【4份试卷合集】衡阳市2019-2020学年中考数学第二次调研试卷
湖南省衡阳市2019-2020学年中考第二次大联考数学试卷含解析
湖南省衡阳市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列二次根式中,最简二次根式是( )A .9aB .35aC .22a b +D .12a + 2.如图,在矩形ABCD 中,AB=2,BC=1.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3102B .3105C .105D .3553.已知:如图,在扇形OAB 中,110AOB ∠=︒,半径18OA =,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在弧AB 上的点D 处,折痕交OA 于点C ,则弧AD 的长为( )A .2πB .3πC .4πD .5π4.如图,△ABC 为等腰直角三角形,∠C=90°,点P 为△ABC 外一点,CP=2,BP=3,AP 的最大值是( )A .2+3B .4C .5D .325.如图,已知AOB ∠,用尺规作图作2AOC AOB ∠=∠.第一步的作法以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点E ,F 第二步的作法是( )A.以点E为圆心,OE长为半径画弧,与第1步所画的弧相交于点DB.以点E为圆心,EF长为半径画弧,与第1步所画的弧相交于点DC.以点F为圆心,OE长为半径画弧,与第1步所画的弧相交于点DD.以点F为圆心,EF长为半径画弧,与第1步所画的弧相交于点D6.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )A.q<16 B.q>16C.q≤4D.q≥47.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°8.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<09.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为()A.204030650x yx y+=⎧⎨+=⎩B.204020650x yx y+=⎧⎨+=⎩C.203040650x yx y+=⎧⎨+=⎩D.704030650x yx y+=⎧⎨+=⎩10.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a等于()A.1B.2C.3D.411.如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且»BC,»CD,»DE所对的圆心角均为90°.甲、乙两车由A 口同时驶入立交桥,均以10m/s 的速度行驶,从不同出口驶出,其间两车到点O 的距离y (m )与时间x (s )的对应关系如图2所示.结合题目信息,下列说法错误的是( )A .甲车在立交桥上共行驶8sB .从F 口出比从G 口出多行驶40mC .甲车从F 口出,乙车从G 口出D .立交桥总长为150m12.如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.9米,则梯子顶端A 下落了( )A .0.9米B .1.3米C .1.5米D .2米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若点A(1,m)在反比例函数y =3x的图象上,则m 的值为________. 14.如图,在△ABC 中,BC=7,32AC =,tanC=1,点P 为AB 边上一动点(点P 不与点B 重合),以点P 为圆心,PB 为半径画圆,如果点C 在圆外,那么PB 的取值范围______.15.已知'''ABC A B C ∆∆:且''':1:2ABC A B C S S ∆∆=,则:''AB A B =__________.16.圆锥的底面半径为4cm ,高为5cm ,则它的表面积为______ cm 1.17.如图,四边形ABCD 为矩形,H 、F 分别为AD 、BC 边的中点,四边形EFGH 为矩形,E 、G 分别在AB 、CD 边上,则图中四个直角三角形面积之和与矩形EFGH 的面积之比为_____.18.如图,线段AB两端点坐标分别为A(﹣1,5)、B(3,3),线段CD两端点坐标分别为C(5,3)、D (3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米).20.(6分)如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.(1)求证:DE=DB:(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;(3)若BD=6,DF=4,求AD的长21.(6分)已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.22.(8分)如图,点O 是△ABC 的边AB 上一点,⊙O 与边AC 相切于点E ,与边BC ,AB 分别相交于点D ,F ,且DE=EF .求证:∠C=90°;当BC=3,sinA=35时,求AF 的长.23.(8分)如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)在(1)条件下,连接BF ,求DBF ∠的度数.24.(10分)某中学为了解八年级学习体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A 、B 、C 、D 四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C 等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名.25.(10分)如图,△ABC 中,∠A=90°,AB=AC=4,D 是BC 边上一点,将点D 绕点A 逆时针旋转60°得到点E ,连接CE.B(1)当点E 在BC 边上时,画出图形并求出∠BAD 的度数;(2)当△CDE 为等腰三角形时,求∠BAD 的度数;(3)在点D 的运动过程中,求CE 的最小值.(参考数值:sin75°=624+,cos75°=624-,tan75°=23+)26.(12分)如图,已知A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点.(1)若a=1,求反比例函数的解析式及b的值;(2)在(1)的条件下,根据图象直接回答:当x取何值时,反比例函数大于一次函数的值?(3)若a﹣b=4,求一次函数的函数解析式.27.(12分)如图,一次函数y=kx+b的图象分别与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=ax的表达式;(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A.被开方数含能开得尽方的因数或因式,故A 不符合题意,B.被开方数含能开得尽方的因数或因式,故B 不符合题意,C.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C 符合题意,D.被开方数含分母,故D 不符合题意.故选C .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.B【解析】【分析】根据S △ABE =12S 矩形ABCD =1=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt △ADE 中,22AD DE +2231+10, ∵S △ABE =12S 矩形ABCD =1=12•AE•BF , ∴310 故选:B .【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.3.D【解析】【分析】如图,连接OD .根据折叠的性质、圆的性质推知△ODB 是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式180n r l π=来求»AD 的长 【详解】解:如图,连接OD .解:如图,连接OD .根据折叠的性质知,OB=DB .又∵OD=OB ,∴OD=OB=DB ,即△ODB 是等边三角形,∴∠DOB=60°.∵∠AOB=110°,∴∠AOD=∠AOB-∠DOB=50°,∴»AD 的长为5018180π⨯ =5π. 故选D .【点睛】本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB 是等边三角形是解答此题的关键之处.4.C【解析】【分析】过点C 作CQ CP ⊥,且CQ=CP,连接AQ,PQ,证明ACQ V ≌,BCP V 根据全等三角形的性质,得到3,AQ BP == 2,CQ CP ==根据等腰直角三角形的性质求出PQ 的长度,进而根据AP AQ PQ ≤+,即可解决问题.【详解】过点C 作CQ CP ⊥,且CQ=CP,连接AQ,PQ,90,ACQ BCQ BCP BCQ ∠+∠=∠+∠=o,ACQ BCP ∠=∠在ACQ V 和BCP V 中,AC BC ACQ BCP CQ CP =⎧⎪∠=∠⎨⎪=⎩ACQ V ≌,BCP V3,AQ BP ∴== 2,CQ CP ==222,PQ CQ CP =+=325,AP AQ P ≤++=AP 的最大值是5.故选:C.【点睛】考查全等三角形的判定与性质,三角形的三边关系,作出辅助线是解题的关键.5.D【解析】【分析】根据作一个角等于已知角的作法即可得出结论.【详解】解:用尺规作图作∠AOC=2∠AOB 的第一步是以点O 为圆心,以任意长为半径画弧①,分别交OA 、OB 于点E 、F ,第二步的作图痕迹②的作法是以点F 为圆心,EF 长为半径画弧.故选:D .【点睛】本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键.6.A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选 A.7.B【解析】试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.考点:旋转的性质.8.A【解析】试题分析:充分利用图形,直接从图上得出x的取值范围.由图可知,当y<1时,x<-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.9.A【解析】【分析】根据题意设未知数,找到等量关系即可解题,见详解.【详解】解:设购买甲种奖品x件,乙种奖品y件.依题意,甲、乙两种奖品共20件,即x+y=20, 购买甲、乙两种奖品共花费了650元,即40x+30y=650,综上方程组为20 4030650x yx y+=⎧⎨+=⎩,故选A.【点睛】本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.10.A【解析】【分析】【详解】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:21233a =++, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A. 11.C【解析】分析:结合2个图象分析即可.详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:538s +=,故正确.B.3段弧的长度都是:()105320,m ⨯-=从F 口出比从G 口出多行驶40m ,正确.C.分析图2可知甲车从G 口出,乙车从F 口出,故错误.D.立交桥总长为:1033203150.m ⨯⨯+⨯=故正确.故选C.点睛:考查图象问题,观察图象,读懂图象是解题的关键.12.B【解析】试题分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC 和CE 的长即可.解:在Rt △ACB 中,AC 2=AB 2﹣BC 2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt △ECD 中,EC 2=ED 2﹣CD 2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC ﹣EC=2﹣0.7=1.2.故选B .考点:勾股定理的应用.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】试题解析:把A (1,m )代入y =3x 得:m=3. 所以m 的值为3.14.3508<<PB 【解析】分析:根据题意作出合适的辅助线,然后根据题意即可求得PB 的取值范围.详解:作AD ⊥BC 于点D ,作PE ⊥BC 于点E .∵在△ABC 中,BC=7,,tanC=1,∴AD=CD=3,∴BD=4,∴AB=5,由题意可得,当PB=PC 时,点C 恰好在以点P 为圆心,PB 为半径圆上.∵AD ⊥BC ,PE ⊥BC ,∴PE ∥AD ,∴△BPE ∽△BDA ,∴BE BP BD BA =,即7245BP =,得:BP=358.故答案为0<PB <358.点睛:本题考查了点与圆的位置关系、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.2【解析】分析:根据相似三角形的面积比等于相似比的平方求解即可.详解:∵△ABC ∽△A′B′C′,∴S △ABC :S △A′B′C′=AB 2:A′B′2=1:2,∴AB :A′B′=12点睛:本题的关键是理解相似三角形的面积比等于相似比的平方.16.(44116)π【解析】【分析】利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径的平方+底面周长×母线长÷1. 【详解】底面半径为4cm,则底面周长=8πcm,底面面积=16πcm 1;由勾股定理得,母线长2245=41cm +, 圆锥的侧面面积21841=4412cm π⨯, ∴它的表面积41π )cm 1=()44116π cm 1 , 故答案为:()44116π. 【点睛】本题考查了有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(1)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.17.1:1【解析】【分析】根据矩形性质得出AD=BC,AD∥BC,∠D=90°,求出四边形HFCD是矩形,得出△HFG的面积是1 2CD×DH=12S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.【详解】连接HF,∵四边形ABCD为矩形,∴AD=BC,AD∥BC,∠D=90°∵H、F分别为AD、BC边的中点,∴DH=CF,DH∥CF,∵∠D=90°,∴四边形HFCD是矩形,∴△HFG的面积是12CD×DH=12S矩形HFCD,即S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,∴图中四个直角三角形面积之和与矩形EFGH的面积之比是1:1,故答案为1:1.【点睛】本题考查了矩形的性质和判定,三角形的面积,主要考查学生的推理能力.18.()1,1或()4,4【解析】【分析】分点A的对应点为C或D两种情况考虑:①当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,点E即为旋转中心;②当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,点M即为旋转中心.此题得解.【详解】①当点A 的对应点为点C 时,连接AC 、BD ,分别作线段AC 、BD 的垂直平分线交于点E ,如图1所示:A Q 点的坐标为()1,5-,B 点的坐标为()3,3,E ∴点的坐标为()1,1;②当点A 的对应点为点D 时,连接AD 、BC ,分别作线段AD 、BC 的垂直平分线交于点M ,如图2所示:A Q 点的坐标为()1,5-,B 点的坐标为()3,3,M ∴点的坐标为()4,4.综上所述:这个旋转中心的坐标为()1,1或()4,4.故答案为()1,1或()4,4.【点睛】本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.39米【解析】【分析】过点A 作AE ⊥CD ,垂足为点E , 在Rt △ADE 中,利用三角函数求出 DE 的长,在Rt △ACE 中,求出 C E 的长即可得.【详解】解:过点A 作AE ⊥CD ,垂足为点E ,由题意得,AE= BC=28,∠EAD =25°,∠EAC =43°,在Rt △ADE 中,∵tan DE EAD AE ∠=,∴tan25280.472813.2DE =︒⨯=⨯≈, 在Rt △ACE 中,∵tan CE EAC AE ∠=,∴tan43280.932826CE =︒⨯=⨯≈, ∴13.22639DC DE CE =+=+≈(米),答:建筑物CD 的高度约为39米.20.(1)见解析;(2)22 (3)1【解析】【分析】(1)通过证明∠BED=∠DBE 得到DB=DE ;(2)连接CD ,如图,证明△DBC 为等腰直角三角形得到BC=2BD=42,从而得到△ABC 外接圆的半径;(3)证明△DBF ∽△ADB ,然后利用相似比求AD 的长.【详解】(1)证明:∵AD 平分∠BAC ,BE 平分∠ABD ,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE ,∴DB=DE ;(2)解:连接CD ,如图,∵∠BAC=10°,∴BC 为直径,∴∠BDC=10°,∵∠1=∠2,∴DB=BC ,∴△DBC为等腰直角三角形,∴BC=BD=4,∴△ABC外接圆的半径为2;(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,∴△DBF∽△ADB,∴=,即=,∴AD=1.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.21.(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1.∴∴另一根是2;(2)∵,∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根22.(1)见解析(2)5 4【解析】【分析】(1)连接OE,BE,因为DE=EF,所以¶DE=¶FE,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=3,55OE rOA r==-从而可求出r的值.【详解】解:(1)连接OE,BE,∵DE=EF,∴¶DE=¶FE∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=35,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=3,55 OE rOA r==-∴15,8 r=∴15552.84 AF=-⨯=【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.23.(1)答案见解析;(2)45°.【解析】【分析】(1)分别以A、B为圆心,大于12AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【详解】(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC12=∠ABC=75°,DC∥AB,∠A=∠C,∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°.∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点睛】本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.24.(1)50名;(2)16名;见解析;(3)56名.【解析】试题分析:根据A等级的人数和百分比求出总人数;根据总人数和A、B、D三个等级的人数求出C等级的人数;利用总人数乘以D等级人数的百分比得出答案.试题解析:(1)10÷20%=50(名)答:本次抽样共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.补全图形如图所示:(3)700×(4÷50)=56(名)答:估计该中学八年级700名学生中体能测试为D等级的学生有56名.考点:统计图.25.(1)∠BAD=15°;(2)∠BAC=45°或∠BAD =60°;(3)62-【解析】【分析】(1)如图1中,当点E在BC上时.只要证明△BAD≌△CAE,即可推出∠BAD=∠CAE=12(90°-60°)=15°;(2)分两种情形求解①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形.②如图3中,当CD=CE时,△DEC是等腰三角形;(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先确定点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),可得EC的最小值即为线段CM的长(垂线段最短).【详解】解:(1)如图1中,当点E在BC上时.∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=12(90°-60°)=15°.(2)①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形,∠BAD=12∠BAC=45°.②如图3中,当CD=CE时,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分线段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.∵∠AOE=∠DOE′,∠AE′D=∠AEO,∴△AOE∽△DOE′,∴AO:OD=EO:OE',∴AO :EO=OD :OE',∵∠AOD=∠EOE′,∴△AOD ∽△EOE′,∴∠EE′O=∠ADO=60°,∴点E 的运动轨迹是直线EE′(过点E 与BC 成60°角的直线上),∴EC 的最小值即为线段CM 的长(垂线段最短),设E′N=CN=a ,则AN=4-a ,在Rt △ANE′中,tan75°=AN :NE', ∴4a a -, ∴∴. 在Rt △CE′M 中,∴CE【点睛】本题考查几何变换综合题、等腰直角三角形的性质、等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轨迹等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用垂线段最短解决最值问题,属于中考压轴题.26. (1) 反比例函数的解析式为y =4x,b 的值为﹣1;(1) 当x <﹣4或0<x <1时,反比例函数大于一次函数的值;(3) 一次函数的解析式为y =x+1【解析】【分析】(1)由题意得到A (1,4),设反比例函数的解析式为y =k x (k≠0),根据待定系数法即可得到反比例函数解析式为y =4x;再由点B (﹣4,b )在反比例函数的图象上,得到b =﹣1; (1)由(1)知A (1,4),B (﹣4,﹣1),结合图象即可得到答案; (3)设一次函数的解析式为y =mx+n (m≠0),反比例函数的解析式为y =p x ,因为A (a ,4),B (﹣4,b )是一次函数与反比例函数图象的两个交点,得到44p a p b ⎧=⎪⎪⎨⎪=⎪-⎩, 解得p =8,a =1,b =﹣1,则A (1,4),B (﹣4,﹣1),由点A 、点B 在一次函数y =mx+n 图象上,得到2442m n m n +=⎧⎨-+=-⎩,解得12m n =⎧⎨=⎩,即可得【详解】(1)若a =1,则A (1,4),设反比例函数的解析式为y =k x(k≠0), ∵点A 在反比例函数的图象上,∴4=1k , 解得k =4,∴反比例函数解析式为y =4x; ∵点B (﹣4,b )在反比例函数的图象上,∴b =44-=﹣1, 即反比例函数的解析式为y =4x,b 的值为﹣1; (1)由(1)知A (1,4),B (﹣4,﹣1),根据图象:当x <﹣4或0<x <1时,反比例函数大于一次函数的值;(3)设一次函数的解析式为y =mx+n (m≠0),反比例函数的解析式为y =p x, ∵A (a ,4),B (﹣4,b )是一次函数与反比例函数图象的两个交点, ∴44p a p b ⎧=⎪⎪⎨⎪=⎪-⎩,即44a p b p =⎧⎨-=⎩①②, ①+②得4a ﹣4b =1p ,∵a ﹣b =4,∴16=1p ,解得p =8,把p =8代入①得4a =8,代入②得﹣4b =8,解得a =1,b =﹣1,∴A (1,4),B (﹣4,﹣1),∵点A 、点B 在一次函数y =mx+n 图象上,∴2442m n m n +=⎧⎨-+=-⎩解得12m n =⎧⎨=⎩∴一次函数的解析式为y =x+1.本题考查一次函数与反比例函数,解题的关键是待定系数法求函数解析式.27.(1)12yx=,y=2x﹣1;(2)133,42M⎛⎫⎪⎝⎭.【解析】【分析】(1)利用待定系数法即可解答;(2)作MD⊥y轴,交y轴于点D,设点M的坐标为(x,2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标【详解】解:(1)把点A(4,3)代入函数a=yx得:a=3×4=12,∴12yx =.∵A(4,3)∴OA=1,∵OA=OB,∴OB=1,∴点B的坐标为(0,﹣1)把B(0,﹣1),A(4,3)代入y=kx+b得:∴y=2x﹣1.(2)作MD⊥y轴于点D.∵点M在一次函数y=2x﹣1上,∴设点M的坐标为(x,2x﹣1)则点D(0,2x-1)∵MB=MC,∴CD=BD∴8-(2x-1)=2x-1+1解得:x=13 4∴2x﹣1=32,∴点M的坐标为133,42⎛⎫ ⎪⎝⎭.【点睛】本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.。
