z z z z +=≠(z 表示z 的共轭复数),则z 的所有可能值的积为 .4.已知()(),f x g x 均为定义在R 上的函数,()f x 的图像关于直线1x =对称,()g x 的图像关于点()1,2-中心对称,且()()391x f x g x x +=++,则()()22f g 的值为 .5.将红、黄、蓝3个球随机放入5个不同的盒子,,,,A B C D E 中,恰有两个球放在同一盒子的概率为 .6.在平面直角坐标系xOy 中,圆221:0C x y a +-=关于直线l 对称的圆为222:2230,C x y x ay ++-+=则直线l 的方程为 .7.已知正四棱锥V -ABCD 的高等于AB 长度的一半,M 是侧棱VB 的中点,N 是侧棱VD 上点,满足2DN VN =,则异面直线,AM BN 所成角的余弦值为 .8.设正整数n 满足2016n ≤,且324612n n n n ⎧⎫⎧⎫⎧⎫⎧⎫+++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭.这样的n 的个数为 .这里{}[]x x x =-,其中[]x 表示不超过x 的最大整数.二、解答题:(共3小题,共56分)9.(16分)已知{}n a 是各项均为正数的等比数列,且5051,a a 是方程()2100l g l g 100x x =的两个不同的解,求12100a a a 的值.10.(20分)在ABC 中,已知23.AB AC BA BC CA CB ⋅+⋅=⋅(1)将,,BC CA AB 的长分别记为,,a b c ,证明:22223a b c +=; (2)求cos C 的最小值.11.(20分)在平面直角坐标系xOy 中,双曲线C 的方程为221x y -=.求符合以下要求的所有大于1的实数a :过点(),0a 任意作两条互相垂直的直线1l 与2l ,若1l 与双曲线C 交于,P Q 两点,2l 与C 交于,R S 两点,则总有PQ RS =成立.加试一、(40分)非负实数122016,,,x x x 和实数122016,,,y y y 满足: (1)221,1,2,,2016k k x y k +==; (2)122016y y y +++是奇数.求122016x x x +++的最小值.二、(40分)设,n k 是正整数,且n 是奇数.已知2n 的不超过k 的正约数的个数为奇数,证明:2n 有一个约数d ,满足2.k d k <≤三、(50分)如图所示,ABCD 是平行四边形,G 是ABD 的重心,点,P Q 在直线BD 上,使得,.GP PC GQ QC ⊥⊥证明:AG 平分.PAQ ∠QGPD CBA四、(50分)设A 是任意一个11元实数集合.令集合{}|,,.B uv u v A u v =∈≠求B 的元素个数的最小值.2016年全国高中数学联赛(B 卷)试题及答案一试一、选择题:(每小题8分,共64分)1.等比数列{}n a 的各项均为正数,且213263236,a a a a a ++=则24a a +的值为 .答案:6.解:由于()2222132632424243622,a a a a a a a a a a a =++=++=+且240,aa +>故24 6.a a +=另解:设等比数列的公比为q ,则52611.a a a q a q +=+又因()()()()()22252132********2223331111112436222,a a a a a a a q a q a q a q a q a q a q a q a q a q aa =++=⋅+⋅+=+⋅⋅+=+=+而240a a +>,从而24 6.a a +=2.设{}|12A a a =-≤≤,则平面点集(){},|,,0B x y x y A x y =∈+≥的面积为 . 答案:7.解:点集B 如图中阴影部分所示,其面积为133227.2MRSMNPQ S S-=⨯-⨯⨯=正方形3.已知复数z 满足22z z z z +=≠(z 表示z 的共轭复数),则z 的所有可能值的积为 .答案:3.解:设()i ,.z a b a b R =+∈由22z z z +=知,222i 22i i,a b ab a b a b -+++=-比较虚、实部得220,230.a b a ab b -+=+=又由z z ≠知0b ≠,从而有230,a +=即32a =-,进而23b a a =±+于是,满足条件的复数z 的积为33 3.22⎛⎫⎛⎫-+-= ⎪⎪⎪⎪⎝⎭⎝⎭4.已知()(),f x g x 均为定义在R 上的函数,()f x 的图像关于直线1x =对称,()g x 的图像关于点()1,2-中心对称,且()()391x f x g x x +=++,则()()22f g 的值为 .答案:2016. 解:由条件知()()002,f g +=①()()22818190.f g +=++=②由()(),f x g x 图像的对称性,可得()()()()02,024,f f g g =+=-结合①知,()()()()22400 2.f g f g --=+=③由②、③解得()()248,242,f g ==从而()()2248422016.f g =⨯=另解:因为()()391x f x g x x +=++,①所以()()2290.f g +=②因为()f x 的图像关于直线1x =对称,所以()()2.f x f x =-③又因为()g x 的图像关于点()1,2-中心对称,所以函数()()12h x g x =++是奇函数,()()h x h x -=-,()()1212g x g x ⎡⎤-++=-++⎣⎦,从而()()2 4.g x g x =---④将③、④代入①,再移项,得()()3229 5.x f x g x x ---=++⑤在⑤式中令0x =,得()()22 6.f g -=⑥由②、⑥解得()()248,246.f g ==于是()()222016.f g =5.将红、黄、蓝3个球随机放入5个不同的盒子,,,,A B C D E 中,恰有两个球放在同一盒子的概率为 .解:样本空间中有35125=个元素.而满足恰有两个球放在同一盒子的元素个数为223560.C P ⨯=过所求的概率为6012.12525p == 6.在平面直角坐标系xOy 中,圆221:0C x y a +-=关于直线l 对称的圆为222:2230,C x y x ay ++-+=则直线l 的方程为 .答案:2450.x y -+= 解:12,C C 的标准方程分别为()()2222212:1,:1 2.C x y C x y a a +=++-=-2故12,C C 12O O 7.是侧棱 xA建立空间直角坐标系.