第3课 因式分解(1)

合集下载

【教案】青岛版数学七年级下册12.4《用公式法进行因式分解(1)》教案1

【教案】青岛版数学七年级下册12.4《用公式法进行因式分解(1)》教案1

【教案】青岛版数学七年级下册12.4《用公式法进行因式分解(1)》教案1一. 教材分析本节课的主题是“用公式法进行因式分解(1)”,这是青岛版数学七年级下册的教学内容。

因式分解是初中学段数学的重要内容,是解决各种数学问题的基本技能。

通过本节课的学习,学生将掌握因式分解的基本方法,提高解决数学问题的能力。

二. 学情分析学生在学习本节课之前,已经学习了有理数的运算、方程的解法等知识,具备了一定的数学基础。

但因式分解较为抽象,需要学生具有一定的逻辑思维能力和转化能力。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和讲解。

三. 教学目标1.知识与技能目标:学生能够理解并掌握因式分解的基本概念和方法,能够运用公式法进行因式分解。

2.过程与方法目标:通过自主学习、合作交流,学生能够培养数学思维能力和问题解决能力。

3.情感态度与价值观目标:学生能够体验到数学学习的乐趣,增强对数学学科的兴趣。

四. 教学重难点1.重点:学生能够掌握因式分解的基本方法,能够运用公式法进行因式分解。

2.难点:学生能够理解因式分解的原理,能够灵活运用公式法进行因式分解。

五. 教学方法1.情境教学法:通过生活实例引入因式分解的概念,激发学生的学习兴趣。

2.引导发现法:教师引导学生发现因式分解的规律,培养学生的自主学习能力。

3.合作学习法:学生分组讨论,共同解决问题,提高学生的合作能力和交流能力。

六. 教学准备1.教师准备:教师需要熟悉教材内容,了解学生的学习情况,准备相关的教学资源和教学工具。

2.学生准备:学生需要预习教材内容,了解因式分解的基本概念和方法。

七. 教学过程1.导入(5分钟)教师通过生活实例引入因式分解的概念,引导学生思考如何将一个多项式分解成几个整式的乘积。

2.呈现(10分钟)教师展示因式分解的定义和基本方法,引导学生发现因式分解的规律。

3.操练(10分钟)教师提出一些因式分解的问题,学生分组讨论,共同解决问题。

初中数学 因式分解(一)

初中数学  因式分解(一)

