19.2.2一次函数2

合集下载

部审人教版八年级数学下册说课稿19.2.2 第2课时《一次函数的图象与性质》

部审人教版八年级数学下册说课稿19.2.2 第2课时《一次函数的图象与性质》

部审人教版八年级数学下册说课稿19.2.2 第2课时《一次函数的图象与性质》一. 教材分析《一次函数的图象与性质》是人教版八年级数学下册第19.2.2节的内容,本节课是在学生已经掌握了函数的概念、一次函数的定义和表达式的基础上进行学习的。

教材通过具体的实例,引导学生探究一次函数的图象与性质,从而使学生能够更好地理解和运用一次函数。

本节课的主要内容包括:一次函数的图象、一次函数的性质、一次函数的应用。

通过本节课的学习,学生应该能够掌握一次函数的图象与性质,并能运用一次函数解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了函数的概念、一次函数的定义和表达式,对函数有一定的认识。

但是,学生对一次函数的图象与性质的理解可能还存在一定的困难,需要通过实例和实践活动来加深理解。

此外,学生的数学思维能力和解决问题的能力不同,因此在教学过程中,需要关注学生的个体差异,引导不同水平的学生都能够积极参与学习,提高他们的数学素养。

三. 说教学目标1.知识与技能目标:学生能够理解一次函数的图象与性质,并能运用一次函数解决实际问题。

2.过程与方法目标:学生通过观察、操作、探究等活动,培养观察能力、动手能力和解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与学习,增强对数学的兴趣和自信心,培养合作意识。

四. 说教学重难点1.教学重点:一次函数的图象与性质。

2.教学难点:一次函数的图象与性质的运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法、小组合作法等,引导学生主动探究,提高学生的参与度和积极性。

2.教学手段:利用多媒体课件、实物模型、教学卡片等辅助教学,使抽象的数学概念形象化、直观化。

六. 说教学过程1.导入:通过复习函数的概念和一次函数的定义,引导学生回顾已学知识,为新课的学习做好铺垫。

2.探究一次函数的图象:让学生观察多媒体课件中的实例,引导学生发现一次函数的图象是一条直线,并分析直线的特点。

19.2.2一次函数(2)教学设计 -2023—-2024学年人教版数学八年级下册

19.2.2一次函数(2)教学设计 -2023—-2024学年人教版数学八年级下册
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
学生学习效果
1.知识与技能:
-学生能够理解并掌握一次函数的定义、图像特点及其解析式y=kx+b。
-学生能够根据给定的两个点求解一次函数的解析式,并解释其参数k和b的物理意义。
-学生能够通过观察一次函数的图像,分析其斜率k和截距b对函数性质的影响。
-学生能够运用一次函数解决实际问题,如计算成本、预测趋势等。
核心素养目标分析
本节课的核心素养目标旨在培养学生的数学抽象、逻辑推理、数学建模和数学运算能力。通过一次函数的学习,使学生能够:
1.抽象出一次函数的数学模型,理解其图像与解析式之间的关系,提升数学抽象能力;
2.利用逻辑推理分析一次函数的性质,如斜率与图像走势的关系,截距与图像与坐标轴交点的关系,增强逻辑推理能力;
2.引入数学软件或在线绘图工具,让学生实时观察一次函数图像的变化,增强学习体验。
3.设计项目导向学习,培养学生的团队合作能力和解决问题的能力。
存在主要问题:
1.在教学组织方面,课堂讨论环节时间安排不足,学生未能充分展示自己的思考过程。
2.在教学评价方面,对学生学习效果的评估过于依赖考试成绩,未能全面反映学生的学习过程。
3.重点难点解析:在讲授过程中,我会特别强调一次函数解析式的求解和一次函数在实际问题中的应用这两个重点。对于难点部分,我会通过实际案例和图示来帮助大家理解。

八下数学第十九章一次函数19.2.2一次函数(共四课时全)

八下数学第十九章一次函数19.2.2一次函数(共四课时全)

