八年级数学末复习试题(六) (3)

合集下载

2022-2023学年华东师大新版八年级下册数学期末复习试卷(含解析)

2022-2023学年华东师大新版八年级下册数学期末复习试卷(含解析)

2022-2023学年华东师大新版八年级下册数学期末复习试卷一.选择题(共10小题,满分40分,每小题4分)1.关于反比例函数y=的图象,下列说法错误的是( )A.经过点(2,3)B.分布在第一、三象限C.关于原点对称D.x的值越大越靠近x轴2.若横坐标为3的点一定在( )A.与y轴平行,且与y轴的距离为3的直线上B.与x轴平行,且与x轴的距离为3的直线上C.与x轴正半轴相交,与y轴平行,且与y轴的距离为3的直线上D.与y轴正半轴相交,且与x轴的距离为3的直线上3.据科学研究表明,新型冠状病毒体直径的大小约为125纳米,1纳米就是0.000000001米.那么125纳米用科学记数法表示为( )A.125×10﹣9米B.1.25×10﹣8米C.1.25×10﹣7米D.1.25×10﹣6米4.“科学用眼,保护视力”是青少年珍爱生命的具体表现,某班50名同学的视力检查数据如表,其中有两个数据被遮盖.视力 4.6以下 4.6 4.7 4.8 4.9 4.9以上人数■■791411下列关于视力的统计量中,与被遮盖的数据均无关的是( )A.中位数,众数B.中位数,方差C.平均数,方差D.平均数,众数5.如图,正方形ABCD的边长为2,点E;F分别为边AD,BC上的点,点G,H分别为AB,CD边上的点,连接GH,若线段GH与EF的夹角为45°,GH=,则EF的长为( )A.B.C.D.6.如图,已知AB=DC,AD=BC,E,F是DB上两点且BF=DE,若∠AEB=100°,∠ADB =30°,则∠BCF的度数为( )A.150°B.40°C.80°D.70°7.直线y=ax+b经过第一、二、四象限,则直线y=bx+a的图象只能是图中的( )A.B.C.D.8.如图,四边形ABCD、CEFG均为正方形,其中正方形CEFG面积为36cm2,若图中阴影部分面积为10cm2,则正方形ABCD面积为( )A.6B.16C.26D.469.如图,点A在双曲线y1=(x>0)上,点B在双曲线y2=(x<0)上,AB∥x轴,点C是x轴上一点,连接AC、BC,若△ABC的面积是6,则k的值( )A.﹣6B.﹣8C.﹣10D.﹣1210.如图,正方形ABCD的边长为2,点P是对角线BD上一点,PE⊥BC于点E,PF⊥CD 于点F,连接EF,给出下列五个结论:①PB=AB;②AP=EF且AP⊥EF;③∠PFE=∠BAP;④EF的最小值为;⑤PB2+PD2=2PA2,其中正确的结论是( )A.①②③④B.②③④C.③④⑤D.②③④⑤二.填空题(共6小题,满分24分,每小题4分)11.某公司招聘一名公关人员,对甲进行了笔试和面试,面试和笔试的成绩分别为85分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为 .12.如图所示,在▱ABCD中,∠BAD的平分线AE交BC于E,且AD=a,AB=b,用含a,b的代数式表示EC,则EC= .13.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,求乙队单独施工完成次工程需要几个月?设乙队单独施工需要x个月,则列方程为: .14.已知关于x的分式方程的解是负数,则m的取值范围是 .15.已知直线y1=x+与y2=﹣4x﹣1相交于点P,则满足y1>y2的x的取值范围是 .16.写出一个与y=﹣x图象平行的一次函数: .三.解答题(共9小题,满分86分)17.(8分)解方程:.18.(8分)化简求值:(﹣),其中a满足a2+2a=2021.19.(8分)一次函数的图象过点A(﹣1,2)和点B(1,﹣4).(1)求该一次函数表达式;(2)若点C(a,8)也在直线AB上,求a的值;(3)若点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,求n1﹣n2的值.20.(8分)如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AF=CE.(1)求证:△ADE≌△CBF.(2)若AC平分∠BAD,则四边形BEDF的形状是 .21.(8分)如图,在平面直角坐标系中,直线l1:y=kx+b与直线l2:y=mx+n交于点A (1,2),直线l2与y轴交于点B(0,3),直线l1与x轴交于点C(﹣1,0).(1)求直线l1、l2的函数表达式;(2)连接BC,直接写出△ABC的面积.22.(10分)我校举行八年级汉字听写大赛,每班各派五名同学参加(满分为100分).其中八(1)班和八(2)班五位参赛同学的成绩如图所示:(1)根据条形统计图完成表格平均数中位数众数八(1)班83 90八(2)班 85 (2)已知八(1)班参赛选手成绩的方差为56分2,请计算八(2)班参赛选手成绩的方差,并分析哪一个班级的成绩比较稳定.23.(10分)如图,反比例函数y=(k≠0)与一次函数y=﹣x+b的图象交于点A(1,5)和点B(m,1).(1)求m,b的值.(2)结合图象,直接写出不等式<﹣x+b成立时x的取值范围.(3)若Q为y轴上的一点,使QA+QB最小,求点Q的坐标.24.(12分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示国外品牌国内品牌进价(万元/部)0.440.2售价(万元/部)0.50.25该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(14分)综合与实践【问题背景】矩形纸片ABCD中,AB=6,BC=10,点P在AB边上,点Q在BC边上,将纸片沿PQ 折叠,使顶点B落在点E处.【初步认识】(1)如图1,折痕的端点P与点A重合.①当∠CQE=50°时,∠AQB= °;②若点E恰好在线段QD上,则BQ的长为 ;【深入思考】(2)若点E恰好落在边AD上.①请在图2中用无刻度的直尺和圆规作出折痕PQ(不写作法,保留作图痕迹);②如图3,过点E作EF∥AB交PQ于点F,连接BF.请根据题意,补全图3并证明四边形PBFE是菱形;③在②的条件下,当AE=3时,菱形PBFE的边长为 ,BQ的长为 ;【拓展提升】(3)如图4,若DQ⊥PQ,连接DE,若△DEQ是以DQ为腰的等腰三角形,则BQ的长为 .参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:A、反比例函数y=,当x=2时y=3,故本选项不符合题意;B、反比例函数y=中的6>0,则该函数图象经过第一、三象限,故本选项不符合题意;C、反比例函数y=的图象关于原点对称,故本选项不符合题意;D、反比例函数y=,不是单调函数,当x<0时,x的值越大越远离x轴,故错误,故本选项符合题意.故选:D.2.解:A.与y轴平行,且距离为3的直线上的点的横坐标为3或﹣3,故原说法不对;B.与x轴平行,且距离为3的直线上的点的纵坐标为3或﹣3,故原说法不对;C.与x轴正半轴相交,与y轴平行,且距离为3的直线上,说法正确;D.与y轴正半轴相交,与x轴平行,且距离为3的直线上的点的纵坐标为3,故原说法不对.故选:C.3.解:∵1纳米=1×10﹣9米.∴125纳米=125×10﹣9米=1.25×102×10﹣9米=1.25×10﹣7米.故选:C.4.解:由表格数据可知,成绩为4.6、4.6以下的人数为50﹣(7+9+14+11)=19(人),视力为4.9出现次数最多,因此视力的众数是4.9,视力从小到大排列后处在第25、26位的两个数都是4.7,因此中位数是4.7,因此中位数和众数与被遮盖的数据无关,故选:A.5.解:如图,过点B作BK∥EF交AD于K,作BM∥GH交CD于M,则BK=EF,BM=GH=,∵线段GH与EF的夹角为45°,∴∠ABK+∠CBM=90°﹣45°=45°,作∠KBN=45°交DA的延长线于N,则∠ABN+∠ABK=45°,∴∠ABN=∠CBM,在△ABN和△CBM中,,∴△ABN≌△CBM(ASA),∴BN=BM,AN=CM,在Rt△BCM中,CM===1,过点K作KP⊥BN于P,∵∠KBN=45°,∴△BKP是等腰直角三角形,设EF=BK=x,则BP=KP=BK=x,∵tan N==,∴=,解得x=,所以EF=.解法二:如图,过点B作BK∥EF交AD于K,作BM∥GH交CD于M,则BK=EF,BM=GH,∵线段GH与EF的夹角为45°,∴∠KBM=45°,∴∠ABK+∠CBM=90°﹣45°=45°,作∠KBN=45°交DA的延长线于N,则∠ABN+∠ABK=45°,在△ABN和△CBM中,,∴△ABN≌△CBM(ASA),∴BN=BM,AN=CM,在Rt△BCM中,CM===1,∴DM=1,在△KBN和△KBM中,,∴△KBN≌△KBM(SAS),∴KM=KN设AK为x,则KM=KN=x+1,KD=2﹣x,连接KM,在Rt△KDM中,DK2+DM2=KM2,∴(2﹣x)2+12=(x+1)2,∴x=,∴AK=,∴BK===,∴EF=BK=,故选:B.6.解:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴∠BCF=∠DAE,∵∠DAE=∠AEB﹣∠ADE=100°﹣30°=70°,∴∠BCF=70°.故选:D.7.解:∵直线y=ax+b经过第一、二、四象限,∴a<0,b>0,∴直线y=bx+a的图象经过第一、三、四象限,故选:D.8.解:∵阴影部分面积=DE×(BC+CG),∴阴影部分面积=×(CE﹣DC)(BC+CG)=(CE2﹣BC2),∵正方形CEFG面积为36cm2,图中阴影部分面积为10cm2,∴10=×(36﹣S正方形ABCD),∴S正方形ABCD=16,故选:B.9.解:如图,连接OA,OB,AB与y轴交于点M,∵AB∥x轴,点A双在曲线y1=(x>0)上,点B在双曲线y2=(x<0)上,∴S△AOM=×|2|=1,S△BOM=×|k|=﹣k,∵S△ABC=S△AOB=6,∴1﹣k=6,∴k=﹣10.故选:C.10.解:连接PC,延长AP交EF于点H,如图所示:∵点P是对角线BD上一点,∴PB和AB的大小不能确定,故①选项不符合题意;在正方形ABCD中,AD=CD,∠ADP=∠CDP=45°,PD=PD,∴△ADP≌△CDP(SAS),∴AP=CP,∠PAD=∠PCD,∵PE⊥BC,PF⊥CD,∴∠PFC=∠PEC=90°,∵∠C=90°,∴四边形PECF是矩形,∴EF=PC,∴AP=EF,∵∠ADC=∠PFC=90°,∴AD∥PF,∴∠DAP=∠FPH,在矩形PECF中,∠PCD=∠EFC,∴∠FPH=∠EFC,∵∠EFC+∠EFP=90°,∴∠FPH+∠EFP=90°,∴AP⊥EF,故②选项符合题意;在矩形PECF中,∠PFE=∠PCE,∵△ADP≌△CDP,∴∠DAP=∠DCP,∴∠BAP=∠PCB,∴∠BAP=∠PFE,故③选项符合题意;∵AB=AD=2,根据勾股定理得BD=2,当AP⊥BD时,AP最小,此时AP最小值为BD=,∵AP=EF,∴EF的最小值为,故④选项符合题意;根据勾股定理,得PB2=2PE2,PD2=2PF2,∴PB2+PD2=2(PE2+PF2)=2EF2=2PA2,故⑤选项符合题意;综上,正确的选项有②③④⑤,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:甲的平均成绩为=87(分),故答案为:87分.12.解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=b,∵BC=AD=a,∴EC=BC﹣BE=a﹣b.故填空答案:a﹣b.13.解:由题意可得,+()×=1,故答案为:+()×=1.14.解:,m﹣3=x+1,∴x=m﹣4.∵关于x的分式方程的解是负数,∴m﹣4<0且m﹣4+1≠0.∴m<4且m≠3.故答案为:m<4且m≠3.15.解:∵y1>y2,∴x+>﹣4x﹣1,解得:x>﹣,故答案为:x>﹣.16.解:由题意得,k=﹣1,则可出一次函数y=﹣x+1,答案不唯一.三.解答题(共9小题,满分86分)17.解:方程两边同乘(x﹣3),得:2x﹣1=x﹣3+1,整理解得:x=﹣1,经检验:x=﹣1是原方程的解.18.解:原式====,∵a2+2a=2021,则原式=.19.解:(1)设一次函数表达式为:y=kx+b,∵一次函数的图象过点A(﹣1,2)和点B(1,﹣4),∴,解得:,∴一次函数表达式为:y=﹣3x﹣1;(2)∵点C(a,8)在直线AB上,∴﹣3a﹣1=8,解得a=﹣3;(3)∵点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,∴,解得:n1﹣n2=6.20.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAE=∠BCF,∵AF=CE.∴AF﹣EF=CE﹣EF,∴AE=CF,∴△ADE≌△CBF(SAS);(2)四边形BEDF的形状是菱形,理由如下:∵AC平分∠BAD,∴∠DAC=∠BAC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAC=∠BCA,∴∠BAC=∠BCA,∴BA=BC,∴AD=AB,∵AE=AE,∴△ADE≌△ABE(SAS),∴DE=BE,∵△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴四边形BEDF是平行四边形,∵DE=BE,∴平行四边形BEDF是菱形.故答案为:菱形.21.解:(1)根据题意得,,解得,∴直线l1:y=x+1,解得,∴直线l2:y=﹣x+3;(2)设直线l1与y轴的交点为D,则D(0,1),∴BD=3﹣1=2,∴S△ABC=S△ABD+S△BCD=+×1=2.22.解:(1)八(1)班的成绩从大到小排列为70,80,85,90,90,处于第三位的是85,因此中位数为85,八(2)班平均数为(70+85+85+90+95)÷5=85,出现次数最多的数是85,所以表格中依次填写85,85,85.(2)八(2)班的方差:S2=[(95﹣85)2+(70﹣85)2+(90﹣85)2+(85﹣85)2+(85﹣85)2]=70,∵56<70,∴八(1)班成绩比较稳定,答:八(1)班成绩比较稳定.23.解:(1)将点A的坐标代入y=(k≠0)得:5=,解得:k=5,∴反比例函数为y=,将点B的坐标代入y=得1=,解得:m=5,∴点B(5,1),∵一次函数y=﹣x+b的图象过点A(1,5),∴5=﹣1+b,解得b=6;(2)从函数图象看,不等式<﹣x+b成立时x的取值范围是1<x<5或x<0;(3)作A关于y轴的对称点A′,连接A′B,与y轴的交点即为Q点,此时AQ+BQ 的和最小,∵A(1,5),∴A关于y轴的对称点A′的坐标为(﹣1,5),设直线A′B的解析式为y=mx+n,∴,解得,∴直线A′B的解析式为y=﹣x+,令x=0,则y=,∴Q(0,).24.解:(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:,解得,答:商场计划购进国外品牌手机20部,国内品牌手机30部;(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:0.44(20﹣a)+0.2(30+3a)≤15.6,解得:a≤5,设全部销售后获得的毛利润为w万元,由题意,得:w=0.06(20﹣a)+0.05(30+3a)=0.09a+2.7,∵k=0.09>0,∴w随a的增大而增大,∴当a=5时,w最大=3.15,答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.25.(1)解:①∵∠CQE=50°,∴∠BQE=130°,由折叠可知,∠AQB=∠BQE=65°,故答案为:65;②解:由折叠可知,AB=AE,∠ABE=∠AEQ=90°,BQ=QE,∵AB=6,BC=10,∴AE=6,∴DE=8,在Rt△CDQ中,(8+QE)2=62+(10﹣QE)2,∴QE=2,∴BQ=2,故答案为:2;(2)解:①连接BE,作BE的垂直平分线交AB于P,交BC于Q,则PQ为所求;②证明:∵EF∥AB,∴∠BPF=∠EFP,由折叠可知,PB=PE,∠BPF=∠EPF,∴∠EFP=∠EPF,∴PE=EF,∴PB=EF,∴四边形PBFE是平行四边形,∵PE=EF,∴四边形PBFE是菱形;③解:由折叠可知PB=PE,∵AB=6,∴AP=6﹣PE,在Rt△APE中,PE2=(6﹣PE)2+32,∴PE=,∴菱形PBFE的边长为,由折叠可知,EQ=BQ,∵AE=3,∴BG=3,在Rt△EGQ中,BQ2=62+(BQ﹣3)2,∴BQ=,故答案为:,;(3)解:由折叠可知BQ=EQ,设BQ=m,则EQ=m,CQ=10﹣m,①当DQ=EQ时,在Rt△CDQ中,62+(10﹣m)2=m2,∴m=,∴BQ=;②当DE=DQ时,过点D作DF⊥EQ交于F,∴FQ=EQ=m,由折叠可知∠PQB=∠PQE,∵DQ⊥PQ,∴∠PQB+∠CQD=90°=∠PQE+∠FQD,∴∠CQD=∠FQD,∴△CDQ≌△FDQ(AAS),∴CQ=FQ,∴10﹣m=m,∴m=,∴BQ=;综上所述:BQ的长为或,故答案为:或.。

苏教版八年级数学上学期期末考前练习卷(含答案)

苏教版八年级数学上学期期末考前练习卷(含答案)

