插值与拟合实验报告

合集下载

实验2插值与拟合

实验2插值与拟合

数值分析实验报告实验2 插值与拟合2.1 实验目的掌握牛顿插值法的基本思路和步骤;掌握最小二乘法的基本思路和拟合步骤。

培养编程与上机调试能力。

2.2 算法描述2.2.1 牛顿插值法基本思路给定插值点序列())(,i i x f x ,,,1,0,n i =构造牛顿插值多项式)(u N n 。

输入要计算的函数点,x 并计算)(x N n 的值,利用牛顿插值公式,当增加一个节点时,只需在后面多计算一项,而前面的计算仍有用;另一方面)(x N n 的各项系数恰好又是各阶差商,而各阶差商可用差商公式来计算。

2.2.2 牛顿插值法计算步骤1. 输入n 值及())(,i i x f x ,,,1,0,n i =;要计算的函数点x 。

2. 对给定的,x 由[][][]00010101201101()()(),()(),,()()(),,n n n N x f x x x f x x x x x x f x x x x x x x x x f x x x -=+-+--++--- 计算()n N x 的值。

3. 输出()n N x 。

2.2.3 最小二乘法基本思路已知数据对()(),1,2,,j j x y j n = ,求多项式0()()m ii i p x a x m n ==<∑使得20110(,,,)n m in i j j j i a a a a x y ==⎛⎫Φ=- ⎪⎝⎭∑∑ 为最小,这就是一个最小二乘问题。

2.2.4 最小二乘法计算步骤用线性函数()p x a bx =+为例,拟合给定数据(),,1,2,,i i x y i m = 。

算法描述:步骤1:输入m 值,及(),,1,2,,i i x y i m = 。

步骤2:建立法方程组TA AX AY =。

步骤3:解法方程组。

步骤4:输出()p x a bx =+。

2.3 实验内容1. 给定sin110.190809,sin120.207912,sin130.22491,o o o ===构造牛顿插值函数计算'sin1130o 。

插值与拟合试验

插值与拟合试验

实验:插值与拟合实验目的1.掌握用MATLAB计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值的结果进行初步的分析。