1.定义:把一个多项式化成几个既约整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式.2.因式分解结果的要求:因式分解结果的标准形式 常见典型错误或者不规范形式符合定义,结果一定是乘积的形式 ()()()x x x +1+2+3+7既约整式,不能含有中括号 []()()x x +12+3-1 最后的因式的不能再次分解 ()()x x 2-1-1单项式因式写在多项式因式的前面()()x x x -1+1 相同的因式写成幂的形式 ()()()x x x x -1+1-1 每个因式第一项系数一般不为负数 ()()x x x -+1+1 每个因式第一项系数一般不为分数x x x 12⎛⎫⎛⎫-+1+1 ⎪⎪33⎝⎭⎝⎭因式中不能含有分式 x x x 21⎛⎫+ ⎪⎝⎭因式中不能含有无理数()()()x x x +1+2-23.因式分解基本解法:“一提二代三分解”是因式分解的三种常见基本解法,“提”指的是提取公因式法,“代”指的是公式法(完全平方公式,平方差公式,立方差和立方和公式,三项完全平方公式),“分解”指的是分组分解的方法.①提取公因式法几个整式都含有的因式称为它们的公因式. 例如:()ma mb mc m a b c 2+4+6=2+2+3把每项的公因式,包括数和字母全部提出,当然有的时候把一个式子看成一个整体. ②公式法因为因式分解和整式的乘法是互逆的,所以说常见的乘法公式要特别熟悉. 平方差公式()()a b a b a b 22+-=- 完全平方公式:()a b a ab b 222+=+2+()a b a ab b 222-=-2+立方差公式:()()a b a ab b a b 2233-++=- 立方和公式:()()a b a ab b a b 2233+-+=+三项完全平方公式:()a b c a b c ab ac bc 2222++=+++2+2+2 完全立方公式:()a b a a b ab b 33223+=+3+3+()a b a a b ab b 33223-=-3+3-大立方公式:()()a b c abc a b c a b c ab ac bc 333222++-3=++++---(1)下列各式从左边到右边的变形中,是因式分解的是( )A .()ab a b a b ab 223+=3+3B .x x x x 222⎛⎫2+4=21+ ⎪⎝⎭C .()()a b a b a b 22-4=+2-2D .()x xy x x x y 23-6+3=3-2(2)如果下列式子是因式分解的结果,请判断下列式子形式是否正确,如果错误,请说明理由.①()x y x y 224-3+7;②()m m 23-4;③()()a b a b -4+2-2;④()[()]y x 22+1-1-3;⑤x x x 1⎛⎫+ ⎪⎝⎭;⑥()x x x 1⎛⎫+1-2 ⎪2⎝⎭;⑦()()y x x 2-+3-+3;⑧()()()()x y x y x y x y 2244++++.(1)C ;(2)③正确,①②④⑤⑥⑦⑧错误.【教师备课提示】这道题主要讲解因式分解的概念:(1)因式分解是一种恒等变形.(2)因式分解的结果必须是乘积的形式,每一个因式必须是整式,且不可再分解.(1)多项式x y x y x y 3222236-3+12的公因式是___________.(2)多项式()()()x y z a b x y z a b x y z a b 23433232545-24-+20-+8-公因式是_________.(3)观察下列各式:①a b 2+和a b +;②()m a b 5-和a b -+;③()a b 3+和a b --;④x y 22-和x y 22+,其中有公因式的是___________.(1)x y 223;(2)()x y z a b 223-4-;(3)②③.【教师备课提示】这道题主要讲解怎么找公因式,数和式子单独来看,数找公因数,式子找公因式.模块二 提取公因式法模块一 因式分解的概念因式分解:(1)a x abx y acx 232212+6-15(2)()()()()a b x y b c a b x y b c 223322++-6++(3)()()()x y x y x y 322+-2++2+ (4)abx acx ax 43-3+-(5)()()()()x y x y y x x y 2-33-2+2-32+3(6)a b a b ab 3223273-6+4这6道小题反映了提取公因式法的6大原则:(1)一次提净:应当先检查数字系数,然后再一个个字母逐个检查,将各项的公因式提出来,使留下的式子没有公因式可以提取. 原式()ax ax by c 2=34+2-5(2)视“多”为一:把多项式(如x y +,b c +等)分别整个看成是一个字母.原式2322()()(33)a b x y b c x y ab ab c =+++--(3)切勿漏“1”:当多项式的某一项恰好是所提取公因式时,剩下的式子里应当留下“1”,千万不要忽略掉.原式2(2)[(2)(2)1]x y x y x y =++-++22(2)(4421)x y x xy y x y =+++--+ (4)提负数:原式32(31)ax bx cx =--+(5)提相反数:原式(32)[(23)(23)]x y x y x y =---+6(32y x y =--)(6)化“分”为整:在提出一个分数因数(它的分母是各项系数的公分母)后,我们总可以使各项系数都化为整数(这个过程实质上就是通分).并且,还可以假定第一项系数是正整数,否则可用前面说过的方法,把1-作为公因数提出,使第一项系数称为正整数.原式32231(122427)4a b a b ab =-+223(489)4ab a b ab =-+.因式分解(随堂练习):(1)x y xyz xy 25-10+5(2)()()()a x a b a x x a -+--- (3)()()()x x a x x -2+1++1++1(4)()()()()x m x m y m m x m y -----(5)n n b b 3-12-131+26(n 是正整数)(6)()()()p x p x p x 32226-1-8-1-21-(1)=()xy x z 5-2+1原式;(2)=()()()a x a b x a x a -----原式()()x a a b =---1; (3)()()x x a =+1-2++1原式()()x x a =-+12--1;(4)()()m x m y 2=---原式;(5)()n n b b 2-11=9+16原式;(6)()[()]p x x p 2=2-13-1-4-1原式()()p x x p 2=2-13-4-4. 【教师备课提示】例3和例4主要考查提取公因式因式分解.因式分解:(1)()x 2-1-9 (2)()()m n m n 229--4+(3)()()a b a b 22-4-+16+ (4)()()a b a b 222222-3-5+5-3 (5)x xy y 229-24+16 (6)a a 28-4-4 (7)()c a b a b 222222---4(1)()()x x +2-4;(2)[()()][()()]m n m n m n m n =3-+2+3--2+原式()()m n m n m n m n =3-3+2+23-3-2-2 ()()m n m n =5--5;(3)原式()()a b a b 43++3=;(4)()()a b a b a b a b 22222222=5-3+3-55-3-3+5原式()()a b a b 2222=8-82+2 ()()()a b a b a b 22=16+-+;(5)()x y 2=3-4原式;(6)()a a 2=-4-2+1原式()a 2=-4-1;(7)原式()()()()c a b c a b c a b c a b +--+++--=.因式分解(随堂练习):(1)()a b 216-3+2 (2)x y x y 62575-12(3)a b c 444-81+16 (4)()()a b a b 2222223---3(5)()()x y z x y z 22+-6++9 (6)()x y x y 22222+-4(7)m m 4216-72+81模块三 公式法(1)()()a b a b =4+3+24-3-2原式;(2)()x y x y 244=325-4原式()()x y x y x y 22222=35+25-2;(3)()()c a b c a b 222222=4-94+9原式()()()c ab c ab c a b 222=2+32-34+9; (4)()()a b a b a b a b 22222222=3-+-33--+3原式()()a b a b 2222=4-42+2()()()a b a b a b 22=8+-+;(5)原式()x y z 2+-3=; (6)原式()()x y x y 22=+-;(7)()()m m 2222=4-2⋅4⋅9+9原式()m 22=4-9()()m m 22=2-32+3. 【教师备课提示】例5和例6主要考查平方差公式和完全平方公式因式分解.因式分解:(1)x 38+27 (2)y 3-+64(3)x x y 5239-72 (4)a b 66+ (5)a b 66-(1)()()x x x 2=2+34-6+9原式; (2)()()y y y 2=4-+4+16原式;(3)()x x y 233=9-8原式()()x x y x xy y 222=9-2+2+4; (4)()()a b 2323=+原式()()a b a a b b 224224=+-+; (5)()()a b 3232=-原式()()a b a b 3333=+-()()()()a b a b a ab b a ab b 2222=+--+++另解:()()a b 2323=-原式()()a b a a b b 224224=-++()()()a b a b a a b b a b 422422=+-+2+- ()()()()a b a b a ab b a ab b 2222=+--+++;【教师备课提示】这道题主要考查立方差和立方和公式. 因式分解:(1)a b c bc ca ab 2224+9+9-18-12+12(2)x x y xy y 32238-36+54-27(1)()a b c 2=2+3-3原式;(2)()x y 3=2-3原式.【教师备课提示】这道题主要考查三项完全平方和完全立方公式.下列因式分解正确的是( )A .()()()a b a b a b a b 2222-4+4=-4-4=-4+2-2B .()m m m m 323-12=3-4C .()x y x y x y x y 422224-12+7=4-3+7D .()()m m m 24-9=2+32-3D .因式分解:(1)abc a b a b 2336-14+12 (2)a a a 324-6+15-12 (3)()x a x a x 22224+--(4)()()p q p 22-1-4-1(5)()()()(a b m p a b m p 5-22+3-2-72+3) (6)()()()x y x y x y 232++6+-4+(1)()ab a c ab 22=26+3-7原式; (2)()a a a 22-34+2-5=原式; (3)()()a x x 22=+4-1原式; (4)原式()()p p q =2-1-2-1; (5)=()()m p a b 2+33+5原式;(6)()[()()]x y x y x y 2=2+1+3+-2+原式()()x y x y x y xy 22=2+1+3+3-2-2-4.模块二 提取公因式法模块一 因式分解的概念已知b c a +-=-2,求()()a a b c b c a b c b c a 22221⎛⎫--+-++2+2-2 ⎪33333⎝⎭的值.()()a b c a b c 2=----3原式()a b c 22=--3.∵b c a +-=-2,∴a b c --=2,则原式8=3.因式分解:(1)()y z x 224-2-(2)(m x y mn 2232--3)(3)x y 88-(4)x x 516-(5)()()x x x x 22225+2-3--2-3 (6)()()x x x x 2222+4+8+4+16(7)n n n a a a +2-2+8+16(1)=()()y z x y z x 2+2-2-2+原式;(2)原式=()()m x y n x y n 32-+2--;(3)=()()x y x y 4444-+原式()()()x y x y x y 222244=-++()()()()x y x y x y x y 2244=+-++;(4)()()()x x x x x 422=16-1=4-14+1原式()()()x x x x 2=2-12+14+1; (5)()()x x x 22=6-64+4原式()()()x x x x =24+1-1⋅⋅+1()()x x x 2=24-1+1; (6)()x x 22=+4+4原式()x 4=+2;(7)()n a a a -242=+8+16原式()n a a -222=+4.因式分解:(1)a b c 3338-1(2)a b b 33932-4(3)x y y 631564+(1)()()abc a b c abc 222=2-14+2+1原式;(2)=原式()b a b 33648-()()b a b a ab b 32224=42-4+2+; (3)()y x y 3612=64+原式()()y x y x x y y 3244248=4+16-4+.模块三 公式法。

