南京市2017届高三年级第三次模拟考试数学评分标准和参考答案(第三稿)
江苏省南京市2017-2018学年高三下学期三模数学试卷Word版含解析
2017-2018学年江苏省南京市高考数学三模试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题纸相应位置上.1.已知复数z=﹣1,其中i为虚数单位,则z的模为.2.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:排队人数0 1 2 3 4 ≥5概率0.1 0.16 0.3 0.3 0.1 0.04则该营业窗口上午9点钟时,至少有2人排队的概率是.3.若变量x,y满足约束条件则z=2x+y的最大值.4.如图是一个算法流程图,则输出k的值是.5.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是.6.记不等式x2+x﹣6<0的解集为集合A,函数y=lg(x﹣a)的定义域为集合B.若“x∈A”是“x∈B”的充分条件,则实数a的取值范围为.7.在平面直角坐标系xOy中,过双曲线C:x2﹣=1的右焦点F作x轴的垂线l,则l与双曲线C的两条渐近线所围成的三角形的面积是.8.已知正六棱锥P﹣ABCDEF的底面边长为2,侧棱长为4,则此六棱锥的体积为.9.在△ABC中,∠ABC=120°,BA=2,BC=3,D,E是线段AC的三等分点,则?的值为.10.记等差数列{a n}的前n项和为S n.若S k﹣1=8,S k=0,S k+1=﹣10,则正整数k= .11.若将函数f(x)=|sin(ωx﹣)|(ω>0)的图象向左平移个单位后,所得图象对应的函数为偶函数,则实数ω的最小值是.12.已知x,y为正实数,则+的最大值为.13.在平面直角坐标系xOy中,圆C的方程为(x﹣1)2+(y﹣1)2=9,直线l:y=kx+3与圆C 相交于A,B两点,M为弦AB上一动点,以M为圆心,2为半径的圆与圆C总有公共点,则实数k的取值范围为.14.已知a,t为正实数,函数f(x)=x2﹣2x+a,且对任意的x∈[0,t],都有f(x)∈[﹣a,a].若对每一个正实数a,记t的最大值为g(a),则函数g(a)的值域为.二、解答题:本大题共6小题,共计90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知acosC+ccosA=2bcosA.(1)求角A的值;(2)求sinB+sinC的取值范围.16.在四棱锥P﹣ABCD中,BC∥AD,PA⊥PD,AD=2BC,AB=PB,E为PA的中点.(1)求证:BE∥平面PCD;(2)求证:平面PAB⊥平面PCD.17.如图,摩天轮的半径OA为50m,它的最低点A距地面的高度忽略不计.地面上有一长度为240m的景观带MN,它与摩天轮在同一竖直平面内,且AM=60m.点P从最低点A处按逆时针方向转动到最高点B处,记∠AOP=θ,θ∈(0,π).(1)当θ=时,求点P距地面的高度PQ;(2)试确定θ的值,使得∠MPN取得最大值.18.在平面直角坐标系xOy中,设中心在坐标原点的椭圆C的左、右焦点分别为F1、F2,右准线l:x=m+1与x轴的交点为B,BF2=m.(1)已知点(,1)在椭圆C上,求实数m的值;(2)已知定点A(﹣2,0).①若椭圆C上存在点T,使得=,求椭圆C的离心率的取值范围;②当m=1时,记M为椭圆C上的动点,直线AM,BM分别与椭圆C交于另一点P,Q,若=λ,=μ,求证:λ+μ为定值.19.已知函数f(x)=x2﹣x+t,t≥0,g(x)=lnx.(1)令h(x)=f(x)+g(x),求证:h(x)是增函数;(2)直线l与函数f(x),g(x)的图象都相切.对于确定的正实数t,讨论直线l的条数,并说明理由.20.已知数列{a n}的各项均为正数,其前n项的和为S n,且对任意的m,n∈N*,都有(S m+n+S1)2=4a2m a2n.(1)求的值;(2)求证:{a n}为等比数列;(3)已知数列{c n},{d n}满足|c n|=|d n|=a n,p(p≥3)是给定的正整数,数列{c n},{d n}的前p项的和分别为T p,R p,且T p=R p,求证:对任意正整数k(1≤k≤p),c k=d k.选修4-1:几何证明选讲21.如图,AB,AC是⊙O的切线,ADE是⊙O的割线,求证:BE?CD=BD?CE.选修4-2:矩阵与变换22.已知矩阵A=,直线l:x﹣y+4=0在矩阵A对应的变换作用下变为直线l′:x﹣y+2a=0.(1)求实数a的值;(2)求A2.选修4-4:坐标系与参数方程23.在极坐标系中,设圆C:ρ=4cosθ与直线l:θ=(ρ∈R)交于A,B两点,求以AB 为直径的圆的极坐标方程.选修4-5:不等式选讲24.已知实数x,y满足x>y,求证:2x+≥2y+3.七、解答题(共2小题,满分20分)25.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AB⊥AD,BC=,AB=1,BD=PA=2.(1)求异面直线BD与PC所成角的余弦值;(2)求二面角A﹣PD﹣C的余弦值.26.已知集合A是集合P n={1,2,3,…,n}(n≥3,n∈N*)的子集,且A中恰有3个元素,同时这3个元素的和是3的倍数.记符合上述条件的集合A的个数为f(n).(1)求f(3),f(4);(2)求f(n)(用含n的式子表示).。
2017年江苏省南京市、淮安市高三三模数学试卷
2017年江苏省南京市、淮安市高三三模数学试卷一、填空题(共14小题;共70分)1. 已知全集,集合,,则.2. 甲盒子中有编号分别为,的两个乒乓球,乙盒子中有编号分别为,,,的四个乒乓球.现分别从两个盒子中随机地各取出个乒乓球,则取出的乒乓球的编号之和大于的概率为.3. 若复数满足,其中为虚数单位,为复数的共轭复数,则复数的模为.4. 执行如下所示的伪代码,若输出的值为,则输入的值为.Read xIf x≥0 Theny←Elsey←End IfPrint y5. 如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为.6. 在同一直角坐标系中,函数的图象和直线的交点的个数是.7. 在平面直角坐标系中,双曲线的焦距为,则所有满足条件的实数构成的集合是.8. 已知函数是定义在上且周期为的偶函数,当时,,则的值为.9. 若等比数列的各项均为正数,且,则的最小值为.10. 如图,在直三棱柱中,,,,,点为侧棱上的动点,当最小时,三棱锥的体积为.11. 函数在区间上单调递增,则实数的最大值为.12. 在凸四边形中,,且,,则四边形的面积为.13. 在平面直角坐标系中,圆,圆(为实数).若圆和圆上分别存在点,,使得,则的取值范围为.14. 已知,,为正实数,且,,则的取值范围为.二、解答题(共6小题;共78分)15. 如图,在三棱锥中,,分别为,上的点,且 平面.(1)求证: 平面;(2)若平面,,求证:平面平面.16. 已知向量,,,为实数.(1)若,求的值;(2)若,且,求的值.17. 在水域上建一个演艺广场,演艺广场由看台Ⅰ,看台Ⅱ,三角形水域,及矩形表演台四个部分构成(如图),看台Ⅰ,看台Ⅱ是分别以,为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的倍,矩形表演台中,米,三角形水域的面积为平方米,设.(1)求的长(用含的式子表示);(2)若表演台每平方米的造价为万元,求表演台的最低造价.18. 如图,在平面直角坐标系中,椭圆的右顶点和上顶点分别为点,,是线段的中点,且.(1)求椭圆的离心率;(2)若,四边形内接于椭圆,,记直线,的斜率分别为,,求证:为定值.19. 已知常数,数列满足,.(1)若,,①求的值;②求数列的前项和;(2)若数列中存在三项,,(,)依次成等差数列,求的取值范围.20. 已知,函数的导数为.(1)求曲线在处的切线方程;(2)若函数存在极值,求的取值范围;(3)若时,恒成立,求的最大值.答案第一部分1.2.3.4.5.6.7.8.9.10.【解析】将直三棱柱展开成矩形,如图,连接,交于,此时最小,因为,,,,点为侧棱上的动点,所以当最小时,,此时三棱锥的体积:11.12.【解析】因为,所以,因为,所以所以,所以.所以四边形的面积.13.14.第二部分15. (1) 平面,平面,平面平面,,又平面,平面,平面.(2)平面,平面,,由()可知,又,,又,平面,平面,平面,又平面,平面平面.16. (1)向量,,,为实数.若,则,可得,平方可得,即为,由,解得即有,.则;(2)若,且,即有,即有,由为锐角,可得,即有,则,.17. (1)因为看台Ⅰ的面积是看台Ⅱ的面积的倍,所以,所以,因为,所以,所以,在中,由余弦定理得,所以.(2)设表演台的造价为万元,则,设,则,所以当时,,当时,,所以在上单调递减,在上单调递增,所以当时,取得最小值,所以的最小值为,即表演台的最小造价为万元.18. (1),,线段的中点.,.因为.所以,化为:.所以椭圆的离心率.(2)由,可得,所以椭圆的标准方程为:,,.直线的方程为:,联立化为:,解得,所以.即.直线的方程为:,联立化为:,所以,解得,,可得.所以,化为:.所以,所以.19. (1)①因为,所以,,.②因为,,所以当时,,当时,,即从第二项起,数列是以为首项,以为公比的等比数列,所以数列的前项和(),显然当时,上式也成立,所以.(2)因为,所以,即单调递增.(i)当时,有,于是,所以,所以.若数列中存在三项,,(,)依次成等差数列,则有,即(),因为,所以,因此()不成立.因此此时数列中不存在三项,,(,)依次成等差数列.(ii)当时,有.此时.于是当时,,从而,所以.若数列中存在三项,,(,)依次成等差数列,则有,同(i)可知:,于是有,因为,所以.因为是整数,所以,于是,即,与矛盾.故此时数列中不存在三项,,(,)依次成等差数列.(iii)当时,有,.于是,.此时数列中存在三项,,依次成等差数列.综上可得:.20. (1)的定义域为.,,又.曲线在处的切线方程为.(2)因为(),.函数存在极值,即方程有正实数根,(),令,在恒成立.时,,所以函数存在极值,的取值范围为.(3)由(),()可知,,结合()时,,可得(),,则在恒成立.所以单调递增,从而.所以时,,在递增,.故在递增,所以.当时,存在,使,所以时,,即时,递减,而,所以时,,此时递减,而,所以在,,故当时,不恒成立;综上时,恒成立,的最大值为.。
2020届江苏省南京市2017级高三6月三模考试数学试卷参考答案(含附加题)
2020届江苏省南京市2017级高三三模考试
数学参考答案
说明:
1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.
2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
4.只给整数分数,填空题不给中间分数.
一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸
的指定位置上)
1.{x |1<x <4} 2.2 3.60 4.10 5.23
6. 3 7.2n +1-2 8. 62 9.83
10.[2,4] 11.6 12. [-2,+∞) 13.-94 14.38 二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)
15.(本小题满分14分)
证明:(1)取PC 中点G ,连接DG 、FG .