法是,以厘米为单位量出身高值 h ,再减常数105,所得
差是 m的值;
m=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包 括月租费22元和拨打电话 x min 的计时费(按0.1元/min
收取);
y=0.1x+22
(4)把一个长10 cm,宽5 cm的矩形的长减少 x cm, 宽不变,矩形面积 y(单位:cm2)随x的值而变化.
y=-5x+50(0≤x<10)
探究新知
观察以上出现的四个函数解析式,它们是不是正比例函 数,那么它们共同的特征如何表示呢?
(1) c = 7 t - 35 (2) m = h -105 (3) y = 0.1 x + 22 (4) y = -5 x + 50
y = k(常数)x + b(常数)
探究新知
(4)由v=16,得2t=16
t=8. 当t=8s时,小球的速度为16m/s
探究新知 利用一次函数的概念求字母的值
例1 已知函数y=(m-2)x+4-m2 (1)当m为何值时,这个函数是一次函数?
(2)当m为何值时,这个函数是正比例函数?
解:(1)由题意可得m-2≠0,解得m≠2. 即m≠2时,这个函数是一次函数.
-2 -1 O 1 2 3 x
描点
连线
观察与比较:
比较上面两个函数图象的相同点与不同点.填出你的观 察结果并与同伴交流.
这两个函数的图象形状都是 一条直线 ,并且倾斜
程度 相同 .函数y = -6x的图象经过原点,函数ห้องสมุดไป่ตู้ = -6x+5 的图象与y 轴交于点 (0,5) ,即它可以看作由直线y = -6x

19.2.2 一次函数(2)

19.2.2 一次函数(2)
>3 时,y随 2.一次函数y=(m-3)x-0.5,当m_____ x的增大而增大.
增大 3.已知函数y=(k2+1)x+2,y随x的增大而_____. 4.写出a的一个值,使相应的一次函数 y=(2a-1)x+2 0 的值随着x的增大而减小:_____. 5.一个一次函数经过点(1,2),且函数y的值随自 变量x的增大而减小,请你写出一个符合上述条件 y=-x+3 的函数关系式:_______.
x 平行 3.k相等,两直线_____.
-5 -4 -3 -2 -1 0 1 2 3 4 5 -1 -2 y 3x 2 -3 -4 -5
不同点:
y轴的正半轴 b>0,直线交于____________.
两个一次函数,当k一样、b不一样 时,如 y 3 x 与 y 3x 2 时, 有什么共同点与不同点?
y
1 x2 2
y=kx+b
b=0
图像
y o y o y o x x
性质 直线经过的象限 第一、三象限 增减性 y随x的增大而增大
k>0 b>0
b<0 b=0 k<0 b>0
第一、二、三象限 y随x的增大而增大 第一、三、四象限 y随x的增大而增大 第二、四象限 y随x的增大而减小
x
y o x y o x y o x
3.已知函数y=kx-1,且y随x的增大而 减小,则它的图象是( B )
y y y
o x o
y
x
o
(A)
x
(B)
o
x
(C)
(D)
(2,0) 1.直线y=-3x+6与x轴的交点坐标是_______, (0,6) 与y轴的交点坐标是________,y 随x的增大而 减小 一、二、四 象限. _______, 它的图象经过第__________

19.2.2一次函数(2)

19.2.2一次函数(2)
19.2.2
一次函数的图象 和性质
学习目标
1.会画一次函数的图像。 2.结合图象,掌握一次函数与正比例 函数的关系以及一次函数的性质。
自学指导(一)
1.结合例2的图象及例3以上内容,完成“思考”中的填空 部分,归纳出一次函数图象与正比例函数图象之间的 关系,并把下表填完整:(4分钟) K的符号 b的符号 图象所经象限 b=0 K>0 b>o b<0 b=0 K<0 b>0 b<0 2.认真看92页例3内容,看有几种方法画一次函数图象?分 别是什么?一次函数y=kx+b(k≠0)与X轴、Y轴的交 点坐标分别是什么?(2分钟)
自学指导(二)
• 在同一平面直角坐标系中画出93页“探究 ”的四个函数图象,结合所作图象总结出 一次函数的性质,并熟记。(4分钟)
随Hale Waihona Puke 训练P93练习1、2、3题。
当堂练习
必做题
1.教材P99第4、5题
选做题
教材P99第9题。