2.掌握用MATLAB作线性最小二乘的方法。

3.通过实例学习如何用插值方法与拟合方法解决实际问题,注意二者的联系和区别。

实验内容选择一些函数,在n个节点上(n不要太大,如5~11)用拉格朗日、分段线性、三次样条三种插值方法,计算m个插值点的函数值(m要适中,如50~100)。

通过数值和图形输出,将三种插值结果与精确值进行比较。

适当增加n,再作比较,由此作初步分析。

y=exp(-x2),-2≤x≤2.取n=5,m=80用MATLAB计算插值数据比较如下:y是精确值,y1是分段线性值,y2是三次样条法插值,y3是拉格朗日插值由于对称性,只给出x>0的值程序:function y=lagr(x0,y0,x)%函数输入:n个节点以数组x0,y0输入,m个插值点以数组x输入?%函数输出:输出数组y为m个插值?n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j)); endends=p*y0(k)+s;endy(i)=s;end结果:x0=-2:0.5:2;y0=exp(-1*x0.^2);x=-2:0.05:2y=exp(-1*x.^2);y1=lagr(x0,y0,x);y2=interp1(x0,y0,x);y3=spline(x0,y0,x);[x;y;y1;y2;y3]'plot(x,y,'k--',x,y1,'r'),xlabel('x')ylabel('y/y1')title('拉格朗日插值(n=9,m=21)'),legend('原函数曲线','拉格朗日插值曲线'), pause,plot(x,y,'k--',x,y2,'r'),xlabel('x')ylabel('y/y2')title('分段线性插值(n=9,m=21)'),legend('原函数曲线','分段线性插值曲线'), pause,plot(x,y,'k--',x,y3,'r'),xlabel('x')ylabel('y/y1')title('三次样条插值(n=9,m=21)'),legend('原函数曲线','三次样条插值曲线'), x =Columns 1 through 9-2.0000 -1.9500 -1.9000 -1.8500 -1.8000 -1.7500 -1.7000 -1.6500 -1.6000Columns 10 through 18-1.5500 -1.5000 -1.4500 -1.4000 -1.3500 -1.3000 -1.2500 -1.2000 -1.1500Columns 19 through 27-1.1000 -1.0500 -1.0000 -0.9500 -0.9000 -0.8500 -0.8000 -0.7500 -0.7000Columns 28 through 36-0.6500 -0.6000 -0.5500 -0.5000 -0.4500 -0.4000 -0.3500 -0.3000 -0.2500Columns 37 through 45-0.2000 -0.1500 -0.1000 -0.0500 0 0.0500 0.1000 0.1500 0.2000Columns 46 through 540.2500 0.3000 0.3500 0.4000 0.4500 0.5000 0.5500 0.6000 0.6500Columns 55 through 630.7000 0.7500 0.8000 0.8500 0.9000 0.9500 1.0000 1.0500 1.1000Columns 64 through 721.1500 1.2000 1.2500 1.3000 1.3500 1.4000 1.4500 1.5000 1.5500Columns 73 through 811.6000 1.6500 1.7000 1.7500 1.8000 1.8500 1.9000 1.95002.0000ans =-2.0000 0.0183 0.0183 0.0183 0.0183 -1.9500 0.0223 0.0048 0.0270 0.0207 -1.9000 0.0271 0.0011 0.0357 0.0243 -1.8500 0.0326 0.0044 0.0444 0.0292 -1.8000 0.0392 0.0127 0.0531 0.0355 -1.7500 0.0468 0.0243 0.0619 0.0433 -1.7000 0.0556 0.0381 0.0706 0.0525 -1.6500 0.0657 0.0535 0.0793 0.0633 -1.6000 0.0773 0.0700 0.0880 0.0757 -1.5500 0.0905 0.0873 0.0967 0.0897 -1.5000 0.1054 0.1054 0.1054 0.1054 -1.4500 0.1222 0.1244 0.1316 0.1229 -1.4000 0.1409 0.1446 0.1579 0.1421 -1.3500 0.1616 0.1660 0.1841 0.1633 -1.3000 0.1845 0.1889 0.2104 0.1863 -1.2500 0.2096 0.2136 0.2366 0.2114 -1.2000 0.2369 0.2402 0.2629 0.2384 -1.1500 0.2665 0.2689 0.2891 0.2675-1.1000 0.2982 0.2998 0.3154 0.2988 -1.0500 0.3320 0.3328 0.3416 0.3322 -1.0000 0.3679 0.3679 0.3679 0.3679 -0.9500 0.4056 0.4050 0.4090 0.4058 -0.9000 0.4449 0.4439 0.4501 0.4455 -0.8500 0.4855 0.4844 0.4912 0.4867 -0.8000 0.5273 0.5261 0.5322 0.5288 -0.7500 0.5698 0.5687 0.5733 0.5716 -0.7000 0.6126 0.6117 0.6144 0.6145 -0.6500 0.6554 0.6547 0.6555 0.6571 -0.6000 0.6977 0.6972 0.6966 0.6989 -0.5500 0.7390 0.7388 0.7377 0.7397 -0.5000 0.7788 0.7788 0.7788 0.7788 -0.4500 0.8167 0.8168 0.8009 0.8159 -0.4000 0.8521 0.8524 0.8230 0.8507 -0.3500 0.8847 0.8850 0.8452 0.8827 -0.3000 0.9139 0.9142 0.8673 0.9117 -0.2500 0.9394 0.9397 0.8894 0.9372 -0.2000 0.9608 0.9610 0.9115 0.9588 -0.1500 0.9778 0.9779 0.9336 0.9763 -0.1000 0.9900 0.9901 0.9558 0.9892 -0.0500 0.9975 0.9975 0.9779 0.99720 1.0000 1.0000 1.0000 1.0000 0.0500 0.9975 0.9975 0.9779 0.9972 0.1000 0.9900 0.9901 0.9558 0.9892 0.1500 0.9778 0.9779 0.9336 0.9763 0.2000 0.9608 0.9610 0.9115 0.9588 0.2500 0.9394 0.9397 0.8894 0.9372 0.3000 0.9139 0.9142 0.8673 0.9117 0.3500 0.8847 0.8850 0.8452 0.8827 0.4000 0.8521 0.8524 0.8230 0.8507 0.4500 0.8167 0.8168 0.8009 0.8159 0.5000 0.7788 0.7788 0.7788 0.7788 0.5500 0.7390 0.7388 0.7377 0.7397 0.6000 0.6977 0.6972 0.6966 0.6989 0.6500 0.6554 0.6547 0.6555 0.6571 0.7000 0.6126 0.6117 0.6144 0.6145 0.7500 0.5698 0.5687 0.5733 0.5716 0.8000 0.5273 0.5261 0.5322 0.5288 0.8500 0.4855 0.4844 0.4912 0.4867 0.9000 0.4449 0.4439 0.4501 0.44550.9500 0.4056 0.4050 0.4090 0.40581.0000 0.3679 0.3679 0.3679 0.3679 1.0500 0.3320 0.3328 0.3416 0.33221.1000 0.2982 0.2998 0.3154 0.2988 1.1500 0.2665 0.2689 0.2891 0.2675 1.2000 0.2369 0.2402 0.2629 0.2384 1.2500 0.2096 0.2136 0.2366 0.2114 1.3000 0.1845 0.1889 0.2104 0.1863 1.3500 0.1616 0.1660 0.1841 0.1633 1.4000 0.1409 0.1446 0.1579 0.1421 1.4500 0.1222 0.1244 0.1316 0.1229 1.5000 0.1054 0.1054 0.1054 0.1054 1.5500 0.0905 0.0873 0.0967 0.0897 1.6000 0.0773 0.0700 0.0880 0.0757 1.6500 0.0657 0.0535 0.0793 0.0633 1.7000 0.0556 0.0381 0.0706 0.0525 1.7500 0.0468 0.0243 0.0619 0.0433 1.8000 0.0392 0.0127 0.0531 0.0355 1.8500 0.0326 0.0044 0.0444 0.0292 1.9000 0.0271 0.0011 0.0357 0.02431.9500 0.0223 0.0048 0.0270 0.02072.0000 0.0183 0.0183 0.0183 0.0183上图是根据插值数据作出的曲线。

学生 实验一 拟合与插值

学生 实验一  拟合与插值

实验一拟合和插值教学目的1.了解最小二乘法的原理.2.通过实例的学习,懂得如何用拟合和插值的方法解决实际的问题,并能注意它们的联系与区别,会用Matlab来求解教学内容1.拟合与插值的原理及简单分类.2.相应问题的实例建模及用软件求解的实现.3.练习与上机实验的内容.插值:求过已知有限个数据点的近似函数。

拟合:已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最小。

插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的许多工程技术中提出的计算问题对插值函数的光滑性有较高要求,如飞机的机翼外形,内燃机的进、排气门的凸轮曲线,都要求曲线具有较高的光滑程度,不仅要连续,而且要有连续的曲率,这就导致了样条插值的产生。

所谓样条(Spline)本来是工程设计中使用的一种绘图工具,它是富有弹性的细木条或细金属条。

绘图员利用它把一些已知点连接成一条光滑曲线(称为样条曲线),并使连接点处有连续的曲率。

拟合:Zj2.m课堂练习与作业:1, 所有例题上机实现;P9 1.5 上机实现 2.4. 用下列数据拟合函数112223sin()k x y e k x x -=+中的参数12,k k 。