在△PBC 中,因为F ,G 分别为PB ,PC 的中点,所以GF ∥BC ,GF =12
BC . 因为底面ABCD 为矩形,且E 为AD 的中点,
所以DE ∥BC ,DE =12BC , ················· 2分。
江苏省南京市高考数学三模考试数学(理)试卷有答案
)A B=______________.乙盒子中有编号分别为3则取出的乒乓球的编号之和大于6的概率为的值为______________.π190,点D11.函数2((2))f x ex x x a =++﹣在区间[],1a a +上单调递增,则实数a 的最大值为______________. 12.在凸四边形ABCD 中,2BD =且0,()()5AC BD AB DC BC AD ⋅=+⋅+=,则四边形ABCD 的面积为______________.13.在平面直角坐标系xOy 中,圆221:x O y +=,圆22:121M x a y a +++=()(﹣)(a 为实数).若圆O 和圆M 上分别存在点,P Q ,使得30OQP ∠=︒,则a 的取值范围为______________. 14.已知,,a b c 为正实数,且23228,a b c a b c +≤+≤,则38a bc+的取值范围是______________. 二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程. 15.(本小题满分14分)如图,在三棱锥A BCD -中,,E F 分别为,BC CD 上的点,且BD ∥平面AEF . (1)求证:EF ∥平面ABD ;(2)若AE ⊥平面BCD ,BD CD ⊥,求证:平面AEF ⊥平面ACD .16.(本小题满分14分)已知向量2π(2cos ,sin ),(2sin ,),(0,),t 2a a ab a t a ==为实数. (1)若2(,0)5a b -=,求t 的值;(2)若1t =,且1a b ⋅=,求πtan(2)4a +的值.17.(本小题满分14分)在水域上建一个演艺广场,演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC ,及矩形表演台BCDE 四个部分构成(如图),看台Ⅰ,看台Ⅱ是分别以,AB AC 为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍,矩形表演台BCDE 中,10CD =米,三角形水域ABC 的面积为平方米,设BAC θ∠=. (1)求BC 的长(用含θ的式子表示);(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的右顶点和上顶点分别为点,,A B M 是线段AB的中点,且232OM AB b =.(1)求椭圆的离心率;(2)若2a =,四边形ABCD 内接于椭圆,AB CD ∥,记直线,AD BC 的斜率分别为1,2k k ,求证:1?2k k 为定值.19.(本小题满分16分)已知常数0p >,数列{}n a 满足*1|2,|n n n a a p p a n +=++∈N -. (1)若n S a 1=﹣1,p=1, ①求4a 的值;②求数列{}n a 的前n 项和n S ;(2)若数列{}n a 中存在三项*,,,,(,)ar as at r s t r s t ∈<<N 依次成等差数列,求1a p的取值范围. 20.(本小题满分16分)已知λ∈R ,函数()(ln 1)xf x e ex x x x λ=+﹣﹣﹣的导数为()g x .(1)求曲线()y f x =在1x =处的切线方程; (2)若函数()g x 存在极值,求λ的取值范围; (3)若1x ≥时,()0f x ≥恒成立,求λ的最大值.江苏省南京市2017届高考数学三模考试数学(理)试卷答 案1.{2}二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程. 15.证明:(1)∵BD ∥平面AEF ,BD ⊂平面BCD ,平面BCD 平面AEF EF =,∴BD EF ∥,又BD ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD .(2)∵AE ⊥平面BCD ,CD ⊂平面BCD , ∴AE CD ⊥,由(1)可知BD EF ∥,又BD CD ⊥,∴EF CD ⊥, 又,AEEF E AE =⊂平面AEF ,EF ⊂平面AEF ,∴CD ⊥平面AEF ,又CD ⊂平面ACD , ∴平面AEF AEF ⊥平面ACD .16.解:(1)向量2π(2cos ,sin ),(2sin ,),(0,),t 2a a ab a t a ==为实数,若2(,0)5a b -=,则2(2cos 2sin ,sin 2)=(,0)5a a a t --,可得1cos sin =5a a -,平方可得1sin 2cos22cos sin =25a a a a +-,即为1242cos sin =1,(cos 0,sin 0)2525a a a a -=>>,由sin2cos2=1a a +,解得7cos sin 5a a +, 即有34cos =,sin =55a a .则16sin 2=25t a =;(2)若1t =,且1a b ⋅=,即有4cos sin sin21a a a +=, 即有4cos sin 1sin2cos2a a a a =-=,由a 为锐角,可得(c s 1)o 0,α∈,即有sin 1tan cos 4a a α==, 则212tan 82tan 211tan 15116a a α===--,81tan 212315tan(2)81t π4an 27115a a α+++===--. 17.解:(1)∵看台Ⅰ的面积是看台Ⅱ的面积的3倍,∴22π()31122π()22AB AC =⨯,∴AB =,∵1sin 22ABC S AB AC sin θθ∆=⋅⋅= ∴228002400,sin sin AC AB θθ==, 在ABC ∆中,由余弦定理得2222cos BC AB AC AB AC θ=⋅=+-∴BC =(2)设表演台的造价为y 万元,则y =设()π)0f θθ=<<,则()f θ'∴当0π6θ<<时,0()f θ'<,当π6πθ<<时,0()f θ'>, ∴()f θ在(0,π)6上单调递减,在(π,6π)上单调递增,∴当=6πθ时,()f θ取得最小值1π(6)=f ,∴y 的最小值为120,即表演台的最小造价为120万元.(,),(,)22a bAB a b OM =-=.∵232OM AB b ⋅=-.∴22213222ab b -+=-,化为:2a b =.∴椭圆的离心率c e a===. (2)证明:由2a =,可得1b =,∴椭圆的标准方程为:221,(2,0),(0,1)4x y A B +=.直线BC 的方程为:21y k x =+,联立222114y k x x y =+⎧⎪⎨+=⎪⎩,化为:2222(14)80k x k x ++=, 解得222814c k x k -=+,∴22221414c k y k -=+.即2222222814(,)1414k k C k k --++. 直线AD 的方程为:1()2y k x =-,联立122(2)14y k x x y =-⎧⎪⎨+=⎪⎩,化为:2222111(14)161640k x k x k +-+-=, ∴2121164214D k x k -=+,解得2112211824,1414D D k k x y k k --==++,可得2112211824(,)1414k k D k k --++∴12C D CD C D y y k x x -==--,化为:222221211122111622880k k k k k k k k -+-+-=∴1212121()4440()14k k k k k k -++=-,∴121=4k k .19.解:(1)①∵12||n n n a p a a p +=++-, ∴211||1212211a a a =++=+=--, 322||1210213a a a =++=++=-, 433||1212619a a a =++=++=-, ②∵2111||21n n n a a a a +==++,-, ∴当2n ≥时,1n a ≥,当2n ≥时,11213n n n n a a a a +=+++=-,即从第二项起,数列{}n a 是以1为首项,以3为公比的等比数列, ∴数列{}n a 的前n 项和11123413111321322n n n n a a n S a a a ---=++++⋯+=+=⨯≥---,(), 显然当1n =时,上式也成立,∴113322n n S -=⨯-; (2)∵1||20n n n n n n a a p a a p p a a p p +=++≥++=--->,∴1n n a a +>,即{}n a 单调递增. (i )当11a p≥时,有1a p ≥,于是1n a a p ≥≥, ∴1|223|n n n n n n a p a a p a p a p a +=++=++=--,∴113n n a a -=⋅.若数列{}n a 中存在三项*,)(r s t a a a r s t r s t ∈<<N ,,,,依次成等差数列,则有2s r t a a a =+,即111233*3()s r t ---⨯=+∵1s t ≤-,∴111122333333s st r t ---⨯=⨯<<+-.因此(*)不成立.因此此时数列{}n a 中不存在三项*,)(r s t a a a r s t r s t ∈<<N ,,,,依次成等差数列.(ii )当111a p-<<时,有1p a p <<-.此时211111||222a P a a p p a a p a p p =++=++=+>--. 于是当2n ≥时,2n a a p ≥>.从而1|223|n n n n n n a p a a p a p a p a +=++=++=--.∴2221((3)2)32n n na a a p n --==+≥若数列{}n a 中存在三项*,)(r s t a a a r s t r s t ∈<<N ,,,,依次成等差数列,则有2s r t a a a =+,同(i )可知:1r =.于是有2211123(2)3(2)s t a p a a p ⨯+=++﹣﹣,∵21S t ≤≤-,∴211212 2333329103s t s t a a p --=⨯=⨯⨯+<﹣﹣-.∵22233s t ⨯﹣﹣-是整数,∴11 12a a p≤+.于是112a a p ≤--,即1a p ≤-.与1p a p <<-矛盾. 故此时数列{}n a 中不存在三项*,)(r s t a a a r s t r s t ∈<<N ,,,,依次成等差数列.(iii )当11a p≤时,有110a p p a p ≤<+≤-,. 于是211111||222a P a a p p a a p a p =++=++=+--.32211111|2252|54||a p a a p a p a p a p a p a p =++=+++=++=+---此时数列{}n a 中存在三项123a a a ,,依次成等差数列. 综上可得:11a p≤-. 20.解:(1)()(ln 1)x f x e ex x x x λ=+---的定义域为(0)+∞,. ()ln (1)0x f x e e x f λ'='=--,,又(1)0f =. 曲线()y f x =在1x =处的切线方程为0y =.(2)∵()()ln ,(0)x g x f x e e x x λ='=>﹣﹣,()xg x e xλ'=-函数()g x 存在极值,即方程0x e xλ-=有正实数根,,(0)x xe x λ⇒=>,令()x G x xe =,()(1)0x G x x e '=+>在(0)+∞,恒成立. (0)x ∈+∞,时,()0G x >, ∴函数()g x 存在极值,λ的取值范围为(0)+∞,. (3)由(1)、(2)可知(1)0,(1)(1)0f f g '=== 结合(2)1x ≥时,()0x g x e xλ'=-≥,可得(1)x xe x λ≤≥,,()x G x xe =,在(1)+∞,恒成立. ∴e λ≤时,()0g x '≥,()g x 在[1)+∞,递增,()(1)0g x g ≥= 故()f x 在[1)+∞,递增,∴()(1)=0f x f ≥.当e λ>时,存在01x ≥,使()=0g x ',∴0(1)x x ∈,时,()<0g x ', 即0(1,)x x ∈时,()g x 递减,而(1)=0g ,∴0(1,)x x ∈时,()<0g x ,此时()f x 递减,而(1)=0f , ∴在0(1,)x ,()<0f x ,故当e λ>时,()0f x ≥不恒成立; 综上1x ≥时,()0f x ≥恒成立,λ的最大值为e【点评】本题考查了导数的综合应用,利用导数求极值、证明函数恒等式,属于难题江苏省南京市2017届高考数学三模考试-数学(理)试卷解 析1.【考点】交、并、补集的混合运算.【分析】根据已知中集合,,U A B ,结合集合的并集和补集运算的定义,可得答案. 【解答】解:∵集合1,4,{}{}3,4A B ==, ∴1,}4{3,A B =,又∵全集1,2{},3,4U =, ∴{2()}U A B ⋃=ð, 故答案为:{2}【点评】本题考查的知识点是集合的交集,并集,补集运算,难度不大,属于基础题. 2.【考点】古典概型及其概率计算公式.【分析】列举基本事件,即可求出概率.【解答】解:分别从每个盒子中随机地取出1个乒乓球,可能出现以下情况:()()()()()()(1314151623242)6)52(、、、、、、、,,,,,,,,共8种情况,其中编号之和大于6的有:1+6=7,2+5=7,2+6=8,共3种情况,∴取出的乒乓球的编号之和大于6的概率为38,故答案为:38.【点评】本题考查古典概型,考查学生的计算能力,确定基本事件的个数是关键.3.【考点】复数代数形式的乘除运算.【分析】设z a bi =+,得到z a bi =-,根据系数相等求出,a b 的值,从而求出||z 即可. 【解答】解:设z a bi =+,则z a bi =-,由232z z i +=+,得332abi i =+﹣, ∴1,2a b ==﹣,∴||z【点评】本题考查了复数求模问题,考查共轭复数,是一道基础题. 4.【考点】伪代码.【分析】分析出算法的功能是求分段函数()f x 的值,根据输出的值为1,分别求出当0x ≤时和当0x >时的x 值即可. 【解答】解:由程序语句知:算法的功能是求122,0()=2,0x x x x f x +⎧≥⎪⎨-<⎪⎩的值, 当0x ≥时,211y x =+=,解得1x =-,不合题意,舍去; 当0x <时,221y x ==﹣,解得1x =±,应取1x =-;综上,()f x x 的值为1-.故答案为:1-.【点评】本题考查了选择结构的程序语句应用问题,根据语句判断算法的功能是解题的关键. 5.【考点】茎叶图.【分析】根据茎叶图中的数据求出甲、乙二人的平均数,再根据方差的定义得出乙的方差较小,求出乙的方差即可.【解答】解:根据茎叶图中的数据,计算甲的平均数为11(7791418)115x =⨯++++=,乙的平均数为21(89101315)115x =⨯++++=;根据茎叶图中的数据知乙的成绩波动性小,较为稳定(方差较小),计算乙成绩的方差为:222222134[(811)(911)(1011)(1311)(1511)]55x =⨯-+-+-+-+-=故答案为:345.【点评】本题考查了茎叶图、平均数与方差的应用问题,是基础题. 6.【考点】正弦函数的图象.