【全国百强校绝密资料(最新)】2021届河北衡水中学高三数学摸底考试试卷

合集下载

河北省衡水市2021届新高考数学三模试卷含解析

河北省衡水市2021届新高考数学三模试卷含解析

河北省衡水市2021届新高考数学三模试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数()3221f x x ax =-+在()0,∞+内有且只有一个零点,则a 的值为( )A .3B .-3C .2D .-2【答案】A【解析】【分析】求出2()62f x x ax '=-,对a 分类讨论,求出(0,)+∞单调区间和极值点,结合三次函数的图像特征,即可求解.【详解】2()626()3a f x x ax x x '=-=-, 若0a ≤,(0,),()0x f x '∈+∞>,()f x 在()0,∞+单调递增,且(0)10=>f ,()f x 在()0,∞+不存在零点;若0a >,(0,),()0,(0,),()03a x f x x f x ''∈<∈+∞>, ()3221f x x ax =-+在()0,∞+内有且只有一个零点,31()10,3327a f a a =-+=∴=. 故选:A.【点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函数图像和性质是解题的关键,属于中档题.2.已知双曲线22221x y a b-=(0a >,0b >)的左、右顶点分别为1A ,2A ,虚轴的两个端点分别为1B ,2B ,若四边形1122A B A B 的内切圆面积为18π,则双曲线焦距的最小值为( )A .8B .16C .D .【答案】D【解析】【分析】根据题意画出几何关系,由四边形1122A B A B 的内切圆面积求得半径,结合四边形1122A B A B 面积关系求得c 与ab 等量关系,再根据基本不等式求得c 的取值范围,即可确定双曲线焦距的最小值.【详解】根据题意,画出几何关系如下图所示:设四边形1122A B A B 的内切圆半径为r ,双曲线半焦距为c , 则21,,OA a OB b == 所以2221A B a b c =+=,四边形1122A B A B 的内切圆面积为18π,则218r ππ=,解得32OC r == 则112212122111422A B A B S A A B B A B OC =⋅⋅=⨯⋅⋅四边形, 即112243222a b c ⋅⋅=⨯⋅⋅故由基本不等式可得2222323262a b c +=≤=,即62c ≥, 当且仅当a b =时等号成立. 故焦距的最小值为122故选:D【点睛】本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题. 3.设全集()(){}130U x Z x x =∈+-≤,集合{}0,1,2A =,则U C A =( )A .{}1,3-B .{}1,0-C .{}0,3D .{}1,0,3- 【答案】A【解析】先求得全集包含的元素,由此求得集合A 的补集.【详解】由()()130x x +-≤解得13x -≤≤,故{}1,0,1,2,3U =-,所以{}1,3U C A =-,故选A.【点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.4.设i 是虚数单位,若复数1z i =+,则22||z z z+=( ) A .1i +B .1i -C .1i --D .1i -+ 【答案】A【解析】【分析】结合复数的除法运算和模长公式求解即可【详解】∵复数1z i =+,∴|2|z =,()2212z i i =+=,则22||22(1)221211(1)(1)z i z i i i i i z i i i -+=+=+=-+=+++-, 故选:A.【点睛】本题考查复数的除法、模长、平方运算,属于基础题5.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .【答案】A详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形 故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。

河北省衡水中学2021届高三上学期调研考试数学

河北省衡水中学2021届高三上学期调研考试数学

河北省衡水中学2021届高三上学期调研考试数学注意事项:1.答题前,考生在答题卡上务必将自己的姓名、准考证号涂写清楚.2.第Ⅰ卷,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.第Ⅰ卷(非选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求1.已知集合{}|2,0xA y y x -==<,12|B x y x ⎧⎫==⎨⎬⎩⎭,则A B =A .[)1,+∞ B.()1,+∞ C.()0,+∞ D.[)0,+∞2.设()()()2i 3i 35i x y +-=++(i 为虚数单位),其中x ,y 是实数,则i x y +等于A .5B C .D .23.已知a,b 都是正数,则“3log 3log b a <”是“333>>ba”的A.充分不必要条件B.必要不充分条件C.充分必要条件D 既不充分也不必要条件4.甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:甲说:我不是第三名;乙说:我是第三名;丙说:我不是第一名.若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第三名的是A.甲B.乙C.丙D.无法预测5.《九章算术》是我国算术名著,其中有这样一个问题:今有碗田,下周三十步,径十六步,问为田几何?意思是说现有扇形田,弧长三十步,直径十六步,问面积多少?书中给出计算方法,以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4,在此问题中,扇形的圆心角的弧度数是A.154 B.415 C.815 D.1206.若nxx )(22-的展开式中只有第六项的二项式系数最大,则展开式中的常数项是A.210B.180C.160D.1757.泉城广场上矗立着的“泉标”,成为泉城济南的标志和象征.为了测量“泉标”高度,某同学在“泉标”的正西方向的点A 处测得“泉标”顶端的仰角为45o ,沿点A 向北偏东30o 前进100m 到达点B ,在点B 处测得“泉标”顶端的仰角为30o ,则“泉标”的高度为A.50m B.100m C.120m D.150m8.已知函数)(x f 满足213)(,6)2()-2(--==++x x x g x f x f ,且)()(x g x f 与的图象交点为),,(),,(),,(882211y x y x y x 则128128x x x y y y +++++++L L 的值为A.20B.24C.36D.40二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.某颗人造地球卫星的运行轨道是以地球的中心F 为一个焦点的椭圆,如图所示,已知它的近地点A (离地面最近的点)距地面m 千米,远地点B (离地面最远的点)距地面n 千米,并且F 、A 、B 三点在同一直线上,地球半径约为R 千米,设椭圆的长轴长、短轴长、焦距分别为2a 、2b 、2c ,则A.a -c =m +R B.a+c=n+R C.2a=m+nD.b=)(m R n R ++)(10.甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以321,,A A A 表示由甲箱中取出的是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱中取出的球是红球的事件,则下列结论正确的是A.P(B)=52B.P 115A |B 1=)(C.事件B 与事件1A 相互独立 D.1A 、2A 、3A 两两互斥11.已知点P 是双曲线1916E 22=-y x :的右支上一点,21,F F 为双曲线E 的左、右焦点,21F PF ∆的面积为20,则下列说法正确的是A.点P 的横坐标为320 B.21F PF ∆的周长为380C.321π小于PF F ∠ D.21F PF ∆的内切圆半径为4312.已知正四棱柱ABCD-A 1B 1C 1D 1的底面边长为2,侧棱AA 1=1,P 为上底面A 1B 1C 1D 1上的动点,给出下列四个结论中正确结论为A.若PD=3,则满足条件的P 点有且只有一个B.若PD=3,则点P 的轨迹是一段圆弧C.若PD//平面ACB 1,则PD 长的最小值为2D.若PD//平面ACB 1,且PD=3,则平面BDP 截正四棱柱ABCD-A 1B 1C 1D 1的外接球所得平面图形的面积为49π第Ⅱ卷(非选择题共90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a =(1,x +1),b =(x ,2),若满足a //b ,且方向相同,则x =.14.已知m 是2与8的等比中项,则圆锥曲线1x 22=-my 的离心率是_____________.15.对于函数f(x),若在定义域内存在实数0x 满足)()(f 00x f x -=-,则称函数f(x)为“倒戈函数”,设)0,(123)(f ≠∈-+=m R m m x x是定义在[-1,1]上的“倒戈函数”,则实数m 的取值范围是16.已知函数()2,()20,,,f x x g x x A B C ωωω==>,其中是这两个函数图象的交点,且不共线.①1ABC ω=∆当时,面积的最小值为;②若存在ABC ∆是等腰直角三角形,则ω的最小值为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)数列).13(21}{321-=++++nn n a a a a a 满足:(1)求}{n a 的通项公式;(2)若数列.T }{,3}{n 项和的前求满足:n b a b n b a n n nn =18.(12分)在锐角ABC ∆中,内角A B C ,,所对的边分别为,,a b c .已知sin b A sin()3a B π=+.(1)求角B 的大小;(2)求ac的取值范围.19.(12分)如图,三棱柱中,,,平面平面.(1)求证:;(2)若,直线与平面所成角为,为的中点,求二面角的余弦值.20.(12分)为提高城市居民生活幸福感,某城市公交公司大力确保公交车的准点率,减少居民乘车候车时间.为此,该公司对某站台乘客的候车时间进行统计.乘客候车时间受公交车准点率、交通拥堵情况、节假日人流量增大等情况影响.在公交车准点率正常、交通拥堵情况正常、非节假日的情况下,乘客候车时间随机变量X 满足正态分布·在公交车准点率正常、交通拥堵情况正常、非节假日的情况下,调查了大量乘客的候车时间,经过统计得到如图频率分布直方图.(1)在直方图各组中,以该组区间的中点值代表该组中的各个值,试估计μ,的值;(2)在统计学中,发生概率低于千分之三的事件叫小概率事件,一般认为,在正常情况下,一次试验中,小概率事件是不能发生的.在交通拥堵情况正常、非节假日的某天,随机调查了该站的10名乘客的候车时间,发现其中有3名乘客候车时间超过15分钟,试判断该天公交车准点率是否正常,说明理由.(参考数据:≈4.38,≈4.63,≈5.16,0.84137≈0.2898,0.84136≈0.3546,0.15873≈0.0040,0.15874≈0.0006,(+)0.6826P X μδμδ-<<=,(2+2)0.9544P X μδμδ-<<=,(3+3)0.9973P X μδμδ-<<=)21.(12分)已知抛物线F p px y C 点),0(2:2>=为抛物线的焦点,焦点F 到直线0343=+-y x 的距离为1d ,焦点F 到抛物线1223.5,d d C d =的准线的距离为且(1)抛物线C 的标准方程;(2)若在x 轴上存在点M ,过点M 的直线l 与抛物线C 相交于P ,Q 两点,且2211|PM|||QM +为定值,求点M 的坐标.22.(12分)已知函数).0(ln )(2≥+--=a x ax x x f (1)讨论函数)(x f 的极值点的个数;(2)若函数)(x f 有两个极值点.2ln 23)()(,,2121->+x f x f x x 证明:。

2021届河北省衡水中学高考数学三模试卷(含答案解析)

2021届河北省衡水中学高考数学三模试卷(含答案解析)