八年级数学上学期期末考前练习卷一.选择题(共4小题)1.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.2.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为()A.3+2B.4+3C.2+2D.103.如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.1B.2C.3D.44.如图所示,在△ABC中,∠ABC与∠ACB的平分线交于点P,过点P作MN∥BC交AB 于点M,交AC于点N,那么下列结论:①BP=CP;②MN=BM+CN;③△BMP和△CNP都是等腰三角形;④△AMN的周长等于AB与AC的和,其中正确的有()A.②③④B.①②③④C.②③D.③二.填空题(共9小题)5.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.6.如图,在△ABC中,∠C=90°,AC=BC=5,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,△CEF周长的最小值是.7.如图所示,在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD的长为.8.若一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(1,3)和点(﹣1,2),则k2﹣b2的值为.9.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(n,4),若直线y=2x与线段AB有公共点,则n的取值范围为.10.在平面直角坐标系中,点A坐标为(﹣3,m+2),点B坐标为(1,m﹣2),若点C(t+1,n1)和点D(t﹣2,n2)均在直线AB上,则n1﹣n2=.11.已知点A(2m﹣1,4m+2015)、B(﹣n+,﹣n+2020)在直线y=kx+b上,则k+b 值为.12.在平面直角坐标系中,点P是一次函数y=x+b图象上的一个动点,O是坐标原点,连接OP,若OP的最小值为4.8,则b=.13.如图,在平面直角坐标系中,点A的坐标为(3,1),直线l与x轴,y轴分别交于点B (﹣3,0),C(0,3),当x轴上的动点P到直线l的距离PE与到点A的距离P A之和最小时,则点E的坐标是.三.解答题(共27小题)14.如图,已知一次函数y=﹣x+b的图象与x轴交于A(﹣6,0)与y轴相交于点B,动点P从A出发,沿x轴向x轴的正方向运动.(1)求b的值,并求出△P AB为等腰三角形时点P的坐标;(2)在点P出发的同时,动点Q也从点A出发,以每秒个单位的速度,沿射线AB 运动,运动时间为t(s)①求点Q的坐标;(用含t的表达式表示)②若点P的运动速度为每秒k个单位,请直接写出当△APQ为等腰三角形时k的值.15.如图,在平面直角坐标系中,已知A(2,0),以OA为一边在第四象限内画正方形OABC,D(m,0)为x轴上的一个动点(m>2),以BD为一直角边在第四象限内画等腰直角△BDE,其中∠DBE=90°.(1)试判断线段AE、CD的数量关系,并说明理由;(2)设DE的中点为F,直线AF交y轴于点G.问:随着点D的运动,点G的位置是否会发生变化?若保持不变,请求出点G的坐标;若发生变化,请说明理由.16.如图,直线MN与x轴,y轴正半轴分别交于A,C两点,分别过A,C两点作x轴,y 轴的垂线相交于B点,直线y=x与直线MN交于点P,已知AC=10,OA=8.(1)求P点坐标;(2)作∠AOP的平分线OQ交直线MN与点Q,点E、F分别为射线OQ、OA上的动点,连结AE与EF,试探索AE+EF是否存在最小值?若存在,请直接写出这个最小值;若不存在请说明理由;(3)在直线MN上存在点G,使以点G,B,C三点为顶点的三角形是等腰三角形,请直接写出G点的坐标.17.模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.(1)求证:BE=CD;(2)模型应用:①已知直线l1:y=﹣x﹣4与y轴交于A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(﹣8,6),A、C分别在坐标轴上,P是线段BC上动点,点D是直线y=﹣2x﹣4上的一点,若△APD是不以点A为直角顶点的等腰Rt△,请求出点D的坐标.18.如图,在平面直角坐标系中,已知A(16,0)、B(16,8),C(0,8),D(0,﹣4),点E从点A出发,以每秒1个单位的速度沿AB运动到点B停止,过点E且与AD平行的直线l与y轴相交于点F,设运动时间为t秒(t>0).(1)设t=6时,求直线l的函数表达式;(2)若点E运动t秒后,直线l与x轴相交于点N,且CN=CE,求t的值;(3)记EF的中点为P,请你探求线段OP随点E运动所形成的图形,说明理由并求其面积.19.如图,已知A(a,0),B(0,b)分别为两坐标轴上的点,且a、b满足a2+b2﹣12a﹣12b+72=0,OC:OA=1:3.(1)求A、B、C三点的坐标;(2)若点D(1,0),过点D的直线分别交AB、BC于E、F两点,设E、F两点的横坐标分别为x E、x F,当BD平分△BEF的面积时,求x E+x F的值;(3)如图2,若M(2,4),点P是x轴上A点右侧一动点,AH⊥PM于点H,在BM 上取点G,使HG=HA,连接CG,当点P在点A右侧运动时,∠CGM的度数是否发生改变?若不变,请求其值,若改变,请说明理由.20.如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲.乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲.乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图象.(1)由图象可知,甲车速度为km/h;乙车速度为km/h.(2)已知最终乙车比甲车早到B地0.5h,求甲车出发1.5h后直至到达B地的过程中,S 与x的函数关系式及x的取值范围,并在图2中补全函数图象.21.已知甲、乙两地相距3200m,小王、小李分别从甲、乙两地同时出发,相向而行,两人相遇后立即返回到各自的出发地并停止行进.已知小李的速度始终是60m/min,小王在相遇后以匀速返回,但比小李晚回到原地.在整个行进过程中,他们之间的距离y(m)与行进的时间t(min)之间的函数关系如图中的折线段AB﹣BC﹣CD所示,请结合图象信息解答下列问题:(1)a=,b=;(2)当t为何值时,小王、小李两人相距800m?22.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(4,0),点B的坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC⊥x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若QO=QA,求P点的坐标.(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.23.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:;(2)若△DEF三边的长分别为、、,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE 的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.24.(1)如图①,在正方形ABCD中,E、F分别是BC、CD上的点且∠EAF=45°.猜测线段EF、BE、FD三者存在哪种数量关系?直接写出结论.(不用证明)结论:.(2)如图②,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC、CD 上的点,且∠EAF是∠BAD的一半.(1)中猜测的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;25.(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,求线段EF、BE、FD之间的数量关系小明提供了这样的思路:延长EB到G,使BG=DF,连结AG,根据小明的思路,请直接写出线段EF、BE、FD之间的数量关系:(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?说明理由;(3)如图③,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.26.如图,四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.27.已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.28.如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=130°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.(直接写出答案)29.在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE=°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.30.图①是一张∠AOB=45°的纸片折叠后的图形,P、Q分别是边OA、OB上的点,且OP=2cm.将∠AOB沿PQ折叠,点O落在纸片所在平面内的C处.(1)①当PC∥QB时,OQ=cm;②在OB上找一点Q,使PC⊥QB(尺规作图,保留作图痕迹);(2)当折叠后重叠部分为等腰三角形时,求OQ的长.31.已知:如图,O为坐标原点,四边形OABC为长方形,A(10,0),C(0,4),点D 是OA的中点,点P在BC上运动,当△ODP是等腰三角形时.(1)求P点的坐标;(2)求满足条件的△ODP的周长最小值.(要有适当的图形和说明过程)32.已知:如图,∠BAC的平分线与BC的垂直平分线交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:BE=CF;(2)若AB=15,AC=9,求CF的长.33.如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于点G,DE⊥AB于点E,DF⊥AC交AC的延长线于点F.(1)求证:AE=AF;(2)求证:BE=CF;(3)如果AB=12,AC=8,求AE的长.34.如图,AD平分∠BAC,DG⊥BC于点G且平分BC,DF⊥AB于点F,DE⊥AC于点E.(1)求证:BF=CE;(2)求证:AB=AC+2CE.35.某培训中心有钳工20名,车工30名,现将这50名技工派往A,B两地工作,两地技工的月工资如下:钳工(元/月)车工(元/月)A地18001400B地16001500(1)若派往A地x名钳工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(2)若派往A地x名车工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(3)如何派遣这50名技工,可使他们的工资总额最高?直接写出结果.36.“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:a=;b=;m=.(2)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.(3)在(2)的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距100米,此时小军骑行的时间为分钟.37.已知:如图∠ABC=∠ADC=90°,M,N分别是AC、BD的中点.(1)求证:MN⊥BD.(2)若∠BAD=45°,连接MB、MD,判断△MBD的形状,并说明理由.38.在Rt△ABC和Rt△ADC中,∠ABC=∠ADC=90°,E是AC中点(1)如图(1),求证:∠DEB=2∠DCB;(2)如图(2),上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.39.已知:如图,∠ACB=∠ADB=90°,E为AB中点,连接DE、CE、CD.(1)求证:DE=CE;(2)若∠CAB=25°,∠DBA=35°,判断△DEC的形状,并说明理由;(3)当∠CAB+∠DBA=45°时,若CD=12,取CD中点F,求EF的长.40.如图,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,使角的两边分别交AB、AC边于M、N两点,连接MN.①当MN∥BC时,求证:MN=BM+CN;②当MN与BC不平行时,则①中的结论还成立吗?为什么?③若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图③中画出图形,并说明理由.答案与解析一.选择题(共4小题)1.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【分析】根据折叠的性质可知AC=CD,∠A=∠CDE,CE⊥AB,Rt△ABC中根据勾股定理求得AB=5,再根据三角形的面积可求得B′F的长.【解答】解:∵Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,根据折叠的性质可知AC=CD,∠A=∠CDE,CE⊥AB,∴B′D=BC﹣CD=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=∴B′F==.故选:B.【点评】此题主要考查了翻折变换,勾股定理的应用等,根据折叠的性质求得相等的角是本题的关键.2.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为()A.3+2B.4+3C.2+2D.10【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE 的值;【解答】解:将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+3,∴MA+MD+ME的最小值为4+3.故选:B.【点评】本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题,属于中考选择题中的压轴题.3.如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.1B.2C.3D.4【分析】作点E关于直线CD的对称点E′,连接AE′交CD于点F,再根据△CE′F∽△BE′A即可求出CF的长,进而得出DF的长.【解答】解:作点E关于直线CD的对称点E′,连接AE′交CD于点F,∵在矩形ABCD中,AB=6,BC=8,点E是BC中点,∴BE=CE=CE′=4,∵AB⊥BC,CD⊥BC,∴=,即=,解得CF=2,∴DF=CD﹣CF=6﹣2=4.故选:D.【点评】本题考查的是轴对称﹣最短路线问题及相似三角形的判定与性质,根据题意作出E点关于直线CD的对称点,再根据轴对称的性质求出CE′的长,利用相似三角形的对应边成比例即可得出结论.4.如图所示,在△ABC中,∠ABC与∠ACB的平分线交于点P,过点P作MN∥BC交AB 于点M,交AC于点N,那么下列结论:①BP=CP;②MN=BM+CN;③△BMP和△CNP都是等腰三角形;④△AMN的周长等于AB与AC的和,其中正确的有()A.②③④B.①②③④C.②③D.③【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【解答】解:∵∠ABC、∠ACB的平分线相交于点P,∴∠MBP=∠PBC,∠PCN=∠PCB,∵MN∥BC,∴∠PBC=∠MPB,∠NPC=∠PCB,∴∠MBP=∠MPB,∠NPC=∠PCN,∴BM=MP,PN=CN,∴MN=MP+PN=BM+CN(②正确),∴△BMP和△CNP都是等腰三角形(③正确).∵△AMN的周长=AM+AN+MN,MN=BM+CN,∴△AMN的周长等于AB与AC的和(④正确).故选:A.【点评】本题考查了等腰三角形的性质及角平分线的性质及平行线的性质;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形的;等量代换的利用是解答本题的关键.二.填空题(共9小题)5.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.【分析】将△ABM逆时针旋转90°得到△ACF,连接NF,由条件可以得出△NCF为直角三角形,利用勾股定理就可以求出NF,通过证明三角形全等就可以MN=NF,求出NF即可.【解答】解:将△AMB逆时针旋转90°到△ACF,连接NF,∴CF=BM,AF=AM,∠B=∠ACF.∠2=∠3,∵△ABC是等腰直角三角形,AB=AC,∴∠B=∠ACB=45°,∠BAC=90°,∵∠MAN=45°,∴∠NAF=∠1+∠3=∠1+∠2=90°﹣45°=45°=∠NAF,在△MAN和△F AN中∴△MAN≌△F AN,∴MN=NF,∵∠ACF=∠B=45°,∠ACB=45°,∴∠FCN=90°,∵CF=BM=1,CN=3,∴在Rt△CFN中,由勾股定理得:MN=NF==,故答案为:.【点评】本题考查了旋转的性质的运用,勾股定理的运用,全等三角形的判定与性质,能正确作出辅助线是解此题的关键,难度适中.6.如图,在△ABC中,∠C=90°,AC=BC=5,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,△CEF周长的最小值是5+.【分析】连接CD,由SAS定理可证△CDF和△ADE全等,从而可证∠EDF=90°,DE =DF.所以△DFE是等腰直角三角形;当E、F分别为AC、BC中点时,EF取最小值,根据三角形的中位线的性质得到EF,于是得到结论.【解答】解:连接CD;∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;在△ADE与△CFD中,,∴△ADE≌△CDF(SAS);∴ED=DF,∠CDF=∠EDA;∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△DFE是等腰直角三角形,∵∠C=90°,AC=BC=5,∴AB=5,∴当△CEF周长的最小时,EF取最小值,∴E、F分别为AC、BC中点时,EF的值最小,∴EF=AB=,∴△CEF周长的最小值=CE+CF+EF=AE+CE+EF=AC+EF=5+;故答案为:5+.【点评】此题主要考查了全等三角形的判定与性质,等腰三角形、直角三角形性质等知识,找到EF∥BC时取最小值是解题关键.7.如图所示,在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【分析】作AD′⊥AD,AD′=AD,连接CD′,DD′,易证∠BAD=∠CAD′,即可证明△BAD≌△CAD′,可得BD=CD′,∠DAD′=90°,根据勾股定理可求得DD'的值,再根据勾股定理可求得CD'的值,即可解题.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′,∠DAD′=90°,由勾股定理得DD′==3,∠D′DA+∠ADC=90°,由勾股定理得CD′==,∴BD=CD′=.故答案为:.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了直角三角形中勾股定理运用,本题中求证△BAD≌△CAD′是解题的关键.8.若一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(1,3)和点(﹣1,2),则k2﹣b2的值为﹣6.【分析】将点(1,3)和点(﹣1,2)代入解析式可求k,b的值,即可求k2﹣b2的值.【解答】解:根据题意得:解得:∴k2﹣b2=﹣=﹣6故答案为:﹣6【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握图象上点的坐标满足图象解析式是本题的关键.9.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(n,4),若直线y=2x与线段AB有公共点,则n的取值范围为n≥2.【分析】由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围.【解答】解:∵直线y=2x与线段AB有公共点,∴2n≥4,∴n≥2故答案为:n≥2【点评】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.10.在平面直角坐标系中,点A坐标为(﹣3,m+2),点B坐标为(1,m﹣2),若点C(t+1,n1)和点D(t﹣2,n2)均在直线AB上,则n1﹣n2=﹣3.【分析】先求出直线AB的解析式,把点C,点D坐标代入可求解.【解答】解:设直线AB解析式为:y=kx+b解得:k=﹣1,b=m﹣1∴直线AB解析式为:y=﹣x+m﹣1∵点C(t+1,n1)和点D(t﹣2,n2)均在直线AB上,∴n1=﹣t﹣1+m﹣1,n2=﹣t+2+m﹣1,∴n1﹣n2=﹣3故答案为:﹣3【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数解析式是本题的关键.11.已知点A(2m﹣1,4m+2015)、B(﹣n+,﹣n+2020)在直线y=kx+b上,则k+b 值为2019.【分析】把点A(2m﹣1,4m+2015)和点B(﹣,﹣n+2020)分别代入直线y=kx+b,经过整理变形,即可得到k的值,利用代入法,可求得b的值,即可得到答案.【解答】解:把点A(2m﹣1,4m+2015)代入直线y=kx+b得:4m+2015=k(2m﹣1)+b①,把点B(﹣,﹣n+2020)代入直线y=kx+b得:﹣n+2020=k(﹣+)+b②,①﹣②得:4m+n﹣5=k(2m),k==2,把k=2代入①得:4m+2015=2(2m﹣1)+b,解得:b=2017,则k+b=2+2017=2019,故答案为:2019.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.12.在平面直角坐标系中,点P是一次函数y=x+b图象上的一个动点,O是坐标原点,连接OP,若OP的最小值为4.8,则b=±8.【分析】线段OP的最小值,就是原点到已知直线的距离,可以根据所构建的三角形面积一样来求OP;【解答】解:如图:∵y=x+b,①当b>0时;∴它与x的交点坐标是A(,0),与y轴的交点坐标是B(0,b)∴OA=;OB=b,根据勾股定理:AB==∵S△AOB=,OP=4.8,∴解得b=8;②当b<0时;∴它与x的交点坐标是A'(,0),与y轴的交点坐标是B'(0,b)∴OA'=﹣;OB'=﹣b,根据勾股定理:A'B'==﹣∵OP=4.8,∴解得b=﹣8;故答案填:±8.【点评】本题考查一次函数的综合运用,熟练运用两点之间的距离公式以及面积法是解决本题的关键.13.如图,在平面直角坐标系中,点A的坐标为(3,1),直线l与x轴,y轴分别交于点B (﹣3,0),C(0,3),当x轴上的动点P到直线l的距离PE与到点A的距离P A之和最小时,则点E的坐标是(﹣,).【分析】作点A关于x轴的对称点A',过A'作A'D⊥l,与x轴交于点P,则A'D即为所求最小值;求出直线BC和直线A'E的解析式,联立方程组,即可求出E点坐标;【解答】解:作点A关于x轴的对称点A',过A'作A'D⊥l,与x轴交于点P,则A'D即为所求最小值;∵A的坐标为(3,1),∴A'(3,﹣1),∵B(﹣3,0),C(0,3),直线BC所在的直线解析式y=x+3,∴A'E所在直线解析式y=﹣x+2,∴,∴,∴E(﹣,),故答案为(﹣,);【点评】本题考查一次函数图象及性质,轴对称求最短距离;将所求距离通过轴对称转化为A'E,借助方程组求解是关键.三.解答题(共27小题)14.如图,已知一次函数y=﹣x+b的图象与x轴交于A(﹣6,0)与y轴相交于点B,动点P从A出发,沿x轴向x轴的正方向运动.(1)求b的值,并求出△P AB为等腰三角形时点P的坐标;(2)在点P出发的同时,动点Q也从点A出发,以每秒个单位的速度,沿射线AB 运动,运动时间为t(s)①求点Q的坐标;(用含t的表达式表示)②若点P的运动速度为每秒k个单位,请直接写出当△APQ为等腰三角形时k的值.【分析】(1)把A(﹣6,0)代入y=﹣x+b得到b=﹣2,于是得到B(0,﹣2),AO =6,OB=2,AB==,根据等腰三角形的性质列方程即可得到结论;(2)①由点Q在直线y=﹣x+b上,设Q(a,﹣a﹣2),作QH⊥x轴于H,得到QH=a+2,AH=6+a,根据勾股定理得到AQ==(a+2),列方程即可得到结论;②由题意得到AQ=t,AP=kt,根据等腰三角形的性质列方程即可得到结论.【解答】解:(1)把A(﹣6,0)代入y=﹣x+b得,b=﹣2,∴B(0,﹣2),AO=6,OB=2,AB===2,∵△P AB为等腰三角形,∴当AP=AB时,AP=2,∴P(2﹣6,0);当BP=BA时,OP=OA=6,∴P(6,0);当P A=PB时,设OP=x,则P A=PB=6﹣x,在Rt△OPB中,∵OP2+OB2=PB2,∴x2+22=(6﹣x)2,解得:x=,∴P(﹣,0);综上所述,当△P AB为等腰三角形时点P的坐标为(2﹣6,0)或(6,0)或(﹣,0);(2)①∵点Q在直线y=﹣x+b上,∴设Q(a,﹣a﹣2),作QH⊥x轴于H,则QH=a+2,AH=6+a,∴AQ==(a+2),∵AQ=t,∴t=a+2,∴a=3t﹣6,∴Q(3t﹣6,﹣t);②由题意得,AQ=t,AP=kt,∵△APQ为等腰三角形,∴当AP=AQ时,t=kt,∴k=,当AQ=PQ时,即AH=AP,∴3t=kt,∴k=6;当P A=PQ时,在Rt△PQH中,∵HP2+HQ2=PQ2,∴(3t﹣kt)2+t2=(kt)2,∴k=,综上所述,当△APQ为等腰三角形时k的值为或6或.【点评】本题考查了待定系数法求函数的解析式,勾股定理,等腰三角形的性质,正确的理解题意是解题的关键.15.如图,在平面直角坐标系中,已知A(2,0),以OA为一边在第四象限内画正方形OABC,D(m,0)为x轴上的一个动点(m>2),以BD为一直角边在第四象限内画等腰直角△BDE,其中∠DBE=90°.(1)试判断线段AE、CD的数量关系,并说明理由;(2)设DE的中点为F,直线AF交y轴于点G.问:随着点D的运动,点G的位置是否会发生变化?若保持不变,请求出点G的坐标;若发生变化,请说明理由.【分析】(1)由正方形OABC,可得BC=BA,∠ABC=90°,由等腰直角三角形BDE,可得BD=BE,∠DBE=90°,再根据∠CBD=∠ABE,即可得到△CBD≌△ABE,进而得出CD=AE;(2)过点E作PQ∥OD,分别交直线AB,AF于点P,Q,判定△ADB≌△PBE,可得AD=PB,AB=PE,判定△ADF≌△QEF,可得AD=QE,依据AP=QP,可得∠AQP=45°,依据PQ∥OD,可得∠OAG=∠Q=45°,进而得到△AOG是等腰直角三角形,进而得到G(0,2),即点G的位置不会发生变化.【解答】解:(1)AE=CD.理由:由正方形OABC,可得BC=BA,∠ABC=90°,由等腰直角三角形BDE,可得BD=BE,∠DBE=90°,∴∠ABC+∠ABD=∠DBE+∠ABD,即∠CBD=∠ABE,∴△CBD≌△ABE,∴CD=AE;(2)点G的位置不会发生变化.理由:如图,过点E作PQ∥OD,分别交直线AB,AF于点P,Q,∵∠DAB=∠P=∠DBE=90°,∴∠ADB+∠ABD=∠PBE+∠ABD=90°,∴∠ADB=∠PBE,又∵DB=BE,∴△ADB≌△PBE,∴AD=PB,AB=PE,∵F是DE的中点,∴DF=EF,∵AD∥EQ,∴∠DAF=∠Q,又∵∠AFD=∠QFE,∴△ADF≌△QEF,∴AD=QE,∴AB+BP=PE+EQ,即AP=QP,∴∠AQP=45°,又∵PQ∥OD,∴∠OAG=∠Q=45°,∴△AOG是等腰直角三角形,∴GO=AO=2,∴G(0,2),即点G的位置不会发生变化.【点评】本题主要考查全等三角形的判定和性质、等边三角形的性质、坐标与几何图形的关系、正方形的性质等知识点,解题的难点在于作辅助线构造全等三角形,运用全等三角形的对应边相等得出△APG是等腰直角三角形.16.如图,直线MN与x轴,y轴正半轴分别交于A,C两点,分别过A,C两点作x轴,y 轴的垂线相交于B点,直线y=x与直线MN交于点P,已知AC=10,OA=8.(1)求P点坐标;(2)作∠AOP的平分线OQ交直线MN与点Q,点E、F分别为射线OQ、OA上的动点,连结AE与EF,试探索AE+EF是否存在最小值?若存在,请直接写出这个最小值;若不存在请说明理由;(3)在直线MN上存在点G,使以点G,B,C三点为顶点的三角形是等腰三角形,请直接写出G点的坐标.【分析】(1)由AC与OA的长,利用勾股定理求出OC的长,确定出C坐标,利用待定系数法求出直线MN解析式,与y=x联立求出交点P坐标即可;(2)作出相应的图形,如图1所示,作出A关于射线OQ的对称点A′,可得OA′=OA=8,过A′作A′F⊥OA,交射线OQ于点E,角射线OA于点F,此时A′E+EF=AE+EF存在最小值,求出即可;(3)在直线MN上存在点G,使以点G,B,C三点为顶点的三角形是等腰三角形,分三种情况考虑:①GC=GB,此时G为线段BC垂直平分线与直线MN的交点;②GC=BC=8;③GB=BC=8,分别求出G坐标即可.【解答】解:(1)∵AC=10,OA=8,∴OC===6,∴C(0,6);设直线MN的解析式是y=kx+b(k≠0),∵点A、C都在直线MN上,∴,解得:,∴直线MN的解析式为y=﹣x+6,∵P为y=﹣x+6与直线y=x的交点.∴﹣x+6=x,解得:x=,∴p的坐标为(,);(2)如图1所示:作出A关于射线OQ的对称点A′,可得OA′=OA=8,过A′作A′F⊥OA,交射线OQ于点E,角射线OA于点F,此时A′E+EF=AE+EF存在最小值,在Rt△A′OF中,∠A′OF=45°,设A′F=OF=x,根据勾股定理得:x2+x2=82,解得:x=4,则最小值为4;(3)如图2所示:∵A(8,0),C(0,6),∴根据题意得:B(8,6),∵G在直线MN:y=﹣x+6上,∴设G(a,﹣a+6),在直线MN上存在点G,使以点G,B,C三点为顶点的三角形是等腰三角形,分三种情况考虑:①当GC=GB时,G点为BC垂直平分线与MN交点,此时G1(4,3);②当GC=BC=8时,根据两点间的距离公式得:a2+(﹣a+6﹣6)2=64,解得:a=±,此时G2(﹣,),G3(,);③当GB=BC=8时,根据两点间的距离公式得:(a﹣8)2+(﹣a+6﹣6)2=64,解得:a=,可得﹣a+6=﹣,此时G4(,﹣),则符合条件的点G有:G1(4,3),G2(﹣,),G3(,),G4(,﹣).【点评】此题属于一次函数综合题,涉及的知识有:坐标与图形性质,两点间的距离公式,待定系数法确定一次函数解析式,等腰三角形的性质,利用了分类讨论的思想,熟练掌握公式及法则是解本题的关键.17.模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.(1)求证:BE=CD;(2)模型应用:①已知直线l1:y=﹣x﹣4与y轴交于A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(﹣8,6),A、C分别在坐标轴上,P是线段BC上动点,点D是直线y=﹣2x﹣4上的一点,若△APD是不以点A为直角顶点的等腰Rt△,请求出点D的坐标.【分析】(1)先根据△ABC为等腰直角三角形得出CB=CA,再由AAS定理可知△ACD ≌△CBE;(2)①如图2中,设直线l1交x轴于B,作BP⊥AC于P,作PE⊥OB于E,PF⊥y轴于F.首先证明四边形PEOF是正方形,求出点P的坐标,利用待定系数法即可解决问题.(3)当点D为直角顶点,分点D在直线P A的上方或下方两种情况;点P为直角顶点,显然此时点D位于直线AP的上方,由此可得出结论.【解答】(1)证明:如图1中,∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,。

2019-2020学年浙教版八年级下学期期末数学复习试卷(六) (解析版)

2019-2020学年浙教版八年级下学期期末数学复习试卷(六) (解析版)

2019-2020学年浙教版八年级第二学期期末数学复习试卷(六)一、例11.若函数y=(m+2)x|m|﹣3是反比例函数,则m的值为.2.已知y与x2成反比例,可设y=.已知y﹣2与x成反比例,可设y=;已知y与x﹣2成反比例,可设y=.3.若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.4.如图,当三角形的面积是6cm2时,BC边上的高h(cm)与BC边的长x(cm)之间的函数表达式是,它是函数.5.如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A 的反比例函数的解析式为.二、例26.函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A.B.C.D.7.已知反比例函数的图象在第二、四象限内,那么k的取值范围是.8.在反比例函数y=图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是9.考察函数y=的图象,当x=﹣2时,y=;当x<﹣2时,y的取值范围是;当y≥﹣1时,x的取值范围是.10.如图,一次函数y1=x﹣1与反比例函数的图象交于点A(2,1)、B(﹣1,﹣2),则使y1>y2的x的取值范围是.三、例311.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB 的中点,则k的值为.12.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值为.13.如图矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B和点D在反比例函数y=(x>0)的图象上,则矩形ABCD的面积为.14.如图,在△ABO中,∠ABO=90°,点A的坐标为(3,4).写出一个反比例函数y =(k≠0),使它的图象与△ABO有两个不同的交点,这个函数的表达式为.四、例415.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?五、例516.如图,在平面直角坐标系中,菱形ABOC的顶点A在x轴上,顶点B在反比例函数(x>0)的图象上.当菱形的顶点A在x的正半轴上自左向右移动时,顶点B也随之在反比例函数(x>0)的图象上滑动,点C也相应移动,但顶点O始终在原点不动.(1)如图①,若点A的坐标为(6,0)时,求点B、C的坐标;(2)如图②,当点A移动到什么位置时,菱形ABOC变成正方形,请说明理由;(3)当菱形的三个顶点在作上述移动时,菱形ABOC的面积是否会发生变化,若不发生变化,请求出菱形的面积;若发生变化,请说明变化的规律.六、例617.如图,分别取反比例函数图象的一支,等腰中Rt△AOB中,OA⊥OB,OA=OB=2,AB交y轴于C,∠AOC=60°(1)将△AOC沿y轴折叠得△DOC,试判断D点是否存在的图象上,并说明理由.(2)连接BD,求S四边形OCBD.(3)若将直线OB向上平移,分别交于E点,交于F点,在向上平移过程中,是否存在某一时刻使得EF=2?若存在,试求此时直线EF的解析式;若不存在,说明理由.18.如图,在平面直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(2a,a)是反比例函数y=的图象与正方形的一个交点,则图中阴影部分的面积是.19.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是.20.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A 点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是.21.已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且=+,则这个反比例函数的表达式为.22.在平面直角坐标系中,正方形ABCD如图摆放,点A的坐标为(﹣1,0),点B的坐标为(0,2),点D在反比例函数y=(k<0)图象上,将正方形沿x轴正方向平移m个单位长度后,点C恰好落在该函数图象上,则m的值是.23.如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6,(1)求函数y=和y=kx+b的解析式.(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得S△POC=9.24.四边形OABC中,BC∥OA,∠OAB=90°,OA=6,腰AB上有一点D,AD=3,四边形ODBC的面积为18,建立如图所示的平面直角坐标系,反比例函数y=(x>0)的图象恰好经过点C和点D.(1)求反比例函数关系式;(2)求出点C的坐标;(3)在x轴上是否存在点P,使得△CDP是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案一、例11.若函数y=(m+2)x|m|﹣3是反比例函数,则m的值为2.【分析】由于函数y=(m+2)x|m|﹣3是反比例函数,根据反比例函数的定义得到m+2≠0且|m|﹣3=﹣1,然后去绝对值和解不等式即可得到m的值.解:∵函数y=(m+2)x|m|﹣3是反比例函数,∴m+2≠0且|m|﹣3=﹣1,解得m=±2,∴m=2.故答案为2.2.已知y与x2成反比例,可设y=.已知y﹣2与x成反比例,可设y=;已知y与x﹣2成反比例,可设y=.【分析】根据反比例函数定义解答即可.解:已知y与x2成反比例,可设y=;已知y﹣2与x成反比例,可设y=;已知y与x﹣2成反比例,可设y=.故答案为:,,.3.若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.【分析】设反比例函数的表达式为y=,依据反比例函数的图象经过点A(m,m)和B(2m,﹣1),即可得到k的值,进而得出反比例函数的表达式为.解:设反比例函数的表达式为y=,∵反比例函数的图象经过点A(m,m)和B(2m,﹣1),∴k=m2=﹣2m,解得m1=﹣2,m2=0(舍去),∴k=4,∴反比例函数的表达式为.故答案为:.4.如图,当三角形的面积是6cm2时,BC边上的高h(cm)与BC边的长x(cm)之间的函数表达式是h=,它是反比例函数.【分析】根据等量关系“三角形的面积=×底边×底边上的高”即可列出h与x的关系式.解:由题意,得6=•x•h,h=,是反比例函数.故答案为:h=,反比例.5.如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A 的反比例函数的解析式为y=.【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例函数解析式为y=,故答案为:y=二、例26.函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A.B.C.D.【分析】根据当k>0、当k<0时,y=kx﹣3和y=(k≠0)经过的象限,二者一致的即为正确答案.解:∵当k>0时,y=kx﹣3过一、三、四象限,反比例函数y=过一、三象限,当k<0时,y=kx﹣3过二、三、四象限,反比例函数y=过二、四象限,∴B正确;故选:B.7.已知反比例函数的图象在第二、四象限内,那么k的取值范围是k<1.【分析】根据k<0时,图象是位于二、四象限即可得出结果.解:由题意可得k﹣1<0,则k<1.故答案为:k<1.8.在反比例函数y=图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是k>4【分析】由反比例函数的性质,可得k﹣4>0,解得即可.解:∵反比例函数图象的每一条曲线上,y随x的增大而减小,∴k﹣4>0,解得:k>4.故答案为:k>4.9.考察函数y=的图象,当x=﹣2时,y=﹣1;当x<﹣2时,y的取值范围是﹣1<y<0;当y≥﹣1时,x的取值范围是x≤﹣2或x>0.【分析】把x=﹣2代入函数解析式求得相应的y的值;然后利用函数图象性质来求y、x的取值范围.解:把x=﹣2代入y=,得y==﹣1,即y=﹣1.如图,当x<﹣2时,y>=﹣1.当y≥﹣1时,≥﹣1,解得x≤﹣2.当x>0时,y>0;故当y≥﹣1时,x≤﹣2或x>0.故答案是:﹣1;﹣1<y<0;x≤﹣2或x>0.10.如图,一次函数y1=x﹣1与反比例函数的图象交于点A(2,1)、B(﹣1,﹣2),则使y1>y2的x的取值范围是x>2或﹣1<x<0.【分析】找到在交点的哪侧,对于相同的自变量,一次函数的函数值总大于反比例函数的值即可.解:由图象易得在交点的右边,对于相同的自变量,一次函数的函数值总大于反比例函数的函数值,∵两图象交于点A(2,1)、B(﹣1,﹣2),∴使y1>y2的x的取值范围是:x>2或﹣1<x<0.三、例311.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB 的中点,则k的值为﹣8.【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线方程进行解答.解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故答案是:﹣8.12.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值为4.【分析】设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出cd﹣ab=4,即可得出答案.解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=2,∴cd﹣ab=2,∴cd﹣ab=4,∴k2﹣k1=4,故答案为:4.13.如图矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B和点D在反比例函数y=(x>0)的图象上,则矩形ABCD的面积为8.【分析】设B、D两点的坐标分别为(1,y)、(x,2),再根据点B与点D在反比例函数的图象上求出x、y的值,进而可得出AD、AB的长度.解:∵四边形ABCD是矩形,顶点A的坐标为(1,2),∴设B、D两点的坐标分别为(1,y)、(x,2),∵点B与点D在反比例函数的图象上,∴y=6,x=3,∴AB=4,AD=2,∴矩形ABCD的面积为AB•AD=4×2=8.故答案是:8.14.如图,在△ABO中,∠ABO=90°,点A的坐标为(3,4).写出一个反比例函数y =(k≠0),使它的图象与△ABO有两个不同的交点,这个函数的表达式为y=(答案不唯一).【分析】根据题意可得,点的坐标的乘积大于0小于12,据此即可求解.解:∵∠ABO=90°,点A的坐标为(3,4),反比例函数y=(k≠0),使它的图象与△ABO有两个不同的交点,∴这个函数的表达式为:y=(答案不唯一).故答案为:y=(答案不唯一).四、例415.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?【分析】(1)根据图象可以得到函数关系式,y=k1x+b(k1≠0),再由图象所经过点的坐标(0,4),(7,46)求出k1与b的值,然后得出函数式y=6x+4,从而求出自变量x的取值范围.再由图象知(k2≠0)过点(7,46),求出k2的值,再由函数式求出自变量x的取值范围.(2)结合以上关系式,当y=34时,由y=6x+4得x=5,从而求出撤离的最长时间,再由v=速度.(3)由关系式y=知,y=4时,x=80.5,矿工至少在爆炸后80.5﹣7=73.5(小时)才能下井.解:(1)因为爆炸前浓度呈直线型增加,所以可设y与x的函数关系式为y=k1x+b(k1≠0),由图象知y=k1x+b过点(0,4)与(7,46),则,解得,则y=6x+4,此时自变量x的取值范围是0≤x≤7.(不取x=0不扣分,x=7可放在第二段函数中)∵爆炸后浓度成反比例下降,∴可设y与x的函数关系式为(k2≠0).由图象知过点(7,46),∴,∴k2=322,∴,此时自变量x的取值范围是x>7.(2)当y=34时,由y=6x+4得,6x+4=34,x=5.∴撤离的最长时间为7﹣5=2(小时).∴撤离的最小速度为3÷2=1.5(km/h).(3)当y=4时,由y=得,x=80.5,80.5﹣7=73.5(小时).∴矿工至少在爆炸后73.5小时才能下井.五、例516.如图,在平面直角坐标系中,菱形ABOC的顶点A在x轴上,顶点B在反比例函数(x>0)的图象上.当菱形的顶点A在x的正半轴上自左向右移动时,顶点B也随之在反比例函数(x>0)的图象上滑动,点C也相应移动,但顶点O始终在原点不动.(1)如图①,若点A的坐标为(6,0)时,求点B、C的坐标;(2)如图②,当点A移动到什么位置时,菱形ABOC变成正方形,请说明理由;(3)当菱形的三个顶点在作上述移动时,菱形ABOC的面积是否会发生变化,若不发生变化,请求出菱形的面积;若发生变化,请说明变化的规律.【分析】(1)根据菱形的对角线互相垂直平分,即可求得B的横坐标,代入反比例函数解析式即可求得B的坐标,再根据B,C关于x轴对称,即可求得C的坐标;(2)当菱形ABOC变成正方形时,OM=BM,则B的横纵坐标相等.据此即可求得B 的坐标,进而求得OA的长;(3)根据菱形被两条对角线分成4个全等的直角三角形,再依据反比例函数中比例系数k的几何意义,即可求解.解:(1)连接BC,交OA于点M.则BC⊥OA,且OM=OA=3.∴B的横坐标是3,把x=3代入y=得:y=4.则B的坐标是(3,4).∵B,C关于OA对称.∴C的坐标是(3,﹣4);(2)当菱形ABOC变成正方形时,OM=BM,则B的横纵坐标相等.设B的坐标是(a,a),代入y=.得a=2.则B的坐标是(2,2).∴OA=4.(3)∵四边形ABOC是菱形.∴菱形ABOC的面积=4直角△OBM的面积.∵直角△OBM的面积=×12=6.∴菱形ABOC的面积=24.菱形的面积不变化.六、例617.如图,分别取反比例函数图象的一支,等腰中Rt△AOB中,OA⊥OB,OA=OB=2,AB交y轴于C,∠AOC=60°(1)将△AOC沿y轴折叠得△DOC,试判断D点是否存在的图象上,并说明理由.(2)连接BD,求S四边形OCBD.(3)若将直线OB向上平移,分别交于E点,交于F点,在向上平移过程中,是否存在某一时刻使得EF=2?若存在,试求此时直线EF的解析式;若不存在,说明理由.【分析】(1)分别过点A、B作AE⊥x轴于点E,BF⊥y轴与F,由∠AOC=60°可知∠AOE=30°,再由OA=2,可求出AE、OE的长,故可得出A点坐标,进而得出k2的值,同理可求出k1的值,再由A、D关于y轴对称可得出D电1坐标代入进行检验即可;(2)过点B作BP⊥OD于点P,由图形反折变换的性质可知△AOC≌△DCO,故∠AOC =∠DOC=60°,进而可判断出OB是∠DOF的平分线,所以BP=BF,由全等三角形的判定定理可知△BDP≌△BCF,故S△BDP=S△BCF,同理可得Rt△OPB≌Rt△OFB,故S四边形OCBD=2S△OFB;(3)根据点E在反比例函数y=﹣的图象上可设出E点坐标为(a,﹣),由平行四边形的性质可用a表示出出B,F两点的坐标,再根据点F在反比例函数y=的图象上可得到关于a的一元二次方程,求出a的值可知E、F两点的坐标,再用待定系数法求出直线F的解析式即可.解:(1)如图1,分别过点A、B作AE⊥x轴于点E,BF⊥y轴与F,∵∠AOC=60°,∴∠AOE=90°﹣60°=30°,∵OA=2,∴AE=1,OE=,∴A(﹣,1),∴k2=﹣,同理可得,k1=,∴y=,∵A、D关于y轴对称,∴D(,1),代入y=成立,∴D点是在的图象上;(2)过点B作BP⊥OD于点P,∵△AOC≌△DCO,∴∠AOC=∠DOC=60°,∵∠BOF=30°,∴∠BOP=30°,∴OB是∠DOF的平分线,∴BP=BF,∵∠COA=60°,∠OAC=45°,∴∠OCA=∠FCB=75°,∵∠BOD=30°,OA=OB,OA=OD,∴OB=OD,∴∠BDP=75°,∴∠BDP=∠BCF,∴∠DBP=∠CBF,在△BDP与△BCF中,∵,∴△BDP≌△BCF,∴S△BDP=S△BCF,在Rt△OPB与Rt△OFB中,∵,∴Rt△OPB≌Rt△OFB,∴S四边形OCBD=2S△OFB=2×××1=;(3)∵点E在反比例函数y=﹣的图象上,∴设E(a,﹣)(a<0),∵EF∥OB,EF=OB=2,∴四边形OBFE是平行四边形,∵O(0,0),∴B(1,),F(a+1,+),∵点F在反比例函数y=的图象上,∴(a+1)(﹣+)=,∴a2﹣a﹣1=0,∴a1=(舍去),a2=,∴E(,﹣),F(,),设过EF两点的直线解析式为y=kx+b(k≠0),∴,解得,∴直线EF的解析式为:y=x+﹣.18.如图,在平面直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(2a,a)是反比例函数y=的图象与正方形的一个交点,则图中阴影部分的面积是4.【分析】先利用反比例函数解析式y=确定P点坐标为(2,1),由于正方形的中心在原点O,则正方形的面积为16,然后根据反比例函数图象关于原点中心对称得到阴影部分的面积为正方形面积的.解:把P(2a,a)代入y=得2a•a=2,解得a=1或﹣1,∵点P在第一象限,∴a=1,∴P点坐标为(2,1),∴正方形的面积=4×4=16,∴图中阴影部分的面积=S正方形=4.故答案为4.19.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是y3<y1<y2.【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题.解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y 随x的增大而增大,∴y3<y1<y2.故答案为y3<y1<y2.20.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A 点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是≤a.【分析】根据题意得出C点的坐标(a﹣1,a﹣1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.解:∵A点的坐标为(a,a).根据题意C(a﹣1,a﹣1),当C在曲线时,则a﹣1=,解得a=+1,当A在曲线时,则a=,解得a=,∴a的取值范围是≤a.故答案为≤a.21.已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且=+,则这个反比例函数的表达式为y=.【分析】设这个反比例函数的表达式为y=,将P1(x1,y1),P2(x2,y2)代入得x1•y1=x2•y2=k,所以=,=,由=+,得(x2﹣x1)=,将x2=x1+2代入,求出k=4,得出这个反比例函数的表达式为y=.解:设这个反比例函数的表达式为y=,∵P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,∴x1•y1=x2•y2=k,∴=,=,∵=+,∴=+,∴(x2﹣x1)=,∵x2=x1+2,∴×2=,∴k=4,∴这个反比例函数的表达式为y=.故答案为:y=.22.在平面直角坐标系中,正方形ABCD如图摆放,点A的坐标为(﹣1,0),点B的坐标为(0,2),点D在反比例函数y=(k<0)图象上,将正方形沿x轴正方向平移m个单位长度后,点C恰好落在该函数图象上,则m的值是1.【分析】作DE⊥x轴于E,CF⊥y轴于F,如图,先证明△ADE≌△BAO得到DE=OA =1,AE=OB=2,则D(﹣3,1),用同样方法可得C(﹣1,3),再根据反比例函数图象上点的坐标特征得到k=﹣3,再计算出函数值为3所对应的自变量的值,然后确定平移的距离.解:作DE⊥x轴于E,CF⊥y轴于F,如图,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°,∴∠EAD+∠BAO=90°,而∠EAD+∠ADE=90°,∴∠BAO=∠ADE,在△ADE和△BAO中,∴△ADE≌△BAO,∴DE=OA=1,AE=OB=2,∴D(﹣3,1),同理可得△CBF≌△BAO,∴BF=OA=1,CF=OB=2,∴C(﹣2,3),∵点D在反比例函数y=(k<0)图象上,∴k=﹣3×1=﹣3,∵C点的纵坐标为3,而y=3时,则3=﹣,解得x=﹣1,∴点C平移到点(﹣1,3)时恰好落在该函数图象上,即点C向右平移1个单位,∴m=1.23.如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6,(1)求函数y=和y=kx+b的解析式.(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得S△POC=9.【分析】(1)把点A(4,2)代入反比例函数y=,可得反比例函数解析式,把点A (4,2),B(0,﹣6)代入一次函数y=kx+b,可得一次函数解析式;(2)根据C(3,0),可得CO=3,设P(a,),根据S△POC=9,可得×3×=9,解得a=,即可得到点P的坐标.解:(1)把点A(4,2)代入反比例函数y=,可得m=8,∴反比例函数解析式为y=,∵OB=6,∴B(0,﹣6),把点A(4,2),B(0,﹣6)代入一次函数y=kx+b,可得,解得,∴一次函数解析式为y=2x﹣6;(2)在y=2x﹣6中,令y=0,则x=3,即C(3,0),∴CO=3,设P(a,),则由S△POC=9,可得×3×=9,解得a=,∴P(,6).24.四边形OABC中,BC∥OA,∠OAB=90°,OA=6,腰AB上有一点D,AD=3,四边形ODBC的面积为18,建立如图所示的平面直角坐标系,反比例函数y=(x>0)的图象恰好经过点C和点D.(1)求反比例函数关系式;(2)求出点C的坐标;(3)在x轴上是否存在点P,使得△CDP是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.【分析】(1)首先求出点D的坐标,再求出m的值,进而得解;(2)根据四边形ODBC的面积和△AOD的面积求出四边形OABC的面积,再设出点C 的坐标,进而得解;(3)分PC=PD和CD=PD两种情况考虑,即可得解.解:(1)∵OA=6,AD=3,∴D点的坐标为(6,3),∴m=6×3=18,∴反比例函数的解析式为:y=;(2)S△AOD==×6×3=9,四边形OABC的面积=四边形ODBC的面积+S△AOD=18+9=27,即:=27,设点C的坐标为(a,),∵BC∥OA,∴BC=6﹣a,AB=,∴=27,解得:a=3,=6,∴点C的坐标为(3,6);(3)P点的坐标为(0,0)或(3,0).。