19.2.2 一次函数的图象和性质八年级数学下册

19.2.2 一次函数的图象和性质八年级数学下册

形如 y=kx+b(k,b是常数,k≠0) 的函数,叫做一次函数;
当b=0时,y=kx+b就变成了 y=kx ,所以说正比例函数
是一种特殊的一次函数.
正比例函数的图象是一条经过
原 点的 直线 .
正比例函数
一次函数
解析式 y =kx(k≠0)
解析式 y =kx+b(k≠0)
图象:经过原点和
(1,k)的一条直线
2 2
4
2
2
4
27 9
的面积为 或 .
4 4
课堂小结
与y轴的交点是(0,b),
图象
b
与x轴的交点是( k,0),
当k>0, b>0时,经过一、二、三象限;
一次函数
的图象和
性质
当k>0 ,b<0时,经过一、三、四象限;
当k<0 ,b>0时,经过 一、二、四象限;
当k<0 ,b<0时,经过二、三、四象限.
C.y1<y2<0
D.y2<0<y1
11. (上海中考)如果一次函数 y=kx+3 (k 是常数,k≠0)的图象经过点(1,0),
那么 y 的值随 x 的增大而 减小
(填“增大”或“减小”).
12.函数 y=3x-2 的图象是把 y=3x 的图象向 下 平移 2
个单位得到
的,那么把 y=3x-2 的图象向上平移 4 个单位,所得直线的解析式为
k>0
k<0
y
y

x

O x
O
性质:k>0,y 随x 的
增大而增大;k<0,y
随 x 的增大而减小.
针对函数 y =kx+b,要研究什么?怎样研究?

人教版八年级数学下册19.2.2 一次函数(第2课时)

人教版八年级数学下册19.2.2 一次函数(第2课时)
一次函数的 图象和性质
性质
与y轴的交点是(0,b),
与x轴的交点是(
b k
,0),
当k>0, b>0时,经过一、二、三象限;
当k>0 ,b<0时,经过一、三、四象限;
当k<0 ,b>0时,经过 一、二、四象限;
当k<0 ,b<0时,经过二、三、四象限.
当k>0时,y的值随x值的增大而增大; 当k<0时,y的值随x值的增大而减小.
人教版 数学 八年级 下册
19.2 一次函数 19.2.2 一次函数
第2课时
导入新知
我们最快捷、最正确地画出正比例函数的图象 时,通常在直角坐标系中选取哪两个点?
答:画正比例函数y=kx(k≠0)的图象,一般地, 过原点和点(1,k). 【思考】能用这种方法作出一次函数的图象吗?
学习目标
3. 能灵活运用一次函数的图象与性质解答有关 问题. 2.能从图象角度理解正比例函数与一次函数的 关系.
1且m
1. 2
(3)由题意得1-2m<0且m-1<0,解得
1 m 1. 2
巩固练习
已知一次函数y=(2m+2)x+(3-n),根据下列条件,请你求出 m,n的取值范围. (1)y随x的增大而增大; (2)直线与y轴交点在x轴下方; (3)图象经过第二、三、四象限.
巩固练习
解:(1)由y随x的增大而增大可知2m+2>0,所以当m>-1时,y随
探究新知
观察与比较:
比较上面两个函数图象的相同点与不同点.填出你的观
察结果并与同伴交流.
这两个函数的图象形状都 是一条直线,并且倾斜程度相同 .函 数y=-6x的图象经过原点,函数 y=-6x+5的图象与y轴交于点(0,5), 即它可以看作由直线y=-6x向 上 平 移 5 个单位长度得到.

人教版八年级下册19.2.2一次函数的概念(教案)

人教版八年级下册19.2.2一次函数的概念(教案)
人教版八年级下册19.2.2一次函数的概念(教案)
一、教学内容
人教版八年级下册19.2.2节,本节课主要围绕一次函数的概念进行讲解。内容包括:
1.一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数,其中x为自变量,y为函数。
2.一次函数的图像:在平面直角坐标系中,一次函数的图像是一条直线。
学生小组讨论部分,大家围绕一次函数在实际生活中的应用展开了热烈的讨论。我觉得这是一个很好的现象,说明学生们开始尝试用数学的眼光看待周围的世界。但我也注意到,有些学生在讨论中显得有些拘谨,可能是因为缺乏自信。为此,我计划在接下来的课程中,多给予鼓励和肯定,提高学生们的自信心。
最后,我认识到,作为一名教师,我需要不断反思和总结自己的教学方法和策略,以便更好地服务于学生,帮助他们掌握数学知识,提高解决问题的能力。我会继续努力,为学生们提供更优质的教学体验。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对一次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-运用一次函数解决实际问题:在应用一次函数解决具体问题时,如何正确设置变量、建立方程和求解,对于学生来说是挑战。
举例:针对难点,可以通过以下方式帮助学生突破:
-对于斜率k的理解,可以设计实际情境,如爬坡问题,让学生感受到斜率与倾斜程度的关系。