不妨设2,AB =此时高1,VO =从而()()()()1,1,0,1,1,0,1,1,0,0,0,1.A B D V ----由条件知111112,,,,,222333M N ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,因此311442,,,,,.222333AM BN ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭设异面直线,AM BN 所成的角为θ,则cos 11AM BN AM BNθ⋅-===⋅ 8.设正整数n 满足2016n ≤,且324612n n n n ⎧⎫⎧⎫⎧⎫⎧⎫+++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭.这样的n 的个数为 .这里{}[]x x x =-,其中[]x 表示不超过x 的最大整数.解:由于对任意整数n ,有135113,2461224612n n n n ⎧⎫⎧⎫⎧⎫⎧⎫+++≤+++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭ 等号成立的充分必要条件是()1mod12n ≡-,结合12016n ≤≤知,满足条件的所有正整数为()1211,2,,168,n k k =-=共有168个.另解:首先注意到,若m 为正整数,则对任意整数,x y ,若()mod x y m ≡,则.x y m m ⎧⎫⎧⎫=⎨⎬⎨⎬⎩⎭⎩⎭这是因为,当()mod x y m ≡时,x y mt =+,这里t 是一个整数,故 .x x x y mt y mt y y y y y t t m m m m m m m m m m ++⎧⎫⎡⎤⎡⎤⎡⎤⎡⎤⎧⎫=-=-=+-+=-=⎨⎬⎨⎬⎢⎥⎢⎥⎢⎥⎢⎥⎩⎭⎣⎦⎣⎦⎣⎦⎣⎦⎩⎭因此,当整数12,n n 满足()12mod12n n ≡时,11112222.2461224612n n n n n n n n ⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫+++=+++⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭容易验证,当正整数满足112n ≤≤时,只有当11n =时,等式324612n n n n ⎧⎫⎧⎫⎧⎫⎧⎫+++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭才成立.而201612168=⨯,故当12016n ≤≤时,满足324612n n n n ⎧⎫⎧⎫⎧⎫⎧⎫+++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭正整数n 的个数为168. 二、解答题:(共3小题,共56分)9.(16分)已知{}n a 是各项均为正数的等比数列,且5051,a a 是方程()2100lg lg 100x x =的两个不同的解,求12100a a a 的值.解对50,51k =,有()2100lg lg 1002lg ,k k k a a a ==+即()2100lg lg 20.k k a a --=因此,5051lg ,lg a a 是一元二次方程210020t t --=的两个不同实根,从而()505150511lg lg lg ,100a a a a =+=即1100505110.a a =由等比数列的性质知,()5015010012100505110a a a a a ⎛⎫=== ⎪⎝⎭10.(20分)在ABC 中,已知23.AB AC BA BC CA CB ⋅+⋅=⋅ (1)将,,BC CA AB 的长分别记为,,a b c ,证明:22223a b c +=; (2)求cos C 的最小值.解(1)由数量积的定义及余弦定理知,222cos .2b c a AB AC cb A +-⋅==同理得,222222,.22a cb a b cBA BC CA CB +-+-⋅=⋅=故已知条件化为()()22222222223,b c a a c b a b c +-++-=+-即22223.a b c +=(2)由余弦定理及基本不等式,得()2222222123cos 2236a b a ba b c C ab ab a b b a+-++-===+≥ 等号成立当且仅当因此cos C 11.(20分)在平面直角坐标系xOy 中,双曲线C 的方程为221x y -=.求符合以下要求的所有大于1的实数a :过点(),0a 任意作两条互相垂直的直线1l 与2l ,若1l 与双曲线C 交于,PQ 两点,2l 与C 交于,R S 两点,则总有PQ RS =成立.解过点(),0a 作两条互相垂直的直线1:l x a =与2:0.l y =易知,1l 与C 交于点((00,,P a Q a (注意这里1a >),2l 与C 交于点()()001,0,1,0,R S -由条件知00002PQ R S ===,解得a这意味着符合条件的a 下面验证a =事实上,当12,l l中有某条直线斜率不存在时,则可设12:,:0l x a l y ==,就是前面所讨论的12,l l 的情况,这时有.PQ RS =若12,l l 的斜率都存在,不妨设((()121:,:0,l y k x l y x k k==-≠ 注意这里1k ≠±(否则1l 将与C 的渐近线平行,从而1l 与C 只有一个交点).联立1l 与C 的方程知,(22210,x k x ---=即()22221210,k xx k ----=这是一个二次方程式,其判别式为2440k ∆=+>.故1l 与C 有两个不同的交点,P Q .同样,2l 与C 也有两个不同的交点,.R S 由弦长公式知,2212.1k PQ k +==⋅-用1k -代替k ,同理可得()()22221122.11k k RS k k --+-+=⋅=---于是.PQ RS= 综上所述,a =加试一、(40分)非负实数122016,,,x x x 和实数122016,,,y y y 满足: (1)221,1,2,,2016k k x y k +==; (2)122016y y y +++是奇数.求122016x x x +++的最小值.解:由已知条件(1)可得:1,1,1,2,,2016,k k x y k ≤≤=于是(注意0i x ≥)()2016201620162016201622211111120162016.kkkkk k k k k k x xy yy =====≥=-=-≥-∑∑∑∑∑①不妨设112016,,0,,,0,02016,m m y y y y m +>≤≤≤则201611,2016.m kk k k m ym y m ==+≤-≤-∑∑若11m k k y m =>-∑,并且201612015,k k m y m =+->-∑令2016111,2015,m kk k k m ym a y m b ==+=-+-=-+∑∑则0,1,a b <<于是()201620161111201522016,m kkk k k k m y yy m a m b m a b ===+=+=-+--+=-+-∑∑∑由条件(2)知,20161k k y =∑是奇数,所以a b -是奇数,这与0,1a b <<矛盾.