沪科版数学八年级下册同步课件:1第3课时因式分解法

沪科版数学八年级下册同步课件:1第3课时因式分解法
第17章 一元二次方程
17.2 第3课时 因式分解法
知识回顾 1. 解一元二次方程的基本思路是什么?
降次转化为一元一次方程 2. 我们已经学过哪些解一元二次方程的方法?
直接开平方法,配方法,求根公式法. 3. 还记得因式分解有哪些方法吗?
提公因式法,公式法,十字交叉相乘法(补充).
4.解方程:10x-4.9x2=0
(4)把方程左边分解因式,得 (y-1)(y-5)=0,∴y-1=0或y5=0,
解得y1=1,y2=5.
7.用适当的方法解下列方程
:(1)2(x+1)2=4.5; (2)x2+2x288=0;(3)4x2+3x-2=0; (4)3x(x2)解=:2((1x)-(2x)+.1)2=2.25,x+1=±1.5,
配方法解方程10x-4.9x2=0. 公式法解方程10x-4.9x2=0.
解: x2 100 x 0,
解: 10x-4.9x2=0.
49
x2
100 49
x
50 49
2
0
50 49
2

∵ a=4.9,b=-10,c=0. ∴ b2-4ac
有没有更简便 的解法呢?
x
50 49ห้องสมุดไป่ตู้
2
50 49
因式分解法
完全平方式
直接开平方法
(3)x2 - 12x = 4 ;
解:配方,得
x2 - 12x + 62 = 4 + 62, 即 (x - 6)2 = 40.
开平方,得
解得
x1=
, x2=
二次项系数为1, 一次项系数为偶数
(4)3x2 = 4x + 1;

因式分解(一)

因式分解(一)

因式分解(一)撰稿:徐长明审稿:张扬责编:孙景艳一、目标认知学习目标:1. 了解因式分解的意义,以及它与整式乘法的关系;2.能确定多项式各项的公因式,会用提公因式法将多项式分解因式;3.会综合运用提公因式法和公式法把多项式分解因式;4.经历综合利用提公因式法和公式法将多项式因式分解的过程,发展综合运用知识的能力和逆向思维的习惯。

知识结构重点难点:重点:因式分解的概念及各种方法的使用条件。

难点:因式分解方法的综合应用。

二、知识要点梳理知识点一:因式分解的概念把一个多项式化成几个整式的积的形式,这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式,如:,等。

要点诠释:(1)因式分解的实质就是把加减形式化成乘积形式;(2)因式分解的过程和整式乘法的过程正好相反,即因式分解和整式乘法是互逆的,可表示为:多项式几个因式的乘积;(3)分解要彻底:即要使分解后每个因式(在我们所学的范围内)都不能再进行因式分解(不含有因式了).知识点二:公因式的概念1、公因式的定义:在多项式中各项都有的因式叫做这个多项式的公因式.如:多项式中每项都含有因式k,则k就是这个多项式的公因式.2、公因式的特点:a.公因式的系数是原多项式各项系数的最大公约数;b.公因式中的字母是各项中都含有字母;c.公因式字母的次数是相同字母的最低次.也即:知识点三:提公因式法分解因式把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m,另一个因式是,即,而正好是除以m所得的商,这种因式分解的方法叫提取公因式法.要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即(ma+mb+mc)=m(a+b+c);(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式。

(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号。

(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误。

人教版数学八年级上册14.3.因式分解(第1课时)优秀教学案例

人教版数学八年级上册14.3.因式分解(第1课时)优秀教学案例
二、教学目标
(一)知识与技能
1.让学生掌握因式分解的基本概念,理解因式分解的意义和作用。
2.使学生掌握提公因式法和公式法这两种基本的因式分解方法,并能够运用这两种方法进行简单的因式分解。
3.培养学生运用因式分解解决一些实际问题的能力,提高学生的数学应用意识。
4.培养学生运用数学知识分析和解决问题的能力,提高学生的数学思维水平。
2.问题导向的教学策略:本节课通过设计具有层次性和挑战性的问题,引导学生进行思考和探究,使学生在解决问题的过程中掌握因式分解的方法。这种问题导向的教学策略不仅培养了学生的逻辑思维能力,还提高了学生的创新解题能力。
3.小组合作的实践:通过组织学生进行小组合作,让学生在合作中探究和解决问题,提高了学生的实践能力。同时,小组合作也培养了学生的团队协作意识和交流沟通能力,使学生在合作中得到成长。
三、教学策略
(一)情景创设
1.生活情境:通过引入生活中的实际问题,让学生感受因式分解在实际生活中的应用,激发学生的学习兴趣。
2.故事情境:讲述与因式分解相关的历史故事,让学生了解因式分解的发展历程,增强学生的文化素养。
3.问题情境:创设具有挑战性和启发性的问题,引发学生的思考,引导学生进入学习状态。
2.利用故事情境:讲述与因式分解相关的历史故事,如“笛卡尔和因式分解”,激发学生的学习兴趣。
3.提出问题:创设具有挑战性和启发性的问题,如“你能将一个多项式分解成几个整式的乘积吗?”,引发学生的思考,引导学生进入学习状态。
(二)讲授新知
1.提公因式法:引导学生观察和分析多项式,找出公因式,并进行提取,让学生理解并掌握提公因式法。
2.组织讨论:引导学生积极参与讨论,鼓励学生提出自己的观点和思路,培养学生的团队协作能力。

七年级数学下册第3章因式分解公式法(第1课时)课件(新版)湘教版

七年级数学下册第3章因式分解公式法(第1课时)课件(新版)湘教版

【学霸提醒】 提公因式法与平方差公式综合应用的一般步骤
“一提”“二套”“三查”. 一提:将一个多项式分解因式时,第一要视察被分解的 多项式是否有公因式,若有,就要先提公因式;
二套:再视察另一个因式特点,进而发现其能否用公式 法继续分解; 三查:因式分解必须分解到每个因式都不能再分解为止.
【题组训练】
2.下列各式应用平方差公式进行因式分解: ①32-y2=9-y2;②a2-9b2=(a+9b)(a-9b); ③4x4-1=(2x2+1)(2x2-1);
④m2n2- 1 = (mn 1 )(mn 1 ) ;⑤-a2-b2=(-a+b)(-a-b).
9
3
3
其中正确的有 ( B )
A.1个
B.2个
【学霸提醒】 能应用平方差公式因式分解的多项式特点 等号左边: ①是二项式; ②每一项都可以表示成平方的情势;
③两项的符号相反. 等号右边是等号左边两底数的和与两底数的差的积.
【题组训练】 1.下列多项式不能用平方差公式因式分解的是( A ) A.-m2-n2 B.-16x2+y2 C.b2-a2 D.4a2-49n2
C.(-x)2+y2
D.x2+(-y)2
(B)
2.多项式n2-4m2因式分解的结果为 ___(_n_+_2_m_)_(_n_-_2_m_)___. 3.因式分解:(a-2b)2-b2.
解:(a-2b)2-b2 =(a-2b+b)(a-2b-b) =(a-b)(a-3b).
知识点一 用平方差公式进行因式分解(P63-64例1,2,
3拓展)
【典例1】因式分解:
16- m21.
25
81y4-16x4.