19.2.2(2)一次函数的图像和性质(教案)

19.2.2(2)一次函数的图像和性质(教案)
19.2.2(2)一次函数的图像和性质(教案)
一、教学内容
本节课选自教材第19章第2节第二个小节,“一次函数的图像和性质(2)”。教学内容主要包括以下两个方面:
1.一次函数图像的特点:在一次函数y=kx+b中,k、b的取值对图像的影响,图像与坐标轴的交点,图像的斜率与增减性等。
2.一次函数的性质:一次函数的奇偶性、单调性、周期性等,以及在实际问题中的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数的基本概念、图像特点及性质。同时,我们也通过实践活动和小组讨论加深了对一次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y=kx+b的表达式,其中k、b是常数,k称为斜率,b称为截距。它是描述线性关系的重要数学模型,广泛应用于自然科学和社会科学中。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过一次函数来描述物体在直线运动中的速度与时间的关系。
3.重点难点解析:在讲授过程中,我会特别强调一次函数图像的特点和性质这两个重点。对于难点部分,如斜率的意义和图像的增减性,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如绘制不同斜率和截距的一次函数图像,观察其特点。
此外,实践活动环节,我发现学生们在分组讨论和实验操作时表现得非常积极。这说明他们对于一次函数的实际应用非常感兴趣。今后,我可以多设计一些类似的实践活动,让学生在动手操作中掌握知识。

19.2.2一次函数(2)待定系数法

19.2.2一次函数(2)待定系数法

第19章一次函数19.2.2 一次函数第3课时用待定系数法确定一次函数的解析式一、教学内容及分析(一)教学内容用待定系数法确定一次函数解析式.(二)内容分析本节课是一次函数的第三课时,主要是用待定系数法确定一次函数的解析式,其实质是通过列一元一次方程或二元一次方程组求常数、b的值,即利用已知的一个条件或两个条件确定一次函数解析式,通过把已知点的坐标代入一次函数解析式求解的过程,巩固函数图象的概念和性质.本节课的重点是根据所给信息用待定系数法确定一次函数的解析式,解决重点的关键是让学生明确点的横、纵坐标分别对应解析式中变量、,然后列出一元一次方程或列出二元一次方程组进行求解.二、教学目标及分析(一)教学目标1.知道什么是待定系数法;2.会用待定系数法确定一次函数解析式.(二)目标分析1.知道什么是待定系数法,就是指让学生通过例题和练习了解“先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出解析式的方法,叫做待定系数法”,并初步了解用待定系数法确定一次函数的解析式的一般方法和步骤.2.会根据已知条件确定一次函数表达式,就是指让学生知道已知点的横、纵坐标分别对应一次函数解析式bkxy+=中、的值,通过列一元一次方程或列二元一次方程组求解、b的值来确定一次函数的解析式.三、问题诊断分析学生在理解一次函数图像时,对于、两个变量对应着点的横、纵坐标可能觉得困难,具体表现在对一次函数图象的概念认识不够。