因此必有11m k k y m =≤-∑,或者201612015,k k m y m =+-≤-∑则201620161112015.m kk k k k k m yy y ===+=-≤∑∑∑于是结合①得201611.k k x =≥∑又当122015201612201520160,1,1,0x x x x y y y y ==========时满足题设条件,且使得不等式等号成立,所以122016x x x +++的最小值为1.二、(40分)设,n k 是正整数,且n 是奇数.已知2n 的不超过k 的正约数的个数为奇数,证明:2n 有一个约数d ,满足2.k d k <≤证明:记{}||2,0,A d d n d k d =<≤是奇数,{}||2,0,B d d n d k d =<≤是偶数,则,2A B n =∅的不超过k 的正约数的集合是.A B若结论不成立,我们证明.A B =对d A ∈,因为d 是奇数,故2|2d n ,又22d k ≤,而2n 没有在区间(],2k k 中的约数,故2d k ≤,即2d B ∈,故.A B ≤反过来,对d B ∈,设2d d '=,则|d n ',d '是奇数,又2kd k '≤<,故,d A '∈从而B ≤ABD 直线.PAQCB此,点G 在线段AC 上.由于90GPC GQC ∠=∠=,所以,,,P G Q C 四点共圆,并且其外接圆是以GC 为直径的圆.由相交弦定理知.PM MQ GM MC ⋅=⋅①取GC 的中点.O 注意到::2:1:3,AG GM MC =故有1,2OC GC AG ==因此,G O 关于点M 对称.于是.GM MC AM MO ⋅=⋅②结合①、②,有PM MQ AM MO ⋅=⋅,因此,,,A P O Q 四点共圆. 又1,2OP OQ GC ==所以PAO QAO ∠=∠,即AG 平分.PAQ ∠四、(50分)设A 是任意一个11元实数集合.令集合{}|,,.B uv u v A u v =∈≠求B 的元素个数的最小值.解:先证明17.B ≥考虑到将A 中的所有元素均变为原来的相反数时,集合B 不变,故不妨设A 中正数个数不少于负数个数.下面分类讨论:情况一:A 中没有负数. 设1211a a a <<<是A 中的全部元素,这里120,0,a a ≥>于是1223242113111011,a a a a a a a a a a a a <<<<<<<上式从小到大共有19818++=个数,它们均是B 的元素,这表明18.B ≥情况二:A 中至少有一个负数.设12,,,k b b b 是A 中的全部非负元素,12,,,l c c c 是A 中的全部负元素.不妨设110,l k c c b b <<<≤<<其中,k l 为正整数,11k l +=,而k l ≥,故 6.k ≥于是有111212,k k l k c b c b c b c b c b >>>>>>它们是B 中的110k l +-=个元素,且非正数;又有23242526364656,b b b b b b b b b b b b b b <<<<<<它们是B 中的7个元素,且为正数.故10717.B ≥+=由此可知,17.B ≥另一方面,令{}2340,1,2,2,2,2,A =±±±±±则{}236780,1,2,2,2,,2,2,2B =-±±±±±-是个17元集合.。
广东省数学竞赛试题及答案
广东省数学竞赛试题及答案一、选择题(每题5分,共30分)1. 下列哪个数是无理数?A. 0.33333…(无限循环)B. πC. √2D. 1/3答案:B、C2. 若函数f(x) = 2x^2 + 3x + 1在区间[-2, 2]上是单调递增的,则下列哪个选项是错误的?A. f(-1) < f(1)B. f(-2) < f(0)C. f(0) < f(2)D. f(1) < f(2)答案:A3. 已知一个等差数列的首项为a1,公差为d,若a3 + a7 = 20,a4 + a6 = 18,则该数列的首项a1等于多少?A. 1B. 2C. 3D. 4答案:B4. 在一个圆中,弦AB的长度为10,弦AB所对的圆心角为60°,那么这个圆的半径是多少?A. 5√3B. 10C. 20D. 5答案:A5. 已知一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形答案:A6. 一个函数f(x) = kx + b,若f(1) = 4且f(2) = 7,求k和b的值。
A. k = 3, b = 1B. k = 2, b = 3C. k = 3, b = 3D. k = 4, b = -1答案:B二、填空题(每题5分,共20分)1. 一个正六边形的内角和为________。
答案:720°2. 若一个二次方程ax^2 + bx + c = 0(a≠0)的判别式Δ = 0,则该方程的根是________。
答案:x = -b/(2a)3. 一个圆的周长为2π,那么这个圆的面积是________。
答案:π4. 若一个等比数列的首项为2,公比为3,求第5项的值。
答案:486三、解答题(每题25分,共50分)1. 已知一个直角三角形的两条直角边分别为6和8,求斜边的长度。
解:根据勾股定理,斜边的长度为√(6^2 + 8^2) = √(36 + 64) = √100 = 10。
2018年全国高中数学联合竞赛试题及解答.(A卷)
{}{}{}{}∈⎢,3⎥,即OQ∈[1,3],6⨯6=36种,从而abc+def为奇数的概率为722018年全国高中数学联合竞赛一试(A卷)一、填空题:本大题共8个小题,每小题8分,共64分。
2018A1、设集合A=1,2,3, ,99,集合B=2x|x∈A,集合C=x|2x∈A,则集合B C 的元素个数为◆答案:24★解析:由条件知,B C=2,4,6, ,48,故B C的元素个数为24。
2018A2、设点P到平面α的距离为3,点Q在平面α上,使得直线PQ与平面α所成角不小于300且不大于600,则这样的点Q所构成的区域的面积为◆答案:8π★解析:设点P在平面α上的射影为O,由条件知tan∠OQP=OP⎡3⎤OQ⎣3⎦所以区域的面积为π⨯32-π⨯12=8π。