浙教版八年级数学下册《第6章反比例函数》章末复习课试卷含答案

浙教版八年级数学下册《第6章反比例函数》章末复习课试卷含答案

浙教版八年级数学下册《第6章反比例函数》章末复习课试卷章末复习课考点 1 反比例函数的意义1.下列函数表达式中,y 不是x 的反比例函数的是( B )A .y =3xB .y =x3C .y =12xD .xy =122.若函数y =x 2m +1为反比例函数,则m 的值是( D ) A .1 B .0 C .0.5 D .-13.下列关系中,两个量之间为反比例关系的是( D ) A .正方形的面积S 与边长a 的关系 B .正方形的周长L 与边长a 的关系C .矩形的长为a ,宽为20,其面积S 与a 的关系D .矩形的面积为40,长为a ,宽为b ,a 与b 的关系 考点2 用待定系数法求反比例函数的表达式4.若一个反比例函数的图像经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为__y =4x__.5.从下列表格中的数据可以确定此函数的表达式为__y =-3x__.6.已知1212(1)求y 与x 的函数关系式; (2)求当x =2时,y 的值.解:(1)y 与x 的函数关系式是y =32x +52x -5.(2)当x =2时,y =34.考点3 反比例函数的图象和性质7.对于反比例函数y =3x,下列说法正确的是( D )A .图象经过点(-1,3)B .图象在第二、四象限C .x >0时,y 随x 的增大而增大D .x <0时,y 随x 的增大而减小8.反比例函数y =kx的图象经过点A (-1,2),则当x >1时,函数值y 的取值范围是( D )A .y >-1B .-1<y <0C .y <-2D .-2<y <09.已知正比例函数y =kx 的图象与反比例函数y =5-kx(k 为常数,k ≠0)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点A (x 1,y 1),B (x 2,y 2)是反比例函数y =5-kx图象上的两点,且x 1<x 2,试比较y 1,y 2的大小.解:(1)将x =2代入正比例函数y =kx 与反比例函数y =5-k x 中,得2k =5-k2,解,得k =1.∴正比例函数的表达式为y =x ,反比例函数的表达式为y =4x.∴x =4x,即x 2=4,得x =±2.∴两函数图象交点的坐标为(2,2),(-2,-2);(2)∵反比例函数y =4x的图象分别在第一,三象限内,在每一象限内y 的值随x 值的增大而减小,∴当x 1<x 2<0时,y 1>y 2.当x 1<0<x 2时,∵y 1=4x 1<0,y 2=4x 2>0,∴y 1<y 2.当0<x 1<x 2,时,y 1>y 2.10.已知函数y =4|x |,小明研究该函数的图象及性质时,列出了下表:(1)(2)写出该函数的两条性质:①________________;②________________.10题图10题答图解:(1)如图:(2)该函数的两条性质:①图象关于y 轴对称;②图象在x 轴的上方. 故答案为①图象关于y 轴对称 ②图象在x 轴的上方考点 4 反比例函数y =kx(k ≠0)中k 的几何意义)11.如图所示,P (m ,m )是反比例函数y =9x在第一象限内的图象上的一点,以P 为顶点作等边△P AB ,使AB落在x 轴上,则△POB 的面积为( D )A.92B .3 3 C.9+1234 D.9+33212.如图所示,在直角坐标系中,O 为原点,等腰△AOB 的顶点B 在x 轴上,AO =AB ,反比例函数y =k x(k >0)在第一象限内的图象经过AB 的中点C .若△AOB 的面积是12,则k 的值是( C ) A .4.5 B .6 C .9 D .1213.如图所示,已知点A 是双曲线y =3x在第一象限的分支上的一个动点,连结AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,则△ABC 的面积为__6__. 考点5 反比例函数的应用14.如图所示,反比例函数y =3x与一次函数y =x -2在第三象限交于点A ,点B 的坐标为(-3,0),点P 是y轴左侧的一点.若以A ,O ,B ,P 为顶点的四边形为平行四边形.则点P 的坐标为 (-4,-3),(-2,3) .【解析】 由题意,得⎩⎪⎨⎪⎧y =x -2,y =3x,解得⎩⎪⎨⎪⎧x =3,y =1;或⎩⎪⎨⎪⎧x =-1,y =-3.∵反比例函数y =3x与一次函数y =x -2在第三象限交于点A ,∴A (-1,-3).当以AB 为对角线时,AB 的中点坐标M 为(-2,-1.5).∵平行四边形的对角线互相平分,∴M 为OP 中点,设P 点坐标为(x ,y ), 则x +02=-2,y +02=-1.5,解,得x =-4,y =-3,∴P (-4,-3).当OB 为对角线时,由O ,B 坐标可求得OB 的中点坐标E ⎝⎛⎭⎫-32,0,设P 点坐标为(x ,y ),由平行四边形的性质可知E 为AP 的中点,结合中点坐标公式可得 x -12=-32,y -32=0,解,得x =-2,y =3,∴P (-2,3); 当以OA 为对角线时,由O ,A 坐标可求得OA 的中点坐标F ⎝⎛⎭⎫-12,-32,设P 点坐标为(x ,y ),由平行四边形的性质可知F 为BP 中点,结合中点坐标公式可得x -32=-12,y +02=-32,解,得x =2,y =-3,∴P (2,-3).∵P 点在y 轴左侧,∴P (2,-3)舍去.综上所述:P 点的坐标为(-4,-3)或(-2,3).15.丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时间为t 小时,平均速度为v 千米/小时((1)(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由; (3)若汽车到达杭州市场的行驶时间t 满足3.5≤t ≤4,求平均速度v 的取值范围.解:(1)根据表格中数据,可知v =kt,∵v =75时,t =4,∴k =75×4=300,∴v =300t.(2)∵10-7.5=2.5,∴t =2.5时,v =3002.5=120>100,∴汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场.(3)∵3.5≤t ≤4,∴75≤v ≤6007.答:平均速度v 的取值范围是75≤v ≤6007.。

(新人教版)八年级(下册)期末数学试卷6+参考答案与试题解析

(新人教版)八年级(下册)期末数学试卷6+参考答案与试题解析

八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)1.下列二次根式中,是最简二次根式的是()A. B. C.D.2.平行四边形ABCD中,若∠B=2∠A,则∠C的度数为()A.120°B.60°C.30°D.15°3.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示()则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁4.若A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定5.如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD 的周长为()A.16 B.24 C.4D.86.下列命题中,正确的是()A.有一组邻边相等的四边形是菱形B.对角线互相平分且垂直的四边形是矩形C.两组邻角相等的四边形是平行四边形D.对角线互相垂直且相等的平行四边形是正方形7.如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为()A.22.5° B.60°C.67.5° D.75°8.关于x的一元二次方程x2﹣2x+k=0有两个实数根,则实数k的取值范围是()A.k≤1 B.k>1 C.k=1 D.k≥19.已知正比例函数y=kx的图象与反比例函数y=的图象交于A,B两点,若点A的坐标为(﹣2,1),则关于x的方程=kx的两个实数根分别为()A.x1=﹣1,x2=1 B.x1=﹣1,x2=2 C.x1=﹣2,x2=1 D.x1=﹣2,x2=210.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD 的面积分别记为S1,S2,S3,若S1+S2+S3=18,则正方形EFGH的面积为()A.9 B.6 C.5 D.二、填空题(本题共20分,第11-14题,每小题3分,第15-18题,每小题3分)11.关于x的一元二次方程x2﹣6x+m=0有一个根为2,则m的值为______.12.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为______.13.某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是______.14.将一元二次方程x2+4x+1=0化成(x+a)2=b的形式,其中a,b是常数,则a+b=______.15.反比例函数y=在第一象限的图象如图,请写出一个满足条件的k值,k=______.16.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=3,BC=4,则DE的长为______.17.如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为______m.18.如图,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP 的长,y表示线段BP的长,y与x之间的关系如图2所示,则线段AB的长为______,线段BC的长为______.三、解答题(本题共16分,第19题8分,第20题8分)19.计算:(1)﹣+(+1)(﹣1)(2)×÷.20.解方程:(1)x2﹣6x+5=0(2)2x2﹣3x﹣1=0.四、解答题(本题共34分,第21-22题,每小题7分,第23题6分,第24-25题,每小题7分)21.如图,在▱ABCD中,点E,M分别在边AB,CD上,且AE=CM,点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF;(2)连接EM,FN,若EM⊥FN,求证:EFMN是菱形.22.为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表根据以上信息,解答下列问题:(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生______人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?23.已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.24.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.25.在平面直角坐标系xOy中,四边形OABC是矩形,点B的坐标为(4,3),反比例函数y=的图象经过点B.(1)求反比例函数的解析式;(2)一次函数y=ax﹣1的图象与y轴交于点D,与反比例函数y=的图象交于点E,且△ADE的面积等于6,求一次函数的解析式;(3)在(2)的条件下,直线OE与双曲线y=(x>0)交于第一象限的点P,将直线OE向右平移个单位后,与双曲线y=(x>0)交于点Q,与x轴交于点H,若QH=OP,求k的值.26.如图,在数轴上点A表示的实数是______.27.我们已经学习了反比例函数,在生活中,两个变量间具有反比例函数关系的实例有许多,例如:在路程s一定时,平均速度v是运行时间t的反比例函数,其函数关系式可以写为:v=(s为常数,s≠0).请你仿照上例,再举一个在日常生活、学习中,两个变量间具有反比例函数关系的实例:______;并写出这两个变量之间的函数解析式:______.28.已知:关于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3).(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(用含m的代数式表示);①求方程的两个实数根x1,x2(用含m的代数式表示);②若mx1<8﹣4x2,直接写出m的取值范围.29.四边形ABCD是正方形,对角线AC,BD相交于点O.(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON与边BC相交,连接AP,BN.①依题意补全图1;②判断AP与BN的数量关系及位置关系,写出结论并加以证明;(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.下列二次根式中,是最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】利用最简二次根式的定义判断即可.【解答】解:A、为最简二次根式,符合题意;B、=2,不合题意;C、=,不合题意;D、=2,不合题意,故选A【点评】此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键.2.平行四边形ABCD中,若∠B=2∠A,则∠C的度数为()A.120°B.60°C.30°D.15°【考点】平行四边形的性质.【分析】先根据平行四边形的性质得出∠A+∠B=180°,∠A=∠C,再由∠B=2∠A可求出∠A的度数,进而可求出∠C的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,∵∠B=2∠A,∴∠A+2∠A=180°,∴∠A=∠C=60°.故选B.【点评】本题考查的是平行四边形的性质,熟知平行四边形的对角相等是解答此题的关键.3.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示()则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】先比较四个选手的方差的大小,根据方差的性质解答即可.【解答】解:∵0.60>0.56>0.50>0.45,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.【点评】本题考查的是方差的性质,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.若A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征结合点A、B的横坐标,求出y1、y2的值,二者进行比较即可得出结论.【解答】解:∵A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,∴1•y1=1,2•y2=1,解得:y1=1,y2=,∵1>,∴y1>y2.故选C.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是根据反比例函数图象上点的坐标特征求出y1、y2的值.本题属于基础题,难度不大,解决该题型题目时,结合点的横坐标,利用反比例函数图象上点的坐标特征求出点的纵坐标是关键.5.如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD 的周长为()A.16 B.24 C.4D.8【考点】菱形的性质.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD 中,根据勾股定理可以求得AB的长,即可求得菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴BO=OD=AC=2,AO=OC=BD=3,AC⊥BD,∴AB==,∴菱形的周长为4.故选:C.【点评】本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.6.下列命题中,正确的是()A.有一组邻边相等的四边形是菱形B.对角线互相平分且垂直的四边形是矩形C.两组邻角相等的四边形是平行四边形D.对角线互相垂直且相等的平行四边形是正方形【考点】命题与定理.【分析】分别根据菱形、矩形、正方形及平行四边形的判定定理对各选项进行逐一分析即可.【解答】解:A、有一组邻边相等的平行四边形是菱形,故本选项错误;B、对角线互相平分且垂直的四边形是菱形,故本选项错误;C、两组对角相等的四边形是平行四边形,故本选项错误;D、对角线互相垂直且相等的平行四边形是正方形,故本选项正确.故选D.【点评】本题考查的是命题与定理,熟知菱形、矩形、正方形及平行四边形的判定定理是解答此题的关键.7.如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为()A.22.5° B.60°C.67.5° D.75°【考点】正方形的性质.【分析】由正方形的性质得到BC=CD,∠DBC=45°,证出BE=BC,根据三角形的内角和定理求出∠BEC=∠BCE=67.5°即可.【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠DBC=45°,∵BE=CD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,故选C.【点评】本题考查了正方形的性质,三角形的内角和定理,等腰三角形的性质等知识;熟练掌握正方形的性质,证出BE=BC是解决问题的关键.8.关于x的一元二次方程x2﹣2x+k=0有两个实数根,则实数k的取值范围是()A.k≤1 B.k>1 C.k=1 D.k≥1【考点】根的判别式.【分析】根据所给的方程找出a,b,c的值,再根据关于x的一元二次方程x2﹣2x+k=0有两个实数根,得出△=b2﹣4ac≥0,从而求出k的取值范围.【解答】解:∵a=1,b=﹣2,c=k,而方程有两个实数根,∴△=b2﹣4ac=4﹣4k≥0,∴k≤1;故选A.【点评】本题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是本题的关键.9.已知正比例函数y=kx的图象与反比例函数y=的图象交于A,B两点,若点A的坐标为(﹣2,1),则关于x的方程=kx的两个实数根分别为()A.x1=﹣1,x2=1 B.x1=﹣1,x2=2 C.x1=﹣2,x2=1 D.x1=﹣2,x2=2【考点】反比例函数与一次函数的交点问题.【分析】根据正、反比例函数图象的对称性可得出点A、B关于原点对称,由点A的坐标即可得出点B的坐标,结合A、B点的横坐标即可得出结论.【解答】解:∵正比例函数图象关于原点对称,反比例函数图象关于原点对称,∴两函数的交点A、B关于原点对称,∵点A的坐标为(﹣2,1),∴点B的坐标为(2,﹣1).∴关于x的方程=kx的两个实数根分别为﹣2、2.故选D.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是求出点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据正、反比例函数的对称性求出两交点的坐标是关键.10.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD 的面积分别记为S1,S2,S3,若S1+S2+S3=18,则正方形EFGH的面积为()A.9 B.6 C.5 D.【考点】勾股定理的证明.【分析】据图形的特征得出四边形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出S1,S2,S3,得出答案即可.【解答】解:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=18,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=18,故3x+12y=18,x+4y=6,所以S2=x+4y=6,即正方形EFGH的面积为6.故选:B.【点评】此题主要考查了勾股定理的应用,根据已知得出用x,y表示出S1,S2,S3,再利用S1+S2+S3=18求出是解决问题的关键.二、填空题(本题共20分,第11-14题,每小题3分,第15-18题,每小题3分)11.关于x的一元二次方程x2﹣6x+m=0有一个根为2,则m的值为8.【考点】一元二次方程的解.【分析】根据关于x的一元二次方程x2﹣6x+m=0有一个根为2,可以求得m的值.【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有一个根为2,∴22﹣6×2+m=0,解得,m=8,故答案为:8.【点评】本题考查一元二次方程的解,解题的关键是明确方程的解一定适合方程.12.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为5.【考点】三角形中位线定理;直角三角形斜边上的中线.【分析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.【解答】解:∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm.故答案为:5.【点评】此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.13.某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是23.【考点】折线统计图;中位数.【分析】根据中位数的定义求解即可.【解答】解:由折线统计图可知,阅读20本的有4人,21本的有8人,23本的有20人,24本的有8人,共40人,∴其中位数是第20、21个数据的平均数,即=23,故答案为:23.【点评】此题考查了折线统计图及中位数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算.14.将一元二次方程x2+4x+1=0化成(x+a)2=b的形式,其中a,b是常数,则a+b=5.【考点】解一元二次方程-配方法.【分析】方程配方得到结果,确定出a与b的值,即可求出a+b的值.【解答】解:方程x2+4x+1=0,移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3,∴a=2,b=3,则a+b=5,故答案为:5【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.15.反比例函数y=在第一象限的图象如图,请写出一个满足条件的k值,k=3.【考点】反比例函数的性质.【分析】根据反比例函数y=的性质:当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小可得答案.【解答】解:∵反比例函数y=的图象在第一象限,∴k>0,∴k=3,故答案为:3.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.16.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=3,BC=4,则DE的长为.【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【分析】先根据等角对等边,得出DE=BE,再设DE=BE=x,在直角三角形ABE中,根据勾股定理列出关于x的方程,求得x的值即可.【解答】解:由折叠得,∠CBD=∠EBD,由AD∥BC得,∠CBD=∠EDB,∴∠EBD=∠EDB,∴DE=BE,设DE=BE=x,则AE=4﹣x,在直角三角形ABE中,AE2+AB2=BE2,即(4﹣x)2+32=x2,解得x=,∴DE的长为.故答案为:【点评】本题以折叠问题为背景,主要考查了轴对称的性质以及勾股定理.折叠是一种对称变换,它属于轴对称,折叠前后图形的对应边和对应角相等.解题时,我们常设所求的线段长为x,然后用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.17.如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为500m.【考点】勾股定理的应用.【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【解答】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC==500m,∴CE=AC﹣AE=200m,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故答案是:500.【点评】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC≌△DEA,并能比较从B到E有两种走法.18.如图,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP 的长,y表示线段BP的长,y与x之间的关系如图2所示,则线段AB的长为2,线段BC的长为2.【考点】动点问题的函数图象.【分析】如图1中,作BE⊥AC于E,由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt △ABE,Rt△BEC中利用勾股定理即可解决问题.【解答】解:如图1中,作BE⊥AC于E.由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt△ABE中,∵∠AEB=90°,∴BE===,在Rt△BEC中,BC===2.故答案分别为2,2.【点评】本题考查动点问题的函数图象、勾股定理等知识,解题的关键是读懂图象信息,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本题共16分,第19题8分,第20题8分)19.计算:(1)﹣+(+1)(﹣1)(2)×÷.【考点】二次根式的混合运算.【分析】(1)先化简二次根式、根据平方差公式去括号,再合并同类二次根式可得;(2)先化简,再计算乘除法可得.【解答】解:(1)原式=3﹣2+3﹣1=+2;(2)原式=2××=8.【点评】本题主要考查二次根式的混合运算,熟练掌握二次根式的性质化简各二次根式是解题的关键.20.解方程:(1)x2﹣6x+5=0(2)2x2﹣3x﹣1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可.【解答】解:(1)x2﹣6x+5=0,(x﹣5)(x﹣1)=0,x﹣5=0,x﹣1=0,x1=5,x2=1;(2)2x2﹣3x﹣1=0,b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=17,x=,x1=,x2=.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键.四、解答题(本题共34分,第21-22题,每小题7分,第23题6分,第24-25题,每小题7分)21.如图,在▱ABCD中,点E,M分别在边AB,CD上,且AE=CM,点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF;(2)连接EM,FN,若EM⊥FN,求证:EFMN是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【分析】(1)直接利用平行四边形的性质得出AN=CF,再利用全等三角形的判定方法得出答案;(2)直接利用全等三角形的判定与性质得出EN=FM,EF=MN,再结合菱形的判定方法得出答案.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵ND=BF,∴AD﹣ND=BC﹣BF,即AN=CF,在△AEN和△CMF中,∴△AEN≌△CMF(SAS);(2)如图:由(1)△AEN≌△CMF,故EN=FM,同理可得:△EBF≌△MDN,∴EF=MN,∵EN=FM,EF=MN,∴四边形EFMN是平行四边形,∵EM⊥FN,∴四边形EFMN是菱形.【点评】此题主要考查了菱形的判定以及全等三角形的判定与性质,正确掌握全等三角形的判定与性质是解题关键.22.为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表根据以上信息,解答下列问题:(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生25人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?【考点】方差;统计表;扇形统计图;条形统计图;中位数;众数.【分析】(1)根据扇形统计图可以得到这个班的女生人数;(2)根据本班有45人和(1)中求得得女生人数可以得到男生人数,从而可以得到得7分的男生人数,进而将统计图补充完整;(3)根据表格中的数据可以求得男生得平均成绩和女生的众数;(4)答案不唯一,只要从某一方面能说明理由即可;(5)根据题意可以求得女生优秀人数再增加多少人才能完成康老师提出的目标.【解答】解:(1)∵在这次测试中,该班女生得10分的人数为4人,∴这个班共有女生:4÷16%=25(人),故答案为:25;(2)男生得7分的人数为:45﹣25﹣1﹣2﹣3﹣5﹣3=6,故补全的统计图如右图所示,(3)男生得平均分是:=7.9(分),女生的众数是:8,故答案为:7.9,8;(4)女生队表现更突出一些,理由:从众数看,女生好于男生;(5)由题意可得,女生需增加的人数为:45×60%﹣(20×40%+6)﹣(25×36%)=4(人),即女生优秀人数再增加4人才能完成康老师提出的目标.【点评】此题主要考查了平均数、众数、方差、中位数的定义,正确把握相关定义是解题关键.23.已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.【考点】勾股定理的逆定理;勾股定理.【分析】由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,从而易求∠BAD.【解答】解:∵∠B=90°,AB=BC=2,∴AC==2,∠BAC=45°,又∵CD=3,DA=1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°.故∠DAB的度数为135°.【点评】本题考查了等腰三角形的性质、勾股定理、勾股定理的逆定理.解题的关键是连接AC,并证明△ACD是直角三角形.24.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.【考点】矩形的判定与性质.【分析】(1)根据题目要求画出图形即可;(2)根据三角形中位线定理可得EF∥AB,EF=AB,NM∥CD,MN=DC,再由矩形的性质可得AB∥DC,AB=DC,AC=BD,进而可得四边形EFMN是矩形;(3)根据条件可得DM垂直平分OC,进而可得DO=CO,然后证明△COD是等边三角形,进而得出BC,CD的长,进而得出答案.【解答】(1)解:如图所示:(2)证明:∵点E,F分别为OA,OB的中点,∴EF∥AB,EF=AB,同理:NM∥CD,MN=DC,∵四边形ABCD是矩形,∴AB∥DC,AB=DC,AC=BD,∴EF∥NM,EF=MN,∴四边形EFMN是平行四边形,∵点E,F,M,N分别为OA,OB,OC,OD的中点,∴EO=AO,MO=CO,在矩形ABCD中,AO=CO=AC,BO=DO=BD,∴EM=EO+MO=AC,同理可证FN=BD,∴EM=FN,∴四边形EFMN是矩形.(3)解:∵DM⊥AC于点M,由(2)MO=CO,∴DO=CD,在矩形ABCD中,AO=CO=AC,BO=DO=BD,AC=BD,∴AO=BO=CO=DO,∴△COD是等边三角形,∴∠ODC=60°,∵MN∥DC,∴∠FNM=∠ODC=60°,在矩形EFMN中,∠FMN=90°.∴∠NFM=90°﹣∠FNM=30°,∵NO=3,∴FN=2NO=6,FM=3,MN=3,∵点F,M分别为OB,OC的中点,∴BC=2FM=6,∴矩形的面积为BC•CD=36.【点评】此题主要考查了矩形的判定与性质以及等边三角形的判定与性质、勾股定理等知识,正确得出△COD是等边三角形是解题关键.25.在平面直角坐标系xOy中,四边形OABC是矩形,点B的坐标为(4,3),反比例函数y=的图象经过点B.(1)求反比例函数的解析式;(2)一次函数y=ax﹣1的图象与y轴交于点D,与反比例函数y=的图象交于点E,且△ADE的面积等于6,求一次函数的解析式;(3)在(2)的条件下,直线OE与双曲线y=(x>0)交于第一象限的点P,将直线OE向右平移个单位后,与双曲线y=(x>0)交于点Q,与x轴交于点H,若QH=OP,求k的值.【考点】反比例函数与一次函数的交点问题;矩形的性质;坐标与图形变化-平移.【分析】(1)利用待定系数法即可解决.(2)设点E(x E,y E),由△ADE的面积=6,得•AD•|x E|=6,列出方程即可解决.(3)设点P(x P,y P),取OP中点M,则OM=OP,则M(x P,x P),Q(x P+,x P),列出方程求出x P即可解决问题.【解答】解:(1)∵反比例函数y=的图象经过点B(4,3),∴=3,∴m=12,∴反比例函数解析式为y=.(2)∵四边形OABC是矩形,点B(4,3),∴A(0,3),C(4,0),∵一次函数y=ax﹣1的图象与y轴交于点D,∴点D(0,﹣1),AD=4,设点E(x E,y E),∵△ADE的面积=6,∴•AD•|x E|=6,∴x E=±3,∵点E在反比例函数y=图象上,∴E(3,4),或(﹣3,﹣4),当E(3,4)在一次函数y=ax﹣1上时,4=3a﹣1,∴a=,∴一次函数解析式为y=x﹣1,当点(﹣3,﹣4)在一次函数y=ax﹣1上时,﹣4=﹣3a﹣1,∴a=1,∴一次函数解析式为y=x﹣1,综上所述一次函数解析式为y=x﹣1或y=x﹣1.(3)由(2)可知,直线OE解析式为y=x,设点P(x P,y P),取OP中点M,则OM= OP,∴M(x P,x P),∴Q(x P+,x P),∴H(,0),∵点P、Q在反比例函数y=图象上,∴x P•x P=(x P+)x P,∴x P=,∴P(,),∴k=.【点评】本题考查反比例函数图象与一次函数图象的交点问题,矩形的性质、坐标与图形的变化等知识,解题的关键是把问题转化为方程,学会利用参数解决问题,属于中考常考题型.26.如图,在数轴上点A表示的实数是.。