2021届河北省衡水中学高考数学三模试卷一、单选题(本大题共8小题,共40.0分)1.复数z=1+√3i,则|z|+z=()A. 3+√3iB. 3−√3iC. −3+√3iD. −3−√3i2.函数y=2cos2(x−π4)−1是()A. 最小正周期为π的奇函数B. 最小正周期为2π的奇函数C. 最小正周期为π的偶函数D. 最小正周期为2π的偶函数3.已知整数如下规律排一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是()A. (5,7)B. (6,6)C. (4,8)D. (7,5)4.设不等式组表示的平面区域为D.若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是().A. (1,3]B. [2,3]C. (1,2]D. [3,+∞)5.已知二面角A−BC−D,A−CD−B,A−BD−C的平面角都相等,则点A在平面BCD上的射影是△BCD的()A. 内心B. 外心C. 垂心D. 重心6.已知圆x2+y2+mx−14=0与抛物线y=14x2的准线相切,则m的值等于()A. ±√2B. √3C. √2D. ±√37.某食品的保鲜时间y(单位:小时)与储存温度x(单位:°C)满足函数关系y=e kx+b(e为自然对数的底数,k,b为常数)若该食品在0°C的保鲜时间是384小时,在22°C的保鲜时间是24小时,则该食品在33°C的保鲜时间是()小时A. 6B. 12C. 18D. 248.如图为一半径为3m的水轮,水轮中心O距水面2m,已知水轮每分钟旋转4圈,水轮上的点P到水面距离y(m)与时间x(s)满足函数关系y=Asin(ωx+φ)+2则()A. ω=2π15,A=5 B. ω=152π,A=5C. ω=152π,A=3 D. ω=2π15,A=3二、多选题(本大题共4小题,共20.0分)9.百年大计,教育为本.十四五发展纲要中,教育作为一个专章被提出.近日,教育部发布2020年全国教育事业统计主要结果.其中关于高中阶段教育(含普通高中、中等职业学校及其他适龄教育机构)近六年的在校规模与毛入学率情况图表及2020年高中阶段教育在校生结构饼图如下:(名词解释:高中阶段毛入学率=在校生规模÷适龄青少年总人数×100%)根据图中信息,下列论断正确的有()A. 近六年,高中阶段在校生规模与毛入学率均持续增长B. 近六年,高中阶段在校生规模的平均值超过4000万人C. 2019年,未接受高中阶段教育的适龄青少年不足420万D. 2020年,普通高中的在校生超过2470万人10.已知集合U=(−∞,+∞),A={x|2x2−x≤0},B={y|y=x2},则()A. A∩B=[0,12] B. ∁U A⊆∁U BC. A∪B=BD. ∁B A=(12,+∞)11.已知函数f(x)=sinxcos2xcosx,则()A. f(x)的图象关于点(π2,0)对称 B. f(x)的最小正周期为πC. f(x)的值域为RD. f(x)在(0,π4)上单调递增12.如图,棱长为2的正方体ABCD−A1B1C1D1中,P在线段BC1(含端点)上运动,则下列判断正确的是()A. A1P⊥B1DB. 三棱锥D1−APC的体积不变,为83C. A1P//平面ACD1D. A 1P 与D 1C 所成角的范围是(0,π3)三、单空题(本大题共4小题,共20.0分) 13. (1−1x 2)(1+x)4展开式中x 2的系数为______.14. 设O 是△ABC 的三边中垂线的交点,a ,b ,c 分别为角A ,B ,C 对应的边,若b =4,c =2,则BC ⃗⃗⃗⃗⃗ ⋅AO ⃗⃗⃗⃗⃗ 的值是______ . 15. 已知是双曲线上一点,是双曲线的两个焦点,若,则的值为 .16. 已知函数f(x)=3sinx +4cosx ,则函数f(x)的最大值为______. 四、解答题(本大题共6小题,共70.0分)17. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cosA =35,2cosC =sinB . (1)求tan C 的值;(2)若a =√10,求△ABC 的面积.18. 已知函数f(x)=x 2+(a −1)x +b +1,当x ∈[b,a]时,函数f(x)的图象关于y 轴对称,数列{a n }的前n 项和为S n ,且S n =f(n +1)−1 (1)求数列{a n }的通项公式;(2)设b n =an2n ,求数列{b n }的前n 项和T n .19. 全国人大常委会会议于2015年12月27日通过了关于修改人口与计划生育法的决定,“全面二孩”从2016年元旦起开始实施,A 市妇联为了解该市市民对“全面二孩”政策的态度,随机抽取了男性市民30人,女市民70人进行调查,得到以下的2×2列联表:支持 反对 合计 男性 16 14 30 女性 44 26 70 合计6040100(1)根据以上数据,能否有90%的把握认为A 市市民“支持全面二孩”与“性别”有关;(2)现从持“支持”态度的市民中再按分层抽样的方法选出15名发放礼品,分别求所抽取的15人中男性市民和女性市民的人数;(3)将上述调查所得到的频率视为概率,现在从A市所有市民中,采用随机抽样的方法抽取3位市民进行长期跟踪调查,记被抽取的3位市民中持“支持”态度人数为X(i)求X的分布列;(ii)求X的数学期望E(X)和方差D(X).,其中n=a+b+c+d.参考公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)参考数据:P(K2≥k0)0.150.100.050.0250.010k0 2.072 2.706 3.841 5.024 6.63520.如图,在直角梯形AA1B1B中,∠A1AB=90°,A1B1//AB,AB=AA1=2A1B1=2,直角梯形AA1C1C通过直角梯形AA1B1B以直线AA1为轴旋转得到,且使得平面AA1C1C⊥平面AA1B1B.点M 为线段BC的中点,点P是线段BB1中点.(Ⅰ)求证:A1C1⊥AP;(Ⅱ)求二面角P−AM−B的余弦值.21.已知椭圆C:.(1)如果椭圆的离心率,经过点.①求椭圆的方程;②经过点P的两直线与椭圆分别相交于A,B,它们的斜率分别为.如果,试问:直线AB的斜率是否为定值?并证明.(2)如果椭圆的,点分别为椭圆的上、下顶点,过点的直线分别与椭圆交于两点.若△的面积是△的面积的倍,求的最大值.22. 已知x=1时,函数f(x)=ax3+bx有极值−2.(1)求实数a,b的值;(2)若方程f(x)=k恰有1个实数根,求实数k的取值范围.【答案与解析】1.答案:B解析:解:∵z=1+√3i,∴|z|=√1+3=2,z=1−√3i,则|z|+z=2+1−√3i=3−√3i.故选:B.由已知求得|z|及z,作和得答案.本题考查复数模的求法,考查复数的基本概念,是基础题.2.答案:A解析:解:y=2cos2(x−π4)−1=cos(2x−π2)=sin2x,∴此函数的最小正周期为π,为奇函数;故选:A.运用二倍角公式化简为cos(2x−π2),再利用诱导公式化简.本题考查了余弦的二倍角公式以及诱导公式的运用.3.答案:A解析:解:在平面直角坐标系中,将各点按顺序连线,如图所示:可得:(1,1)为第1项,(1,2)为第(1+1)=2项,(1,3)为第(1+1+2)=4项,(1,4)为第(1+1+2+3)=7项,(1,5)为第(1+1+2+3+4)=11项,…,依此类推得到:(1,11)为第(1+1+2+3+4+5+6+7+8+9+10)=56项,∴第57项为(2,10),第58项为(3,9),第59项为(4,8),则第60项为(5,7).故选A我们可以在平面直角坐标系中,将:(1,1)、(1,2)、(2,1)、(1,3)、(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,按顺序连线,然后分析这些点的分布规律,然后归纳推断出,点的排列规律,再求出第60个数对.本题考查的知识点是归纳推理,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).4.答案:A解析:画出不等式组表示的平面区域如图中阴影部分所示(包括边界).当a>1时才能够使函数y=a x的图象上存在区域D上的点,由图可知当函数y=a x的图象经过点A时a取得最大值,由方程组解得x=2,y=9,即点A(2,9),代入函数解析式得9=a2,即a=3,故1<a≤3.5.答案:A解析:本题考查二面角的平面角,考查三角形内心的概念,属于基础题.二面角A−BC−D,A−CD−B,A−BD−C的平面角都相等,可得点A在平面BCD上的射影到△BCD的三边的距离都相等,即可得出结论.解:∵二面角A−BC−D,A−CD−B,A−BD−C的平面角都相等,∴点A在平面BCD上的射影到△BCD的三边的距离都相等,∴点A在平面BCD上的射影是△BCD的内心,故选:A.6.答案:D解析:试题分析:由抛物线的方程找出p,写出抛物线的准线方程,因为准线方程与圆相切,所以圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关于m的方程,求出方程的解即可得到m的值.由抛物线的方程得到p =2,所以抛物线的准线为y =−p2=−1, 将圆化为标准方程得:(x +m2)2+y 2=1+m 24,圆心坐标为(−m2,0),圆的半径r =√1+m 24,圆心到直线的距离d =√1=1=r =√1+m 24,化简得:m 2=3,解得m =±√3. 故选 D7.答案:A解析:解:∵某食品保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y =e kx+b (e =2.718…为自然对数的底数,k ,b 为常数).该食品在0℃的保鲜时间是384小时,在22℃的保鲜时间是24小时,所以{e b=384e 22k+b=24,解得e 22k =116,即有e 11k =14,e b =384, 则当x =33时,y =(e 11k )3⋅384=6, 故选:A .由该食品在0℃的保鲜时间是384小时,在22℃的保鲜时间是24小时,列出方程组,求出,由此能求出该食品的保鲜时间.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.答案:D解析:本题主要通过一个实际背景来考查三角函数的周期及振幅. 根据题意,水轮旋转一周所用的时间为一个周期,由周期公式,T =2πω求解;A 为最大振幅,由图象知到最高点时即为A 值. 解:已知水轮每分钟旋转4圈∴ω=4×2π60=2π15又∵半径为3m ,水轮中心O 距水面2m , ∴距水面最高点为5,即A =3, 故选D .9.答案:BD解析:解:对于A ,由条形图可知,2018年高中在校生人数比2017年降低了,故选项A 错误;对于B ,近六年高中阶段在校生规模的平均值为4000+16×(38−30−29−65−5+128)=4000+376>4000万人,故选项B 正确;对于C ,2019年未接受高中教育的人数为399589.5%−3995≈469万人,超过420万人,故选项C 错误; 对于D ,2020年普通高中的在校生人数为4128×60.1%=2480.928>2470万人,故选项D 正确. 故选:BD .根据题中给出的折线图和条形图,对四个选项逐一分析判断即可.本题考查了条形图和折线图的应用,读懂统计图并能从统计图得到必要的信息是解决问题的关键,属于基础题.10.答案:ACD解析:求出集合A ,B ,进而求出A ∩B ,∁U A ,∁U B ,A ∪B ,∁B A ,由此能求出结果.本题考查交集、并集、补集的求法,考查交集、并集、补集定义等基础知识,考查运算求解能力,是中档题.解:∵集合U =(−∞,+∞),A ={x|2x 2−x ≤0}={x|0≤x ≤12}, B ={y|y =x 2}={y|y ≥0}, ∴A ∩B =[0,12],故A 正确;∁U A ={x|x <0或x >12},∁U B ={x|x <0}, ∴∁U A ⊇∁U B ,故B 错误; A ∪B =[0,+∞)=B ,故C 正确; ∁B A ={x|x >12}=(12,+∞).故D 正确.故选:ACD .11.答案:ABC解析:解:对于A :函数f(π−x)+f(x)=0,所以函数f(x)的图象关于(π2,0)对称,故A 正确; 对于B :函数f(x +π)=f(x),故B 正确;对于C :由于函数的最小正周期为π,且x →±π2时,f(x)→±∞,故函数的值域为R ,故C 正确; 对于D :由于函数f(x)=sinxcos2x cosx,故f′(x)=cos2x−sin 22xcos 2x=cos 22x+cos2x−1cos 2x,当x ∈(0,π4)时,cos2x ∈(0,1),而cos2x ∈(0,12)时,cos 22x +cos2x −1<0,所以函数f(x)在(0,π4)上不单调递增,故D 错误; 故选:ABC .直接利用函数的性质单调性,周期性和函数的额值域的应用和函数的求导判断A 、B 、C 、D 的结论. 本题考查的知识要点:函数的性质,单调性,周期性和函数的额值域的应用,函数的导数和单调性的关系,主要考查学生的运算能力和数学思维能力,属于中档题.12.答案:AC解析:解:棱长为2的正方体ABCD −A 1B 1C 1D 1中,P 在线段BC 1(含端点)上运动,对于A ,B 1C ⊥BC 1,CD ⊥BC 1,B 1C ∩CD =C ,B 1C 、CD ⊂平面CDB 1,∴BC 1⊥平面CDB 1,∵B 1D ⊂平面CDB 1,∴B 1D ⊥BC 1, 同理,B 1D ⊥A 1C 1,∵A 1C 1∩BC 1=C 1,A 1C 1、BC 1⊂平面A 1C 1B ,∴B 1D ⊥平面A 1C 1B ,∵A 1P ⊂平面A 1C 1B ,∴A 1P ⊥B 1D ,故A 正确; 对于B ,∵P 在线段BC 1(含端点)上运动,BC 1//AD 1,BC 1⊄平面ACD 1,AD 1⊂平面ACD 1,∴BC 1//平面ACD 1,∴P 到ACD 1的距离是定值,以D 1为原点,D 1A 1为x 轴,D 1C 1为y 轴,D 1D 为z 轴,建立空间直角坐标系, D 1(0,0,0),A(2,0,2),C(0,2,2),B(2,2,2), D 1A ⃗⃗⃗⃗⃗⃗⃗ =(2,0,2),D 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),D 1B ⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2,2), 设平面D 1AC 的法向量m⃗⃗⃗ =(x,y ,z), 则{m ⃗⃗⃗ ⋅D 1A ⃗⃗⃗⃗⃗⃗⃗ =2x +2z =0m ⃗⃗⃗ ⋅D 1C ⃗⃗⃗⃗⃗⃗⃗ =2y +2z =0,取x =1,得m⃗⃗⃗ =(1,1,−1), ∴P 到平面D 1AC 的距离d =|D 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ ||m ⃗⃗⃗ |=2√3=2√33, ∴三棱锥D 1−APC 的体积为:V D 1−APC =V P−ACD 1=13×S △ACD 1×d =13×12×√22+22×√22+22×sin60°×2√33=43,故B 错误;对于C ,∵AD 1//BC 1,CD 1//A 1B ,AD 1∩CD 1=D 1,BC 1∩A 1B =B ,∴平面AD 1C//平面BC 1A 1,∵A 1P ⊂平面BC 1A 1,∴A 1P//平面ACD 1,故C 正确; 对于D ,∵P 在线段BC 1(含端点)上运动, ∴当P 与B 重合时,A 1P 与D 1C 所成角为0,当P 与C 1重合时,A 1P 与D 1C 所成角为π3,故D 错误. 故选:AC .对于A ,推导出B 1D ⊥BC 1,B 1D ⊥A 1C 1,从而B 1D ⊥平面A 1C 1B ,进而A 1P ⊥B 1D ,;对于B ,推导出BC 1//平面ACD 1,从而P 到ACD 1的距离是定值,以D 1为原点,D 1A 1为x 轴,D 1C 1为y 轴,D 1D 为z 轴,建立空间直角坐标系,利用向量法求出三棱锥D 1−APC 的体积为43;对于C ,由AD 1//BC 1,CD 1//A 1B ,得平面AD 1C//平面BC 1A 1,从而A 1P//平面ACD 1;对于D ,当P 与B 重合时,A 1P 与D 1C 所成角为0,当P 与C 1重合时,A 1P 与D 1C 所成角为π3.本题考命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力、推理论证能力等数学核心素养,是中档题.13.答案:5解析:解:因为(1+x)4展开式的通项为T r+1=C 4r x r, 所以(1−1x 2)(1+x)4展开式中x 2的系数为C 42−C 44=5,故答案为:5.由二项式定理及其展开式的通项公式得:因为(1+x)4展开式的通项为T r+1=C 4r x r,所以(1−1x 2)(1+x)4展开式中x 2的系数为C 42−C 44=5,得解.本题考查了二项式定理及其展开式的通项公式,属中档题.14.答案:6解析:解:如图所示,过点O 分别作OE ⊥AB ,OF ⊥AC . 则AE =12AB ,AF =12AC . ∴BC ⃗⃗⃗⃗⃗ ⋅AO ⃗⃗⃗⃗⃗ =(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )⋅AO ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ ⋅AO ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ⋅AO ⃗⃗⃗⃗⃗ =12|AC ⃗⃗⃗⃗⃗ |2−12|AB ⃗⃗⃗⃗⃗ |2 =12(42−22)=6. 故答案为:6.如图所示,过点O 分别作OE ⊥AB ,OF ⊥AC.利用三角形外心的性质可得AE =12AB ,AF =12AC.再利用数量积的定义即可得出.本题考查了三角形外心的性质、数量积的定义,属于中档题.15.答案:33解析:由双曲线方程可知,,则,因为是双曲线上一点,所以,又,所以或.又,所以.考点:双曲线定义、标准方程及简单的几何性质.16.答案:5解析:解:函数f(x)=3sinx +4cosx5(35sinx +45cosx), 令cosθ=35,sinθ=45,θ∈[0,2π).则由辅助角公式可得f(x)=5sin(x +θ),根据正弦函数的值域可得f(x)的最大值为5, 故答案为:5.由辅助角公式可得f(x)=5sin(x +θ),再根据正弦函数的值域可得f(x)的最大值. 本题主要考查辅助角公式,正弦函数的值域,属于中档题.17.答案:解:(Ⅰ)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cosA =35,所以:sinA =45,由于:2cosC =sinB =sin(A +C), 2cosC =sinAcosC +cosAsinC , 解得:tanC =2; (Ⅱ)由(Ⅰ)得:tanC =2, 所以:sinC =2√55,cosC =√55, 由正弦定理得:asinA =csinC ,解得:c =5√22, 由于:2cosC =sinB , sinB =2√55, S △ABC =12acsinB =12×5√22×√10×2√55=5解析:(Ⅰ)首先利用同角三角函数的值求出正弦和余弦的值,进一步求出正切值. (Ⅱ)利用(Ⅰ)的结论结合正弦定理求出三角形的面积.本题考查的知识要点:同角三角函数的恒等关系式,利用正弦定理求三角形的面积.18.答案:解:(1)∵函数f(x)的图象关于y 轴对称,∴a −1=0且a +b =0, 解得a =1,b =−1, ∴f(x)=x 2,∴S n =f(n +1)−1=(n +1)2−1=n 2+2n即有a n =S n −S n−1=2n +1(n ≥2),a 1=S 1=1也满足, ∴a n =2n +1; (2)由(1)得b n =2n+12n,T n =32+522+723+⋯+2n−12n−1+2n+12n,①∴12T n =322+523+724+⋯+2n−12n+2n+12n+1,②①−②得12T n =32+222+223+224+⋯+22n −2n+12n+1=32+2×12[1−12n−1]1−12−2n+12n+1=32+2−12n−1−2n+12n+1=72−2n+52n+1.∴T n =7−2n+52n.解析:(1)依题意,可求得a =1,b =−1,从而得S n =n 2,于是可求得a 1及a n =S n −S n−1=2n +1(n ≥2),观察即可求得数列{a n }的通项公式; (2)由(1)得b n =2n−12n,利用错位相减法可求得T n =5−2n+52n.本题考查数列通项公式与数列的求和,着重考查数列的错位相减法,属于中档题.19.答案:解:(1)由列联表可得K 2=100×(16×26−14×44)230×70×60×40≈0.7937<2.706.所以没有90%的把握认为“支持全面二孩”与“性别”有关.(2)依题意可知,所抽取的15位市民中,男性市民有15×1660=4(人),女性市民有15×4460=11(人). (3)(i)由2×2列联表可知,抽到持“支持”态度的市民的频率为60100=35,将频率视为概率,即从A 市市民中任意抽取到一名持“支持”态度的市民的概率为35. 由于总体容量很大,故X 可视作服从二项分布,即X ~B(3,35),所以P(X =k)=C 3k⋅(35)k (25)3−k (k =0,1,2,3). 从而X 的分布列为: X 0123P8125361255412527125(ii)E(X)=np =3×35=95;D(X)=np(1−p)=3×35×25=1825.解析:(1)计算K 2,与2.706比较大小; (2)根据各层的人数比例计算;(3)求出X 的分布列,代入公式计算数学期望和方差.本题考查了独立性检验,分层抽样,随机变量分布,属于中档题.20.答案:证明:(Ⅰ)∵在直角梯形AA 1B 1B 中,∠A 1AB =90°,A 1B 1//AB ,AB =AA 1=2A 1B 1=2,直角梯形AA 1C 1C 通过直角梯形AA 1B 1B 以直线AA 1为轴旋转得到, ∴∠A 1AB =∠A 1AC =90°,且平面AA 1C 1C ⊥平面AA 1B 1B , ∴∠BAC =90°,即AC ⊥AB , 又∵AC ⊥AA 1,且AB ∩AA 1=A , ∴AC ⊥平面AA 1B 1B ,由已知A 1C 1//AC ,∴A 1C 1⊥平面AA 1B 1B , ∵AP ⊂平面AA 1B 1B ,∴A 1C 1⊥AP . 解:(Ⅱ)由(Ⅰ)知AC ,AB ,AA 1两两垂直,分别以AC ,AB ,AA 1为x ,y ,z 轴,建立空间直角系, 由已知得AB =AC =AA 1=2A 1B 1=2A 1C 1=2,∴A(0,0,0),B(0,2,0),C(2,0,0),B 1(0,1,2),A 1(0,0,2), ∵M 为线段BC 的中点,P 为线段BB 1的中点, ∴M(1,1,0),P(0,32,1),平面ABM 的一个法向量m⃗⃗⃗ =(0,0,1), 设平面APM 的一个法向量n⃗ =(x,y ,z), 则{n ⃗ ⋅AM⃗⃗⃗⃗⃗⃗ =x +y =0n ⃗ ⋅AP ⃗⃗⃗⃗⃗ =32y +z =0,取x =2,得n⃗ =(2,−2,3), 由图知二面角P −AM −B 的大小为锐角, 设二面角P −AM −B 的平面角为θ, 则cosθ=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ |⋅|n ⃗⃗ |=3√17=3√1717, ∴二面角P −AM −B 的余弦值为3√1717. 解析:(Ⅰ)推导出AC ⊥AB ,AC ⊥AA 1,从而AC ⊥平面AA 1B 1B ,由A 1C 1//AC ,知A 1C 1⊥平面AA 1B 1B ,由此能证明A 1C 1⊥AP .(Ⅱ)以AC ,AB ,AA 1为x ,y ,z 轴,建立空间直角系,利用向量法能求出二面角P −AM −B 的余弦值.本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.21.答案:解:(1)①由已知得 , , ,联立解得 .椭圆M 的方程为 .②直线AB 的斜率为定值 .理由如下:由已知直线 代入椭圆 的方程消去 并整理得所以,从而同理,因为所以为定值;(2)直线方程为,联立,得,直线方程为:,联立,得,,令,则,当且仅当,即时,取“”,所以 的最大值为 .解析:(1)①由椭圆的离心率公式和准线方程,结合椭圆的a ,b ,c 的关系,计算即可得到;②设出直线PA 的方程,代入椭圆方程,利用韦达定理,结合斜率公式,由化简可得结论;(2)分别求出直线TB ,TC 的方程,代入椭圆方程,求得交点E ,F 的横坐标,再由三角形的面积公式,结合二次函数,计算即可得到最大值.22.答案:解:(1)因为f(x)=ax 3+bx ,所以f′(x)=3ax 2+b .又因为当x =1时,f(x)的极值为−2,所以{a +b =−23a +b =0,解得a =1,b =−3.(2)由(1)可得f(x)=x 3−3x ,则f′(x)=3x 2−3=3(x +1)(x −1),令f′(x)=0,得x =±1,当x <−1或x >1时f′(x)>0,f(x)单调递增, 当−1<x <1时,f′(x)<0,f(x)单调递减; 所以当x =−1时f(x)取得极大值,f(−1)=2, 当x =1时f(x)取得极小值,f(1)=−2, 大致图象如图所示:要使方程f(x)=k 恰有1个解,只需k >2或k <−2. 故实数k 的取值范围为(−∞,−2)∪(2,+∞).解析:(1)求出f′(x)=3ax 2+b.通过x =1时,f(x)的极值为−2,得到{a +b =−23a +b =0,求解即可.(2)化简f(x)=x 3−3x ,求出f′(x),得到极值点x =±1,判断函数的单调性以及极值,画出图形,然后求解方程f(x)=k 恰有1个实数根,实数k 的取值范围.本题考查函数的导数的应用,函数的极值以及函数的单调性的应用,考查数形结合以及计算能力.。