因式分解(1)

因式分解(1)

把下列各式因式分解
3 2 (1)24x y-18x y
(2) (2)7ma+14ma2 (3) -16x4+32x3-56x2 (4)-7ab-14abx+49aby (5)2a(y-z)-3b(y-z) 2 2 2 2 (6)p(a +b )-q(a +b )
1、20042+2004能被2005整除吗? 2、先分解因式,再求值
怎样分解因式: ma mb mc
公因式:多项式中各项都有的因式, 叫做这个多项式的公因式;
把多项式ma+mb+mc分解成m(a+b+c)的形 式,其中m是各项的公因式,另一个因式 (a+b+c)是ma+mb+mc 除以m的商,像这种分 解因式的方法,叫做提公因式法。
说出下列多项式各项的公因式: 1、ma + mb m 2、4kx - 8ky 4k 3、5y3+20y2 5y2 4、a2b-2ab2+ab ab
路桥实验中学 王万丰 2006.10.25
整式的乘法
计算下列个式: x (x+1)= x2 + x (x+1) (x – 1)= x2 – 1
63能被哪些数整除? 在小学我们知道,要解决这个问题 需要把63分解成质数乘积的形式.
63 3 3 7
类似的,在式的变形中,有时需要将 一个多项式写成几个整式的乘积的形 式.
注意:各项系数都是整数时,公因式的系数 应取各项系数的最大公约数;字母取各项 的相同的字母,而且各字母的指数取次数最 低的.
把8a b 12ab c分解因式 例 1、
3 2 3
分析:应先找出 与 再提公因式进行分解

因式分解1

因式分解1
如:m(a+b+c)=ma+mb+mc是多项式的乘 法,反过来 得ma+mb+mc=m(a+b+c)是因式分解, 这里m是ma+mb+mc的公因式.
5
• 例:把下列各式分解因式: • 1.8a3b-12ab3c 2 • 2.3x -6xy+x 3 2 • 3.-4m +16m -26m
6
• 当堂训练一
1.指出下列各式的公因式: 2b2 2 3 3 2 a (1)a b -a b (2)3xy-9x2y 3xy (3)2m2x3-3mx2-4x x (4)-5m3n-10m2n2+5m
-5m
7
• 2.对下列多项式进行因式解 (1)3a+3b(2)5x-5y+5z
2 2 (3)-5a +25a(4)3a -9ab;
10
当堂训练3
• 先因式分解,再计算: 1. 11.302×9.8+8.698×9.8 2. 2003×99-27 ×11
11
因式分解(1)
1
学习目标
• 1.了解因式分解与整式乘 法之间的关系. • 2.发现因式分解的基本方 法提公因式法.
2
自学指导
自读教材P87页 理解什么是因式分解.以及 因式分解的基本方法Байду номын сангаас公因 式法.能用提公因式法分解因 式.
3
4
• 1.把一个多项式化为几个整式 的乘积形式,这就是因式分解 • 2.把公因式提出来,这种因式分 解的方法,叫做提公因式法。
2 (5)a +a
2 (6)4ab-2a b
8
当堂训练2 对下列多项式进行因式解:
1.4a-8b 3 2 3 3.6x y -5xy

《因式分解》 (1)

《因式分解》 (1)

例5: 分解因式: (1)16a4- 8a2b2+ b4; (2)(x2+ 3x)2-(x- 1)2;(3)(x2+y2)2-4x2y2;(4)(x2+4)2-8x(x2+4)+16x2.
解答:(1)16a4-8a2b2+b4=(4a2-b2)2=[(2a+b)(2a-b)]2 =(2a+b)2· (2a-b)2; (2)(x2 + 3x)2 - (x - 1)2 = (x2 + 3x + x - 1)(x2 + 3x - x + 1) = (x2+4x-1)· (x2+2x+1)=(x2+4x-1)(x+1)2; (3)(x2 + y2)2 - 4x2y2 = (x2 + y2 + 2xy)(x2 + y2 - 2xy) = (x + y)2(x-y)2; (4)(x2+4)2-8x(x2+4)+16x2=(x2+4-4x)2=[(x-2)2]2= (x-2)4.
式分解的方法称之为公式法.
一个多项式→几个整式的积→因式分解 要注意的问题: (1)因式分解是对多项式而言的一种变形; (2)因式分解的结果仍是整式; (3)因式分解的结果必是一个积; (4)因式分解与整式乘法正好相反。
公因式 一个多项式中的每一项都含有的相同的因式, 称之为公因式(common factor)。 提公因式法 一般地,如果多项式的各项有公因式,可以 把这个公因式提到括号外面,将多项式写成因式 乘积的形式,这种因式分解的方法叫做提公因式 法。如 ma+mb+mc=m(a+b+c) 公式法 将乘法公式反过来应用,就可以把某些多项式 分解因式,这种分解因式的方法,叫做公式法。
1)(34 + 1)…(332 + 1) + 1 = (34 - 1)(34 + 1)…(332 + 1) + 1 = (38 -

因式分解1讲义模板

因式分解1讲义模板

教学目标
重点、难点
考点及考试要求 教学内容
一、因式分解的意义 把一个多项式化成为几个整式的积的形式,叫做多项式的因式分解. 总结:(1)因式分解是多项式的一种恒等变形,也是单项式与多项式,多项式与多项式相乘的逆变 形. (2)分解因式是对多项式而言的,且分解的结果必须是整式的积的形式. (3)分解因式都是在指定的数集内进行(如无特殊说明,一般指有理数),其结果要使每一个因式不 能再分解为止. 二、提公因式法 (1)公因式:多项式中每一项都含有的因式,叫公因式. (2)提公因式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多 项式化成几个因式乘积的形式,这种分解因式的方法叫做提公因式法. (3)公因式的构成: ①系数:各项系数的最大公约数; ②字母:各项都含有相同字母; ③指数:相同字母的最低次幂. 提公因式时要一次提尽.公因式可以是单项式,也可以是多项式。 练习: (1)2x2y-xy (2)6a2b3-9ab2 (3)x(a-b)+y(b-a) (4)ax+ay+bx+by
a 4 1 a 2 1 a 1a 1


4、对某些多项式还要了解经过一定变形后才能分解的因式,如:分解 x 2 4 xy 3 y 2 的因式,此题用 现有的方法还不能分解因式.但若适当处理后配成完全平方,就可以继续分解.
x 2 4 xy 3 y 2 x 2 4 xy 3 y 2 y 2 y 2 x 2 4 xy 4 y 2 y 2 x 2 y y 2 x 2 y y x 2 y y x y x 3 y
(2)3ax2+6axy+3ay2
(3)4x2-12x+9
(4)16x4+24x2+9;