北师大版数学八年级下册期末复习(六) 平行四边形

北师大版数学八年级下册期末复习(六) 平行四边形

期末复习(六) 平行四边形01 各个击破)命题点1 平行四边形的性质与判定【例1】 (桂林中考)如图,在▱ABCD 中,E ,F 分别是AB ,CD 的中点. (1)求证:四边形EBFD 为平行四边形;(2)对角线AC 分别与DE ,BF 交于点M ,N ,求证:△ABN≌△CDM.【思路点拨】 (1)先根据平行四边形的性质得AB∥CD,AB =CD ,再根据一组对边平行且相等的四边形是平行四边形即可得证;(2)因为AB =CD ,∠CAB =∠ACD 已知,则只需要再证明一组对应角相等即可. 【解答】 证明:(1)∵四边形ABCD 是平行四边形, ∴ABCD.∵E ,F 分别是AB ,CD 的中点, ∴BE =12AB ,DF =12DC. ∴BEDF.∴四边形EBFD 为平行四边形. (2)∵四边形ABCD 是平行四边形, ∴ABCD.∴∠CAB =∠ACD.∵四边形EBFD 为平行四边形, ∴∠ABN =∠CDM. 又∵AB=CD ,∴△ABN ≌△CDM(ASA).【方法归纳】 1.判定平行四边形的基本思路:(1)若已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)若已知一组对边相等,可以证这一组对边平行或另一组对边相等;(3)若已知一组对角相等,可以证另一组对角相等;(4)若已知条件与对角线有关,可以证明对角线互相平分. 2.利用平行四边形的性质进行计算的方法:(1)利用平行四边形的性质,通过角度或线段之间的等量转化进行相应的计算;(2)找出所求线段或角所在的三角形,若三角形为直角三角形,通过直角三角形的性质或勾股定理求解;若三角形为任意三角形,可通过三角形全等的性质进行求解.1.如图,在四边形ABCD 中,已知AB =CD ,AD =BC ,AC ,BD 相交于点O ,若AC =6,则AO 的长度等于3.2.如图,已知D 是△ABC 的边AB 上一点,CE ∥AB ,DE 交AC 于点O ,且OA =OC ,猜想线段CD 与线段AE 的大小关系和位置关系,并说明理由.解:线段CD 与线段AE 的大小关系和位置关系是相等且平行. 理由:∵CE∥AB, ∴∠DAO =∠ECO.∵OA =OC ,∠AOD =∠COE, ∴△ADO ≌△CEO.∴AD =CE. 又∵AD∥CE,∴四边形ADCE 是平行四边形. ∴CD ∥AE ,CD =AE.3.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F. (1)求证:△ADE≌△FCE;(2)若∠BAF=90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD.∴∠DAE =∠F,∠D =∠ECF. ∵E 是▱ABCD 的边CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAF=∠F,∠D =∠ECF,DE =CE ,∴△ADE ≌△FCE(AAS). (2)∵△ADE≌△FCE, ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF=90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.命题点2 三角形的中位线【例2】 (邵阳中考)如图,等边三角形ABC 的边长是2,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =12BC ,连接CD 和EF. (1)求证:DE =CF ; (2)求EF 的长.【思路点拨】 (1)欲证DE =CF ,由三角形中位线定理可知DE =12BC ,而条件中有CF =12BC 故易证得;(2)欲求EF 的长,可证四边形DEFC 是平行四边形,因此只需求出CD 的长.在等边三角形ABC 中,点D 是AB 的中点,因此运用勾股定理可求出,问题获解.【解答】 (1)证明:∵D,E 分别为AB ,AC 的中点,∴DE =12BC ,且DE∥BC. ∵点F 在BC 的延长线上,且CF =12BC ,∴DE ∥CF ,且DE =CF.(2)由(1)知DE∥CF,且DE =CF , ∴四边形DEFC 为平行四边形.∵△ABC 是等边三角形,边长是2,点D 是AB 的中点,AB =BC =2, ∴CD ⊥AB ,∠BDC =90°,BD =12AB =1. ∴CD =BC 2-BD 2=22-12= 3. ∵四边形DEFC 为平行四边形, ∴EF =CD = 3.【方法归纳】 若题中有中点通常考虑到三角形的中线和中位线,而在等边三角形(等腰三角形)中,中线同时也是高和角平分线.4.如图,CD 是△ABC 的中线,点E ,F 分别是AC ,DC 的中点,EF =2,则BD =4.5.如图所示,在四边形ABCD 中,AB =CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,∠ABD =20°,∠BDC =70°,求∠PMN 的度数.解:∵M,N ,P 分别是AD ,BC ,BD 的中点,∴MP ,PN 分别是△ABD,△BCD 的中位线, ∴MP12AB, PN12CD.∴∠MPD =∠ABD=20°,∠BPN =∠BDC=70°. ∴∠DPN =110°.∴∠MPN =∠MPD+∠DPN=20°+110°=130°. 又∵AB=CD ,∴MP =PN. ∴∠PMN =∠PNM. ∴∠PMN =25°.命题点3 多边形的内角和与外角和【例3】(泰安中考)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于(B)A.90°B.180°C.210°D.270°【思路点拨】由AB∥CD,推导∠B+∠C=180°,故∠B,∠C两角的外角和是180°,根据多边形外角和等于360°可计算∠1+∠2+∠3度数.【方法归纳】对于求多边形的外角和或部分外角的和的问题,都要根据任意多边形的外角和是360°以及邻角和其补角的互补关系这两个知识点,来解决问题.6.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.7.如图,在六边形ABCDEF中,AB⊥AF,BC⊥DC,∠E+∠F=260°,求两外角和α+β的度数.解:∵AB⊥AF,BC⊥DC,∴∠A=∠C=90°.又∵∠E+∠F=260°,∴∠EDC+∠ABC=(6-2)×180°-90°×2-260°=280°.∴β+α=(180°-∠EDC)+(180°-∠ABC)=360°-(∠EDC+∠ABC)=80°.故两外角和α+β的度数为80°.02整合集训一、选择题(每小题3分,共24分)1.已知平行四边形ABCD的周长为32 cm,AB=4 cm,则BC的长为(B)A.4 cm B.12 cmD.16 cm D.24 cm2.(西宁中考)如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4 C.6 D.83.(临沂中考)将一个n边形变成n+1边形,内角和将(C)A.减少180°B.增加90°C.增加180°D.增加360°4.(乐山中考)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD 的周长为(D)A.5B.7C.10D.145.某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是(C)A.4和7 B.5和7C.5和8 D.4和176.(葫芦岛中考)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P 的度数是(A)A.60°B.65°C.55°D.50°7.如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为(B)A.2 3 B.43C.4 D.88.已知在正方形的网格中,每个小方格的边长都相等,A,B两点在小方格的顶点上,位置如图所示,则以A,B 为顶点的网格平行四边形的个数为(D)A.6个B.8个C.10个D.12个二、填空题(每小题4分,共24分)9.(陕西中考)一个正多边形的外角为45°,则这个正多边形的边数是8.10.如图所示,在▱ABCD中,E,F分别为AD,BC边上的一点,若添加一个条件AE=FC或∠ABE=∠CDF,则四边形EBFD为平行四边形.11.(娄底中考)如图,▱ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO 的周长是9.12.(泉州中考)如图,顺次连接四边形ABCD四边的中点E,F,G,H,则四边形EFGH的形状一定是平行四边形.13.如图,在▱ABCD中,∠ABC=60°,E,F分别在CD,BC的延长线上,AE∥BD,EF⊥BC,CF=3,则AB 的长为3.14.在某张三角形纸片上,取其一边的中点,沿着过这点的两条中位线分别剪去两个三角形,剩下的部分就是如图所示的四边形;经测量这个四边形的相邻两边长为10 cm ,6 cm ,一条对角线的长为8 cm ;则原三角形纸片的周长是48_cm 或(32+813)cm .三、解答题(共52分)15.(6分)一个多边形的内角和与外角和的差为1 260度,求它的边数. 解:设多边形的边数是n ,则(n -2)·180-360=1 260.解得n =11. 答:它的边数为11.16.(8分)(陕西中考)如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF ,CE ,求证:AF∥CE.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC. ∴∠ADB =∠CBD. ∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.在△ADF 和△CBE 中,⎩⎨⎧AD =CB ,∠ADF =∠CBE,DF =BE ,∴△ADF ≌△CBE(SAS). ∴∠AFD =∠CEB. ∴AF ∥CE.17.(8分)(永州中考)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3. (1)求证:BN =DN ; (2)求△ABC 的周长.解:(1)证明:∵AN 平分∠BAC, ∴∠BAN =∠DAN. ∵BN ⊥AN ,∴∠ANB =∠AND=90°. 又∵AN=AN ,∴△ABN ≌△ADN(ASA).∴BN=DN. (2)∵△ABN≌△ADN, ∴AD =AB =10,DN =NB. 又∵点M 是BC 中点,∴MN 是△BDC 的中位线. ∴CD =2MN =6.∴△ABC 的周长为AB +AC +BC =AB +AD +CD +BC =10+10+6+15=41.18.(10分)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,连接DE 并延长到点F ,使EF =ED ,连接CF.(1)四边形DBCF 是平行四边形吗?说明理由;(2)DE 与BC 有什么样的位置关系和数量关系?说明理由. 解:(1)四边形DBCF 是平行四边形. 理由:∵E 是AC 的中点, ∴AE =CE.又∵EF=ED ,∠CEF =∠AED, ∴△AED ≌△CEF(SAS). ∴AD =CF ,∠A =∠ECF. ∴AD ∥CF ,即CF∥BD.又∵D 为AB 的中点,∴BD =AD.∴BD=CF. ∴四边形DBCF 是平行四边形. (2)DE∥BC,DE =12BC. 理由:∵EF=ED ,∴DE =12DF. 又∵四边形DBCF 是平行四边形, ∴DF =BC ,DF ∥BC. ∴DE ∥BC ,DE =12BC.19.(10分)(怀化中考)已知:如图,在△ABC 中,DE ,DF 是△ABC 的中位线,连接EF ,AD ,其交点为点O.求证: (1)△CDE≌△DBF; (2)OA =OD.证明:(1)∵DE,DF 是△ABC 的中位线, ∴DF =CE ,DF ∥CE ,DB =DC. ∵DF ∥CE , ∴∠C =∠BDF.在△CDE 和△DBF 中,⎩⎨⎧DC =BD ,∠C =∠BDF,CE =DF ,∴△CDE ≌△DBF(SAS).(2)∵DE,DF 是△ABC 的中位线, ∴DF =AE ,DF ∥AE.∴四边形DEAF 是平行四边形. ∵EF 与AD 交于点O , ∴OA =OD.20.(10分)(扬州中考改编)如图,AC 为长方形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处. (1)求证:四边形AECF 是平行四边形;(2)若AB =6,AC =10,求四边形AECF 的面积.解:(1)证明:由折叠的性质可知:AM =AB ,CN =CD ,∠FNC =∠D=90°,∠AME =∠B=90°, ∴∠ANF =90°,∠CME =90°. ∵四边形ABCD 为长方形, ∴AB =CD ,AD ∥BC.∴AM =CN ,∠FAN =∠ECM. ∴AM -MN =CN -MN , 即AN =CM.在△ANF 和△CME 中,∠FAN =∠ECM,AN =CM ,∠ANF =∠CME, ∴△ANF ≌△CME(ASA). ∴AF =CE. 又∵AF∥CE,∴四边形AECF 是平行四边形. (2)∵AB=6,AC =10,∴BC =8.设CE =x ,则EM =8-x ,CM =10-6=4. 在Rt △CEM 中,(8-x)2+42=x 2, 解得x =5.∴S 四边形AECF =EC·AB=5×6=30.。

2020年浙教版数学八年级下册期末冲刺卷(六)附答案解析

2020年浙教版数学八年级下册期末冲刺卷(六)附答案解析

2020年浙教版数学八年级下册期末冲刺卷(六)附答案解析一、选择题(共10小题;共50分)1. 在实数范围内有意义,则应满足的条件是A. B. C. D.2. 下列方程是一元二次方程的是A. B. C. D.3. 下列等式成立的是B.C. D.4. 下列各点在反比例函数图象上的是A. B.5. 下列图形中,是中心对称图形但不是轴对称图形的是A. 等边三角形B. 平行四边形C. 一次函数图象D. 反比例函数图象6. 下列命题:一组对边平行且另一组对边相等的四边形是平行四边形;一组邻角相等的平行四边形是矩形;顺次连接矩形四边中点得到的四边形是菱形;如果一个菱形的对角线相等,那么它一定是正方形.其中真命题个数是A. 个B. 个C. 个D. 个7. 小明统计了某校八年级()班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是小时、小时、小时、小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是A. 小时B. 小时C. 或小时D. 或或小时8. 在多边形内角和公式的探究过程中,主要运用的数学思想是A. 化归思想B. 分类讨论C. 方程思想D. 数形结合思想9. 已知一次函数与反比例函数的图象相交于,两点,当时,实数的取值范围是A. 或或或 D.10. 如图,菱形中,,与交于,为延长线上的一点,且,连接分别交,于点,,连接.则下列结论:①;②与全等的三角形共有个;③;④由点,,,构成的四边形是菱形.其中正确的是A. ①④B. ①③④C. ①②③D. ②③④二、填空题(共6小题;共30分)11. 当,则.12. 已知方程的一个根为,则常数.13. 一组数据,,,,的方差是.14. 如图,矩形的面积为,平分,交于,沿将折叠,点的对应点刚好落在矩形两条对角线的交点处,则的面积为.15. 已知:一组邻边分别为和的平行四边形,和的平分线分别交所在直线于点,,则线段的长为.16. 如图,在轴的正半轴上,自点开始依次间隔相等的距离取点,,,,,,分别过这些点做轴的垂线,与反比例函数的图象交于点,,,,,,作,,,,,垂足分别为,,,,,,连接,,,,,得到一组,,,,,它们的面积分别记为,,,,,则,.三、解答题(共7小题;共91分)17. 计算:(1;(2).18. 解方程:(1);(2).19. 市教育局为了解本市中学生参加志愿者活动情况,随机抽查了某区部分八年级学生一学年来参加志愿者活动的次数,并用得到的数据绘制了如下两幅不完整的统计图.(1)求参加这次调查统计的学生总人数及这个区八年级学生平均每人一学年来参加志愿者活动的次数;(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该区共有八年级学生人,请你估计“活动次数不少于次”的学生人数大约多少人.20. 已知:如图,在平行四边形中,延长到,使得.连接,.(1)求证:;(2)请在所给的图中,用直尺和圆规作点(不同于图中已给的任何点),使以,,,为顶点的四边形是平行四边形(只作一个,保留痕迹,不写作法).21. 年杭州市推出了“微公交”,“微公交”是国内首创的纯电动汽车租赁服务.它作为一种绿色出行方式,对缓解交通堵塞和停车困难,改善城市大气环境,都可以起到积极作用.据了解某租赁点拥有“微公交”辆.据统计,当每辆车的年租金为千元时可全部租出;每辆车的年租金每增加千元,未租出的车将增加辆.(1)当每辆车的年租金定为千元时,能租出多少辆?(2)当每辆车的年租金增加多少千元时,租赁公司的年收益(不计车辆维护等其他费用)可达到千元?22. 如图,四边形是矩形,将一块正方形纸板如图摆放,它的顶点与矩形的对角线交点重合,点在正方形的边上.现将正方形绕点逆时针旋转,当点在边上时,停止旋转,在旋转过程中交于点,交于点.(1)开始旋转前,即在图中,连接.①求证:;②若图中,,,请求出线段的长度;(2)在图(点在上)中,,,这三条线段之间有什么数量关系?写出结论,并说明理由;(3)试探究图中,,,这四条线段之间有什么数量关系,写出结论,并说明理由.23. 如图,在直角坐标系中,点在第一象限,于,于,,,有一反比例函数图象刚好过点.(1)分别求出过点的反比例函数和过,两点的一次函数的函数表达式;(2),并从轴出发,以每秒个单位长度的速度向轴正方向运动,交反比例函数图象于点,交于点,交直线于点,当直线运动到经过点时,停止运动,设运动时间为(秒).①问:是否存在的值,使四边形为平行四边形?若存在,求出的值;若不存在,说明理由;②若直线从轴出发的同时,有一动点从点出发,沿射线方向,以每秒个单位长度的速度运动.是否存在的值,使以点,,,为顶点的四边形为平行四边形;若存在,求出的值,并进一步探究此时的四边形是否为特殊的平行四边形;若不存在,说明理由.答案第一部分1. D 【解析】,.2. A 【解析】方程中只含个未知数,且该未知数的最高次数为.3. B 【解析】,.4. C 【.5. B【解析】等边三角形是轴对称图形;一次函数图象,反比例函数图象既是轴对称图形,又是中心对称图形.6. B【解析】错误,应为:一组对边平行且相等的四边形是平行四边形;正确,理由:一组邻角相等,且根据平行四边形的性质,可得它们都为直角,从而推得矩形;正确,理由:得到的四边形的边长都等于矩形对角线的一半;正确.7. C【解析】设第五位同学的时间为小时,则应排列为,,,,,所以.8. D9. C 【解析】,表示一次函数图象在反比例函数图象上方时的取值范围,由题图可知或.10. A【解析】连接,因为,,所以四边形是平行四边形,所以是的中点,所以,①正确;有,,,,,,共个,②错误;因为,所以,所以,所以,③错误;因为所以是等边三角形,所以,所以平行四边形是菱形,④正确.第二部分11..【解析】将代入方程得,.13.,.14.【解析】在矩形中,延长交于点,连接,易证得:四边形为菱形,而由折叠可知,易证.15. 或【解析】如图,平分,,在平行四边形中,,,,;同理可得,;如图,同理,,,.16. ,【解析】设,则,,,,,,,,,,,第三部分17. (1)(2)18. (1)所以所以(2)所以19. (1)(人).次人数为:(人);平均次数为:(次).(2)众数是次,中位数是次.(3)(人).20. (1)在平行四边形中,,.又因为,所以,,所以四边形是平行四边形,所以.(2)如图.21. (1)(辆).(2)设每辆车的年租金增加千元,,整理得,所以(舍),.即每辆车的年租金增加千元.22. (1)①在矩形中,,在正方形中,,,又,,.②由①知,在中,.(2).理由:连接,同()中的方法,得.在中,,.(3).理由:延长交于点,连接,.,,,,,.又,,在和中,,即.23. (1)由点,得.由,,得.(2)①不存在.因为,,所以.又因为四边形是平行四边形,所以.时间为,,则,所以,所以.此时与重合,不符合题意,所以不存在.②存在,当时,;当时,由,,得.由,,得.因为,所以当时,四边形为平行四边形,所以,所以,(舍),所以当时,四边形为平行四边形.又因为且,所以平行四边形为矩形.。

人教版八年级(下)期末数学试卷六(含解析)

人教版八年级(下)期末数学试卷六(含解析)