要克服这一可能遇到的困难,关键是通过画图,结合图象和具体事例加强理解.例如:已知一次函数的图象过点3,5与-4,-9,求这个一次函数的解析式.再做相应的变式训练来理解,从而克服可能遇到的困难.四、教学过程问题一:怎样确定一次函数的解析式设计意图:提出一个极有挑战性的问题,囊括本节课要学习的所有内容,点明主题,但要回答这个问题目前又极其困难,这就达到了以问题引领本节课教学的目的.问题1:一次函数的一般形式是什么问题2:在一般形式中,有几个未知系数分别是什么问题3:要求这些未知系数的值应采取什么方法例1 已知一次函数的图象经过点(3,5)和点(-4,-9),求这个一次函数的解析式.设计意图:此例完成可以按照“用待定系数法确定一次函数解析式”的一般方法和步骤来解答的典型例子,通过此例的解答要让学生初步理解“用待定系数法确定一次函数解析式”的解题模式,形成解题技巧.师生活动:本例采用学生先自主解答,老师进一步订正、归纳、总结的模式进行教学.最后师生合作得出确定一次函数解析式的方法和步骤:第一步:设,设出函数的一般形式;第二步:列,列出方程或方程组;第三步:解,解出方程或方程组;第四步:答,答出解析式.这种先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出函数解析式的方法,叫做待定系数法.变式练习:已知一次函数中,当=1时,=3,当=-1时,=7.求这个一次函数的解析式.五、目标检测1.已知一次函数=2,当=5时的值为4,则的值为______.2.直线L的图象如图所示,则= ,b=3.已知一次函数的图象经过点(-4,9)和点(2,3),求这个函数的解析式.六、课堂小结1.什么是待定系数法2.用待定系数法确定一次函数的解析式的步骤有哪些。

人教版八年级下册数学 19.2.2 一次函数(2)一次函数的图像与性质 课件 (共26张PPT)

人教版八年级下册数学 19.2.2 一次函数(2)一次函数的图像与性质 课件 (共26张PPT)

y Ox
y随x的增大而减小
函数的图象随着x的增大从左到右 下降
图象与y轴相交 于正半轴,图 象只经过一、 二、四象限, 不经过第三象 限。
图象与y轴相交 于负半轴,图象 只经过二、三、 四象限,不经过 第一象限。
*k越小直线相对于x轴越陡峭。
y
y
Ox
Ox
根据图象确定k,b的取值
K> 0 b= 0
K <0 b= 0

k>0
k<0
y
y
Ox
Ox

性质:k>0,y 随x 的增大 而增大;k<0,y 随 x 的 增大而减小.
针对函数 y =kx+b,大家想研 究什么?应该怎样研究?
画一画
y =2x
画一次函数 y =2x-3 的图象.
x … -2 -1 0 1 2 … y=2x-3 … -7 -5 -3 -1 1 … y
求一次函数y=kx+b(k≠0)的图象与两坐标轴的交点的方法是; 令x=0,则得y=b,而得与y轴的交点坐标为(0,b); 令y=0,则得x=-b/k,而得与x轴的交点坐标为(-b/k,0)
K:决定直线倾斜的方向。 |k|越大,函数图象越靠近 y轴。
b: 决定直线与y轴相交的 交点的位置。当b>0时,交 点在y轴正半轴;当b˂0时, 交点在y轴负半轴。
2 1
得 x=1.
-2 -1 O
过点(0,3)、(1,0)画一条直线,
-1 -2
123
x
这条直线就是函数y=-3x+3的图像.
-3
-4 y=-3x+3
思思思考考考1:23::画画把一一直次次线函函y数=数y-=y3=2xx怎-3样1x-的平3 图移像得的选到图取函像哪数选两y=取点-哪比3两较x+点方3比便的较?图方像便?? 2

19.2.2一次函数(2一次函数的图象与性质(1)+课件+2023-2024学年人教版数学八年级下册

19.2.2一次函数(2一次函数的图象与性质(1)+课件+2023-2024学年人教版数学八年级下册
1

____平移___个单位长度得到y=2x-1的图象.
2
变式训练在同一平面直角坐标系中画出y=-x,y=-x+2和y=
-x-2的图象并填空.
解:列表:
x
-2 -1
0
1
2
y=-x
2
1
0
y=-x+2
4
3
2
-1 -2
1
0
y=-x-2
0
-1
-2
-3 -4
2

发现:y=-x的图象向____平移___个单位长度得到y=-x+2的图象;向
A.y3<y2<y1
B.y1<y2<y3
C.y2<y1<y3
D.y3<y1<y2
4.对于函数y=-3x+4,下列结论正确的是( B )
A.它的图象必经过点(-1,1)
B.它的图象不经过第三象限
C.当x>0时,y>0
D.y的值随x值的增大而增大
思维过关
5.在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数
解:A点的坐标为(4,0),B点的坐标为(0,4).
(2)画出图象;
解:如图所示.
(3)求直线与坐标轴围成的三角形的面积.
解:∵A(4,0),B(0,4),
∴OA=4,OB=4.
1
1
∴S△AOB= OA·OB= ×4×4=8.
2
2
∴直线与坐标轴围成的三角形的面积为8.
4.若函数y=(m-2)x|m|-1是一次函数,则m的值是_____.
的大小关系是( B )
A.y1>y2
B.y1<y2
C.y1=y2
D.无法确定
2.(1)一次函数y=2x+1向下平移2个单位长度,得到新的一次函数的解