因式分解(1)

因式分解(1)
3(a+b)
2.多项式5ab2c+15abc2中的每一项都含有一个公因式
2a2b
1.定系数:系数是各项系数的最大公因数. 2.定字母:字母是各项中的相同字母. 3.定指数:指数是相同字母的最小指数.
说出下列多项式各项的公因式: (1)ma + mb ; m (2)4kx- 8ky ; 4k (3)5y3+20y2 ; 5y2 (4)a2b-2ab2+ab . ab
(2)a2b a a2(b 1 ) a
(3) x2+3xy+x=x(x+3y)
(×) (× )
(4) 2a(b-c)+2a=2a(b-c+1) ( √ )
(5) m5=mm4
(× )
注:因式分解要注意以下几 点: 1 、分解的对象必须是多项式. 2 、分解的结果一定是几个整 式的乘积的形式. 3 、要分解到不能分解为止.
----提公因式法
学习目标
1.了解因式分解的意义及其与整式的 乘法之间的关系,从中体会事物之 间能够相互转化的辩证思想.
2.会用提公因式法实行因式分解.
教学重点:
因式分解的概念、使用提公因 式法实行因式分解
教学难点: 能准确找出多项式中各项的
公因式并会实行因式分解
合作与探究
1.概念: 把一个多项式化为几个整式的乘积 的形式叫做因式分解.
(1)5x-5y+5z (2)-8a3b2-12ab3c+4abc
(3)-25a - 2a (4)9a(b-c) -6a2(c-b)
(5) 2 x2 y3z4 2xy4z 1 x2 y3z
7
7
课堂小结
这节课你学到了什么? 你认为最难掌握的是什么知识?
感谢您的指导

因式分解(一)

因式分解(一)

D.
a2 7a 12 a 3 a 4
【知识点二】提公因式法 计算: 3.8 5 4.3 5 1.9 5 逆用乘法分配律
3.8 5 4.3 5 1.9 5 5 3.8 4.3 1.9
提取公因式: ap bp cp p a b c , p 公因式 思考 :如何确定公因式? 例: 6a 3b 8a 2b2 12a 2bc ①先系数:系数的最大公约数为 2 ②再字母:所有项公共字母为 ab
例 3. ( 1)因式分解: a2 ab
.
(2)因式分解: 3x2 18x (3)因式分解: 16x2 y xy (4)因式分解: 3m2n 6mn2
. . .
练习 3-1 . (1)因式分解: a2 a
.
(2)因式分解: 2a2 4a
.
(3)因式分解: 2m2 m
.
练习 3-2 . 把多项式 4a3 4a 2 16a 因式分解,结果是( )
.
(2)因式分解: x2 9
.
(3)因式分解: 9x2 4
.
练习 6-1 . (1)因式分解: x2 4
.
(2)因式分解: x2 9 y2
.
练习 6-2 . (1)因式分解: 9 4 p2
.
(2)因式分解: 16m2 25
.
例 7. 因式分解: x4 y4
.
练习 7-1 . 因式分解: a4 16
.
③后指数:公共字母最小指数为 a2b
因式分解: 6a3b 8a2b2 12a2bc 2a2b 3a 4b 6c
注意:(1)公因式要提尽,千万不能有所遗漏 . (2) 要符合 代数式的书写规范 ①单项式要写在多项式的前面 ②相同的因式要写成幂的形式 ③括号内多项式的首项系数一般变为正数 例: 9a2b 15ab2c 3ab 3a 5bc

24.2 解一元二次方程 - 第3课时因式分解法课件(共20张PPT)

24.2 解一元二次方程 - 第3课时因式分解法课件(共20张PPT)
x1=-2,x2=2
D
知识点2
用适当的方法解方程

解一元二次方程的方法: 直接开平方法、配方法、公式法、因式分解法.其 中配方法和公式法适合于所有一元二次方程,直接 开方法和因式分解法适合于某些特殊方程.
例2
用适当的方法解方程:(1) (3x+2)2-8(3x+2)+15=0; (2)(5x + 1)2 = 1;
第 二十四章 一元二次方程
24.2 解一元二次方程 第3课时 因式分解法
学习目标
学习重难点
用因式分解法解特殊的一元二次方程.
选用恰当的方法解一元二次方程.
难点
重点
1.理解用因式分解法解方程的依据,能用因式分解法解特殊的一元二次方程.2.会选用恰当的方法解一元二次方程.
解:(1) 因式分解,得[(3x+2)-3] [(3x+2)-5]=0, 即 (3x-1)(3x-3)=0, ∴x1= ,x2=1.(2)开平方,得 5x + 1 = ±1. 解得, x 1= 0 , x2=
例2
(3)2x2-7x-6=0; (4) x2 - 12x = 4
随堂演练
2. 解下列方程:(1)9(x-1)2=5;(2)x2+5x+7=3x+11;(3)3x2-6x=-3.
随堂演练
解:(2)化简,得 x2+2x=4,x2+2x+1=5, (x+1)2=5
(3)化简,得
x2-2x+1 = 0.
因式分解,得
( x-1 )( x-1 ) = 0.
即x - 1 = 0 或 x - 1 哪些解一元二次方程方法?这些方法是否能解所有的一元二次方程.
导入新知

八年级数学知识点分类讲解1因式分解(一)

八年级数学知识点分类讲解1因式分解(一)

八年级数学知识点分类讲解第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.。

第3课 因式分解

第3课  因式分解

2x+1=(x+1)2,故本项错误;③等式的右边不是乘积形
式,不是因式分解,故本项错误;④2x+4=2(x+2),故
本项正确.
【纠错】 ④ ★名师指津 因式分解是将一个多项式变形为几个因式
的乘积的形式.在变形的过程中,应注意避免将部 分多项式转化成几个因式乘积的形式,导致式子最 后的形式是和的形式,从而没有正确地进行因式分 解.
【答案】 D
【类题演练 1】 下列式子变形是因式分解的是 ( ) A.x2-2x-3=x(x-2)-3 B.x2-2x-3=(x-1)2-4 C.(x+1)(x-3)=x2-2x-3 D.x2-2x-3=(x+1)(x-3)
【解析】 A.没把一个多项式转化成几个整式积的形式, 故本选项错误. B.没把一个多项式转化成几个整式积的形式,故本选项 错误. C.是整式的乘法,故本选项错误. D.把一个多项式转化成几个整式积的形式,故本选项正 确.
2.用完全平方公式分解因式时,其关键是掌握公式的特 征.
【典例 3】 (2018·贺 州 ) 下 列 各 式 分 解 因 式 正 确 的 是
() A.x2+6xy+9y2=(x+3y)2 B.2x2-4xy+9y2=(2x-3y)2 C.2x2-8y2=2(x+4y)(x-4y) D.x(x-y)-y(y+x)=(x-y)(x+y) 【解析】 A.x2+6xy+9y2=(x+3y)2,故本选项正确. B.2x2-4xy+9y2 无法分解因式,故本选项错误. C.2x2-8y2=2(x+2y)(x-2y),故本选项错误. D.x(x-y)-y(y+x)无法分解因式,故本选项错误.
2.提取公因式法常用的变形有 a-b=-(b-a),当 n 为 奇数时,(a-b)n=-(b-a)n;当 n 为偶数时,(a-b)n =(b-a)n.