八年级第二学期期末数学试卷一、填空题(共6小题,共18分).1.(3分)要使有意义,则x的取值范围是.2.(3分)一次函数y=2x﹣6的图象与x轴的交点坐标为.3.(3分)在平面直角坐标系中,点A,B,C的坐标分别是(0,0),(5,0),(2,3),若以点A,B,C,D为顶点的四边形是平行四边形,则符合条件的D点有个.4.(3分)如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)375 350 375 350方差s212.5 13.5 2.4 5.4根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择.5.(3分)四边形ABCD为菱形,该菱形的周长为16,面积为8,则∠ABC为度.6.(3分)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是升.二、选择题(共8小题,每小题4分,共32分).7.(4分)下列二次根式中,最简二次根式是()A.B.C.D.8.(4分)以下列各数为边长,能构成直角三角形的是()A.1,2,2 B.1,,2 C.4,5,6 D.1,1,9.(4分)下列计算正确的是()A.×=4B.÷=2C.+=D.=﹣1510.(4分)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等11.(4分)一次函数y=﹣5x+3不经过第()象限A.一B.二C.三D.四12.(4分)在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD=BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD∥BC13.(4分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>314.(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是()A.(2n﹣1,2n﹣1)B.(2n﹣1+1,2n﹣1)C.(2n﹣1,2n﹣1)D.(2n﹣1,n)三、解答题(共70分)15.(8分)计算:(1)(2)16.(5分)化简求值:÷•,其中a=﹣2.17.(5分)如图,点E,F为▱ABCD的对角线BD上的两点,连接AE,CF,∠AEB=∠CFD.求证:AE=CF.18.(5分)已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.19.(9分)直线y=kx+b经过点A(1,0)、B(0,﹣2).(1)求直线y=kx+b的解析式;(2)若点C在x轴上,且S△ABC=3S△AOB,求出点C坐标.20.(9分)为了普及环保知识,增强环保意识,某中学组织了全校环保知识竞赛活动,初中各年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:决赛成绩(单位:分)初一成绩80 86 88 80 88 99 80 74 91 89初二成绩85 85 87 97 85 76 88 77 87 88初三成绩82 80 78 78 81 96 97 88 89 86(1)请你填写下表中的a=,b=,c=;平均数众数中位数初一年级a80 87初二年级85.5 b86初三年级85.5 78 c(2)从以下两个不同的角度对三个年级的决赛成绩进行分析:①从众数和平均数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些).(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强些?并说明理由.21.(8分)如图,矩形ABCD的长为8,宽为6,现将矩形沿对角线BD折叠,C点到达C′处,C′B交AD于E.(1)判断△EBD的形状,并说明理由;(2)求DE的长.22.(9分)如图是小阳同学所走的路程s(米)与时间t(分钟)的函数关系图,观察图中所提供的信息,解答下列问题:(1)小阳同学在前5分钟内的平均速度是多少?(2)小阳同学在中途停了多长时间?(3)当10≤t≤20时,求s与t的函数关系式.23.(12分)在抗击新冠肺炎的非常时期,某医药器械厂接受了生产一批高质量医用口罩的任务,要求在8天之内(含8天)生产A型和B型两种型号的口罩共5万只,其中A型口罩不得少于1.8万只,该厂的生产能力是:若生产A型口罩每天能生产0.6万只,若生产B型口罩每天能生产0.8万只,已知生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.若设该厂在这次任务中生产了A型口罩x万只.(1)该厂生产A型口罩可获利润万元,生产B型口罩可获利润万元.(2)设该厂这次生产口罩的总利润是y万元,试写出y关于x的函数关系式,并求出自变量x的取值范围;(3)在完成任务的前提下,如何安排生产A型和B型口罩的只数,使获得的总利润最大,最大利润是多少?(4)若要在最短时间内完成任务,如何来安排生产A型和B型口罩的只数?最短时间是几天?参考答案一.填空题(本大题共6个小题,每小题3分,满分18分)1.(3分)要使有意义,则x的取值范围是x≥2.解:∵有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.2.(3分)一次函数y=2x﹣6的图象与x轴的交点坐标为(3,0).解:令y=0得:2x﹣6=0,解得:x=3.则函数与x轴的交点坐标是(3,0).故答案是:(3,0).3.(3分)在平面直角坐标系中,点A,B,C的坐标分别是(0,0),(5,0),(2,3),若以点A,B,C,D为顶点的四边形是平行四边形,则符合条件的D点有3个.解:如图所示,①AB为对角线时,点D的坐标为(3,﹣3),②BC为对角线时,点D的坐标为(7,3),③AC为对角线时,点D的坐标为(﹣3,3),综上所述,点D的坐标是(7,3)(﹣3,3)(3,﹣3).故答案为:3.4.(3分)如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)375 350 375 350方差s212.5 13.5 2.4 5.4根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择丙.解:∵乙和丁的平均数最小,∴从甲和丙中选择一人参加比赛,∵丙的方差最小,∴选择丙参赛,故答案为:丙5.(3分)四边形ABCD为菱形,该菱形的周长为16,面积为8,则∠ABC为30或150度.解:如图1所示:当∠A为钝角,过A作AE⊥BC,∵菱形ABCD的周长为l6,∴AB=4,∵面积为8,∴AE=2,∴∠ABC=30°,当∠A为锐角是,过D作DE⊥AB,∵菱形ABCD的周长为l6,∴AD=4,∵面积为8,∴DE=2,∴∠A=30°,∴∠ABC=150°,故答案为:30或150.6.(3分)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是2升.解:设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,则y=﹣x+35.当x=240时,y=﹣×240+3.5=2(升).故答案为:2.二、选择题(每小题4分,共32分)7.(4分)下列二次根式中,最简二次根式是()A.B.C.D.解:A、,不是最简二次根式,本选项不合题意;B、是最简二次根式,本选项符合题意;C、,不是最简二次根式,本选项不合题意;D、=,不是最简二次根式,本选项不合题意;故选:B.8.(4分)以下列各数为边长,能构成直角三角形的是()A.1,2,2 B.1,,2 C.4,5,6 D.1,1,解:A、12+22≠22,不符合勾股定理的逆定理,不能构成直角三角形;B、12+()2=22,符合勾股定理的逆定理,能构成直角三角形;C、42+52≠62,不符合勾股定理的逆定理,不能构成直角三角形;D、12+12≠()2,不符合勾股定理的逆定理,不能构成直角三角形.故选:B.9.(4分)下列计算正确的是()A.×=4B.÷=2C.+=D.=﹣15解:A、原式=2,所以A选项错误;B、原式==2,所以B选项正确;C、原式=2+,所以C选项错误;D、原式=15,所以D选项错误.故选:B.10.(4分)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选:B.11.(4分)一次函数y=﹣5x+3不经过第()象限A.一B.二C.三D.四解:∵k=﹣5<0,∴函数图象经过第二四象限,∵b=3>0,∴函数图象与y轴正半轴相交,∴函数图象经过第一二四象限,故不经过第三象限.故选:C.12.(4分)在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD=BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD∥BC解:A、错误.当AB∥DC,AD=BC时,四边形ABCD可能是等腰梯形可能是平行四边形,故错误.B、正确.因为两组对边分别相等的四边形是平行四边形.C、正确.因为对角线互相平分的四边形是平行四边形.D、正确.因为两组对边分别平行的四边形是平行四边形,故选:A.13.(4分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>3解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选:A.14.(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是()A.(2n﹣1,2n﹣1)B.(2n﹣1+1,2n﹣1)C.(2n﹣1,2n﹣1)D.(2n﹣1,n)解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),设直线A1A2的解析式为:y=kx+b,∴,解得:,∴直线A1A2的解析式是:y=x+1.∵点B2的坐标为(3,2),∴点A3的坐标为(3,4),∴点B3的坐标为(7,4),∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1.∴B n的坐标是(2n﹣1,2n﹣1).故选:A.三、解答题(共70分)15.(8分)计算:(1)(2)解:(1)原式=2+﹣1+1=3;(2)原式=(6﹣+4)÷2=÷2=.16.(5分)化简求值:÷•,其中a=﹣2.解:原式=••=,当a=﹣2时,原式==.17.(5分)如图,点E,F为▱ABCD的对角线BD上的两点,连接AE,CF,∠AEB=∠CFD.求证:AE=CF.解:证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).∴AE=CF.18.(5分)已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.解:∵∠B=90°,AB=BC=2,∴AC==2,∠BAC=45°,又∵CD=3,DA=1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°.故∠DAB的度数为135°.19.(9分)直线y=kx+b经过点A(1,0)、B(0,﹣2).(1)求直线y=kx+b的解析式;(2)若点C在x轴上,且S△ABC=3S△AOB,求出点C坐标.解:(1)∵直线AB:y=kx+b(k≠0)过点A(1,0)和B(0,﹣2),∴,解得,∴直线AB的解析式为y=2x﹣2;(2)依照题意画出图形,如图所示.设点C的坐标为(m,0),S△AOB=OA•OB=×1×2=1,S△ABC=AC•OB=|m﹣1|×2=|m﹣1|,∵S△ABC=3S△AOB,∴|m﹣1|=3,解得:m=4或m=﹣2,即点C的坐标为(4,0)或(﹣2,0).20.(9分)为了普及环保知识,增强环保意识,某中学组织了全校环保知识竞赛活动,初中各年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:决赛成绩(单位:分)初一成绩80 86 88 80 88 99 80 74 91 89初二成绩85 85 87 97 85 76 88 77 87 88初三成绩82 80 78 78 81 96 97 88 89 86(1)请你填写下表中的a=85.5,b=85,c=84;平均数众数中位数初一年级a80 87初二年级85.5 b86初三年级85.5 78 c(2)从以下两个不同的角度对三个年级的决赛成绩进行分析:①从众数和平均数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些).(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强些?并说明理由.解:(1)a=(80+86+88+80+88+99+80+74+91+89)÷10=85.5;数据85,85,87,97,85,76,88,77,87,88中,出现次数最多的数是85,故b=85;初三成绩按从小到大排列为:78,78,80 81,82,86,88,89,96 97,所以该组数据的中位数c==84.故答案为:85.5,85,84;(2)①由于三个年级的平均数相同,二年级的众数较高,所以二年级的成绩好些;②由于三个年级的平均数相同,一年级的众数较高,所以一年级的成绩好些;(3)二年级.因为每个年级选出3名选手,因此在各个年级中,年级整体实力较强的,3名选手实力就比较强,只需分析年级整体实力.各个年级平均数相等,二年级众数是85,远高于其他年级,因此完全可以选择二年级85的这三个人参加比赛.另外,二年级中位数也是最高的,代表二年级的整体水平也是比较高的,综上,二年级实力更强.21.(8分)如图,矩形ABCD的长为8,宽为6,现将矩形沿对角线BD折叠,C点到达C′处,C′B交AD于E.(1)判断△EBD的形状,并说明理由;(2)求DE的长.【解答】(1)证明:∵△BDC′是由△BDC沿直线BD折叠得到的,∴∠C′BD=∠CBD,∵四边形ABCD是矩形,∴AD∥BC,∴∠CBD=∠EDB,∴∠C′BD=∠EDB,∴BE=DE,∴△EBD是等腰三角形;(2)解:设DE=x,则AE=AD﹣DE=8﹣x,∵∠A=90°,BE=DE=x,在Rt△ABE中,BE2=AB2+AE2,∴x2=62+(8﹣x)2,∴x=,即DE=.22.(9分)如图是小阳同学所走的路程s(米)与时间t(分钟)的函数关系图,观察图中所提供的信息,解答下列问题:(1)小阳同学在前5分钟内的平均速度是多少?(2)小阳同学在中途停了多长时间?(3)当10≤t≤20时,求s与t的函数关系式.解:(1)由图象可知:当t=5时,s=400,∴小阳同学在前5分钟内的平均速度v==400÷5=80(米/分钟).(2)小阳同学在中途停留的时间为:10﹣5=5(分钟).(3)当10≤t≤20时,设s与t的函数关系式为s=kt+b,由图象可知:此时直线经过点(10,400)和点(20,1400),∴,解得:,∴当10≤t≤20时,s与t的函数关系式为s=100t﹣600.23.(12分)在抗击新冠肺炎的非常时期,某医药器械厂接受了生产一批高质量医用口罩的任务,要求在8天之内(含8天)生产A型和B型两种型号的口罩共5万只,其中A型口罩不得少于1.8万只,该厂的生产能力是:若生产A型口罩每天能生产0.6万只,若生产B型口罩每天能生产0.8万只,已知生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.若设该厂在这次任务中生产了A型口罩x万只.(1)该厂生产A型口罩可获利润0.5x万元,生产B型口罩可获利润0.3×(5﹣x)万元.(2)设该厂这次生产口罩的总利润是y万元,试写出y关于x的函数关系式,并求出自变量x的取值范围;(3)在完成任务的前提下,如何安排生产A型和B型口罩的只数,使获得的总利润最大,最大利润是多少?(4)若要在最短时间内完成任务,如何来安排生产A型和B型口罩的只数?最短时间是几天?解:(1)A型口罩可获利润=0.5×x=0.5x(万元),B型口罩可获利润=0.3×(5﹣x)=1.5﹣0.3x(万元)故答案为:0.5x,1.5﹣0.3x;(2)设该厂在这次任务中生产A型口罩x万只,则生产B型口罩(5﹣x)万只;由题意得:y=0.5x+0.3×(5﹣x)=0.2x+1.5,∴,解得:1.8≤x≤4.2,(3)由(2)得y=0.2x+1.5为增函数,∴当x=4.2时,y=0.2×4.2+1.5=2.34万元,最大总利润此时生产A型4.2万只,生产B型0.8万只;(4)如果要在最短时间内完成任务,全部生产B型所用时间最短,但题意要生产A型不少于1.8万只,因此,生产A型1.8万只,生产B型3.2万只,所需最短时间为1.8÷0.6+3.2÷0.8=7(天).。

人教版八年级(下)期末数学试卷六(含解析)

人教版八年级(下)期末数学试卷六(含解析)

八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的)1.(3分)二次根式有意义的条件是()A.x>2B.x≥2C.x<2D.x≤22.(3分)下列各组数中能够作为直角三角形的三边长的是()A.1,2,3B.2,3,4C.3,4,5D.4,5,63.(3分)一组数据2、3、4、6、6、7的众数是()A.3B.4C.5D.64.(3分)若函数y=kx+b是正比例函数,且y随x的增大而减小,则下列判断正确的是()A.k>0B.k<0C.b>0D.b<05.(3分)如图,将▱ABCD的一边BC延长至点E,若∠A=110°,则∠1等于()A.110°B.35°C.70°D.55°6.(3分)若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.7.(3分)某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10、6、9、11、8、10,下列关于这组数据描述正确的是()A.中位数是10 B.众数是10C.平均数是9.5 D.方差是168.(3分)已知y是x的一次函数,下表列出了部分y与x的对应值:x﹣1012y﹣2﹣10a 则a的值为()A.﹣2B.1C.2D.39.(3分)如图,在平面直角坐标系中,菱形ABCD的边长为6,它的一边AB在x轴上,且AB的中点是坐标原点,点D在y轴正半轴上,则点C的坐标为()A.(3,3)B.(3,3)C.(6,3)D.(6,3)10.(3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OP A的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A.B.C.D.二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)计算:=.12.(4分)下表是某校女子羽毛球队队员的年龄分布;年龄/岁13141516人数1121则该校女子排球队队员年龄的中位数为岁.13.(4分)函数y=kx与y=6﹣x的图象如图所示,则k=.14.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件使其成为菱形(只填一个即可).15.(4分)某中学为了选拔一名运动员参加区运会100m短跑比赛,有甲、乙、丙3名运动员备选,他们100m短跑的平均成绩和方差如下表所示甲乙丙12.83秒12.85秒12.83秒s2 2.1 1.1 1.1如果要选择一名成续优秀且稳定的人去参赛,应派去.16.(4分)如图,一木杆在离地面1.5m处折断,木杆顶端落在离木杆底端2m处,则木杆折断之前的高为(m).17.(4分)已知a,b,c是△ABC的三边长,且满足关系式+|b﹣|+(c﹣)2=0,则△ABC的形状为.13题图14题图16题图三、解答题(一)(本大题共3小题,每小题6分,共18分)18.(6分)计算:+﹣(π﹣)0﹣19.(6分)如图,平行四边形ABCD的对角线AC、BD相交于点O,EF过点O与AD、BC分别相交于点E、F,求证:OE=OF.20.(6分)某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲队员在五天中进球数(单位:个)进行统计,结果如表:甲79789求甲进球的平均数和方差.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(8分)如图,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)分别求出AB,BC,AC的长;(2)试判断△ABC是什么三角形,并说明理由.22.(8分)如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=100°,∠C=30°,求∠BDE的度数.23.(8分)小亮步行上山游玩,设小亮出发xmin后行走的路程为ym图中的折线表示小亮在整个行走过程中y与x 的函数关系.(1)小亮行走的总路程是m,他途中休息了min.(2)当50≤x≤80时,求y与x的函数关系式.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.(10分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表分数7分8分9分10分人数1108(1)在图1中,“7分”所在扇形的圆心角等于°.(2)请你将图2的统计图补充完整;(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?25.(10分)已知:直线y=x+6与x轴、y轴分别相交于点A和点B,点C在线段AO上.将△ABO沿BC折叠后,点O恰好落在AB边上点D处,如图.(1)直接写出点A和点B的坐标;(2)求AC的长;(3)点P为平面内一动点,且满足以A、B、C、P为顶点的四边形为平行四边形,请直接写出一个符合要求的P点坐标.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的1.(3分)二次根式有意义的条件是()A.x>2B.x≥2C.x<2D.x≤2【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选:B.2.(3分)下列各组数中能够作为直角三角形的三边长的是()A.1,2,3B.2,3,4C.3,4,5D.4,5,6【分析】欲判断是否是直角三角形的三边长,需验证两小边的平方和是否等于最长边的平方.【解答】解:A、12+22≠32,不能构成直角三角形,故此选项错误;B、22+32≠42,不能构成直角三角形,故此选项错误;C、32+42=52,能构成直角三角形,故此选项正确;D、42+52≠62,不能构成直角三角形,故此选项错误.故选:C.3.(3分)一组数据2、3、4、6、6、7的众数是()A.3B.4C.5D.6【分析】众数是一组数据中出现次数最多的数据,根据众数的定义求出这组数的众数即可.【解答】解:数据6出现了两次最多为众数.故选:D.4.(3分)若函数y=kx+b是正比例函数,且y随x的增大而减小,则下列判断正确的是()A.k>0B.k<0C.b>0D.b<0【分析】根据正比例函数的定义得到b=0,然后由正比例函数图象的性质作答.【解答】解:∵函数y=kx+b是正比例函数,∴b=0.又函数y=kx+b的图象是y随x的增大而减小,∴k<0.观察选项,只有选项B符合题意.故选:B.5.(3分)如图,将▱ABCD的一边BC延长至点E,若∠A=110°,则∠1等于()A.110°B.35°C.70°D.55°【分析】根据平行四边形的对角相等求出∠BCD的度数,再根据平角等于180°列式计算即可得解.【解答】解:∵平行四边形ABCD的∠A=110°,∴∠BCD=∠A=110°,∴∠1=180°﹣∠BCD=180°﹣110°=70°.故选:C.6.(3分)若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.【分析】根据一次函数的k、b的符号确定其经过的象限即可确定答案.【解答】解:∵一次函数y=﹣x+b中k=﹣1<0,b>0,∴一次函数的图象经过一、二、四象限,故选:C.7.(3分)某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10、6、9、11、8、10,下列关于这组数据描述正确的是()A.中位数是10B.众数是10C.平均数是9.5D.方差是16【分析】排序后位于中间或中间两数的平均数即为中位数;一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【解答】解:(A)中位数为=9.5,故(A)错误;(B)根据出现次数最多的数据是10可得,众数是10,故(B)正确;(C)平均数为(10+6+9+11+8+10)÷6=9,故(C)错误;(D)方差为[(10﹣9)2+(6﹣9)2+(9﹣9)2+(11﹣9)2+(8﹣9)2+(10﹣9)2]=,故(D)错误.故选:B.8.(3分)已知y是x的一次函数,下表列出了部分y与x的对应值:x﹣1012y﹣2﹣10a 则a的值为()A.﹣2B.1C.2D.3【分析】利用待定系数法即可求得函数的解析式,然后把x=2代入解析式即可求得a的值.【解答】解:设一次函数的表达式为y=kx+b.代入(1,0),(0,﹣1)两点,得:∴.解得:.∴一次函数表达式为y=x﹣1.把(2,a)代入y=x﹣1,解得a=1.故选:B.9.(3分)如图,在平面直角坐标系中,菱形ABCD的边长为6,它的一边AB在x轴上,且AB的中点是坐标原点,点D在y轴正半轴上,则点C的坐标为()A.(3,3)B.(3,3)C.(6,3)D.(6,3)【分析】由菱形的性质可得AB=AD=CD=6,AB∥CD,由勾股定理可求DO的长,即可求点C坐标.【解答】解:∵四边形ABCD是菱形∴AB=AD=CD=6,AB∥CD∵AB的中点是坐标原点,∴AO=BO=3,∴DO==3∴点C坐标(6,3)故选:D.10.(3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OP A的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A.B.C.D.【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【解答】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6﹣x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=×4×(6﹣x)=﹣2x+12(0<x<6),∴C符合.故选:C.二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)计算:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:=3﹣=2.故答案为:2.12.(4分)下表是某校女子羽毛球队队员的年龄分布;年龄/岁13141516人数1121则该校女子排球队队员年龄的中位数为15岁.【分析】将这5个同学的年龄从小到大排序后处在第3位的数就是中位数,【解答】解:将5个同学的年龄从小到大排序为13,14,15,15,16,因此处在第3位的数是15,因此中位数是15岁,故答案为:15.13.(4分)函数y=kx与y=6﹣x的图象如图所示,则k=2.【分析】首先根据一次函数y=6﹣x与y=kx图象的交点横坐标为2,代入一次函数y=6﹣x求得交点坐标为(2,4),然后代入y=kx求得k值即可.【解答】解:∵一次函数y=6﹣x与y=kx图象的交点横坐标为2,∴4=6﹣2,解得:y=4,∴交点坐标为(2,4),代入y=kx,2k=4,解得k=2.故答案为:214.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AC⊥BD或∠AOB =90°或AB=BC使其成为菱形(只填一个即可).【分析】利用菱形的判定方法确定出适当的条件即可.【解答】解:如图,平行四边形ABCD的对角线AC,BD相交于点O,添加一个适当的条件为:AC⊥BD或∠AOB=90°或AB=BC使其成为菱形.故答案为:AC⊥BD或∠AOB=90°或AB=BC15.(4分)某中学为了选拔一名运动员参加区运会100m短跑比赛,有甲、乙、丙3名运动员备选,他们100m短跑的平均成绩和方差如下表所示甲乙丙12.83秒12.85秒12.83秒s2 2.1 1.1 1.1如果要选择一名成续优秀且稳定的人去参赛,应派丙去.【分析】选择平均数较大,方差较小的人参赛即可.【解答】解:观察表格可知,甲、丙的平均数小于乙的平均数,即甲、丙的100m短跑的平均成绩较好,∴只要比较甲、丙的方差就可得出正确结果,∵甲的方差大于丙的方差,∴丙的成绩优秀且稳定.故答案为丙.16.(4分)如图,一木杆在离地面1.5m处折断,木杆顶端落在离木杆底端2m处,则木杆折断之前的高为4(m).【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这根木杆折断之前的高度.【解答】解:∵一木杆在离地面1.5m处折断,木杆顶端落在离木杆底端2m处,∴折断的部分长为=2.5,∴折断前高度为2.5+1.5=4(m).故答案为:4.17.(4分)已知a,b,c是△ABC的三边长,且满足关系式+|b﹣|+(c﹣)2=0,则△ABC的形状为直角三角形.【分析】根据算术平方根、绝对值和偶次方的非负性求出a、b、c的值,再根据勾股定理的逆定理判断即可.【解答】解:∵+|b﹣|+(c﹣)2=0,∴a﹣1=0,b﹣=0,c﹣=0,解得:a=1,b=,c=,∴a2+b2=c2,∴∠C=90°,即△ABC的形状为直角三角形.故答案为:直角三角形.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.(6分)计算:+﹣(π﹣)0﹣【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:+﹣(π﹣)0﹣=3+2﹣1﹣2=+119.(6分)如图,平行四边形ABCD的对角线AC、BD相交于点O,EF过点O与AD、BC分别相交于点E、F,求证:OE=OF.【分析】要证明线段相等,只需证明两条线段所在的两个三角形全等即可.【解答】证明:∵ABCD为平行四边形,∴AD∥BC,OA=OC,∴∠EAO=∠FCO,∠AEO=∠CFO,∴△AEO≌△CFO(AAS),∴OE=OF.20.(6分)某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲队员在五天中进球数(单位:个)进行统计,结果如表:甲79789求甲进球的平均数和方差.【分析】根据平均数、方差的计算公式计算即可.【解答】解:甲进球的平均数为:(7+9+7+8+9)÷5=8(个),甲进球的方差为:[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(8分)如图,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)分别求出AB,BC,AC的长;(2)试判断△ABC是什么三角形,并说明理由.【分析】(1)根据勾股定理求出边的长度即可;(2)根据勾股定理的逆定理判断即可.【解答】解:(1),,;(2)△ABC是直角三角形,理由如下:∵,AC2=52=25,∴AB2+BC2=AC2,∴△ABC是直角三角形.22.(8分)如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=100°,∠C=30°,求∠BDE的度数.【分析】(1)由题意可证BE=DE,四边形BEDF是平行四边形,即可证四边形BEDF为菱形;(2)由三角形内角和定理求出∠ABC=50°,由菱形的性质即可得出答案.【解答】(1)证明:∵DE∥BC,DF∥AB∴四边形DEBF是平行四边形∵DE∥BC∴∠EDB=∠DBF∵BD平分∠ABC∴∠ABD=∠DBF=∠ABC∴∠ABD=∠EDB∴DE=BE且四边形BEDF为平行四边形∴四边形BEDF为菱形;(2)解:∵∠A=100°,∠C=30°,∴∠ABC=180°﹣100°﹣30°=50°,∵四边形BEDF为菱形,∴∠EDF=∠ABC=50°,∠BDE=∠EDF=25°.23.(8分)小亮步行上山游玩,设小亮出发xmin后行走的路程为ym图中的折线表示小亮在整个行走过程中y与x 的函数关系.(1)小亮行走的总路程是3600m,他途中休息了20min.(2)当50≤x≤80时,求y与x的函数关系式.【分析】(1)由函数图象可以直接得出小亮行走的路程是3600米,途中休息了20分钟;(2)设当50≤x≤80时,y与x的函数关系式为y=kx+b,由待定系数法求出其解即可.【解答】解:(1)由函数图象,得小亮行走的总路程是3600米,途中休息了20分钟.故答案为:3600,20;(2)设当50≤x≤80时,y与x的函数关系式为y=kx+b,由题意,解得:∴当50≤x≤80时,y与x的函数关系式为:y=55x﹣800.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.(10分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表分数7分8分9分10分人数1108(1)在图1中,“7分”所在扇形的圆心角等于144°.(2)请你将图2的统计图补充完整;(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?【分析】(1)根据扇形统计图中所标的圆心角的度数进行计算;(2)根据10分所占的百分比是90°÷360°=25%计算总人数,再进一步求得8分的人数,即可补全条形统计图;(3)根据乙校人数得到甲校人数,再进一步求得其9分的人数,从而求得平均数和中位数,并进行综合分析;(4)观察两校的高分人数进行分析.【解答】解:(1)利用扇形图可以得出:“7分”所在扇形的圆心角=360°﹣90°﹣72°﹣54°=144°;(2)利用扇形图:10分所占的百分比是90°÷360°=25%,则总人数为:5÷25%=20(人),得8分的人数为:20×=3(人).如图;(3)根据乙校的总人数,知甲校得9分的人数是20﹣8﹣11=1(人).甲校的平均分:(7×11+9+80)÷20=8.3分;中位数为7分.由于两校平均分相等,乙校成绩的中位数大于甲校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好.(4)因为选8名学生参加市级口语团体赛,甲校得(10分)的有8人,而乙校得(10分)的只有5人,所以应选甲校.25.(10分)已知:直线y=x+6与x轴、y轴分别相交于点A和点B,点C在线段AO上.将△ABO沿BC折叠后,点O恰好落在AB边上点D处,如图.(1)直接写出点A和点B的坐标;(2)求AC的长;(3)点P为平面内一动点,且满足以A、B、C、P为顶点的四边形为平行四边形,请直接写出一个符合要求的P点坐标.【分析】(1)分别代入x=0,y=0求出与之对应的y,x的值,进而可得出点B,A的坐标;(2)利用勾股定理可求出AB的长,由折叠的性质可知:OC=CD,OB=BD=6,∠CDB=∠BOC=90°,进而可得出AD=4,∠ADC=90°,设CD=OC=x,则AC=8﹣x,在Rt△ADC中,利用勾股定理可求出x的值,进而可得出AC的长;(3)分AB为对角线、AC为对角线以及BC为对角线三种情况考虑,由点A,B,C的坐标,利用平行四边形的性质(对角线互相平分),即可求出点P的坐标.【解答】解:(1)当x=0时,y=×0+6=6,∴点B的坐标为(0,6);当y=0时,x+6=0,解得:x=﹣8,∴点A的坐标为(﹣8,0).(2)∵点A的坐标为(﹣8,0),点B的坐标为(0,6),∴OA=8,OB=6,∵∠AOB=90°,∴AB==10.由折叠的性质,可知:OC=CD,OB=BD=6,∠CDB=∠BOC=90°,∴AD=AB﹣BD=4,∠ADC=90°.设CD=OC=x,则AC=8﹣x,在Rt△ADC中,∠ADC=90°,∴AD2+CD2=AC2,即42+x2=(8﹣x)2,解得:x=3,∴OC=3,AC=OA﹣OC=8﹣3=5.(3)分三种情况考虑,如图所示.当AB为对角线时,∵点A的坐标为(﹣8,0),点B的坐标为(0,6),点C的坐标为(﹣3,0),∴点P1的坐标为(﹣5,6);当AC为对角线时,∵点A的坐标为(﹣8,0),点B的坐标为(0,6),点C的坐标为(﹣3,0),∴点P2的坐标为(﹣11,﹣6);当BC为对角线时,∵点A的坐标为(﹣8,0),点B的坐标为(0,6),点C的坐标为(﹣3,0),∴点P3的坐标为(5,6).综上所述,当以A、B、C、P为顶点的四边形为平行四边形时,点P的坐标为(﹣5,6),(﹣11,﹣6)或(5,6).。