【9份试卷合集】衡阳市2019-2020学年中考数学第二次调研试卷
2019-2020学年数学中考模拟试卷一、选择题1.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了()A.2x%B.1+2x%C.(1+x%)x%D.(2+x%)x%2.已知反比例函数2y-x,点A(a-b,2),B(a-c,3)在这个函数图象上,下列对于a,b,c的大小判断正确的是()A.a<b<cB.a<c<bC.c<b<aD.b<c<a3.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A. B. C. D.4.如图,在平面直角坐标系中,点B的坐标(0,,∠AOC=45°,∠ACO=30°,则OC的长为( )5.下列命题是真命题的是()A.一元二次方程一定有两个实数根B.对于反比例函数y=2x,y随x的增大而减小C.有一个角是直角的四边形是矩形D.对角线互相平分的四边形是平行四边形6.如图,在△ABC中,CA=CB,∠C=90°,点D是BC的中点,将△ABC沿着直线EF折叠,使点A与点D重合,折痕交AB 于点E ,交AC 于点F ,那么sin ∠BED 的值为( ).A .35B .53C .512D .127.在平面直角坐标系xOy 中,已知点M ,N 的坐标分别为(-1,2),(2,1),若抛物线y=ax 2-x+2(a<0)与线段MN 有一个交点,则a 的取值范围是( )A .1a ≤-B .10a -<<C .1a <-D .10a -≤<8.如图,在▱ABCD 中,∠BAD =120°,连接BD ,作AE ∥BD 交CD 延长线于点E ,过点E 作EF ⊥BC 交BC 的延长线于点F ,且CF =1,则AB 的长是( )A .2B .1C D9.如图,平行四边形ABCD 中,对角线AC 、BD 相交于O ,BD=2AD ,E 、F 、G 分别是OC 、OD 、AB 的中点,下列结论:①BE ⊥AC ;②EG=GF ;③△EFG ≌△GBE ;④EA 平分∠GEF ;⑤四边形BEFG 是菱形.其中正确的是( )A .①②③B .①③④C .①②⑤D .②③⑤10.如图,Rt △ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .53B .52C .4D .5 11.20192018(2)3(2)-+⨯-的值为( )A .20182-B .20182C .20192-D .20192 12.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( ) A.34 B.23 C.25 D.16二、填空题13.如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;…,则第⑥个图中,看得见的小立方体有_____个.14.若x 2-4x+1=0,则221x x+=______.15.计算:2(1)--_____.16.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S 甲2=7.5,S 乙2=1.5,S 丙2=3.1,那么该月份白菜价格最稳定的是_____市场.17.若a+b =3,a 2+b 2=7,则ab =_____.18.方程2x 2x 40+-=的解为_____.三、解答题19.如图所示,函数y 1=kx+b 的图象与函数2m y x=(x <0)的图象交于A (a ﹣2,3)、B (﹣3,a )两点.(1)求函数y 1、y 2的表达式;(2)过A 作AM ⊥y 轴,过B 作BN ⊥x 轴,试问在线段AB 上是否存在点P ,使S △PAM =3S △PBN ?若存在,请求出P 点坐标;若不存在,请说明理由.20.计算:2112sin 452-⎛⎫+ ⎪⎝⎭ 21.如图,在△ABC 中,∠ABC =90°,以AB 的中点O 为圆心,OA 为半径的圆交AC 于点D ,E 是BC 的中点,连接DE ,OE .(1)判断DE 与⊙O 的位置关系,并说明理由;(2)若cos ∠BAD =35,BE =12,求OE 的长; (3)求证:BC 2=2CD•OE.22.如图,直线y =12x与反比例函数y =kx(x>0)的图象交于点A,已知点A的横坐标为4.(1)求反比例函数的解析式;(2)将直线y =12x向上平移3个单位后的直线l与y =kx(x>0)的图象交于点C;①求点C的坐标;②记y =kx(x>0)的图象在点A,C之间的部分与线段OA,OC围成的区域(不含边界)为W,则区域W内的整点(横,纵坐标都是整数的点)的个数为 .23.如图,根据要求画图(保留画图的痕迹,可以不写结论)(1)画线段AB;(2)画射线BC;(3)在线段AB上找一点P,使点P到A.B.C三点的距离和最小,并简要说明理由.24.在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED =∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.25.(1)问题发现:如图1,在等边△ABC中,点D为BC边上一动点,DE∥AB交AC于点E,将AD绕点D顺时针旋转60°得到DF,连接CF.则AE与FC的数量关系是;∠ACF的度数为.(2)拓展探究:如图2,在Rt△ABC中,∠ABC=90°,∠ACB=60°,点D为BC边上一动点,DE∥AB交AC 于点E ,当∠ADF =∠ACF =90°时,求AE FC的值. (3)解决问题:如图3,在△ABC 中,BC :AB =m ,点D 为BC 的延长线上一点过点D 作DE ∥AB 交AC 的延长线于点E ,直接写出当∠ADF =∠ACF =∠ABC 时,AE FC 的值.【参考答案】***一、选择题13.9114.1415.-116.乙.17.118.1x 1=-,2x 1=-三、解答题19.(1)14y x =+,23y x =-;(2)存在,P 53,22⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)把A 、B 两点坐标代入直线AB 解析式可求得A 、B 两点的坐标,再把B 点坐标代入反比例函数解析式可求得k ,可求得函数y 2的表达式;(2)设出P 点坐标为(x ,x +4),根据三角形的面积关系可得到关于x 的方程,可求得P 点坐标.【详解】解:(1)∵A 、B 两点在函数2m y x=(x <0)的图象上, ∴3(a ﹣2)=﹣3a =m ,∴a =1,m =﹣3,∴A (﹣1,3),B (﹣3,1),∵函数y 1=kx+b 的图象过A 、B 点, ∴331k b k b -+=⎧⎨-+=⎩, 解得k =1,b =4∴y 1=x+4,y 2=3x-; (2)由(1)知A (﹣1,3),B (﹣3,1),∴AM =BN =1,∵P 点在线段AB 上,∴设P 点坐标为(x ,x+4),其中﹣1≤x≤﹣3,则P 到AM 的距离为h A =3﹣(x+4)=﹣x ﹣1,P 到BN 的距离为h B =3+x ,∴S △PBN =12BN•h B =12×1×(3+x )=12(x+3), S △PAM =12AM•h A =12×1×(﹣x ﹣1)=﹣12(x+1), ∵S △PAM =3S △PBN , ∴﹣12(x+1)=32(x+3),解得x =﹣52,且﹣1≤x≤﹣3,符合条件, ∴P (﹣52,32), 综上可知存在满足条件的点P ,其坐标为(﹣52,32).【点睛】本题主要考查一次函数和反比例函数的交点问题,在(1)中掌握交点坐标满足两函数解析式是解题的关键,在(2)中用P 点坐标分别表示出△PBN 和△PAM 的面积是解题的关键.20.【解析】【分析】根据绝对值,特殊角的三角函数值和负指数幂进行计算即可【详解】原式 =3【点睛】此题考查绝对值,特殊角的三角函数值和负指数幂,掌握运算法则是解题关键21.(1)DE 与⊙O 相切(2)15(3)证明见解析【解析】【分析】(1)DE 与⊙O 相切,连接 OD ,BD .证明DE ⊥OD 即可证明DE 为⊙O 的切线;(2)由cos ∠BAD=35得到sin ∠BAC=45BC CD =,又BE=12,BC=24,所以AC=30,又AC=2OE ,所以OE=12AC=12×30=15; (3)OE 是△ABC 的中位线,所以AC=2OE ,证明△ABC ∽△BDC ,则C BC AC CD B =即BC 2=AC•CD=2CD•OE. 【详解】(1)DE 与相切 理由如下:连接 OD,BD.∵AB 为直径, ∴∠ADB=90°,在Rt △BDC 中,E 为斜边BC 的中点,∴CE=DE=BE= 12BC , ∴∠C=∠CDE ,∵OA=OD ,∴∠A=∠ADO ,∵∠ABC=90°,即∠C+∠A=90°,∴∠ADO+∠CDE=90°,即∠ODE=90°,∴DE ⊥OD ,又OD 为圆的半径,∴DE 为的切线;(2)∵cos ∠BAD=35 ∴sin ∠BAC=45BC CD = 又∵BE=12,E 是BC 的中点,即BC=24,∴AC=30,又∵AC=2OE ,∴OE=12AC=12×30=15; (3)证明:∵E 是BC 的中点,O 点是AB 的中点,∴OE 是△ABC 的中位线,∴AC=2OE ,∵∠C=∠C ,∠ABC=∠BDC ,∴△ABC ∽△BDC , ∴CBC AC CD B = 即BC 2=AC•CD.∴BC 2=2CD•OE【点睛】本题考查了圆的综合知识,熟练掌握圆的相关性质、相似三角形的判定与性质是解题的关键.22.(1)y =8x ;(2)C(2,4);(3)4. 【解析】【分析】(1)将x=4代入y=12x ,可求A (4,2),将A 点代入y=k x , 可求y=8x; (2)根据题意可知,l 的解析式为y=12x+3,联立方程组1328y x y x⎧=+⎪⎪⎨⎪=⎪⎩, 求C (2,4);(3)画出图象即可观察出答案;【详解】解:(1)将x=4代入y=12x 得, y=2 . ∴ A(4,2) .把A(4,2)代入y=k x, 得 k=xy=8. ∴ 反比例函数的解析式为y =8x. (2)解:根据题意可知:l 解析式为 y=12x+3. 由13,28.y x y x⎧=+⎪⎪⎨⎪=⎪⎩ 得 11 2, 4.x y =⎧⎨=⎩ 22 8, 1.x y =⎧⎨=⎩--(舍去) ∴ C(2,4) .(3)如图:4个.故答案为4.【点睛】本题考查反比例函数的图象及性质,熟练掌握是解题的关键.23.(1)见解析(2)见解析(3)作CP ⊥AB 于P,此时P 到A.B.C 三点的距离和最短,图见解析【解析】【分析】(1)连接AB 即可(2)作射线BC 即可;(3)过C 作CP ⊥AB 于P,即可得出答案【详解】(1)(2)如图所示:(3)如图所示:作CP ⊥AB 于P,此时P 到A.B.C 三点的距离和最理由是:根据两点之间线段最短,PA+PB 此时最小,根据垂线段最短,得出PC 最短,即PA+PB+PC的值最小,即点P到A.B.C三点的距离和最小。
┃试卷合集4套┃2020衡阳市中考数学第二次调研试卷
2019-2020学年数学中考模拟试卷一、选择题1.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.32米B.35米C.36米D.40米2.在的环湖越野赛中,甲乙两选手的行程(单位:)随时间(单位:)变化的图象如图所示,根据图中提供的信息,下列说法中,错误的是:( )A.出发后1小时,两人行程均为;B.出发后1.5小时,甲的行程比乙多;C.两人相遇前,甲的速度小于乙的速度;D.甲比乙先到达终点.3.如图,四边形ACBD是⊙O的内接四边形,AB是⊙O的直径,点E是DB延长线上的一点,且∠DCE=90°,DC与AB交于点G.当BA平分∠DBC时,BDDE的值为()A.12B.13C.3D.34.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,下列条件中,不能使四边形DBCE成为菱形的是()A.AB=BE B.BE⊥DC C.∠ABE=90°D.BE平分∠DBC5.已知等腰三角形两边a,b,满足a2+b2﹣4a﹣10b+29=0,则此等腰三角形的周长为()A.9 B.10 C.12 D.9或126.一元二次方程﹣x2+2x=﹣1的两个实数根为α,β,则α+β+α•β的值为()A.1 B.﹣3 C.3 D.﹣17.如图,在半径为6的⊙O中,正方形AGDH与正六边形ABCDEF都内接于⊙O,则图中阴影部分的面积为()A.27﹣93B.54﹣183C.183D.548.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2019的直角顶点的坐标为()A.(8076,0)B.(8064,0)C.(8076,125)D.(8064,125)9.若关于x的一元二次方程x2﹣x+a=0没有实数根,则a的取值范围是( )A.a>14B.a<14C.a≥14D.a=1410.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是()A.35°B.45°C.55°D.125°11.如图,在⊙O中,弦AB=10,PA=6㎝,OP=5㎝,则⊙O的半径R等于()A.7㎝B.7㎝C.49㎝D.46㎝12.将抛物线y=x2﹣2x﹣3沿x轴折得到的新抛物线的解析式为()A.y=﹣x2+2x+3 B.y=﹣x2﹣2x﹣3 C.y=x2+2x﹣3 D.y=x2﹣2x+3二、填空题13.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2014﹣a﹣b的值是___.14.在平面直角坐标系中,若点(m,2)与(3,n)关于原点对称,则m+n的值是___.15.八边形的外角和等于.16.实数a,b,c在数轴上对应点的位置如图所示,则bc_____a(填“>”“<”或“=”)17.已知函数y=3x+,自变量x的取值范围是________.18.在Rt△ABC中,490,sin5C A︒∠==,则cosB的值等于___.三、解答题19.某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是高5米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为32°时.(1)问超市以上的居民住房采光是否有影响,为什么?(2)若要使超市采光不受影响,两楼应相距多少米?(结果保留整数,参考数据:sin32°≈53 100,cos32°≈106125,tan32°≈58.)20.有甲、乙两个不透明的盒子,甲盒中装有编号为1,2,3三个球,乙盒中装有编号为4,5,6三个球,每个盒子中的球除编号外其它完全相同,将盒子中的球摇均后,从每个盒子中随机各取一个球.(1)从甲盒中取出的球号数是3的概率是;(2)请用列表法或画树状图法,求从两个盒子中取出的球号数都是偶数的概率.21.如图,在△ABC中,AB=AC,AB是⊙O的直径,⊙O与BC交于点D,⊙O与AC交于点E,DF⊥AC于F,连接DE.(1)求证:D为BC中点;(2)求证:DF与⊙O相切;(3)若⊙O 的半径为5,tan ∠C =43,则DE = .22.计算:31( 3.14)|12|4cos302π-︒⎛⎫---+-- ⎪⎝⎭23.如图,ABC ∆内接于⊙O ,BC 是⊙O 的直径,弦AF 交BC 于点E ,延长BC 到点D ,连接OA ,AD ,使得FAC AOD ∠=∠,D BAF ∠=∠.(1)求证:AD 是⊙O 的切线;(2)若⊙O 的半径为3,2CE =,求AC 、EF 的长.24.在平面直角坐标系中,ABC ∆的顶点坐标分别为(3,0)A ,(0,4)B ,(3,0)C -.动点M ,N 同时从点A 出发,M 沿A C →,N 沿折线A B C →→,均以每秒1个单位长度的速度移动,当一个动点到达终点C 时,另一个动点也随之停止移动,移动时间记为t 秒,连接MN .(Ⅰ)如图1,当点N 移动到AB 中点时,求此时t 的值及M 点坐标; (Ⅱ)在移动过程中,将AMN ∆沿直线MN 翻折,点A 的对称点为1A . ①如图2,当点1A 恰好落在BC 边上的点D 处时,求此时t 的值;②当点M 移动到点C 时,点1A 落在点E 处,求此时点E 的坐标(直接写出结果即可). 25.(初步认识)(1)如图,将△ABO 绕点O 顺时针旋转90°得到△MNO ,连接AM 、BM , 求证△AOM ∽△BON .(拓展延伸)(2)如图,在等边△ABC中,点E在△ABC内部,且满足AE2=BE2+CE2,用直尺和圆规作出所有的点E (保留作图的痕迹,不写作法).【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B C A A C A B A A C A A13.201914.-5.15.360°.16.>17.x≥-318.4 5三、解答题19.(1)受影响,见解析;(2)要使超市采光不受影响,两楼应相距32米.【解析】【分析】(1)利用三角函数算出阳光可能照到居民楼的什么高度,和5米进行比较.(2)超市不受影响,说明32°的阳光应照射到楼的底部C处,根据新楼的高度和32°的正切值即可计算.【详解】解:(1)受影响在RT△AEF中,tan∠AFE=tan32°=5815 AE AE EF==,解得:AE=753988=,故可得EB=35 20910588-=>,即超市以上的居民住房采光要受影响.(2)要使采光不受影响,说明32°的阳光应照射到楼的底部C处,即tan32°=2058 ABEF EF=≈,解得:EF≈32米,即要使超市采光不受影响,两楼应相距32米.【点睛】本题考查解直角三角形的应用.需注意作出常用的辅助线构造直角三角形求解.20.(1)从甲盒中取出的球号数是3的概率是13;(2)从两个盒子中取出的球号数都是偶数的概率为29.【解析】【分析】(1)直接利用概率公式计算得出答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与从两个盒子中取出的球号数都是偶数的情况,再利用概率公式求解即可求得答案.【详解】(1)从甲盒中取出的球号数是3的概率是:13;故答案为:13;(2)画树状图得:∵共有9种等可能的结果,两个盒子中都取出偶数的有2种情况,∴从两个盒子中取出的球号数都是偶数的概率为:29.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(1)证明见解析(2)相切(3)6【解析】【分析】(1)连接AD,根据圆周角定理得到∠ADB=90°,根据等腰三角形的性质即可得到结论;(2)连接OD,根据平行线的性质得到∠DFC=∠ODF,根据切线的判定定理即可得到结论;(3)根据平行线的性质和圆内接四边形的性质得到∠B=∠EDO,根据余角的性质得到∠EDF=∠CDF,得到DE=CD,解直角三角形即可得到结论.【详解】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴D为BC中点;(2)连接OD,∵AO=BO,BD=CD,∴OD∥AC,∴∠DFC=∠ODF,∵DF⊥AC,∴∠ODF=90°,∴OD⊥DF,∴DF与⊙O相切;(3)∵OD⊥DF,DF⊥AC,∴AC∥OD,∴∠AED+∠ODE=180°,∵∠AED+∠B=180°,∴∠B=∠EDO,∵∠EDF+∠EDO=∠CDF+∠ODB=90°,∴∠EDF=∠CDF,∴DE=CD,∵⊙O的半径为5,tan∠C=43,∴AB=10,BD=6,∴DE=CD=BD=6.故答案为:6.【点睛】本题考查了切线的判定和性质,等腰三角形的性质,解直角三角形,圆周角定理,正确的作出辅助线是解题的关键. 22.9 【解析】 【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【详解】解:原式=1+8+23 ﹣4×3, =1+8+23 ﹣23, =9. 【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算. 23.(1)证明见解析;(2)6AC =,463EF =. 【解析】 【分析】(1)由BC 是⊙O 的直径,得到∠BAF+∠FAC=90°,等量代换得到∠D+∠AOD=90°,于是得到结论; (2)连接BF ,根据相似三角形的判定和性质即可得到结论. 【详解】(1)∵BC 是⊙O 的直径, ∴∠BAF+∠FAC=90°, ∵∠D=∠BAF ,∠AOD=∠FAC , ∴∠D+∠AOD=90°, ∴∠OAD=90°, ∴AD 是⊙O 的切线; (2)连接BF ,∵∠FAC=∠AOD , ∴△ACE ∽△OCA , ∴AC AE CEOC OA AC ==, ∴233AC AE AC==, ∴6, ∵∠CAE=∠CBF ,∴△ACE ∽△BFE , ∴AE BECE EF =,∴62=2EF-,∴EF =. 【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键. 24.(Ⅰ)52t =,点M 坐标为1(,0)2; (Ⅱ)①3011t =; ②E 点坐标为117144(,)2525-【解析】 【分析】(1)根据点的坐标,以求得AB 的长,由于N 是AB 的中点,可得AN 的长度,从而求出t ,即可求M 点胡坐标;(2)①由翻着的性质可得四边形AMDN 为菱形,则有//DN x 轴,可得到BDN BCA ∆∆:,即DN BNCA BA=,从而求出t. ②根据相似可以求出N(616-55,),设E(x,y),根据勾股定理列出方程组:EM=6,EN=5,解得即可求出点E. 【详解】(Ⅰ)∵(3,0)A ,(0,4)B , ∴3OA =,4OB =,∴5AB =.当点N 移动到AB 中点时,由题意可得52AN AM ==, ∴52t =. ∵51322OM OA AM =-=-=, ∴点M 坐标为1(,0)2.(Ⅱ)①由题意可得AM AN t ==,∵AMN ∆沿直线MN 翻折,点1A 落在点D 处, ∴AM AN MD ND t ====, ∴四边形AMDN 为菱形, ∴5BN t =-,//DN x 轴, ∴BDN BCA ∆∆:, ∴DN BN CA BA =,565t t-=, 解得3011t =. (Ⅱ)②过N 做X 轴的垂线,垂足为Q ,由△CNQ ∽△BCO , 又∵BN=1,AC=6,BC=5,∴CQ CN NQCO CB BO== ,∴N(616-55,),设E(x,y),且CE=6,EN=5,则()22223366162555x yx y⎧++=⎪⎨⎛⎫⎛⎫++-=⎪ ⎪ ⎪⎝⎭⎝⎭⎩解得:1172514425xy⎧=-⎪⎪⎨⎪=⎪⎩E点坐标为117144(,)2525-.【点睛】此题是几何中的点及翻着问题,并涉及到了菱形的判定及性质,相似三角形的知识的灵活应用,有一定的综合性.25.(1)详见解析;(2)5【解析】【分析】(1)利用旋转的性质可也得到AO=OM,BO=ON,∠AOM=∠BON=90°,即可解答(2)根据题意以AB,AC作为半径做圆,使得B,C两点落在圆上,点E在弧BC上(不包括B,C两点)【详解】(1)证明:∵△ABO绕点O顺时针旋转90°得到△MNO,∴AO=OM,BO=ON,∠AOM=∠BON=90°.∵AO MOBO NO=,∴△AOM∽△BON.(2)画图正确∴点E在弧BC上(不包括B,C两点)理由要点:(1)将△ACE旋转60°;则∠FAE=60°,AE=AF=EF,EC=FB.