2018A3、将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc+def是偶数的概率为◆答案:9 10★解析:先考虑abc+def为奇数时,abc,def一奇一偶,①若abc为奇数,则a,b,c为1,3,5的排列,进而d,e,f为2,4,6的排列,这样共有6⨯6=36种;②若abc为偶数,由对称性得,也有119=,故所求为1-=6!1010102018A4、在平面直角坐标系xOy中,椭圆C:x2y2+a2b2=1(a>b>0)的左右焦点分别是F,F,12椭圆C的弦ST与U V分别平行于x轴和y轴,且相交于点P,已知线段PU,PS,PV,PT的长分别为1,2,3,6,则∆PF F的面积为12★解析:由对称性,不妨设点 P x , y在第一象限,则 x = PT -PS 即 P 2,1 。
进 而 可 得 U2,2 , S 4,1 , 代 入 椭 圆 方 程 解 得 : a 2 = 20 , b 2 = 5 , 从 而 2 2[ ]◆答案: π - 2,8 - 2π ][ ] [ ][ ] 所以 π - 2 < x < 8 - 2π ,即不等式的解集为 π - 2,8 - 2π ] ⎩bx 2 - 2bx = 0◆答案: 15()2 = 2 ,y 0 =PV - PU2= 1( ) ( ) ( )S ∆PF 1F2=1 1F F ⨯ y = ⨯ 2 15 ⨯ 1 = 15 。
2018年全国高中数学联赛试题
-、 填空题 :本大题共 8小 题 ,每 小题 8分 ,满 分 “ 分。
1。 设集合 /=[,2,3,… ,991,B=仫 豸u∈ /l,c=伽 |2丌 ∈彳卜 贝刂B∩ C的 元
素个数为_⊥____·
不小2于.设30°点且`不到大平于面ωα°的,则距 离这为样雨的点,点口所g在构成平的面区α域上
。=.函 数尸撬圣甲IO,ll工 熟耨浒减,
⒍ 设复数z满 足|亻 F殉呷 关弑
纟'’;`i
⒎ 设o裨鲫 BC呼唾 锷 昶 舒 豇 2刃 ,酪应 硭 的值为___
亻 鞲 .解答应 写投文 字说明 、证明过
蠹
∷ 篚R+上 的雾熬/←)为
嚣静 丬’ ⒎ ~{严 百 ∶ I需
`
F∶f玉
设曰,D,ε 是三个互不相同的实数,满足/@)=/(D)=/(c),求 汕c的 取值范围。
切I囚 在 /B边 ˇL的 切点,σ 为 彳J与 BCJ的 交点,Ⅳ 在线段 EF~⒈ ,满 足 ⅣB⊥ 彳B。
证明:希 BⅣ 哀E″ ,则 DF⊥ JC.(笞 饿时泔将 国画在笛卷纸上 冫
m分 三 、(本 履满分
冫设″,七 ,胛 是 正整数’黻 虍n,L.″ ≤泖 《∶茔 二上‰
r
饣
设 刀是{l。 2,… 9阴 }f向 ″瓦子集。讠iΙ 明:
》
rT″
ˉ^. Ⅱ
证 明 : (包 +lX仇 +l)… 《饥+l) 《 ~B+l
(FJl+l)(rJ2+l)… 《rJ″ +l) 彳 +l
二 、(本预满分 +0分 冫如图,AHBC∶ 为锐角Ι角彤 ,/B《 彳(J,〃 为 B(Γ 边
高三数学-2018年全国高中数学联合竞赛一试试卷及答案(word版) 精品
2018年全国高中数学联合竞赛一试试卷(考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分) 1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71 B. 71- C. 21 D. 21- 2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( ) A. ]31,31[- B. ]21,21[- C. ]31,41[- D. [−3,3] 3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。
则使不等式a −2b +10>0成立的事件发生的概率等于( ) A. 8152 B. 8159 C. 8160 D. 8161 4. 设函数f (x )=3sin x +2cos x +1。
若实数a 、b 、c 使得af (x )+bf (x −c )=1对任意实数x 恒成立,则ac b cos 的值等于( ) A. 21- B. 21 C. −1 D. 1 5. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。
若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。
8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。
2018全国高中数学联赛模拟试题1及参考答案
⎫ ⎩ ⎭⎪ + 2高中联赛模拟试题 1一试部分考试时间:80 分钟满分:120 分一、填空题(每小题 8 分,共 64 分)1. 设集合 A = {x -2 ≤ x < 5}, B = ⎧x 3a > 1.若 A B ≠∅ ,则实数 a 的取值范围是.⎨ x - 2a ⎬2.已知甲、乙两只盒子中装有相同规格的乒乓球,其中,甲盒中有三个白球和三个红球,乙盒中仅有三 个白球.若从甲盒中任取三个放入乙盒中,则从乙盒中任取一个是红球的概率是.2 c os 2⎛ 1 x - 1 ⎫- x 3.函数f ( x ) = ⎝ 2 2 ⎭ 的对称中心的坐标为 .x - 1V + V 4.已知四棱锥 S - ABCD 的底面 ABCD 是平行四边形,O 是四棱锥内任意一点.则 四面体OSAB 四面体OSCD=V 四面体OSBC + V 四面体OSDA.5.在椭圆 x 2 = 1(a > b > 0) 中,记右顶点、上顶点、右焦点分别为 A , B , F .若 ∠AFB = ∠BAF + 90 ,a b则椭圆的离心率为 .6.平面上 n 个三角形最多把平面分成 部分.sin2π ⋅ sin 8π7.计算: 15 15 = .cos π ⋅ cos 2π ⋅ cos4π 5 5 58. 设复数 α, β ,γ , z 满足 α + β + γ = αβ + βγ + γα = αβγ = 1.则 α - z + β - z + γ - z 的最小值为 .2y 2BB 1CC 1( )二、解答题(第 9 小题 16 分,第 10、11 小题 20 分,共 56 分)9.已知动直线 l 过定点 A (2, 0) 且与抛物线 y = x 2+ 2 交于不同的两点B ,C .设 B , C 在 x 轴上的射影分别为 B 1 ,C 1 . P 为线段 BC 上的点,且满足 PC ,求 ∆POA 的重心的轨迹方程.10. 设 f ( x ) = sin x .已知当 x ∈[0,π ]时,有 sin x + 1 ≥ 2x + cos x .证明: f ⎛ π ⎫ + f ⎛ 2π ⎫ + + f ⎛ (n + 1)π ⎫ 2n + 1⎪ 2n + 1⎪ 2n + 1 ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭p11. 已知 p 为大于 3 的素数.求 ∏ k 2 + k + 1 除以 p 的余数.k =1高中联赛模拟试题 1加试部分考试时间:150 分钟满分:180 分一、(本题满分 40 分)已知a, b, c∈,且+ c = 0 .