八年级数学(下)期末复习测试题六

八年级数学(下)期末复习测试题六

八年级数学(下)期末复习测试题六八 年 级 数 学题号 一 二 三总分 得分21 22 23 24 25 26说明:本试卷满分100分,考试时间90分钟 一﹑细心填一填,你一定能行(每空2分,共20分)1.当x = 时,分式211x x -+的值为零.2.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为 . 3.请你写出一个图象在第一、三象限的反比例函数 .4.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:13=甲x ,13=乙x ,5.72=甲S ,6.212=乙S ,则小麦长势比较整齐的试验 田是 (填“甲”或“乙”).5.如图,□ABCD 中,AE,CF 分别是∠BAD,∠BCD 的角平分线,请添加一个条件 使四边形AECF 为菱形.6.计算2422a a a -=++ . 7.若点(1,2y -)、),1(2y 、),3(3y 都在反比例函数2y x=-的图象上,则321,,y y y 的大小关系是 .8.已知梯形ABCD 中,AD ∥BC ,∠ABC=60°,3AE 为梯形的高,且BE=1, •则AD=______.9.如图,Rt ABC △中,8AC =,6BC =,90C ∠=,分别以AB BC AC ,,为直径作三个半圆,那么阴影部分的面积为 (平方单位).10.如图,矩形ABCD 的对角线BD 过O 点,BC ∥x 轴, 且A (2,-1),则经过C 点的反比例函数的解析式为 .题号 11 12 13 14 15 16 17 18 19 20 答案A .326a a a =÷ B .2222x y x y =⎪⎭⎫⎝⎛ C .1=+++b a b b a a D .y x x xy x x +=+22 12.下列说法中,不正确...的是 A .为了解一种灯泡的使用寿命,宜采用普查的方法 B .众数在一组数据中若存在,可以不唯一 C .方差反映了一组数据与其平均数的偏离程度D .对于简单随机样本,可以用样本的方差去估计总体的方差13.能判定四边形是平行四边形的条件是A .一组对边平行,另一组对边相等B .一组对边相等,一组邻角相等C .一组对边平行,一组邻角相等D .一组对边平行,一组对角相等 14.反比例函数ky x=在第一象限的图象如图所示,则k 的值可能是 A .1 B .2 C .3 D .415.在平面直角坐标系中,已知点A (0,2),B (32-,0),C (0,2-), D (32,0),则以这四个点为顶点的四边形ABCD 是A .矩形B .菱形C .正方形D .梯形16.某校八年级(2)班的10名团员在“情系灾区献爱心”捐款活动中,捐款情况如下(单位:元):10 8 12 15 10 12 11 9 10 13.则这组数据的 A .平均数是11 B .中位数是10 C .众数是10.5 D .方差是3.9ABE CFAB CA B DOC xy。

人教版八年级(下)期末数学试卷六(含解析)

人教版八年级(下)期末数学试卷六(含解析)

八年级第二学期期末数学试卷一、选择题(共12小题,每小题2分,共24分,在每小题给出的四个选项中只有一项是符合要求的1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知点A的坐标为(3,﹣6),则点A所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.长度分别如下的四组线段中,可以构成直角三角形的是()A.1.5,2,2.5B.4,5,6C.1,,3D.2,3,44.直线y=x﹣1的图象经过()A.第二、三象限B.第一、二、四象限C.第一、三、四象限D.第一、二、三象限5.已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形6.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A.7B.5C.3D.27.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣2x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y28.调查50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是()A.20B.30C.0.4D.0.69.如果P点的坐标为(a,b),它关于y轴的对称点为P1,P1关于x轴的对称点为P2,已知P2的坐标为(﹣2,3),则点P的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣2,3)D.(2,3)10.顺次连接对角线互相垂直且相等的四边形各边的中点所得四边形是()A.平行四边形B.矩形C.菱形D.正方形11.某商店在节日期间开展优惠促销活动:凡购买原价超过200元的商品,超过200元的部分可以享受打折优惠若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)之间的函数关系的a图象如图所示,则图中a的值是()A.300B.320C.340D.36012.如图,正方形ABCD的对角线AC与BD相交于点O.将∠COB绕点O顺时针旋转,设旋转角为α(0<α<90°),角的两边分别与BC,AB交于点M,N,连接DM,CN,MN,下列四个结论:①∠CDM=∠COM;②CN⊥DM;③△CNB≌△DMC;④AN2+CM2=MN2;其中正确结论的个数是()A.1B.2C.3D.411题图12题图二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡上13.直线y=2x+6经过点(0,a),则a=.14.一个多边形的内角和等于1260°,则这个多边形是边形.15.已知△ABC中,AB=12,AC=13,BC=15,点D、E、F分别是AB、AC、BC的中点,则△DEF的周长是.16.已知y轴上的点P到原点的距离为7,则点P的坐标为.17.如图,已知在Rt△ABC中,∠A=90°,AB=3,BC=5,分别以Rt△ABC三条边为直径作半圆,则图中阴影部分的面积为.18.正方形A1B1C1O、A2B2C2C1、A3B3C3C2…按如图的方式放置,A1、A2、A3…和点C1、C2、C3…分别在直线y =x+2和x轴上,则点∁n的横坐标是.(用含n的代数式表示)17题图18题图三、解答题(本大题共8题,共58分)请将答案填在答题卡上19.(6分)如图,在Rt△ABC中,∠C=90°,AC=5,AB=13,求BC.20.(6分)如图,在▱ABCD中,M为AD的中点,BM=CM.求证:(1)△ABM ≌△DCM ; (2)四边形ABCD 是矩形.21.(6分)八年级(1)班同学为了解某小区家庭月均用水情况,随机调査了该小区部分家庭,并将调查数据整理成如下两幅不完整的统计图表: 请根据以上信息,解答以下问题:(1)直接写出频数分布表中的m 、n 的值并把频数直方图补充完整; (2)求出该班调查的家庭总户数是多少? (3)求该小区用水量不超过15的家庭的频率.22.(6分)图中折线ABC 表示从甲地向乙地打长途电话时所需付的电话费y (元)与通话时间t (分钟)之间的关系图象.(1)从图象知,通话2分钟需付的电话费是 元; (2)当t ≥3时求出该图象的解析式(写出求解过程); (3)通话7分钟需付的电话费是多少元?23.(8分)如图,在网格平面直角坐标系中,△ABC 的顶点均在格点上.(1)请把△ABC 向上平移2个单位长度,再向左平移1个单位长度得到△A 'B ′C ',画出△A 'B ′C ’并写出点A ′,月均用水量x (t )频数(户) 频率 0<x ≤5 6 0.12 5<x ≤10 m 0.24 10<x ≤15 16 0.32 15<x ≤20100.2020<x ≤25 4 n 25<x ≤3020.04B′的坐标.(2)求△ABC的面积.24.(8分)如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由25.(8分)蒙蒙和贝贝都住在M小区,在同一所学校读书.某天早上,蒙蒙7:30从M小区站乘坐校车去学校,途中停靠了两个站点才到达学校站点,且每个站点停留2分钟,校车在每个站点之间行驶速度相同;当天早上,贝贝7:38从M小区站乘坐出租车沿相同路线出发,出租车匀速行驶,结果比蒙蒙乘坐的校车早2分钟到学校站点.他们乘坐的车辆从M小区站出发所行驶路程y(千米)与校车离开M小区站的时间x(分)之间的函数图象如图所示.(1)求图中校车从第二个站点出发时点B的坐标;(2)求蒙蒙到达学校站点时的时间;(3)求贝贝乘坐出租车出发后经过多少分钟追上蒙蒙乘坐的校车,并求此时他们距学校站点的路程.26.(10分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点C在x轴的正半轴上,AB 边交y轴于点H,OC=4,∠BCO=60°.(1)求点A的坐标(2)动点P从点A出发,沿折线A﹣B一C的方向以2个单位长度秒的速度向终点C匀速运动,设△POC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,直接写出当t为何值时△POC为直角三角形.参考答案与试题解析一、选择题(共12小题,每小题2分,共24分,在每小题给出的四个选项中只有一项是符合要求的,1.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【分析】根据点的横、纵坐标的符号可得所在象限.【解答】解:∵A的横坐标的符号为正,纵坐标的符号为负,∴点A(3,﹣6)第四象限,故选:D.【点评】本题考查点的坐标的相关知识;用到的知识点为:横坐标的符号为正,纵坐标的符号为负的点在第四象限.3.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、1.52+22=2.52,能构成直角三角形,故符合题意;B、52+42≠62,不能构成直角三角形,故不符合题意;C、12+()2≠32,不能构成直角三角形,故不符合题意;D、22+32≠42,不能构成直角三角形,故不符合题意.故选:A.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.【分析】由y=x﹣1可知直线与y轴交于(0,﹣1)点,且y随x的增大而增大,可判断直线所经过的象限.【解答】解:直线y=x﹣1与y轴交于(0,﹣1)点,且k=1>0,y随x的增大而增大,∴直线y=x﹣1的图象经过第一、三、四象限.故选:C.【点评】本题考查了一次函数的性质.关键是根据图象与y轴的交点位置,函数的增减性判断图象经过的象限.5.【分析】由平行四边形的判定方法得出A不正确、B正确;由矩形和正方形的判定方法得出C、D不正确.【解答】解:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选:B.【点评】本题考查了平行四边形的判定、矩形的判定、正方形的判定;熟练掌握平行四边形、矩形、正方形的判定方法是解决问题的关键.6.【分析】根据垂直的定义得到∠AEC=∠D=90°,根据全等三角形的性质即可得到结论.【解答】解:∵AE⊥CE于点E,BD⊥CD于点D,∴∠AEC=∠D=90°,在Rt△AEC与Rt△CDB中,∴Rt△AEC≌Rt△CDB(HL),∴CE=BD=2,CD=AE=7,∴DE=CD﹣CE=7﹣2=5,故选:B.【点评】本题考查了全等三角形的判定与性质,解答本题的关键是根据已知条件判定三角形的全等.7.【分析】根据正比例函数图形的增减性,结合函数图象上的点的横坐标的大小关系,即可得到答案.【解答】解:∵正比例函数y=﹣2x上的点y随着想的增大而减小,又∵P1(x1,y1),P2(x2,y2)是正比例函数y=﹣2x图象上的两点,若x1<x2,则y1>y2,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.8.【分析】由五个小组的频数总和等于50即可算出第四组的频数.【解答】解:∵第一、二、三、五组的数据个数分别是2,8,15,5,∴第四小组的频数是50﹣(2+8+15+5)=20.故选:A.【点评】本题考查了频数分布表的知识,解题的关键是了解各小组频数之和等于数据总和.9.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变分别确定P1和P的坐标即可.【解答】解:∵P2的坐标为(﹣2,3),P1关于x轴的对称点为P2,∴P1(﹣2,﹣3),∵P点的坐标为(a,b),它关于y轴的对称点为P1,∴a=2,b=﹣3,∴点P的坐标为(2,﹣3),故选:B.【点评】此题主要考查了关于x、y轴对称点的坐标,关键是掌握点的坐标的变化规律.10.【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其必为平行四边形,若邻边互相垂直且相等,那么所得四边形是正方形.【解答】解:∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵AC⊥BD,AC=BD,∴EF⊥FG,FE=FG,∴四边形EFGH是正方形,故选:D.【点评】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.11.【分析】根据分段函数的意义,可以求出当原价等于200元的y与x的函数关系式,再求当x=400时,对应的y的值即可.【解答】解:设y与x的函数关系式为y=kx+b(x>200)图象过点(200,200)和(500,410)∴解得:k=0.7,b=60,∴y=0.7x+60,当x=400时,y=340.图中的a的值为340,故选:C.【点评】考查分段函数,一次函数的图象、待定系数法求函数的关系式等知识,待定系数法求函数的关系式是常用的方法,应很好的掌握.12.【分析】由“ASA”可证△OCM≌△OBN,可得CM=BN,∠CDM=∠BCN,由余角的性质可判断②,由点O,点M,点B,点N四点共圆可判断①,由“SAS”可证△DCM≌△CNB,由勾股定理可判断④.【解答】解:∵四边形ABCD是正方形∴CD=BC,BO=CO,AC⊥BD,∠ACB=∠ABD=45°∵将∠COB绕点O顺时针旋转,∴∠COM=∠BON,且BO=CO,∠ACB=∠ABD∴△OCM≌△OBN(ASA)∴CM=BN,∠CDM=∠BCN∵∠CDM+∠CMD=90°∴∠BCN+∠CMD=90°∴CN⊥DM故②正确∵∠MON=∠ABC=90°∴点O,点M,点B,点N四点共圆∴∠BON=∠BMN=∠COM>∠BCN=∠CDM故①错误∵CM=BN,CD=BC,∠ABC=∠DCB=90°∴△DCM≌△CNB(SAS)故③正确∵AB=BC,BN=CM∴AN=BM∵BN2+BM2=MN2,∴AN2+CM2=MN2;故④正确故选:C.【点评】本题主要考查了旋转的性质,正方形的性质、全等三角形的判定与性质,勾股定理的综合应用,熟练掌握正方形的性质,证明三角形全等是解题的关键.二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡上13.【分析】令x=0,求出y的值即可.【解答】解:∵令x=0,则y=2,∴a=6故答案为:6【点评】本题考查的是一次函数图象上点的坐标特点,熟知y轴上点的坐标特点是解答此题的关键.14.【分析】这个多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1260,解得n=9.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.15.【分析】根据三角形中位线定理易得所求的三角形的各边长为原三角形各边长的一半,那么所求的三角形的周长就等于原三角形周长的一半.【解答】解:∵点D、E、F分别是AB、AC、BC的中点,∴DE=BC,EF=AB,DF=AC,∴△DEF的周长=(AB+BC+AC)=×(12+13+15)=20.故答案为:20.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.16.【分析】y轴上任意一点的横坐标为0,点P可能在原点的上方,也可能在原点的下方.【解答】解:当点P在x轴的上方时,点P的坐标为(0,7);当点P在x轴的下方时,点P的坐标为(0,﹣7).故答案为:(0,7)或(0,﹣7).【点评】本题主要考查的是点的坐标的定义,分类讨论是解题的关键.17.【分析】根据勾股定理求出AB,分别求出三个半圆的面积和△ABC的面积,即可得出答案.【解答】解:在Rt△BAC中,∠BAC=90°,AB=3,BC=5,由勾股定理得:BC==5,所以阴影部分的面积S=×π×()2+×()2+×3×4﹣×π×()2=6.故答案为:6.【点评】本题考查了勾股定理和三角形的面积、圆的面积,能把不规则图形的面积转化成规则图形的面积是解此题的关键.18.【分析】根据直线解析式先求出A1(0,2),OC1=OA1=2,得出C1的横坐标是2=21,再求出C2的横坐标是6=21+22,C3的纵坐标是14=21+22+23,得出规律,即可得出结果.【解答】解:∵直线y=x+2,当x=0时,y=2,∴A1(0,2),OC1=OA1=2∴C1(2,0),其中2=21∴A2(2,4),OC2=2+4=6∴C2(6,0),其中6=21+22∴A3(6,8),OC3=6+8=14∴C3(14,0),其中14=21+22+23…∴点∁n的坐标是(21+22+23+…+2n,0)∴∁n的坐标是(2n+1﹣2,0)∴点∁n的横坐标是2n+1﹣2故答案为:2n+1﹣2.【点评】本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出C1、C2、C3的坐标得出规律是解决问题的关键.三、解答题(本大题共8题,共58分)请将答案填在答题卡上19.【分析】利用勾股定理求出BC的长即可.【解答】解:∵在Rt△ABC中,∠C=90°,AC=5,AB=13,∴BC==12.【点评】此题考查了勾股定理的知识,掌握勾股定理的内容是解答本题的关键.20.【分析】(1)根据平行四边形的性质得到AB=CD,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到∠A=∠D,根据平行线的性质得到∠A+∠D=180°,于是得到结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∵M为AD的中点,∴AM=DM,在△ABM和△DCM中,,∴△ABM≌△DCM(SSS);(2)∵△ABM≌△DCM,∴∠A=∠D,∵AB∥DC,∴∠A+∠D=180°,∴∠A=90°,∴平行四边形ABCD是矩形.【点评】此题考查了平行四边形的性质及矩形的判定,解答本题的关键是证明△ABM≌△DCM,从而得出∠A =∠D,属于基础题,难度一般.21.【分析】(1)由0<x≤5的频数及其频率求出被调查的总户数,再利用频率=频数÷总数可得答案;(2)由以上所求结果可得答案;(3)将前三组频率相加即可得.【解答】解:(1)∵被调查的总户数为6÷0.12=50(户),∴m=50×0.24=12,n=4÷50=0.08,补全图象如下:(2)由(1)知该班调查的家庭总户数是50户;(3)该小区用水量不超过15的家庭的频率为0.12+0.24+0.32=0.68.【点评】本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.22.【分析】图象分为两段:AB表示通话3分钟以内的电话费是2.4元,BC表示超过3分钟的电话费随时间的增加而增加.所以此题不难解.【解答】解:(1)通话2分钟需付的电话费是2.4元.(2)y=1.5t﹣2.1;过程如下:设直线BC的解析式为y=kt+b,因为图象过(3,2.4)和(5,5.4),所以有,解之得,所以解析式为y=1.5t﹣2.1(t≥3).(3)当t=7时,∵t=7>3,∴代入解析式y=1.5t﹣2.1得:y=1.5×7﹣2.1=8.4.【点评】此题为分段函数,主要搞清楚各段的意义及所求问题对应的部分.23.【分析】(1)依据△ABC向上平移2个单位长度,再向左平移1个单位长度,即可得到△A'B′C',进而得出点A′,B′的坐标;(2)依据割补法即可得到△ABC的面积.【解答】解:(1)如图所示,△A'B′C'即为所求,A′(﹣3,0),B′(2,3).(2)△ABC的面积=4×5﹣×5×3﹣×2×4﹣×1×3=7.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.24.【分析】(1)由平行四边形的性质得出AD∥BC,得出∠EAO=∠FCO,由ASA即可得出结论;(2)由△AOE≌△COF,得出对应边相等AE=CF,证出四边形AFCE是平行四边形,再由对角线EF⊥AC,即可得出四边形AFCE是菱形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,∵O是AC的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)EF⊥AC时,四边形AFCE是菱形;理由如下:∵△AOE≌△COF,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质、菱形的判定;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.25.【分析】(1)根据速度=路程÷时间,可求出校车的速度,再结合图象即可求出点B的坐标;(2)求出校车到达学校站点所需时间即可求解;(3)运用待定系数法求出直线BC与EF的解析式,联立组成方程组,即可得出相遇时他们距学校站点的路程.【解答】解:(1)校车的速度为:3÷6=0.5(千米/分),点B的纵坐标为:3+0.5×(12﹣8)=5,点B的横坐标为:12+2=14,∴点B的坐标为(14,5);(2)校车到达学校站点所需时间为:9÷0.5+4=22(分),∴7点30分钟+22分钟=7点52分钟,∴蒙蒙到达学校站点时的时间为7点52分钟;(3)∵C(22,9),B(14,5),设直线BC的表达式为:y=kx+b(k≠0),,解得,∴直线BC的表达式为:y=0.5x﹣2,由题意得F(8,0),E(20,9),设直线EF的表达式为y=k1+b1(k1≠0),,解答,∴直线EF的表达式为y=0.75x﹣6,由,解得,16﹣8=8(分钟),9﹣6=3(千米),∴贝贝乘坐出租车出发后经过8分钟追上蒙蒙乘坐的校车,此时他们距学校站点的路程为3千米.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列式计算;(2)(方法一)根据相遇时间=校车先出发时间×速度÷两车速度差,求出小刚乘坐出租车追到小强所乘坐的校车的时间;(方法二)利用待定系数法求出线段BC、EF的解析式.26.【分析】(1)由菱形的性质得出∠A=60°,AO=4,∠AHO=∠HOC=90°,在Rt△AHO中,∠HOA=90°﹣∠A=30°,则AH=AO=2,OH==2,即可得出结果;(2)①当点P在AB上运动时,△POC的高不变,始终为2;②当点P在BC上运动时,即2<t≤4时,过点P作PE⊥OC于E,在Rt△PCE中,∠PCE=60°,PC=8﹣2t,PE=PC sin60°=(4﹣t),S=OC•PE=﹣2t+8,即可得出结果;(3)①当点P与点H重合时,△POC为直角三角形,此时t==1;②当点P在BC上时,OP⊥BC,证出∠POC=30°,则CP=OC=2,则t=3,即可得出结果.【解答】解:(1)∵四边形ABCO是菱形,OC=4,∠BCO=60°,∴∠A=60°,AO=4,∠AHO=∠HOC=90°,在Rt△AHO中,∠HOA=90°﹣∠A=30°,∴AH=AO=2,OH===2,∴点A的坐标为:(﹣2,2);(2)①当点P在AB上运动时,△POC的高不变,始终为2;②当点P在BC上运动时,即2<t≤4时,过点P作PE⊥OC于E,如图1所示:在Rt△PCE中,∠PCE=60°,PC=8﹣2t,∴PE=PC sin60°=(8﹣2t)×=(4﹣t),S=OC•PE=×4×(4﹣t)=﹣2t+8,∴S=;(3)①当点P与点H重合时,△POC为直角三角形,此时t==1;②当点P在BC上时,OP⊥BC,如图2所示:∵∠BCO=60°,∴∠POC=30°,∴CP=OC=2,∴t==3,综上所述,当t=1或t=3时,△POC为直角三角形.【点评】本题是四边形综合题目,考查了图形与点的坐标、菱形的性质、直角三角形的性质、勾股定理、三角函数、三角形面积的计算等知识,熟练掌握菱形的性质和含30°角直角三角形的性质是解题的关键.。

八年级下期末数学试卷6(含答案)

八年级下期末数学试卷6(含答案)