【分析】令π1sin()=32y x =+,求出在[π)0,2x ∈内的x 值即可.【解答】解:令π1sin()=32y x =+,解得ππ=2π36x k ++,或π5π=2π,k 36x k ++∈Z ;即π=2π6k x +-,或π=2π,k 2k x +∈Z ;∴同一直角坐标系中,函数y 的图象和直线12y =在[π)0,2x ∈内的交点为(π2,12)和(11π6,12),共2个.故答案为:2.【点评】本题考查了正弦函数的图象与性质的应用问题,是基础题.7.【考点】双曲线的简单性质.【分析】根据题意,先由双曲线的方程分析可得m 的取值范围,进而又由该双曲线的焦距为6,则有3c =,即,解可得m 的值,结合m 的范围可得m 的值,用集合表示即可得答案.【解答】解:根据题意,双曲线的方程为:222123x y m m -= ,则有22030m m ⎧>⎨>⎩,解可得0m >,则有c =又由该双曲线的焦距为6,则有c=3,, 解可得:=3m -或32, 又由0m >, 则3=2m ; 即所有满足条件的实数m 构成的集合是{32}; 故答案为{32}. 【点评】本题考查双曲线的几何性质,注意焦距是2c . 8.【考点】函数的周期性.【分析】由函数的奇偶性与周期性把1()2f 转化为求7()2f 的值求解.【解答】解:∵函数()f x 是定义在R 上且周期为4的偶函数,∴1117()=()=(4)=()2222f f f f --,又当4[]2,x ∈时,43()=|log ()|2f x x -,∴441773lg 2lg 21()=()=|log ()||log 2|2222lg 42lg 22f f -====.故答案为:12. 【点评】本题考查函数的周期性和奇偶性的应用,考查数学转化思想方法,是基础题. 9.【考点】等比数列的通项公式.【分析】由已知把首项用公比q 表示,再由等比数列的通项公式可得5a ,然后利用配方法求得5a 的最小值. 【解答】解:∵0n a >,且312a a -=, ∴2112a q a -=,则122(0)1a q q =>-, ∴445122422===111q a a q q q q --. 令21(t 0)t q=>,则522a t t=-+,又22111()244t t t -+=--+≤,∴58[),a ∈+∞.∴5a 的最小值为8. 故答案为:8.【点评】本题考查等比数列的通项公式,考查了利用配方法求函数的最值,是中档题. 10.【考点】棱柱、棱锥、棱台的体积.【分析】将直三棱柱111ABC A B C -展开成矩形11ACC A ,如图,连结1AC ,交1BB 于D ,此时1AD DC +最小,当1AD DC +最小时,1BD =,此时三棱锥1D ABC ﹣的体积:11D C V ABC V ABD -=-,由此能求出结果.【解答】解:将直三棱柱111ABC A B C -展开成矩形11ACC A ,如图, 连结1AC ,交1BB 于D ,此时1AD DC +最小,∵11,2,3,90AB BC BB ABC ===∠=︒,点D 为侧棱1BB 上的动点, ∴当1AD DC +最小时,1BD =, 此时三棱锥1D ABC ﹣的体积:111111111111112332323D C ABD V ABC V ABD S B C AB BD B C ∆-=-=⨯⨯=⨯⨯⨯⨯=⨯⨯⨯⨯=.故答案为:13.【点评】本题考查几何体的体积的求法,考查空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间思维能力,考查数数结合思想、函数与方程思想、化归与转化思想,是中档题. 11.【考点】利用导数研究函数的单调性.【分析】求出函数的导数,问题转化为22a x +≥在[],1a a +恒成立,求出a 的范围即可. 【解答】解:2((2))f x ex x x a =++﹣,2()()2f x ex x x a '=++﹣, 若()f x 在[],1a a +上单调递增, 则220x a ++≥-在[],1a a +恒成立, 即22a x +≥在[],1a a +恒成立,①10a +<即1a <-时,2y x =在[],1a a +递减,2y x =的最大值是2y a =,故22a a +≥,解得:220a a ≤--,解得:12a <<-,不合题意,舍; ②10a ≤≤-时,2y x =在[),0a 递减,在(0,1]a +递增, 故2y x =的最大值是2a 或2()1a +,③0a >时,2y x =在[],1a a +递增,y 的最大值是2()1a +,故221()a a +≥+,解得:0a <≤,则实数a ,综上,a ,. 【点评】本题考查了函数的单调性问题,考查导数的应用以及函数恒成立问题,是一道中档题. 12.【考点】平面向量数量积的运算.【分析】用,AC BD 表示出括号内的和向量,化简得出AC ,从而可求得四边形的面积. 【解答】解:∵0AC BD ⋅=,∴AC BD ⊥, ∵()()5AC DC BC AD +⋅+=,∴22()()()()5AB BC DC CB BC CD AD DC AC DB BD AC AC BD +++⋅+++=+⋅+=⋅=, ∴2259AC BD =+=,∴3AC =.∴四边形ABCD 的面积1132322S AC BD =⨯⨯=⨯⨯=.故答案为:3.【点评】本题考查了平面向量的运算,数量积运算,属于中档题.13.【考点】直线与圆的位置关系.【分析】从圆M 上的点向圆上的点连线成角,当且仅当两条线均为切线时才是最大的角,1OP =,利用圆O 和圆M 上分别存在点,P Q ,使得30OQP ∠=︒,可得||2OM ≤,进而得出答案. 【解答】解:由题意,圆22()(121)M x a y a +++=:﹣(a 为实数),圆心为1(),2M a a -- 从圆M 上的点向圆上的点连线成角,当且仅当两条线均为切线时才是最大的角,1OP =. ∵圆O 和圆M 上分别存在点,P Q ,使得30OQP ∠=︒, ∴||2OM ≤,∴22144()a a ++≤, ∴315a ≤≤-,故答案为:3 15a≤≤-.【点评】本题考查了直线与圆相切的性质、两点间的距离的计算公式、数形结合思想方法,属于中档题.14.【考点】不等式的基本性质.【分析】令axc=,byc=,38z x y=+,将条件转化为关于,x y的不等式,并求出,x y的范围,作出平面区域,根据平面区域得出z取得最值时的位置,再计算z的最值.【解答】解:∵2328,a b ca b c +≤+≤,∴28232a bc cc ca b⎧+≤⎪⎪⎨⎪+≤⎪⎩,设axc=,byc=,则有28232x yx y+≤⎧⎪⎨+≤⎪⎩,∴142322 18y xxyxx⎧≤-⎪⎪⎪≥⎨-⎪<<⎪⎪⎩,作出平面区域如图所示:令38=38a bz x yc+=+,则388zy x=+,由图象可知当直线388zy x=+经过点A时,截距最大,即z最大;当直线388zy x=+与曲线322xyx=-相切时,截距最小,即z最小.解方程组142322y xxyx⎧=-⎪⎪⎨⎪=⎪-⎩得(2,3)A,∴z的最大值为328330⨯+⨯=,设直线388z y x =+与曲线322xy x =-的切点为00(,)x y ,则03()|3282x x x x ==--',即026223()8x -=-,解得0=3x , ∴切点坐标为(93,4),∴z 的最小值为9338274⨯+⨯=.∴2730z ≤≤,故答案为:[27,30].【点评】本题考查了线性规划的应用,将三元不等式转化为二元不等式,转化为线性规划问题是解题的关键,属于中档题.二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程. 15.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)利用线面平行的性质可得BD EF ∥,从而得出EF ∥平面ABD ; (2)由AE ⊥平面BCD 可得AE CD ⊥,由BD CD ⊥,BD EF ∥可得EF CD ⊥,从而有CD ⊥平面AEF ,故而平面AEF ⊥平面ACD .【解答】证明:(1)∵BD ∥平面AEF ,BD ⊂平面BCD ,平面BCD 平面AEF EF =,∴BD EF ∥,又BD ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD .(2)∵AE ⊥平面BCD ,CD ⊂平面BCD , ∴AE CD ⊥,由(1)可知BD EF ∥,又BD CD ⊥, ∴EF CD ⊥, 又,AEEF E AE =⊂平面AEF ,EF ⊂平面AEF ,∴CD ⊥平面AEF ,又CD ⊂平面ACD , ∴平面AEF AEF ⊥平面ACD .【点评】本题考查了线面平行、线面垂直的性质,面面垂直的判定,属于中档题. 16.【考点】平面向量数量积的运算;三角函数中的恒等变换应用.【分析】(1)运用向量的加减运算和同角的平方关系,即可求得3cos 5α=,4sin 5α=.进而得到t 的值; (2)运用向量的数量积的坐标表示,结合条件的商数关系,求得tanα,再由二倍角的正切公式和和角公式,计算即可得到所求值.【解答】解:(1)向量2π(2cos ,sin ),(2sin ,),(0,),t 2a a ab a t a ==为实数,若2(,0)5a b -=,则2(2cos 2sin ,sin 2)=(,0)5a a a t --,可得1cos sin =5a a -,平方可得1sin 2cos22cos sin =25a a a a +-,即为1242cos sin =1,(cos 0,sin 0)2525a a a a -=>>,由sin2cos2=1a a +,解得7cos sin 5a a +,即有34cos =,sin =55a a .则16sin 2=25t a =;(2)若1t =,且1a b ⋅=,即有4cos sin sin21a a a +=, 即有4cos sin 1sin2cos2a a a a =-=,由a 为锐角,可得(c s 1)o 0,α∈,即有sin 1tan cos 4a a α==, 则212tan 82tan 211tan 15116a a α===--,81tan 212315tan(2)81t π4an 27115a a α+++===--. 【点评】本题考查向量的加减运算和数量积的坐标表示,考查同角的基本关系式和二倍角正切公式及和角公式的运用,考查化简整理的运算能力,属于中档题.17.【考点】三角函数中的恒等变换应用;在实际问题中建立三角函数模型. 【分析】(1)根据看台的面积比得出,AB AC 的关系,代入三角形的面积公式求出,AB AC 再利用余弦定理计算BC ;(2)根据(1)得出造价关于θ的函数,利用导数判断函数的单调性求出最小造价. 【解答】解:(1)∵看台Ⅰ的面积是看台Ⅱ的面积的3倍,∴22π()31122π()22AB AC =⨯,∴AB =,∵1sin 22ABC S AB AC sin θθ∆=⋅⋅= ∴228002400,sin sin AC AB θθ==, 在ABC ∆中,由余弦定理得2222cos BC AB AC AB AC θ=⋅=+-∴BC =(2)设表演台的造价为y 万元,则y =设()π)0f θθ=<<,则()f θ'∴当0π6θ<<时,0()f θ'<,当π6πθ<<时,0()f θ'>, ∴()f θ在(0,π)6上单调递减,在(π,6π)上单调递增,∴当=6πθ时,()f θ取得最小值1π(6)=f ,∴y 的最小值为120,即表演台的最小造价为120万元.【点评】本题考查了解三角形,函数最值计算,余弦定理,属于中档题.18.【考点】椭圆的简单性质. 【分析】(1),0,()(0),A a B b ,线段AB 的中点(,)22a b M .利用232OM AB b ⋅=-与离心率的计算公式即可得出.(2)由2a =,可得1b =,可得椭圆的标准方程为:221,(2,0),(0,1)4x y A B +=.直线BC 的方程为:21y k x =+,直线AD 的方程为:1()2y k x =-,分别于同一方程联立解得,C D ,坐标,利用12C D CD C D y y k x x -==--,即可得出.【解答】(1)解:,0,()(0),A a B b ,线段AB 的中点(,)22a bM .(,),(,)22a bAB a b OM =-=.∵232OM AB b ⋅=-.∴22213222a b b -+=-,化为:2a b =.∴椭圆的离心率c e a===. (2)证明:由2a =,可得1b =,∴椭圆的标准方程为:221,(2,0),(0,1)4x y A B +=.直线BC 的方程为:21y k x =+,联立222114y k x x y =+⎧⎪⎨+=⎪⎩,化为:2222(14)80k x k x ++=, 解得222814c k x k -=+,∴22221414c k y k -=+.即2222222814(,)1414k k C k k --++. 直线AD 的方程为:1()2y k x =-,联立122(2)14y k x x y =-⎧⎪⎨+=⎪⎩,化为:2222111(14)161640k x k x k +-+-=, ∴2121164214D k x k -=+,解得2112211824,1414D D k k x y k k --==++,可得2112211824(,)1414k k D k k --++∴12C D CD C D y y k x x -==--,化为:222221211122111622880k k k k k k k k -+-+-=∴1212121()4440()14k k k k k k -++=-,∴121=4k k .【点评】本题考查了椭圆的标准方程与性质、直线与椭圆相交问题、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于难题.19.【考点】数列的求和;数列递推式.【分析】(1)①12||n n n a p a a p +=++-,可得211||1212211a a a =-++=+=-,同理可得343,9a a ==. ②21,112|1|n n n a a a a =+=++-,当2n ≥时,1n a ≥,当2n ≥时,11213n n n n a a a a +=+++=-,即从第二项起,数列{}n a 是以1为首项,以3为公比的等比数列,利用等比数列的求和公式即可得出n S . (2)1||20n n n n n n a a p a a p p a a p p +=++≥++=>---,可得1n n a a +>,即{}n a 单调递增.(i )当11a p≥时,有1a p ≥,于是1n a a p ≥≥,可得1|223|n n n n n n a p a a p a p a p a +=++=++=--,113n n a a -=⋅.利用反证法即可得出不存在. (ii )当111a p-<<时,有1p a p <<-.此时211111||222a P a a p p a a p a p p =++=++=+>--.于是当2n ≥时,2n a a p ≥>.从而2212122333(2)(||2)n n n n n n n n n a p a a p a p a p a a a a p n +=++=++===+≥﹣﹣--..假设存在2s r t a a a =+,同(i)可知:1r =.得出矛盾,因此不存在.(iii )当11a p≤时,有110a p p a p ≤<+≤-,.于是21111131||2224a P a a p p a a p a p a a p =++=++=+=+--..即可得出结论. 