河北省衡水市衡水中学2021届高三数学试题模拟合辑含详解

河北省衡水市衡水中学2021届高三数学试题模拟合辑含详解
(2)对于函数 f (x) (x 1)ex ln x tx (其中 e 为自然对数的底数).
(Ⅰ)当 t 0 时,求 f x 的弹性区间 D; (Ⅱ)若 f x 1 在(Ⅰ)中的区间 D 上恒成立,求实数 t 的取值范围.
5
数学参考答案 _210210
一、选择题
1.B【解析】因为 A {x∣0 x 2}, B {x∣0 x 4} , C {0, 2, 4, 6,} ,所以 A B {x∣0 x 4} ,所以
B. g(x) 的最小正周期为
C.点
8
,
0

g(x)
图象的一个对称中心
D. g(x) 的最大值为 5
12. 已 知 函 数
f
(x)
sin(
x
)
0,|
|
2
在区间
2
,
2 3
上至少存在两个不同的
x1, x2
满足
f
x1
f
x2 1 ,且
f
x
在区间
3
,
12
上具有单调性,点
6
的答案是 S1, S3 , S2 成等差数列. 如果甲、乙两名同学记得的答案是正确的,请通过推理把条件补充完整并解答此题.
4
22.(12 分)
定义可导函数 y f x 在 x 处的弹性函数为 f (x) x ,其中 f (x) 为 f (x) 的导数.在区间 D 上,若函数
f (x)
f x 的弹性函数值大于 1,则称 f x 在区间 D 上具有弹性,相应的区间 D 也称作 f x 的弹性区间. (1)若 r(x) ex x 1 ,求 r x 的弹性函数及弹性函数的零点;
1 2
x

河北衡水中学2021届高三调研试题 数学 Word版含答案

河北衡水中学2021届高三调研试题 数学 Word版含答案

绝密★启用前河北衡水中学2021届高三调研试题数学全卷满分150分,考试时间120分钟。

★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题作答用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试卷和草稿纸上无效。

3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试卷和草稿纸上无效。

考生必须保持答题卡的整洁。

考试结束后,只需上交答题卡一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|x2-4x-12≤0},B={x|4x-4>0},则A∩B=A.{x|1<x≤2}B.{x|x≥-2}C.{x|1<x≤6}D.{x|x≥-6}2.已知复数z=1ii,则z=A.12+12i B.12-12i C.-12+12i D.-12-12i3.某年1月25日至2月12日某旅游景区A及其里面的特色景点a累计参观人次的折线图如图所示,则下列判断正确的是A.1月29日景区A累计参观人次中特色景点a占比超过了1 3B.2月4日至2月10日特色景点a 累计参观人次增加了9700人次C.2月6日至2月8日景区A 累计参观人次的增长率大于特色景点a 累计参观人次的增长率D.2月8日至2月10日景区A 累计参观人次的增长率小于2月6日到2月8日的增长率4.“3sin 2α-sin αcos α-2=0”是“tan α=2”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.函数()22sin x 1f x x -=的部分图象是6.在平行四边形ABCD 中,E ,F 分别为CD ,BC 的中点,则AE =A.31AD AF 42+B.11AD AF 22+C.13AD AF 24+D.1AD AF 2+ 7.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”下图是在“赵爽弦图”的基础上创作出的一个“数学风车”,其中正方形ABCD 内部为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的.我们将图中阴影所在的四个三角形称为“风叶”,若从该“数学风车”的八个顶点中任取两点,则该两点取自同一片“风叶”的概率为A.37B.47C.314D.11148.已知双曲线C :22221(0,0)x y a b a b-=>>的右焦点为F ,P 为双曲线右支上一点,O 为坐标原点,若△OPF 为等边三角形,则双曲线C 的离心率为3 3 C.3123+1二、选择题:本题共4小题,每小题5分,共20分。

衡水新高考版2021年高三第一次模拟考试数学参考答案

衡水新高考版2021年高三第一次模拟考试数学参考答案

1
联立 sin 2 A cos2 A 1
解得 cos A 1 cos A 1(舍去) ..................5 分 2,
A ..................6 分 所以 3

2:根据题意,
2
sin
B
b
cos
A
b
,得
2
sin b
B
cos
A
1
...........2

2sin A cos A 1 2sin A cos A 1
则有 x2 1,代入 *式,解得 a 2 . 所以 a的取值集合为2.
所以必有 a 0 ,
..................5 分
ax2 x 1 0
(*)
,方程的
0, x1x2
1 a
0
,所以方程必有一正根记
x2
所以函数 g(x) 在 (0, x2 ) 单调递增,在 (x2 , ) 单调递减,
若满足条件必有 g(x)max g(x2 ) 0 ,注意到 g(1) 0 ..................6 分
6
4
6
1 ( 2 )2 ( 2 )2 ( 6 )2 4
4
2
4
所以 AS 与平面 ABCD 所成角的正弦值为
6
.
4
(2)
.................6 分
4
法 1:在平面 SAM 内作 SH AM 连结 BH,DH,则 BH AM ,
又因为 SD AM , AM 平面SHD ..................7 分 所以 AM DH ,又因为 AM BH . AM , BH,DH 都在平面 ABCD 内