(2)∠BEC=150°.则可得旋转后∠FBE=90°,则有FB2+EB2=EF2.【点睛】此题考查了三角形相似,图形的旋转,和尺规作图,解题关键在于熟练掌握相似三角形的证明2019-2020学年数学中考模拟试卷一、选择题1.-2的相反数的倒数是( )A.2B.2-C.12-D.122.如图,在直角三角形ABC 中,∠ACB =90°,AC =3,BC =4,点P 在边AB 上,∠CPB 的平分线交边BC 于点D ,DE ⊥CP 于点E ,DF ⊥AB 于点F .当△PED 与△BFD 的面积相等时,BP 的值为( )A. B. C. D.3.若x=2是关于x 的一元一次方程ax -2=b 的解,则3b -6a+2的值是( ).A .-8B .-4C .8D .4 4.函数y =2x 2﹣4x ﹣4的顶点坐标是( ) A .(1,﹣6) B .(1,﹣4)C .(﹣3,﹣6)D .(﹣3,﹣4) 5.现有一组数据:3、4、5、5、6、6、6、6、7,若去掉其中一个数6则不受影响的是( ) A .众数B .中位数C .平均数D .众数和中位数 6.反比例函数m y x =的图像在第二、四象限内,则点(,1)m -在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限7.对于函数y =﹣2x+5,下列表述:①图象一定经过(2,﹣1);②图象经过一、二、四象限;③与坐标轴围成的三角形面积为12.5;④x 每增加1,y 的值减少2;⑤该图象向左平移1个单位后的函数表达式是y =﹣2x+4,正确的是( )A .①③B .②⑤C .②④D .④⑤ 8.下列运算正确的是( )A .a 8÷a 2=a 6B .(a+b )2=a 2+b 2C .a 2•a 3=a 6D .(﹣a 2)3=a 6 9.如图,点O 1是△ABC 的外心,以AB 为直径作⊙O 恰好过点O 1,若AC =2,BC =42,则AO 1的长是( )A .2B 26C .5D .1010.下列说法正确的是( )A .一组数据2,5,5,3,4的众数和中位数都是5B .“掷一次骰子,向上一面的点数是1”是必然事件C .掷一枚硬币正面朝上的概率是12表示每抛硬币2次就有1次正面朝上D .计算甲组和乙组数据,得知x 甲=x 乙=10,2S 甲=0.1,2S 乙=0.2,则甲组数据比乙组数据稳定 11.设a ,b 是常数,不等式10x a b +>的解集为15x <,则关于x 的不等式0bx a ->的解集是( ) A .15x > B .15x <- C .15x >- D .15x < 12.如图,点E 在BC 的延长线上,则下列条件中,能判定AD 平行于BC 的是( )A .∠1=∠2B .∠3=∠4C .∠D+∠DAB =180°D .∠B =∠DCE 二、填空题 13.一个扇形的弧长为4π,半径长为4,则该扇形的面积为___________.14.在ABC V 中,A 60∠=o ,B 2C ∠∠=,则B ∠=______.o15.如图,矩形ABCD 中,E 在AD 上,且EF EC ⊥,EF EC =,2DE =,矩形的周长为16,则AE 的长是______ .16.如图,若AB ∥CD ,∠C=60°,则∠A+∠E=_____度.17.如图,点P 在ABC ∆的边AC 上,请你添加一个条件,使得APB ∆∽ABC ∆,这个条件可以是 ______________.18.函数3y x =+x 的取值范围是______.三、解答题 19.计算:20220193tan 303-+--⎝⎭︒.20.如图,AB 是⊙O 的直径,CA 与⊙O 相切于点A ,且CA=BA .连接OC ,过点A 作AD OC ⊥于点E ,交⊙O 于点D ,连接DB .(1)求证:ACE BAD △△≌;(2)连接CB 交⊙O 于点M ,交AD 于点N .若AD=4,求MN 的长.21.如图,已知OA 是⊙O 的半径,AB 为⊙O 的弦,过点O 作OP ⊥OA ,交AB 的延长线上一点P ,OP 交⊙O 于点D ,连接AD ,BD ,过点B 作⊙O 的切线BC 交OP 于点C(1)求证:∠CBP =∠ADB ;(2)若O4=4,AB =2,求线段BP 的长.22.计算:1020191()(33)3(1)2----+-+-23.在Rt △ABC 中,∠ACB=90°,BE 平分∠ABC ,D 是边AB 上一点,以BD 为直径的⊙O 经过点E ,且交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若BF=12,⊙O 的半径为10,求CE 的长.24.如图,一次函数y =k 1x+b 的图象经过A (0,﹣2),B (1,0)两点,与反比例函数2k y x=的图象在第一象限内的交点为M ,若△OBM 的面积为2.(1)求一次函数和反比例函数的表达式; (2)在x 轴上是否存在点P ,使AM ⊥MP ?若存在,求出点P 的坐标;若不存在,说明理由.25.北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星6C 卫星发射升空,卫星进入预定轨道.如图,火星从地面C 处发射,当火箭达到A 点时,从位于地面雷达站D 处测得DA 的距离是6km ,仰角为42.4︒;1秒后火箭到达B 点,测得DB 的仰角为45.5︒.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)(Ⅰ)求发射台与雷达站之间的距离CD ;(Ⅱ)求这枚火箭从A 到B 的平均速度是多少(结果精确到0.01)?【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D D B A A C C A B DC B 13.8π14.8015.316.6017.∠C=∠ABP (答案不唯一)18.x≥-3三、解答题19.12. 【解析】【分析】直接利用特殊角的三角函数值和绝对值的性质和零指数幂的性质分别化简得出答案.【详解】原式=3113332-⨯+ =11332 =12. 【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20.(1)详见解析;(2)103MN =【解析】【分析】(1)结合题意,根据HL 即可判断ACE BAD △△≌.(2)连接AM ,由勾股定理得2225AB AD DB =+=.22210BC AB AC =+=. 推出CEN BDN △△∽,则2CN CE BN BD ==,得到121033BN BC ==.由圆的性质得到1102BM BC ==,从而德奥10MN BM BN =-=. 【详解】(1)证明:∵AB 是O e 的直径,∴90ADB ∠=︒.∵AD OC ⊥于点E ,∴90AEC ∠=︒.∴AEC ADB ∠=∠.∵CA 与O e 相切于点A , ∴CA BA ⊥.∴90CAB ∠=︒.即90CAE DAB ∠+∠=︒.∵90CAE ACE ∠+∠=︒.∴DAB ACE ∠=∠.∵CA BA =,∴ACE BAD △△≌.(2)解:连接AM ,如图.∵AD OC ⊥于点E ,4=AD .∴122AE ED AD ===. ∵ACE BAD △△≌,∴2,4BD AE CE AD ====.在Rt ABD V 中,2225AB AD DB =+=在Rt ABC V 中,22210BC AB AC +=∵90,CEN BDN CNE BND ∠=∠=︒∠=∠, ∴CEN BDN △△∽∴2CN CE BN BD==. ∴12103BN BC ==∵AB 是O e 的直径,∴90AMB ∠=︒,即AM CB ⊥.∵90CA BA CAB ∠=︒=,.∴1102BM BC==.∴10 MN BM BN=-=.【点睛】本题考查三角形全等的判断(HL)、三角形相似的判断、勾股定理和圆的性质,解题的关键是熟练掌握三角形全等的判断(HL)、三角形相似的判断、勾股定理和圆的性质.21.(1)证明见解析;(2)BP的长为14.【解析】【分析】(1)连接OB,根据切线的性质得到OB⊥BC,根据等腰三角形的性质得到∠OAB=∠ABO,得到2∠OAB+∠AOB=180°,于是得到结论;(2)延长AO交⊙O于E,连接BE.由圆周角定理得到∠ABE=90°,根据相似三角形的性质即可得到结论.【详解】(1)证明:连接OB,∵BC为⊙O的切线,∴OB⊥BC,∴∠ABO+∠CBP=180°﹣∠CBO,=180°﹣90°=90°,∵OB=OA,∴∠OAB=∠ABO,∵∠OAB+∠ABO+∠AOB=180°∴2∠OAB+∠AOB=180°,∵∠AOB=2∠ADB,∴∠ABO+∠ADB=90°,∴∠CBP=∠ADB;(2)解:延长AO交⊙O于E,连接BE.∵AE为直径,∴∠ABE=90°,∵OP⊥AO,∴∠AOP=90°在Rt△ABE和Rt△AOP中,∵∠EAB=∠PAO,∴Rt△ABE∽Rt△AOP,∴OA AP AB AF=,∵AB=2,AO=4,AE=8,∴428AP ,解得,AP=16.∴BP=AP﹣AB=16﹣2=14.所以BP的长为14.【点睛】本题考查了切线的性质,相似三角形的判定和性质,等腰三角形的性质,正确的作出辅助线是解题的关键.22.-1【解析】【分析】本题涉及负整数指数幂、零指数幂、绝对值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】原式=﹣2﹣1+3﹣1=﹣1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.23.(1)详见解析;(2)8.【解析】【分析】(1)根据角平分线的定义和同圆的半径相等可得:OE∥BC,所以OE⊥AC,则AC是⊙O的切线;(2)作弦心距OH,根据垂径定理求得BH,再根据勾股定理求OH的长,根据矩形的性质即可求得CE=OH=8.【详解】(1)证明:连接OE,∵BE平分∠ABC,∴∠CBE=∠ABE,∵OB=OE,∴∠ABE=∠OEB,∴∠CBE=∠OEB,∴OE∥BC,∵∠A CB=90°,∴OE⊥AC,∴AC是⊙O的切线;(2)解:过O作OH⊥BC于H,∴BH=HF=6,在Rt△OBH中,,在矩形OHCE 中,CE=OH=8.【点睛】本题考查了圆的切线的判定、角平分线和平行线的性质、勾股定理、垂径定理等知识,在圆中常利用勾股定理计算圆中的线段.24.(1)12y x =;(2)是,P 的坐标为(11,0). 【解析】【分析】(1)根据一次函数y= k 1x+b 的图象经过A (0,-2),B (1,0)可得到关于b 、k1的方程组,进而可得到一次函数的解析式,设M (m ,n )作MD ⊥x 轴于点D ,由△OBM 的面积为2可求出n 的值,将M (m ,4)代入y=2x-2求出m 的值,由M (3,4)在双曲线y=2k x上即可求出k 2的值,进而求出其反比例函数的解析式;(2)过点M (3,4)作MP ⊥AM 交x 轴于点P ,由MD ⊥BP 可求出∠PMD=∠MBD=∠ABO ,再由锐角三角函数的定义可得出OP 的值,进而可得出结论.【详解】解:(1)∵直线y =k 1x+b 过A (0,﹣2),B (1,0)两点∴12+0b k b =-⎧⎨=⎩, ∴122b k =-⎧⎨=⎩ ∴一次函数的表达式为y =2x ﹣2.∴设M (m ,n ),作MD ⊥x 轴于点D∵S △OBM =2, ∴122OB MD ⋅= , ∴122n =∴n =4∴将M (m ,4)代入y =2x ﹣2得4=2m ﹣2,∴m =3∵M (3,4)在双曲线2k y x=上, ∴24=3k , ∴k 2=12 ∴反比例函数的表达式为12y x= (2)过点M (3,4)作MP ⊥AM 交x 轴于点P ,∵MD ⊥BP ,∴∠PMD =∠MBD =∠ABO∴tan ∠PMD =tan ∠MBD =tan ∠ABO =221OA OB == =2∴在Rt △PDM 中,2PD MD= , ∴PD =2MD =8,∴OP =OD+PD =11 ∴在x 轴上存在点P ,使PM ⊥AM ,此时点P 的坐标为(11,0)【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于将已知点代入解析式25.(Ⅰ)发射台与雷达站之间的距离CD 约为4.44km ;(Ⅱ)这枚火箭从A 到B 的平均速度大约是0.51/km s .【解析】【分析】(Ⅰ)在Rt △ACD 中,根据锐角三角函数的定义,利用∠ADC 的余弦值解直角三角形即可;(Ⅱ)在Rt △BCD 和Rt △ACD 中,利用∠BDC 的正切值求出BC 的长,利用∠ADC 的正弦值求出AC 的长,进而可得AB 的长,即可得答案.【详解】(Ⅰ)在Rt ACD V 中,6DA km =,42.4A CD ADC cos DC AD∠∠=︒=,≈0.74, ∴()642.4 4.44km CD AD cos ADC cos ∠=⋅=⨯︒≈.答:发射台与雷达站之间的距离CD 约为4.44km . (Ⅱ)在Rt BCD V 中, 4.44km 45.5,BC CD BDC tan BDC CD ∠∠==︒=,, ∴()4.4445.5 4.44 1.02 4.5288km BC CD tan BDC tan ∠=⋅=⨯︒≈⨯=.∵在Rt ACD V 中,AC sin ADC AD∠=, ∴()642.4 4.02km AC AD sin ADC sin ∠=⋅=⨯︒≈.∴()4.5288 4.020.50880.51km AB BC AC =-=-=≈.答:这枚火箭从A 到B 的平均速度大约是0.51/km s .【点睛】本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,已知点A(-6,0),B(2,0),点C在直线3233y x=-+上,则使△ABC是直角三角形的点C的个数为()A.1B.2C.3D.42.不等式组51132xxx->-⎧⎪⎨-≥⎪⎩的所有整数解的和为()A.13 B.15 C.16 D.213.如图,将△ABC绕C顺时针旋转,使点B落在AB边上的点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,则下列结论中错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.B′C平分∠BB′A′D.∠B′CA=∠B′AC4.计算(3x﹣1)(3x+1)的结果是()A.3x2﹣1 B.3x2+1 C.9x2+1 D.9x2﹣15.下列图形既是中心对称图形又是轴对称图形的有()A.1个B.2个C.3个D.4个6.某天的同一时刻,甲同学测得1m的测竿在地面上的影长为0.6m,乙同学测得国旗旗杆在地面上的影长为9.6m。
湖南省衡阳市2019-2020学年中考第二次质量检测数学试题含解析
湖南省衡阳市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°2.如图,与∠1是内错角的是( )A .∠2B .∠3C .∠4D .∠53.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家 月用电量(度) 25 30 40 50 60 户数 12421A .极差是3B .众数是4C .中位数40D .平均数是20.54.如图,小明将一张长为20cm ,宽为15cm 的长方形纸(AE >DE )剪去了一角,量得AB =3cm ,CD =4cm ,则剪去的直角三角形的斜边长为( )A .5cmB .12cmC .16cmD .20cm5.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是 A .120100x x 10=- B .120100x x 10=+ C .120100x 10x =- D .120100x 10x=+ 6.已知5a =27b =,且a b a b +=+,则-a b 的值为( )A .2或12B .2或12-C .2-或12D .2-或12-7.如图,一段抛物线:y=﹣x (x ﹣5)(0≤x≤5),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2, 交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3, 交x 轴于点A 3;…如此进行下去,得到一“波浪线”,若点P (2018,m )在此“波浪线”上,则m 的值为( )A .4B .﹣4C .﹣6D .68.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .9.已知二次函数y=x 2 + bx +c 的图象与x 轴相交于A 、B 两点,其顶点为P ,若S △APB =1,则b 与c 满足的关系是( ) A .b 2 -4c +1=0B .b 2 -4c -1=0C .b 2 -4c +4 =0D .b 2 -4c -4=010.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )A .平均数B .中位数C .众数D .方差11.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a 元,则原售价为( ) A .(a ﹣20%)元B .(a+20%)元C .a 元D . a 元12.如果关于x 的方程x 2﹣k x+1=0有实数根,那么k 的取值范围是( ) A .k >0B .k≥0C .k >4D .k≥4二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.函数32xy x =-中,自变量x 的取值范围是______ 14.如图,在正方形ABCD 中,BC=2,E 、F 分别为射线BC ,CD 上两个动点,且满足BE=CF ,设AE ,BF 交于点G ,连接DG ,则DG 的最小值为_______.15.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.16.如图,在直角坐标系中,⊙A 的圆心A 的坐标为(1,0),半径为1,点P 为直线y=34x+3上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是______________.17.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .18.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t 表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0t 2≤<,2t 3≤<,3t 4≤<,t 4≥分为四个等级,并依次用A ,B ,C ,D 表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:1()求本次调查的学生人数;2()求扇形统计图中等级B 所在扇形的圆心角度数,并把条形统计图补充完整; 3()若该校共有学生1200人,试估计每周课外阅读时间满足3t 4≤<的人数. 20.(6分)解不等式()()41223x x --->,并把它的解集表示在数轴上.21.(6分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.22.(8分)(本题满分8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.23.(8分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.24.(10分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.25.(10分)如图,在Y ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.求证:△ADE≌△BFE;若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.26.(12分)如图,对称轴为直线x=72的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.27.(12分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.详解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选C.点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.2.B【解析】由内错角定义选B.3.C【解析】【分析】极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【详解】解:A、这组数据的极差是:60-25=35,故本选项错误;B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;故选:C.【点睛】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.4.D 【解析】 【分析】解答此题要延长AB 、DC 相交于F ,则BFC 构成直角三角形,再用勾股定理进行计算. 【详解】延长AB 、DC 相交于F ,则BFC 构成直角三角形,运用勾股定理得:BC 2=(15-3)2+(1-4)2=122+162=400, 所以BC=1.则剪去的直角三角形的斜边长为1cm . 故选D . 【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB 、DC 相交于F ,构造直角三角形,用勾股定理进行计算. 5.A 【解析】分析:甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120100x x 10=-。
【4份试卷合集】湖南省衡阳市2019-2020学年中考第二次模拟数学试题
2019-2020学年数学中考模拟试卷一、选择题1.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第10个图案由( )个▲组成.A .30B .31C .32D .332.如图,一艘轮船在A 处测得灯塔C 在北偏西15º的方向上,该轮船又从A 处向正东方向行驶40海里到达B 处,测得灯塔C 在北偏西60º的方向上,则轮船在B 处时与灯塔C 之间的距离(即BC 的长)为( )A.403海里B.(20320)+海里C.80海里D.(203202)+海里3.如图,在Rt △ABC 中,∠C =90°,∠CBA =30°,AE 平分∠CAB 交BC 于D ,BE ⊥AE 于E ,给出下列结论:①BD =2CD ;②AE =3DE ;③AB =AC+BE ;④整个图形(不计图中字母)不是轴对称图形.其中正确的结论有( )A.1个B.2个C.3个D.4个4.菱形具有而平行四边形不具有的性质是( )A .对角线互相垂直B .对边平行C .对边相等D .对角线互相平分5.已知二次函数y =x 2﹣6x+m 的最小值是1,那么m 的值等于( ) A .10B .4C .5D .66.岳池医药招商保持良好态势,先后签约成都百裕制药、济南爱思、重庆泰濠、四川源洪福科技、四川恒康科技、成都天瑞炳德、南充金方堂、药融园8个亿元以上医药项目和科伦药业、人福药业CS0两个医贸项目,协议投资额约51.5亿元。