【解答】解:(1)①∵12||n n n a p a a p +=++-, ∴211||1212211a a a =++=+=--, 322||1210213a a a =++=++=-, 433||1212619a a a =++=++=-, ②∵2111||21n n n a a a a +==++,-, ∴当2n ≥时,1n a ≥,当2n ≥时,11213n n n n a a a a +=+++=-,即从第二项起,数列{}n a 是以1为首项,以3为公比的等比数列, ∴数列{}n a 的前n 项和11123413111321322n n n n a a n S a a a ---=++++⋯+=+=⨯≥---,(), 显然当1n =时,上式也成立,∴113322n n S -=⨯-; (2)∵1||20n n n n n n a a p a a p p a a p p +=++≥++=--->,∴1n n a a +>,即{}n a 单调递增.(i )当11a p≥时,有1a p ≥,于是1n a a p ≥≥,∴1|223|n n n n n n a p a a p a p a p a +=++=++=--,∴113n n a a -=⋅.若数列{}n a 中存在三项*,)(r s t a a a r s t r s t ∈<<N ,,,,依次成等差数列,则有2s r t a a a =+,即111233*3()s r t ---⨯=+∵1s t ≤-,∴111122333333s st r t ---⨯=⨯<<+-.因此(*)不成立.因此此时数列{}n a 中不存在三项*,)(r s t a a a r s t r s t ∈<<N ,,,,依次成等差数列.(ii )当111a p-<<时,有1p a p <<-.此时211111||222a P a a p p a a p a p p =++=++=+>--. 于是当2n ≥时,2n a a p ≥>.从而1|223|n n n n n n a p a a p a p a p a +=++=++=--.∴2221((3)2)32n n na a a p n --==+≥若数列{}n a 中存在三项*,)(r s t a a a r s t r s t ∈<<N ,,,,依次成等差数列,则有2s r t a a a =+,同(i )可知:1r =.于是有2211123(2)3(2)s t a p a a p ⨯+=++﹣﹣,∵21S t ≤≤-,∴211212 2333329103s t s t a a p --=⨯=⨯⨯+<﹣﹣-.∵22233s t ⨯﹣﹣-是整数,∴11 12a a p≤+.于是112a a p ≤--,即1a p ≤-.与1p a p <<-矛盾. 故此时数列{}n a 中不存在三项*,)(r s t a a a r s t r s t ∈<<N,,,,依次成等差数列.(iii )当11a p≤时,有110a p p a p ≤<+≤-,.于是211111||222a P a a p p a a p a p =++=++=+--.32211111|2252|54||a p a a p a p a p a p a p a p =++=+++=++=+---此时数列{}n a 中存在三项123a a a ,,依次成等差数列.综上可得:11a p≤-.【点评】本题考查了等差数列与等比数列的通项公式与求和公式、方程的解法、数列递推关系、分类讨论方法、反证法,考查了推理能力与计算能力,属于难题.20.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(1)求出()ln (1)0x f x e e x f λ'=-'=-,,得到曲线()y f x =在1x =处的切线方程为0y =.(2)()()ln ,(0)x g x f x e e x x λ='=>﹣﹣,()xg x e xλ'=-,函数()g x 存在极值,即方程0x e xλ-=有正实数根,,(0)x xe x λ⇒=>,可得λ的取值范围.(3)由(1)、(2)可知(1)0(1)(1)0f f g ='==,,结合(2)分e e λλ≤,>,讨论1x ≥时,是否()0f x ≥恒成立,即可.【解答】解:(1)()(ln 1)x f x e ex x x x λ=+---的定义域为(0)+∞,. ()ln (1)0x f x e e x f λ'='=--,,又(1)0f =. 曲线()y f x =在1x =处的切线方程为0y =.(2)∵()()ln ,(0)x g x f x e e x x λ='=>﹣﹣,()xg x e xλ'=-函数()g x 存在极值,即方程0x e xλ-=有正实数根,,(0)x xe x λ⇒=>,令()x G x xe =,()(1)0x G x x e '=+>在(0)+∞,恒成立. (0)x ∈+∞,时,()0G x >, ∴函数()g x 存在极值,λ的取值范围为(0)+∞,. (3)由(1)、(2)可知(1)0,(1)(1)0f f g '=== 结合(2)1x ≥时,()0x g x e xλ'=-≥,可得(1)x xe x λ≤≥,,()x G x xe =,在(1)+∞,恒成立. ∴e λ≤时,()0g x '≥,()g x 在[1)+∞,递增,()(1)0g x g ≥= 故()f x 在[1)+∞,递增,∴()(1)=0f x f ≥.当e λ>时,存在01x ≥,使()=0g x ',∴0(1)x x ∈,时,()<0g x ', 即0(1,)x x ∈时,()g x 递减,而(1)=0g ,∴0(1,)x x ∈时,()<0g x ,此时()f x 递减,而(1)=0f , ∴在0(1,)x ,()<0f x ,故当e λ>时,()0f x ≥不恒成立; 综上1x ≥时,()0f x ≥恒成立,λ的最大值为e【点评】本题考查了导数的综合应用,利用导数求极值、证明函数恒等式,属于难题。
2017年南京三模评分细则
2017年南京三模评分细则一、语知部分8.一句一分,意对即可。
(1)“尔”,这样。
“忽”:疏忽;“虑”:考虑。
“其”:诡计、奇谋。
“安可悔”:逐字逐句,译成反问语气即可。
(2)“薄书凝然”译成“公文(文书)不动(翻)、静置”之意即可。
“械杻”译为“刑具”“器具”即可;“蠹”译为“虫子”。
“庑下徒役”译为“官府的差役”之类意思即可。
“偃居门宇终日”译出终日闲居无事之意即可。
9.第一问治理虹县扣“执法严厉”,治理罗江县“无为而治”“兴办教育”答到一点即可。
第二问扣民风,虹县“杂恶”、罗县“柔良畏事”。
10.第二问:《闻蝉》扣“愁(惆怅)”与“不愁(如积极向上)”两方面的意思,必须答出不同的人不同是情感的意思;或答“劝慰”亦可。
11.答案一共五点,前三后二,一点一分。
《晚蝉》中“抒情、描写”归入第一点,“责怪蝉声”归入第二点。
《闻蝉》中“议论”归入第一点;“观点新颖(富有新意)”归入第二点。
13.(1)答到其中两个方面即可,增加“对死亡的麻木”。
(2)能答到“优越感”或“庆幸”等1分,有对比分析1分。
14.陆根元眼中的运动场和先生的特点2分,表现出他的形象或心理2分,为下文退学埋下伏笔1分,带上感情色彩1分。
补充“增强现场感”1分。
15.手法2分。
效果2分,从性格特点(如吃苦耐劳等)和身份特点(如生活窘迫等)两个角度作答,意思对即可。
补充“与前文比较,体现其身份的转变”1分。
16.从情节(身份转变的合理性)、人物(丰满形象)、主题(对旧式教育的批判)等角度作答,各2分。
18.第二点答到两点即可。
19.第二点答到“迎战邪恶”即可,增加“艺术效果往往是无意之得”。
23.补充“丑”。
26.答案从“自然美景”“生活方式、状态”两方面正向评价即可。
请阅卷老师将学生答案与原答案比对,能正常归入其中某一点的就按点给分。
27.原答案共三点,补充一个答案点“画家也构成了风景的美好”。
学生答案丰富多彩且有许多合理精彩的地方,请阅卷老师灵活归类,如“画家爱美(喜欢到风景美的地方写生)”归入原答案第二点“侧面表现环境的优美”,“画家喝酒,表现出一种生活的悠闲状态”归入原答案第一点,“描写画家前后两次喝酒动作,前后呼应,结构完整”归入原答案第三点。
【江苏省南京市】2017届高考数学三模考试数学(理)试卷-答案
2 3s﹣2 -3t﹣2
2 9
3s
1 3t1 3
0
.∵
2 3s﹣2 -3t﹣2
是整数,∴
a1
a1 2p
1.
于是 a1 -a1-2 p ,即 a1 - p .与 - p a1 p 矛盾.
故此时数列{an}中不存在三项 ar ,as ,at (r,s,t N*,r s t) 依次成等差数列.
江苏省南京市 2017 届高考数学三模考试数学(理)试卷
答案
1.{2} 2. 3 .
8 3. 5
4. 1.
5. 34 . 5
6.2.
7.{ 3 }. 2
8. 1 . 2
9.8 .
10. 1 . 3
11. 1 5 . 2
12. 3 .
13. -1 a 3 . 5
14.[27,30] . 二、解答题:本大题共 6 小题,共 90 分.解答应写出必要的文字说明或推理、验算过程.
(iii)当
a1 p
1时,有 a1
-p
p,a1
p
0.
于是 a2 | P-a1 | 2a1 p p-a1 2a1 p a1 2 p . a3 | p-a2 | 2a2 p | a1 p | 2a1 5 p -a1-p 2a1 5 p a1 4 p 此时数列{an} 中存在三项 a1,a2,a3 依次成等差数列.
若 a b ( 2 ,0) ,则 (2cos a 2sin a,sin 2a t)=( 2 ,0) ,
5
5
1 / 17
可得 cos a sin a= 1 ,平方可得 sin 2a cos 2a 2cos asin a= 1 ,
【江苏省南京市】2017届高考数学三模考试数学(理)试卷-答案
.即
C
( 1
8k2 4k2
2
,1 1
4k22 4k22
)
.
y k1 (x 2)
直线
AD
的方程为:
y
k1
(
x-2)
,联立
x
2
4
y2
1
,化为: (1 4k12 )x2 16k12 x 16k12 4 0 ,
∴ 2xD
16k12 4 1 4k12
由 a 为锐角,可得 cos (0,1) ,即有 tan sin a 1 , cos a 4
1
则
tan
2
2 tan a 1 tan2 a
2 1 1
8
, tan(2
π)
tan
2a
1
1
8 15
15
4 1 tan 2a 1 8
23 . 7
16
15
17.解:(1)∵看台Ⅰ的面积是看台Ⅱ的面积的 3 倍,
sin
∴ BC 40 2 3 cos . sin
(2)设表演台的造价为 y 万元,则 y 120 2 3 cos ,
sin
设 f ( ) 2 3 cos (0<<π) ,则 f ( )
sin
3 2cos sin2
∴当 0 π 时, f ( ) 0 ,当 π π 时, f ( ) 0 ,
(iii)当
a1 p
1时,有 a1
-p
p,a1
p
0.
于是 a2 | P-a1 | 2a1 p p-a1 2a1 p a1 2 p . a3 | p-a2 | 2a2 p | a1 p | 2a1 5 p -a1-p 2a1 5 p a1 4 p 此时数列{an} 中存在三项 a1,a2,a3 依次成等差数列.
江苏省南京市2017-2018学年高三第三次模拟考试数学试题 Word版含解析
2017-2018学年一、填空题:本大题共14个小题,每小题5分,共70分.1.已知全集U ={-1,2,3,a },集合M ={-1,3}.若∁U M ={2,5},则实数a 的值为 ▲ . 【答案】5 【解析】试题分析:因为{1,3,2,5}U U M C M ==- ,所以 5.a = 考点:集合补集2.设复数z 满足z (1+i)=2+4i ,其中i 为虚数单位,则复数z 的共轭复数为 ▲ . 【答案】3-i 【解析】试题分析:因为24(24)(1)(12)(1)3i,12i i i z i i i ++-===+-=++所以复数z 的共轭复数为3-i 考点:复数概念3.甲、乙两位选手参加射击选拔赛,其中连续5轮比赛的成绩(单位:环)如下表:则甲、乙两位选手中成绩最稳定的选手的方差是 ▲ .【答案】0.02考点:方差4.从2个白球,2个红球,1个黄球这5个球中随机取出两个球,则取出的两球中恰有一个红球的概率是 ▲ . 【答案】35【解析】试题分析:从5个球中随机取出两个球,共有10种基本事件,其中取出的两球中恰有一个红球包含有236⨯=种基本事件,其概率为63.105= 考点:古典概型概率5.执行如图所示的伪代码,输出的结果是 ▲ .【答案】8 【解析】试题分析:第一次循环:4,4I S ==,第二次循环:6,24I S ==,第三次循环:8,192100I S ==>,输出8.I = 考点:循环结构流程图6.6.已知α,β是两个不同的平面,l ,m 是两条不同直线,l ⊥α,m ⊂β.给出下列:①α∥β⇒l ⊥m ; ②α⊥β⇒l ; ③m ∥α⇒l ⊥β; ④l ⊥β⇒m ∥α.其中正确的是 ▲ . (填.写所有正确的......序号..). 【答案】①④考点:线面关系判定7.设数列{a n }的前n 项和为S n ,满足S n =2a n -2,则86a a = ▲ . 【答案】4(第5题图)【解析】试题分析:由S n =2a n -2,得S n-1=2a n-1-2,(n 2)≥所以a n =2a n -2a n-1 ,a n =2a n-1(n 2)≥,数列{a n }为等比数列,公比为2,2862 4.a a == 考点:等比数列定义及性质8.设F 是双曲线的一个焦点,点P 在双曲线上,且线段PF 的中点恰为双曲线虚轴的一个端点,则双曲线的离心率为 ▲ .【解析】试题分析:不妨设22221,(c,0)x y F a b-=,则点P(c,2b)-±,从而有222222415c b c e a b a-=⇒=⇒= 考点:双曲线离心率9.如图,已知A ,B 分别是函数f (x )ωx (ω>0)在y 轴右侧图象上的第一个最高点和第一个最低点,且∠AOB =2π,则该函数的周期是 ▲ .【答案】4 【解析】试题分析:由题意可设3((,22A B ππωω,又∠AOB =2π,所以324222T ππππωωωω⨯⇒=⇒== 考点:三角函数性质10.已知f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=2x-2,则不等式f (x -1)≤2的解集是 ▲ . 【答案】 【解析】试题分析:因为当x ≥0时,f (x )=2x-2,所以当0≤x ≤2时,f (x ) ≤f (2)=2,而f (x )是定义在R 上的偶函数,所以当-2≤x ≤2时,f (x ) ≤2,因此不等式f (x -1)≤2等价于-2≤x -1≤2,即-1≤x ≤3,解集是 考点:利用函数性质解不等式11.如图,在梯形ABCD 中,AB ∥CD ,AB =4,AD =3,CD =2,2AM MD = .若AC BM ⋅=-3,则AB AD ⋅= ▲ .【答案】32【解析】试题分析:因为122()()23233AC BM AD AB AB AD AB AD ⋅=+⋅-+=--⋅=-,所以3.2AB AD ⋅=考点:向量数量积12.在平面直角坐标系xOy 中,圆M :(x -a )2+(y +a -3)2=1(a >0),点N 为圆M 上任意一点.若以N 为圆心,ON 为半径的圆与圆M 至多有一个公共点,则a 的最小值为 ▲ . 【答案】3考点:两圆位置关系(第11题图)13.设函数f (x )=1,1,x x x a e x x a-⎧≥⎪⎨⎪--<⎩,g (x )=f (x )-b .若存在实数b ,使得函数g (x )恰有3个零点,则实数a 的取值范围为 ▲ . 