八年级下期末数学试卷6(含答案)一、精心选一选(每小题3分,共30分)1.下列各式从左到右的变形是因式分解的是()A.m(a+b)=ma+mb B.a2﹣a=2=a(a﹣1)﹣2C.﹣4a2+9b2=(﹣2a+3b)(2a+3b)D.x2﹣=(x﹣)(x+)2.下列分式是最简分式的是()A. B.C.D.﹣3.将长度为3cm的线段向上平移10cm,再向右平移8cm,所得线段的长是()A.3cm B.8cm C.10cm D.无法确定4.不等式组的解集在数轴上表示为()A.B.C.D.5.用反证法证明“同一平面内,若a⊥c,b⊥c,则a∥b”时应假设()A.a不垂直与c B.a,b都不垂直与cC.a⊥b D.a与b相交6.已知一个多边形的内角和等于这个多边形外角和的2倍,则这个多边形的边数是()A.4 B.5 C.6 D.87.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°8.若=0无解,则m的值是()A.3 B.﹣3 C.﹣2 D.29.如图,在平行四边形ABCD中,AB=9cm,AD=11cm,AC,BD相交于点O,OE⊥BD,交AD 于点E,则△ABE的周长为()A.20cm B.18cm C.16cm D.10cm10.如图,将边长为cm的正方形ABCD绕点A逆时针方向旋转30°后得到正方形AB′C′D′,则图中阴影部分的面积为()A.cm2B.cm2C.cm2D.(3﹣)cm2二、耐心填一填(每小题3分,共18分)11.(x+y≠0)12.若x2+2mx+1是一个完全平方式,则m=.13.汉字“一、中、王、木”它们都是图形,其中几个字可看成中心对称图形.14.请你在下面横线上写出一个原命题是真命题,而逆命题是假命题的命题..15.若不等式组的解集是x>4,那么m的取值范围是.16.如图△ABC的三边长分别为30,48,50,以它的三边中点为顶点组成第一个新三角形,再以第一个新三角形三边中点为顶点组成第二个新三角形,如此继续,则第6个新三角形的周长为.三、解答题(本题包括9个小题,共计72分,要求写出必要的解题过程)17.因式分解:(1)a3﹣a(2)9+6(a+b)+(a+b)2.18.化简:19.解不等式,并把解集表示在数轴上.20.解方程: +=1.21.点D在等边三角形△ABC的边BC上,将△ABD绕点A旋转,使得旋转后点B的对应点为点C.(1)在图1中画出旋转后的图形.(2)小颖是这样做的:如图2,过点C画BA的平行线L,在L上取CE=BD,连接AE,则△ACE 即为旋转后的图形.小颖这样做对吗?请你说说理由.22.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.23.兴化市从今年1月1日起调整居民用水价格,每立方米水费上涨.小刚家去年12月份的水费为15元,今年8月的水费为35元,已知小刚家今年8月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格?24.如图,将▱ABCD纸片折叠,使得点C落在点A的位置,折痕为EF,连接CE,求证:四边形AFCE是平行四边形.25.紫薇花园住宅小区计划购买并栽种甲、乙两种树苗共280株.已知甲种树苗每株60元,乙种树苗每株90元.(1)若购买树苗共用21000元,则甲乙两种树苗应各买多少株?(2)设购买这两种树苗共用y元,求y(元)与甲种树苗x(株)之间的函数关系式.(3)据统计,甲乙两种树苗每株对空气的净化指数分别为0.2和0.6,如何购买甲乙两种树苗才能保证该小区的空气净化指数之和不低于88而且费用最低?并请你求出最低费用的是多少元?八年级(下)期末数学试卷参考答案与试题解析一、精心选一选(每小题3分,共30分)1.下列各式从左到右的变形是因式分解的是()A.m(a+b)=ma+mb B.a2﹣a=2=a(a﹣1)﹣2C.﹣4a2+9b2=(﹣2a+3b)(2a+3b)D.x2﹣=(x﹣)(x+)【考点】因式分解的意义.【分析】利用因式分解的定义判断即可.【解答】解:下列各式从左到右的变形是因式分解的是﹣4a2+9b2=(﹣2a+3b)(2a+3b),故选C2.下列分式是最简分式的是()A. B.C.D.﹣【考点】最简分式.【分析】要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.【解答】解:A、原式=﹣=﹣1,不是最简分式,故本选项错误;B、原式==,不是最简分式,故本选项错误;C、该分式是最简分式,故本选项正确;D、原式=﹣,不是最简分式,故本选项错误;故选:C.3.将长度为3cm的线段向上平移10cm,再向右平移8cm,所得线段的长是()A.3cm B.8cm C.10cm D.无法确定【考点】平移的性质.【分析】根据平移的基本性质,可直接求得结果.【解答】解:平移不改变图形的形状和大小,故线段的长度不变,长度是3cm.故选A.4.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x>1;由②得,x≥2,故此不等式组的解集为:x≥2,在数轴上表示为:故选A.5.用反证法证明“同一平面内,若a⊥c,b⊥c,则a∥b”时应假设()A.a不垂直与c B.a,b都不垂直与cC.a⊥b D.a与b相交【考点】反证法.【分析】根据反证法的步骤中,第一步是假设结论不成立,反面成立解答即可.【解答】解:用反证法证明“同一平面内,若a⊥c,b⊥c,则a∥b”时应假设a与b相交,故选:D.6.已知一个多边形的内角和等于这个多边形外角和的2倍,则这个多边形的边数是()A.4 B.5 C.6 D.8【考点】多边形内角与外角.【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.7.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°【考点】等腰三角形的性质.【分析】利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x 的方程,求出方程的解得到x的值,即可确定出∠A的度数.【解答】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得2x=,解得:x=36°,则∠A=36°,故选B8.若=0无解,则m的值是()A.3 B.﹣3 C.﹣2 D.2【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到m的值,经检验即可得到分式方程的解.【解答】解:去分母得:m﹣x+1=0,由分式方程无解,得到x﹣3=0,即x=3,把x=3代入整式方程得:m=2,故选D9.如图,在平行四边形ABCD中,AB=9cm,AD=11cm,AC,BD相交于点O,OE⊥BD,交AD 于点E,则△ABE的周长为()A.20cm B.18cm C.16cm D.10cm【考点】平行四边形的性质.【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,即可得出答案.【解答】解:∵点O是BD中点,EO⊥BD,∴EO是线段BD的中垂线,∴BE=ED,故可得△ABE的周长=AB+AD=20cm.故选:A.10.如图,将边长为cm的正方形ABCD绕点A逆时针方向旋转30°后得到正方形AB′C′D′,则图中阴影部分的面积为()A.cm2B.cm2C.cm2D.(3﹣)cm2【考点】旋转的性质;正方形的性质.【分析】设BC、C′D′相交于点M,连结AM.根据HL即可证明△AD′M≌△ABM,可得到∠MAB=30°,然后可求得MB的长,从而可求得△ABM的面积,最后利用正方形的面积减去△AD′M和△ABM的面积进行计算即可.【解答】解:设BC、C′D′相交于点M,连结AM.由旋转的性质可知:AD=AD′.在直角△AD′M和直角ABM中,∴△AD′M≌△ABM.=S△AD′B.∴∠BAM=∠D′AM,S△AMB∵∠DAD′=30°,∴∠MAB=×(90°﹣30°)=30°.又∵BA=,∴MB=AB=1.=×1×=.∴S△AMB=()2=3,又∵S正方形ABCD2×=3﹣.∴S阴影=3﹣故选:D.二、耐心填一填(每小题3分,共18分)11.(x+y≠0)【考点】分式的基本性质.【分析】利用分式的基本性质,分式分子分母同时乘以x+y即可.【解答】解:==.12.若x2+2mx+1是一个完全平方式,则m=±1.【考点】完全平方式.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+2mx+1是一个完全平方式,∴m=±1,故答案为:±113.汉字“一、中、王、木”它们都是轴对称图形图形,其中“一、中、王”几个字可看成中心对称图形.【考点】中心对称图形.【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:“一、中、王、木”都是轴对称图形,其中“一、中、王、”几个字可看成中心对称图形.故答案为:轴对称图形;“一、中、王”.14.请你在下面横线上写出一个原命题是真命题,而逆命题是假命题的命题.对顶角相等(答案不唯一).【考点】命题与定理.【分析】命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项;题设成立,结论也成立的叫真命题,而题设成立,结论不成立的为假命题,把一个命题的题设和结论互换即可得到其逆命题.【解答】解:如对顶角相等(答案不唯一),故答案为:对顶角相等(答案不唯一).15.若不等式组的解集是x>4,那么m的取值范围是m≤4.【考点】解一元一次不等式组;不等式的解集.【分析】求出不等式①的解集,再与已知不等式组的解集相比较即可得出结论.【解答】解:,解不等式①得,x>4,∵不等式组的解集为x>4,∴m≤4.故答案为:m≤4.16.如图△ABC的三边长分别为30,48,50,以它的三边中点为顶点组成第一个新三角形,再以第一个新三角形三边中点为顶点组成第二个新三角形,如此继续,则第6个新三角形的周长为.【考点】三角形中位线定理.【分析】根据三角形中位线定理依次可求得第二个三角形和第三个三角形的周长,可找出规律,进而可求得第6个三角形的周长.【解答】解:如图,∵E、F分别为AB、AC的中点,∴EF=BC,同理可得DF=AC,DE=AB,∴EF+DF+DE=(AB+BC+CA),即△DEF的周长=△ABC的周长,∴第二个三角形的周长是原三角形周长的,同理可得△GHI的周长=△DEF的周长=△ABC的周长=()2△ABC的周长,∴第三个三角形的周长是原三角形周长的()2,∴第六个三角形的周长是原三角形周长的()5=,故答案为:.三、解答题(本题包括9个小题,共计72分,要求写出必要的解题过程)17.因式分解:(1)a3﹣a(2)9+6(a+b)+(a+b)2.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提公因式a,再利用平方差公式进行二次分解即可;(2)直接利用完全平方公式进行分解即可.【解答】解:(1)原式=a(a2﹣1)=a(a+1)(a﹣1);(2)原式=(3+a+b)2.18.化简:【考点】分式的加减法.【分析】把异分母分式转化成同分母分式,然后进行化简.【解答】解:原式====.19.解不等式,并把解集表示在数轴上.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据不等式性质依次去分母、移项、合并同类项、系数化为1求得不等式的解集,再将解集表示在数轴上即可.【解答】解:去分母,得:x+5﹣2<3x+2,移项,得:x﹣3x<2﹣5+2,合并同类项,得:﹣2x<﹣1,系数化为1,得:x>,将不等式解集表示在数轴上如下:20.解方程: +=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x﹣1=x﹣4,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.21.点D在等边三角形△ABC的边BC上,将△ABD绕点A旋转,使得旋转后点B的对应点为点C.(1)在图1中画出旋转后的图形.(2)小颖是这样做的:如图2,过点C画BA的平行线L,在L上取CE=BD,连接AE,则△ACE 即为旋转后的图形.小颖这样做对吗?请你说说理由.【考点】作图﹣旋转变换.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)直接利用等边三角形的性质结合全等三角形的判定方法进而得出答案.【解答】解:(1)如图1所示:△ACD′即为所求;(2)小颖这样做对,理由:如图2,∵△ABC是等边三角形,∴AB=AC,∠B=∠ACB=60°,∵AB∥直线L,∴∠B+∠BCE=180°,∴∠ACE=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴△ACE即为旋转后的图形.22.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.【考点】勾股定理;全等三角形的判定与性质;等腰直角三角形.【分析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD2+DB2=DE2.【解答】证明:(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.∵BC=AC,DC=EC,∴△ACE≌△BCD.(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2.23.兴化市从今年1月1日起调整居民用水价格,每立方米水费上涨.小刚家去年12月份的水费为15元,今年8月的水费为35元,已知小刚家今年8月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格?【考点】分式方程的应用.【分析】设去年居民用水价格为x元/m3,表示出今年居民用水价格为(1+)x元/m3,然后根据今年8月的用水量比去年12月的用水量多5m3列出方程并求解即可.【解答】解:设去年居民用水价格为x元/m3,表示出今年居民用水价格为(1+)x元/m3,由题意得,﹣=5,解得x=,经检验:x=是原分式方程的解,(1+)x=(1+)×=3元.答:该市今年居民用水的价格是3元/m3.24.如图,将▱ABCD纸片折叠,使得点C落在点A的位置,折痕为EF,连接CE,求证:四边形AFCE是平行四边形.【考点】翻折变换(折叠问题);平行四边形的判定.【分析】由折叠的性质得到∠1=∠2,AF=EFC.根据平行四边形的性质得到AD∥BC.由平行线的性质得到∠3=∠2.根据等腰三角形的性质得到AE=FC.即可得到结论.【解答】证明:如图,∵点C与点A重合,折痕为EF,∴∠1=∠2,AF=FC.∵四边形ABCD为平行四边形,∴AD∥BC.∴∠3=∠2.∴∠1=∠3.∴AE=AF.∴AE=FC.又∵AE∥FC,∴四边形AFCE是平行四边形.25.紫薇花园住宅小区计划购买并栽种甲、乙两种树苗共280株.已知甲种树苗每株60元,乙种树苗每株90元.(1)若购买树苗共用21000元,则甲乙两种树苗应各买多少株?(2)设购买这两种树苗共用y元,求y(元)与甲种树苗x(株)之间的函数关系式.(3)据统计,甲乙两种树苗每株对空气的净化指数分别为0.2和0.6,如何购买甲乙两种树苗才能保证该小区的空气净化指数之和不低于88而且费用最低?并请你求出最低费用的是多少元?【考点】一次函数的应用.【分析】(1)设购买甲种树苗x株,则购买乙种树苗株,列出方程即可解决.(2)根据总费用=购买甲种树苗费用+购买乙种树苗费用,即可解决问题.(3)列出不等式求出x的范围,根据一次函数的性质即可解决问题.【解答】解:(1)设购买甲种树苗x株,则购买乙种树苗株.由题意,60x+90=21000,解得x=140,答:购买甲种树苗140株,则购买乙种树苗140株.(2)y=60x+90=﹣30x+25200.(3)由题意,0.2x+0.6≥88,解得x≤200,∵y=﹣30x+25200,﹣30<0,y随x增大而减小,∴x=200时,y最小值=19200,∴购买甲种树苗200株,则购买乙种树苗80株时费用最小,小时费用最小值为19200元.2017年3月4日。

八年级下期末数学试卷6(有答案)

八年级下期末数学试卷6(有答案)

八年级下期末数学试卷6(有答案)一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.下列图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男、女同学的人数D.端午节期间苏州市场上粽子的质量3.若正方形的面积是12cm2,则边长a满足()A.2cm<a<3cm B.3cm<a<4cm C.4cm<a<5cm D.5cm<a<6cm4.下列运算正确的是()A.﹣=B.÷=4 C.=﹣2 D.(﹣)2=25.已知▱ABCD中,AC、BD交于点O.下列结论中,不一定成立的是()A.▱ABCD关于点O对称B.OA=OCC.AC=BD D.∠B=∠D6.一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是红球B.至少有1个球是白球C.至少有2个球是红球D.至少有2个球是白球7.若点P、Q都在函数y=的图象上,则下列结论中正确的是()A.a>b B.a=bC.a<b D.a、b的大小关系无法确定8.如图,已知在正方形网格中的两个格点三角形是位似形,它们的位似中心是()A.点A B.点B C.点C D.点D9.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A.(4,2)B.(2,4)C.(,3)D.(3,)10.如图,正方形纸片ABCD的边长为4cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是()A.4cm B.2cm C.cm D.1cm二、填空题:本大题共8小题,每小题2分,共16分.把答案直接填在答题卡相应位置上.11.若3a=2b,则a:b=.12.计算:(+1)2=.13.若式子在实数范围内有意义,则x的取值范围是.14.若点P是线段AB的黄金分割点(PA>PB),且AB=10cm,则PA≈cm.(精确到0.01cm)15.如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为.16.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=m.17.如图,点A在函数y=(x>0)的图象上,点B在函数y=(x>0)的图象上,点C在x轴上.若AB∥x轴,则△ABC的面积为.18.已知菱形ABCD中,AC=6cm,BD=4cm.若以BD为边作正方形BDEF,则AF=cm.三、解答题:本大题共11小题,共64分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:(+×)×.20.解方程: +=1.21.求代数式÷(1+)的值,其中x=+1.22.某校开展学生安全知识竞赛.现抽取部分学生的竞赛成绩(满分为100分,得分均为整数)进行统计,(1)a=,n=;(2)补全频数分布直方图;(3)该校共有2 000名学生.若成绩在80分以上的为优秀,请你估计该校成绩优秀的学生人数.23.一个不透明的袋子中装有2个白球,1个红球,1个黑球,每个球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到白球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,求两次都摸到白球的概率.(用树状图或列表法求解).24.如图,已知四边形ABCD是平行四边形.(1)用直尺和圆规作出∠ABC的平分线BE,BE交CD的延长线于点E,交AD于点F;(保留作图痕迹,不写作法)(2)若AB=2cm,BC=3cm,BE=5cm,求BF的长.25.在“爱心捐款”活动中,甲班共捐款300元,乙班共捐款225元.已知甲班的人均捐款额是乙班的1.2倍,且甲班人数比乙班多5人.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.26.如图,在△ABC中,∠BAC=50°,将△ABC绕点A按逆时针方向旋转后得△AB1C1.当B1B∥AC时,求∠BAC1的度数.27.如图,△ABC的中线AD、BE、CF相交于点G,H、I分别是BG、CG的中点.(1)求证:四边形EFHI是平行四边形;(2)①当AD与BC满足条件时,四边形EFHI是矩形;②当AD与BC满足条件时,四边形EFHI是菱形.28.如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.(1)m=;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;29.如图,已知直线a∥b,a、b之间的距离为4cm.A、B是直线a上的两个定点,C、D是直线b上的两个动点(点C在点D的左侧),且AB=CD=10cm,连接AC、BD、BC,将△ABC沿BC翻折得△A1BC.(1)当A1、D两点重合时,AC=cm;(2)当A1、D两点不重合时,①连接A1D,求证:A1D∥BC;②若以点A1、C、B、D为顶点的四边形是矩形,求AC的长.八年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.下列图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选A.2.下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男、女同学的人数D.端午节期间苏州市场上粽子的质量【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【解答】解:一批手机电池的使用寿命适合抽样调查;中国公民保护环境的意识适合抽样调查;你所在学校的男、女同学的人数适合普查;端午节期间苏州市场上粽子的质量适合抽样调查,故选:C.3.若正方形的面积是12cm2,则边长a满足()A.2cm<a<3cm B.3cm<a<4cm C.4cm<a<5cm D.5cm<a<6cm【考点】估算无理数的大小.【分析】设正方形的边长为acm,根据正方形的面积公式求出a的值即可.【解答】解:设正方形的边长为acm,(a>0),∵正方形的面积是12cm2,∴a2=12,A.2<a<3,所以4<a2<9,故A错,B.3<a<4,所以9<a2<16,故B正确,C.4<a<5,所以16<a2<25,故C错,D.5<a<6,所以25<a2<36,故D错,故选:B4.下列运算正确的是()A.﹣=B.÷=4 C.=﹣2 D.(﹣)2=2【考点】二次根式的混合运算.【分析】根据二次根式的化简、二次根式的除法进行计算即可.【解答】解:A、﹣=,故本选项错误;B、÷=2,故本选项错误;C、=2,故本选项错误;D、(﹣)2=2,故本选项正确;故选D.5.已知▱ABCD中,AC、BD交于点O.下列结论中,不一定成立的是()A.▱ABCD关于点O对称B.OA=OCC.AC=BD D.∠B=∠D【考点】平行四边形的性质.【分析】根据平行四边形的性质:平行四边形的对边相等,对角线互相平分即可作出判断.【解答】解:A、▱ABCD关于点O对称,正确,不合题意;B、根据平行四边形的对角线互相平分可得AO=CO,正确,不合题意;C、平行四边形的对角线不一定相等,则AC=BD错误,符合题意;D、根据平行四边形的对角相等可得∠B=∠D,正确,不合题意.故选:C.6.一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个球是红球B .至少有1个球是白球C .至少有2个球是红球D .至少有2个球是白球 【考点】随机事件.【分析】必然事件就是一定发生的事件,根据定义即可判断. 【解答】解:A 、至少有1个球是红球是随机事件,选项错误; B 、至少有1个球是白球是必然事件,选项正确; C 、至少有2个球是红球是随机事件,选项错误; D 、至少有2个球是白球是随机事件,选项错误. 故选B .7.若点P 、Q 都在函数y=的图象上,则下列结论中正确的是( )A .a >bB .a=bC .a <bD .a 、b 的大小关系无法确定【考点】反比例函数图象上点的坐标特征.【分析】分别把各点代入反比例函数y=,求出a 、b 的值,再比较大小即可.【解答】解:∵点P 、Q 都在函数y=的图象上,∴a=,b=,∴a >b . 故选A .8.如图,已知在正方形网格中的两个格点三角形是位似形,它们的位似中心是( )A .点AB .点BC .点CD .点D 【考点】位似变换.【分析】利用对应点的连线都经过同一点进行判断. 【解答】解:如图,位似中心为点A .故选A .9.将矩形OABC 如图放置,O 为原点.若点A (﹣1,2),点B 的纵坐标是,则点C 的坐标是( )【考点】矩形的性质;坐标与图形性质.【分析】首先构造直角三角形,利用相似三角形的判定与性质以及结合全等三角形的判定与性质得出CM=,MO=3,进而得出答案.【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中,∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(﹣1,2),点B的纵坐标是,∴BN=,∴CM=,∴MO=3,∴点C的坐标是:(3,).故选:D.10.如图,正方形纸片ABCD的边长为4cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是()A.4cm B.2cm C.cm D.1cm【考点】轨迹;翻折变换(折叠问题).【分析】如图,取AB、CD中点K、G,连接KG、BD交于点O,根据点Q运动的路线就是线段OG即可解决问题.【解答】解:如图,取AB、CD中点K、G,连接KG、BD交于点O.由题意可知点Q运动的路线就是线段OG,∵DO=OB,DG=GC,∴OG=BC=×4=2.∴点Q移动路线长度的最大值是2.故选B.二、填空题:本大题共8小题,每小题2分,共16分.把答案直接填在答题卡相应位置上.11.若3a=2b,则a:b=2:3.【考点】比例的性质.【分析】利用比例的性质内项之积等于外项之积求解.【解答】解:∵3a=2b,∴a:b=2:3.故答案为2:3.12.计算:(+1)2=3+2.【考点】二次根式的混合运算.【分析】利用完全平方公式计算.【解答】解:原式=2+2+1=3+2.故答案为3+2.13.若式子在实数范围内有意义,则x的取值范围是x≥﹣1且x≠0.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:∵式子在实数范围内有意义,∴x+1≥0,且x≠0,解得:x≥﹣1且x≠0,故答案为:x≥﹣1且x≠014.若点P是线段AB的黄金分割点(PA>PB),且AB=10cm,则PA≈ 6.18cm.(精确到0.01cm)【考点】黄金分割.【分析】根据黄金分割点的定义,知AP是较长线段,那么AP=AB≈0.618AB,代入计算即可.【解答】解:∵点P是线段AB的黄金分割点(PA>PB),且AB=10cm,∴AP=AB≈0.618×10≈6.18(cm).故答案为6.18.15.如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为0.600.【考点】利用频率估计概率.【分析】观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.【解答】解:依题意得击中靶心频率逐渐稳定在0.600附近,估计这名射手射击一次,击中靶心的概率约为0.600.故答案为:0.600.16.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=2m.【考点】相似三角形的应用;中心投影.【分析】首先判定△ABE∽△CDE,根据相似三角形的性质可得=,然后代入数值进行计算即可.【解答】解:∵AB⊥ED,CD⊥ED,∴AB∥DC,∴△ABE∽△CDE,∴=,∵AB=1.5m,CD=6m,BD=6m,∴=,解得:EB=2,故答案为:2.17.如图,点A在函数y=(x>0)的图象上,点B在函数y=(x>0)的图象上,点C在x轴上.若AB∥x轴,则△ABC的面积为2.【考点】反比例函数系数k的几何意义.【分析】由AB∥x轴,设点A(,m),B(,m),根据三角形的面积公式即可得出结论.【解答】解:设点A(,m),B(,m),=•(﹣)•m=2.∴S△ABC18.已知菱形ABCD中,AC=6cm,BD=4cm.若以BD为边作正方形BDEF,则AF=或cm.【考点】正方形的性质;菱形的性质.【分析】作出图形,根据菱形的对角线互相垂直平分求出AO、BO,然后分正方形在A、C的两边两种情况延长CA(或AC)交EF于点M(或点N),根据勾股定理求出AF的长度即可得出结论.【解答】解:以BD为边作正方形BDEF分两种情况:①如图1,正方形BDEF在点A一侧时,延长CA交EF于点M.∵四边形ABCD为菱形,AC=6cm,BD=4cm,∴OB=2cm,OA=3cm.∵四边形BDEF为正方形,∴FM=BO=2cm,AM=DE﹣OA=1cm,∴AF==cm;②如图2,正方形BDEF在点C一侧时,延长AC交EF于点N,∵四边形ABCD为菱形,AC=6cm,BD=4cm,∴OB=2cm,OA=3cm.∵四边形BDEF为正方形,∴FN=BO=2cm,AN=DE+OA=7cm,∴AF==cm.故答案为:或.三、解答题:本大题共11小题,共64分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:(+×)×.【考点】二次根式的混合运算.【分析】直接利用二次根式的性质化简求出答案.【解答】解:原式=3+=3+15=18.20.解方程: +=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣1=x﹣2,解得:x=3,经检验x=3是分式方程的解.21.求代数式÷(1+)的值,其中x=+1.【解答】解:原式=÷=•=,当x=+1时,原式==.22.某校开展学生安全知识竞赛.现抽取部分学生的竞赛成绩(满分为100分,得分均为整数)进行统计,绘制了图中两幅不完整的统计图.根据图中信息,回答下列问题:(1)a=60,n=54;(2)补全频数分布直方图;(3)该校共有2 000名学生.若成绩在80分以上的为优秀,请你估计该校成绩优秀的学生人数.【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】(1)根据A组的人数是30人,所占的百分比是10%,据此即可求得抽取的总人数,然后利用百分比的计算方法求得B组的人数,进而求得a和E组的人数,利用360乘以E组对应的比例求得n的值;(2)利用(1)的结果可以补全直方图;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)抽取的总人数是30÷10%=300(人),则B组的人数是300×20%=60(人),a=300×25%=75,E组的人数是300﹣30﹣60﹣75﹣90=45(人)n=360×=54.故答案是:75,54;(2);(3)估计该校成绩优秀的学生人数是:2000×=900(人).答:估计该校成绩优秀的学生人数是900人.23.一个不透明的袋子中装有2个白球,1个红球,1个黑球,每个球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到白球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,求两次都摸到白球的概率.(用树状图或列表法求解).【考点】列表法与树状图法;概率公式.【分析】(1)根据4个小球中白球的个数,即可确定出从中任意摸出1个球,恰好摸到白球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到白球的情况数,即可求出所求的概率.【解答】解:(1)4个小球中有2个白球,则任意摸出1个球,恰好摸到白球的概率,故答案为:;则P(两次摸到白球)==.24.如图,已知四边形ABCD是平行四边形.(1)用直尺和圆规作出∠ABC的平分线BE,BE交CD的延长线于点E,交AD于点F;(保留作图痕迹,不写作法)(2)若AB=2cm,BC=3cm,BE=5cm,求BF的长.【考点】平行四边形的性质;作图—基本作图.【分析】(1)利用尺规作出∠ABC的平分线即可.(2)先证明AB=AF=2,BC=CE=3,再根据AB∥DE,推出=,列出方程即可解决问题.【解答】解:(1)答案如图所示.(2)∵四边形ABCD是平行四边形,∴AB=CD=2,BC=AD=3,AD∥BC,AB∥CD,∵BE平分∠ABC,∴∠ABF=∠CBE,∠CBE=∠AFB,∴∠ABF=∠AFB,∴AB=AF=2,同理BC=CE=3,设BF=x,∵AB∥DE,∴=,∴=,∴x=.25.在“爱心捐款”活动中,甲班共捐款300元,乙班共捐款225元.已知甲班的人均捐款额是乙班的1.2倍,且甲班人数比乙班多5人.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.【考点】分式方程的应用.【分析】首先把应用题补充完整,可以求甲班的人数;然后设甲班有x人,则乙班有(x﹣5)人,再根据甲班的人均捐款额是乙班的1.2倍列出方程,再解即可.【解答】在“爱心捐款”活动中,甲班共捐款300元,乙班共捐款225元.已知甲班的人均捐款额是乙班的1.2倍,且甲班人数比乙班多5人,求甲班的人数.解:设甲班有x人,则乙班有(x﹣5)人,由题意得:=×1.2,解得:x=50,经检验:x=50是分式方程的解,答:甲班有50人.26.如图,在△ABC中,∠BAC=50°,将△ABC绕点A按逆时针方向旋转后得△AB1C1.当B1B∥AC时,求∠BAC1的度数.【考点】旋转的性质;平行线的性质.【分析】先依据平行的性质可求得∠ABB1的度数,然后再由旋转的性质得到△AB1B为等腰三角形,∠B1AC1=50°,再求得∠BAB1的度数,最后依据∠BAC1=∠BAB1﹣∠C1AB1求解即可.【解答】解:∵B1B∥AC,∴∠ABB1=∠BAC=50°.∵由旋转的性质可知:∠B1AC1=∠BAC=50°,AB=AB1.∴∠ABB1=∠AB1B=50°.∴∠BAB1=80°∴∠BAC1=∠BAB1﹣∠C1AB1=80°﹣50°=30°.27.如图,△ABC的中线AD、BE、CF相交于点G,H、I分别是BG、CG的中点.(1)求证:四边形EFHI是平行四边形;(2)①当AD与BC满足条件AD⊥BC时,四边形EFHI是矩形;②当AD与BC满足条件BC=AD时,四边形EFHI是菱形.【考点】矩形的判定;三角形中位线定理;平行四边形的判定与性质;菱形的判定.【分析】(1)证出EF、HI分别是△ABC、△BCG的中位线,根据三角形中位线定理可得EF∥BC且EF=BC,HI∥BC且PQ=BC,进而可得EF∥HI且EF=HI.根据一组对边平行且相等的四边形是平行四边形可得结论;(2)①由三角形中位线定理得出FH∥AD,再证出EF⊥FH即可;②与三角形重心定理得出AG=AD,证出AG=BC,由三角形中位线定理和添加条件得出FH=EF,即可得出结论.【解答】(1)证明:∵BE,CF是△ABC的中线,∴EF是△ABC的中位线,∴EF∥BC且EF=BC.∵H、I分别是BG、CG的中点.,∴HI是△BCG的中位线,∴HI∥BC且HI=BC,∴EF∥HI且EF=HI.∴四边形EFHI是平行四边形.(2)解:①当AD与BC满足条件AD⊥BC时,四边形EFHI是矩形;理由如下:同(1)得:FH是△ABG的中位线,∴FH∥AG,FH=AG,∴FH∥AD,∵EF∥BC,AD⊥BC,∴EF⊥FH,∴∠EFH=90°,∵四边形EFHI是平行四边形,∴四边形EFHI是矩形;故答案为:AD⊥BC;②当AD与BC满足条件BC=AD时,四边形EFHI是菱形;理由如下:∵△ABC的中线AD、BE、CF相交于点G,∴AG=AD,∵BC=AD,∴AG=BC,∵FH=AG,EF=BC,∴FH=EF,又∵四边形EFHI是平行四边形,∴四边形EFHI是菱形;故答案为:BC=AD.28.如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.(1)m=4;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.【考点】反比例函数综合题.【分析】(1)有点A的坐标结合反比例函数图象上点的坐标特征,即可得出m的值;(2)由反比例函数的解析式结合反比例函数图象上点的坐标特征即可得出点B的坐标,利用待定系数法即可求出直线AB的解析式,再领y=0求出x值即可得出点C的坐标;(3)假设存在,设点E的坐标为(n,0),分∠ABE=90°、∠BAE=90°以及∠AEB=90°三种情况考虑:①当∠ABE=90°时,根据等腰三角形的性质,利用勾股定理即可找出关于n的一元二次方程,解方程即可得出结论;②当∠BAE=90°时,根据∠ABE>∠ACD可得出两三角形不可能相似;③当∠AEB=90°时,根据A、B的坐标可得出AB的长度,以AB为直径作圆可知圆与x轴无交点,故该情况不存在.综上即可得出结论.【解答】解:(1)∵点A(1,4)在反比例函数y=(x>0)的图象上,∴m=1×4=4,故答案为:4.(2)∵点B(2,a)在反比例函数y=的图象上,∴a==2,∴B(2,2).设过点A、B的直线的解析式为y=kx+b,∴,解得:,∴过点A、B的直线的解析式为y=﹣2x+6.当y=0时,有﹣2x+6=0,解得:x=3,∴点C的坐标为(3,0).(3)假设存在,设点E的坐标为(n,0).①当∠ABE=90°时(如图1所示),∵A(1,4),B(2,2),C(3,0),∴B是AC的中点,∴EB垂直平分AC,EA=EC=n+3.由勾股定理得:AD2+DE2=AE2,即42+(x+1)2=(x+3)2,解得:x=﹣2,此时点E的坐标为(﹣2,0);②当∠BAE=90°时,∠ABE>∠ACD,故△EBA与△ACD不可能相似;③当∠AEB=90°时,∵A(1,4),B(2,2),∴AB=,2>,∴以AB为直径作圆与x轴无交点(如图3),∴不存在∠AEB=90°.综上可知:在x轴上存在点E,使以A、B、E为顶点的三角形与△ACD相似,点E的坐标为(﹣2,0).29.如图,已知直线a ∥b ,a 、b 之间的距离为4cm .A 、B 是直线a 上的两个定点,C 、D 是直线b 上的两个动点(点C 在点D 的左侧),且AB=CD=10cm ,连接AC 、BD 、BC ,将△ABC 沿BC 翻折得△A 1BC . (1)当A 1、D 两点重合时,AC= 10 cm ; (2)当A 1、D 两点不重合时, ①连接A 1D ,求证:A 1D ∥BC ;②若以点A 1、C 、B 、D 为顶点的四边形是矩形,求AC 的长.【考点】四边形综合题. 【分析】(1)当A 1、D 两点重合时,可以证到四边形ACDB 是菱形,从而得到AC=AB=10cm .(2)①过点A 1作A 1E ⊥BC ,垂足为E ,过点D 作DF ⊥BC ,垂足为F ,如图2,可以证到S △DBC =S △ABC =S △A1BC ,从而得到DF=A 1E ,由A 1E ⊥BC ,DF ⊥BC 可以证到A 1E ∥DF ,从而得到四边形A 1DFE 是平行四边形,就可得到A 1D ∥BC .②若以A 1、C 、B 、D 为顶点的四边形是矩形,则有三个位置,分别是图3①、图3②、图3③.对于图3①、图3②,过点C 作CH ⊥AB ,垂足为H ,运用相似三角形的性质建立方程就可求出AH ,然后运用勾股定理就可求出AC 的长;对于图3③,直接运用勾股定理就可求出AC 的长 【解答】解:(1)当A 1、D 两点重合时,如图1①和图1②,∵CD ∥AB ,CD=AB ,∴四边形ACDB 是平行四边形.∵△ABC 沿BC 折叠得△A 1BC ,A 1、D 两点重合,∴AC=A1C=DC.∴平行四边形ACDB是菱形.∴AC=AB=10(cm).故答案为:10.(2)当A1、D两点不重合时,①A1D∥BC.证明:过点A1作A1E⊥BC,垂足为E,过点D作DF⊥BC,垂足为F,如图2,∵CD∥AB,CD=AB,∴四边形ACDB是平行四边形.∴S△ABC =S△DBC.∵△ABC沿BC折叠得△A1BC,∴S△ABC =S△A1BC.∴S△DBC =S△A1BC.∴BC•DF=BC•A1E.∴DF=A1E.∵A1E⊥BC,DF⊥BC,∴∠A1EB=∠DFB=90°.∴A1E∥DF.∴四边形A1DFE是平行四边形.∴A1D∥EF.∴A1D∥BC.②Ⅰ.如图3①,过点C作CH⊥AB,垂足为H,此时AH<BH.∵四边形A1DBC是矩形,∴∠A1CB=90°.∵△ABC沿BC折叠得△A1BC,∴∠ACB=∠A1CB.∴∠ACB=90°.∵CH⊥AB,∴∠AHC=∠CHB=90°.∴∠ACH=90°﹣∠HCB=∠CBH.∴△AHC∽△CHB.∴.∴CH2=AH•BH.∵AB=10,CH=4,∴3=AH•(10﹣AH).解得:AH=2或AH=8.∵AH<BH,∴AH=2.∴AC2=CH2+AH2=16+4=20.∴AC=2.Ⅱ.如图3②,过点C作CH⊥AB,垂足为H,此时AH>BH.同理可得:AH=8.∴AC2=CH2+AH2=16+64=80.∴AC=4.Ⅲ.如图3③,∵四边形A1DCB是矩形,∴∠A1BC=90°.∵△ABC沿BC折叠得△A1BC,∴∠ABC=∠A1BC.∴∠ABC=90°.∴AC2=BC2+AB2=16+100=116.∴AC=2.综上所述;当以A1、C、B、D为顶点的四边形是矩形时,AC的长为2或24或2.2016年11月21日。