数据序号 y/kg x1/cm2 x2 x3 1 15.02 23.73 5.49 1.21 1415.94 23.52 5.18 1.98 2 12.62 22.34 4.32 1.35 15 14.33 21.86 4.86 1.59 3 14.86 28.84 5.04 1.92 16 15.11 28.95 5.18 1.37 4 13.98 27.67 4.72 1.49 17 13.81 24.53 4.88 1.39 5 15.91 20.83 5.35 1.56 18 15.58 27.65 5.02 1.66 6 12.47 22.27 4.27 1.50 19 15.85 27.29 5.55 1.70 7 15.80 27.57 5.25 1.85 20 15.28 29.07 5.26 1.82 8 14.32 28.01 4.62 1.51 21 16.40 32.47 5.18 1.75 9 13.76 24.79 4.42 1.4622 15.02 29.65 5.08 1.7010 15.18 28.96 5.30 1.66 23 15.73 22.11 4.90 1.8111 14.20 25.77 4.87 1.64 24 14.75 22.43 4.65 1.8212 17.07 23.17 5.80 1.90 25 14.35 20.04 5.08 1.5313 15.40 28.57 5.22 1.665. p163 5.6 结合上课ppt(数学建模实例:人口预报问题)。

第七讲 插值与拟合实验

第七讲 插值与拟合实验

y i = f ( xi ) 。插值函数一般是已知函数的线性组合或称为加权平均。用代数多项式作为插
值函数的插值法称为多项式插值,相应的多项式称为插值多项式。 插值和拟合是函数逼近的简单但又十分重要的方法。 插值法可以导出数值微分、 数值积 分和微分方程数值解等多方面的计算方法, 是数值分析的基本课题。 同时插值和拟合在工程 实践和科学实验中有着非常广泛而又十分重要的应用。 本实验将主要研究几种基本的插值方法(如 Lagrange 插值、分段线性插值、三次样条 插值等)和数据的最小二乘拟合方法。要求学会 Mathematica 提供的插值函数和拟合函数的 使用方法,会用这些函数解决实际问题。
基函数。容易证明
⎧1 li ( x j ) = δ ij = ⎨ ⎩0
i= j , i, j = 0,1& Ln ( xi ) = y i , i = 0,1, " , n 。 还可以从其他角度出发,构造出插值多项式,如牛顿(Newton)插值公式。 Lagrange 插值法最大的优点是函数具有很好的解析性质(无穷次可微) ,但是它也存在 固有的缺点:可能出现严重的振荡现象,并且多项式函数的系数依赖于观测数据。 例 1 考虑函数
3、 三次样条插值 在工程设计和机械加工等实际问题中,要求插值函数有较高的光滑度。在数学上,光滑 程度的定量描述是:函数(曲线)的 k 阶导数存在且连续,则称该曲线具有 k 阶光滑性。自 然,光滑性阶数越高其曲线光滑程度就越好。而上面介绍的分段线性插值,只具有零阶光滑 性,也就是不光滑的。虽然,提高分段函数如多项式函数的次数,可以提高整体曲线的光滑 程度, 但是, 是否存在较低次多项式达到较高光滑性的方法?三次样条插值就是一个很好的 例子。 样条曲线本身就来源于飞机、船舶等外形曲线设计问题。在工程实际中,要求此类曲线 应该具有连续的曲率,即连续的二阶导数。人们普遍使用的样条曲线是分段三次多项式。 定义 设 在 区 间 [a,b] 上 给 定 一 组 节 点 a = x 0 < x1 < " < x n = b 上 的 函 数 值

插值法和拟合实验报告

插值法和拟合实验报告

插值法和拟合实验报告一、实验目的1.通过实验了解插值法和拟合法在数值计算中的应用;2.掌握拉格朗日插值法、牛顿插值法和分段线性插值法的原理和使用方法;3.学会使用最小二乘法进行数据拟合。

二、实验仪器和材料1.一台计算机;2. Matlab或其他适合的计算软件。

三、实验原理1.插值法插值法是一种在给定的数据点之间“插值”的方法,即根据已知的数据点,求一些点的函数值。

常用的插值法有拉格朗日插值法、牛顿插值法和分段线性插值法。

-拉格朗日插值法:通过一个n次多项式,将给定的n+1个数据点连起来,构造出一个插值函数。

-牛顿插值法:通过递推公式,将给定的n+1个数据点连起来,构造出一个插值函数。

-分段线性插值法:通过将给定的n+1个数据点的连线延长,将整个区间分为多个小区间,在每个小区间上进行线性插值,构造出一个插值函数。

2.拟合法拟合法是一种通过一个函数,逼近已知的数据点的方法。

常用的拟合法有最小二乘法。

-最小二乘法:通过最小化实际观测值与拟合函数的差距,找到最优的参数,使得拟合函数与数据点尽可能接近。

四、实验步骤1.插值法的实验步骤:-根据实验提供的数据点,利用拉格朗日插值法、牛顿插值法、分段线性插值法,分别求出要插值的点的函数值;-比较三种插值法的插值结果,评价其精度和适用性。

2.拟合法的实验步骤:-根据实验提供的数据点,利用最小二乘法,拟合出一个合适的函数;-比较拟合函数与实际数据点的差距,评价拟合效果。

五、实验结果与分析1.插值法的结果分析:-比较三种插值法的插值结果,评价其精度和适用性。

根据实验数据和插值函数的图形,可以判断插值函数是否能较好地逼近实际的曲线。

-比较不同插值方法的计算时间和计算复杂度,评价其使用的效率和适用范围。

2.拟合法的结果分析:-比较拟合函数与实际数据点的差距,评价拟合效果。

可以使用均方根误差(RMSE)等指标来进行评价。

-根据实际数据点和拟合函数的图形,可以判断拟合函数是否能较好地描述实际的数据趋势。

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告一、实验目的1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性;2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理;3.利用matlab 编程,学会matlab 命令;4.掌握拉格朗日插值法;5.掌握多项式拟合的特点和方法。

二、实验题目1.、插值法实验将区间[-5,5]10等分,对下列函数分别计算插值节点kx 的值,进行不同类型的插值,作出插值函数的图形并与)(x f y =的图形进行比较:;11)(2x x f += ;arctan )(x x f = .1)(42x x x f +=(1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值.2、拟合实验给定数据点如下表所示:分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数),(i i y x 和拟合函数的图形。