证明:a = b = c = 0二、(本题满分 40 分)a2b2 b2c2 c2 a2 31)已知正实数a, b, c满足a2 + b2 + c2 = 1.证明:++≥.abc + c4abc + a4abc + b4 2三、(本题满分 50 分)已知圆Γ 内有两定点A 、B ,过A 作一动弦CD ,延长CB 、DB ,与圆Γ 分别交于点E 、F .证明:弦EF 通过一个与C 、D 无关的定点.四、(本题满分 50 分)在80 座城市之间执行如下两种方式的飞行航线:(1)任意一座城市至少与七座城市有直航;(2)任意两座城市可以通过有限次直航来连接.求最小的正整数n ,使得无论如何安排满足条件的航线,任意一座城市到其他城市均最多可以经过n 次直航到达.C 3 3高中联赛模拟试题 1解答一试部分考试时间:80 分钟满分:120 分一、填空题(每小题 8 分,共 64 分)1. 0 < a < 5或 -1 < a < 0 .2解析:由题意可知 B = {x 2a < x < 5a , a > 0}⋃{x 5a < x < 2a , a < 0}. 又因为 A ⋂ B ≠ ∅ , ⇒ 0 < 2a < 5或 - 2 < 2a < 0 .2.1 .4C k C 3-k 解析:由题设知乙盒中红球个数的可能值 ξ =0,1,2,3 .故 P (ξ = k ) = 3 3(k = 0,1, 2,3).从而得出6P ( A ) = ∑P (ξ = k )P ( A ξ = k ) = 1.k =04 3.(1, -1) .解析:由题设知 f ( x ) = cos ( x -1) - 1 .因为 g ( x ) = cos x为奇函数,其对称中心为 (0, 0) ,故 f ( x ) 的对称中心为 (1, -1) .x -1 x4.1.解析:延长 SO 与底面 ABCD 交于点 X .由底面 ABCD 是平行四边形,⇒ S ∆XAB + S ∆XCD = S ∆XBC + S ∆XDA ⇒ V 四面体OSAB + V 四面体OSCD = V 四面体OSBC + V 四面体OSDA5.5 -1 .2解析:设左焦点为 F '.则由 ∠AFB = ∠BAF + 90 ⇒ ∠AF ' B + ∠BAF ' = 90 ⇒ AB ⊥ BF ' .又 AB 2= a 2 + b 2 , BF ' 2= a 2 , AF ' 2= (a + c )2.由勾股定理知 a 2 + b 2 + a 2 = (a + c )2,由此, ⇒ c = a6.3n 2 - 3n + 2 .解析:设 n 个三角形最多把平面分成 S n 个部分. S 1 = 2 .因为任意一个三角形与另一个三角形至多有 6 个交点,这些交点将该三角形的周长分成至多 6(n - 1)1 12 2 0 0⎨ BB 1 CC 1 AB 1 AC 1 1 , ⎝ ⎭段,每一段将其所在平面一分为二,增加了 6(n - 1) 个部分.从而 S n - S n -1 = 6(n - 1)(n ≥ 2) .7.-2 . 解析:sin 2π ⋅ sin 8π8sin πsin 2π sin 8π4sin π ⎛cos 2π - cos 2π ⎫2⎛sin 3π - sin π ⎫ + 2sin π15 15515 15 5 5 3⎪ 5 5 ⎪5 cos π ⋅ cos 2π ⋅ cos 4π= cos 8π⎝ ⎭ = cos 8π ⎝ ⎭ . sin 8π5 5 555 58.1 +解析:注意到 α, β ,γ 为一元三次方程 x 3 - x 2 + x -1 = 0 的根,从而可令α = i , β = -i ,γ = 1.在复平面上,⎫令 α, β ,γ 分别对应于点 A (0,1), B (0, -1),C (1, 0) .当 z 取到 ∆ABC 的费马点⎪ 时取值最小. ⎪ ⎝ ⎭二、解答题(第 9 小题 16 分,第 10、11 小题 20 分,共 56 分)9. 当 l ⊥ x 轴时,直线 l 与抛物线不可能有两个交点. 故设直线l : y = k ( x - 2). 与抛物线的方程联立得: x 2 - kx + 2k + 2 = 0 .(1) 由 ∆ > 0 ⇒ k > 4 + 2 6或k < 4 - 2)设 B ( x , y ),C ( x , y ), P ( x , y ) .则 ⎧x 1 + x 2 = k , (3)令 λ =CP= = = 2 - x 1 2 - x 2⎩x 1 x 2 = 2k + 2.(4)⎧ ⎪⎪x = 设重心 G ( x , y ) .则 ⎨ (2 + x 0 ), 3 .将式(2),(3),(4)代入,并注意到 y = k ( x- 2)得: 0 0⎪ y = y .⎪⎩ 3 0⎧x = 4 - 4k ⎪⎪ 3(4 - k ) ⎨⇒ 12x - 3y - 4 = 0 .从而得 k = 4 y ,代入(2)式得: ⎪ y = ⎪⎩-4k 4 - k y - 44 y < 4 或 4 < y < 4 G 的轨迹方程为:3 3⎛ 12x - 3y - 4 = 0 4 -y < 4或4 < y < 4 . 3 3 ⎪1- ,故⎝ ⎭3 ( ) ( ) 10. 由已知条件 ⇒ sin x - cos x ≥ 2 x -1 ⇒ ⎛ x - π ⎫ ≥ 2x -1 .又当1 ≤ k ≤ n + 1时,0 ≤k π + π ≤ π . π 4 ⎪ π 2n +1 4⎝ ⎭而 2 sin k π ≥ 2 ⎛ k π + π ⎫ -1 = 2k 12n + 1 π 2n +1 4 ⎪2n +1 2⎛ π ⎫ ⎛ 2π ⎫ ⎛ (n + 1)π ⎫⎤ n +1 ⎛ 2k 1 ⎫ 3(n + 1) f ⎪ + f ⎪ + + f⎪⎥ ≥ ∑ - ⎪ = ⎢⎣ ⎝ 2n + 1 ⎭ ⎝ 2n + 1 ⎭ ⎝ 2n + 1 ⎭⎥⎦ k =1 ⎝ 2n + 1 2 ⎭ 2 (2n +1)⎛ π ⎫ ⎛ 2π ⎫⎛ (n + 1)π ⎫ n + 1) f ⎪ + f ⎪ + + f⎪ ≥ . ⎝ 2n + 1⎭ ⎝ 2n + 1⎭ ⎝ 2n + 1 ⎭ 4(2n +1)11. 注意到 k ≠ 1时, k 2 + k + 1 =k-1 .而当 k 取遍 2,3, , p 时,分母 k -1 取遍1, 2, , p -1. k -1由费马小定理, x p -1 ≡ 1(mod p ) 在1 ≤ x ≤ p 恰有 p -1 个解.(1)当 p ≡ 1(mod3 )时, x 3 -1 为 x p -1 -1 的因子,于是 x 3 -1 ≡ 0(mod p )在1 ≤ x ≤ p 内恰有三个解.