【答案】(-1-21e ,2) 【解析】 试题分析:令1x x y e -=,则2x x y e-'=,所以当2x ≤时,211(,]x x y e e -=∈-∞,当2x ≥时,211(0,]x x y e e -=∈ 因此要使函数g (x )恰有3个零点,须2a <且211a e --<,即实数a 的取值范围为(-1-21e ,2)考点:利用导数研究函数零点14.若实数x ,y 满足2x 2+xy -y 2=1,则222522x yx xy y --+的最大值为 ▲ .【解析】试题分析:由题意得(2)()1x y x y -+=,令12,x y t x y t -=+=,则1112(t ),y (t ),33x t t=+=-+因此2222212||52222t x y m m t x xy y m m t t--==≤≤-++++,其中1=m t t-,当且仅当|m 222522x yx xy y --+考点:基本不等式求最值二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ²n =3b cos B . (1)求cos B 的值;(2)若a ,b ,c 成等比数列,求11tan tanCA +的值.【答案】(1)13(2【解析】试题分析:(1)先由向量数量积得a cos C +c cos A =3b cos B ,再由正弦定理将边化角,得sin A cos C +sin C cos A =3sin B cos B ,即得cos B =13.(2)由等比数列性质得b 2=ac ,再由正弦定理将边化角,得sin 2B =sin A ²sinC .利用同角三角函数关系、两角和正弦公式化11tan tanCA +得11tan tanC A +1sin B== 试题解析:解:(1)因为m ²n =3b cos B ,所以a cos C +c cos A =3b cos B . 由正弦定理,得sin A cos C+sin C cos A=3sin B cos B ,²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²3分所以sin(A +C )=3sin B cos B ,所以sin B =3sin B cos B . 因为B 是△ABC 的内角,所以sin B ≠0,所以cos B =13.²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²7分(2)因为a ,b ,c 成等比数列,所以b 2=ac . 由正弦定理,得sin 2B=sin A ²sin C . ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²9分因为cos B =13,B 是△ABC 的内角,所以sin B =3.²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²11分又11cos cos cos sin cos sin sin()tan tanC sin sin sin sin sin sin A C A C C A C A A A C A C A C +++=+==2sin sin 1sin sin sin sin B B A C B B ====²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²14分考点:向量数量积、正弦定理、同角三角函数关系16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D 为棱BC 上一点.(1)若AB =AC ,D 为棱BC 的中点,求证:平面ADC 1⊥平面BCC 1B 1; (2)若A 1B ∥平面ADC 1,求BDDC的值.【答案】(1)详见解析(2)1 【解析】试题分析:(1)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直出发给予证明,而线面垂直的证明,一般需多次利用线面垂直判定与性质定理(2)已知线面平行,一般利用线面平行性质定理,将其转化为线线平行:连结A 1C ,交AC 1于O ,则可得A 1B ∥OD .再结合平面几何性质确定线段比值.试题解析:证明:(1)因为AB =AC ,点D 为BC 中点,所以AD ⊥BC . ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²2分因为ABC -A 1B 1C 1 是直三棱柱,所以BB 1⊥平面ABC . 因为AD ⊂平面ABC ,所以BB 1⊥AD . ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²4分 因为BC ∩BB 1=B ,BC ⊂平面BCC 1B 1,BB 1⊂平面BCC 1B 1, 所以AD ⊥平面BCC 1B 1. 因为AD ⊂平面ADC 1,所以平面ADC 1⊥平面BCC 1B 1. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²6分(2)连结A 1C ,交AC 1于O ,连结OD ,所以O 为AC 1中(第16题图)ABCDA 1B 1C 1点. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²8分因为A 1B ∥平面ADC 1,A 1B ⊂平面A 1BC ,平面ADC 1∩平面A 1BC =OD , 所以A 1B ∥OD . ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²12分因为O 为AC 1中点,所以D 为BC 中点, 所以BDDC=1. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²14分考点:面面垂直判定定理,线面平行性质定理 17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆C :22221x y a b += (a >b >0)点(2,1)在椭圆C 上. (1)求椭圆C 的方程;(2)设直线l 与圆O :x 2+y 2=2相切,与椭圆C 相交于P ,Q 两点.①若直线l 过椭圆C 的右焦点F ,求△OPQ 的面积; ②求证: OP ⊥OQ .【答案】(1)22163x y +=(2(第17题图)【解析】试题分析:(1)求椭圆标准方程,一般利用待定系数法,即列出两个独立条件,解方程组即可:由2c a =,22411a b+=,解得a 2=6,b 2=3.(2)①直线过一定点,又与圆相切,因此可先利用直线与圆位置关系确定直线方程yx.再根据弦长公式求底长PQ=②研究直线与椭圆位置关系,一般联立方程组,利用韦达定理求解:因为OP OQ ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1+m )(kx 2+m )=(1+k 2)x 1x 2+km (x 1+x 2)+m 2而直线PQ 方程代入椭圆方程,得(1+2k 2) x 2+4kmx +2m2-6=0.则有x 1+x 2=-2412kmk +,x 1x 2=222612m k -+=m 2=2k 2+2.代入化简得OP OQ ⋅=由方程组22163y y x x ⎧+=⎪⎨⎪⎩解得x y ⎧=⎪⎪⎨⎪⎪⎩或x y ⎧=⎪⎪⎨⎪⎪⎩所以PQ=. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²6分因为O 到直线PQO PQ. 因为椭圆的对称性,当切线方程为y(x时,△O PQ综上所述,△O PQ的面积为. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²8分②解法二 消去y 得5x 2-+6=0.设P (x 1,y 1) ,Q (x 2,y 2),则有x 1+x 2.由椭圆定义可得,PQ =PF +FQ =2a -e( x 1+x 2)=2³-³=.²²²²²²²²²²²²²²²6分② (i)若直线PQ 的斜率不存在,则直线PQ 的方程为x x当x P ,Q .因为OP OQ ⋅=0,所以OP ⊥OQ .当x =-时,同理可得OP ⊥OQ . ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²10分(ii) 若直线PQ 的斜率存在,设直线PQ 的方程为y =kx +m ,即kx -y +m =0.=m 2=2k 2+2.将直线PQ 方程代入椭圆方程,得(1+2k 2) x 2+4kmx +2m 2-6=0. 设P (x 1,y 1) ,Q (x 2,y 2),则有x 1+x 2=-2412km k +,x 1x 2=222612m k -+.²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²12分因为OP OQ ⋅ =x 1x 2+y 1y 2=x 1x 2+(kx 1+m )(kx 2+m )=(1+k 2)x 1x 2+km (x 1+x 2)+m2=(1+k 2)³222612m k -++km ³(-2412km k +)+m 2.将m 2=2k 2+2代入上式可得OP OQ ⋅ =0,所以OP ⊥OQ .综上所述,OP ⊥OQ . ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²14分考点:椭圆标准方程,直线与圆相切,直线与椭圆位置关系18.(本小题满分16分)如图,某森林公园有一直角梯形区域ABCD,其四条边均为道路,AD∥BC,∠ADC=90°,AB=5千米,BC=8千米,CD=3千米.现甲、乙两管理员同时从A地出发匀速前往D地,甲的路线是AD,速度为6千米/小时,乙的路线是ABCD,速度为v千米/小时.(1)若甲、乙两管理员到达D的时间相差不超过15分钟,求乙的速度v的取值范围;(2)已知对讲机有效通话的最大距离是5千米.若乙先到达D,且乙从A到D的过程中始终能用对讲机与甲保持有效通话,求乙的速度v的取值范围.【答案】(1)646497v≤≤(2)8<v≤394.【解析】试题分析:(1)由路程、速度、时间关系可得关系式:12161||64v-≤,解简单含绝对值不等式即可,注意单位统一(2)首先乙先到达D地,故16v<2,即v>8.然后乙从A到D的过程中与甲最大距离不超过5千米:分三段讨论①当0<vt≤5,由余弦定理得甲乙距离(6t)2+(vt)2-2³6t³vt³cos∠DAB≤25,②当5<vt≤13,构造直角三角形得甲乙距离(vt-1-6t)2+9≤25,②当5<vt≤13,由直角三角形得甲乙距离(12-6t)2+(16-vt)2≤25,三种情况的交集得8<v≤394.试题解析:解:(1)由题意,可得AD=12千米.(第18题图)C BD所以(v2-48vv+36)³(5v)2≤25,解得v≥154.²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²9分②当5<vt≤13,即5v<t≤13v时,f(t)=(vt-1-6t)2+9=(v-6) 2 (t-16v-)2+9.因为v>8,所以16v-<5v,(v-6) 2>0,所以当t=13v时,f(t)取最大值,所以(v-6) 2(13v-16v-)2+9≤25,解得39 8≤v≤394.²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²13分③当13≤vt≤16,13v≤t≤16v时,f(t)=(12-6t)2+(16-vt)2,因为12-6t>0,16-vt>0,所以当f(t)在(13v,16v)递减,所以当t=13v时,f(t)取最大值,(12-6³13v)2+(16-v³13v)2≤25,解得398≤v≤394.因为v>8,所以 8<v≤394.²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²16分考点:实际应用题,分段函数求函数最值19.(本小题满分16分)设函数f(x)=-x3+mx2-m(m>0).(1)当m=1时,求函数f(x)的单调减区间;(2)设g(x)=|f(x)|,求函数g(x)在区间上的最大值;(3)若存在t≤0,使得函数f(x)图象上有且仅有两个不同的点,且函数f(x)的图象在这两点处的两条切线都经过点(2,t),试求m的取值范围.【答案】(1)(-∞,0)和(23,+∞)(2)y max=3,0427m m mm m≥<<⎧⎪⎪⎨⎪⎪⎩-,(3)(0,83]∪∪∪≥(52,即得函数f(x)=试题解析:解:函数定义域为,且f(x)≥0.由柯西不等式得≥(5²+2,²²²²²²²²²²²²²²²²²²²²²²5分即27³4≥(52,所以x=10027时,取等号.所以,函数f(x)=²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²10分考点:利用柯西不等式求最值【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X为所组成的三位数各位数字之和.(1)求X是奇数的概率;(2)求X 的概率分布列及数学期望. 【答案】(1)712(2)254【解析】试题分析:(1)因为X 是奇数,所以三个数字必是一奇二偶:按是否取0讨论,有11232223(2)28C C A A ⨯+=而能组成的三位数的个数是223424248C A A ⨯+=,因此所求概率为P (A )=287=4812.(2)先确定随机变量取法3,4,5,6,7,8,9.再分别求对应概率,最后利用公式求数学期望,注意按是否取0讨论 试题解析:解:(1)记“X 是奇数”为事件A ,能组成的三位数的个数是48. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²2分X 是奇数的个数有28,所以P (A )=287=4812. 答:X 是奇数的概率为712. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²4分(2) X 的可能取值为3,4,5,6,7,8,9.当 X =3时,组成的三位数只能是由0,1,2三个数字组成,所以P (X =3)=41=4812; 当 X =4时,组成的三位数只能是由0,1,3三个数字组成,所以P (X =4)=41=4812;当 X =5时,组成的三位数只能是由0,1,4或0,2,3三个数字组成,所以P (X =5)=81=486当 X =6时,组成的三位数只能是由0,2,4或1,2,3三个数字组成,所以P (X =6)=105=4824; 当 X =7时,组成的三位数只能是由0,3,4或1,2,4三个数字组成,所以P (X =7)=105=4824; 当 X =8时,组成的三位数只能是由1,3,4三个数字组成,所以P (X =8)=61=488;当 X =9时,组成的三位数只能是由2,3,4三个数字组成,所以P (X =9)=61=488; ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²8分所以X 的概率分布列为:E (X )=3³112+4³112+5³16+6³524+7³524+8³18+9³18=254.²²²²²²²²²²²²²²²²²²²²²²²²10分 考点:概率分布,数学期望 23.(本小题满分10分)在平面直角坐标系xOy 中,点P (x 0,y 0)在曲线y =x 2(x >0)上.已知A (0,-1),00(x ,y )n nn P ,n ∈N *.记直线AP n 的斜率为k n .(1)若k 1=2,求P 1的坐标; (2)若k 1为偶数,求证:k n 为偶数. 【答案】(1)(1,1)(2)详见解析 【解析】试题分析:(1)由两点间斜率公式得20000112y x x x ++==,解方程得P 1的坐标(2)先求出k n =2000000111n nnn n ny x x x x x ++==+ ,再利用k 1为偶数表示x 0,设k 1=2p (p ∈N *),则x 0=p k n 为偶数 试题解析:解:(1)因为k 1=2,所以20000112y x x x ++==,①当n =2m (m ∈N *)时, k n =22220(p 1)mk n k k nk C p -=-∑,所以 k n 为偶数. ②当n =2m +1(m ∈N )时,k n =22220(p 1)mk n k k nk C p -=-∑,所以 k n 为偶数. 综上, k n 为偶数. ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²10分 考点:二项式展开定理应用。