河北省衡水中学2021届高三毕业班下学期第三次调研考试数学试题

河北省衡水中学2021届高三毕业班下学期第三次调研考试数学试题

绝密★启用前河北省衡水中学2021届高三毕业班下学期第三次高考调研考试数学试题一、单项选择题(共8个小题,每小题5分,共40分).1.已知全集U,M,N是U的非空子集,且∁UM⊇N,则必有()A.M⊆∁UN B.M⊇∁UN C.∁UM=∁UN D.M⊆N2.哥隆尺是一种特殊的尺子,图1的哥隆尺可以一次性度量的长度为1,2,3,4,5,6.图2的哥隆尺不能一次性度量的长度为()A.11 B.13 C.15 D.173.今天是星期日,经过7天后还是星期日,那么经过82021天后是()A.星期六B.星期日C.星期一D.星期二4.复数z∈C,在复平面内z对应的点Z,满足1≤|z﹣|≤2,则点Z所在区域的面积()A.πB.2πC.3πD.4π5.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一.每年新春佳节,我国许多地区的人们都有贴窗花的习俗,以此达到装点环境、渲染气氛的目的,并寄托着辞旧迎新、接福纳祥的愿望.图一是一张由卷曲纹和回纹构成的正六边形剪纸窗花,已知图二中正六边形ABCDEF的边长为4,圆O的圆心为正六边形的中心,半径为2,若点P在正六边形的边上运动,MN为圆O的直径,则•的取值范围是()A.[6,12] B.[6,16] C.[8,12] D.[8,16]6.已知函数f(x)=x2,设a=log54,b=log,c=2,则f(a),f(b),f (c)的大小关系为()A.f(a)>f(b)>f(c) B.f(b)>f(c)>f(a)C.f(c)>f(b)>f(a)D.f(c)>f(a)>f(b)7.密位制是度量角的一种方法.把一周角等分为6000份,每一份叫做1密位的角.以密位作为角的度量单位,这种度量角的单位制,叫做角的密位制.在角的密位制中,采用四个数码表示角的大小,单位名称密位二字可以省去不写.密位的写法是在百位数与十位数字之间画一条短线,如7密位写成“0﹣07”,478密位写成“4﹣78.1周角等于6000密位,记作1周角=60﹣00,1直角=15﹣00.如果一个半径为2的扇形,它的面积为,则其圆心角用密位制表示为()A.12﹣50 B.17﹣50 C.21﹣00 D.35﹣008.已知实数x,y满足x2+y2=1,0<x<1,0<y<1,当取最小值时,的值为()A.B.C.D.1二、多项选择题(每小题5分,共20分.下列每小题所给选项至少有一项符合题意,请将正确答案的序号填涂在答题卡上)9.下列命题中为真命题的是()A.若a>b,则B.若ac2≥bc2,则a≥bC.若c>a>b>0,则D.若a>b,则10.据了解,到本世纪中叶中国人口老龄化问题将日趋严重,如图是专家预测中国2050年人口比例图,若从2050年开始退休年龄将延迟到65岁,则下列叙述正确的是()A.到2050已经退休的人数将超过30%B.2050年中国46﹣55岁的人数比16﹣25岁的人数多30%C.2050年中国25岁以上未退休的人口数大约是已退休人口数的1.5倍D.若从中抽取10人,则抽到5人的年龄在36﹣45岁之间的概率为()5×()511.如图,正方体ABCD﹣A1B1C1D1的棱长为1,E,F是线段B1D1上的两个动点,且EF=,则下列结论中正确的是()A.AC⊥BEB.EF∥平面ABCDC.△AEF的面积与△BEF的面积相等D.三棱锥E﹣ABF的体积为定值12.已知数列{an}满足,其前n项和为Sn,且m+S2019=﹣1009,则下列说法正确的是()A.m为定值B.m+a1为定值C.S2019﹣a1为定值D.ma1有最大值三、填空题:(本大题共4小题,每题5分,共20分;第16题第一个空2分,第二个空3分)13.已知α,β均为锐角,且,若,则=.14.描金又称泥金画漆,是一种传统工艺美术技艺,起源于战国时期,在漆器表面,用金色描绘花纹的装饰方法,常以黑漆作底,也有少数以朱漆为底.描金工作分为两道工序,第一道工序是上漆,第二道工序是描绘花纹现甲,乙两位工匠要完成A,B,C三件原料的描金工作,每件原料先由甲上漆,再由乙描绘花纹每道工序所需的时间(单位:h)如下:原料时间工序原料A 原料B 原料C 上漆9 16 10 描绘花纹15 8 14则完成这三件原料的描金工作最少需要h.15.对任意两实数a,b,定义运算“*”:则函数f(x)=sinx*cosx 的值域为.16.已知点M为双曲线C:﹣=1(a>0,b>0)在第一象限上一点,点F为双曲线C的右焦点,O为坐标原点,4|MO|=4|MF|=7|OF|,则双曲线C的离心率为;若MF,MO分别交双曲线C于P,Q两点,记直线PM与PQ的斜率分别为k1,k2,则k1k2=.四、解答题:(本大题共6小题,共70分;第17题10分,第18-22题12分,解答应写出文字说明,证明过程或演算步骤.)17.已知数列{an}是等差数列,设Sn(n∈N*)为数列{an}的前n项和,数列{bn}是等比数列,bn>0,若a1=3,b1=1,b3+S2=12,a5﹣2b2=a3.(1)求数列{an}和{bn}的通项公式;(2)若cn=,求数列{cn}的前2n项和.18.如图,在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北偏东30°,俯角为30°的B处,到11时10分又测得该船在岛北偏西60°,俯角为60°的C处.(1)求船的航行速度是每小时多少千米?(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?19.如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC=2BC,E为AB的中点,沿DE将△ADE折起,使得点A到点P位置,且PE⊥EB,M为PB的中点,N是BC 上的动点(与点B,C不重合).(Ⅰ)求证:平面EMN⊥平面PBC;(Ⅱ)是否存在点N,使得二面角B﹣EN﹣M的余弦值?若存在,确定N点位置;若不存在,说明理由.20.甲、乙、丙三人组建团队参加学校元旦游园活动中的投篮比赛,比赛规则:①按照甲、乙、丙的顺序进行投篮,每人至多投篮两次;②选手投篮时,如果第一次投中,记1分,并再投篮一次,若第二次命中,则再记2分,第二次没有命中,则记0分;如果第一次没有投中,记0分,换下一个选手进行投篮.甲、乙、丙投篮的命中率分别为0.6,0.5,0.7.(1)求甲、乙、丙三人一共投篮5次的概率;(2)设甲、乙、丙三人得分总和X,若X≤1,则该团队无奖品;若2≤X≤3,则该团队获得20元的奖品;若4≤X≤7,则该团队获得50元的奖品;若X≥8,则该团队获得200元的奖品.求该团队获得奖品价值Y的期望.21.已知A1,A2分别为椭圆的左、右顶点,B为椭圆C的上顶点,点A2到直线A1B的距离为,椭圆C过点.(1)求椭圆C的标准方程;(2)设直线l过点A1,且与x轴垂直,P,Q为直线l上关于x轴对称的两点,直线A2P 与椭圆C相交于异于A2的点D,直线DQ与x轴的交点为E,当△PA2Q与△PEQ的面积之差取得最大值时,求直线A2P的方程.22.已知函数f(x)=3x﹣(a+1)lnx,g(x)=x2﹣ax+4.(1)若函数y=f(x)+g(x)在其定义域内单调递增,求实数a的取值范围;(2)是否存在实数a,使得函数y=f(x)﹣g(x)的图象与x轴相切?若存在,求满足条件的a的个数,请说明理由.。

2021届河北省衡水中学高考第一次模拟数学试卷及答案解析

2021届河北省衡水中学高考第一次模拟数学试卷及答案解析
C.充要条件
D.既不充分也不必要的条件
7.函数f(x)=2sin(ωx+φ)(φ>0,|φ|< )的部分图象如图所示.若对任意x∈R,f(x)=f(2t﹣x)恒成立,则实数t的最大负值为( )
A.﹣ B.﹣ C.﹣ D.﹣
8.如图所示的程序框图是为了求出满足2n﹣n2>28的最小偶数n,那么空白框中的语句及最后输出的n值分别是( )
(2)设直线ln与函数g(x)= x的图象相交于点Bn,记bn= • (其中O为坐标原点),求数列{bn}的前n项和Sn.
20.(12分)已知椭圆¬: + =1(a>b>0)的右焦点为F(1,0),M点的坐标为(0,b),O为坐标原点,△OMF是等腰直角三角形.
(1)求椭圆¬的方程;
(2)设经过点C(0,2)作直线AB交椭圆¬于A、B两点,求△AOB面积的最大值;
A.n=n+1和6B.n=n+2和6C.n=n+1和8D.n=n+2和8
9.在平面直角坐标系中,A(1,﹣2),B(a,﹣1),C(﹣b,0),a,b∈R.当A,B,C三点共线时, 的最小值是( )
A.0B.1C. D.2
10.已知F1,F2是双曲线 的左、右焦点,若点F2关于双曲线渐近线的对称点A满足∠F1AO=∠AOF1(O为坐标原点),则双曲线的渐近线方程为( )
(3)是否存在直线l交椭圆于P,Q两点,使点F为△PQM的垂心(垂心:三角形三边高线的交点)?若存在,求出直线l的方程;若不存在,请说明理由.
21.(12分)已知x=1是函数f(x)=ax 的极值点.
(Ⅰ)求实数a的值;
(Ⅱ)求证:函数f(x)存在唯一的极小值点x0,且0 .(参考数据:ln2≈0.69)
三、解答题

河北省衡水中学高三下学期第三次摸底考试理数试题

河北省衡水中学高三下学期第三次摸底考试理数试题

河北衡水中学2021-2021学年度 高三下学期数学第三次摸底考试〔理科〕必考局部一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.集合()13lg 21|,|1x M x f x N x x -⎧⎫-⎧⎫===>⎨⎨⎬⎩⎩⎭,那么集合MN 等于〔 〕A .2,3⎛⎫+∞⎪⎝⎭ B .()1,+∞ C .12,23⎛⎫ ⎪⎝⎭ D .2,13⎛⎫⎪⎝⎭2. z C ∈假设12z z i -=+,那么1zi+等于〔 〕 A .7144i + B .7144i - C .1144i -- D .1144i -+3.数列{}n a 为正项等比数列,假设33a =,且()1123,2n n n a a a n N n +-=+∈≥,那么此数列的前5项和5S 等于 〔 〕 A .1213 B .41 C .1193 D .24194. 1F 、2F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,以线段12F F 为边作正三角形12F MF ,假如线段1MF 的中点在双曲线的渐近线上,那么该双曲线的离心率e 等于〔 〕A ...25.在ABC ∆中,“sin sin cos cos A B B A -=- 〞是“A B =〞的〔 〕A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件 6.二次函数()2f x x bx c =++的两个零点分别在区间()2,1--和()1,0-内,那么()3f 的取值范围是〔 〕A .()12,20B .()12,18 C. ()18,20 D .()8,187.如,一个简单几何体的正视和侧视都是边长为2,那么其底面周长为〔 〕A .()231+ B .()251+ C. ()222+ D .53+8.20世纪30年代,德国数学家洛萨---科拉茨提出猜测:任给一个正整数x 假如x 是偶数,就将它减半;假如x 是奇数,那么将它乘3加1,不断重复这样的运算,经过有限步后,一定可以得到1,这就是著名的“31x +〞“31x +〞猜测的一个程序框,假设输出n 的值为8,那么输入正整数m 的所有可能值的个数为〔 〕A .3B . 4 C. 6 D .无法确定9.632243ax x x x ⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为16,那么展开式中3x 项的系数为〔 〕A .1172 B . 632C. 57 D .33 10. 数列{}n a 为非常数列,满足:39511,48a a a +==,且1223111n n n a a a a a a na a +++++=对任何的正整数n 都成立,那么1250111a a a ++的值为〔 〕 A .1475 B .1425 C. 1325 D .127511.向量,,αβγ 满足()()()1,2,αααβαγβγ=⊥--⊥-,假设172β=,γ的最大值和最小值分别为,m n ,那么m n +等于〔 〕A .32 B .2 C. 52 D 12.偶函数()f x 满足()()44f x f x +=-,且当(]0,4x ∈时,()()ln 2x f x x=,关于x 的不等式()()20f x af x +>在[]200,200-上有且只有200个整数解,那么实数a 的取值范围是〔 〕A .1ln 6,ln 23⎛⎤- ⎥⎝⎦B .1ln 2,ln 63⎛⎫-- ⎪⎝⎭ C. 1ln 2,ln 63⎛⎤-- ⎥⎝⎦ D .1ln 6,ln 23⎛⎫- ⎪⎝⎭二、填空题:本大题共4小题,每题5分,共20分,将答案填在答题纸上13.为稳定当前物价,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进展调查,5家商场商品的售价x 元和销售量y 件之间的一组数据如下表所示:由散点可知,销售量y 与价格x 之间有较好的线性相关关系,其线性回归方程是ˆˆ3.2y x a =-+,那么ˆa= .14.将函数()2cos2f x x x =-的象向右平移m 个单位〔0m >〕,假设所得象对应的函数为偶函数,那么m 的最小值是 .15.两平行平面αβ、间的间隔 为A B α∈、,点C D β∈、,且4,3AB CD ==,假设异面直线AB 与CD 所成角为60°,那么四面体ABCD 的体积为 .16.A B 、是过抛物线()220y px p =>焦点F 的直线与抛物线的交点,O 是坐标原点,且满足3,3OAB AB FB S AB ∆==,那么AB 的值为 . 三、解答题 :解容许写出文字说明、证明过程或演算步骤.17. 如,ABC ∆关于AC 边的对称形为ADC ∆,延长BC 边交AD 于点E ,且5,2AE DE ==,1tan 2BAC ∠=.〔1〕求BC 边的长; 〔2〕求cos ACB ∠的值.18.如,圆锥1OO 和圆柱12O O 的组合体〔它们的底面重合〕,圆锥的底面圆1O 半径为5r =,OA 为圆锥的母线,AB 为圆柱12O O 的母线,D E 、为下底面圆2O 上的两点,且6, 6.4DE AB ==,52AO =,AO AD ⊥.〔1〕求证:平面ABD ⊥平面ODE ; 〔2〕求二面角B AD O --的正弦值.19.如,小华和小明两个小伙伴在一起做游戏,他们通过划拳〔剪刀、石头、布〕比赛决胜谁首先登上第3个台阶,他们规定从平地开场,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两个人都上一级台阶,假如一方连续两次赢,那么他将额外获得一次上一级台阶的奖励,除非已经登上第3个台阶,当有任何一方登上第3个台阶时,游戏完毕,记此时两个小伙伴划拳的次数为X .〔1〕求游戏完毕时小华在第2个台阶的概率; 〔2〕求X 的分布列和数学期望.20.如,62P ⎛⎫ ⎪ ⎪⎝⎭为椭圆()2222:10x y E a b a b +=>>上的点,且225a b +=,过点P 的动直线与圆222:1F x y a +=+相交于A B 、两点,过点P 作直线AB 的垂线与椭圆E 相交于点Q .〔1〕求椭圆E 的离心率; 〔2〕假设23AB =PQ .21. 函数()()()()11,2x x xax b e f x a R g x b R e e x e --=∈=+∈+,其中e 为自然对数的底数.〔参考数据:112427.39 1.28, 1.65e e e ≈≈≈, 〕〔1〕讨论函数()f x 的单调性;〔2〕假设1a =时,函数()()2y f x g x =+有三个零点,分别记为()123123x x x x x x <<、、,证明:()12243x x -<+<.选考局部请考生在22、23两题中任选一题作答,假如多做,那么按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中直线1l 的倾斜角为α,且经过点()1,1P -,以坐标系xOy 的原点为极点,x 轴的非负半轴为极轴,建立极坐标系Ox ,曲线E 的极坐标方程为4cos ρθ=,直线1l 与曲线E 相交于A B 、两点,过点P 的直线2l 与曲线E 相交于C D 、两点,且12l l ⊥. 〔1〕平面直角坐标系中,求直线1l 的一般方程和曲线E 的标准方程; 〔2〕求证:22AB CD +为定值. 23.选修4-5:不等式选讲 实数a b 、满足223a b ab +-=. 〔1〕求a b -的取值范围; 〔2〕假设0ab >,求证:2211344a b ab++≥.试卷答案一、选择题1-5:DAADB 6-10: ACBAB 11、12:CC二、填空题13. 14.6π 15. 6 16. 92三、解答题17.解:〔1〕因为1tan 2BAC ∠=,所以22tan 4tan 1tan 3BAC BAE BAC ∠∠==-∠,所以3cos 5BAE ∠=. 因为527AB AD AE DE ==+=+=,所以2222cos 49254232BE AB AE AB AE BAE =+-∠=+-=,所以BE =75BC AB CE AE ==,所以3BC =〔2〕由〔1〕知BE =所以222cos22AB BE AE B AB BE +-===,所以sin B =,因为1tan 2BAC ∠=,所以sin BAC BAC ∠=∠=所以()cos cos ACB BAC B ∠=-∠+sin sin cos cos B BAC B BAC =∠-∠==18.解:〔1〕依题易知,圆锥的高为5h ==,又圆柱的高为 6.4,AB AO AD =⊥,所以222OD OA AD =+,因为AB BD ⊥,所以222AD AB BD =+,连接1122OO O O DO 、、,易知12O O O 、、三点共线,22OO DO ⊥,所以22222OD OO O D =+,所以()(22222222222 6.455 6.464BD OO O D AO AB =+--=++--=,解得8BD =,又因为6DE =,圆2O 的直径为10,圆心2O 在BDE ∠内,所以易知090BDE ∠=,所以DE BD ⊥.因为AB ⊥平面BDE ,所以DE AB ⊥,因为AB BD B =,所以DE ⊥平面ABD .又因为DE ⊂平面ODE ,所以平面ABD ⊥平面ODE .〔2〕如,以D 为原点,DB 、DE 所在的直线为x y 、轴,建立空间直角坐标系.那么()()()()0,0,0,8,0,6.4,8,0,0,4,3,11.4D A B O . 所以()()()8,0,6.4,8,0,0,4,3,11.4DA DB DO ===, 设平面DAO 的法向理为(),,u x y z =,所以8 6.40,4311.40DA u x z DO u x y z =+==++=,令12x =,那么()12,41,15u =-. 可取平面BDA 的一个法向量为()0,1,0v =, 所以4182cos ,582u v u v u v=== 所以二面角B AD O --的正弦值为3210. 19.解:〔1〕易知对于每次划拳比赛根本领件共有339⨯=个,其中小华赢〔或输〕包含三个根本领件上,他们平局也为三个根本领件,不妨设事件“第()*i i N ∈次划拳小华赢〞为i A ;事件“第i 次划拳小华平〞为i B ;事件“第i 次划拳小华输〞为i C ,所以()()()3193i i i P A P B P C ====. 因为游戏完毕时小华在第2个台阶,所以这包含两种可能的情况:第一种:小华在第1个台阶,并且小明在第2个台阶,最后一次划拳小华平; 其概率为()()()()()()212122124781p A P B P C P B P C P A P B =+=, 第二种:小华在第2个台阶,并且小明也在第2个台阶,最后一次划拳小华输, 其概率为()()()()()()()()()()()()3221233123421234529243p P B P B P C A P A P B P C P C A P A P C P A P C P C =++=所以游戏完毕时小华在第2个台阶的概率为127295081243243p p p =+=+=. 〔2〕依题可知X 的可能取值为2、3、4、5,()()()()()4123412522381P X P A P C P A P C ⎛⎫===⨯= ⎪⎝⎭,()()()2121222239P X P A P A ⎛⎫===⨯= ⎪⎝⎭,()()()()()()()()()()123123123322P X P A P B P A P B P A P A P B P B P B ==++ ()()()()()()()()()()()()12312312312322213227P A P B P B P B P A P B P B P B P A P C P A P A ++++=()()()()224152381P X P X P X P X ==-=-=-==, 所以X 的分布列为:所以X 的数学期望为:()2132222512345927818181E X =⨯+⨯+⨯+⨯=.20.解:〔1〕依题知2222611,5,04ab a b a b+=+=>>,解得223,2a b ==,所以椭圆E的离心率e ===; 〔2〕依题知圆F 的圆心为原点,半径为2,r AB ==,所以原点到直线AB 的间隔为1d ===, 因为点P 坐标为⎫⎪⎪⎝⎭,所以直线AB 的斜率存在,设为k . 所以直线AB 的方程为12y k x ⎛-=-⎝⎭,即102kx y k --+=,所以1d ==,解得0k =或k =①当0k =时,此时直线PQ的方程为2x =, 所以PQ 的值为点P 纵坐标的两倍,即212PQ =⨯=;②当k =PQ的方程为12y x ⎛-=-⎭, 将它代入椭圆E 的方程2132x y 2+=,消去y并整理,得234210x --=, 设Q 点坐标为()11,x y1x +=1x =,所以13017PQ =-=.21.解:〔1〕因为()1x x ax x f x ae e e -⎛⎫== ⎪⎝⎭的定义域为实数R , 所以()1x x f x ae e -⎛⎫'=⎪⎝⎭. ①当0a =时,()0f x =是常数函数,没有单调性.②当0a <时,由()0f x '<,得1x <;由()0f x '>,得1x >. 所以函数()f x 在(),1-∞上单调递减,在()1,+∞上单调递增. ③当0a >时,由()0f x '<得,1x >; 由()0f x '>,得1x <, 所以函数()f x 在()1,+∞上单调递减,在(),1-∞上单调递增. 〔2〕因为()()1,20a f x g x =+=,所以121202x x xx b e e e x e --++=+,即1111221022x x x x x x x e x b b x e e x e e e ----++=++=++.令12x x t e e -=+,那么有10t e b t -++=,即()210t b e t +-+=. 设方程()210t b e t +-+=的根为12t t 、,那么121t t =,所以123x x x 、、是方程()()121122*,**x x x x t e t e e e --=+=+的根. 由〔1〕知12x x t e e-=+在(),1-∞单调递增,在()1,+∞上单调递减. 且当x →-∞时,t →-∞,当x →+∞时,()max ,12t e t t e →==+,如,根据题意,不妨取22e t e <<+,所以121112t e t e<=<+, 因为315122244111110,112422t e e e e t e e e e e ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+<-=-+=-+> ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 易知201x <<,要证()12243x x -<+<,即证11124x -<<-. 所以()1111024t t x t e ⎛⎫⎛⎫-<<<<- ⎪ ⎪⎝⎭⎝⎭,又函数()y t x =在(),1-∞上单调递增, 所以11124x -<<-,所以()12243x x -<+<. 22.解:〔1〕因为直线1l 的倾斜角为α,且经过点()1,1P -,当090α=时,直线1l 垂直于x 轴,所以其一般方程为10x -=,当090α≠时,直线1l 的斜率为tan α,所以其方程为()1tan 1y x α+=-, 即一般方程为()tan tan 10x y αα---=.因为E 的极坐标方程为4cos ρθ=,所以24cos ρρθ=,因为cos ,sin x y ρθρθ==,所以224x y x +=.所以曲线E 的标准方程为()2224x y -+=.〔2〕设直线1l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=-+⎩〔t 为参数〕,代入曲线E 的标准方程为()2224x y -+=,可得()()221cos 21sin 4t t αα+-+-+=,即()22cos sin 20t t αα-+-=, 那么()12122cos sin ,2t t t t αα+=+=-,所以()()()222212121244cos sin 8124sin AB t t t t t t ααα=-=+-=++=+2, 同理2124sin 2124sin 22CD παα⎛⎫=++=- ⎪⎝⎭, 所以22124sin 2124sin 224AB CD αα+=++-=为定值.23.解:〔1〕因为223a b ab +-=,所以2232a b ab ab +=+≥. ①当0ab ≥时,32ab ab +≥,解得3ab ≤,即03ab ≤≤;②当0ab <时,32ab ab +≥-,解得 1ab ≥-即10ab -≤<,所以13ab -≤≤,那么034ab ≤-≤,而()2222323a b a b ab ab ab ab -=+-=+-=-, 所以()204a b ≤-≤,即22a b -≤-≤;〔2〕由〔1〕知03ab <≤, 因为2222224113444344a b a b ab a b ab +++-=-+ 2222222343333111113304442ab a b ab a b ab a b ab ab +⎛⎫⎛⎫=-+=-+=-+=-≥ ⎪ ⎪⎝⎭⎝⎭当且仅当2ab =时取等号,所以 2211344a b ab++≥ .。