因式分解-1

因式分解-1
因式分解是初中数学中的重要概念,特别是平方差公式的应用。文档通过详细的教学程序,包括创设情境、引导学生探究、演示具体流程和讨论等方式,来帮助学生深入理解和掌握因式分解的技巧。这些教学方法旨在培养学生的观察、分析、创新和逆向思维能力。虽然文档未直接展示10(n+1)的因式分解步骤,但所介绍的平方差公式a2-b2=(a+b)(a-b)为因式分解提供了首先观察其是否符合平方差或其他因式分解公式的形式,然后按照相应的公式进行变换。不过,10(n+1)本身似乎并不直接符合常见的因式分解公式,可能需要更复杂的变换或结合其他数学知识进行处理。

第3课因式分解(含求根公式分解法)

第3课因式分解(含求根公式分解法)

第3课因式分解(含求根公式分解法)第3课因式分解(含求根公式分解法)[考点透视]多项式的因式分解的意义与其因式分解的步骤;提公因法.公式法.分组法和十字相乘法是因式分解的四种基本方法;针对已知多项式的结构特点灵活运用四种基本方法进行因式分解;已知二次三项,利用一元二次方程的求根公式在实数范围内因式分解. [课前回顾]1.因式分解是把一个多项式化成几个整式积的形式.2.确定多项式的公因的方法:(1)对数字系数取各项系数的最大公约数;(2)各项都含有的字母取最低次数幂的积.3.针对平方差公式:))((22b a b a b a -+=-完全平方公式:222)(2b a b ab a ±=+±的形式与特点,仔细观察题目的结构特征并与公式相对照,符合公式方可利用公式因式分解.4.分组分解时要有预见性即分组后有公因式或运用进行因式分解.5.十字相乘法是适用于二次三项式的因式分解的一种方法.6.利用求根公式在实数范围内将二次三项式因式分解.[课堂选例]例1 因式分解:234xy x -分析先提公因式x ,得)4(22y x x -,再利用平方差公式分解)4(22y x -即可. 解:)2)(2()4(42223y x y x x y x x xy x -+=-=- 例2 因式分解:y x y xy x ----222 分析前三项分为一组,后两项分为一组,前一组可用十字相乘法分解因式后,两组里有公因式)(y x +可提. 解:y x y xy x ----222=)()2(22y x y xy x +--- =)()2)((y x y x y x +--+ =)12)((--+y x y x例 3 在实数范围内把4692-+x x 分解因式分析对二次三项式4692-+x x 不能利用十字相乘法进行因式分解时,可利用一元二次方程的求根公式因式分解.特别注意二次项系数9不能遗漏. 解:由04692=-+x x ,得351±-=x 351,35121--=+-=∴x x )351)(351(94692---+--=-+∴x x x x)513)(513(++-+=x x例4 因式分解ab b a 4)1)(1(22--- 分析先把前两个因式展开后,将得到的多项式进行分组,需要把ab 4-拆成两项,恰好配成两个完全平方公式的形式,再利用平方差因式分解. 解:ab b a 4)1)(1(22--- ab b a b a 412222-+--= )2()12(2222b ab a ab b a ++-+-=22)()1(b a ab +--=)1)(1(----++=b a ab b a ab 例5 若c b a ,,是三角形三边的长,则代数式ab c b a 2222--+的值()A .大于零B .小于零C .大于或等于零D .小于或等于零分析因为c b a ,,为三角三边长,所以c b a ,,均为正值,且应满足三角形“任意两边和大于等三边”的关系,将代数式因式分解,再确定每个因式的符号即可. 解:ab c b a 2222--+222)2(c b ab a -+-=22)(c b a --=))((c b a c b a --+-=又c b a ,, 是三角形三边的长c b a b c a +<>+∴, 即0,0<-->+-c b a c b a0))((<--+-∴c b a c b a即02222<--+ab c b a故选B.例6 如果b ax x x ++-2328能被142-x整除,求b a ,的值,并把多项式因式分解.解:由题意,可设bax x x ++-2328)2)(14(2c x x +-=c x cx x --+=24823比较等式两边对应项系数,可得-=-=-=c b a c 224 解得-==-=21212c b a∴)212)(14(21228223--=+--x x x x x )212)(12)(12(-+-=x x x[课堂小结]1.因式分解是代数运算中一种重要的恒等变形,与代数中许多内容有密切关系,它的四种基本方法是进行因式分解的关键.2.在实数范围内分解因式一般用到配方法或求根公式.3.例5将一个难以确定的问题利用因式分解方法使问题易解.4.例6由条件设出分解式,再利用待定系数法构造方程,从而求出b a ,[课后测评] 一.选择题1.下列多项式中,能在实数范围内分解因式的是( )A .42+xB .22+xC .12--x xD .12++x x2.下列因式分解正确的是( ) A .22)2331(4991x x x -=+-B .2224)12(21-=-+m m mC .)4)(4(16224-+=+m m mD .)19)(19(192-+=-m m m3.一元二次方程02=++q px x 的两根为3,4,那么二次三项q px x ++2 可分解为( )A .)4)(3(-+x xB .)4)(3(+-x xC .)4)(3(--x xD .)4)(3(++x x二.填空题4.分解因式:4524+-x x =5.分解因式:m ma ma 442+-=三.解答题6.运用两种方法把3223n n m mn m -+-分解因式.7.已知142++mx x 是关于x 的完全平方式,求352+-m m 的值.8.求证:四个连续整数的积与1的和是某个整式的平方.9.分解因式:2)6)(3)(2)(1(x x x x x +++++10.c b a ,,为?ABC 的三边长,且06363223=--+abc c a b a a 判断?ABC 的形状,并说明理由.。