19.2.2(2)一次函数的图像与性质--上课用

19.2.2(2)一次函数的图像与性质--上课用
[归纳总结]对于一次函数y=kx+b(k≠0), 判断k值的方法: 反之,k<0; ②直线的升、降法:当直线y=kx+b从左到右 上升时, k>0,反之,k<0; 直线过第二、四象限,则k<0.
①增减性法:当y随着x的增大而增大时,k>0,
③经过象限法:直线过第一、三象限,则k>0,
三.例题讲解:2.一次函数的图像与性质的综合运用问题:
3.一次函数y=kx+b(k,b是常数,k≠0)与正 比例函数y=kx的关系: y=kx 在b>0时,向上平移|b|,得到y=kx+b
y=kx
在b<0时,向下平移|b|,得到y=kx+b
二.讲授新课:3.一次函数的性质
直线y=kx+b所在象限,完全取决于k,b的符 号,现归纳如下:
k,b的符号 b>0 直线y=kx+b的示意图 b<0 k>0 b>0 b<0 k<0
数图像有什么相同点和不同点?
一.引入新课:
问题2.(2)在同一直角坐标系内,画出函数y
=2x,y=2(x-1)和y=2(x+1)的图象,并思考观察三
个函数图像之间有什么关系?
一.引入新课:
问题2.(3)在同一直角坐标系内,画出函数y
=2x-1和y=-0.5x+1的图象,观察两个函数图像
之间有什么关系?
,0)的直
线,当k>0时,直线y=kx+b的函数值y随x的增大而 增大;当k<0时,直线y=kx+b的函数值y随x的增大
而减小.
2.根据函数图象经过的象限,画出大致图象,结合
图象确定其系数的符号,也可以由系数的符号确定
图象经过哪些象限.
祝同学们学 习愉快!!

人教版数学八年级下册19.2.2《一次函数》说课稿2

人教版数学八年级下册19.2.2《一次函数》说课稿2

人教版数学八年级下册19.2.2《一次函数》说课稿2一. 教材分析《一次函数》是人民教育出版社出版的初中数学八年级下册第19.2.2节的内容。

本节课的主要内容是让学生了解一次函数的定义、性质以及一次函数图象与系数的关系。

通过学习本节课,使学生能运用一次函数解决实际问题,提高学生的数学应用能力。

二. 学情分析学生在学习本节课之前,已经掌握了小学数学的基本知识,具备了一定的逻辑思维能力和运算能力。

但对于一次函数的定义、性质以及一次函数图象与系数的关系可能还比较陌生。

因此,在教学过程中,教师需要结合学生的实际情况,循序渐进地引导学生理解和掌握一次函数的相关知识。

三. 说教学目标1.知识与技能目标:使学生了解一次函数的定义、性质,学会绘制一次函数图象,掌握一次函数图象与系数的关系。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生独立思考、合作交流的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的数学素养,使学生感受数学在生活中的应用。

四. 说教学重难点1.教学重点:一次函数的定义、性质,一次函数图象与系数的关系。

2.教学难点:一次函数图象与系数的关系的推导和理解。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组讨论法等。