于 是当 k 取遍 2,3, , p 时,分子 k 3 -1 中恰有两项为 p 的倍数,而分母不含 p 的因子. p故 ∏ k 2 + k + 1 ≡ 0(mod p ) .k =1(2)当 p ≡ 2(mod 3)时,3 与 p -1 互素,于是存在整数 a ,b 使得 3a + ( p - 1)b = 1. 假设有一个 2 ≤ k ≤ p 满足k 3 ≡ 1(mod p ) .由费马小定理得 k ≡ k 3a +( p -1)b≡ 1(mod p ),矛盾. 因此, x 3 -1≡ 0(mod p )只有 x ≡ 1(mod p ) 这一个解.故当 k 取遍1, 2, , p 时, k 3 除以 p 的余数两两不同,正好也取遍1, 2, , p .从而当 k 取遍 2,3, , p 时, k 3 -1 除以 p 的余数取遍1, 2, , p -1.p3p p3故 ∏ k -1 ≡ 1(mod p ) ⇒ ∏ (k 2 + k + 1) ≡ 3 ∏ k -1≡ 3(mod p ) .k =2 k -1 k =1 k =2 k -1p综上, ∏ k 2 + k + 1 除以 p 的余数为 0 或 3.k =1(( ) ( ) ( )) ( )t1一、(本题满分 40 分)加试部分考试时间:150 分钟满分:180 分显然, a , b , c 中有一个为 0,则其余两个也为 0. 下面假设 a , b , c 均不为 0.易证明:若 a , b , c 均为非 0 + c = 0 ;(1)d ,e ,f 均为非 0 有理数,且+ f = 0 ,则 a = b = c .d e f(1+ 3a = 0 ;(1)式两边同时乘以+ 33b= 0 . 于是, b = c = 3a= k .(2)c 3a 3b由 a , b , c 均为非 0 有理数知其中必有两个同号.结合(2)式,知 a , b , c 同号.从而(1)式左边不为 0,矛盾. ⇒ a = b = c = 0 .二、(本题满分 40 分)x 2 y 2 z 2令 a 2= yz ,b 2= zx , c 2= xy .则 xy + yz + zx = 1.原式左边 = + x + yz y + zx z + xy.由柯西不等式得:⎛ x 2y 2 z 2 ⎫ 2+ + ⎪x + yz + y + zx + z + xy ≥ x + y + z ⎝ x + yz y + zx z + xy ⎭x 2 y 2 z 2( x + y + z )2( x + y + z )2⇒ + + ≥ = x + yz y + zx z + xy x + y + z + ( yz + zx + xy ) . x + y + z + 1 由 ( x + y + z )2≥ 3( x y + yz + zx ) ⇒ x + y + z ≥t = x + y + z2 因为 f (t ) = (t + 1) + 2 ,在区间) 上单调递增,所以:t + 1 t + 1 331)原式左边 ≥ f (t ) ≥.2三、(本题满分 50 分)连结 AB 并延长与圆 Γ 交于点 G , H ,与弦 EF 交于点 P . 设 ∠ECD = ∠EFD = α,∠CDF = ∠CEF = β .由 S ∆ABC ⋅ S ∆PBF ⋅ S ∆ABD ⋅ S ∆PBE = 1 ,得AC ⋅ BC sin α ⋅ PB ⋅ FB ⋅ AD ⋅ BD sin β ⋅ PB ⋅ EB = 1.S ∆PBF S ∆ABD S ∆PBE S ∆ABC PF ⋅ BF sin α AB ⋅ DB PE ⋅ BE sin β AB ⋅ C B 整理得 PB 2 ⋅ AC ⋅ AD = AB 2 ⋅ PE ⋅ PF .在圆 Γ 中,由相交弦定理得:PB 2 ⋅ AG ⋅ AH = AB 2⋅ PG ⋅ PH .(1) 设 AB = a , PB = b , BG = c > a , BH = d > b ,其中, a , c , d 为常数, b 未定.则(1)式 ⇔ b 2 (c - a )(d + a ) = a 2 (d - b )(c + b ) . 整理得 ((c - a )d + ac )b 2 + a 2 (c - d )b - a 2cd = 0 .该二次方程的二次项系数与常数项符号相反,因此有且仅有一个正数解.故 b 是定值.即 BP 是定值. 从而无论 C , D 如何选取, EF 总是与 AB 交于一个固定点 P .四、(本题满分 50 分)n 的最小值为 27. 若两座城市可以通过有限次直航来连接,称这两个城市”通航”. 首先证明: n ≤ 27 .反证法:若 n ≥ 28 ,不妨设有两座城市 A 1 到 A 29 间至少经过 28 次到达.设城市 A 1 到 A 29 的一个最短连 接路线为 A 1 → A 2 → → A 29 .因为每一座城市至少和七座城市通航,所以, A 1 , A 29 与除去 A 2 A 28 以外的至少六座城市通航,城市 A 2A 28 与除去 A 1A 29 以外的至少五座城市通航.设 A = {A 1 , A 2 , , A 29 } .设分别与城市 A 1 , A 4 , A 7 , A 10 , A 13 , A 16 , A 19 , A 22 , A 25 , A 29 通航,且不属于 A 的所有城市 组成的集合为 X i (i = 0,1, , 9).易知, X 0 ≥ 6, X 9 ≥ 6, X i ≥ 5(i = 1, 2, ,8) . 又 X i ⋂ X j = ∅(i ≠ j ) ,否则,城市 A 1 , A 29 之间有更短的连接路线. 故 A ⋃ ( X 0 ⋃ X 1 ⋃ ⋃ X 9 ) ≥ 29 + 6 ⨯ 2 + 5 ⨯ 8 = 81 > 80 ,矛盾.从而 n ≤ 27 . 其次证明: n = 27 是可以的.事实上,取 28 座城市 A 1 , A 2 , , A 28 与城市集合 X i (i = 0,1, , 9). 当 i = 0, 9 时, X i = 6 ;当 i = 1, 2, ,8 时, X i = 5 ,且对于 0 ≤ i < j ≤ 9 , X i ⋂ X j = ∅ , X i 中不包含城市 A 1 , A 2 , , A 28 . 对于1 ≤ k ≤ 8 ,城市 A 3k , A 3k +1 , A 3k +2 与集合 X k 中所有的城市通航;城市 A 1 , A 2 与集合 X 0 中所有的城市通 航;城市 A 27 , A 28 与集合 X 9 中所有城市通航;集合 X i (0 ≤ i ≤ 9)中任意一座城市与上述的城市 A s 通航, 与且仅与集合 X i 中其余城市通航;城市 A i 与 A i +1 (i = 1, 2, , 27) 通航. 这样,城市 A 1 A 28 至少与七座城市通航,集合 X i 中任意一座城市均只与七座城市通航,且城市A 1A 28 至少经过 27 次直航来连接.因此, n = 27 .。
2018年全国高中数学联赛试题及答案详解(A卷)
.