2021届河北衡水中学新高考模拟试卷(十三)理科数学

2021届河北衡水中学新高考模拟试卷(十三)理科数学

2021届河北衡水中学新高考模拟试卷(十三)数学试卷(理科)★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题(共12小题).1.设全集为{}2|1log 3A x x =≤≤,{}2|340B x x x =--<,则AB 等于( )A. ()1,2-B. (]1,8-C. []4,8D. [)2,4【答案】D 【解析】 【分析】解对数不等式得集合A ,解一元二次不等式得集合B ,再由交集定义计算. 【详解】∵{}28|A x x =≤≤,{}|14B x x =-<<,∴{}|24x x A B =≤<.故选:D.【点睛】本题考查集合的交集运算,考查对数函数性质,掌握对数函数性质是解题关键. 2.设12,z z 是复数,则下列命题中的假命题是()A. 若120z z -=,则12z z =B. 若12z z =,则12z z =C. 若12=z z ,则1122z z z z ⋅=⋅D. 若12=z z ,则2212z z =【答案】D 【解析】试题分析:对(A ),若120z z -=,则12120,z z z z -==,所以为真;对(B )若12z z =,则1z 和2z 互为共轭复数,所以12z z =为真; 对(C )设111222,z a b z a i b i =+=+,若12=z z ,则22221122a b a b +=+,222211112222,z z a b z z a b ⋅=+⋅=+,所以1122z z z z ⋅=⋅为真;对(D )若121,z z i ==,则12=z z 为真,而22121,1z z ==-,所以2212z z =为假.故选D .考点:1.复数求模;2.命题的真假判断与应用.3.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下图,则下面结论中错误..的一个是( )A. 甲的极差是29B. 甲的中位数是24C. 甲罚球命中率比乙高D. 乙的众数是21【答案】B 【解析】 【分析】通过茎叶图找出甲的最大值及最小值求出极差判断出A 对;找出甲中间的两个数,求出这两个数的平均数即数据的中位数,判断出D 错;根据图的数据分布,判断出甲的平均值比乙的平均值大,判断出C 对. 【详解】由茎叶图知甲的最大值为37,最小值为8,所以甲的极差为29,故A 对甲中间的两个数为22,24,所以甲的中位数为2224232+=故B 不对 甲的命中个数集中在20而乙的命中个数集中在10和20,所以甲的平均数大,故C 对 乙的数据中出现次数最多的是21,所以D 对 故选B .【点睛】茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况.4.定义在R 上的函数1()()23x m f x -=-为偶函數,21(log )2a f =,131(())2b f =,()c f m =,则A. c a b <<B. a c b <<C. a b c <<D. b a c <<【答案】C 【解析】 【分析】由偶函数得到0m =,明确函数的单调性,综合利用奇偶性与单调性比较大小即可. 【详解】∵1()()23x mf x -=-为偶函数,∴0m =,即1()()23xf x =-,且其在[)0,+∞上单调递减,又1310()21<<,∴()()13211(())(log 02))2(1c b f f a f f f m ==>=>==故选:C【点睛】本题考查函数的性质,考查函数的奇偶性与单调性,考查转化思想,属于中档题.5.设函数()4cos f x x x =--的导函数为()g x ,则()g x 图象大致是( )A. B. C. D.【答案】D 【解析】 【分析】求出导函数()g x ,然后研究()g x 的性质,用排除法确定正确选项.【详解】因为()4cos f x x x =--,所以()3'sin 4f x x x =-,所以()3sin 4g x x x =-,所以函数()g x 是奇函数,其图象关于原点成中心对称,而函数()g x 为偶函数,其图象关于y 轴对称,所以选项B ,C 错误;又因为其图象过原点O ,所以选项A 错误. 故选:D.【点睛】本题考查导数的运算,考查由函数解析式选择函数图象,解题时可根据解析式确定函数的性质,利用排除法得出正确选项.6.等差数列{a n }的前n 项和为S n ,若S 17=51,则2a 10﹣a 11=( ) A. 2 B. 3C. 4D. 6【答案】B 【解析】 【分析】由已知结合等差数列的的前n 和公式,可求出9a ,再利用等差数列的性质,即可求解. 【详解】∵S 17=51,∴()117172a a +=51,a 1+a 17=6=2a 9,解得a 9=3,则2a 10﹣a 11=a 9=3.故选:B .【点睛】本题考查了等差数列的通项公式求和公式及其性质,考查了推理能力与计算能力,属于基础题. 7.执行如图所示的程序框图,若输出的n =6,则输入的整数p 的最大值为( )A. 7B. 15C. 31D. 63【答案】C 【解析】 【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算变量S 的值,并输出满足退出循环条件时的n 值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【详解】程序在运行过程中各变量的值如下表示: 是否继续循环Sn 循环前,0,1S n ==第一次循环后,是,1,2S n ==, 第二次循环后,是,3,3S n ==, 第三次循环后,是,7,4S n ==。

河北省衡水中学2021届高三数学下学期第三次模拟试题(A卷)理

河北省衡水中学2021届高三数学下学期第三次模拟试题(A卷)理

绝密*启用前 试卷类型:A河北省衡水中学2021届高三数学下学期第三次模拟试题(A 卷)理第Ⅰ卷(选择题 共60分)选择题(每题5分,共60分。

以下每题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.复数i34i a z +=∈+R ,那么实数a 的值是( ).A .43-B .43C .34D .34-2.在等差数列{}n a 中,()()3456814164336a a a a a a a ++++++=,那么该数列的前14项和为( ).A .20B .21C .42D .843.为调查衡水市高中三年级男生的身高情形,选取了5000人作为样本,右图是这次调查中的某一项流程图,假设其输出的结果是3800,那么身高在cm 170以下的频率为( )A .24.0B .38.0C .62.0D .76.0 4.给出以下命题①假设直线l 与平面α内的一条直线平行,那么l ∥α; ②假设平面α⊥平面β,且l αβ=,那么过α内一点P 与l 垂直的直线垂直于平面β;③00(3,),(2,)x x ∃∈+∞∉+∞;④已知a R ∈,那么“2a <”是“22a a <”的必要不充分条件.其中正确命题的个数是( ) A.4B.3C.2D.15. 在9)1(x x -的展开式中,常数项为( ) A. -36B. 36C. -84D. 846.以下图为一个几何体的三视图,尺寸如下图,那么该几何体的体积为( )A.23π+6 B.23+4π C. 33π+6 D.334π+3 7.设m ,n 别离是前后抛掷一枚骰子取得的点数,那么在前后两次显现的点数中有5的条件下,方程20x mx n ++=有实根的概率为( )A .1136B .736C .711D .7108.假设双曲线222(0)x y a a -=>的左、右极点别离为A 、B ,点P 是第一象限内双曲线上的点。