2.教学手段:多媒体课件、黑板、粉笔、教学卡片等。

六. 说教学过程1.导入新课:通过生活中的实际例子,引出一次函数的概念,激发学生的学习兴趣。

2.知识讲解:讲解一次函数的定义、性质,引导学生通过观察、分析、归纳等方法,发现一次函数图象与系数的关系。

3.案例分析:分析具体的一次函数案例,使学生进一步理解和掌握一次函数的相关知识。

4.实践操作:让学生动手绘制一次函数图象,巩固所学知识。

5.小组讨论:学生进行小组讨论,分享学习心得,互相学习,共同进步。

6.总结提升:对本节课的主要内容进行总结,强化学生对一次函数的理解和记忆。

七. 说板书设计板书设计要清晰、简洁、明了,能够突出一次函数的重点知识。

19.2.2一次函数

19.2.2一次函数

∴ S△ AOB=
1 ×6×3=9. 2
感悟新知
知2-练
4-1.[中考·株洲]在平面直角坐标系中,一次函数y=5x+1的
图象与y轴的交点的坐标为( D )
A.(0,-1)
B.(- 1 ,0)
C.(
1
5 ,0)
5
D.(0,1)
感悟新知
知识点 3 一次函数图象的平移
知3-讲
1. 上、下平移 直线y=kx+b 向上平移n(n>0)个单位长度得到直线
y 随x 的增大而减小
与y 轴 交点 正半轴 负半轴 原点 正半轴 负半轴 原点
的位置
感悟新知
特别提醒
知4-讲
●由k,b 的符号可以确定直线y=kx+b(k,b 是常数,
k ≠ 0) 所经过的象限;反之,由直线y=kx+b(k,b
是常数,k ≠ 0) 所经过的象限也可以确定k,b的
符号.
● k决定一次函数y=kx+b(k,b 是常数,k ≠ 0)的增
x 2
-3
与x
轴的交点为A,与y
轴的交点为
B,画出函数图象并求S△ AOB.
解题秘方:紧扣直线与两坐标轴的交点进行解答.
感悟新知
解:当x=0 时,y=-3,
知2-讲
∴点B 的坐标为(0,-3);
当y=0 时,x=-6,
∴点A 的坐标为(-6,0).
画出函数图象如图19.2-5 所示.
由图象可知,OA= ∣-6∣ =6,OB= ∣-3∣ =3,
第19章 一次函数
19.2 一次函数
19.2.2 一次函数
学习目标
1 课时讲解 2 课时流程

人教版数学八年级下册19.2.2第2课时《一次函数的图象与性质》说课稿

人教版数学八年级下册19.2.2第2课时《一次函数的图象与性质》说课稿

人教版数学八年级下册19.2.2第2课时《一次函数的图象与性质》说课稿一. 教材分析《一次函数的图象与性质》是人教版数学八年级下册第19.2.2节的内容,这部分内容是在学生已经掌握了函数的概念、一次函数的定义和表达式的基础上进行讲解的。

本节课的主要内容是一次函数的图象与性质,包括一次函数的图象是一条直线,直线的斜率和截距的概念,以及一次函数的单调性和特殊点。

这部分内容不仅是学生对函数知识的深化,也是对函数知识在实际问题中的应用。

二. 学情分析八年级的学生已经具备了一定的函数知识,对一次函数的概念和表达式已经有了一定的了解。

但是,学生对一次函数的图象与性质的理解还需要进一步的引导和启发。

此外,学生对数学知识的应用能力还需要加强,需要通过实际问题来引导学生理解和运用一次函数的图象与性质。

三. 说教学目标1.知识与技能目标:学生能够理解一次函数的图象与性质,包括一次函数的图象是一条直线,直线的斜率和截距的概念,以及一次函数的单调性和特殊点。

2.过程与方法目标:学生能够通过实际问题来运用一次函数的图象与性质,提高学生对数学知识的应用能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,提高学生对数学学科的兴趣和热情。

四. 说教学重难点1.教学重点:一次函数的图象与性质,包括一次函数的图象是一条直线,直线的斜率和截距的概念,以及一次函数的单调性和特殊点。

2.教学难点:一次函数的图象与性质在实际问题中的应用。

五. 说教学方法与手段本节课采用问题驱动的教学方法,通过实际问题引导学生理解和运用一次函数的图象与性质。

同时,利用多媒体手段,展示一次函数的图象和性质,帮助学生直观地理解和记忆。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考一次函数的图象与性质。

2.讲解:讲解一次函数的图象与性质,包括一次函数的图象是一条直线,直线的斜率和截距的概念,以及一次函数的单调性和特殊点。

3.练习:学生进行课堂练习,巩固对一次函数的图象与性质的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.2.2 一次函数 (2)
学习目标:
1、知道一次函数图象的特点,会熟练地画一次函数的图象。