初高中数学衔接教材:第3课 因式分解(1)及答案

初高中数学衔接教材:第3课 因式分解(1)及答案

因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中它都有着重要的作用.因式分解的方法较多,除了初中教材中涉及到的提取公因式法和运用公式法(只讲平方差公式和完全平方公式)外,还有运用公式法(立方和、立方差公式)、十字相乘法、分组分解法等.因式分解的问题形式多样,富有综合性与灵活性,因此,因式分解也是一种重要的基本技能.一、提取公因式法例13x2-6x+3.二、公式法例2(1)8+x3;(2)x2+2xy+y2-z2.三、分组分解法例3(1)2ax-10ay+5by-bx;(2)x3-x2+x-1.四、配方法例4(1)x2+6x-16;(2)x2+2xy-3y2.五、拆项添项法例5(1)x3-3x2+4;(2)x3-2x+1.六、求根公式法例6(1)x2-x-1;(2)2x2-3x-1.七、十字相乘法(1)x2+(p+q)x+pq型式子的因式分解我们来讨论x2+(p+q)x+pq这类二次三项式的因式分解.这类式子在许多问题中经常出现,它的特点是(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和.对这个式子先去括号,得到x2+(p+q)x+pq=x2+px+qx+pq,于是便会想到继续用分组分解法分解因式,即x2+px+qx+pq=(x 2+px )+(qx +pq )=x (x +p )+q (x +p )=(x +p )(x +q ).因此,x 2+(p +q )x +pq =(x +p )(x +q ).运用这个公式,可以把某些二次项系数为1的二次三项式分解因式.例7 把下列各式分解因式:(1)x 2+3x +2;(2)x 2-x -20;(3)x 2-52x +1;(4)x 2+11x +24. 八、ax 2+bx +c 型因式分解我们知道,(a 1x +c 1)(a 2x +c 2)=a 1a 2x 2+a 1c 2x +a 2c 1x +c 1c 2=a 1a 2x 2+(a 1c 2+a 2c 1)x +c 1c 2.反过来,就得到a 1a 2x 2+(a 1c 2+a 2c 1)x +c 1c 2=(a 1x +c 1)(a 2x +c 2).我们发现,二次项的系数a 分解成a 1×a 2,常数项c 分解成c 1×c 2,并且把a 1,a 2,c 1,c 2排列如图:,这里按斜线交叉相乘,再相加,就得到a 1c 2+a 2c 1,如果它正好等于ax 2+bx +c 的一次项系数b ,那么ax 2+bx +c 就可以分解成(a 1x +c 1)(a 2x +c 2),其中a 1,c 1位于上图上一行,a 2,c 2位于下一行.像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解.例8 (1)6x 2+5x +1;(2)6x 2+11x -7;(3)42x 2-33x +6;(4)2x 4-5x 2+3;(5)2t 6-14t 3-16.1.把下列各式分解因式:(1)a 3+27;(2)8-m 3;(3)-27x 3+8;(4)-18p 3-164q 3;(5)8x 3y 3-1125;(6)1216x 3y 3+127c 3.2.把下列各式分解因式:(1)xy3+x4;(2)x n+3-x n y3;(3)a2(m+n)3-a2b3;(4)y2(x2-2x)3+y2.3.把下列各式分解因式:(1)x2-3x+2;(2)x2+37x+36;(3)x2+11x-26;(4)x2-6x-27;(5)m2-4mn-5n2;(6)(a-b)2+11(a-b)+28.4.把下列各式分解因式:(1)ax5-10ax4+16ax3;(2)a n+2+a n+1b-6a n b2;(3)(x2-2x)2-9;(4)x4-7x2-18;(5)6x2-7x-3;(6)t6-9t3+8;(7)7(a+b)2-5(a+b)-2;(8)(6x2-7x)2-25.5.把下列各式分解因式:(1)3ax-3ay+xy-y2;(2)8x3+4x2-2x-1;(3)5x2-15x+2xy-6y;(4)4a2-20ab+25b2-36;(5)4xy+1-4x2-y2;(6)a4b+a3b2-a2b3-ab4;(7)x6-y6-2x3+1;(8)x2(x+1)-y(xy+x).答案精析例1 解 3(x 2-2x +1)=3(x -1)2例2 解 (1)(x +2)(x 2-2x +4).(2)(x +y )2-z 2=(x +y +z )(x +y -z ).例3 解 (1)2a (x -5y )-b (x -5y )=(x -5y )(2a -b ).(2)x 2(x -1)+(x -1)=(x -1)(x 2+1).例4 解 (1)(x +3)2-25=(x +8)(x -2).(2)(x +y )2-(2y )2=(x +3y )(x -y ).例5 解 (1)x 3-2x 2-(x 2-4)=x 2(x -2)-(x -2)(x +2)=(x -2)2(x +1).(2)(x 3-x )-(x -1)=(x -1)(x +1+52)(x --1+52). 例6 解 (1)(x -1+52)(x -1-52). (2)(x -3+174)(x -3-174). 例7 解 (1)(x +1)(x +2);(2)(x +4)(x -5); (3)(x -2)(x -12);(4)(x +8)(x +3). 例8 解 (1)(2x +1)(3x +1);(2)(2x -1)(3x +7);(3)(6x -3)(7x -2);(4)2(x +62)(x -62)(x +1)·(x -1);(5)2(t -2)(t 2+2t +4)(t +1)(t 2-t +1). 强化训练1.解 (1)(a +3)(a 2-3a +9);(2)-(m -2)(m 2+2m +4);(3)(2-3x )(9x 2+6x +4);(4)-18(p +q 2)·(p 2-12pq +q 24);(5)(2xy -15)(4x 2y 2+25xy +125);(6)(16xy +13c )(136x 2y 2-118xyc +c 29)=127(12xy +c )(x 2y 24-12xyc +c 2). 2.解 (1)x (x +y )(x 2-xy +y 2) (2)x n (x -y )(x 2+xy +y 2) (3)a 2(m +n -b )[(m +n )2+b (m +n )+b 2] (4)y 2(x -1)2(x 4-4x 3+3x 2+2x +1).3.解 (1)(x -1)(x -2);(2)(x +1)(x +36);(3)(x +13)(x -2);(4)(x +3)(x -9);(5)(m +n )(m -5n);(6)(a-b+4)(a-b+7).4.解(1)ax3(x-2)(x-8);(2)a n(a+3b)(a-2b);(3)(x+1)(x-3)(x2-2x+3);(4)(x+3)(x-3)·(x2+2);(5)(3x+1)(2x-3);(6)(t-1)(t-2)(t2+t+1)(t2+2t+4);(7)[7(a+b)+2][(a+b)-1];(8)(2x+1)(3x-5)(6x2-7x+5).5.解(1)(x-y)(3a+y);(2)(2x-1)(2x+1)2;(3)(x-3)(5x+2y);(4)(2a-5b+6)(2a-5b-6);(5)(1+2x-y)(1-2x+y);(6)ab(a-b)(a+b)2;(7)(x3+y3-1)(x3-y3-1);(8)x(x-y)(x+y+1).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中它都有着重要的作用.