假设直线PA 、PB 的倾斜角别离为α,β,且(1)m m βα=>,那么α的值是( )A .21m π- B .2m π C .21m π+ D .22m π+9.概念:()00>>=y ,x y )y ,x (F x,已知数列{}n a 知足:()()n ,F ,n F a n 22=()n *∈N ,假设对任意正整数n ,都有k n a a ≥()k *∈N 成立,那么k a 的值为( )A .12B .2C .89D .9810.如图,正方体1111D C B A ABCD -的棱长为3,以极点A 为球心,2为半径作一个球,那么图中球面与正方体的表面相交所取得的两段弧长之和等于( )A. 65πB. 32πC. πD. 67π11. 已知12)(-=xx f ,21)(x x g -=,规定:当)(|)(|x g x f ≥时,|)(|)(x f x h =;当)(|)(|x g x f <时, )()(x g x h -=,那么)(x h ( )A. 有最小值1-,最大值1B. 有最大值1,无最小值C. 有最小值1-,无最大值D. 有最大值1-,无最小值 12.已知两点A (1,2), B (3,1) 到直线L 的距离别离是25,2-,那么知足条件的直线L 共有 ( )条A.1B.2C.3D.4 Ⅱ卷(主观题 共90分)二、填空题(每题5分,共20分,注意将答案写在答题纸上)13. 由直线x=,3,3==-y x ππ与曲线y=cosx 所围成的封锁图形的面积为14. 设变量x ,y 知足约束条件1121x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩,那么目标函数2x yz x y -=+的最大值为 .15.已知O 是△ABC 的外心,AB=2,AC=3,x+2y=1,假设,AC y AB x AO +=)0(≠xy 则=∠BAC cos16.已知函数()f x 的概念域为[-1,5], 部份对应值如下表,()f x 的导函数/()y f x =的图像如下图。