2、知道一次函数与正比例函数图象之间的关系。

3、掌握一次函数的性质。

学习过程:
一、创设问题情境:
什么叫一次函数?它的一般形式是什么?
二、自主学习与合作探究:
你们知道一次函数是什么形状吗? 那就让我们一起做一做,看一看。

1、画出函数y=-6x,y=-6x+2,y=-6x-2的图象(在同一坐标系内).
【思考】请你比较上面三个函数的图象的相同点与不同点,填出你的观察结果:这三个函数的图象形状都是,并且倾斜程度;函数y=-6x 的图象经过(0,0);函数y=-6x+2的图象与y轴交于点,即它可以
看作由直线y=-6x 向 平移 个单位长度而得到的;函数y=-6x-2的图象与y 轴交点是 ,即它可以看作由直线y=-6x 向 平移 个单位长度而得到的;比较三个函数解析式,试解释这是为什么?
【猜想】联系上面例子考虑一次函数y=kx+b 的图象是什么形状,它与直线y=kx 有什么关系?
归纳平移法则:
一次函数y=kx+b 的图象是一条 ,我们称它为直线y=kx+b ,它可以看作由直线y=kx 平移 个单位长度而得到(当b>0时,向 平移;当b<0时,向 平移).
对于一次函数y=kx+b(其中k)b 为常数,k ≠0)的图象 直线,你认为有没有更为简便的方法 。

三、巩固练习:
例1、分别画出下列函数的图像。

(1)12-=x y (2)15.0+-=x y
探究:分别画出下列函数的图像 :(图像画在课堂练习本上)
(1)1+=x y (2)12-=x y (3)1+-=x y (4)12--=x y 观察上面四个图像:
(1)1+=x y 经过__ __象限;y 随x 的增大而_______,函数的图像从左到右________;
(2)12-=x y 经过____象限;y 随x 的增大而_______,函数的图像从左到右________;
(3)1+-=x y 经过_____象限;y 随x 的增大而_______,函数的图像从左到右________;(4)12--=x y 经过______象限;y 随x 的增大而_______,函数的图像从左到右________。

归纳:1、由此可以得到直线)0(≠+=k b kx y 中,k ,b 的取值决定直线的位置:
(1)⇔>>0,0b k 直线经过___________象限;
(2)⇔<>0,0b k 直线经过___________象限;
(3)⇔><0,0b k 直线经过___________象限;
(4)⇔<<0,0b k 直线经过___________象限;
2、一次函数的性质:
(1)当0>k 时,y 随x 的增大而_______,这时函数的图像从左到右_______;
(2)当0<k 时,y 随x 的增大而_______,这时函数的图像从左到右_______; 例2、已知函数3)12(-++=m x m y
(1)、若函数图像经过原点,求m 的值。

(2)、若函数图像平行直线33-=x y ,求m 的值。

(3)、若这个函数是一次函数,且y 随x 的增大而减小,求m 的取值范围。

例 3、如图,点B 是直线8+-=x y 在第一象限的一动点A
(6,0),设△AOB 的面积为S ,
(1)、写出S 与X 之间的函数关系式,并求出x 的取值
范围。

D
C B
A (2)、画出S 与X 之间的函数图像,
(3)、△AOB 的面积能等于30吗?为什么?
四、达标测试:
1、一次函数52-=x y 的图像不经过( )
A 、第一象限
B 、第二象限
C 、 第三想象限
D 、 第四象限
2、已知直线b kx y +=不经过第三象限,也不经过原点,则下列结论正确的是
A 、0,0>>b k
B 、0,0<>b k
C 、0,0><b k
D 、0,0<<b k
3、下列函数中,y 随x 的增大而增大的是( )
A 、x y 3-=
B 、12-=x y
C 、103+-=x y
D 、12--=x y
4、对于一次函数k x k y -+=)63(,函数值y 随x 的增大而减小,则k 的取值范围是( )
A 、0<k
B 、2-<k
C 、2->k
D 、02<<-k
5、一次函数13+=x y 的图像一定经过( )
A 、(3,5)
B 、(-2,3)
C 、(2,7)
D 、(4、10)
6、已知正比例函数)0(≠=k kx y 的函数值y 随x 的增大而增大,则一次函数k kx y -=的图像大致是( )
7、直线32-=x y 与x 轴交点坐标为________;与y 轴交点坐标_________;图像经过_______象限,y 随x 的增大而__________,图像与坐标轴所围成的三角形的面积是___________。

相关文档
最新文档