南京市2017届高三期初模拟考试数学卷
南京市2017届高三期初模拟考试数学 2016.09一、填空题:本大题共14个小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知集合{0,1,2}A =,2{|0}B x x x =-≤,则AB = .2.设复数z 满足()34z i i i +=-+(i 为虚数单位),则z 的模为 .3. 为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[40,60)内的汽车有 辆.4.若函数()sin()6f x x πω=+(0)ω>的最小正周期为π,则()3f π的值是 .5.下图是一个算法的流程图,则输出k 的值是 .6.设向量(1,4)a =-,(1,)b x =-,3c a b =+,若//a c ,则实数x 的值是 .7. 某单位要在四名员工(含甲乙两人)中随机选两名到某地出差,则甲乙两人中,至少有一人被选中的概率是 .8. 在平面直角坐标系xOy 中,双曲线222:1(0)4x y C a a -=>的一条渐近线与直线21y x =+平行,则实数a 的值是 .9. 在平面直角坐标系xOy 中,若直线20ax y +-=与圆心为C 的圆22(1)()16x y a -+-=相交于,A B 两点,且ABC ∆为直角三角形,则实数a 的值是 .10. 已知圆柱M 的底面半径为2,高为2,圆锥N 的底面直径和母线长相等,若圆柱M 和圆锥N 的体积相同,则圆锥N 的高为 .11. 各项均为正数的等比数列{}n a ,其前n 项和为n S ,若2578a a -=-,313S =,则数列{}n a 的通项公式n a = .12. 已知函数312,0()2,0x x x f x x x ⎧-≤=⎨->⎩,当(,]x m ∈-∞时,()f x 的取值范围为[16,)-+∞,则实数m 的取值范围是 .13.在ABC ∆中,已知3AB =,2BC =,D 在AB 上,13AD AB =,若3DB DC ∙=,则AC 的长是 .14.已知(),()f x g x 分别是定义在R 上的奇函数和偶函数,且1()()()2xf xg x +=,若存在01[,1]2x ∈,使得等式00()(2)0af x g x +=成立,则实数a 的取值范围是 .二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15. (本小题满分14分)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边的锐角α和钝角β的终边分别与单位圆交于点,A B ,若点A 的横坐标是10,点B 的纵坐标是5. (1)求cos()αβ-的值; (2)求αβ+的值.16. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,点,M N 分别为线段11,A B AC 的中点. (1)求证://MN 平面11BB C C ;(2)若D 在边BC 上,1AD DC ⊥,求证:MN AD ⊥.17. (本小题满分14分)如图,某城市有一块半径为40m 的半圆形(以O 为圆心,AB 为直径)绿化区域,现计划对其进行改建,在AB 的延长线上取点D ,使80OD m =,在半圆上选定一点C ,改建后的绿化区域由扇形区域AOC 和三角形区域COD 组成,其面积为2Sm ,设A O C x r a d ∠=.(1)写出S 关于x 的函数关系式()S x ,并指出x 的取值范围; (2)试问AOC ∠多大时,改建后的绿化区域面积S 最大.18. (本小题满分12分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,P 为椭圆上一点(在x 轴上方),连结1PF 并延长交椭圆于另一点Q ,设11PF FQ λ=.(1)若点P 的坐标为3(1,)2,且2PQF ∆的周长为8,求椭圆C 的方程;(2)若2PF 垂直于x 轴,且椭圆C 的离心率1[22e ∈,求实数λ的取值范围.19. (本小题满分12分)已知数列{}n a 是公差为正数的等差数列,其前n 项和为n S ,且2315a a =,416S =. (1)求数列{}n a 的通项公式; (2)数列{}n b 满足11b a =,111n n n n b b a a ++-=. ①求数列{}n b 的通项公式;②是否存在正整数,()m n m n ≠,使得2,,m n b b b 成等差数列?若存在,求出,m n 的值;若不存在,请说明理由. 20. (本小题满分16分)已知函数2()ln ,(,)f x ax bx x a b R =-+∈.(1)当1a b ==时,求曲线()y f x =在1x =处的切线方程; (2)当21b a =+时,讨论函数()f x 的单调性;(3)当1,3a b =>时,记函数()f x 的导函数'()f x 的两个零点是1x 和2x (12x x <),求证:123()()ln 24f x f x ->-.南京市2017届高三年级学情调研数学参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分.)1.{0,1} 2..80 4.125.5 6.47.568.1 9.-1 10.6 11.3n-1 12.[-2,8]13.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.(本小题满分14分)从而sinα==10.…………………… 2分因为钝角β的终边与单位圆交于点B,且点B的纵坐标是5,所以sinβ=,从而cosβ=-n=-…………………… 4分 (1)cos(α-β)=cos αcos β+sin αsin β=10×(-5)+10×5=-10. …………………… 8分 (2)sin(α+β)=sin αcos β+cos αsin β=×(-)+×=. …………………… 11分 因为α为锐角,β为钝角,故α+β∈(2π,32π),所以α+β=34π. …………………… 14分 16.(本小题满分14分) 证明:(1)如图,连结A 1C .在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 为平行四边形. 又因为N 为线段AC 1的中点, 所以A 1C 与AC 1相交于点N ,即A 1C 经过点N ,且N 为线段A 1C 的中点. ……………… 2分 因为M 为线段A 1B 的中点,所以MN ∥BC . ……………… 4分 又MN ⊄平面BB 1C 1C ,BC ⊂平面BB 1C 1C ,所以MN ∥平面BB 1C 1C . …………………… 6分(2)在直三棱柱ABC-A1B1C1中,CC1⊥平面ABC.又AD⊂平面ABC,所以CC1⊥AD. (8)分因为AD⊥DC1,DC1⊂平面BB1C1C,CC1⊂平面BB1C1C,CC1∩DC1=C1,所以AD⊥平面BB1C1C. (10)分又BC⊂平面BB1C1C,所以AD⊥BC. (12)分又由(1)知,MN∥BC,所以MN⊥AD. (14)分17.(本小题满分14分)解:(1)因为扇形AOC的半径为40 m,∠AOC=x rad,所以扇形AOC的面积S扇形AOC=22x OA∙=800x,0<x<π.……………………2分在△COD中,OD=80,OC=40,∠COD=π-x,所以△COD 的面积S△COD=12·OC·OD·sin∠COD=1600sin(π-x)=1600sin x.……………………4分从而 S=S△COD+S扇形AOC=1600sin x+800x,0<x<π. (6)分(2)由(1)知,S(x)=1600sin x+800x,0<x<π.S ′(x )=1600cos x +800=1600(cos x +12). …………………… 8分 由 S ′(x )=0,解得x =23π.从而当0<x <23π时,S ′(x )>0;当23π<x <π时, S ′(x )<0 .因此 S (x )在区间(0,23π)上单调递增;在区间(23π,π)上单调递减. …………………… 11分所以 当x =23π,S (x )取得最大值. 答:当∠AOC 为23π时,改建后的绿化区域面积S 最大. ……………………14分18.(本小题满分16分)解:(1)因为F 1,F 2为椭圆C 的两焦点,且P ,Q 为椭圆上的点,所以PF 1+PF 2=QF 1+QF 2=2a ,从而△PQF 2的周长为4a .由题意,得4a =8,解得a =2. …………………… 2分因为点P 的坐标为 (1,32),所以221914a b +=,解得b 2=3.所以椭圆C 的方程为22143x y +=. …………………… 5分(2)方法一:因为PF 2⊥x 轴,且P 在x 轴上方,故设P (c ,y 0),y 0>0.设Q (x 1,y 1).因为P 在椭圆上,所以220221y c a b +=,解得y 0=2b a,即P (c ,2b a). …………………… 7分 因为F 1(-c ,0),所以1PF =(-2c ,-2b a),1FQ =(x 1+c ,y 1).由1PF =λ1FQ ,得-2c =λ(x 1+c ),-2b a=λy 1, 解得x 1=-2λλ+c ,y 1=-2b a λ,所以Q (-2λλ+c ,-2b aλ). …………………… 11分 因为点Q 在椭圆上,所以(2λλ+)2e 2+222b a λ=1,即(λ+2)2e 2+(1-e 2)=λ2,(λ2+4λ+3)e 2=λ2-1, 因为λ+1≠0,所以(λ+3)e 2=λ-1,从而λ=3e 2+11-e 2=41-e2-3.…………………… 14分因为e ∈[12],所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围为[73,5]. …………………… 16分方法二:因为PF 2⊥x 轴,且P 在x 轴上方,故设P (c ,y 0),y 0>0.因为P 在椭圆上,所以22c a +202y b =1,解得y 0=2b a,即P (c ,2b a). …………………… 7分 因为F 1(-c ,0),故直线PF 1的方程为y =22b ac(x +c ).由22222()21b y x c ac x y a b ⎧=+⎪⎪⎨⎪+=⎪⎩,得(4c 2+b 2)x 2+2b 2cx +c 2(b 2-4a 2)=0.因为直线PF 1与椭圆有一个交点为P (c ,2b a).设Q (x 1,y 1),则x 1+c =-22224b c c b +,即-c -x 1=22224b cc b+. …………………… 11分 因为1PF =λ1FQ , 所以λ=12cc x --=2224c b b +=22223c a a c +-=22311e e +-=2431e--. …………………… 14分 因为e ∈[12,2],所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围为[73,5]. …………………… 16分19.(本小题满分16分)解:(1)设数列{a n }的公差为d ,则d >0.由a 2·a 3=15,S 4=16,得111()(2)154616a d a d a d ++=⎧⎨+=⎩解得112a d =⎧⎨=⎩或172a d =⎧⎨=-⎩(舍去)所以a n =2n -1. …………………… 4分(2)①因为b 1=a 1,b n +1-b n =11n n a a +, 所以b 1=a 1=1,b n +1-b n =11n n a a +=1111()(21)(21)22121n n n n =--+-+, …………………… 6分即 b 2-b 1=11(1)23-, b 3-b 2=111()235-,……b n-b n-1=111()22321n n---,(n≥2)累加得:b n-b1=111(1)22121nn n--=--,……………………9分所以b n=b1+121nn--=1+121nn--=3221nn--.b1=1也符合上式.故b n=3221nn--,n∈N*.……………………11分②假设存在正整数m、n(m≠n),使得b2,b m,b n成等差数列,则b2+b n=2b m.又b2=43,b n=3221nn--=32-142n-,b m=32-142m-,所以43+(32-142n-)=2(32-142m-),即121m-=16+142n-,化简得:2m=721nn-+=7-91n+.……………………14分当n+1=3,即n=2时,m=2,(舍去);当n+1=9,即n=8时,m=3,符合题意.所以存在正整数m=3,n=8,使得b2,b m,b n成等差数列. (16)分20.(本小题满分16分)解:(1)因为a=b=1,所以f(x)=x 2-x+ln x,从而f ′(x)=2x -1+1x.因为f(1)=0,f ′(1)=2,故曲线y=f(x)在x=1处的切线方程为y-0=2(x-1),即2x-y-2=0.…………………… 3分(2)因为b=2a+1,所以f(x)=ax2-(2a+1)x+ln x,从而 f ′(x )=2ax -(2a +1)+1x=22(21)1ax a x x -++=(21)(1)ax x x --,x >0. ………… 5分当a ≤0时,x ∈(0,1)时,f ′(x )>0,x ∈(1,+∞)时,f ′(x )<0,所以,f (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.…………………… 7分当0<a <12时, 由f ′(x )>0得0<x <1或x >12a ,由f ′(x )<0得1<x <12a , 所以f (x )在区间(0,1)和区间(12a ,+∞)上单调递增,在区间(1,12a)上单调递减.当a =12时,因为f ′(x )≥0(当且仅当x =1时取等号), 所以f (x )在区间(0,+∞)上单调递增. 当a >12时, 由f ′(x )>0得0<x <12a 或x >1,由f ′(x )<0得12a <x <1, 所以f (x )在区间(0,12a )和区间(1,+∞)上单调递增,在区间(12a,1)上单调递减.……………………10分(3)方法一:因为a =1,所以f (x )=x 2-bx +ln x ,从而f ′(x )=221x bx x-+ (x >0).由题意知,x 1,x 2是方程2x 2-bx +1=0的两个根,故x 1x 2=12. 