2021年河北省衡水中学高考数学三模试卷

2021年河北省衡水中学高考数学三模试卷

2021年河北省衡水中学高考数学三模试卷一、单选题(本大题共8小题,共40.0分) 1. 已知z 为复数,z 2+1=0,则|z −1|等于( )A. 0B. 1C. √2D. 22. 已知cosθ−sinθ=34,则θ的终边在( )A. 第一象限B. 第二象限C. 三象限D. 第四象限3. 已知数列{a n }是等比数列,T n 是其前n 项之积,若a 5⋅a 6=a 7,则T 7的值是( )A. 1B. 2C. 3D. 44. 已知log a 14<1,(14)a <1,a 14<1,则实数a 的取值范围为( )A. (0,14)B. (0,1)C. (1,+∞)D. (14,1)5. 在棱长为1的正方体ABCD −A 1B 1CD 1中,E 为棱CD 的中点,过B ,E ,D 1的截面与棱A 1B 1交于F ,则截面BED 1F 分别在平面A 1B 1C 1D 1和平面ABB 1A 1上的正投影的面积之和( )A. 有最小值1B. 有最大值2C. 为定值2D. 为定值16. 已知在圆(x −1)2+y 2=r 2上到直线x −y +3=0的距离为√2的点恰有一个,则r =( )A. √2B. √3C. 2D. 2√27. 有三个因素会影响某种产品的产量,分别是温度(单位:℃)、时间(单位:min)、催化剂用量(单位:g),三个因素对产量的影响彼此独立.其中温度有三个水平:80、85、90,时间有三个水平:90、120、150,催化剂用量有三个水平:5、6、7.按全面实验要求,需进行27种组合的实验,在数学上可以证明:通过特定的9次实验就能找到使产量达到最大的最优组合方案.如表给出了这9次实验的结果:实验号温度(℃)时间(min)催化剂用量(g)产量(kg) 18090531 280120654 380150738 48590653 585120749 685150542 79090757 890120562 990150664根据上表,三因素三水平的最优组合方案为()A. 85℃120min7gB. 90℃120min6gC. 85℃150min6gD. 90℃150min7g8.若函数f(x)=3sin(ωx+φ)(ω>0,0<φ<π2)的图象过点M(2π3,−3),直线x=2π3向右平移π4个单位长度后恰好经过f(x)上与点M最近的零点,则f(x)在[−π2,π2]上的单调递增区间是()A. [−π2,π6] B. [−π3,π3] C. [−π3,π6] D. [−π6,π6]二、多选题(本大题共4小题,共20.0分)9.新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考),其中“选择考”成绩将计入高考总成绩,即将学生考试时的原始卷面分数由高到低进行排序,评定为A,B,C,D,E五个等级,再转换为分数计入高考总成绩.某试点高中2020年参加“选择考”总人数是2018年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2018年和2020年“选择考”成绩等级结果,得到如图所示的统计图.针对该校“选择考”情况,2020年与2018年比较,下列说法正确的是()A. 获得A等级的人数增加了B. 获得B等级的人数增加了1.5倍C. 获得D等级的人数减少了一半D. 获得E等级的人数相同10.已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A. 若A=B,则a=−3B. 若A⊆B,则a=−3C. 若B≠⌀,则a≤−6或a≥6D. 若a=3,则A∩B={x|−3<x<6}11.已知函数f(x)=cos2x1+sinx,则()A. f(x+π)=f(−x)B. f(x)的最大值为4−2√2C. f(x)是奇函数D. f(x)的最小值为−1212.我国古代数学家祖暅求几何体的体积时,提出一个原理:幂势即同,则积不容异.这个定理的推广是夹在两个平行平面间的两个几何体,被平行于这两个平面的平面所截,若截得两个截面面积比为k,则两个几何体的体积比也为k.如图所示,已知线段AB长为4,直线l过点A且与AB垂直,以B为圆心,以1为半径的圆绕l旋转一周,得到环体M;以A,B分别为上、下底面的圆心,以1为上、下底面半径的圆柱体N;过AB且与l垂直的平面为β,平面α//β,且距离为h,若平面α截圆柱体N所得截面面积为S1,平面α截环体M所得截面面积为S2,则下列结论正确的是()A. 圆柱体N的体积为4πB. S2=2πS1C. 环体M的体积为8πD. 环体M的体积为8π2三、单空题(本大题共4小题,共20.0分)13.已知(1+mx)(1+x)5=a0+a1x+a2x2+⋅⋅⋅+a6x2.若a2=5,则m=______ .14.已知a⃗,b⃗ 为单位向量,|a⃗+b⃗ |=|a⃗−b⃗ |,若c⃗=2a⃗−3b⃗ ,则cos<a⃗,c⃗>=______ .15.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,M为C左支上一点,N为线段MF2上一点,且|MN|=|MF1|,P为线段NF1的中点.若|F1F2|=4|OP|(O为坐标原点),则C的渐近线方程为______ .16. 用M I 表示函数y =sinx 在闭区间I 上的最大值,若正数a 满足M [0,a]≥2M [a,2a],则a 的最大值为______ . 四、解答题(本大题共6小题,共70.0分)17. 在①√3acosB =bsinA ,②√3bsinA =a(2−cosB),③cosC =2a−c 2b这三个条件中任选一个,补充在下面的问题中.问题:在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,c =2,BC 边上的中线长为√7,____,求△ABC 的面积.18. 已知数列{a n }的前n 项和为S n ,且满足a 1=3,a n =xa n−1+n −2(n ≥2),其中x ∈R .(1)若x =1,求a n ;(2)是否存在实数x ,y 使{a n +yn}为等比数列?若存在,求出S n ;若不存在,说明理由.19. 某单位招考工作人员,须参加初试和复试,初试通过后组织考生参加复试,共5000人参加复试,复试共三道题,第一题考生答对得3分,答错得0分,后两题考生每答对一道题得5分,答错得0分,答完三道题后的得分之和为考生的复试成绩.(1)通过分析可以认为考生初试成绩X 服从正态分布N(μ,δ2),其中μ=64,δ2=169,试估计初试成绩不低于90分的人数;(2)已知某考生已通过初试,他在复试中第一题答对的概率为34,后两题答对的概率均为23,且每道题回答正确与否互不影响.记该考生的复试成绩为Y ,求Y 的分布列及数学期望.附:若随机变量X服从正态分布N(μ,δ2),则P(μ−δ<X<μ+δ)=0.6826,P(μ−2δ<X<μ+ 2δ)=0.9544,P(μ−3δ<X<μ+3δ)=0.9974.20.将长(AB)、宽(BC)、高(AA1)分别为4,3,1的长方体点心盒用彩绳做一个捆扎,有如下两种方案:方案一:如图(1)传统的十字捆扎;方案二:如图(2)折线法捆扎,其中A1E=FB=BG=HC1=C1I=JD=DK=LA1=1.(1)哪种方案更省彩绳?说明理由;(2)求平面EFK与平面GIJ所成角的余弦值.21.已知双曲线C:x2m2−y2n2=1(m>0,n>0)上异于顶点的任一点与其两个顶点的连线的斜率之积为19.(1)求双曲线的渐近线方程;(2)椭圆E:x2a2+y2b2=1(a>b>0)的离心率等于2√33,过椭圆上任意一点P作两条与双曲线的渐近线平行的直线,交椭圆E于M,N两点,若PM2+PN2=5,求椭圆E的方程.22.(1)若0<a≤1,判断函数f(x)=asin(1−x)+lnx在区间(0,1)内的单调性;(2)证明:对任意n≥2,n∈N∗,sin215+sin2110+⋅⋅⋅+sin21n2+1<ln2.答案和解析1.【答案】C【解析】解:由z2+1=0,得z2=−1,则z=±i,当z=−i时,|z−1|=|−i−1|=√(−1)2+(−1)2=√2;当z=i时,|z−1|=|i−1|=√12+(−1)2=√2.综上,|z−1|=√2.故选:C.由已知求得z,再由复数模的计算公式求解.本题考查虚数单位i的运算性质,考查复数模的求法,是基础题.2.【答案】D【解析】解:由cosθ−sinθ=34,平方得:sin2θ+cos2θ−2sinθcosθ=169,则1−2sinθ=169,即sin2θ=−79<0,则2kπ+π<2θ<2kπ+2π,k∈Z,即有kπ+π2<θ<kπ+π,k∈Z,当k为偶数时,θ位于第二象限,sinθ>0,cosθ<0,不成立,当k为奇数时,θ位于第四象限,sinθ<0,cosθ>0,成立.∴角θ的终边在第四象限.故选:D.将已知等式平方,利用同角三角函数基本关系式,二倍角公式可得sin2θ=−79<0,可得kπ+π2<θ<kπ+π,k∈Z,分类讨论即可求解.本题主要考查了同角三角函数基本关系式,二倍角公式在三角函数求值中的应用,考查了分类讨论思想,属于基础题.3.【答案】A【解析】解:∵数列{a n}是等比数列,T n是其前n项之积,a5⋅a6=a7,∴a1q4⋅a1q5=a1q6,解得a1q3=1,∴T7=a1⋅a2⋅a3⋅a4⋅a5⋅a6⋅a7=a17q21=(a1q3)7=1.故选:A.由a5⋅a6=a7,解得a1q3=1,由此利用等比数列的通项公式能求出T7.本题考查等比数列的前7项积的求法,考查等比数列的性质等基础知识,考查运算求解能力等数学核心素养,是基础题.4.【答案】A【解析】解:①由log a14<1,得a>1或0<a<14,②由(14)a<1,得a>0,③由a14<1,得0<a<1,∴当log a14<1,(14)a<1,a14<1同时成立时,取交集得0<a<14,故选:A.由题意利用幂函数、指数函数、对数函数的性质,分别求得a的范围,再取交集,即得所求.本题主要考查幂函数、指数函数、对数函数的性质,属于中档题.5.【答案】D【解析】解:BF与D1E分别为截面与两个平行平面的交线,由面面平行的性质定理可得,BF//D1E,同理可得D1F//BE,所以四边形BED1F为平行四边形,所以D1F=BE,又Rt△A1D1F≌Rt△CBE,所以A1F=CE=12,即F为A1B1的中点,截面在A1B1C1D1,ABB1A1上的投影如图所示,则S平行四边形D1EB1F =S A1B1C1D1−S△A1D1F−S△B1C1E=1−12×12×1−12×12×1=12,同理可得,S平行四边形A1EBF =12,故截面BED1F分别在平面A1B1C1D1和平面ABB1A1上的正投影的面积之和为定值1.故选:D.利用面面平行的性质定理得到BF//D1E,D1F//BE,从而可得D1F=BE,推出F为A1B1的中点,然后分别求解两个平行四边形的面积,即可得到答案.本题考查了平行投影及平行投影的应用,面面平行的性质定理的运用,考查了空间想象能力与逻辑推理能力,属于中档题,6.【答案】A【解析】解:因为圆(x−1)2+y2=r2的圆心为(1,0),半径为r,圆心(1,0)到直线x−y+3=0的距离d=√2=2√2,因为在圆(x−1)2+y2=r2上到直线x−y+3=0的距离为√2的点恰有一个,所以r=2√2−√2=√2.故选:A.求出圆心到直线的距离d,结合题意即可求得r的值.本题主要考查点到直线的距离公式,直线和圆的位置关系,考查运算求解能力,属于基础题.7.【答案】B【解析】解:利用数表分析可知,从不同的温度来看,温度对其影响比较大,几乎成正比关系;其次催化剂的量对其影响比较大,从9组数据分析可知当催化剂为6克时,在组内产量都比较大;再次,从时间上看,9组数据显示,当时间为120分钟时,相对产量较高,故选:B.利用题中的数据信息,分别对温度,时间,催化剂的量进行分析,即可得出.本题考查了函数模型的实际应用,学生数据处理能力,逻辑推理能力,属于基础题.8.【答案】C【解析】解:∵函数f(x)=3sin(ωx+φ)(ω>0,0<φ<π2)的图象过点M(2π3,−3),直线x=2π3向右平移π4个单位长度后恰好经过f(x)上与点M最近的零点,∴14⋅2πω=π4,∴ω=2.结合五点法作图可得2×2π3+φ=3π2,求得φ=π6,∴f(x)=3sin(2x+π6).令2kπ−π2≤2x+π6≤2kπ+π2,求得kπ−π3≤x≤kπ+π6,可得函数的增区间为[kπ−π3,kπ+π6],k∈Z.则f(x)在[−π2,π2]上的单调递增区间为[−π3,π6],故选:C.由题意利用正弦函数的图象和性质,先求出f(x)的解析式,进而求出它在[−π2,π2]上的单调递增区间.本题主要考查正弦函数的图象和性质,属于中档题.9.【答案】AB【解析】解:设2018参加“选择考”总人数为a,则2020年参加“选择考”总人数为2a,由统计图可得,2018年获得A等级的人数为0.28a,2020年获得A等级的人数为0.48a,故A正确;2018年获得B等级的人数为0.32a,2020年获得B等级的人数为0.80a,获得B等级的人数增加了0.8a−0.32a0.32a=1.5倍,故B正确;2018年获得D等级的人数为0.08a,2020年获得D等级的人数为0.12a,获得D等级的人数增加了一半,故C错误;2018年获得E等级的人数为0.02a,2020年获得E等级的人数为0.04a,获得E等级的人数为原来的2倍,故D错误.故选:AB.设2018参加“选择考”总人数为a,则2020年参加“选择考”总人数为2a,分别算出获得各个等级的人数,即可得到结论.本题考查统计图和频率分布图的运用,考查运算能力,属于基础题.10.【答案】AB【解析】解:由已知可得A={x|−3<x<6},若A=B,则a=−3,且a2−27=−18,解得a=−3,故A正确,若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确,当B≠⌀时,△>0即a2−4(a2−27)>0,解得−6<a<6,故C错误,当a=3时,B={x|x2+3x−18<0}={x|−6<x<3},∴A∩B={x|−3<x<3},故D错误,故选:AB.由已知求出集合A,再对应各个选项逐个求出满足选项的集合B的a的范围即可.本题考查了集合间的包含关系的应用,考查了一元二次不等式的解集的问题,属于基础题.11.【答案】AB【解析】解:函数f(x)=cos2x1+sinx,则f(x+π)=cos(2x+2π)1+sin(x+π)=f(−x)=cos2x1−sinx,故A正确;对于B:f(x)=cos2x1+sinx =1−2sin2x1+sinx=4−(2+2sinx+11+sinx)≤4−2√2,当且仅当sinx=√22−1时,等号成立,故B正确;对于C:函数f(−x)≠−f(x),故C错误;对于D:f(−π3)=cos(−2π3)1+sin(−π3)=−121−√32=−2−√3<−12,故D错误.故选:AB.直接利用三角函数关系式的变换,函数的性质的应用,不等式的性质的应用判断A、B、C、D的结论.本题考查的知识要点:三角函数关系式的变换,函数的性质的应用,不等式的性质,主要考查学生的运算能力和数学思维能力,属于基础题.12.【答案】ABD【解析】解:∵圆柱N的底面半径为1,高为4,则圆柱N的体积为V=π×12×4=4π,故A正确;由图可知,S1=2√1−ℎ2⋅4=8√1−ℎ2,S2=πr外2−πr内2,其中,r外2=(4+√1−ℎ2)2,r内2=(4−√1−ℎ2)2,故S2=16√1−ℎ2⋅π=2πS1,故B正确;环体M的体积为2π⋅V柱=2π⋅4π=8π2,故C错误,D正确.故选:ABD.直接由圆柱体积公式求得N的体积判断A;分别求解S1,S2判断B;由祖暅原理求出环体M的体积判断C 与D.本题考查圆柱体积的求法,考查祖暅原理的应用,考查运算求解能力,是基础题.13.【答案】−1【解析】解:因为(1+mx)(1+x)5=a0+a1x+a2x2+⋅⋅⋅+a6x6,所以a2=C52+mC51=10+5m=5,解得m=−1,故答案为:−1.在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得含x3的项的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.14.【答案】2√1313【解析】解:根据题意,a⃗,b⃗ 为单位向量,|a⃗+b⃗ |=|a⃗−b⃗ |,则有(a⃗+b⃗ )2=(a⃗−b⃗ )2,即a⃗2+2a⃗⋅b⃗ +b⃗ 2=a⃗2−2a⃗⋅b⃗ +b⃗ 2,变形可得a⃗⋅b⃗ =0,若c⃗=2a⃗−3b⃗ ,则|c⃗|2=(2a⃗−3b⃗ )2=13,即|c⃗|=√13,a⃗⋅c⃗=a⃗⋅(2a⃗−3b⃗ )=2a⃗2−3a⃗⋅b⃗ =2,则cos<a⃗,c⃗>=a⃗ ⋅c⃗|a⃗ ||c⃗ |=2√13=2√1313,故答案为:2√1313.根据题意,由数量积的计算公式可得(a⃗+b⃗ )2=(a⃗−b⃗ )2,变形可得a⃗⋅b⃗ =0,进而求出|c⃗|和a⃗⋅c⃗的值,由向量夹角公式计算可得答案.本题考查向量数量积的计算,涉及向量的夹角,属于基础题.15.【答案】y=±√3x【解析】解:由双曲线的定义,可得|MF2|−|MF1|=|MF2|−|MN|=|NF2|=2a,在△NF1F2中,OP为中位线,可得|OP|=12|NF2|=a,又|F1F2|=4|OP|,可得2c=4a,即c=2a,b=√c2−a2=√4a2−a2=√3a,所以双曲线的渐近线方程为y=±√3x.故答案为:y=±√3x.由双曲线的定义和三角形的中位线定理,推得|OP|=a,再由a,b,c的关系,可得a,b的关系,即可得到渐近线方程.本题考查双曲线的定义和性质,以及三角形的中位线定理,考查方程思想和运算能力,属于中档题.16.【答案】13π12【解析】解:①当a∈[0,π2]时,2a∈[0,π],M[0,a]=sina,M[a,2a]=1,∴sina≥2舍去;②当a∈[π2,π]时,2a∈[π,2π],M[0,a]=1,M[a,2a]=sina,∴1≥2sina,∴sina≤12,∴a≥5π6,∴5π6≤a≤π;③当a∈[π,3π2]时,2a∈[2π,3π],M[0,a]=1,M[a,2a]=sin2a或1,∴1≥2sin2a且2a≤2π+π2,∴sin2a≤12,∴2π≤2a≤2π+π6,∴a≤π+π12=13π12;④当a∈[3π2,+∞)时,2a∈[3π,+∞),M[0,a]=M[a,2a]=1,舍去;综上所述:a max=13π12.故答案为:13π12.分a在不同区间进行讨论,得出符合条件的a值即可.本题考查三角函数的最值的求法,考查分类讨论的数学思想方法,考查计算能力,是中档题.17.【答案】解:①√3acosB=bsinA,由正弦定理得,√3sinAcosB=sinBsinA,因为sinA>0,所以√3cosB=sinB,即tanB=√3,因为B为三角形内角,所以B=π3;②√3bsinA=a(2−cosB),由正弦定理得,√3sinBsinA=sinA(2−cosB),因为sinA>0,所以√3sinB=2−cosB,所以即2sin(B+π6)=2,所以sin(B+π6)=1,因为√3sinB+cosB=2,B为三角形内角,所以B=π3;③cosC=2a−c2b,由余弦定理得,cosC=2a−c2b =a2+b2−c22ab,整理得,b2=a2+c2−ac,故cosB=12,因为B为三角形内角,所以B=π3;因为c=2,BC边上的中线长为√7,△ABD中,由余弦定理得,cos60°=4+BD2−74BD,解得BD=3,BC=6,△ABC的面积S=12AB⋅BCsin60°=12×2×6×√32=3√3.【解析】由已知所选条件结合正弦定理,同角基本关系及辅助角公式或余弦定理进行化简可求B,然后结合余弦定理求出BD,再由三角形面积公式可求.本题主要考查了正弦定理,余弦定理,辅助角公式及三角形面积公式在求解三角形中的应用,属于中档题.18.【答案】解:(1)当x=1时,a n=a n−1+n−2(n≥2),所以a n−a n−1=n−2,a n−1−a n−2=(n−1)−2,a n−2−a n−3=(n−2)−2,.......,a2−a1=2−2,所以a n−a1=(n+...+2)−2(n−1),整理得a n=n2−3n+82,(首项符合通项),故a n=n2−3n+82.(2)假设存在实数x,y使{a n+yn}为等比数列故a n+y n=x[a n−1+y n−1],整理得a n =xa n−1+(xy −y)n −xy , 故{xy −y =1xy =2,解得{x =2y =1,所以a n +n =2×[a n−1+n −1], 即a n +nan−1+(n−1)=2,当n =1时,a 1+1=4,所以存在x =2,y =1使数列{a n +y n }是以4为首项,2为公比的等比数列. 整理得a n =2n+1−n , 故S n =4×(2n −1)2−1−n(n+1)2=2n+2−n(n+1)2−4.【解析】(1)直接利用数列的递推关系式和构造新数列的应用求出数列的通项公式;(2)利用存在性问题的应用和方程组的解法求出x 和y 的值,进一步求出数列的通项公式和前n 项和公式. 本题考查的知识要点:数列的递推关系式,构造新数列,存在性问题的应用,主要考查学生的运算能力和数学思维能力,属于中档题.19.【答案】解:(1)因为学生笔试成绩X 服从正态分布N(μ,ξ2),其中μ=64,ξ2=169,μ+2ξ=64+2×13=90,所以P(X ≥90)=P(X ≥μ+2ξ)=12(1−0.9544)=0.0228, 所以估计笔试成绩不低于90分的人数为0.0228×5000=114人; (2)Y 的取值分别为0,3,5,8,10,13,则P(Y =0)=(1−34)×(1−23)2=136,P(Y =3)=34×(1−23)2=112,P(Y =5)=(1−34)××C 21×23×(1−23)=19, P(Y =8)=34×C 21×23×(1−23)=13,P(Y =10)=(1−34)×(23)2=19,P(Y =13)=34×(23)2=13, 故Y 的分布列为:所以数学期望为E(Y)=0×136+3×112+5×19+8×13+10×19+13×13=32136=10712.【解析】本题考查了正态分布的应用以及离散型随机变量的期望方差和分布列问题,考查了学生的运算能力,属于中档题.(1)利用正态分布给出的数据即可求解;(2)由已知先求出Y 的取值,然后求出对应的概率即可求解.20.【答案】解:(1)方案②更省彩绳.理由如下:方案①中彩绳的总长度为l =2×(4+3)+4=18,方案②中彩绳的总长度为m =2×√5+6×√2<2×2.5+6×1.5=14, ∴l >m ,故方案②更省彩绳.(2)以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系, 则E(3,1,1),F(3,3,0),K(1,0,0)G(2,4,0),I(0,3,1),J(0,1,0), ∴KE ⃗⃗⃗⃗⃗⃗ =(2,1,1),KF ⃗⃗⃗⃗⃗⃗ =(2,3,0),JG ⃗⃗⃗⃗ =(2,3,0),JI ⃗⃗⃗ =(0,2,1), 设平面EFK 的法向量为m ⃗⃗⃗ =(x,y ,z),则{m ⃗⃗⃗ ⋅KE ⃗⃗⃗⃗⃗⃗ =0m ⃗⃗⃗ ⋅KF ⃗⃗⃗⃗⃗⃗ =0,即{2x +y +z =02x +3y =0,令y =1,则x =−32,z =2,∴m⃗⃗⃗ =(−32,1,2), 同理可得,平面GIJ 的法向量为n ⃗ =(−32,1,−2), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=94+1−4√94+1+4×√94+1+4=−329,由图可知,平面EFK 与平面GIJ 所成角为钝角, 故平面EFK 与平面GIJ 所成角的余弦值为−329.【解析】(1)方案①中彩绳的总长度为l=2×(4+3)+4=18,利用勾股定理,求得方案②中彩绳的总长度为m=2×√5+6×√2<14,比较l和m的大小,即可得解;(2)以D为原点建立空间直角坐标系,求得平面EFK和平面GIJ的法向量m⃗⃗⃗ 与n⃗,由cos<m⃗⃗⃗ ,n⃗>=m⃗⃗⃗ ⋅n⃗⃗|m⃗⃗⃗ |⋅|n⃗⃗ |,即可得解.本题考查长方体的结构特征,二面角的求法,熟练掌握利用空间向量求二面角的方法是解题的关键,考查空间立体感、逻辑推理能力和运算能力,属于中档题.21.【答案】解:(1)设A(x1,y1)为双曲线上任意一点,则x12m2−x22n2=1①双曲线的顶点为B(−m,0),C(m,0),由题设知k AB⋅k AC=y1x1+m ⋅y1x1−m=19,故x12=9y12+m2,代入①式可得(9m2−1n2)y12=0.又A为双曲线上任意一点,故9m2−1n2=0,所以m=3n,双曲线的渐近线方程为y=±13x.(2)由椭圆E的离心率e=ca =√1−b2a2=2√33,可得a=3b,故椭圆方程为x29b2+y2b2=1,即x2+9y2=9b2(b>0).设P(x0,y0),M(x M,y M),则x02+9y02=9b2.②不妨设直线PM的方程为y=13(x−x0)+y0,与椭圆方程x2+9y2=9b2联立,消去y,利用②式整理得x2+(3y0−x0)x−3x0y0=0,即(x−x0)(x+3y0)=0,故x M=−3y0,从而y M=13(x M−x0)+y0=−13x0.所以M(−3y0,−13x0).而直线PN的方程为y=−13(x−x0)+y0,同理可求得N(3y0,13x0).于是PM2+PN2=5可得(−3y0−x0)2+(−13x0−y0)2+(3y0−x0)2+(13x0−y0)2=5,整理得x02+9y02=94.结合②式可得b2=14,所以椭圆E的方程为x2+9y2=94,即49x2+4y2=1.【解析】(1)设A(x1,y1)为双曲线上任意一点,则x12m2−x22n2=1,通过斜率乘积推出x12=9y12+m2,得到m=3n,即可求解双曲线的渐近线方程.(2)利用离心率推出a=3b,椭圆方程为x29b2+y2b2=1,设P(x0,y0),M(x M,y M),则x02+9y02=9b2.设直线PM 的方程为y =13(x −x 0)+y 0,与椭圆方程x 2+9y 2=9b 2联立,推出x M =−3y 0,求出M 的坐标,求解N 的坐标,利用PM 2+PN 2=5,求解椭圆E 的方程.本题考查椭圆的简单性质的应用,直线与椭圆的位置关系的应用,考查转化思想以及计算能力,是中档题.22.【答案】解:(1)∵f(x)=asin(1−x)+lnx(0<x <1),∴f′(x)=−acos(1−x)+1x ,0<x <1⇒0<1−x <1⇒0<cos(1−x)<1,又0<a ≤1, ∴−1<−acos(1−x)<0,且0<x <1时,1x >1,∴f′(x)>0∴f(x)=asin(1−x)+lnx 在区间(0,1)内单调递增;(2)证明:由(1)知,当a =1时,f(x)<f(1),即sin(1−x)+lnx <0, ∴sin(1−x)<ln 1x,令1−x =1n 2+1,则x =1−1n 2+1,1x=n 2+1n 2,∴当0<sin1n 2+1<ln n 2+1n 2=ln(1+1n 2)<ln2(n ∈N ∗),令φ(x)=ln(1+lnx)−x ,x >0,φ′(x)=11+x −1=−x1+x <0,所以φ(x)在(0,+∞)单调递减, ∴φ(x)<φ(0)=0, 即ln(1+x)<x(x >0), ∴0<ln(1+1k 2)<1k 2<1k(k−1)(k >1),∴当n ∈N ∗,且n ≥2时,0<sin 1n 2+1<1 n(n−1)=1n−1−1n , ∴sin1n 2+1<ln2n(n−1)=(1n−1−1n)ln2,∴对任意n ≥2,n ∈N ∗, sin 215+sin 2110+⋅⋅⋅+sin 21n 2+1<(ln2)(1−1n)<ln2.【解析】(1)可求得f′(x)=−acos(1−x)+1x ,依题意,可判得f′(x)>0,从而可判断f(x)在(0,1)内的单调性;(2)由(1)知sin(1−x)<ln 1x ,令1−x =1n 2+1,可分析得0<sin 1n 2+1<1 n(n−1)=1n−1−1n ,累加可证得结论成立.本题考查利用导数研究函数的单调性,考查构造法与推理证明,属于难题.。