将51.5亿元用科学计数法表示为( )元 A .95.1510⨯B .851.510⨯C .105.1510⨯D .751510⨯7.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( ) A.94B.95分C.95.5分D.96分8.如图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,下列等式中不一定成立的是( )A .∠1=∠2B .∠3=∠5C .∠BAD=∠DCED .∠4=∠69.在44⨯的正方形的网格中画出了如图所示的格点ABC △,则tan ABC ∠的值为( )A .31313B .21313C .32D .2310.如图,△ABC 内接于⊙O ,若∠OAB =35°,则∠C 的度数是( )A .35°B .45°C .65°D .55°11.7名学生参加决赛,他们的决赛成绩各不相同,其中一名参赛选手想知道自己是否进前4名,他除了知道自己成绩外,还要知道这7名学生成绩的( ) A .众数B .方差C .平均数D .中位数12.下列计算正确的是( ) A .2242a a a ⋅= B .236()a a -=-C .222363a a a -=D .22(2)4a a -=-二、填空题13.如图,在四边形ABCD 中,AB//CD ,AC 、BD 相交于点E ,若AB 1CD 4=,则AEAC=______.14.两根不一样长的木杆垂直竖立在地面上,若它们的影长相等,则此时的投影是_____.(填写“平行投影”或“中心投影”)15.在平面直角坐标系中,若点P(2x +6,5x)在第四象限,则x 的取值范围是_________; 16.已知线段a=4,b=1,如果线段c 是线段a 、b 的比例中项,那么c=_____.17.如图,是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖,从里向外的第一层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,以此类推,第9层中含有正三角形个数是_____.18.计算:=_____.三、解答题19.已知:如图,一次函数y kx b =+与反比例函数3y x=的图象有两个交点(1,)A m 和B ,过点A 作AD x ⊥轴,垂足为点D ;过点B 作BC y ⊥轴,垂足为点C ,且2BC =,连接CD .(1)求m ,k ,b 的值; (2)求四边形ABCD 的面积.20.如图,在方格纸中每个小正方形的边长均为l ,线段AB 的端点在小正方形的顶点上,(所画图形顶点必须在小正方形的顶点上).(1)在如图中画一个以AB 为边的四边形ABCD 是中心对称图形,且四边形面积是12;(2)在如图中画一个以AB 为边的四边形ABMN 是轴对称图形,且只有一个角是直角,面积为15.21.如图是某种品牌的篮球架实物图与示意图,已知底座BC =0.6米,底座BC 与支架AC 所成的角∠ACB =75°,支架AF 的长为2.5米,篮板顶端F 点到篮框D 的距离FD =1.4米,篮板底部支架HE 与支架AF 所成的角∠FHE =60°,求篮框D 到地面的距离.(精确到0.1米.参考数据:cos75°≈0.3,32≈1.4)22.某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表: 原进价(元/张) 零售价(元/张) 成套售价(元/套)餐桌 a 270500元餐椅a ﹣11070(1)求表中a 的值;(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,但销售价格保持不变.商场购进了餐桌和餐椅共200张,应怎样安排成套销售的销售量(至少10套以上),使得实际全部售出后,最大利润与(2)中相同?请求出进货方案和销售方案.23.如图,在△ABC 中,AD 平分∠BAC ,按如下步骤作图: 第一步,分别以点A 、D 为圆心,以大于12AD 的长为半径在AD 两侧作弧,交于两点M 、N ; 第二步,连接MN 分别交AB 、AC 于点E 、F ; 第三步,连接DE 、DF .若BD=6,AF=4,CD=3,求线段BE 的长.24.已知,O e 的半径为1;直线CD 经过圆心O ,交O e 于C 、D 两点,直径AB CD ⊥,点M 是直线CD 上异于C D O 、、的一个动点,直线AM 交O e 于点N ,点P 是直线CD 上另一点,且PM PN =.(Ⅰ)如图1,点M 在O e 的内部,求证:PN 是O e 的切线; (Ⅱ)如图2,点M 在O e 的外部,且30AMO ︒∠=,求OP 的长.25.(1)求不等式组2151132523(2)x x x x -+⎧-≤⎪⎨⎪-<+⎩的整数解;(2)化简2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B B C A A A B D D D DB13.1514.中心投影 15.﹣3<x <0 16.2 17.102 18.3 三、解答题19.(1)3m =,32k =,32b =.(2)6【解析】 【分析】(1)用代入法可求解,用待定系数法求解;(2)延长AD ,BC 交于点E ,则90E ∠=︒.根据ABE CDE ABCD S S S ∆∆=-四边形求解.【详解】解:(1)∵点(1,)A m 在3y x=上, ∴3m =, ∵点B 在3y x=上,且2BC =, ∴3(2,)2B --.∵y kx b =+过A ,B 两点,∴3322k b k b +=⎧⎪⎨-+=-⎪⎩,解得3232 kb⎧=⎪⎪⎨⎪=⎪⎩,∴3m=,32k=,32b=.(2)如图,延长AD,BC交于点E,则90E∠=︒.∵BC y⊥轴,AD x⊥轴,∴(1,0)D,3(0,)2C-,∴92AE=,3BE=,∴ABE CDEABCDS S S∆∆=-四边形1122AE BE CE DE=⋅⋅-⋅⋅1913312222=⨯⨯-⨯⨯6=.∴四边形ABCD的面积为6.【点睛】考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.20.(1)见解析;(2)见解析;【解析】【分析】(1)根据平行四边形的底边为4,高为3,进行画图;(2)以AB为直角边、点A为直角顶点构建等腰直角三角形,再依据轴对称图形且面积为15可得.【详解】解:(1)如图所示,平行四边形ABCD即为所求;(2)如图2,四边形ABMN 即为所求四边形; 【点睛】本题主要考查了利用图形的轴对称变换和中心变换进行作图,作图时需要运用平行四边形的性质及勾股定理进行计算.注意:平行四边形是中心对称图形. 21.篮框D 到地面的距离是2.9米. 【解析】 【分析】延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G ,解直角三角形即可得到结论. 【详解】解:延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G , 在Rt △ABC 中,tan ∠ACB =,ABBC∴AB =BC•tan75°=0.60×3.732=2.22, ∴GM =AB =2.22,在Rt △AGF 中,∵∠FAG =∠FHE =60°,sin ∠FAG =,FGAF∴sin60°=3,2.5FG = ∴FG =2.125,∴DM =FG+GM ﹣DF≈2.9米. 答:篮框D 到地面的距离是2.9米.【点睛】考查解直角三角形的应用,构造直角三角形,选择合适的锐角三角函数是解题的关键.22.(1)a =150;(2)购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.;(3)n 2y 43z 147=⎧⎪=⎨⎪=⎩,n 11y 39z 106=⎧⎪=⎨⎪=⎩,203565n y z =⎧⎪=⎨⎪=⎩,293124n y z =⎧⎪=⎨⎪=⎩.【解析】 【分析】(1)根据用600元购进的餐桌数量=用160元购进的餐椅数量列方程求解可得;(2)设购进的餐桌为x 张,则餐椅为520x +张,由餐桌和餐椅的总数量不超过200张求出x 的取值范围,再设利润为w 元,列出利润关于x 的函数解析式,利用一次函数性质求解可得;(3)设成套销售n 套,零售桌子y 张,零售椅子z 张,由题意得出140110207950()(4)200n y z n y n z ++=⎧⎨+++=⎩,由,,n y z 均为整数求解可得.【详解】解:(1)根据题意,得:600160110a a =- , 解得:150a =,经检验150a =符合实际且有意义;(2)设购进的餐桌为x 张,则餐椅为(5x+20)张, 520200x x ++≤ ,解得:30x ≤, 设利润为为w 元,则:115027070(5202)15040(520)22245600w x x x x x x x =⨯+⨯++---+=+ 当30x = 时,w 最大值7950=;(3)设成套销售n 套,零售桌子y 张,零售椅子z 张, 由题意得:140110207950()(4)200n y z n y n z ++=⎧⎨+++=⎩,化简得:141127955200n y z n y z ++=⎧⎨++=⎩,∴49395n y += , 则3954844399n ny --==+, ∴n 2y 43z 147=⎧⎪=⎨⎪=⎩,n 11y 39z 106=⎧⎪=⎨⎪=⎩,203565n y z =⎧⎪=⎨⎪=⎩,293124n y z =⎧⎪=⎨⎪=⎩. 【点睛】本题主要考查了分式方程和一元一次不等式的应用,理解题意,找到题目蕴含的等量关系与不等关系,并正确列出方程和不等式是解题关键. 23.8 【解析】 【分析】根据作法得到MN 是线段AD 的垂直平分线,则AE=DE ,AF=DF ,所以∠EAD=∠EDA ,加上∠BAD=∠CAD ,得到∠EDA=∠CAD ,则可判断DE ∥AC ,同理DF ∥AE ,于是可判断四边形AEDF 是平行四边形,加上EA=ED ,则可判断四边形AEDF 为菱形,所以AE=DE=DF=AF=4,然后利用平行线分线段成比例可计算BE 的长. 【详解】解:根据作法可知:MN 是线段AD 的垂直平分线,∴AE=DE ,AF=DF,∴∠EAD=∠EDA , ∵AD 平分∠BAC , ∴∠BAD=∠CAD , ∴∠EDA=∠CAD , ∴DE ∥AC , 同理DF ∥AE ,∴四边形AEDF 是平行四边形, 而EA=ED ,∴四边形AEDF 为菱形, ∴AE=DE=DF=AF=4, ∵DE ∥AC ,∴BE :AE=BD :CD ,即BE :4=6:3, ∴BE=8. 【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定与性质和平行线分线段成比例. 24.(Ⅰ)证明见解析;(Ⅱ23. 【解析】 【分析】(Ⅰ)连接ON ,根据等边对等角即可证得∠1=∠2,∠PNM=∠4,然后根据直角三角形两锐角互余即可证得∠PNO=90°,即可得结论;(Ⅱ)连接ON ,由∠3=30°可得∠1=60°,即可证明△AON 是等边三角形,可得∠5=30°,根据等腰三角形的性质可得∠3=∠4=30°,进而可证明∠PNO=90°,利用∠3的余弦值求出OP 的长即可. 【详解】(Ⅰ)如图,连接ON , ∵AB CD ⊥, ∴1390∠∠+=︒. ∵OA ON =, ∴12∠∠=. ∵P PM N =, ∴4PNM ∠∠=. ∵34∠∠=,∴290PNM ∠∠+=︒,即PN ON ⊥. 又∵ON 是半径,点N 在O e 上,∴PN 是O e 的切线.(Ⅱ)解:如图,∵330∠=︒, ∴160∠=︒, ∵ON=OA ,∴AON V 是等边三角形. ∴530∠=︒. ∵PM PN =, ∴4330∠∠==︒. ∴∠OPN=60°, ∴90PNO ∠=︒. ∴123530ON OP cos cos ∠===︒.【点睛】本题考查了切线的判定与锐角三角函数定义,证明切线的常用方法是连接圆心和直线与圆的公共点,然后证明垂直.熟练掌握三角函数的定义是解题关键. 25.(1)﹣1,0,1,2,3;(2)11x x -+. 【解析】 【分析】(1)根据解不等式组的方法可以求得该不等式组的解集,从而可以求得整数解; (2)根据分式的减法和除法可以解答本题. 【详解】解:(1)2151132523(2)x x x x -+⎧-≤⎪⎨⎪-<+⎩①②由不等式①得, x≥﹣1, 由不等式②得,x<4,∴原不等式组的解集为:﹣1≤x<4,故其整数解为﹣1,0,1,2,3;(2)原式=2 3422(1) (1)(1)(1)(1)(2)x x xx x x x x⎛⎫++--⋅⎪+-+-+⎝⎭=22(1) (1)(1)(2)x xx x x+-⋅+-+=11 xx-+.【点睛】本题考查分式的混合运算、一元一次不等式组的整数解,解答本题的关键是明确它们各自的计算方法.2019-2020学年数学中考模拟试卷一、选择题1.如图,平面直角坐标系中,矩形ABCD 与双曲线(0)ky x x=>交于D 、E 两点,将△OCD 沿OD 翻折,点C 的对称C'恰好落在边AB 上,已知OA=3,OC=5,则AE 长为( )A .4B .259C .269D .32.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD ∆的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .C .32D .3.已知四边形的对角线相交于点,,则下列条件中不能判定四边形为平行四边形的是( ) A.B.C.D.4.如图,一次函数y=kx+b 的图象经过点(-1,0)与(0,2),则关于x 的不等式kx+b >0的解集是( )A .x 1>-B .x 1<-C .x 2>D .x 2<5.如图是L 型钢材的截面,5个同学分别列出了计算它的截面积的算式,甲:()ac b c c +-;乙:()a c c bc -+;丙:2ac bc c +-;丁:()()ab a c b c ---;戊:()()a c c b c c -+-.你认为他们之中正确的是( )A.只有甲和乙B.只有丙和丁C.甲、乙、丙和丁D.甲、乙、丙、丁和戊6.关于x的方程2334axa x+=-的解为1x=,则a=( )A.1B.3C.-1D.-3 7.下列运算正确的是()A.ab•ab=2ab B.(3a)3=9a3C.4a﹣3a=3(a≥0)D.a ab b=(a≥0,b≥0)8.已知一多边形的每一个内角都等于150°,则这个多边形是()A.十二边形B.十边形C.八边形D.六边形9.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值是()A.﹣1 B.1 C.﹣5 D.1510.化简2111a a---的结果是( )A.31a-B.31a-C.11a-D.11a-11.下列运算正确的是()A.2m×3m=6m B.(m3)2=m6C.(﹣2m)3=﹣2m3D.m2+m2=m412.如图,在△ABC中,点D、E分别为AB、AC边上的点,连接DE,且DE∥BC,点F为BC边上一点,连接AF 交DE于点G,则下列结论中一定正确的是()A.BD AGAD FG=B.AG AEGF BD=C.BD ABCE AC=D.FG CEAE AG=二、填空题13.如图,在Rt△ABC中,∠C=90°,AC=43,BC=4,点D是AC的中点,点F是边AB上一动点,沿DF所在直线把△ADF翻折到△A′DF的位置,若线段A′D交AB于点E,且△BA′E为直角三角形,则BF的长为_____.145.(填“>”、“=”、“<”)15.比较大小: ________2.(填“>”“=”或“<”)16.如图,有一条折线A 1B 1A 2B 2A 3B 3A 4B 4…,它是由过A 1(0,0),B 1(2,2),A 2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n (n≥1,且为整数)个交点,则k 的值为______.17.计算(5﹣2)﹣5的结果是_____ 18.函数1y x =-中,自变量x 的取值范围是_____.三、解答题19.如图,反比例函数y =kx(k≠0)的图象与反比例函数y =2x 的图象相交于A (1,a ),B 两点,点C 在第四象限,CA ∥y 轴,连接BC . (1)求k 的值及点B 的坐标; (2)求tanA 的值;(3)当△ABC 是直角三角形时,求点C 的坐标.20.为丰富学生的课余生活,学校准备购买部分体育器材,以满足学生们的需求.学校对“我最喜爱的体育运动”进行了抽样调查(每个学生只选一次),根据调查结果绘成如图所示的两幅不完整统计图,请你根据统计图提供的信息解答下列问题. (1)求m 、n 的值;(2)若该校有2000名学生,请你根据样本数据,估算该校喜欢踢足球的学生人数是多少?21.某水果批发商经销一种高档水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价0.1元,销售量将减少1千克(1)现该商场保证每天盈利1500元,同时又要照顾顾客,那么每千克应涨价多少元? (2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,使该商场获利最大? 22.在一次综合实践课上,同学们为教室窗户设计一个遮阳篷,小明同学绘制的设计图如图所示,其中AB 表示窗户,且AB =2米,BCD 表示直角遮阳蓬,已知当地一年中正午时刻太阳光与水平线CD 的最小夹角∠PDN =18.6°,最大夹角∠MDN =64.5°.请你根据以上数据,帮助小明同学计算出遮阳篷中CD 的长是多少米?(结果精确到0.1)(参考数据:sin18.6°≈0.32,tan18.6°≈0.34,sin64.5°≈0.90,tan64.5°≈2.1)23.解不等式组()3841710x x x x <+⎧⎪⎨+≤+⎪⎩①②.请结合题意填空,完成本题的解答:(1)解不等式①,得:________; (2)解不等式②,得:________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为:________.24.解不等式组:()-32421152x x x x ⎧-≥⎪⎨-+<⎪⎩并把其解集在数轴上表示出来.25.某个周末,小丽从家去园博园参观,同时妈妈参观结束从园博园回家,小丽刚到园博园就发现要下雨,于是立即按原路返回,追上妈妈后,两人一同回家(小丽和妈妈始终在同一条笔直的公路上行走)如图是两人离家的距离y(米)与小丽出发的时间x(分)之间的函数图象,请根据图象信息回答下列问题: (1)求线段BC 的解析式;(2)求点F 的坐标,并说明其实际意义;(3)与按原速度回家相比,妈妈提前了几分钟到家?并直接写出小丽与妈妈何时相距800米.【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C B A C D D A A A BC13.6或28514.>16.12n-.17. 18.x≥0 三、解答题19.(1)k 的值是2,点B 的坐标为(﹣1,﹣2);(2)1tan 2A =;(3)点C 的坐标是(1,﹣2)或(1,﹣3). 【解析】 【分析】(1)代入法,求A 的坐标,再求反比例函数的解析式,再求B 的坐标;(2)根据正切的定义直接求解;(3)根据直角三角形的性质,结合三角函数,求出各顶点坐标. 【详解】解:(1)∵点A (1,a )在直线y =2x 上, ∴a =2×1=2,即点A 的坐标为(1,2),∵点A (1,2),点B 是反比例函数y =kx(k≠0)的图象与反比例函数y =2x 图象的交点, ∴k =1×2=2,点B 的坐标为(﹣1,﹣2), 即k 的值是2,点B 的坐标为(﹣1,﹣2); (2)∵点A (1,2), ∴tanA =12; (3)∵点C 在第四象限,CA ∥y 轴,点A (1,2),点B (﹣1,﹣2), ∴当△ABC 是直角三角形,∠ACB =90°时,点C 的坐标为(1,﹣2); 当△ABC 是直角三角形,∠ABC =90°时,设点C 的坐标为(1,c ), cosAABAC=, ∵点A (1,2),点B (﹣1,﹣2),2AB AC c ∴==-2c=-解得,c =﹣3, 即点C 的坐标为(1,﹣3),由上可得,当△ABC 是直角三角形时,点C 的坐标是(1,﹣2)或(1,﹣3). 【点睛】考核知识点:反比例函数与几何的综合.理解反比例函数和直角三角形的性质是关键. 20.(1)m =40,n =60;(2)该校喜欢踢足球的学生人数是400人. 【解析】 【分析】(1)根据喜爱篮球的人数÷其所占的百分比得到总人数,再由总人数乘以喜爱排球的人数所占百分比得到n ,用总人数-喜爱篮球人数-喜爱排球的人数-喜爱其他人数,即可确定出m 的值; (2)求出喜欢踢足球的学生人数所占的百分比,乘以2000即可得到结果.(1)70÷35%=200(人) n =200×30%=60, m =200﹣70﹣60﹣40=40; (2)2000×40200=400 (人) 答:该校喜欢踢足球的学生人数是400人. 【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键. 21.(1)涨价5元;(2)涨价7.5元 【解析】 【分析】(1)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值; (2)根据题意列出二次函数解析式,然后转化为顶点式,最后求其最值即可. 【详解】解:(1)设每千克应涨价x 元,由题意列方程得: (5+x )(200﹣0.1x)=1500 解得:x =5或x =10,答:为了使顾客得到实惠,那么每千克应涨价5元; (2)设涨价x 元时总利润为y , 则y =(5+x )(200﹣0.1x ) =﹣10x 2+150x+1000 =﹣10(x 2﹣15x )+1000 =﹣10(x ﹣7.5)2+1562.5,答:若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多. 【点睛】本题考查了二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a 的绝对值是较小的整数时,用配方法较好,如y =﹣x 2﹣2x+5,y =3x 2﹣6x+1等用配方法求解比较简单. 22.CD 的长约为1.1米. 【解析】 【分析】解直角三角求出BC =0.34x 米,AC =2.1x 米,得出方程,求出方程的解即可. 【详解】 设CD =x 米,在Rt △BCD 中,∠BCD =90°,∠CDB =∠PDN =18.6°,CB =CD×tan18.6°≈0.34x 米, 在Rt △ACD 中,∠ACD =90°,∠CDA =∠MDN =64.5°,AC =CD×tan64.5°≈2.1x 米, ∵AB =2米,AB =AC ﹣BC , ∴2.1x ﹣0.34x =2, 解得:x≈1.1,即遮阳篷中CD 的长约为1.1米.【点睛】本题考查了解直角三角形和解方程,能通过解直角三角形求出AC 和BC 的长是解此题的关键. 23.(1)4x <;(2)2x ≥-;(3)数轴表示见解析;(4)24x -≤<. 【解析】 【分析】(1)先移项,两边同时除以2即可得答案;(2)去括号、移项,两边同时除以-3即可得答案;(3)根据不等式解集的表示方法解答即可;(4)根据数轴,找出不等式①②的公共解集即可. 【详解】 (1)3x<x+8 移项得:2x<8 系数化为1得:x<4. 故答案为:x<4 (2)4(x+1)≤7x+10 去括号得:4x+4≤7x+10 移项得:-3x≤6 系数化为1得:x≥-2. 故答案为:x≥-2(3)不等式①和②的解集在数轴上表示如图所示:(4)由数轴可得①和②的解集的公共解集为-2≤x<4, ∴原不等式组的解集为-2≤x<4, 故答案为:-2≤x<4 【点睛】本题考查了解一元一次不等式,解一元一次不等式组,在数轴上表示不等式的解集的应用,能根据不等式的解集求出不等式组的解集是解此题的关键. 24.−7<x ⩽1,见解析. 【解析】 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解不等式x −3(x −2)⩾4,得:x ⩽1, 解不等式52112x x -+< ,得:x>−7,则不等式组的解集为−7<x ⩽1, 将解集表示在数轴上如下:【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则.25.(1)y =﹣50x+3000;(2)点F 的坐标为(20,2000),其实际意义为:小丽出发20分钟时,在离家2000米处与妈妈相遇;(3)妈妈提前了10分钟到家,小丽与妈妈相距800米的时间是443分钟,763分钟和37分钟. 【解析】 【分析】(1)由图象可知,点A(30,3000),点D(50,0),用待定系数法求出AD 的解析式,再将C 点横坐标代入即可求得点C 的纵坐标,再由点B(0,3000),同样可由待定系数法求得BC 的解析式;(2)待定系数法求出OA 的解析式,然后将其与BC 的解析式联立,可求得点F 的坐标,进而得其实际意义;(3)求出直线BC 与x 轴交点的横坐标,再与x 等于50相比较即可得妈妈提前回家的时间;小丽与妈妈相距800米有三种可能,分别求出即可. 【详解】解:(1)由图象可知,点A(30,3000),点D(50,0) 设线段AD 的解析式为:y =kx+b ,将点A ,点D 坐标代入得300030050k bk b =+⎧⎨=+⎩,解得k 150b 7500=-⎧⎨=⎩,∴y =﹣150x+7500.将x =45代入上式得y =750, ∴点C 坐标为(45,750).设线段BC 的解析式为y =mx+n ,将(0,3000)和(45,750)代入得:300075045n m n =⎧⎨=+⎩ ,解得503000m n =-⎧⎨=⎩, ∴y =﹣50x+3000.答:线段BC 的解析式为y =﹣50x+3000.(2)设OA 的解析式为y =px ,将点A(30,3000)代入得:3000=30p , ∴p =100, ∴y =100x . 由503000100y x y x =-+⎧⎨=⎩ 解得202000x y =⎧⎨=⎩,∴点F 的坐标为(20,2000),其实际意义为:小丽出发20分钟时,在离家2000米处与妈妈相遇. (3)在y =﹣50x+3000中,令y =0得:0=﹣50x+3000, ∴x =60, 60﹣50=10,∴妈妈提前了10分钟到家.