答案: 15 .
解:由对称性,不妨设 P(xP, yP ) 在第一象限,则由条件知
xP
1 PT
2
PS 2,
yP
1 PV
2
PU
1,
1
即 P(2, 1) .进而由 xP PU 1, PS 2 得U (2, 2), S(4, 1) ,代入椭圆 C 的方程知
…………………16 分
注:对任意的
r
(81,
144) ,取 c0
=
r 9
,则 c0
∈ (9,16) ,从而
f
(c0 ) ∈ (0,1) .过
点 (c0, f (c0 )) 作平行于 x 轴的直线 l ,则 l 与 f (x) 的图像另有两个交点 (a, f (a)) ,
(b, f (b)) (其中 a (0, 3), b (3, 9) ),满足 f (a) f (b) f (c) ,并且 ab 9 ,从
证明: (1) 约定 S0 0 .由条件知,对任意正整数 n ,有
1
an
(2Sn
an
)
(Sn
Sn1 )( Sn
Sn1 )
Sn2
S2 n1
,
从而 Sn2 n S02 n ,即 Sn n (当 n 0 时亦成立). …………………5 分
显然, an Sn Sn1 n n 1 2 n .
2
(
y3
y2
)2
( y1 y2 )2 y12 ( y1 y2 )2 y22
数的概率为1 − 72 =1 − 72 =9 . 6! 720 10
2018年全国高中数学联赛模拟试题与参考 答案
解得− ≥ ������> − 4.
注意:函数的定义域不能为空集。
2.已知函数������(������) = 1 −
(������>������)若������(������) = 2 ln √������ − ������(������),则������(������������)的取值范围为____________.
P
注:也可采用联立直线与圆锥曲线的方法解答,但过于繁琐,本解
答采用熟知的结论:������������ + ������������ = ������. 7.对于 ≤ ������ ≤ 1,则(1 + ������) (1 − ������)(1 − 2������) 的最大值为___________.
的等腰三角形,则三棱锥 A-BCD 的高与其外接球的直径的比值为_____________.
A
【解答】如图,易得 AE⊥BE,由等量关系,CE=ED=2,AF=BF=4,AE=BE=2√2.
由垂径定理,OF⊥AB,OE⊥CD,由对称性得 O 在 EF 上.
F
由勾股定理,OF + AF = AO = R = OC = (4 − OF)² + CE²
故������������������������ =
=
=
=
2
²
,若������������������������<0,则������������������������<0,这不可能.
∴ ������������������������>0. ������������������������ ≤ √ .
在 BDP 中由正弦定理得 1 x
sin 2 60
2018年全国高中数学联合竞赛
I
:
每 个 正 整 数均在 数 列 U
中出 现
.
a b a 〇
与+各
=?
1
2
=
20
2
,
6
=
5
.
参 考 答 案
第
—
故M yP
"
I
一
试
=
^
/a
tt
2
2
-
b
yP
—
—
\ /1
5
.
、
1
.
24
.
5
.
—
[
)
求
Me 的 取 值 范 围
ai
,
.
则 这 样 的点
.
所构成
行 记为
,
10 .
(
20
分
—
)
已 知 实数 列
a2
… ,
满 足对
的 区 域 的 面 积为
3 a
6
c
.
任 意 正整 数 随机 排成
/
一
 ̄ 均有
将
《
1
、
2
、
3
、
4
、
5
、
6
a
n (
2S
n ^
a
-
\
2x
\
x ^ A
\
,
(
1
6
共 56 分 分 已 知 定义 在
(
) )
I
R
+
2018年全国高中数学联赛试题及答案详解(A卷)
2,
4,
6,,
48
,
故 B C 的元素个数为 24 . 2. 设点 P 到平面 的距离为 3 ,点 Q 在平面 上,使得直线 PQ 与 所成
角不小于 30 且不大于 60 ,则这样的点 Q 所构成的区域的面积为
.
答案:8 .
解:设点 P 在平面 上的射影为 O .由条件知,OP OQ
tan
OQP
3, 3求的区域面积为 32 12 8 .
3. 将1, 2, 3, 4, 5, 6 随机排成一行,记为 a, b, c, d , e, f ,则 abc + def 是偶数的
概率为
.
答案: 9 . 10
在[9,) 上严格递减,且 f (3) 0, f (9) 1,故结合图像可知
a (0, 3) , b (3, 9) , c (9, ) ,
并且 f (a) f (b) f (c) (0, 1) .