三、实验原理1.、插值法实验∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--==-===-=-=----==++==ji j ji i i i i ni i n nji j jnji j ji i nji j jn i i i ni i n nn o i ni i n x x x x x y x l x L x x c ni x x c x x x cx x x x x x x x c y x l x L y x l y x l y x l x L ,00,0,0,0110000)(l )()()(1,1,0,1)()(l )()())(()()()()()()()(,故,得再由,设2、拟合实验四、实验内容1.、插值法实验1.1实验步骤:打开matlab软件,新建一个名为chazhi.m的M文件,编写程序(见1.2实验程序),运行程序,记录结果。

1.2实验程序:x=-5:1:5;xx=-5:0.05:5;y1=1./(1+x.^2);L=malagr(x,y1,xx);L1=interp1(x,y1,x,'linear');S=maspline(x,y1,0.0148,-0.0148,xx);hold on;plot(x,y1,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');figurex=-5:1:5;xx=-5:0.05:5;y2=atan(x);L=malagr(x,y2,xx);L1=interp1(x,y2,x,'linear');S=maspline(x,y2,0.0385,0.0385,xx);hold on;plot(x,y2,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');figurex=-5:1:5;xx=-5:0.05:5;y3=x.^2./(1+x.^4);L=malagr(x,y3,xx);L1=interp1(x,y3,x,'linear');S=maspline(x,y3,0.0159,-0.0159,xx);hold on;plot(x,y3,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');1.3实验设备:matlab软件。

实验1—插值与拟合

实验1—插值与拟合

《计算方法》实验报告二级学院:计算机学院专业:指导教师:班级学号:姓名:实验一 插值与拟合1、 实验目的:① 通过编程和插值与拟合中的某种具体算法解决具体问题,更深一步的体会 计算方法这门课的重要性,并加深对插值与拟合公式某种具体算法的理解。

② 熟悉编程环境。

2、实验要求:实现插值与拟合中的某种具体算法编写并执行 3、实验内容:1)用牛顿法求解01553=-x 的根,取初始值为10。

2)用弦截法求解数学方程。

x*x*x-x-1=0 ,x=[1,1.5] 4、题目: 插值与拟合5、原理:(1)用牛顿法求01553=-x 的根的原理:牛顿迭代法是以微分为基础的,由于曲线不规则,微分就是用直线代替曲线, 牛顿迭代法是取x0之后,找比x0更近的方程的根,多次迭代后,找更近似 的根。

(2)用弦截法求解 x*x*x-x-1=0设x0,x1是f(x)=0的近似值,利用f(x0),f(x1)构造一次插值多项式f1,并用f1 =0作为f(x)=0的新的近似根。

其几何意义:依次用弦线代替曲线,用线性函 数的零点作为函数零点的近似值。

6、设计思想:(1)用牛顿法求01553=-x 的根的思想:用直线代替曲线,用线性函 数的零点作为函数零点的近似值。

(2)用弦截法求根思想:依次用弦线代替曲线,用线性函 数的零点作为函数零点的近似值。

7、对应程序:用牛顿法求解01553=-x 的根,取初始值为10。

#include<stdio.h> #include<math.h> void main(void) {float x0=10;float f0=x0*x0*x0-155; float f1=3*x0*x0; float x1=x0-f0/f1; while(fabs(x0-x1)>1e-6) {x0=x1;f0=x0*x0*x0-155; x1=x0-f0/f1;}printf("%.3f\n",x1); }弦截法求根 x*x*x-x-1=0 ,x=[1,1.5] #include<stdio.h> #include<math.h> void main(void) {float x0=1.5; float x1=1;float f0=x0*x0*x0-x0-1; float f1=x1*x1*x1-x1-1;float x=x0-(x1-x0)/(f1-f0)*f0; while(fabs(x-x1)>1e-6) {x1=x;f1=x1*x1*x1-x1-1;x=x0-(x1-x0)/(f1-f0)*f0; }printf("%.3f\n",x); }8、实验结果:01553=-x 的根是5.372 x*x*x-x-1=0 ,的根是 1.325 9、图形10、实验体会:通过编程,切身感到计算方法这门课绝不仅仅是数学,是图形的观察和实际计算方法的应用,从而解决一些复杂的数值问题。

插值与拟合实验

插值与拟合实验
Matlab程序: ch602.m ch603.m ch604.m ch605.m
(3)三次样条插值 y
比分段线性插值更光滑。





xi-1 xi
b x
a
在数学上,光滑程度的定量描述是:函数(曲线)的k 阶导数存在且连续,则称该曲线具有k阶光滑性。 光滑性的阶次越高,则越光滑。是否存在较低次的分 段多项式达到较高阶光滑性的方法?三次样条插值就是一





x
Matlab程序: ch608.m
4、用MATLAB做二维网格节点数据的插值
z=interp2(x0,y0,z0,x,y,’method’)
被插值点的 函数值 插值 节点 被插值点
插值方法
‘nearest’ 最邻近插值 ‘linear’ 双线性插值 ‘cubic’ 双三次插值 缺省时, 双线性插值 要求x0,y0单调;x,y可取为矩阵,或x取行向量,y取
称为拉格朗日插值基函数。特别的:
两点一次(线性)插值多项式:
x x0 x x1 L1 x y0 y1 x0 x1 x1 x0
三点二次(抛物)插值多项式:
x x1 x x2 y x x0 x x2 y x x0 x x1 y L2 x 0 1 2 x0 x1 x0 x2 x1 x0 x1 x2 x2 x0 x2 x1
其中 a1, a2, …am 为待定系数。 第二步: 确定a1,a2, …am 的准则(最小二乘准则):
使n个点(xi, yi) 与曲线y=f (x)的距离i 的平方和最小 。 记 J (a1 , a2 , am )