由|100x﹣(﹣50x+3000)|=800,得:x=443或x=763;由(﹣150x+7500)﹣(﹣50x+3000)=800,得x=37.答:妈妈提前了10分钟到家,小丽与妈妈相距800米的时间是443分钟,763分钟和37分钟.【点睛】本题是一次函数结合函数图象的综合应用,涉及到多次用待定系数法求解析式,求两直线交点坐标,结合函数图象分析数据等,难度较大.2019-2020学年数学中考模拟试卷一、选择题1.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是( )A.2B.4C.8D.162.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象,下列说法错误的是( )A .乙先出发的时间为0.5小时B .甲的速度是80千米/小时C .甲出发0.5小时后两车相遇D .甲到B 地比乙到A 地早112小时 3.如图,在Rt △ABC 中,∠C =30°,AB =4,D ,F 分别是AC ,BC 的中点,等腰直角三角形DEH 的边DE 经过点F ,EH 交BC 于点G ,且DF =2EF ,则CG 的长为( )A .23B .23﹣1C .52D .3+1 4.如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为( )A.40ºB.50ºC.60ºD.70º5.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,当y <0时x 的取值范围是( )A.x >2B.0<x <4C.﹣1<x <4D.x <﹣1 或 x >46.《九章算术》是中国传统数学最重要的著作之一,其中记载:“今有共买物人出八,盈三;人出七,不足四问人数、物价各几何?”译文:“几个人去购买物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱问有多少人,物品的价格是多少”?设有m 人,物品价格是n 钱,下列四个等式:①8m+3=7m ﹣4;②=;③=;④8m ﹣3=7m+4,其中正确的是( )A.①②B.②④C.②③D.③④7.已知x a =2,x b =﹣3,则x 3a ﹣2b =( )A .23B .89C .-23D .89- 8.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM V 周长的最小值为( )A .6B .8C .10D .129.方程组632x y x y +=⎧⎨-=⎩的解为( ) A .42x y =⎧⎨=⎩B .24x y =⎧⎨=⎩C .15x y =⎧⎨=⎩D .33x y =⎧⎨=⎩ 10.如图,AB ⊥CD ,且AB =CD ,E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =8,BF =6,AD =10,则EF的长为( )A .4B .72C .3D .52 11.在下列等式中,不满足a≠0这个条件的是( ) A .a 0=1 B .11a a -= C 211()a a = D .24)a a =12.已知m 2=3|m|的估算正确的( )A .2<|m|<3B .3<|m|<4C .4<|m|<5D .5<|m|<6二、填空题13.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.按照这个规律,若这样铺成一个n×n 的正方形图案,则其中完整的圆共有__个.14.若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为_____.15.购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需钱数为 元.16.一组数据2,2,3,4,4的方差是_____.17.今年春节黄金周上海共接待游客约5090000人,5090000这个数用科学记数法表示为______.18.如图,线段AB 的长为2,C 为AB 上一个动点,分别以AC 、BC 为斜边在AB 的同侧作两个等腰直角三角形△ACD 和△BCE ,那么DE 长的最小值是______________.三、解答题 19.《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?20.计算:()10133cos3012122π-︒⎛⎫-+-++- ⎪⎝⎭. 21.已知:如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F .(1)求证:四边形ABEF 是菱形;(2)若AE =6,BF =8,平行四边形ABCD 的面积是36,求AD 的长.22.(120112(1)6tan 303π-︒⎛⎫--+- ⎪⎝⎭ (2)解方程:544101236x x x x -++=-- 23.马上开学,益文超市王老板购进了一批笔和作业本,已知每本作业本的进价比每个笔的进价少10元,且用480元购进作业本的数目是用同样金额购进笔的支数的6倍.(1)求每支笔和每个作业本的进价分别是多少元?(2)由于销售火爆,第一批销售完了以后,该商店用相同的价格再购进300支作业本和200本笔,已知作业本售价为6元一本,笔售价为24元一支,销售一段时间后,作业本卖出了总数的23,笔售出了总数的3,为了清仓,该店老板对剩下的笔和作业本以相同的折扣数进行打折销售,并很快全部售出.求商店最低打几折可以使得第二次购进的这批作业本和笔的总利润率不低于90%?24.如图,AB,CD是圆O的直径,AE是圆O的弦,且AE∥CD,过点C的圆O切线与EA的延长线交于点P,连接AC.(1)求证:AC平分∠BAP;(2)求证:PC2=PA•PE;(3)若AE-AP=PC=4,求圆O的半径.25.如图,是大小相等的边长为1的正方形构成的网格,A,C,M,N均为格点.AN与CM交于点P.MP CP的值为_________.[1].:∠大[2].现只有无刻度的直尺,请在给定的网格中作出一个格点三角形.要求:①三角形中含有与CPN∠的三角函数值.请并在横线上简单说明你的作图方小相等的角;②可借助该三角形求得CPN法.____________.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A D B D C D B C B A D A13.n2+(n﹣1)214.415.(a+3b).16.817.09×10618.1三、解答题19.12【解析】【分析】设矩形的长为x步,则宽为(60﹣x)步,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设矩形的长为x步,则宽为(60﹣x)步,依题意得:x(60﹣x)=864,整理得:x2﹣60x+864=0,解得:x=36或x=24(不合题意,舍去),∴60﹣x=60﹣36=24(步),∴36﹣24=12(步),则该矩形的长比宽多12步.【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.20.【解析】【分析】先计算零指数幂、负指数幂、特殊角的三角函数、绝对值,再进行二次根式化简,然后根据实数的运算法则求得计算结果.【详解】解:原式=2﹣1+1【点睛】考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、特殊角的三角函数值、绝对值等考点的运算.21.(1)见解析;(2)15 2【解析】【分析】(1)由平行四边形的性质和角平分线的性质可证BA=BE=AF,即可证四边形ABEF是菱形;(2)由菱形的性质和勾股定理可求BE=5,由菱形的面积公式可求AH=245,由平行四边形的面积公式可求AD的长.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BA=BE,同理:AB=AF∴AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形(2)如图,过A作AH⊥BE,∵四边形ABEF是菱形,∴AO=EO=12AE=3,BO=FO=12BF=4,AE⊥BF,∴BE22BO EO+5,∵S菱形ABEF=12AE•BF=12×6×8=24,∴BE•AH=24,∴AH=245,∴S平行四边形ABCD=AD×AH=36,∴AD=152.【点睛】本题考查了菱形的性质和判定,平行四边形的性质,熟练运用菱形的性质是本题的关键.22.(1)10;(2)原方程无解.【解析】【分析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)原式=33169-⨯+=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(1)每支笔的进价为12元,则每个作业本的进价为2元.(2)商店最低打5折可以使得这批货的总利润率不低于90%.【解析】【分析】(1)设每支笔的进价为x元,则每个作业本的进价为(x﹣10)元,根据数量=总价÷单价结合用480元购进作业本的数目是用同样金额购进笔的支数的6倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设剩下的笔和作业本打y折销售,根据总利润=销售收入﹣成本结合总利润率不低于90%,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.。
湖南省衡阳市2019-2020学年中考数学二月模拟试卷含解析
湖南省衡阳市2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.5ab﹣ab=4 B.a6÷a2=a4C.112a b a b+=+D.(a2b)3=a5b32.计算﹣2+3的结果是()A.1 B.﹣1 C.﹣5 D.﹣63.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)4.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A.75°B.65°C.60°D.50°5.|﹣3|的值是()A.3 B.13C.﹣3 D.﹣136.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.237.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗8.青藏高原是世界上海拔最高的高原,它的面积是2500000 平方千米.将2500000 用科学记数法表示应为()A.70.2510⨯B.72.510⨯C.62.510⨯D.52510⨯9.下列几何体中,俯视图为三角形的是( )A.B.C.D.10.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )A.1 B.12C.14D.1511.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.4812.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD =1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A.13B.5C.22D.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_____秒.14.在矩形ABCD中,AB=6CM,E为直线CD上一点,连接AC,BE,若AC与BE交与点F,DE=2,则EF:BE= ________ 。
湖南省衡阳市2019-2020学年中考第二次模拟数学试题含解析
湖南省衡阳市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.2.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B3.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD 4.如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB 绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是()A.B.C.D .5.二次函数2y ax bx c =++()0a ≠的图象如图所示,则下列各式中错误的是( )A .abc >0B .a+b+c >0C .a+c >bD .2a+b=06.如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图象大致为( )A .B .C .D .7.反比例函数y =m x的图象如图所示,以下结论:①常数m <﹣1;②在每个象限内,y 随x 的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h <k ;④若点P(x ,y)在上,则点P′(﹣x ,﹣y)也在图象.其中正确结论的个数是( )A .1B .2C .3D .48.a 、b 互为相反数,则下列成立的是( )A .ab=1B .a+b=0C .a=bD .a b=-1 9.下列运算正确的是( ) A .a•a 2=a 2 B .(ab )2=ab C .3﹣1=13 D 5510=10.如图,二次函数y=ax 2+bx+c (a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab <0,②b 2>4a ,③0<a+b+c <2,④0<b <1,⑤当x >﹣1时,y >0,其中正确结论的个数是A .5个B .4个C .3个D .2个11.如图,直角边长为2的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t ,两图形重合部分的面积为S ,则S 关于t 的图象大致为( )A .B .C .D .12.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知圆锥的底面半径为40cm , 母线长为90cm , 则它的侧面展开图的圆心角为_______. 14.如图,平行四边形ABCD 中,AB=AC=4,AB ⊥AC ,O 是对角线的交点,若⊙O 过A 、C 两点,则图中阴影部分的面积之和为_____.15.如图,已知⊙P的半径为2,圆心P在抛物线y=12x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为_____.16.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.17.计算:1850-的结果为_____.18.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒2cm 的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将△PQC 沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数2kyx=图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)求点B到直线OM的距离.20.(6分)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1350元,那么销售单价是多少?21.(6分)求不等式组()7153x3x134x x⎧+≥+⎪⎨-->⎪⎩的整数解.22.(8分)对几何命题进行逆向思考是几何研究中的重要策略,我们知道,等腰三角形两腰上的高线相等,那么等腰三角形两腰上的中线,两底角的角平分线也分别相等吗?它们的逆命题会正确吗?(1)请判断下列命题的真假,并在相应命题后面的括号内填上“真”或“假”.①等腰三角形两腰上的中线相等;②等腰三角形两底角的角平分线相等;③有两条角平分线相等的三角形是等腰三角形;(2)请写出“等腰三角形两腰上的中线相等”的逆命题,如果逆命题为真,请画出图形,写出已知、求证并进行证明,如果不是,请举出反例.23.(8分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?24.(10分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.25.(10分)观察下列等式:第1个等式:1111a 11323==⨯-⨯(); 第2个等式:21111a 35235==⨯-⨯(); 第3个等式:31111a 57257==⨯-⨯(); 第4个等式:41111a 79279==⨯-⨯(); …请解答下列问题:按以上规律列出第5个等式:a 5= = ;用含有n 的代数式表示第n 个等式:a n = = (n 为正整数);求a 1+a 2+a 3+a 4+…+a 100的值.26.(12分)如图,已知△ABC 内接于O e ,AB 是直径,OD ∥AC ,AD=OC .(1)求证:四边形OCAD 是平行四边形;(2)填空:①当∠B= 时,四边形OCAD 是菱形;②当∠B= 时,AD 与O e 相切.27.(12分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图: 成绩x 分人数 频率 25≤x <304 0.08 30≤x <358 0.16 35≤x <40a 0.32 40≤x <45b c45≤x<50 10 0.2(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.详解:从左边看竖直叠放2个正方形.故选:C.点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.2.A【解析】试题分析:在计算器上依次按键转化为算式为﹣=-1.414…;计算可得结果介于﹣2与﹣1之间.故选A.考点:1、计算器—数的开方;2、实数与数轴3.D【解析】试题分析:对于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理可以判定△POC≌△POD;对于B OC=OD,根据SAS判定定理可以判定△POC≌△POD;对于C,∠OPC=∠OPD,根据ASA判定定理可以判定△POC≌△POD;,对于D,PC=PD,无法判定△POC≌△POD,故选D.考点:角平分线的性质;全等三角形的判定.4.D【解析】∵四边形CDEF 是矩形,∴CF ∥DE ,∴△ACG ∽△ADH ,∴CG AC DH AD =, ∵AC=CD=1,∴AD=2,∴12x DH =,∴DH=2x ,∵DE=2,∴y=2﹣2x , ∵0°<α<45°,∴0<x <1,故选D .【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出△ACG ∽△ADH.5.B【解析】【分析】根据二次函数的图象与性质逐一判断即可.【详解】解:由图象可知抛物线开口向上,∴0a >,∵对称轴为1x =, ∴12b a-=, ∴20b a =-<,∴20a b +=,故D 正确,又∵抛物线与y 轴交于y 轴的负半轴,∴0c <,∴0abc >,故A 正确;当x=1时,0y <,即0a b c ++<,故B 错误;当x=-1时,0y >即0a b c -+>,∴a c b +>,故C 正确,故答案为:B .【点睛】本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质.6.A【解析】设身高GE=h ,CF=l ,AF=a ,当x≤a 时,在△OEG 和△OFC 中,∠GOE=∠COF (公共角),∠AEG=∠AFC=90°,∴△OEG ∽△OFC ,OE/OF GE/CF =,∴()y h h ah y x a x y l l h l h=∴=-+----,, ∵a 、h 、l 都是固定的常数,∴自变量x 的系数是固定值,∴这个函数图象肯定是一次函数图象,即是直线;∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.故选A .7.B【解析】【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【详解】解:∵反比例函数的图象位于一三象限,∴m >0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y 随x 的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y =x m ,得到h =﹣m ,2k =m , ∵m >0∴h <k故③正确;将P(x ,y)代入y =x m 得到m =xy ,将P′(﹣x ,﹣y)代入y =xm 得到m =xy , 故P(x ,y)在图象上,则P′(﹣x ,﹣y)也在图象上故④正确,故选:B .【点睛】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.8.B【解析】【分析】依据相反数的概念及性质即可得.【详解】因为a、b互为相反数,所以a+b=1,故选B.【点睛】此题主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,1的相反数是1.9.C【解析】【分析】根据同底数幂的乘法法则对A进行判断;根据积的乘方对B进行判断;根据负整数指数幂的意义对C进行判断;根据二次根式的加减法对D进行判断.【详解】解:A、原式=a3,所以A选项错误;B、原式=a2b2,所以B选项错误;C、原式=13,所以C选项正确;D、原式=D选项错误.故选:C.【点睛】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.也考查了整式的运算.10.B【解析】【详解】解:∵二次函数y=ax3+bx+c(a≠3)过点(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵抛物线的对称轴在y轴右侧,∴bx2a=-,x>3.∴a与b异号.。
湖南省衡阳市2019-2020学年中考数学教学质量调研试卷含解析