精品解析:河北省衡水中学2021届高三9月摸底联考(全国卷)文数试题解析(原卷版)

精品解析:河北省衡水中学2021届高三9月摸底联考(全国卷)文数试题解析(原卷版)

河北省衡水中学2021届高三摸底联考(全国卷)文数试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知集合{}{}2|30,|13A x x x B x x =-≥=<≤,则如图所示阴影部分表示的集合为( )A . [)0,1B . (]0,3C .()1,3D .[]1,32. 已知向量()(),2,1,1m a n a ==-,且m n ⊥,则实数a 的值为( )A .0B .2C .2-或1D .2-3.设复数z 满足()3112(i z i i +=-为虚数单位),则复数z 对应的点位于复平面内( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4. 已知4张卡片上分别写着数字1,2,3,4,甲、乙两人等可能地从这4张卡片中选择1张,则他们选择同一张卡片的概率为( )A . 1B .116C . 14D .125. 若直线:4l mx ny +=和圆22:4O x y +=没有交点,则过点(),m n 的直线与椭圆22194x y +=的交点个数为( )A . 0B . 至多有一个C .1D .26. 在四面体S ABC -中,,2,2,6AB BC AB BC SA SC SB ⊥======,则该四面体外接球的表面积是( )A .86πB .6πC .24πD .6π7. 已知{}n a 为等差数列,n S 为其前n 项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B . 110C .10D .208. 若函数()()()sin 0f x A x A ωϕ=+>的部分图象如图所示,则关于()f x 的描述中正确的是( )A .()f x 在5,1212ππ⎛⎫- ⎪⎝⎭上是减函数B .()f x 在5,36ππ⎛⎫ ⎪⎝⎭上是减函数 C .()f x 在5,1212ππ⎛⎫- ⎪⎝⎭上是增函数 D .()f x 在5,36ππ⎛⎫ ⎪⎝⎭上是增减函数 9.某程序框图如图所示,若该程序运行后输出的值是2312,则( )A .13a =B .12a =C .11a =D .10a =10. 函数()321122132f x ax ax ax a =+-++的图象经过四个象限的一个充分必要条件是( ) A . 4133a -<<- B .112a -<<- C .20a -<< D .63516a -<<- 11. 已知某几何体的三视图如图所示,则该几何体的体积为( )A .1133B .35C .1043D .107412. 已知函数()()()()()52log 11221x x f x x x -<⎧⎪=⎨--+≥⎪⎩,则关于x 的方程12f x a x ⎛⎫+-= ⎪⎝⎭,当12a <<时实根个数为( ) A . 5 个 B .6个 C . 7个 D . 8个第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点()2,1-,则它的离心率为.14.曲线()232ln f x x x x =-+在1x =处的切线方程为.15. 某大型家电商场为了使每月销售A 和B 两种产品获得的总利润达到最大,对某月即将出售的A 和B进行了相关调査,得出下表:如果该商场根据调查得来的数据,月总利润的最大值为元.16. 如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,則第20行从左至右的第4个数字应是.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)已知顶点在单位圆上的ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+.(1)求角A 的大小;(2)若224b c +=,求ABC ∆的面积.18. (本小题满分12分)如图,三棱住111ABC A B C -中,11,,60CA CB AB AA BAA ==∠=.(1)证明:1AB A C ⊥;(2)若12,6AB CB AC ===,求三棱住111ABC A B C -的体积.(1)根据直方图估计这个开学季内市场需求量x 的中位数;(2)将y 表示为x 的函数;(3)根据直方图估计利润不少于4800元的概率.20. (本小题满分12分)在平面直角坐标系xOy 中,过点()2,0C 的直线与抛物线24y x =相交于,A B 两点,()()1122,,,A x y B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求该直线方程和弦长;如果不存在,说明理由.21. (本小题满分12分)已知函数()()2ln ,f x ax bx x a b R =+-∈. (1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值; (2)设0a >,且对于任意的()()0,1x f x f >≥,试比较ln a 与2b -的大小.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,,,,A B C D 四点在同一个圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上.(1)若11,32EC ED EB EA ==,求DC AB的值; (2)若2EF FA FB =,证明:EF CD .23. (本小题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合,直线l 的参数方程为: 312(12x t t y t ⎧=-+⎪⎪⎨⎪=⎪⎩为参数),曲线C 的极坐标方程为:4cos ρθ=. (1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)设直线l 与曲线C 相交于,P Q 两点,求PQ 的值.24. (本小题满分10分)选修4-5:不等式选讲已知函数()()223,12f x x a x g x x =-++=-+.(1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得()()12f x g x =成立,求实数a 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.在棱长为1的正方体 中,点M是线段 上的动点,平面 与正方体的截面记为S,则下列结论正确的是__________.
①存在点M,使得截面S为五边形;②存在点M,使得截面S面积的最大值为 ;③当 时,截面S为正三角形;④ 在平面 与平面 上的正投影的面积始终相等.
三、解答题
17.在 中,角 、 、 所对的边分别为 、 、 ,且满足 .
【详解】
一秤一斤十两共120两,
将这5人所得银两数量由小到大记为数列 ,则 是公比 的等比数列,
于是得 ,
解得 ,
故得银最少的3个人一共得银数为 (两).
故选:C.
【点睛】
本题考查了等比数列前 项和公式的应用,考查运算求解能力,是基础题.
5.B
【解析】
【分析】
先求出直线 所过定点 ,再分析出M在以 为直径的圆周上,然后求 的长度的范围.
【详解】
直线 可化为 .
则直线 恒过定点 .
又 垂直于直线 ,垂足为M.
所以M在以 为直径的圆周上,
所以该圆的圆心为 ,半径 ,
表示该圆上的点 与点 间的距离,
由圆的性质可知: ,
且 .即: ,
故选:B.
【点睛】
本题考查直线恒过定点,以及圆的方程的运用,圆外一点与圆上的点的距离的最值求法,考查运算能力,属于中档题.
0.15
理解
利用导数求函数的单调区间(不含参);利用导数证明不等式;利用导数研究函数的零点;
知 / 识 / 点 / 分 / 析
知识模块
题量
题号
难度系数
详细知识点
集合与常用逻辑用语
1
1
0.94
交并补混合运算;
三角函数与解三角形
4
2
0.85
三角函数的化简、求值——同角三角函数基本关系;二倍角的余弦公式;
21
0.4
根据离心率求椭圆的标准方程;椭圆中存在定点满足某条件问题;
空间向量与立体几何
4
7
0.65
锥体体积的有关计算;求异面直线所成的角;判断线面平行;线面垂直证明线线垂直;
10
0.65
球的体积的有关计算;多面体与球体内切外接问题;
16
0.85
立体几何综合;判断正方体的截面形状;
19
0.65
证明线面平行;面面角的向量求法;
细 / 目 / 表 / 分 / 析
题号
难度系数
能力维度分析
详细知识点
一、单选题
1
0.94
识记
交并补混合运算;
2
0.85
理解
三角函数的化简、求值——同角三角函数基本关系;二倍角的余弦公式;
3
0.65
理解
互斥事件的概率加法公式;
4
0.85
理解
等比数列的简单应用;
5
0.65
理解
直线过定点问题;定点到圆上点的最值(范围);
18
0.65
理解
求回归直线方程;相关指数的计算及分析;求离散型随机变量的均值;特殊区间的概率;
19
0.65
理解
证明线面平行;面面角的向量求法;
20
0.4
理解
裂项相消法求和;利用an与sn关系求通项或项;数列不等式恒成立问题;
21
0.4
理解
根据离心率求椭圆的标准方程;椭圆中存在定点满足某条件问题;
22
A.异面直线 与 所成的角的大小 B.直线 与平面 一定平行
C.三棱锥 的体积为定值4D.
8.设 是双曲线 的右焦点, 为坐标原点,过 的直线交双曲线的右支于点 , ,直线 交双曲线 于另一点 ,若 ,且 ,则双曲线 的渐近线的斜率为()
A. B. C. D.
9.已知定义在 上的函数 满足 ,且 时, 上恒成立,则不等式 的解集为()
当 时,建立了y与x的两个回归模型:模型①: ;模型②: ;当 时,确定y与x满足的线性回归方程为: .
(1)根据下列表格中的数据,比较当 时模型①、②的相关指数 ,并选择拟合精度更高、更可靠的模型,预测对“东方红”款汽车发动机科技改造的投入为17亿元时的直接收益.
(2)为鼓励科技创新,当科技改造的投入不少于20亿元时,国家给予公司补贴收益10亿元,以回归方程为预测依据,比较科技改造投入17亿元与20亿元时公司实际收益的大小;
0.65
互斥事件的概率加法公式;
14
0.65
分类加法计数原理;元素(位置)有限制的排列问题;相邻问题的排列问题;
18
0.65
求回归直线方程;相关指数的计算及分析;求离散型随机变量的均值;特殊区间的概率;
数列
4
4
0.85
等比数列的简单应用;
6
0.4
确定数列中的最大(小)项;裂项相消法求和;利用an与sn关系求通项或项;
0.65
理解
分类加法计数原理;元素(位置)有限制的排列问题;相邻问题的排列问题;
15
0.65
掌握
求等差数列前n项和;复数的乘方;
16
0.85
理解
立体几何综合;判断正方体的截面形状;
三、解答题
17
0.65
理解
用和、差角的余弦公式化简、求值;正弦定理边角互化的应用;余弦定理边角互化的应用;求三角形面积的最值或范围;
15
0.65
求等差数列前n项和;复数的乘方;
20
0.4
裂项相消法求和;利用an与sn关系求通项或项;数列不等式恒成立问题;
平面解析几何
4
5
0.65
直线过定点问题;定点到圆上点的最值(范围);
8
0.65
利用定义解决双曲线中焦点三角形问题;根据a,b,c齐次式关系求渐近线方程;
12
0.4
抛物线的焦半径公式;抛物线中的参数范围问题;
A. B. C. D.
4.元代数学家朱世杰在“算学启蒙”中提及如下问题:今有银一秤一斤十两,1秤=10斤,1斤=10两,令甲、乙、丙从上作折半差分之,问:各得几何?其意思是:“现有银一秤一斤十两,现将银分给甲、乙、丙三人,他们三人每一个人所得是前一个人所得的一半”若银的数量不变,按此法将银依次分给5个人,则得银最少的3个人一共得银()
(2)设 ,数列 的前 项和为 ,求证:
21.如图,椭圆E: 的离心率是 ,过点P(0,1)的动直线 与椭圆相交于A,B两点,当直线 平行与 轴时,直线 被椭圆E截得的线段长为 .
(1)求椭圆E的方程;
(2)在平面直角坐标系 中,是否存在与点P不同的定点Q,使得 恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.
22.设函数 .
(1)当 时,求函数 的单调区间;
(2)当 时,①证明:函数 有两个零点 , ;
②求证: ,注: 为自然对数的底数.
衡水中学高三数学摸底考试模拟试卷—试卷分析
整体难度:一般(难度系数:0.622)
考试范围:集合与常用逻辑用语、三角函数与解三角形、计数原理与概率统计、数列、平面解析几何、空间向量与立体几何、函数与导数、平面向量、复数
A. B. C. D.
二、填空题
13.圆内接四边形ABCD中,对角线BD为圆的直径, , 则 的值为______.
14.某班要从甲、乙、丙、丁、戊5人中选出4人参加4×100米的接力赛,若甲不能跑第一棒,乙不能跑最后一棒,丙丁两人如果都参加,他们必须是相邻的两棒,则不同的选派方式有__种.
15.已知 是虚数单位,则 ______.
(3)科技改造后,“东方红”款汽车发动机的热效率X大幅提高,X服从正态分布 ,公司对科技改造团队的奖励方案如下:若发动机的热效率不超过 ,不予奖励;若发动机的热效率超过 但不超过 ,每台发动机奖励2万元;若发动机的热效率超过 ,每台发动机奖励5万元.求每台发动机获得奖励的数学期望.
(附:刻画回归效果的相关指数 ,
6.D
【解析】
【分析】
先求出 的通项,再求出 的通项,从而可求 ,利用参变分离可求 的取值范围.
【详解】
因为 … ,
所以 … ,
故 即 ,其中 .
而令 ,则 ,故 , .

故 ,
故 恒成立等价于 即 恒成立,
化简得到 ,因为 ,故 .
故选D.
【点睛】
数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.参数的数列不等式的恒成立问题,可以用参变分离的方法构建新数列,通过讨论新数列的最值来求参数的取值范围.
【详解】
最后乙队获胜事件含3种情况:第三局乙胜,其概率为 ;
第三局甲胜,第四局乙胜,其概率为 ;
第三局和第四局都是甲胜,第五局乙胜 ;
故最后乙队获胜的概率 ,
故选:B.
【点睛】
本题主要考查概率的求法,解题时要认真审题,注意互斥事件概率加法公式的合理运用,属于中档题.
4.C
【解析】
【分析】
由题意每人所得银的两数为等比数列,利用等比数列前 项和公式可解得结果.
1
13
0.65
余弦定理边角互化的应用;用定义求向量的数量积;
复数
1
15
0.65
求等差数列前n项和;复数的乘方;
衡水中学2021级高三数学摸底考试试卷详解答案
1.D
【解析】
,解之得, ,则 .
故选:D.
2.A
【解析】
【分析】
根据题意,将 两边平方化简得: ,由 得出 , ,结合同角三角函数的平方关系得出 和 ,最后再运用二倍角的余弦公式,即可求出 .
A. B. C. D.
相关文档
最新文档