数值分析实验插值与拟合

数值分析实验插值与拟合

数值分析实验插值与拟合插值是指根据已知的数据点,通过其中一种数学方法来构造一个函数,使得该函数在已知的数据点上与被插值函数相等。

插值方法可以分为两类:基于多项式的插值和非多项式插值。

基于多项式的插值方法中,最常用的是拉格朗日插值和牛顿插值。

拉格朗日插值方法通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的所有点。

牛顿插值方法则通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的前m+1个点。

非多项式插值方法中,最常用的是分段线性插值和样条插值。

分段线性插值方法将插值区间划分为多个小段,在每一段内使用线性函数来逼近被插值函数。

样条插值方法则使用分段低阶多项式来逼近被插值函数,保证了插值函数和原函数在插值区间内的连续性、光滑性。

拟合是指在给定的离散数据点集合上,通过选取一个函数,使得该函数与数据点之间的误差最小化。

拟合方法可以分为两类:线性拟合和非线性拟合。

线性拟合方法中,最简单的是最小二乘法。

最小二乘法拟合是通过最小化观测数据与拟合函数的残差平方和来选择最佳函数参数。

在实验中,最小二乘法常用于线性回归问题,例如估计一个直线或者平面来拟合数据。

非线性拟合方法中,最常用的是非线性最小二乘法和局部加权回归。

非线性最小二乘法通过将非线性拟合问题转化为线性问题,使用最小二乘法来寻找最佳参数。

局部加权回归方法则通过给予不同数据点不同的权重,以更好地逼近数据点。

在数值分析实验中,插值与拟合可以应用于各种实际问题。

例如,在地理信息系统中,通过已知的地理坐标点来插值出未知点的地理信息。

在气象学中,通过已知的气象数据点来插值出未知点的气象信息。

在工程学中,通过已知的测量数据点来拟合出一个最佳的拟合函数来预测未来的测量值。

需要注意的是,插值和拟合的精度在很大程度上取决于数据的分布和拟合函数的选择。

如果数据点过于稀疏或者数据点中存在异常值,可能导致插值和拟合结果不准确。

因此,在进行插值和拟合之前,需要对数据进行预处理,例如去除异常值、平滑数据等。

插值与拟合实验总结

插值与拟合实验总结

插值与拟合实验总结《插值与拟合实验总结》哎呀!说起这个插值与拟合实验,那可真是让我大开眼界呀!实验一开始,老师就像个神奇的魔法师,给我们展示了各种奇妙的数据和图形。

我瞪大眼睛,心里直犯嘀咕:“这都是些啥呀?” 旁边的同桌小明也皱着眉头,小声跟我说:“这可难倒我啦,你能明白不?” 我摇摇头,感觉脑袋都要变成浆糊啦。

老师先给我们讲了插值的概念,这就好比我们要在一些分散的点之间,找到那些“失踪”的点,把它们连起来,形成一条光滑的曲线。

这难道不像我们玩拼图游戏,要把那些缺失的部分找出来,拼出完整的图案吗?我心里想着,这也太有趣了吧!接着我们就开始动手操作啦。

我紧紧握着笔,眼睛盯着屏幕,手忙脚乱地计算着。

哎呀,这数字怎么就不听我使唤呢?我急得直跺脚。

“别着急,慢慢来!”后桌的小红安慰我道。

在做拟合实验的时候,那感觉就像是要给一群调皮的孩子找到一个合适的队伍,让他们排得整整齐齐。

我们尝试着用不同的方法,去找到那个最能代表这些数据的曲线。

这过程可不轻松,一会儿这个方法不行,一会儿那个又出错。

我都快被这些数据绕晕啦!“这到底怎么才能做好呀?”我忍不住抱怨起来。

“别灰心,我们再试试别的办法。

”小组里的小刚鼓励着大家。

经过一次次的尝试和失败,我们终于有了一些成果。

当看到那漂亮的曲线完美地贴合了数据点,我高兴得差点跳起来!那种成就感,就像在沙漠里走了好久好久,终于找到了一片绿洲。

你说,这插值与拟合实验是不是像一场刺激的冒险?我们在数据的海洋里探索,有时候迷失方向,有时候又柳暗花明。

通过这次实验,我明白了做事情不能着急,要有耐心,要不断尝试。

就像我们在实验里,一次不行就再来一次,总会找到解决办法的。

而且团队合作也特别重要,大家一起出主意,互相鼓励,才能取得好结果。

所以呀,这次实验虽然充满了挑战,但真的让我学到了好多好多!。

实验报告—拟合与插值

实验报告—拟合与插值

实验报告七拟合与插值一、曲线拟合1、多项式拟合【示例】以下步骤可对二维数据作多项式拟合。

已知:数据横坐标:a=[1 2 5 7 11 12];数据纵坐标:b=[ 32.78 32.65 27.25 25.55 19.24 14.65];【解】先将数据绘制成散点图:a=[1 2 5 7 11 12]; b=[ 32.78 32.65 27.25 25.55 19.24 14.65];plot(a,b, '-o') % 绘图,线型为实线,点型为空心圆点,颜色为默认的蓝色。

观察绘制出来的图形,大致在一条直线上,所以用一次多项式(直线)拟合:p= polyfit(a,b,1); y1=p (1)*a+p (2); % 线性拟合。

polyfit命令中的数字“1”表示用一次多项式。

% p是向量,各分量表示多项式从高到低的各个系数;y1是用这些系数构造的多项式的值。

hold on; plot(a,y1,'r') % 绘制图形,观察拟合效果。

颜色为红色。

也可以试着用三次多项式来拟合:q= polyfit(a,b,3); y2= q(1)*a.^3+q(2)*a.^2+q(3)*a+ q(4); % 3次多项式拟合hold on; plot(a,y2,'k') % 绘制曲线,观察拟合效果。

颜色为黑色。

【要求】执行以上命令,并仿照示例,对下列数据作多项式拟合,写出拟合多项式:数据横坐标:x=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20];数据纵坐标:y= [70.2 41.6 -9.1 -52 -100 -67.4 -112 -166 -104 -168 -103 -128 -90.5 -52.1 -10.4 60.6 85.9 153 199 301];024681012141618202、一般的最小二乘拟合【示例1】已知数据横、纵坐标分别为x =1:0.5:10; y=[0.84 2.24 3.64 3.74 1.2701 -4.29 -12.11 -19.79 -23.97 -21.34 -10.06 9.09 32.19 52.76 63.32 57.69 33.38 -6.78 -54.40];并已知该组数据满足 12sin()ay x a x =,其中12,a a 为待定系数。