湖南省衡阳市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.92.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3D.x=33.如果t>0,那么a+t与a的大小关系是( )A.a+t>a B.a+t<a C.a+t≥a D.不能确定4.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手 1 2 3 4 5 6 7 8 9 10 时间(min) 129 136 140 145 146 148 154 158 165 175由此所得的以下推断不正确...的是()A.这组样本数据的平均数超过130B.这组样本数据的中位数是147C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好5.如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A.B.C.D.6.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7.下面计算中,正确的是()A.(a+b)2=a2+b2B.3a+4a=7a2C.(ab)3=ab3D.a2•a5=a78.观察下列图形,则第n个图形中三角形的个数是()A.2n+2 B.4n+4 C.4n﹣4 D.4n9.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=10010.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是()A.15B.215C.17D.21711.如图,若AB∥CD,则α、β、γ之间的关系为()A.α+β+γ=360°B.α﹣β+γ=180°C.α+β﹣γ=180°D.α+β+γ=180°12.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是()A.①B.②C.③D.④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个n边形的每个内角都为144°,则边数n为______.14.分解因式:2x3﹣4x2+2x=_____.15.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=5,tan∠BOC=12,则点A′的坐标为_____.16.在平面直角坐标系中,点A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1,再将点A1向下平移4个单位,得到点A2,则点A2的坐标是_________.17.如图,路灯距离地面6m,身高1.5m的小明站在距离灯的底部(点O)15m的A处,则小明的影子AM的长为________m.18.若-2a m b4与5a2b n+7是同类项,则m+n= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知平行四边形.尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:.20.(6分)尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)21.(6分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE =45°,BE=4,DE=10, 求直角梯形ABCD的面积.22.(8分)如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.(1)求证:四边形ABCD是平行四边形;(2)若AB=BE=2,sin∠ACD=32,求四边形ABCD的面积.23.(8分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(m,n)(m<0,n>0),E点在边BC上,F点在边OA上.将矩形OABC沿EF折叠,点B正好与点O重合,双曲线过点E.(1) 若m=-8,n =4,直接写出E、F的坐标;(2) 若直线EF的解析式为,求k的值;(3) 若双曲线过EF的中点,直接写出tan∠EFO的值.24.(10分)如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.(1)试探究线段AE与CG的关系,并说明理由.(2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1.①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.②当△CDE为等腰三角形时,求CG的长.25.(10分)如图,点是线段的中点,,.求证:.26.(12分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.九宫格27.(12分)如图,平面直角坐标系xOy中,已知点A(0,3),点B30),连接AB,若对于平面。
〖精选4套试卷〗湖南省衡阳市2020年中考第二次模拟数学试题
2019-2020学年数学中考模拟试卷一、选择题1.如图,在△ABC 中,cosB =22,sinC =35,AC =5,则△ABC 的面积是( )A .212B .12C .14D .212.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .23.化简221x -÷11x -的结果是( ) A .21x + B .2xC .21x - D .2(x +1)4.某小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是( ) A.平均数是15B.众数是10C.中位数是17D.方差是4435.若m >n ,则下列不等式正确的是( ) A .m+2<n+2B .m ﹣2<n ﹣2C .﹣2m <﹣2nD .m 2>n 26.如图,由5个相同正方体组合而成的几何体的主视图是( )A.B. C. D.7.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( ) A .m 1≥B .1m £C .1m >D .1m <8.由个大小相同的正方形搭成的几何体,被小颖拿掉两个后,得到如图 所示的几何体,如图是原几何体的三视图,请你判断小颖拿掉的两个正方体原来放在( )A.4号的左右B.3号的前后C.1号的前后D.2号的前后9.若a=326,b=11,则实数a,b的大小关系为()A.a>b B.a<b C.a=b D.a≥b10.如图有两个边长为4cm的正方形,其中一个正方形的顶点在另一个正方形的中心上,绕着中心旋转其中一个正方形,那么图中阴影部分的面积是()A.无法确定B.8cm2C.16cm2D.4cm211.下列四个点中,有三个点在同一条直线上,不在这条直线上的点是()A.(﹣3,﹣1)B.(1,1)C.(3,2)D.(4,3)12.给出四个数0,2,1,-2,其中最大的数是()A.0B.2C.1D.-2二、填空题13.七巧板是一种古老的中国传统智力游戏.小明利用七巧板(如图1)拼出了一个数字“7”(如图2),若图1中正方形ABCD的面积为32cm2,则图2的周长为_____cm14.如图,在由边长都为1的小正方形组成的网格中,点A,B,C均为格点,点P,Q分别为线段=.AB,BC上的动点,且满足AP BQ(1)线段AB的长度等于__________;+取得最小值时,请借助无刻度直尺在给定的网格中画出线段AQ和CP,并简要说(2)当线段AQ CP明你是怎么画出点Q,P的:_______________________.15.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上. (Ⅰ)AC 的长等于_____;(Ⅱ)在线段AC 上有一点D ,满足AB 2=AD•AC,请在如图所示的网格中,用无刻度的直尺,画出点D ,并简要说明点D 的位置是如何找到的(不要求证明)_____.16.如图,直角ABC ∆中,090∠=A ,030B ∠=,4AC =,以A 为圆心,AC 长为半径画四分之一圆,则图中阴影部分的面积是________.(结果保留π)17.若关于x 的一元二次方程2230x x m -+-=有两个相等的实数根,则m 的值是______________. 18.如图,AB ∥CD ,∠B =150°,FE ⊥CD 于E ,则∠FEB =_____.三、解答题19.如图1,P (m ,n )在抛物线y=ax 2-4ax (a >0)上,E 为抛物线的顶点.(1)求点E 的坐标(用含a 的式子表示);(2)若点P 在第一象限,线段OP 交抛物线的对称轴于点C ,过抛物线的顶点E 作x 轴的平行线DE ,过点P作x轴的垂线交DE于点D,连接CD,求证:CD∥OE;(3)如图2,当a=1,且将图1中的抛物线向上平移3个单位,与x轴交于A、B两点,平移后的抛物线的顶点为Q,P是其x轴上方的对称轴上的动点,直线AP交抛物线于另一点D,分别过Q、D作x轴、y 轴的平行线交于点E,且∠EPQ=2∠APQ,求点P的坐标.20.解不等式组21122x xx->⎧⎪⎨⎪⎩…;并把其解集表示在数轴上.21.为弘扬“绿水青山就是金山银山”精神,某地区鼓励农户利用荒坡种植果树,某农户考察三种不同的果树苗A、B、C,经引种试验后发现,引种树苗A的自然成活率为0.8,引种树苗B、C的自然成活率均为0.9.(1)若引种树苗A、B、C各10棵.①估计自然成活的总棵数;②利用①的估计结论,从没有自然成活的树苗中随机抽取两棵,求抽到的两棵都是树苗A的概率:(2)该农户决定引种B种树苗,引种后没有自然成活的树苗中有75%的树苗可经过人工栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.若每棵树苗引种最终成活后可获利300元,不成活的每棵亏损50元,该农户为了获利不低于20万元,问至少引种B种树苗多少棵?22.某教学网站策划了A、B两种上网学习的月收费方式:设每月上网学习的时间为.(Ⅰ)根据题意,填写下表:(Ⅱ)设A,B两种方式的收费金额分别为1元和2元,分别写出1,2与的函数解析式;(Ⅲ)当60x>时,你认为哪种收费方式省钱?请说明理由.23.甲队有50辆汽车,乙队有41辆汽车,将甲队一部分汽车调到乙队,使乙队的车数比甲队车数的2倍还多1辆,求从甲队调到乙队汽车的辆数.24.已知一元二次方程x2+4x+m=0,其中m的值满足不等式组2(3)41132mm m+⎧⎪-⎨>-⎪⎩…,请判断一元二次方程x2+4x+m=0根的情况.25.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F(1)求证:AC是⊙O的切线;(2)若CF=2,CE=4,求⊙O的半径.【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A C A C C D D D B D D B二、填空题 13.3614.取格点,,,D E F G .连接,BD EF ,它们相交于点T ,连接,AT CG ,分别交,BC AB 于点,Q P ,则线段AQ 和CP 即为所求. 15.见解析. 16.4433π- 17.4 18.60° 三、解答题19.(1) E (2,﹣4a );(2)见解析;(3) P (2,2+1). 【解析】 【分析】(1)将原式提取公因式然后化简即可解答(2)设直线OE 的解析式为:y =k x ,把E 点代入可得直线OE 的解析式为:y =﹣2ax ,由P (m ,n )得直线OP 的解析式为:y =nx m,得到C (2,2nm ),然后设直线CD 的解析式为:y =kx+b ,得到:k =﹣2a ,即可解答(3)当a =1时,抛物线解析式为:y =x 2﹣4x ,向上平移3个单位得新的抛物线解析式为:y =x 2﹣4x+3=(x ﹣2)2﹣1,然后设P (2,t ),可得AP 的解析式为:y =tx ﹣t ,D (3+t ,t 2+2t ),Q (2,﹣1),E (3+t ,﹣1),再设PE 交x 轴于F ,即可解答 【详解】解:(1)y =ax 2﹣4ax =a (x 2﹣4x+4﹣4)=a (x ﹣2)2﹣4a , ∴E (2,﹣4a );(2)设直线OE 的解析式为:y =kx , 把E (2,﹣4a )代入得:2k =﹣4a , k =﹣2a ,∴直线OE 的解析式为:y =﹣2ax ,由P (m ,n )得直线OP 的解析式为:y =nxm, ∴当x =2时,y =2n m ,即C (2,2nm), ∵D (m ,﹣4a ),设直线CD 的解析式为:y =kx+b ,将点D 和C 的坐标代入得:422km b an k b m +=-⎧⎪⎨+=⎪⎩(n =am 2﹣4am ),解得:k =﹣2a , 根据两直线系数相等, ∴OE ∥CD ;(3)如图2,当a =1时,抛物线解析式为:y =x 2﹣4x ,向上平移3个单位得新的抛物线解析式为:y =x 2﹣4x+3=(x ﹣2)2﹣1, ∴Q (2,﹣1),A (1,0),B (3,0), 设P (2,t ),可得AP 的解析式为:y =tx ﹣t ,联立方程组为:243y tx t y x x =-⎧⎨=-+⎩ ,解得:1110x y =⎧⎨=⎩ ,22232x ty t t =+⎧⎪⎨=+⎪⎩ , ∴D (3+t ,t 2+2t ), ∵Q (2,﹣1), ∴E (3+t ,﹣1), ∴PQ =QE =t+1, ∴∠EPQ =45°, ∵∠EPQ =2∠APQ , ∴∠APQ =22.5°, 设PE 交x 轴于F , ∵∠DEP =45°, ∴ME =FM =1,∴∠FPA =∠PAF =67.5°, ∴PF =AF =t+1, ∵FP,t =t+1, t+1, ∴P (2+1).【点睛】此题为二次函数综合题,需要熟练掌握运算方法 20.1<x≤4. 【解析】 【分析】先求出两个不等式的解集,再求其公共解. 【详解】2x 1x 1x 22->⎧⎪⎨⎪⎩①②… 由①可得:x >1; 由②可得:x≤4,所以不等式组的解集为:1<x≤4. 解集表示在数轴上为:【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 21.(1)①自然成活的有26棵;②16;(2)至少引种B 种树苗700棵. 【解析】 【分析】(1)①根据成活率求得答案即可; ②列出树状图,利用概率公式求解即可;(2)设引B 树苗x 棵,则最终成活棵数为:0.9x+0.1x×0.75×0.8=0.96x ,未能成活棵数为0.04x ,利用农户为了获利不低于20万元列出不等式求解即可. 【详解】解:(1)①10×0.8+10×0.9+10×0.9=26(棵), 答:自然成活的有26棵;②在这12种情况下,抽到的2棵均为树苗A 的有2种, ∴P =16;(2)设引B 树苗x 棵,则最终成活棵数为:0.9x+0.1x×0.75×0.8=0.96 x ,未能成活棵数为0.04 x 300(0.96 x )﹣50(0.04x )≥200000 x≥100000143=69943143∴x =700棵答:该户至少引种B 种树苗700棵. 【点睛】本题考查了利用频率估计概率及列表法求概率的知识,解题的关键是能够正确的通过列树状图将所有等可能的结果列举出来,难度不大. 22.(Ⅰ)见解析,(Ⅱ)127? 025? 10?050?0.68? 253140?50? x x y y x x x x ≤≤≤≤⎧⎧==⎨⎨-≥-≥⎩⎩,(Ⅲ)当x 60>时,收费方式A 省钱 【解析】 【分析】(Ⅰ)首先判断月包时上网时间和月上网时间的大小,然后根据月总费用=月使用费+超时单价×超过时间,进行计算即可(Ⅱ)根据收取费用=月使用费+超时单价×超过时间,可得出12y y 、关于x 的函数关系式,注意进行分段;(Ⅲ)当x 60>时,根据(Ⅱ)的解析式,求出1y 与2y 的差,根据一次函数的增减性得出省钱的收费方式. 【详解】 (Ⅰ)见表格(Ⅱ)当0x 25≤≤时,1;当x 25≥时,()1y 70.6x 250.6x 8=+-=-∴17?025? y 0.68? 25x x x ≤≤⎧=⎨-≥⎩;当0x 50≤≤时,2y 10=当x 50≥时,()2y 103x 503x 140=+-=- ∴210?050?y 3140? 50? x x x ≤≤⎧=⎨-≥⎩;(Ⅲ)当x 60>时,收费方式A 省钱当x 60>时,1y 0.6x 8=-,2y 3x 140=-; 设y=12y y 0.6x 83x 140 2.4x 132-=---=-+ ∵-2.40<,∴y 随x 的增大而减小 当x=60时,y=-12,∴当x 60>时,y 12<-,即y 0<∴12y y <∴当x 60>时,收费方式A 省钱. 【点睛】本题考查一次函数的应用—方案选择问题,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.23.应从甲车队调20辆车到乙车队 【解析】 【分析】若设从甲车队调x 辆车到乙车队,注意两个车队的同时变化. 【详解】解:设应从甲车队调x 辆车到乙车队, 根据题意,得方程41+x =2(50﹣x )+1 解得:x =20.答:应从甲车队调20辆车到乙车队 【点睛】此题考查一元一次方程的应用,解题关键在于掌握理解题意列出方程. 24.方程有两个不相等的实数根. 【解析】 【分析】先解不等式组得到﹣1≤m<1,再计算判别式得到△=4(4﹣m ),则利用m 的范围可判断△>0,从而得到方程有两个不相等的实数根. 【详解】解:解不等式组得到﹣1≤m<1, △=42﹣4×1×m=4(4﹣m ), 因为﹣1≤m<1, 所以4﹣m >0, 所以△>0,所以方程有两个不相等的实数根. 【点睛】本题主要考查根的判别式的作用,解决本题的关键是要熟练掌握根的判别式与一元二次方程根的关系. 25.(1)见解析;(2)⊙O 的半径为5. 【解析】 【分析】(1)根据角平分线的定义和同圆的半径相等可得:OE ∥BC ,所以∠OEA =90°,则AC 是⊙O 的切线; (2)过点O 作OH ⊥BF 交BF 于H ,先求OH 和BH 的长,再根据勾股定理求OB 的长. 【详解】(1)证明:连接OE .∵OE =OB , ∴∠OBE =∠OEB ,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°,∴AC是⊙O的切线;(2)解:设⊙O的半径为r.过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE=4,CH=OE=r,∴BH=FH=CH-CF=r-2,在Rt△BHO中,∵OH2+BH2=OB2,∴42+(r-2)2=r2,解得r=5.∴⊙O的半径为5.【点睛】本题考查了圆的切线的判定、角平分线和平行线的性质、勾股定理、垂径定理等知识,在圆中常利用勾股定理计算圆中的线段.2019-2020学年数学中考模拟试卷一、选择题1.深圳沙井某服装厂2017年销售额为8亿元,受中美贸易战影响,估计2019年销售额降为5.12亿元,设平均每年下降的百分比为x ,可列方程为( ) A .8(1﹣x )=5.12 B .8(1+x )2=5.12 C .8(1﹣x )2=5.12 D .5.12(1+x )2=82.在同一平面直角坐标系中,一次函数y =kx ﹣2k 和二次函数y =﹣kx 2+2x ﹣4(k 是常数且k≠0)的图象可能是( )A. B.C. D.3.如图,菱形ABCD 的边长是4cm ,060B ∠=,动点P 以1/cm s 的速度从点A 出发沿AB 方向运动至点B 停止,动点Q 以2/cm s 的速度从点B 出发沿折线BCD 运动至点D 停止.若点,P Q 同时出发,运动了t s ,记BPQ V 得面积为S 2cm ,则下面图像中能表示S 与t 之间的函数关系的是( )A. B. C.D.4.将直角三角形纸片按如图方式折叠,不可能折出( )A.直角B.中位线C.菱形D.矩形5.如图,由5个相同正方体组合而成的几何体的主视图是( )A. B. C. D.6.某天的同一时刻,甲同学测得1m 的测竿在地面上的影长为0.6m ,乙同学测得国旗旗杆在地面上的影长为9.6m 。
湖南省衡阳市2019-2020学年中考数学考前模拟卷(2)含解析
湖南省衡阳市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知点()P m,n ,为是反比例函数3y=-x上一点,当-3n<-1≤时,m 的取值范围是( ) A .1m<3≤B .-3m<-1≤C .1<m 3≤D .-3<m -1≤2.计算211a a a ---的结果是( )A .1B .-1C .11a -D .2211+-a a3.如图所示的几何体的主视图是( )A .B .C .D .4.已知∠BAC=45。
,一动点O 在射线AB 上运动(点O 与点A 不重合),设OA=x ,如果半径为1的⊙O 与射线AC 有公共点,那么x 的取值范围是( ) A .0<x≤1B .1≤x <2C .0<x≤2D .x >25.二次函数y =ax 2+bx +c(a≠0)的图象如图,下列结论正确的是( )A .a<0B .b 2-4ac<0C .当-1<x<3时,y>0D .-2ba=1 6.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时) 2 2.5 3 3.5 4 学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是( ) A .众数是8 B .中位数是3 C .平均数是3D .方差是0.347.如图,扇形AOB 中,半径OA =2,∠AOB =120°,C 是弧AB 的中点,连接AC 、BC,则图中阴影部分面积是 ( )A.4233π-B.2233π-C.433π-D.233π-8.若实数a,b 满足|a|>|b|,则与实数a,b 对应的点在数轴上的位置可以是()A.B.C.D.9.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用正多边形的周长圆的直径来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A.0.5 B.1 C.3 D.π10.如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是( )A.点A B.点B C.点C D.点D11.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或1212.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.有下列结论:①abc<0;②3b+4c<0;③c>﹣1;④关于x的方程ax2+bx+c=0有一个根为﹣1a,其中正确的结论个数是()A.1 B.2C.3 D.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q14.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是______.15.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为_____.16.如图,已知P是线段AB的黄金分割点,且PA>PB.若S1表示以PA为一边的正方形的面积,S2表示长是AB、宽是PB的矩形的面积,则S1_______S2.(填“>”“="”“" <”)17.已知a+1a=2,求a2+21a=_____.18.用配方法解方程3x2﹣6x+1=0,则方程可变形为(x﹣__)2=__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?20.(6分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.21.(6分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=12α.(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,①求∠DAF的度数;②求证:△ADE≌△ADF;(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为.22.(8分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB 的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)23.(8分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?24.(10分)如图1,已知抛物线y=﹣3x2+23x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.25.(10分)在平面直角坐标系xOy中,抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A(﹣3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为1.(1)求抛物线的表达式;(2)求∠CAB的正切值;(3)如果点P是x轴上的一点,且∠ABP=∠CAO,直接写出点P的坐标.26.(12分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.27.(12分)如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=13AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】直接把n的值代入求出m的取值范围.【详解】解:∵点P(m,n),为是反比例函数y=-3x图象上一点,∴当-1≤n<-1时,∴n=-1时,m=1,n=-1时,m=1,则m的取值范围是:1≤m<1.故选A.【点睛】此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键.2.C【解析】【分析】原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】解:()()22111=111a aa aaa a a+-------=2211a aa-+-=11a-,故选:C.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.3.A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.C【解析】如下图,设⊙O与射线AC相切于点D,连接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=2,此时⊙O与射线AC有唯一公共点点D,若⊙O再向右移动,则⊙O与射线AC就没有公共点了,∴x的取值范围是02x.<≤故选C.5.D【解析】试题分析:根据二次函数的图象和性质进行判断即可.