记g (x ) =2x 2-bx +1,因为b >3,所以g (12)=32b -<0,g (1)=3-b <0,所以x 1∈(0,12),x 2∈(1,+∞),且bx i =22i x +1 (i =1,2). …………………… 12分f (x 1)-f (x 2)=(2212x x -)-(bx 1-bx 2)+ln12x x =-(2212x x -)+ln 12x x .因为x 1x 2=12,所以f (x 1)-f (x 2)=22x -2214x -ln(222x ),x 2∈(1,+∞). ……………… 14分令t =222x ∈(2,+∞),φ(t )=f (x 1)-f (x 2)=122t t--ln t . 因为φ′(t )=22(1)2t t -≥0,所以φ(t )在区间(2,+∞)单调递增,所以φ(t )>φ(2)=34-ln2,即f (x 1)-f (x 2)>34-ln2. …………………… 16分方法二:因为a =1,所以f (x )=x 2-bx +ln x ,从而f ′(x )=221x bx x-+ (x >0).由题意知,x 1,x 2是方程2x 2-bx +1=0的两个根. 记g (x ) =2x 2-bx +1,因为b >3,所以g (12)=32b -<0,g (1)=3-b <0,所以x 1∈(0,12),x 2∈(1,+∞),且f (x )在[x 1,x 2]上为减函数. …………………… 12分所以f (x 1)-f (x 2)>f (12)-f (1)=(14-2b +ln 12)-(1-b )=-34+2b-ln2. 因为b >3,故f (x 1)-f (x 2)>-34+2b -ln2>34-ln2. …………………… 16分南京市2017届高三年级学情调研数学附加参考答案及评分标准21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲证明:因为点A 、D 、E 、B 在圆O 上,即四边形ADEB 是圆内接四边形,所以∠B =∠EDC . ……………………… 3分因为AB =AC ,所以∠B =∠C . ……………………… 5分所以∠C =∠EDC ,从而ED =EC . ……………………… 7分又因为EF ⊥DC 于点F ,所以F 为线段DC 中点. ……………………… 10分B .选修4—2:矩阵与变换解:(1)M =AB =⎣⎢⎡⎦⎥⎤ 2 -2 1 -3 ⎣⎢⎡⎦⎥⎤ 1 0 0 -1 = ⎣⎢⎡⎦⎥⎤ 2 2 1 3 . ………………………5分(2)矩阵M 的特征多项式为f (λ)= ⎪⎪⎪⎪⎪⎪ λ-2 -2 -1 λ-3 =(λ-2)(λ-3)-2令f (λ)=0,解得λ1=1,λ2=4,所以矩阵M 的特征值为1或4. ……………………… 10分C .选修4—4:坐标系与参数方程 解:曲线C 的极坐标方程为 ρ=2cos θ,化为直角坐标方程为x 2+y 2=2x .即(x -1)2+y 2=1,表示以(1,0)为圆心,1为半径的圆. ……………………… 3分直线l 的极坐标方程是 ρ sin(θ+π6)=m ,即12ρcos θ+32ρsin θ=m ,化为直角坐标方程为x +3y -2m =0. ………………………6分因为直线l 与曲线C 有且只有一个公共点, 所以|1-2m |2=1,解得m =-12或m =32.所以,所求实数m 的值为-12 或 32. ………………………10分D .选修4—5:不等式选讲 解:原不等式等价于⎩⎨⎧x ≤0,1-x -2x ≤4x或⎩⎨⎧0<x ≤1,1-x +2x ≤4x或⎩⎨⎧x >1,x -1+2x ≤4x .……………………… 6分 解⎩⎨⎧x ≤0,1-x -2x ≤4x ,得x ∈∅;解⎩⎨⎧0<x ≤1,1-x +2x ≤4x ,得 13≤x ≤1;解⎩⎨⎧x >1,x -1+2x ≤4x .得x >1.所以原不等式的解集为 [13,+∞). ………………………10分【必做题】第22题、第23题,每题10分,共计20分. 22.(本小题满分10分)解:(1)在四棱锥P -ABCD 中,底面ABCD 为正方形,侧棱PD ⊥底面ABCD ,所以DA 、DC 、DP 两两垂直,故以{DA →,DC →,DP →}为正交基底,建立空间直角坐标系D -xyz .因为PD =DC ,所以DA =DC =DP ,不妨设DA =DC =DP =2,则D (0,0,0),A (2,0,0),C (0,2,0),P (0,0,2),B (2,2,0).因为E 是PC 的中点,所以E (0,1,1). 所以AP →=(-2,0,2),BE →=(-2,-1,1),所以cos<AP →,BE →>=AP →·BE →|AP →|·|BE →|=32,从而<AP →,BE →>=π6.因此异面直线AP 与BE 所成角的大小为π6. (4)分(2)由(1)可知,DE →=(0,1,1),DB →=(2,2,0),PB →=(2,2,-2).设PF →=λPB →,则PF →=(2λ,2λ,-2λ),从而DF →=DP →+PF →=(2λ,2λ,2-2λ).设m =(x 1,y 1,z 1)为平面DEF 的一个法向量,则⎩⎪⎨⎪⎧m ·DF →=0, m ·DE →=0,即⎩⎨⎧λx 1+λy 1+(1-λ)z 1=0,y 1+z 1=0,取z 1=λ,则y 1=-λ,x 1=2λ-1.所以m =(2λ-1,-λ,λ)为平面DEF 的一个法向量. ……………………… 6分设n =(x 2,y 2,z 2)为平面DEB 的一个法向量,则⎩⎪⎨⎪⎧n ·DB →=0,n ·DE →=0,即⎩⎨⎧2x 2+2y 2=0,y 2+z 2=0,取x 2=1,则y 2=-1,z 2=1.所以n =(1,-1,1)为平面BDE 的一个法向量. ………………………… 8分因为二面角F -DE -B 的正弦值为33,所以二面角F -DE -B 的余弦的绝对值为63, 即 |cos<m ,n >|=63, 所以 |m ·n || m |·| n |=63, |4λ-1|3·(2λ-1)2+2λ2=63, 化简得,4λ2=1,因为点F 在线段PB 上,所以0≤λ≤1,所以λ=12,即PF PB =12. (10)分23.(本小题满分10分)解:(1)设甲第i 次投中获胜的事件为A i (i =1,2,3),则A 1,A 2,A 3彼此互斥.甲获胜的事件为A 1+A 2+A 3.P (A 1)=25;P (A 2)=35×13×25=225; P (A 3)=(35)2×(13)2×25=2125. 所以P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3)=25+225+2125=62125.答:甲获胜的概率为62125. ………………………4分(2)X 所有可能取的值为1,2,3.则 P (X =1)=25+35×23=45;P (X =2)=225+35×13×35×23=425; P (X =3)=(35)2×(13)2×1=125.即X 的概率分布列为……………………… 8分所以X 的数学期望E (X )=1×45+2×425+3×125=3125. ………………………10分。
江苏省南京市2017届高三三模数学试卷(含解析)
2017年江苏省南京市高考数学三模试卷一、填空题:(本大题共14小题,每小题5分,共70分)1.已知全集U={1,2,3,4},集合A={1,4},B={3,4},则∁U(A∪B)= .2.甲盒子中有编号分别为1,2的两个乒乓球,乙盒子中有编号分别为3,4,5,6的四个乒乓球.现分别从两个盒子中随机地各取出1个乒乓球,则取出的乒乓球的编号之和大于6的概率为.3.若复数z满足,其中i为虚数单位,为复数z的共轭复数,则复数z的模为.4.执行如图所示的伪代码,若输出的y值为1,则输入x的值为.5.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为.6.在同一直角坐标系中,函数的图象和直线y=的交点的个数是.7.在平面直角坐标系xoy中,双曲线的焦距为6,则所有满足条件的实数m 构成的集合是.8.已知函数f(x)是定义在R上且周期为4的偶函数,当x∈[2,4]时,,则的值为.9.若等比数列{a n}的各项均为正数,且a3﹣a1=2,则a5的最小值为.10.如图,在直三棱柱ABC﹣A1B1C1中,AB=1,BC=2,BB1=3,∠ABC=90°,点D为侧棱BB1上的动点,当AD+DC1最小时,三棱锥D﹣ABC1的体积为.11.函数f(x)=e x(﹣x2+2x+a)在区间[a,a+1]上单调递增,则实数a的最大值为.12.在凸四边形ABCD中,BD=2,且,,则四边形ABCD 的面积为.13.在平面直角坐标系xoy中,圆O:x2+y2=1,圆M:(x+a+1)2+(y﹣2a)2=1(a为实数).若圆O和圆M上分别存在点P,Q,使得∠OQP=30°,则a的取值范围为.14.已知a,b,c为正实数,且,则的取值范围为.二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程. 15.(14分)如图,在三棱锥A﹣BCD中,E,F分别为BC,CD上的点,且BD∥平面AEF.(1)求证:EF∥平ABD面;(2)若AE⊥平面BCD,BD⊥CD,求证:平面AEF⊥平面ACD.16.(14分)已知向量为实数.。
江苏省南京市2017届高三第三次模拟考试数学试题 Word版缺答案bybao
江苏省南京市2017届高三年级第三次模拟考试数学2017.05一、填空题:(本大题共14小题,每小题5分,共70分)1. 已知全集{}1,2,3,4U =,集合{}{}1,4,3,4A B ==,则()U C A B = .2. 甲盒子中有编号分别为1,2的两个乒乓球,乙盒子中有编号分别为3,4,5,6的四个乒乓球.现分别从两个盒子中随机地各取出1个乒乓球,则取出的乒乓球的编号之和大于6的概率为 .3.若复数z 满足232z z i +=+,其中i 为虚数单位,z 为复数z 的共轭复数,则复数z 的模为 .4.执行如图所示的伪代码,若输出的y 值为1,则输入x 的值为 .5.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛张得分较为稳定(方差较小)的那名运动员的得分的方差为 .6.在同一直角坐标系中,函数[)()sin 0,23y x x ππ⎛⎫=+∈ ⎪⎝⎭的图象和直线12y =的交点的个数是 .7.在平面直角坐标系xoy 中,双曲线222123x y m m-=的焦距为6,则所有满足条件的实数m 构成的集合是 .8.已知函数()f x 是定义在R 上且周期为4的偶函数,当[]2,4x ∈时,()43log 2f x x ⎛⎫=- ⎪⎝⎭,则12f ⎛⎫⎪⎝⎭的值为 . 9.若等比数列{}n a 的各项均为正数,且312a a -=,则5a 的最小值为 . 10.如图,在直三棱柱111ABC A B C -中,11,2,3,90AB BC BB ABC ===∠= ,点D 为侧棱1BB 上的动点,当1AD DC +最小时,三棱锥1D ABC -的体积为 . 11.若函数()()22x f x e x x a =-++在区间[],1a a +上单调递增,则实数a 的最大值为 .12.在凸四边形ABCD 中,()()2,0,5BD AC BD AB DC BC AD =⋅=+⋅+=,则四边形ABCD 的面积为 .13.在平面直角坐标系xoy 中,圆22:1O x y +=,圆()()22:121M x a y a +++-=(a 为实数).若圆O 和圆M 上分别存在点P,Q,使得30OQP ∠= ,则a 的取值范围为 .14.已知,,,a b c d 为正实数,且23228,a b c a b c +≤+≤,则38a b c+的取值范围为 .二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程.15.(本题满分14分)如图,在三棱锥A BCD -中,,E F 分别为,BC CD 上的点,且//BD 平面.AEF(1)求证://EF 平ABD 面;(2)若AE ⊥平面BCD ,BD CD ⊥,求证:平面AEF ⊥平面ACD .16.(本题满分14分)已知向量()()22cos ,sin ,2sin ,,0,,2a b t t παααα⎛⎫==∈ ⎪⎝⎭ 为实数.(1)若2,05a b ⎛⎫-= ⎪⎝⎭,求t 的值;(2)若1t =,且1a b ⋅= ,求tan 24πα⎛⎫+ ⎪⎝⎭的值.17.(本题满分14分)在水域上建一个演艺广场,演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC ,及矩形表演台BCDE 四个部分构成(如图),看台Ⅰ,看台Ⅱ是分别以AB,AC 为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍,矩形表演台BCDE 中,CD=10米,三角形水域ABC的面积为BAC θ∠=. (1)求BC 的长(用含θ的式子表示);(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价.18.(本题满分16分)如图,在平面直角坐标系xoy 中,椭圆()222210x y a b a b +=>>的右顶点和上顶点分别为点A,B ,M 是线段AB 的中点,且23.2OM AB b ⋅=- .(1)求椭圆的离心率;(2)若2a =,四边形ABCD 内接于椭圆,AB//CD,记直线AD,BC 的斜率分别为12,k k ,求证:12k k ⋅为定值.19.(本题满分16分)已知常数0p >,数列{}n a 满足12,.n n n a p a a p n N *+=-++∈. (1)若11,1a p =-=, ①求4a 的值;②求数列{}n a 的前n 项和n S ;(2)若数列{}n a 中存在三项(),,,,,r s t a a a r s t N r s t *∈<<依次成等差数列,求1a p的取值范围.20.(本题满分16分)已知R λ∈,函数()()ln 1x f x e ex x x x λ=---+的导数为().g x (1)求曲线()y f x =在1x =处的切线方程; (2)若函数().g x 存在极值,求λ的取值范围; (3)若1x ≥时,()0f x ≥恒成立,求λ的最大值.。
南京市2017届高三年级三模数学卷
(第 5 题图)
6 .在同一直角坐标系中,函数 y = sin(x + ▲ .
π 1 ) ( x ∈ [0 , 2 π ] )的图象和直线 y = 的交点的个数是 3 2
x2 y2 7.在平面直角坐标系 xOy 中,双曲线 2- =1 的焦距为 6,则所有满足条件的实数 m 构成的集合是 2m 3m ▲ .
为实数).若圆 O 与圆 M 上分别存在点 P,Q,使得∠OQP=30,则 a 的取值范围为
▲
.
3a+8b 2 3 2 14 .( 2017 南京三模)已知 a , b , c 为正实数,且 a + 2b≤8c , + ≤ ,则 的取值范围为 a b c c ▲ .
15. (2017 南京三模) (本小题满分 14 分)如图,在三棱锥 A-BCD 中,E,F 分别为棱 BC,CDA 上的点, 且 BD∥平面 AEF. (1)求证:EF∥平面 ABD; (2)若 BD⊥CD,AE⊥平面 BCD,求证:平面 AEF⊥平面 ACD.
3 8 .已知函数 f ( x ) 是定义在 R 上且周期为 4 的偶函数.当 x ∈ [ 2 , 4 ] 时, f ( x ) = | log 4 ( x - ) | , 2 A
1
C1
1 则 f( )的值为 2
▲
. ▲ .
B1
9.若等比数列{an}的各项均为正数,且 a3-a1=2,则 a5 的最小值为
- -
▲
.
4.执行如图所示的伪代码,若输出 y 的值为 1, 则输入 x 的值为 ▲ .