实验六:插值与拟合

实验六:插值与拟合

实验六:插值与拟合
一、实验目的
1、理解插值与拟合
2、掌握数据插值与拟合的方法
二、实验说明
1、熟练使用MATLAB 完成相关题目
2、实验学时:2学时
三、实验内容
1、用切削机床进行金属品加工时, 为了适当地调整机床, 需要测定刀具的磨损速度. 在一定的时间测量刀具的厚度, 得数据如表所示:
请用一函数表达两者间的关系。

2、已知观测数据点如表所示
求三个参数 a, b, c 的值, 使得曲线 f(x)=aex+bx2+cx3 与已知数据点在最小二乘意义上充分接近. 切削时间 t/h 0 30.0 1 29.1 2 28.4 3 28.1 4 28.0 5 27.7 6 27.5 7 27.2 8
27.0 刀具厚度 y/cm
切削时间 t/h 9 26.8 10 26.5 11 26.3 12 26.1 13 25.7 14 25.3 15 24.8 16 24.0 刀具厚度 y/cm x y 0 3.1 0.1 3.27 0.2 3.81 0.3 4.5 0.4 5.18 0.5 6 0.6 7.05 0.7 8.56 0.8 9.69 0.9 11.25 1 13.17
3、已知某转子流量计在100~1000mL/min流量范围内,刻度值与校正值有如下关系。

试用线性插值法计算流量计的刻度值为785时,实际流量为多少?
四、实验要求
1、作业要求于2013年11月11日前上交至wlx_matlab@,逾期分数减半,逾期一周视为不交。

2、要求每题写出相关命令并保存为M文件。

3、邮件标题写明:学号、姓名、实验名称。

数值分析实验报告插值与拟合

数值分析实验报告插值与拟合
解:(1)
结果分析:高次插值稳定性差,而低次插值对于较大区间逼近精度又不够,而且,随着节点的加密,采用高次插值,插值函数两端会发生激烈震荡。解决这一矛盾的有效方法就是采用分段低次代数插值。
(2)
通过采用分段线性插值得到以下结果:
结果分析:通过采用分段线性插值,发现随着插值节点增多,插值计算结果的误差越来越小,而且分段线性插值的优点是计算简单,曲线连续和一致收敛,但是不具有光滑性。
拟合是指通过观察或测量得到一组离散数据序列 ,i=1,2,…,m,构造插值函数 逼近客观存在的函数 ,使得向量 与 的误差或距离最小。
可知当基函数的选择不同时,拟合函数的误差也会不同,所以在对数据进行拟合时应选择适合的基函数。
三、练习思考
整体插值有何局限性?如何避免?
答:整体插值的过程中,若有无效数据则整体插值后插值曲线的平方误差会比较大,即在该数据附近插值曲线的震动幅度较大。在插值处理前,应对原始数据进行一定的筛选,剔除无效数据。
②相同点:通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律目的
四、本次实验的重点难点分析
答:加强了对插值和拟合的认识,了解了其算法思想,并使用matlab将其实现。学会了观察插值拟合后的图形,并分析其问题。
画图进行比较:
通过观察图像,经比较可知两结果是很接近的。
2.区间 作等距划分: ,以 ( )为节点对函数 进行插值逼近。(分别取 )
(1)用多项式插值对 进行逼近,并在同一坐标系下作出函数的图形,进行比较。写出插值函数对 的逼近程度与节点个数的关系,并分析原因。
(2)试用分段插值(任意选取)对 进行逼近,在同一坐标下画出图形,观察分段插值函数对 的逼近程度与节点个数的关系。

插值与拟合-2012

插值与拟合-2012

? si ( xi )
si+ 1 ( xi ), siⅱi ) = si+ 1 ( xi ), siⅱi ) = siⅱ( xi ) (i = 1, , n - 1) (x (x +1
2) 3) 4) 揶 ai , bi , ci , di S ( x)
4) S ⅱ 0 ) = S ⅱ n ) = 0 ( (x (x 自然边界条件)


例 1:已知 sin35 10' = 0.5760,sin35 20' =0.5783 ,求 sin 35 16' 的值。
分析: 由于所给的这几个值范围很小, 故我们可以考虑用线性函数逼近正弦函数 (即用线性函数近似的代替正弦函数),于是容易得到:
sin 3516' = sin 3510'+ (sin 3520'- sin 3510') 复 10 6
拟合与插值的关系
问题:给定一批数据点,需确定满足特定要求的曲线或曲面
解决方案: •若要求所求曲线(面)通过所给所有数据点,就是插值问题; •若不要求曲线(面)通过所有数据点,而是要求它反映对象 整体的变化趋势,这就是数据拟合,又称曲线拟合或曲面拟合。
函数插值与曲线拟合都是要根据一组数据构造一个函数作 为近似,由于近似的要求不同,二者的数学方法上是完全不同 的。
y 0 , y1 , , y n 。
要求:求一个分段( 共 n 段)多项式函数 q(x),使其满足:q(xi)=yi,
q ( xi ) y i ,i=0,1,…,n.
相当于在每一小段上应满足四个条件(方程),可以确定四个待定参数。三次多项式正 好有四个系数,所以可以考虑用用三次多项式函数作为插值函数,这就是所谓的分段三次 埃尔米特插值,与分段线性插值一起都称为分段多项式插值。

数值分析拟合实验报告(3篇)

数值分析拟合实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析方法对一组已知数据点进行拟合,掌握线性插值、多项式插值、样条插值等方法的基本原理和实现过程,并学会使用MATLAB进行数值拟合。