…………………4 分
由 f (a) f (b) 得 1 log3 a log3 b 1,
注意到 f ( 2) f () 1, f (8 2) f (2) f (2) 2 ,
所以 1 f (x) 2 f ( 2) f (x) f (8 2) ,
而1 2 8 2 2 ,故原不等式组成立当且仅当 x [ 2, 8 2] . 6. 设复数 z 满足 z 1,使得关于 x 的方程 zx2 2zx 2 0 有实根,则这样
证明: (1) 约定 S0 0 .由条件知,对任意正整数 n ,有
1
an
(2Sn
最新-2018年全国高中数学联赛试题及参考答案精品
最新-2018年全国⾼中数学联赛试题及参考答案精品2018年全国⾼中数学联赛试题及参考答案试题⼀、选择题(本题满分36分,每⼩题6分)1、函数f (x)=log1/2(x2-2x-3)的单调递增区间是()。
(A)(-∞,-1)(B)(-∞,1)(C)(1,+∞)(D)(3, +∞)2、若实数x,y满⾜(x+5)2+(y-12)2=142,则x2+y2的最⼩值为()。
(A)2 (B)1 (C)√3(D)√23、函数f(x)=x/1-2x-x/2()(A)是偶函数但不是奇函数(B)是奇函数但不是偶函数(C)既是偶函数⼜是奇函数(D)既不是偶函数也不是奇函数4、直线x/4+y/3=1与椭圆x2/16+y2/9=1相交于A,B两点,该椭圆上点P,使得ΔPAB⾯积等于3,这样的点P共有()。
(A)1个(B)2个(C)3个(D)4个5、已知两个实数集合A={a1,a2,…,a100}与B={b1,b2,…,b50},若从A到B的映射f使得B中每个元素都有原象,且f(a1)≤f(a2)≤…≤f(a100)则这样的映射共有()。
(A)C50100(B)C4899(C)C49100(D)C49996、由曲线x2=4y,x2=-4y,x=4,x=-4围成的图形绕y轴旋转⼀周所得旋转体的体积为V1;满⾜x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的点(x,y)组成的图形绕y轴旋转⼀周所得旋转体的体积为V2,则()。
(A)V1=(1/2)V2 (B)V1=(2/3)V2 (C)V1=V2 (D)V1=2V2⼆、填空题(本题满分54分,每⼩题9分)7、已知复数Z1,Z2满⾜∣Z1∣=2,∣Z2∣=3,若它们所对应向量的夹⾓为60°,则∣(Z1+Z2)/(Z1+Z2)∣=。
8、将⼆项式(√x+1/(24√x))n的展开式按x的降幂排列,若前三项系数成等差数列,则该展开式中x的幂指数是整数的项共有个。
2018全国高中数学联赛广东赛区选拔赛
两个球是异色的概率,则满足关系 m n 40 的数组 (m, n) 的个数为
.
7.已知关于 x 的实系数方程 x2 2x 2 0 和 x2 2mx 1 0 的四个不同的根在复平面上对应的点共圆,
则 m 的取值范围是
.
8.已知圆 x2 y2 8 围成的封闭区域上(含边界)的整点(坐标均为整数的点)数是椭圆 x2 y2 1围 a2 4
8
所以 S(B) S( A3)
C m1 8
(9m1
1)
108
28
k 0
最后对 a 8am a0 A2 {8} ,令
b (a) (8 am )(8 a0 ) B , 则 是 A2 {8}到 B 的双射,其中:
a b 89m1 89m 8 9m2 1 .
成的封闭区域上(含边界)整点数的 1 ,则正实数 a 的取值范围是
.
5
二、解答题 :本大题共 3 小题,共 56 分.解答应写出文字说明、证明过程或演算步骤.
9.设函数 f (x) ex 1 x ,
1
(1)求
f
(x)
在区间 [0,
] n
(
n
为正整数)的最大值
bn
;
(2)令 an
1
en
1 bn ,
8 因为 B {amam1a0 |1 am am1 a0 8, m 0,1,, 7} ,
7
所以 B 中共有
C m1 8
个元素,因此
m0
S(B) S(A1)
9 8
7 m0
C m1 8
(9m1
1)
2018年全国高中数学联合竞赛广东赛区选拔赛试题
.
3.已知方程在 xe2x k 0 区间 2, 2内恰有两个实根,则 k 的取值范围是
ห้องสมุดไป่ตู้
.
4.已知 ABC 的三个角 A、、 B C 成等差数列,对应的三边为 a、b、 c ,且 a、c、 4 b 成等比数列,则 3
SABC : a2
.
5.已知点 A1,1, B 1 2, 0,C 3 2, 0, ,经过点 A, B 的直线和经过点 A,C 的直线与直线
11. 已知正整数 n 都可以唯一表示为 n a0 a19 a2 92 ... am 9m (*)的形式,其中 m 为非负整数,
a j 0,1,...,8 j 0,1,..., m 1, am 0,1,...,8.试求(*)中的数列 a0 , a1, a2 ,..., am 严格单调递增或严
y a 0 a 1所围成的平面区域为 G ,已知平面矩形区域 x, y 0 x 2, 0 y 1 中的任意一点进
入区域 G 的可能性为 1 ,则 a
.
16
6.袋中装有 m 个红球和 n 个白球, m n 4 .现从中任取两球,若取出的两个球是同色的概率等于取出的
2018 年全国高中数学联合竞赛广东赛区选拔赛答卷名称
一、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)
1.函数
f
x
1 aex 1 ex
a
1的值域为
.
2.设集合 A x x2 x 2 和 B x x 2 ,其中符号x表示不大于 x 的最大整数,则 A B
1
en
1 bn ,
pk
2018年全国高中数学联合竞赛试题 精品
2004年全国高中数学联合竞赛试题(一试)第 一 试 时间:一0月一6日一、选择题(本题满分36分,每小题6分)一、设锐角θ使关于x 的方程24cos cot 0x x θθ++=有重根,则θ的弧度数为( ) A.6π B.51212orππ C.5612orππ D.12π 2、已知22{(,)|23},{(,)|}M x y x y N x y y mx b =+===+。
若对所有,m R M N ∈≠∅ 均有,则b 的取值范围是( )A. ⎡⎢⎣⎦B. ⎛ ⎝⎭C. (D. ⎡⎢⎣⎦3、3121log 202x +>的解集为( ) A. [2,3)B. (2,3]C. [2,4)D. (2,4]4、设O 点在ABC ∆内部,且有230OA OB OC ++=,则ABC ∆的面积与AOC ∆的面积的比为( )A. 2B.32C. 3D.535、设三位数n abc =,若以a ,b ,c 为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( ) A. 45个 B. 8一个 C. 一65个 D. 2一6个6、顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆的圆心,AB OB ⊥,垂足为B ,OH PB ⊥,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长是( )A.B.C.D.二、填空题(本题满分54分,每小题9分)7、在平面直角坐标系xoy 中,函数()sin cos (0)f x a ax ax a =+>在一个最小正周期长的区间上的图像与函数()g x =________________。
8、设函数:,(0)1f R R f →=满足,且对任意,,x y R ∈都有(1)()()()2f xy f x f y f y x +=--+,则()f x =_____________________。