Read x If x≥0 Then y←2x+1 Else y← 2-x2 End If Print y
2017年江苏省南京市高考数学三模试卷与解析PDF
2017年江苏省南京市⾼考数学三模试卷与解析PDF2017年江苏省南京市⾼考数学三模试卷⼀、填空题:(本⼤题共14⼩题,每⼩题5分,共70分)1.(5分)已知全集U={1,2,3,4},集合A={1,4},B={3,4},则?U(A∪B)=.2.(5分)甲盒⼦中有编号分别为1,2的两个乒乓球,⼄盒⼦中有编号分别为3,4,5,6的四个乒乓球.现分别从两个盒⼦中随机地各取出1个乒乓球,则取出的乒乓球的编号之和⼤于6的概率为.3.(5分)若复数z满⾜,其中i为虚数单位,为复数z的共轭复数,则复数z的模为.4.(5分)执⾏如图所⽰的伪代码,若输出的y值为1,则输⼊x的值为.5.(5分)如图是甲、⼄两名篮球运动员在五场⽐赛中所得分数的茎叶图,则在这五场⽐赛中得分较为稳定(⽅差较⼩)的那名运动员的得分的⽅差为.6.(5分)在同⼀直⾓坐标系中,函数的图象和直线y=的交点的个数是.7.(5分)在平⾯直⾓坐标系xoy中,双曲线的焦距为6,则所有满⾜条件的实数m构成的集合是.8.(5分)已知函数f(x)是定义在R上且周期为4的偶函数,当x∈[2,4]时,,则的值为.9.(5分)若等⽐数列{a n}的各项均为正数,且a3﹣a1=2,则a5的最⼩值为.10.(5分)如图,在直三棱柱ABC﹣A1B1C1中,AB=1,BC=2,BB1=3,∠ABC=90°,点D为侧棱BB1上的动点,当AD+DC1最⼩时,三棱锥D﹣ABC1的体积为.11.(5分)函数f(x)=e x(﹣x2+2x+a)在区间[a,a+1]上单调递增,则实数a 的最⼤值为.12.(5分)在凸四边形ABCD中,BD=2,且,,则四边形ABCD的⾯积为.13.(5分)在平⾯直⾓坐标系xOy中,圆O:x2+y2=1,圆M:(x+a+3)2+(y﹣2a)2=1(a为实数).若圆O和圆M上分别存在点P,Q,使得∠OQP=30°,则a 的取值范围为.14.(5分)已知a,b,c为正实数,且,则的取值范围为.⼆、解答题:本⼤题共6⼩题,共90分.解答应写出必要的⽂字说明或推理、验算过程.15.(14分)如图,在三棱锥A﹣BCD中,E,F分别为BC,CD上的点,且BD∥平⾯AEF.(1)求证:EF∥平ABD⾯;(2)若AE⊥平⾯BCD,BD⊥CD,求证:平⾯AEF⊥平⾯ACD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16. (本小题满分 14 分) 解:(1)因为向量 a=(2cosα,sin2α),b=(2sinα,t), 2 1 且 a-b=( ,0),所以 cosα-sinα= ,t=sin2α. 5 5 1 1 由 cosα-sinα= 得 (cosα-sinα)2= , 5 25 1 24 即 1-2sinαcosα= ,从而 2sinαcosα= . 25 25
λ λ 当 λ>0 时,设 h(x)=ex- ,则 h′(x)=ex+ 2>0 恒成立, x x 所以 h(x)在(0,+∞)上单调递增. ①当 0<λ<e 时,
λ λ h(1)=e-λ>0,h( )=ee-e<0,且 h(x)是(0,+∞)上的连续函数, e
„„„„„„„„„„ 6 分
λ 因此存在唯一的 x0∈( ,1),使得 h(x0)=0. e ②当 λ≥e 时, h(1)=e-λ≤0,h(λ)=eλ-1>0,且 h(x)是(0,+∞)上的连续函数, 因此存在唯一的 x0∈[1,λ),使得 h(x0)=0. 故当 λ>0 时,存在唯一的 x0>0,使得 h(x0)=0. „„„„„„„„ 8 分
数学参考答案和评分标准 第 3 页 共 10 页
1 1 - x1+m - x2+m-1 2 2 所以 k1·k2= · x2 x1-2 1 1 1 x x - (m-1)x1- mx2+m(m-1) 4 1 2 2 2 = (x1-2)x2 1 1 1 x x - m(x1+x2)+ x1+m(m-1) 4 1 2 2 2 = x1x2-2x2 1 1 1 x x - m·2m+ (2m-x2)+m(m-1) 4 1 2 2 2 = x1x2-2x2 1 1 xx- x 4 1 2 2 2 1 = = , x1x2-2x2 4 1 即 k1·k2 为定值 . 4 x2 方法二:由 a=2 得 b=1,故椭圆方程为 +y2=1. 4 1 从而 A(2,0),B(0,1),直线 AB 的斜率为- . 2 x02 设 C(x0,y0),则 +y02=1. 4 1 因为 AB∥CD,故 CD 的方程为 y=- (x-x0)+y0. 2 „„„„„„„„ 7 分 „„„„„„„„„16 分
y=-2(x-x )+y , 联立 消去 y,得 x -(x +2y )x+2x y =0, x + y = 1 , 4
0 0 2 2 2 0 0 0 0
1
解得 x=x0(舍去)或 x=2y0. 1 所以点 D 的坐标为(2y0, x0). 2 1 x 2 0 y0-1 1 1 所以 k1·k2= · = ,即 k1·k2 为定值 . x0 4 4 2y0-2 „„„„„„„„„ 13 分
1 因为 AB∥DC,故可设 DC 的方程为 y=- x+m.设 D(x1,y1),C(x2,y2). 2
y=-2x+m, 联立 消去 y,得 x -2mx+2m -2=0, x + y = 1 , 4
2 2 2 2
1
所以 x1+x2=2m,从而 x1=2m-x2.
„„„„„„„„„ 9 分
1 1 - x1+m - x2+m-1 2 2 y2-1 y1 直线 AD 的斜率 k1= = ,直线 BC 的斜率 k2= = , x2 x2 x1-2 x1-2 „„„„„„„„„ 11 分
-
„„„„„„„„„„ 10 分
若{an}中存在三项 ar,as,at (r,s,t∈N*,r<s<t)依次成等差数列,则有 2 as=ar+at, 即 2×3s 1=3r 1+3t 1. (*)
- - -
2 - - - - 因为 s≤t-1,所以 2×3s 1= ×3s<3t 1<3r 1+3t 1, 3 即(*)不成立. 故此时数列{an}中不存在三项依次成等差数列. (ii)当-1< a1 <1 时,有-p<a1<p. p „„„„„„„„„ 12 分
此时 a2=|p-a1|+2 a1+p=p-a1+2 a1+p=a1+2 p>p, 于是当 n≥2 时,an≥a2>p, 从而 an+1=|p-an|+2 an+p=an-p+2 an+p=3an. 所以 an=3n 2a2=3n 2(a1+2p) (n≥2).
- -
若{an}中存在三项 ar,as,at (r,s,t∈N*,r<s<t)依次成等差数列, 同(i)可知,r=1, 于是有 2×3s 2(a1+2 p)=a1+3t 2(a1+2p).
„„„„„„„„ 14 分
17. (本小题满分 14 分) 解: (1)因为看台Ⅰ的面积是看台Ⅱ的面积的 3 倍,所以 AB= 3AC. 1 在△ABC 中,S△ABC= AB•AC•sinθ=400 3, 2 800 所以 AC2= . sinθ 由余弦定理可得 BC2=AB2+AC2-2AB•AC•cosθ, =4AC2-2 3AC2 cosθ. =(4-2 3cosθ) 即 BC= 800 (4-2 3cosθ)• =40 sinθ 800 , sinθ 2- 3cosθ . sinθ „„„„„„„„ 7 分 „„„„„„„„ 3 分
南京市 2017 届高三第三次模拟考试
数学参考答案及评 分,计 70 分.) 1.{2} 3 7.{ } 2 6 13.[- ,0] 5 3 2. 8 1 8. 2 3. 5 9.8 4.-1 1 10. 3 5.6.8 11. -1+ 5 2 6.2 12.3
- -
因为 2≤s≤t-1,
数学参考答案和评分标准 第 5 页 共 10 页
所以
a1 2 1 - - - =2×3s 2-3t 2= ×3s- ×3t 1<0. 9 3 a1+2 p
- -2
因为 2×3s 2-3t
是整数,所以
a1 ≤-1, a1+2 p
于是 a1≤-a1-2p,即 a1≤-p,与-p<a1<p 相矛盾. 故此时数列{an}中不存在三项依次成等差数列. a1 (iii)当 ≤-1 时,则有 a1≤-p<p,a1+p≤0, p 于是 a2=| p-a1|+2a1+p=p-a1+2 a1+p=a1+2p, a3=|p-a2|+2a2+p=|p+a1|+2a1+5p=-p-a1+2a1+5p=a1+4p, 此时有 a1,a2,a3 成等差数列. a1 综上可知: ≤-1. p „„„„„„„„„„„„ 16 分 „„„„„„„ 14 分
数学参考答案和评分标准 第 2 页 共 10 页
则 f ′(θ)=
3-2cosθ . sin2θ
„„„„„„„„ 11 分
π 由 f ′(θ)=0,解得 θ= . 6 π π 当 θ∈(0, )时,f ′(θ)<0;当 θ∈( ,π)时,f ′(θ)>0. 6 6 π π 故 f(θ)在(0, )上单调递减,在( ,π)上单调递增, 6 6 π π 从而当 θ= 时,f(θ)取得最小值,最小值为 f( )=1. 6 6 所以 Wmin=120(万元). 答:表演台的最低造价为 120 万元. „„„„„„„„ 14 分
所以 BC=40
2- 3cosθ ,θ∈(0,π). sinθ
(2)设表演台的总造价为 W 万元. 因为 CD=10m,表演台每平方米的造价为 0.3 万元, 所以 W=3BC=120 2- 3cosθ ,θ∈(0,π). sinθ „„„„„„„„ 9 分
2- 3cosθ 记 f(θ)= ,θ∈(0,π). sinθ
„„„„„„„„„„„ 3 分
从而 an+1=|1-an|+2 an+1=an-1+2 an+1=3an, 于是有 an=3n 2(n≥2) .
-
„„„„„„„„„„„ 5 分
当 n=1 时,S1=-1; 1-3n 1 3n 1-3 当 n≥2 时,Sn=-1+a2+a3+„+an=-1+ = . 2 1-3
- -
n=1, 1, n-1 所以 Sn=3 -3 * 2 ,n≥2,n∈N , 3n 1-3 即 Sn= ,n∈N*. 2
-
„„„„„„„„„„ 8 分
(2)因为 an+1-an=|p-an|+an+p≥p-an+an+p=2 p>0, 所以 an+1>an,即{an}单调递增. a1 (i)当 ≥1 时,有 a1≥p,于是 an≥a1≥p, p 所以 an+1=|p-an|+2 an+p=an-p+2 an+p=3an,所以 an=3n 1a1.
数学参考答案和评分标准 第 1 页 共 10 页
„„„„„„„„ 2 分
49 所以(cosα+sinα)2=1+2sinαcosα= . 25 π 7 因为 α∈(0, ),所以 cosα+sinα= . 2 5 (cosα+sinα)-(cosα-sinα) 3 所以 sinα= = , 2 5 9 从而 t=sin2α= . 25 (2)因为 t=1,且 a • b=1, 所以 4sinαcosα+sin2α=1,即 4sinαcosα=cos2α. π 1 因为 α∈(0, ),所以 cosα≠0,从而 tanα= . 2 4 2tanα 8 所以 tan2α= = . 1-tan2α 15 8 +1 15 π 23 从而 tan(2α+ )= = = . 4 π 8 7 1-tan2α·tan 1- 4 15 π tan2α+tan 4 „„„„„„„„ 9 分 „„„„„„„„ 11 分 „„„„„„„„ 7 分 „„„„„„„„ 5 分
„„„„„„„„„ 16 分
19. (本小题满分 16 分) 解: (1)因为 p=1,所以 an+1=|1-an|+2 an+1. ① 因为 a1=-1,所以 a2=|1-a1|+2 a1+1=1, a3=|1-a2|+2 a2+1=3,
数学参考答案和评分标准 第 4 页 共 10 页
a4=|1-a3|+2 a3+1=9. ② 因为 a2=1,an+1=|1-an|+2 an+1, 所以当 n≥2 时,an≥1,
14.[27,30]
二、解答题(本大题共 6 小题,计 90 分.解答应写出必要的文字说明,证明过程或演算步骤) 15. (本小题满分 14 分) 证明: (1)因为 BD∥平面 AEF, BD平面 BCD,平面 AEF∩平面 BCD=EF, 所以 BD∥EF. 因为 BD平面 ABD,EF平面 ABD, 所以 EF∥平面 ABD. (2)因为 AE⊥平面 BCD,CD平面 BCD, 所以 AE⊥CD. 因为 BD⊥CD,BD∥EF, 所以 CD⊥EF, 又 AE∩EF=E,AE平面 AEF,EF平面 AEF, 所以 CD⊥平面 AEF. 又 CD平面 ACD, 所以 平面 AEF⊥平面 ACD. „„„„„„„„ 14 分 „„„„„„„„ 12 分 „„„„„„„„ 10 分 „„„„„„„„ 8 分 „„„„„„„„ 6 分 „„„„„„„„ 3 分