二、实验内容1. 线性插值线性插值是一种简单的插值方法,适用于数据点分布较为均匀的情况。

其基本原理是通过两个相邻的数据点,利用线性关系拟合出一条直线,然后通过该直线来估算未知的值。

2. 多项式插值多项式插值是一种较为精确的插值方法,通过构造一个多项式函数来逼近已知数据点。

其基本原理是利用最小二乘法求解多项式的系数,使得多项式在已知数据点上的误差最小。

3. 样条插值样条插值是一种更灵活的插值方法,通过构造一系列样条曲线来逼近已知数据点。

其基本原理是利用最小二乘法求解样条曲线的系数,使得样条曲线在已知数据点上的误差最小。

三、实验步骤1. 线性插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`linspace`生成插值点:xi = linspace(1, 5, 100);(3)使用MATLAB内置函数`interp1`进行线性插值:yi = interp1(x, y, xi, 'linear');(4)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');2. 多项式插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`polyfit`求解多项式系数:p = polyfit(x, y, 3);(3)使用MATLAB内置函数`polyval`进行多项式插值:yi = polyval(p, xi);(4)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');3. 样条插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`spline`进行样条插值:yi = spline(x, y, xi);(3)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');四、实验结果与分析1. 线性插值线性插值方法简单易行,但精度较低,适用于数据点分布较为均匀的情况。

数值分析插值与拟合实验

数值分析插值与拟合实验

数值分析插值与拟合实验数值分析是一门研究利用数字计算方法解决数学问题的学科。

插值与拟合是数值分析的重要内容之一,可以用于数据分析、信号处理以及数学建模等领域。

本实验将使用MATLAB软件进行插值与拟合的实验,主要包括插值多项式与拟合曲线的构造,以及评价拟合效果的方法。

实验一:插值多项式的构造1. Lagrange插值Lagrange插值是一种构造多项式来拟合已知数据点的方法。

给定n 个数据点(xi, yi),其中xi不相等,Lagrange插值多项式可以写成:P(x) = ∑(i=0 to n) yi * l_i(x)其中l_i(x)是Lagrange基函数,定义为:l_i(x) = ∏(j=0 to n,j!=i) (x-xj)/(xi-xj)通过计算l_i(x),然后将其乘以相应的数据点yi,最后相加就可以得到插值多项式P(x)。

2. Newton插值Newton插值使用差商的概念来构造插值多项式。

首先定义差商F[x0,x1,...,xn]如下:F[x0]=f(x0)F[x0,x1]=(f(x1)-f(x0))/(x1-x0)F[x0,x1,x2]=(F[x1,x2]-F[x0,x1])/(x2-x0)...F[x0,x1,...,xn] = (F[x1,x2,...,xn] - F[x0,x1,...,xn-1])/(xn-x0)其中f(x)是已知数据点的函数。

然后,利用差商来构造插值多项式:P(x) = ∑(i=0 to n) F[x0,x1,...,xi] * ∏(j=0 to i-1) (x-xj)通过计算差商F[x0,x1,...,xi]和对应的乘积∏(x-xj),最后相加得到插值多项式P(x)。

实验二:拟合曲线的构造1.多项式拟合多项式拟合是通过构造一个多项式函数来拟合已知数据点的方法。

假设给定n个数据点(xi, yi),可以使用多项式函数来表示拟合曲线:P(x) = a0 + a1*x + a2*x^2 + ... + an*x^n其中a0, a1, ..., an是待确定的系数。

插值与拟合实验

插值与拟合实验

实验目的实验内容MATLAB2、掌握用Matlab 作线性最小二乘的方法.实验软件1、掌握用Matlab 计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。

.1、插值.2、拟合.3、数学建模实例3、通过实例学习如何使用插值方法与拟合方法解决实际问题,注意二者的区别和联系插值(一)插值问题的提法(二)解决插值问题的基本方法数学建模实例1、船在该海域会搁浅吗2、薄膜渗透率的测定拉格朗日多项式插值从理论和计算角度看,多项式是最简单的函数,设f(x) 是n 次多项式,记作0111)(a x a xa x a x L n n n n n ++++=-- (1) 对于节点),(j j y x 应有n j y x L j j n ,,1,0)( == (2)为了确定插值多项式)(x L n 中的系数01,,,a a a n n -, 将(1)代入(2),有⎪⎩⎪⎨⎧=++++=++++----0011100011010)3(y a x a x a x a y a x a x a x a n n n n n n n n n n n记⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--111100 n n n n n n x x x x X ,,),...,,(01T n n a a a A -=T n y y y Y ),...,,(10=方程组(3)简写作Y XA = (4)其中detX 是V andermonde 行列式,利用行列式性质可得)(det 0j n k j k x x X -∏=≤≤因j x 互不相同,故0det ≠X ,于是方程(4)中有唯一解,即根据n+1个节点可以确定唯一得n 次插值多项式。

注:)(x I n 有良好的收敛性,即对于],[b a x ∈有)()(lim x g x I n n =∞→。

用)(x I n 计算x 点的插值时,只用到x 左右的两个节点,计算量与节点个数n 无关。

数值分析实验插值与拟合

数值分析实验插值与拟合

《数值分析》课程实验一:插值与拟合一、实验目的1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性;2. 编写MATLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象;3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理;4. 编写MATLAB 程序实现最小二乘多项式曲线拟合。

二、实验内容1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。

2. 设]5,5[,11)(2-∈+=x xx f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。

不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。

(2) 编写MATLAB 程序绘制出曲线拟合图。

三、实验步骤1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件:⎩⎨⎧≠===ji j i x l ij j i ,0,,1)(δ的一组基函数{}ni i x l 0)(=,l i (x )的表达式为∏≠==--=nij j ji j i n i x x x x x l ,0),,1,0()(有了基函数{}ni i x l 0)(=,n 次插值多项式就可表示为∑==ni i i n x l y x L 0)()((2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为1102110],,,[],,,[],,,[x x x x x f x x x f x x x f n n n n --=-则n 次多项式)())(](,,[))(](,,[)](,[)()(11010102100100----++--+-+=n n n x x x x x x x x x f x x x x x x x f x x x x f x f x N差商表的构造过程:x i f (x i ) 一阶差商 二阶差商三阶差商 四阶差商x 0 f (x 0) x 1 f (x 1) f [x 0, x 1]x 2 f (x 2) f [x 1, x 2] f [x 0, x 1,x 2]x 3 f (x 3) f [x 2, x 3] f [x 1, x 2,x 3] f [x 0, x 1,x 2,x 3]x 4 f (x 4)f [x 3, x 4]f [x 2, x 3,x 4]f [x 1, x 2,x 3,x 4]f [x 0, x 1,x 2,x 3,x 4]试验结果:2. MATLAB程序实现:试验结果:3. 多项式拟合的一般方法可归纳为以下几步:(1)由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n ; (2)列表计算)2,,1,0(0n j xmi ji=∑=和∑==mi i j i n j y x 0),,1,0( ;(3)写出正规方程组,求出),,1,0(n k a k =; (4)写出拟合多项式∑==nk kk n xa x p 0)(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生实验报告
了解插值与拟合的基本原理和方法;掌握用MATLAB计算插值与作最小二乘多项式拟合和曲线拟合的方法;通过范例展现求解实际问题的初步建模过程;
通过动手作实验学习如何用插值与拟合方法解决实际问题,提高探索和解决问题的能力。