解:∵抛物线开口向上,a>∴0∴A选项错误,∵抛物线与x轴有两个交点,∴240->b ac∴B选项错误,由图象可知,当-1<x<3时,y<0∴C选项错误,x=由抛物线的轴对称性及与x轴的两个交点分别为(-1,0)和(3,0)可知对称轴为1即-=1,∴D选项正确,故选D.6.B【解析】【分析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.【详解】解:A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D、S2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确;故选B.【点睛】本题考查方差;加权平均数;中位数;众数.7.A【解析】试题分析:连接AB、OC,AB⊥OC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进行求面积,求得四边形面积是23,扇形面积是S=13πr2=43π,所以阴影部分面积是扇形面积减去四边形面积即4233π-.故选A.8.D【解析】【分析】根据绝对值的意义即可解答.【详解】由|a|>|b|,得a与原点的距离比b与原点的距离远,只有选项D符合,故选D.【点睛】本题考查了实数与数轴,熟练运用绝对值的意义是解题关键.9.C【解析】【分析】连接OC、OD,根据正六边形的性质得到∠COD=60°,得到△COD是等边三角形,得到OC=CD,根据题意计算即可.【详解】连接OC、OD,∵六边形ABCDEF 是正六边形, ∴∠COD =60°,又OC =OD , ∴△COD 是等边三角形, ∴OC =CD ,正六边形的周长:圆的直径=6CD :2CD =3, 故选:C . 【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键. 10.B 【解析】试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B 所表示的数的绝对值最小.故选B . 11.C 【解析】试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形, ②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4, 综上所述,它的周长是4.故选C .考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论. 12.B 【解析】 【分析】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a 、b 、c 的符号,从而可判断①;由对称轴2b a -=2可知a=14b -,由图象可知当x=1时,y >0,可判断②;由OA=OC ,且OA <1,可判断③;把-1a代入方程整理可得ac 2-bc+c=0,结合③可判断④;从而可得出答案. 【详解】解:∵图象开口向下,∴a <0, ∵对称轴为直线x=2,∴2ba->0,∴b >0, ∵与y 轴的交点在x 轴的下方,∴c <0, ∴abc >0,故①错误. ∵对称轴为直线x=2,∴2b a -=2,∴a=14b -, ∵由图象可知当x=1时,y >0,∴a+b+c>0,∴4a+4b+4c>0,∴4⨯(14b-)+4b+4c>0,∴3b+4c>0,故②错误.∵由图象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正确.∵假设方程的一个根为x=-1a,把x=-1a代入方程可得1ba a-+c=0,整理可得ac-b+1=0,两边同时乘c可得ac2-bc+c=0,∴方程有一个根为x=-c,由③可知-c=OA,而当x=OA是方程的根,∴x=-c是方程的根,即假设成立,故④正确.综上可知正确的结论有三个:③④.故选B.【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.D【解析】D.试题分析:应用排他法分析求解:若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B. 若微型记录仪位于图1中的点P,由于甲虫从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.故选D.考点:1.动点问题的函数图象分析;2.排他法的应用.14.(32,32)【解析】【分析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,∴OA:OD=2:3,∵点A的坐标为(1,0),即OA=1,∴OD=32,∵四边形ODEF是正方形,∴DE=OD=32.∴E点的坐标为:(32,32).故答案为:(32,32).【点睛】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.15.1【解析】【详解】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=12CD=12×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=1,∴⊙O的半径为1,故答案为1.【点睛】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.16.=.【分析】黄金分割点,二次根式化简. 【详解】设AB=1,由P 是线段AB 的黄金分割点,且PA >PB ,根据黄金分割点的,,BP=1=∴211S S 1====⎝⎭S1=S1. 17.1 【解析】试题分析:∵21()a a+=2212a a ++=4,∴221a a +=4-1=1.故答案为1. 考点:完全平方公式. 18.1 23【解析】原方程为3x 2−6x+1=0,二次项系数化为1,得x 2−2x=−13, 即x 2−2x+1=−13+1,所以(x−1)2= 23. 故答案为:1,23.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.12 【解析】 【分析】设矩形的长为x 步,则宽为(60﹣x )步,根据题意列出方程,求出方程的解即可得到结果. 【详解】解:设矩形的长为x 步,则宽为(60﹣x )步, 依题意得:x (60﹣x )=864, 整理得:x 2﹣60x+864=0,解得:x =36或x =24(不合题意,舍去), ∴60﹣x =60﹣36=24(步), ∴36﹣24=12(步), 则该矩形的长比宽多12步. 【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.20.50°.【解析】【详解】试题分析:由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDE=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.解:∵AB∥CD,∴∠ABC=∠1=65°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDE=180°﹣∠ABD=50°,∴∠2=∠BDE=50°.【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.21.(1)①30°②见解析(2)BD2+CE2=DE2(321【解析】【分析】(1)①利用旋转的性质得出∠FAB=∠CAE,再用角的和即可得出结论;②利用SAS判断出△ADE≌△ADF,即可得出结论;(2)先判断出BF=CE,∠ABF=∠ACB,再判断出∠DBF=90°,即可得出结论;(3)同(2)的方法判断出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论.【详解】解:(1)①由旋转得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋转知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,AF AEDAF DAE AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如图2,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根据勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如图3,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,过点F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴55 BM,FM322==∵BD=4,∴DM=BD﹣BM=32,根据勾股定理得,22DF FM DM21=+=∴DE=DF21,21.【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键.22.调整后的滑梯AD比原滑梯AB增加2.5米【解析】试题分析: Rt△ABD中,根据30°的角所对的直角边是斜边的一半得到AD的长,然后在Rt△ABC中,求得AB的长后用AD AB-即可求得增加的长度.试题解析: Rt△ABD中,∵30ADB∠=o,AC=3米,∴AD=2AC=6(m)∵在Rt△ABC中,58 3.53AB AC sin m=÷≈o,∴AD−AB=6−3.53≈2.5(m).∴调整后的滑梯AD比原滑梯AB增加2.5米.23.每台电脑0.5万元;每台电子白板1.5万元.【解析】【分析】先设每台电脑x万元,每台电子白板y万元,根据电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元列出方程组,求出x,y的值即可.【详解】设每台电脑x万元,每台电子白板y万元.根据题意,得:3 51017.5 y xx y=⎧⎨+=⎩解得0.51.5 xy=⎧⎨=⎩,答:每台电脑0.5万元,每台电子白板1.5万元.本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组.24.(1)23;(2) 17312;(3)见解析.【解析】分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得△ACO∽△EAH,根据对应边成比例求得EH的长,进继而求得DE的长;(2)找点C关于DE的对称点N(4,3),找点C关于AE的对称点G(-2,-3),连接GN,交AE 于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=3x-3;直线AE的解析式:y= -3x-3,过点M作y轴的平行线交FH于点Q,设点M(m,-3m²+23m+3),则Q(m,3m-3),根据S△MFP=S△MQF+S△MQP,得出S△MFP= -33m²+33m+43,根据解析式即可求得,△MPF面积的最大值;(3)由(2)可知C(0,3),F(0,33),P(2,33),求得CF=433,CP=433,进而得出△CFP为等边三角形,边长为43,翻折之后形成边长为43的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可.本题解析:(1)对于抛物线y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,则DE=2;(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,联立得:F (0,﹣),P(2,),过点M作y轴的平行线交FH于点Q,设点M(m,﹣m2+m+),则Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵对称轴为:直线m=<2,开口向下,∴m=时,△MPF面积有最大值:;(3)由(2)可知C(0,),F(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,1)当K F′=KF″时,如图3,点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),∴OK=3;2)当F′F″=F′K时,如图4,∴F′F″=F′K=4,∵FP的解析式为:y=x﹣,∴在平移过程中,F′K与x轴的夹角为30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)当F″F′=F″K时,如图5,∵在平移过程中,F″F′始终与x轴夹角为60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,综上所述:OK=3,4﹣1,4+1或者1.点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.25.(4)y=﹣x4﹣4x+3;(4)13;(3)点P的坐标是(4,0)【解析】【分析】(4) 先求得抛物线的对称轴方程, 然后再求得点C的坐标,设抛物线的解析式为y=a(x+4)4+4,将点(-3, 0) 代入求得a的值即可;(4) 先求得A、B、C的坐标, 然后依据两点间的距离公式可得到BC、AB,AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;(3) 连接BC,可证得△AOB是等腰直角三角形,△ACB∽△BPO,可得AB OBBC OP=代入个数据可得OP的值,可得P点坐标. 【详解】解:(4)由题意得,抛物线y=ax4+4ax+c的对称轴是直线2ax=-=-12a,∵a<0,抛物线开口向下,又与x轴有交点,∴抛物线的顶点C在x轴的上方,由于抛物线顶点C到x轴的距离为4,因此顶点C的坐标是(﹣4,4).可设此抛物线的表达式是y=a(x+4)4+4,由于此抛物线与x轴的交点A的坐标是(﹣3,0),可得a=﹣4.因此,抛物线的表达式是y=﹣x4﹣4x+3.(4)如图4,点B的坐标是(0,3).连接BC.∵AB4=34+34=48,BC4=44+44=4,AC4=44+44=40,得AB4+BC4=AC4.∴△ABC为直角三角形,∠ABC=90°,所以tan∠CAB=13 BCAB=.即∠CAB的正切值等于13.(3)如图4,连接BC,∵OA=OB=3,∠AOB=90°,∴△AOB是等腰直角三角形,∴∠BAP=∠ABO=45°,∵∠CAO=∠ABP,∴∠CAB=∠OBP,∵∠ABC=∠BOP=90°,∴△ACB∽△BPO,∴AB OB BC OP=,∴3232OP=,OP=4,∴点P的坐标是(4,0).【点睛】本题主要考查二次函数的图像与性质,综合性大.26.(1)见解析(2)不公平。
湖南省衡阳市2019-2020学年中考中招适应性测试卷数学试题(2)含解析
湖南省衡阳市2019-2020学年中考中招适应性测试卷数学试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )A .9.5×106B .9.5×107C .9.5×108D .9.5×109 2.方程3701x x -=+的解是( ). A .14x = B .34x = C .43x = D .1x =-3.如图,已知矩形ABCD 中,BC =2AB ,点E 在BC 边上,连接DE 、AE ,若EA 平分∠BED ,则ABE CDES S V V 的值为( )A .23-B .233-C .2333-D .23- 4.下列实数中,结果最大的是( )A .|﹣3|B .﹣(﹣π)C .7D .35.下列各图中,∠1与∠2互为邻补角的是( )A .B .C .D .6.如图,网格中的每个小正方形的边长是1,点M ,N ,O 均为格点,点N 在⊙O 上,若过点M 作⊙O 的一条切线MK ,切点为K ,则MK =( )A .B .C .5 D7.下列博物院的标识中不是轴对称图形的是()A.B.C.D.8.若ab<0,则正比例函数y=ax与反比例函数y=bx在同一坐标系中的大致图象可能是()A.B.C.D.9.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件B.明天下雪的概率为12,表示明天有半天都在下雪C.甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.了解一批充电宝的使用寿命,适合用普查的方式10.一次函数112y x=-+的图像不经过的象限是:()A.第一象限B.第二象限C.第三象限D.第四象限11.对于非零的两个实数a、b,规定11a bb a⊗=-,若1(1)1x⊗+=,则x的值为()A.32B.13C.12D.12-12.实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论①a<b;②|b|=|d|;③a+c=a;④ad>0中,正确的有()A.4个B.3个C.2个D.1个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2018年3月2日,大型记录电影《厉害了,我的国》登陆全国各大院线.某影院针对这一影片推出了特惠活动:票价每人30元,团体购票超过10人,票价可享受八折优惠,学校计划组织全体教师观看此影片.若观影人数为a(a>10),则应付票价总额为_____元.(用含a的式子表示)14.数据:2,5,4,2,2的中位数是_____,众数是_____,方差是_____.15.已知a ,b ,c ,d 是成比例的线段,其中3cm a =,2cm b =,6cm c =,则d =_______cm . 16.如图,在平面直角坐标系中,已知点A (﹣4,0)、B (0,3),对△AOB 连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.17.如图,在每个小正方形的边长为1的网格中,点A ,B ,C ,D 均在格点上,AB 与CD 相交于点E . (1)AB 的长等于_____;(2)点F 是线段DE 的中点,在线段BF 上有一点P ,满足53BP PF =,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)_____.18.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩ 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为;该年级报名参加本次活动的总人数,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?20.(6分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角∠CAE=30°,沿着AE方向前进15米到点B处测得∠CBE=45°,求公路的宽度.(结果精确到0.1米,参考数据:3≈1.73)21.(6分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.22.(8分)已知关于x的方程x2﹣6mx+9m2﹣9=1.(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1>x2,若x1=2x2,求m的值.23.(8分)如图,∠AOB=90°,反比例函数y=﹣2(x<0)的图象过点A(﹣1,a),反比例函数y=k(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=kx于另一点C,求△OBC的面积.24.(10分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.25.(10分)豆豆妈妈用小米运动手环记录每天的运动情况,下面是她6天的数据记录(不完整):(1)4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数据,帮她补全表格.(2)豆豆利用自己学习的统计知识,把妈妈步行距离与燃烧脂肪情况用如下统计图表示出来,请你根据图中提供的信息写出结论:.(写一条即可)(3)豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为公里.(直接写出结果,精确到个位)26.(12分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?27.(12分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),2,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题分析:15000000=1.5×2.故选B.考点:科学记数法—表示较大的数2.B【解析】【分析】直接解分式方程,注意要验根.【详解】解:371x x-+=0,方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,解这个一元一次方程,得:x=34,经检验,x=34是原方程的解.故选B.【点睛】本题考查了解分式方程,解分式方程不要忘记验根. 3.C【解析】过点A 作AF ⊥DE 于F ,根据角平分线上的点到角的两边距离相等可得AF=AB ,利用全等三角形的判定和性质以及矩形的性质解答即可.【详解】解:如图,过点A 作AF ⊥DE 于F ,在矩形ABCD 中,AB =CD ,∵AE 平分∠BED ,∴AF =AB ,∵BC =2AB ,∴BC =2AF ,∴∠ADF =30°,在△AFD 与△DCE 中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD ≌△DCE (AAS ),∴△CDE 的面积=△AFD 的面积=2113AF DF AF 3AF AB 222⨯== ∵矩形ABCD 的面积=AB•BC =2AB 2,∴2△ABE 的面积=矩形ABCD 的面积﹣2△CDE 的面积=(23)AB 2,∴△ABE 的面积=(2232AB , ∴23233233ABECDE S S -==V V , 故选:C .【点睛】本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB .正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】根据实数比较大小的方法,可得7<|-3|=3<-(-π),所以最大的数是:-(-π).故选B.【点睛】此题主要考查了实数大小比较的方法,及判断无理数的范围,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.5.D【解析】根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选D.6.B【解析】【分析】以OM为直径作圆交⊙O于K,利用圆周角定理得到∠MKO=90°.从而得到KM⊥OK,进而利用勾股定理求解.【详解】如图所示:MK22+=2425故选:B.【点睛】考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【详解】A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误8.D【解析】【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.9.C【解析】【分析】根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可.【详解】A. 掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;B. “明天下雪的概率为12”,表示明天有可能下雪,错误;C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,正确;D. 了解一批充电宝的使用寿命,适合用抽查的方式,错误;故选:C【点睛】考查方差, 全面调查与抽样调查, 随机事件, 概率的意义,比较基础,难度不大.10.C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像11.D【解析】试题分析:因为规定11a bb a⊗=-,所以11(1)111xx⊗+=-=+,所以x=12-,经检验x=12-是分式方程的解,故选D.考点:1.新运算;2.分式方程.12.B【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,①a<b,故①正确;②|b|=|d|,故②正确;③a+c=a,故③正确;④ad<0,故④错误;故选B.【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.24a【解析】【分析】根据题意列出代数式即可.