因式分解的方法较多,除了初中教材中涉及到的提取公因式法和运用公式法(只讲平方差公式和完全平方公式)外,还有运用公式法(立方和、立方差公式)、十字相乘法、分组分解法等.因式分解的问题形式多样,富有综合性与灵活性,因此,因式分解也是一种重要的基本技能.一、提取公因式法
例13x2-6x+3.
二、公式法
例2(1)8+x3;(2)x2+2xy+y2-z2.
三、分组分解法
例3(1)2ax-10ay+5by-bx;(2)x3-x2+x-1.
四、配方法
例4(1)x2+6x-16;(2)x2+2xy-3y2.
五、拆项添项法
例5(1)x3-3x2+4;(2)x3-2x+1.
六、求根公式法
例6(1)x2-x-1;(2)2x2-3x-1.
七、十字相乘法
(1)x2+(p+q)x+pq型式子的因式分解
我们来讨论x2+(p+q)x+pq这类二次三项式的因式分解.这类式子在许多问题中经常出现,它的特点是
(1)二次项系数是1;
(2)常数项是两个数之积;
(3)一次项系数是常数项的两个因数之和.
对这个式子先去括号,得到x2+(p+q)x+pq=x2+px+qx+pq,于是便会想到继续用分组分解法分解因式,即
x2+px+qx+pq
=(x 2+px )+(qx +pq )
=x (x +p )+q (x +p )
=(x +p )(x +q ).
因此,x 2+(p +q )x +pq =(x +p )(x +q ).
运用这个公式,可以把某些二次项系数为1的二次三项式分解因式.
例7 把下列各式分解因式:
(1)x 2+3x +2;(2)x 2-x -20;
(3)x 2-52
x +1;(4)x 2+11x +24. 八、ax 2+bx +c 型因式分解
我们知道,
(a 1x +c 1)(a 2x +c 2)
=a 1a 2x 2+a 1c 2x +a 2c 1x +c 1c 2
=a 1a 2x 2+(a 1c 2+a 2c 1)x +c 1c 2.
反过来,就得到a 1a 2x 2+(a 1c 2+a 2c 1)x +c 1c 2
=(a 1x +c 1)(a 2x +c 2).
我们发现,二次项的系数a 分解成a 1×a 2,常数项c 分解成c 1×c 2,并且把a 1,a 2,c 1,c 2排列如图:,这里按斜线交叉相乘,再相加,就得到a 1c 2+a 2c 1,如果它正好等于ax 2+bx +c 的一次项系数b ,那么ax 2+bx +c 就可以分解成(a 1x +c 1)(a 2x +c 2),其中a 1,c 1位于上图上一行,a 2,c 2位于下一行.
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解.
例8 (1)6x 2+5x +1;(2)6x 2+11x -7;
(3)42x 2-33x +6;(4)2x 4-5x 2+3;
(5)2t 6-14t 3-16.
1.把下列各式分解因式:
(1)a 3+27;(2)8-m 3;(3)-27x 3+8;(4)-18p 3-164q 3;(5)8x 3y 3-1125;(6)1216x 3y 3+127
c 3. 2.把下列各式分解因式:
(1)xy 3+x 4;(2)x n +
3-x n y 3;(3)a 2(m +n )3-a 2b 3;(4)y 2(x 2-2x )3+y 2. 3.把下列各式分解因式:
(1)x2-3x+2;(2)x2+37x+36;(3)x2+11x-26;(4)x2-6x-27;(5)m2-4mn-5n2;
(6)(a-b)2+11(a-b)+28.
4.把下列各式分解因式:
(1)ax5-10ax4+16ax3;
(2)a n+2+a n+1b-6a n b2;
(3)(x2-2x)2-9;
(4)x4-7x2-18;
(5)6x2-7x-3;
(6)t6-9t3+8;
(7)7(a+b)2-5(a+b)-2;
(8)(6x2-7x)2-25.
5.把下列各式分解因式:
(1)3ax-3ay+xy-y2;(2)8x3+4x2-2x-1;
(3)5x2-15x+2xy-6y;
(4)4a2-20ab+25b2-36;
(5)4xy+1-4x2-y2;
(6)a4b+a3b2-a2b3-ab4;
(7)x6-y6-2x3+1;
(8)x2(x+1)-y(xy+x).
答案精析
例1 解 3(x 2-2x +1)=3(x -1)2
例2 解 (1)(x +2)(x 2-2x +4).(2)(x +y )2-z 2=(x +y +z )(x +y -z ).
例3 解 (1)2a (x -5y )-b (x -5y )=(x -5y )(2a -b ).
(2)x 2(x -1)+(x -1)=(x -1)(x 2+1).
例4 解 (1)(x +3)2-25=(x +8)(x -2).
(2)(x +y )2-(2y )2=(x +3y )(x -y ).
例5 解 (1)x 3-2x 2-(x 2-4)=x 2(x -2)-(x -2)(x +2)=(x -2)2(x +1).
(2)(x 3-x )-(x -1)=(x -1)(x +1+52)(x --1+52
). 例6 解 (1)(x -1+52)(x -1-52
). (2)(x -3+174)(x -3-174
). 例7 解 (1)(x +1)(x +2);(2)(x +4)(x -5);
(3)(x -2)(x -12
);(4)(x +8)(x +3). 例8 解 (1)(2x +1)(3x +1);(2)(2x -1)(3x +7);
(3)(6x -3)(7x -2);(4)2(x +
62)(x -62
)(x +1)·(x -1);(5)2(t -2)(t 2+2t +4)(t +1)(t 2-t +1). 强化训练
1.解 (1)(a +3)(a 2-3a +9);(2)-(m -2)(m 2+2m +4);(3)(2-3x )(9x 2+6x +4);(4)-18
(p +q 2)·(p 2-12pq +q 24);(5)(2xy -15)(4x 2y 2+25xy +125);(6)(16xy +13c )(136x 2y 2-118xyc +c 29)=127(12xy +c )(x 2y 24-12
xyc +c 2). 2.解 (1)x (x +y )(x 2-xy +y 2) (2)x n (x -y )(x 2+xy +y 2) (3)a 2(m +n -b )[(m +n )2+b (m +n )+b 2]
(4)y 2(x -1)2(x 4-4x 3+3x 2+2x +1).
3.解 (1)(x -1)(x -2);(2)(x +1)(x +36);(3)(x +13)(x -2);(4)(x +3)(x -9);(5)(m +n )(m -5n );(6)(a -b +4)(a -b +7).
4.解 (1)ax 3(x -2)(x -8);(2)a n (a +3b )(a -2b );(3)(x +1)(x -3)(x 2-2x +3);(4)(x +3)(x -3)·(x 2+2);(5)(3x +1)(2x -3);(6)(t -1)(t -2)(t 2+t +1)(t 2+2t +4);(7)[7(a +b )+2][(a +b )-1];
(8)(2x +1)(3x -5)(6x 2-7x +5).
5.解 (1)(x -y )(3a +y );(2)(2x -1)(2x +1)2;
(3)(x-3)(5x+2y);(4)(2a-5b+6)(2a-5b-6);
(5)(1+2x-y)(1-2x+y);(6)ab(a-b)(a+b)2;(7)(x3+y3-1)(x3-y3-1);
(8)x(x-y)(x+y+1).。

相关文档
最新文档