这对于学生深入理解数学概念,掌握数学的思维方法,熟悉处理大量的工程计算问题的方法具有十分重要的意义。

二、实验仪器、设备或软件:电脑,MATLAB软件
三、实验内容
1.编写插值方法的函数M文件;
2.用MATLAB中的函数作函数的拟合图形;
3.针对实际问题,试建立数学模型,并求解。

四、实验步骤
1.开启软件平台——MATLAB,开启MATLAB编辑窗口;
2.根据各种数值解法步骤编写M文件;
3.保存文件并运行;
4.观察运行结果(数值或图形);
5.写出实验报告,并浅谈学习心得体会。

五、实验要求与任务
根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论→心得体会)。

1.天文学家在1914年8月的7次观测中,测得地球与金星之间距离(单位:米),并取得常用对数值,与日期的一组历史数据如下表:
由此推断何时金星与地球的距离(米)的对数值为9.93518?
解:输入命令
days=[18 20 22 24 26 28 30];
distancelogs=[9.96177 9.95436 9.94681 9.93910 9.93122 9.92319 9.91499]; t1=interp1(distancelogs,days,9.93518) %线性插值
t2=interp1(distancelogs,days,9.93518,'nearest') %最近邻点插值
t3=interp1(distancelogs,days,9.93518,'spline') %三次样条插值
t4=interp1(distancelogs,days,9.93518,'cubic') %三次插值
计算结果:
t1 =
24.9949
t2 =
24
t3 =
25.0000
t4 =
25.0000
综上所得,可推断25日金星与地球的距离(米)的对数值为9.93518。

2.在某海域测得一些点(x,y)处的水深z由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)×(-50,150)里的哪些地方船要避免进入。

(1)输入插值基点数据;
(2)在矩形区域(75,200)×(-50,150)作二维插值;
(3)作海底曲面图;
(4)作出水深小于5的海域范围,即z=5的等高线。

解:
程序:
%输入插值基点数据
x=[129 140 103.5 88 185.5 195 105 157.5 107.5 77 81 162 162 117.5];
y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5];
z=[4 8 6 8 6 8 8 9 9 8 8 9 4 9];
z=-z;
%在矩形区域(75,200)×(-50,150)作二维插值
cx=75:0.5:200;
cy=-50:0.5:150;
cz=griddata(x,y,z,cx,cy','cubic');
%作海底曲面图
subplot(1,2,1),meshz(cx,cy,cz)
xlabel('x'),ylabel('y'),zlabel('z')
%作出水深小于5的海域范围,即z=5的等高线
subplot(1,2,2),[c,h]=contour(cx,cy,cz);
clabel(c,h,-5)
插值后作出的海底曲面图及等高线图如下:
若船的吃水深度为5英尺,在矩形区域(75,200)×(-50,150)里如上图等高线-5m 内的地方船要避免进入。

3.用电压V =10伏的电池给电容器充电,电容器上t 时刻的电压为
τt
e V V V t v -
--=)()(0,其中V 0是电容器的初始电压,τ是充电常数。

试由下面一组(t ,v )数据确定V 0和 τ。

解一:
(1)用命令lsqcurvefit。

1)编写M文件curvefun1.m
function f=curvefun1(x,tdata)
f=10-(10-x(1))*exp(-tdata/x(2));
2)主程序xitithree1.m如下
tdata=[0.5 1 2 3 4 5 7 9];
cdata=[6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63];
x0=[0.4316,1];
x=lsqcurvefit('curvefun1',x0,tdata,cdata)
f=curvefun1(x,tdata)
3)运行主程序,得结果为
x =
5.5577 3.5002
f =
6.1490 6.6616
7.4913
8.1147 8.5832 8.9353
9.3987 9.6604
即拟合得V0=5.5577, =3.5002。

(2)用命令lsqnonlin。

1)编写M文件curvefun2.m
function f=curvefun2(x)
tdata=[0.5 1 2 3 4 5 7 9];
cdata=[6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63];
f=cdata-10+(10-x(1))*exp(-tdata/x(2));
2)主程序xitithree2.m如下
x0=[0.4316,1];
x=lsqnonlin('curvefun2',x0)
f=curvefun2(x)
3)运行主程序,得结果为
x =
5.5577 3.5002
f =
0.2110 -0.1816 -0.2313 0.1053 0.0768 0.0547 0.0313 -0.0304
结果同上,即拟合得V 0=5.5577, τ=3.5002。

解二:
(1)对将要拟合的非线性模型τt
e V V V t v ---=)()(0,建立M 文件volum.m 如下:
function yhat=volum(beta,t)
yhat=10-(10-beta(1))*exp(-t./beta(2)); (2)输入数据:
t=[0.5 1 2 3 4 5 7 9];
y=[6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63];
beta0=[5 3]';
(3)求回归系数:
[beta,r,J]=nlinfit(t',y','volum',beta0);
beta
得结果:beta =
5.5577
3.5002 即得回归模型为:5002.3)5577.510(10)(t e
t v ---=
(5) 预测及作图:
[YY,delta]=nlpredci('volum',t',beta,r,J);
plot(t,y,'k+',t,YY,'r')
七、指导教师评语及成绩:。

相关文档
最新文档