【详解】根据题意得:30a×0.8=24a,则应付票价总额为24a元,故答案为24a.【点睛】考查了列代数式,弄清题意是解本题的关键.14.2 2 1.1.【解析】【分析】先将这组数据从小到大排列,再找出最中间的数,即可得出中位数;找出这组数据中最多的数则是众数;先求出这组数据的平均数,再根据方差公式S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2]进行计算即可.【详解】解:把这组数据从小到大排列为:2,2,2,4,5,最中间的数是2,则中位数是2;众数为2;∵这组数据的平均数是(2+2+2+4+5)÷5=3,∴方差是:15[(2−3)2+(2−3)2+(2−3)2+(4−3)2+(5−3)2]=1.1.故答案为2,2,1.1.【点睛】本题考查了中位数、众数与方差的定义,解题的关键是熟练的掌握中位数、众数与方差的定义.15.4【解析】【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=3,b=2,c=6,解得:d=4,则d=4cm.故答案为:4【点睛】本题主要考查比例线段的定义.要注意考虑问题要全面.16.(1645,125)(806845,125)【解析】【分析】利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.【详解】∵点A(﹣4,0),B(0,3),∴OA=4,OB=3,∴,∴第(2)个三角形的直角顶点的坐标是(445,125);∵5÷3=1余2,∴第(5)个三角形的直角顶点的坐标是(1645,125),∵2018÷3=672余2,∴第(2018)个三角形是第672组的第二个直角三角形,其直角顶点与第672组的第二个直角三角形顶点重合,∴第(2018)个三角形的直角顶点的坐标是(806845,125).故答案为:(1645,125);(806845,125)【点睛】本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.17见图形【解析】分析:(Ⅰ)利用勾股定理计算即可;(Ⅱ)连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F,因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接IJ交BD于K,因为BI∥DJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3;详解:(Ⅰ)AB的长;(Ⅱ)由题意:连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1.取格点G、H,连接GH交DE于F.∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接IJ交BD于K.∵BI∥DJ,∴BK:DK=BI:DJ=5:2.连接EK交BF于P,可证BP:PF=5:3.109;(Ⅱ)由题意:连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F.因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接IJ交BD于K.因为BI∥DJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3.点睛:本题考查了作图﹣应用与设计,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.18.A【解析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组【解析】(1)参加丙组的人数为21人;(2)21÷10%=10人,则乙组人数=10-21-11=10人,如图:(3)设需从甲组抽调x名同学到丙组,根据题意得:3(11-x)=21+x解得x=1.答:应从甲抽调1名学生到丙组(1)直接根据条形统计图获得数据;(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解20.公路的宽为20.5米.【解析】【分析】作CD⊥AE,设CD=x米,由∠CBD=45°知BD=CD=x,根据tan∠CAD=CDAD,可得x15+x=3,解之即可.【详解】解:如图,过点C作CD⊥AE于点D,设公路的宽CD=x米,∵∠CBD=45°,∴BD=CD=x ,在Rt △ACD 中,∵∠CAE=30°,∴tan ∠CAD=CD AD x 15+x解得:≈20.5(米), 答:公路的宽为20.5米.【点睛】本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.21.(1)=;(2)结论:AC 2=AG•AH .理由见解析;(3)①△AGH 的面积不变.②m 的值为83或2或8﹣..【解析】【分析】(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG ;(2)结论:AC 2=AG•AH .只要证明△AHC ∽△ACG 即可解决问题;(3)①△AGH 的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题.【详解】(1)∵四边形ABCD 是正方形,∴AB =CB =CD =DA =4,∠D =∠DAB =90°∠DAC =∠BAC =43°,∴AC∵∠DAC =∠AHC+∠ACH =43°,∠ACH+∠ACG =43°,∴∠AHC =∠ACG .故答案为=.(2)结论:AC 2=AG•AH .理由:∵∠AHC =∠ACG ,∠CAH =∠CAG =133°,∴△AHC ∽△ACG , ∴AH AC AC AG, ∴AC 2=AG•AH .(3)①△AGH 的面积不变.理由:∵S △AGH =12•AH•AG =12AC 2=12×(2=1. ∴△AGH 的面积为1.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴12 BC BEAH AE==,∴AE=23AB=83.如图2中,当CH=HG时,易证AH=BC=4,∵BC∥AH,∴BE BCAE AH==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME =∠MCE+∠MEC ,∴∠MCE =∠MEC =22.3°,∴CM =EM ,设BM =BE =m ,则CM =EM 2m ,∴m+2m =4,∴m =4(2﹣1),∴AE =4﹣4(2﹣1)=8﹣42,综上所述,满足条件的m 的值为83或2或8﹣2. 【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.22. (1)见解析;(2)m=2【解析】【分析】(1)根据一元二次方程根的判别式进行分析解答即可;(2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.【详解】(1)∵在方程x 2﹣6mx+9m 2﹣9=1中,△=(﹣6m )2﹣4(9m 2﹣9)=26m 2﹣26m 2+26=26>1. ∴方程有两个不相等的实数根;(2)关于x 的方程:x 2﹣6mx+9m 2﹣9=1可化为:[x ﹣(2m+2)][x ﹣(2m ﹣2)]=1,解得:x=2m+2和x=2m-2,∵2m+2>2m ﹣2,x 1>x 2,∴x 1=2m+2,x 2=2m ﹣2,又∵x 1=2x 2,∴2m+2=2(2m ﹣2)解得:m=2.【点睛】 (1)熟知“一元二次方程根的判别式:在一元二次方程20?(0)ax bx c a ++=≠中,当240b ac ->时,原方程有两个不相等的实数根,当240b ac -=时,原方程有两个相等的实数根,当240b ac -<时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x 的方程x 2﹣6mx+9m 2﹣9=1的两个根是解答第2小题的关键.23.(1)a=2,k=8(2)OBC S V =1.【解析】分析:(1)把A(-1,a)代入反比例函数2x得到A(-1,2),过A作AE⊥x轴于E,BF⊥x轴于F,根据相似三角形的性质得到B(4,2),于是得到k=4×2=8;(2)求的直线AO的解析式为y=-2x,设直线MN的解析式为y=-2x+b,得到直线MN的解析式为y=-2x+10,解方程组得到C(1,8),于是得到结论.详解:(1)∵反比例函数y=﹣2x(x<0)的图象过点A(﹣1,a),∴a=﹣21-=2,∴A(﹣1,2),过A作AE⊥x轴于E,BF⊥⊥x轴于F,∴AE=2,OE=1,∵AB∥x轴,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴AE OE OF BF=,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直线OA过A(﹣1,2),∴直线AO的解析式为y=﹣2x,∵MN∥OA,∴设直线MN的解析式为y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直线MN的解析式为y=﹣2x+10,∵直线MN交x轴于点M,交y轴于点N,∴M(5,0),N(0,10),解2108y xyx=-+⎧⎪⎨=⎪⎩得,1482x xy y=-=⎧⎧⎨⎨==⎩⎩或,∴C(1,8),∴△OBC 的面积=S △OMN ﹣S △OCN ﹣S △OBM=12⨯5×10﹣12×10×1﹣12×5×2=1.点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.24.(1):()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解析】【分析】(1)利用列举法,列举所有的可能情况即可;(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【详解】(1)所有可能出现的结果如下:()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,∴在规划1中,P (小黄赢)59=; 红心牌点数是黑桃牌点数的整倍数有4种可能, ∴在规划2中,P (小黄赢)49=. ∵5499>,∴小黄要在游戏中获胜,小黄会选择规则1. 【点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比. 25.(1)见解析;(2)步行距离越大,燃烧脂肪越多;(3)1.【解析】【分析】(1)依据手机图片的中的数据,即可补全表格;(2)依据步行距离与燃烧脂肪情况,即可得出步行距离越大,燃烧脂肪越多;(3)步行距离和卡路里消耗数近似成正比例关系,即可预估她一天步行距离.【详解】解:(1)由图可得,4月5日的步行数为7689,步行距离为5.0公里,卡路里消耗为142千卡,燃烧脂肪18克;4月6日的步行数为15638,步行距离为1.0公里,卡路里消耗为234千卡,燃烧脂肪30克;(2)由图可得,步行距离越大,燃烧脂肪越多;故答案为:步行距离越大,燃烧脂肪越多;(3)由图可得,步行时每公里约消耗卡路里25千卡,故豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为1公里.故答案为:1.【点睛】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.26.(1)(300﹣10x ).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元,则每天就会少售出10x 本,所以每天可售出书(300﹣10x )本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x 元,∴每天可售出书(300﹣10x )本.故答案为300﹣10x .(2)设每本书上涨了x 元(x≤10),根据题意得:(40﹣30+x )(300﹣10x )=3750,整理,得:x 2﹣20x+75=0,解得:x 1=5,x 2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.27.(1)2142y x =-+;(2)2<m <(1)m=6或﹣1. 【解析】【分析】(1)由题意抛物线的顶点C (0,4),A (0),设抛物线的解析式为24y ax =+,把A (0)代入可得a=12-,由此即可解决问题;(2)由题意抛物线C′的顶点坐标为(2m ,﹣4),设抛物线C′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(1)情形1,四边形PMP′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP′N 是正方形,推出PF=FM ,∠PFM=90°,易证△PFE ≌△FMH ,可得PE=FH=2,EF=HM=2﹣m ,可得M (m+2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.【详解】(1)由题意抛物线的顶点C (0,4),A(0),设抛物线的解析式为24y ax =+,把A(0)代入可得a=12-, ∴抛物线C 的函数表达式为2142y x =-+. (2)由题意抛物线C′的顶点坐标为(2m ,﹣4),设抛物线C′的解析式为()21242y x m =--, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩, 消去y 得到222280x mx m -+-= ,由题意,抛物线C′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解得2<m<∴满足条件的m 的取值范围为2<m<(1)结论:四边形PMP′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP′N 是正方形,∴PF=FM ,∠PFM=90°,易证△PFE ≌△FMH ,可得PE=FH=2,EF=HM=2﹣m ,∴M (m+2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m=17﹣1或﹣17﹣1(舍弃),∴m=17﹣1时,四边形PMP′N 是正方形. 情形2,如图,四边形PMP′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m=6或0(舍弃), ∴m=6时,四边形PMP′N 是正方形.综上所述:m=6或171时,四边形PMP′N 是正方形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年数学中考模拟试卷一、选择题1.如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .1处B .2处C .3处D .4处2.如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为(﹣1,0),AC=2.将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)3.若关于x 的不等式组()3223212x x x m x --⎧<⎪⎨⎪+≥-⎩有且仅有三个整数解,且关于x 的分式方程2333m x x x x x -+=--+的解为整数,则符合条件的整数m 的个数是( ) A .1个 B .2个 C .3个 D .4个4.如图,已知直线y =334x -,与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连结PA 、PB ,则△PAB 面积的最小值是( )A.6B.5.5C.5D.4.55.如图,以边长为a 的等边三角形各定点为圆心,以a 为半径在对边之外作弧,由这三段圆弧组成的曲线是一种常宽曲线.此曲线的周长与直径为a 的圆的周长之比是( )A .1:1B .1:3C .3:1D .1:26.下列说法正确的是A .一组数据1,2,5,5,5,3,3,这组数据的中位数和众数都是5B .了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C .掷一枚质地均匀的骰子,骰子停止转动后,6 点朝上是必然事件D .一组数据的方差越大,则这组数据的波动也越大7.如图,四边形ABCD 是O e 的内接四边形,若BOD 144∠=o ,则C ∠的度数是( )A .14oB .72oC .36oD .108o8.对于函数y =﹣2x+5,下列表述:①图象一定经过(2,﹣1);②图象经过一、二、四象限;③与坐标轴围成的三角形面积为12.5;④x 每增加1,y 的值减少2;⑤该图象向左平移1个单位后的函数表达式是y =﹣2x+4,正确的是( )A .①③B .②⑤C .②④D .④⑤9.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且点C 、D 在AB 的异侧,连接AD 、BD 、OD 、OC ,若∠ABD =15°,且AD ∥OC ,则∠BOC 的度数为( )A.120°B.105°C.100°D.110°10.据报道,截至2018年12月,天津轨道交通运营线路共有6条,线网覆盖10个市辖区,运营里程215000米,共设车站154座.将215000用科学计数法表示应为( )A .321510⨯B .421.510⨯C .52.1510⨯D .60.21510⨯11.甲、乙两人从A 地出发到B 地旅游,甲骑自行车,乙骑摩托车。
如图,折线PQR 和线段MN 分别表示甲和乙所行驶的路程与时间之间的关系,则乙比甲多用了( )A.2.4小时B.1.4小时C.2小时D.1小时12.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的( )A .平均数B .方差C .众数D .中位数二、填空题13.有一组单项式依次为﹣x2,3456,,,3579x x x x--,…,则第n个单项式为_____.14.圆锥的母线长是6cm,侧面积是30πcm2,该圆锥底面圆的半径长等于_____cm.15.比较大小:385(选用<、=、>填空)16.已知a2+1=3a,则代数式a+1a的值为.17.如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是__.18.我州矮寨特大悬索桥是目前世界上跨峡谷最长的钢桁梁悬索桥.这座连接吉首、茶峒两岸高山,横跨峡谷的悬索桥,破解五大世界难题,于2011年底通车,预计投资1650000000元,将这个数用科学记数法可表示为_____元(保留三个有效数字).三、解答题19.解方程组或不等式组:(1)2035x yx y-=⎧⎨+=⎩(2)330-6-2xx x+≥⎧⎨≤⎩20.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答(1)本次参加抽样调查的居民有人;(2)将条形统计图补充完整;扇形统计图中A占,C占;(3)若有外型完全相同的A、B、C、D粽子各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他吃到C粽子的概率.21.(118(﹣1)2﹣20190(2)化简:(a+2)2﹣a(a﹣3)22.若一个正整数能表示为两个连续自然数的平方差,则称这个正整数为“和谐数”。
如:1=12-02,7=42-32,因此1和7都是“和谐数”。
(1)判断11是否为“和谐数”,并说明理由.(2)下面是某个同学演算后发现的两个命题,请选择其中一个命题,判断真假,并说明理由.命题1:数2n-1(n为正整数)是“和谐数”。
命题2:“和谐数”一定是奇数。
23.先化简,再求值:2221m mm m+-+÷(1+11m-),其中m=3tan30°+1.24.重庆小面是一款发源于山城重庆的地方特色传统小吃,是重庆最受欢迎的美食之一.重庆小面佐料丰富且用料考究,不同店面还根据自身菜谱加入豌豆、牛肉、肥肠、杂酱等,口感独特,麻辣鲜香,近年来闻名全国,某天,小明家花了48元购买牛肉面作为早饭,小华家花了28元购买豌豆面作为早饭,且小明家购买牛肉面的碗数与小华家购买豌豆面的碗数相同.已知面馆一碗豌豆面的价格比一碗牛肉面的价格少5元.(1)求购买一碗豌豆面和一碗牛肉面各需要多少元?(2)面馆一碗豌豆面的成本为4元,一碗牛肉面的成本为7元,某天面馆卖出豌豆面和牛肉面共400碗,且卖出的豌豆面和牛肉面的总利润不低于1800元,则面馆当天至少卖出牛肉面多少碗?25.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)交x轴于点A(2,0),B(﹣3,0),交y轴于点C,且经过点d(﹣6,﹣6),连接AD,BD.(1)求该抛物线的函数关系式;(2)若点M为X轴上方的抛物线上一点,能否在点A左侧的x轴上找到另一点N,使得△AMN与△ABD 相似?若相似,请求出此时点M、点N的坐标;若不存在,请说明理由;(3)若点P是直线AD上方的抛物线上一动点(不与A,D重合),过点P作PQ∥y轴交直线AD于点Q,以PQ为直径作⊙E,则⊙E在直线AD上所截得的线段长度的最大值等于.(直接写出答案)【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D A C B A D D C B C D B13.n1x (1)2n1n+ --14.5 15.<.16.317.18.65×109三、解答题19.(1)12x y =⎧⎨=⎩;(2)-12x ≤≤ 【解析】【分析】(1)运用加减消元法求解即可;(2)首先求出每个不等式的解集,再取它们解集的公共部分即可得出不等式组的解集.【详解】(1)2035x y x y ①②-=⎧⎨+=⎩①+②得,5x=5,解得,x=1,把x=1代入①得,y=2,所以,方程组的解为:12x y =⎧⎨=⎩; (2)330-6-2x x x +≥⎧⎨≤⎩①② 解不等式①得,x≥-1;解不等式②得,x≤2;故不等式组的解集为:-12x ≤≤.【点睛】本题考查了二元一次方程组的解法,二元一次方程组的解法有:代入消元法和加减消元法;同时还考查了解一元一次不等式组,求不等式组解集的口诀是:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).20.(1)600;(2)30% , 20%;(3)见解析,12. 【解析】【分析】(1)根据B 类有60人,所占的百分比是10%即可求解;(2)利用总人数减去其他类型的人数即可求得C 类型的人数,然后根据百分比的意义求解;(3)利用列举法即可求解.【详解】(1)本次参加抽样调查的居民人数是60÷10%=600(人),故答案为:600;(2)A 组所对应的百分比是180600×100%=30%, C 组的人数是600﹣180﹣60﹣240=120(人),所占的百分比是120600×100%=20%, 故答案为:30%,20%;(3)画树状图如下:则他吃到C 粽的概率是61122=. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了概率的知识,用到的知识点为:概率=所求情况数与总情况数之比.21.(1)322)7a+4.【解析】【分析】(1)先算二次根式、平方、零指数幂,再算加减法即可求解;(2)先算完全平方公式、单项式乘多项式,再合并同类项即可求解.【详解】(12018(1)2019-- 3211=-32=;(2)2(2)(3)a a a +-- 22443a a a a =++-+=7a+4.【点睛】考查了实数的运算,关键是熟练掌握二次根式、平方、零指数幂、完全平方公式、单项式乘多项式,合并同类项的计算法则.22.(1)11是“和谐数”, 理由:11=62-52;(2)选择命题1 ,命题1是真命题;理由见解析.【解析】【分析】(1)由于 11=62-52,根据 “和谐数” 的定义,判断出11是 “和谐数” ;(2) 选择命题1 ,设 n 与(n-1)是连续自然数 ,利用这两个连续自然数的平方差等于 2n-1 ,根据“和谐数” 的定义,判断出 2n-1 是 “和谐数” , 所以命题1是真命题; 选择命题2 , 设两个连续自然数分别为n+1和n ,利用这两个连续自然数的平方差等于 2n+1 ,得出 “和谐数”一定是奇数。
所以命题2是真命题【详解】(1)解:11是“和谐数”。
理由如下::11=62-52(2)解:选择命题1∵2n-1=n 2-(n-1)2 , 且n 为正整数。
∴n 与(n-1)是连续自然数∴数2n-1是“和谐数”。
所以命题1是真命题。
选择命题2设两个连续自然数分别为n+1和n .∴任意“和谐数”可表示为:(n+1)2-n 2=2n+1.∴“和谐数”一定是奇数。