八年级下期末数学试卷6(有答案)

八年级下期末数学试卷6(有答案)

八年级下期末数学试卷6(有答案)一、选择题(每题2分,共12分)1.靖江市今年约5000名初三学生参加数学中考,从中抽取300名考生的数学成绩进行分析,则在该调查中,样本指的是()A.300 B.300名C.5000名考生的数学成绩D.300名考生的数学成绩2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列各式:,,,中,是分式的共有()A.1个B.2个C.3个D.4个4.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中只装有3个黄球且摸出黄球的概率为,那么袋中共有球()A.6个B.7个C.9个D.12个5.已知点A(﹣2,y1),B(﹣1,y2),C(3,y3)都在反比例函数y=(k>0)的图象上,则()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y16.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG:②BG=GC;③AG∥CF;④∠GAE=45°.则正确结论的个数有()A.1 B.2 C.3 D.4二、填空题(每题2分,共20分)7.当x=时,分式的值为零.8.在比例尺为1:5 000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离km.9.若方程=2﹣有增根,则m=.10.一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个,红球3个.若从中任意摸出一个球,这个球是白球的概率为.11.已知y=与y=x﹣5相交于点P(a,b),则﹣的值为.12.化简:(a﹣b)=.13.计算: +++…+=.14.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为.15.如图,菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为.16.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C,若△OBC的面积为6,则k=.三、解答题17.计算:(1)﹣+|1﹣|(2)﹣÷.18.解方程:(1)3x2+5x﹣2=0(2)=+x.19.已知,如图△ABC,请在网格纸中画.(1)下移5,左移1个单位;(2)△ABC关于O点成中心对称图形;(3)△ABC以点O为旋转中心,顺时针旋转90°.20.某中学为了解学生每天参加户外活动的情况,对部分学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请根据图中信息解答下列问题:(1)求户外活动时间为1.5小时的人数,并补全频数分布直方图(图1);(2)若该中学共有1000名学生,请估计该校每天参加户外活动的时间为1小时的学生人数.21.已知关于x的方程x2﹣2(k﹣3)x+k2﹣4k﹣1=0(1)若这个方程有实数根,求k的取值范围;(2)若此方程有一个根是1,请求出k的值.22.如图,AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.23.某公司在工程招标时,接到甲、乙两个工程队的投标书.每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:方案①:甲队单独完成此项工程刚好如期完工;方案②:乙队单独完成此项工程要比规定工期多用5天;方案③:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工;(1)求甲、乙两队单独完成此项工程各需多少天?(2)如果工程不能如期完工,公司每天将损失3000元,如果你是公司经理,你觉得哪一种施工方案划算,并说明理由.24.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.25.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(x>0)的图象上,点D的坐标为(4,3).(1)求k的值.(2)若将菱形ABCD沿x轴正方向平移m个单位,①当菱形的顶点B落在反比例函数的图象上,求m的值;②在平移中,若反比例函数图象与菱形的边AD始终有交点,求m的取值范围.八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题2分,共12分)1.靖江市今年约5000名初三学生参加数学中考,从中抽取300名考生的数学成绩进行分析,则在该调查中,样本指的是()A.300 B.300名C.5000名考生的数学成绩D.300名考生的数学成绩【考点】总体、个体、样本、样本容量.【分析】根据总体、样本的定义直接可得答案.【解答】解:靖江市约1500名初二学生参加数学考试是总体,300名考生的数学成绩是总体的一个样本,故选D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,不是中心对称图形.故选A.3.下列各式:,,,中,是分式的共有()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】根据分式的定义可得答案,一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.【解答】解:,,,中分式有、这2个,故选:B.4.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中只装有3个黄球且摸出黄球的概率为,那么袋中共有球()A.6个B.7个C.9个D.12个【考点】概率公式.【分析】根据黄球的概率公式列出方程求解即可.【解答】解:根据题意设袋中共有球m个,则=,所以m=9,故袋中有9个球.5.已知点A(﹣2,y1),B(﹣1,y2),C(3,y3)都在反比例函数y=(k>0)的图象上,则()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征找出y1、y2、y3的值,进行比较后即可得出结论.【解答】解:令反比例函数y=中x=﹣2,则y1=﹣,令反比例函数y=中x=﹣1,则y2=﹣k,令反比例函数y=中x=3,则y3=.∵k>0,∴>﹣>﹣k,即y3>y1>y2.故选B.6.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG:②BG=GC;③AG∥CF;④∠GAE=45°.则正确结论的个数有()A.1 B.2 C.3 D.4【考点】翻折变换(折叠问题);全等三角形的判定;正方形的性质.【分析】根据正方形的性质得出AB=AD=DC=6,∠B=D=90°,求出DE=2,AF=AB,根据HL推出Rt△ABG ≌Rt△AFG,推出BG=FG,∠AGB=∠AGF,设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得出(6﹣x)2+42=(x+2)2,求出x=3,得出BG=GF=CG,求出∠AGB=∠FCG,推出AG∥CF,根据全等得出∠DAE=∠FAE,∠BAG=∠FAG.【解答】解:∵四边形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°,∵CD=3DE,∴DE=2,∵△ADE沿AE折叠得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB,∵在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL).∴①正确;∵Rt△ABG≌Rt△AFG,∴BG=FG,∠AGB=∠AGF.设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2.在Rt△ECG中,由勾股定理得:CG2+CE2=EG2.∵CG=6﹣x,CE=4,EG=x+2,∴(6﹣x)2+42=(x+2)2,解得:x=3.∴BG=GF=CG=3.∴②正确;∵CG=GF,∴∠CFG=∠FCG.∵∠BGF=∠CFG+∠FCG,∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF.∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG.∴AG∥CF.∴③正确;∵△ADE沿AE折叠得到△AFE,∴△DAE≌△FAE.∴∠DAE=∠FAE.∵△ABG≌△AFG,∴∠BAG=∠FAG.∵∠BAD=90°,∴∠EAG=∠EAF+∠GAF=×90°=45°.∴④正确.故选:D.二、填空题(每题2分,共20分)7.当x=3时,分式的值为零.【考点】分式的值为零的条件.【分析】根据分式值为零的条件是分子等于零且分母不等于零,可得,据此求出x的值是多少即可.【解答】解:∵分式的值为0,∴,解得x=3.故答案为:3.8.在比例尺为1:5 000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离750km.【考点】比例线段.【分析】首先设两地的实际距离为xcm,然后根据比例尺的性质列方程:,解此方程即可求得答案,注意统一单位.【解答】解:设两地的实际距离为xcm,根据题意得:,解得:x=75000000,∵75000000cm=750km,∴两地的实际距离750km.故答案为:750.9.若方程=2﹣有增根,则m=﹣5.【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x ﹣5=0,得到x=5,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘以(x﹣5),得x=2(x﹣5)﹣m,化简,得m=x ﹣10,∵方程=2﹣有增根,∴x=5.m=x ﹣10=5﹣10=﹣5,故答案为:﹣5.10.一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个,红球3个.若从中任意摸出一个球,这个球是白球的概率为.【考点】概率公式.【分析】让白球的个数除以球的总数即为所求的概率.【解答】解:袋子中球的总数为2+1+3=6,白球有2个,则摸出白球的概率为=.11.已知y=与y=x ﹣5相交于点P (a ,b ),则﹣的值为﹣5.【考点】反比例函数与一次函数的交点问题.【分析】由两函数图象交于P 点,将P 坐标分别代入两函数解析式,得到ab 与a ﹣b 的值,将所求式子通分并利用同分母分式的减法法则计算,把ab 与a ﹣b 的值代入即可求出值.【解答】解:∵双曲线y=与直线y=x ﹣5相交于点P (a ,b ),∴b=,b=a ﹣5,∴ab=1,a ﹣b=5,则﹣===﹣5.故答案为:﹣5.12.化简:(a ﹣b )=﹣.【考点】二次根式的性质与化简.【分析】首先判断得出(a ﹣b )<0,进而将根号外的因式移到根号内,化简求出即可.【解答】解:∵有意义,∴(a ﹣b )<0,∴(a ﹣b )=﹣=﹣.故答案为:﹣.13.计算: +++…+=. 【考点】有理数的混合运算.【分析】原式利用拆项法变形,计算即可得到结果.【解答】解:原式=(1﹣+﹣+﹣+…+﹣)=(1﹣)=,故答案为:14.若方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则x 1+x 2﹣x 1x 2的值为3.【考点】根与系数的关系.【分析】先根据根与系数的关系得到x 1+x 2=2,x 1x 2=﹣1,然后利用整体代入的方法计算.【解答】解:根据题意得x 1+x 2=2,x 1x 2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=3.故答案为3.15.如图,菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为2.【考点】轴对称-最短路线问题;菱形的性质.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,∵AB=4,∠A=120°,∴点P′到CD的距离为4×=2,∴PK+QK的最小值为2.故答案为:2.16.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C,若△OBC的面积为6,则k=4.【考点】反比例函数系数k的几何意义.【分析】过D点作x轴的垂线交x轴于E点,可得到四边形DBAE,和三角形OBC的面积相等,通过面积转化,可求出k的值.【解答】解:过D点作x轴的垂线交x轴于E点,∵△ODE的面积和△OAC的面积相等.∴△OBC的面积和四边形DEAB的面积相等且为6.设D点的横坐标为x,纵坐标就为,∵D为OB的中点.∴EA=x,AB=,∴四边形DEAB的面积可表示为:(+)x=6k=4.故答案为:4.三、解答题17.计算:(1)﹣+|1﹣|(2)﹣÷.【考点】二次根式的混合运算;分式的混合运算.【分析】(1)根据二次根式的化简、绝对值以及分母有理化进行计算即可;(2)根据运算顺序,先算乘除,后算加减进行计算即可.【解答】解:(1)原式=3﹣+﹣1=3﹣1;(2)原式=﹣•=﹣=﹣.18.解方程:(1)3x2+5x﹣2=0(2)=+x.【考点】解一元二次方程-因式分解法;解分式方程.【分析】(1)先将左边分解因式,得出两个一元一次方程,求出方程的解即可即可;(2)方程两边乘以最简公分母x﹣2,将分式方程转化为整式方程即可.【解答】解:(1)3x2+5x﹣2=0,(3x﹣1)(x+2)=0,3x﹣1=0,x+2=0,x1=,x2=﹣2;(2)=+x,方程的两边同乘(x﹣2),得3x﹣4=2+x(x﹣2),解得:x=2或x=3.经检验:x=2是增根,所以原方程的解为:x=3.19.已知,如图△ABC,请在网格纸中画.(1)下移5,左移1个单位;(2)△ABC关于O点成中心对称图形;(3)△ABC以点O为旋转中心,顺时针旋转90°.【考点】作图-旋转变换;作图-平移变换.【分析】(1)利用平移的性质先画点A、B、C的对应点A1、B1、C1,然后得到△A1B1C1;(2)利用中心对称的性质先画点A、B、C的对应点A2、B2、C2,然后得到△A2B2C;(3)利用旋转的性质先画点A、B、C的对应点A3、B3、C3,然后得到△A3B3C3.【解答】解:(1)如图,△A1B1C1为所求;(2)如图,△A2B2C2为所求;(3)如图,△A3BC3为所求.20.某中学为了解学生每天参加户外活动的情况,对部分学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请根据图中信息解答下列问题:(1)求户外活动时间为1.5小时的人数,并补全频数分布直方图(图1);(2)若该中学共有1000名学生,请估计该校每天参加户外活动的时间为1小时的学生人数.【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】(1)根据时间是0.5小时的有10人,占20%,据此即可求得总人数,利用总人数乘以百分比即可求得时间是1.5小时的一组的人数,即可作出直方图;(2)先求出1小时的学生人数所占的百分比,再乘以总人数即可.【解答】解:(1)根据题意得:10÷20%=50(人),1.5小时的人数是:50×24%=12(人),如图:(2)根据题意得:1000×=400(人),答:该校每天参加户外活动的时间为1小时的学生人数是400人.21.已知关于x的方程x2﹣2(k﹣3)x+k2﹣4k﹣1=0(1)若这个方程有实数根,求k的取值范围;(2)若此方程有一个根是1,请求出k的值.【考点】根的判别式;一元二次方程的解.【分析】(1)由方程有实数根,得到根的判别式大于等于0,列出关于k的不等式,求出不等式的解集即可得到k的范围;(2)将x=1代入方程中,得到关于k的方程,求出方程的解即可得到k的值.【解答】解:(1)∵x2﹣2(k﹣3)x+k2﹣4k﹣1=0有实数根,∴△=4(k﹣3)2﹣4(k2﹣4k﹣1)=4k2﹣24k+36﹣4k2+16k+4=40﹣8k≥0,解得:k≤5;(2)将x=1代入方程得:12﹣2(k﹣3)+k2﹣4k﹣1=0,即k2﹣6k+6=0,△=(﹣6)2﹣4×6=12,解得k==3±,所以,k=3+或k=3﹣.22.如图,AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.【考点】平行四边形的性质;全等三角形的判定与性质;菱形的判定.【分析】(1)由平行四边形的性质得出AD∥BC,得出∠EAO=∠FCO,由ASA即可得出结论;(2)由△AOE≌△COF,得出对应边相等AE=CF,证出四边形AFCE是平行四边形,再由对角线EF⊥AC,即可得出四边形AFCE是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,∵O是OA的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)解:EF⊥AC时,四边形AFCE是菱形;理由如下:∵△AOE≌△COF,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.23.某公司在工程招标时,接到甲、乙两个工程队的投标书.每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:方案①:甲队单独完成此项工程刚好如期完工;方案②:乙队单独完成此项工程要比规定工期多用5天;方案③:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工;(1)求甲、乙两队单独完成此项工程各需多少天?(2)如果工程不能如期完工,公司每天将损失3000元,如果你是公司经理,你觉得哪一种施工方案划算,并说明理由.【考点】分式方程的应用.【分析】(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.求得规定天数的等量关系为:甲乙合作4天的工作总量+乙做(规定天数﹣4)天的工作量=1,据此列出方程并解答;(2)根据(1)的结论可以得到三种施工方案,分别求得每一施工方案的费用,然后比较,取其费用最少的方案即可.【解答】解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.依题意,得: ++=1,解得:x=20.经检验:x=20是原分式方程的解.∴(x+5)=25.答:甲队单独完成此项工程需20天,则乙队单独完成此项工程需25天;(2)由(1)得到:甲队单独完成此项工程需20天,则乙队单独完成此项工程需25天.这三种施工方案需要的工程款为:方案1:1.5×20=30(万元);方案2:1.1×(20+5)+5×0.3=29(万元);方案3:1.5×4+1.1×20=28(万元).∵3027.5>30>28,∴第三种施工方案最节省工程款.24.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.【考点】旋转的性质;正方形的判定;平移的性质.【分析】(1)由旋转及平移的性质可得到∠DEB+∠GFE=90°,可得出结论;(2)由旋转和平移的性质可得BE=CB,CG∥BE,从而可证明四边形CBEG是矩形,再结合CB=BE可证明四边形CBEG是正方形.【解答】(1)解:FG⊥ED.∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.25.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(x>0)的图象上,点D的坐标为(4,3).(1)求k的值.(2)若将菱形ABCD沿x轴正方向平移m个单位,①当菱形的顶点B落在反比例函数的图象上,求m的值;②在平移中,若反比例函数图象与菱形的边AD始终有交点,求m的取值范围.【考点】反比例函数综合题.【分析】(1)先由点D的坐标确定出AD,从而求出点A坐标,最后求出k,(2)①由平移的性质确定出B'的纵坐标,根据解析式求出点B'的横坐标,即可;②由平移的性质求出点D落在双曲线上的横坐标的值即可求出反比例函数图象与菱形的边AD始终有交点的m的取值范围.【解答】解:(1)过点D做x轴的垂线,垂足为F,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴菱形ABCD∴AD=5∴A(4,8),∵点A在反比例函数y=(x>0)的图象上,∴k=xy=4×8=32,(2)①将菱形ABCD沿x轴正方向平移m个单位,则平移后B'(m,5),∵菱形的顶点B落在反比例函数y=的图象上,∴m=,将菱形ABCD沿x轴正方向平移m个单位,使得点D落在函数y=(x>0)的图象D'处,过点D'做x轴的垂线,垂足为F',∵DF=3,∴DF'=3,∴点D'的纵坐标为3,∵D'落在函数y=(x>0)的图象上,∴3=,∴x=,∴OF'=,∴FF'=﹣4=∴0≤m≤.2016年9月7日。

新苏科版八年级数学下册期末模拟试卷六及答案解析.docx

新苏科版八年级数学下册期末模拟试卷六及答案解析.docx

(新课标)苏科版八年级下册终模拟试卷六一、选择题(每小题2分,共18分)1.(2013.昆明)为了了解2013年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是 ( )A .2013年昆明市九年级学生是总体B .每一名九年级学生是个体C .1000名九年级学生是总体的一个样本D .样本容量是10002.(2013.沈阳)计算2311x x +--的结果是 ( ) A .11x - B .11x- C .51x - D .51x -3.(20130的结果为 ( ) A .2B +1C .3D .54.(2013.宜昌)2012~2013NBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%.下列说法错误的是 ( )A .科比罚球投篮2次,一定全部命中B .科比罚球投篮2次,不一定全部命中C .科比罚球投篮1次,命中的可能性较大D .科比罚球投篮1次,不命中的可能性较小5.(2013.乐山)甲、乙两队同时分别从A ,B 两地沿同一条公路骑自行车到C 地,已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达G 地,求两人的平均速度.为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,其中正确的是 ( )A .1101002x x =+B .1101002x x =+C .1101002x x =- D .1101002x x =- 6.(2013.聊城)下列命题中的真命题是 ( )A .三个角相等的四边形是矩形B .对角线互相垂直且相等的四边形是正方形C .顺次连接矩形四边中点得到的四边形是菱形D .正五边形既是轴对称图形又是中心对称图形7.(2013.枣庄)如图,△ABC 中,AB =AC =10,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接D ,则△CDE 的周长为 ( )A .20B .12C .14D .138.如图,在□ABCD中,M,N分别是AB,CD的中点,BD分别交AN,CM于点P,Q,在结论:①DP=PQ=QB;②APS□ABCD中,正确的个数=CQ;③CQ=2MQ;④S△ADP=14为( )A.1 B.2 C.3 D.4 9.(2013.重庆)如图,在平面直角坐标系中,正方形OABC 的顶点O与原点重合,顶点A,C分别在x轴,y轴上,反比例(k≠0,x>0)的图像与正方形的两边AB,BC分别函数y=kx交于点M,N,ND⊥x轴,垂足为D,连接OM,ON,MN.下列结论:①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(02+1).其中正确结论的个数是( )A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)10.写出一个概率为0的事件(即不可能事件):_______.的图像经过点(1,2),则k 11.(2013.南通)反比例函数y=kx=_______.12.(2013.邵阳)如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件_______,使四边形ABCD 为矩形.13.用反证法证明命题“一个三角形的三个外角中,至多有一个锐角”的第一步是_______.14.计算:(1)11121250.2527-=_______. (2)(352)(352)=_______.15.(2013.黔西南)如图所示,菱形ABCD 的边长为4,且AE ⊥BC 于点E ,AF ⊥CD 于点F ,∠B =60°,则菱形的面积为_______.三、解答题(共64分)16.(6分)解方程:11262213x x =---.17.(6分)(2013-泰州)先化简,再求值:35222x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x=5-3.18.(10分)在一个不透明的袋中装有大小相同的4个小球,其中两个为黄球,1个为红球,一个为黑球,每次从袋中摸出一球,然后放回搅匀再摸,小红在摸球试验中得到下表中的部分数据.(1)请将表中的数据补充完整;(2)估计出现红球的频率的稳定值;(3)若继续试验10000次,出现红球的次数约为多少?19.(10分)(2013.镇江)某市对一大型超市销售的甲、乙、丙3种大米进行质量检测,共抽查大米200袋,质量评定分为A,B两个等级(A级优于B级),相应数据的统计图如图所示,根据所给信息,解决下列问题:(1)a=_______,b=_______;(2)已知该超市现有乙种大米750袋,根据检测结果,请你估计该超市乙种大米中有多少袋B级大米?(3)对于该超市的甲种和丙种大米,你会选择购买哪一种?运用统计知识简述理由.20.(10分)(2013.防城港)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料煅烧到800℃,然后停止煅烧进行锻造操作.第8 min时,材料温度降为600℃,煅烧时,温度y(℃)与时间x( min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例关系(如图),已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480℃时,需停止操作,那么锻造的操作时间有多长?21.(10分)(2013.常州)在Rt△ABC中,∠C=90°,AC=1,BC=3,点O为Rt△ABC内一点,连接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A'O'B(得到点A,O的对应点分别为点A',D'),并回答下列问题:∠ABC=_______,∠A'BC=,OA+OB+OC=_______.22.(12分)(20132和3的两个正方形放置在直线l上,如图①,他连接AD,CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转—定的角度,如图②,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线j 上,如图③,请你求出CF的长.参考答案1.D 2.B 3.C 4.A 5.A 6.C 7.C 8.C 9.C 10.明天夜晚太阳高照(答案不唯一)11.2 12.∠B=90°(答案不唯一)13.假设三角形的三个外角中,至少有两个锐角 14.(2)2+ 15. 16.x =-2317. 18.(1)18 60 72 0.2 0.26 0.24 0.26 0.24(2)0.24 (3)2400次 19.(1)55 5 (2)100袋 (3)选择购买丙种大米.20.(1)y =128x +32(0≤x ≤6).(2)4分钟. 21.画图略.22.(1)AD 与CF 还相等.。

八年级下期末模拟试卷六--数学.doc

八年级下期末模拟试卷六--数学.doc

08-09学年第二学期期末模拟试题(六)八 年 级 数 学一、填空题(每小题2分,共20分)1、已知432zy x ==,那么xz yz xy z y x 3232222+++-=_________。

2、若y 与x 1成反比例,x 与z1成正比例,则y 是z 的_________函数。

3、已知△ABC 的三边c b a ,,满足条件25102272--=--+-+c c b a b a ,则S △ABC=______.4、△ABC 的a 、b 两边分别为9,40,另一边c 为奇数,且c b a ++是3的倍数,则c 应为_________。

5、如图5,菱形ABCD 的一条对角线BD 上一点O ,到菱形一边 AB 的距离为2,那么点O 到另外一边BC 的距离为_________。

6、如果32)3)(2(12+++=+++x Bx A x x x ,则A =______,B =______。

7、设b a 、、c 满足abc ≠0,且c b a =+,则abc b a ac b a c bc a c b 222222222222-++-++-+的值是_________。

8、已知4321,,,x x x x 的标准差为3,则数据14,14,14,144321++++x x x x 的方差是_________。

9、双曲线xky =和一次函数b ax y +=的图像的两个交点分别是A )4,1(--,B ),2(m ,则=+b a 2_________。

10、若样本x ,6,3,1,2,3--的中位数是1,则该样本的方差是_________。

二、选择题(每小题3分,共18分)11、一个纳米粒子的直径是0.000 000 035米,用科学记数法表示为 ( )A.8105.3-⨯米 B.7105.3-⨯米 C.71035-⨯米D.71035.0-⨯米12、一架长10米的梯子,斜立在以竖直的墙上,这时梯足距墙底端6米,如果梯子的顶端图5沿墙下滑2米,那么梯足将滑 ( )A.2米B.1米C.0.75米D.0.5米 13、如图所示,已知AC ⊥BD 于点O,△AOD 、△AOB 、△BOC 、△COD 的面积分别为S 1,S 2,S 3,S 4, 设AC=m ,BC=n ,则下列各式中正确的是 ( )A.S 1+S 2+S 3+S 4=mn 21B. S 1+S 2+S 3+S 4=mnC.S 1·S 2·S 3·S 4=mn 21D. S 1·S 2·S 3·S 4=mn14、若等腰梯形的三边长分别为3,4,11,则这个等腰梯形的周长是 ( )A. 21B. 29C. 21或29D. 21或22或2915、如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E,则△DCE 的 周长为( )A. 4cmB. 6cmC. 8cmD. 10cm 16、甲、乙二人百米赛跑,当甲跑到终点时,乙才跑到95米处;如果 乙在原起跑点起跑,甲后退5米,二人同时起跑,甲、乙速度与原来保持不变,那么下列结论正确的是 ( ) A. 甲、乙同时到达终点 B. 甲先到终点 C. 乙先到终点 D. 以上结论都有可能 三、(每小题6分,共18分)17、已知0256822=++++y x y x ,求y x x yxy x y x 24442222+-++-的值。

北京市2020〖人教版〗八年级数学下册期末复习试卷第六章平行四边形1

北京市2020〖人教版〗八年级数学下册期末复习试卷第六章平行四边形1

北京市2020年〖人教版〗八年级数学下册期末复习试卷第六章平行四边形创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题1.一个多边形每个外角都等于36°,则这个多边形是几边形()A. 7B. 8C. 9D. 102.如图,在四边形ABCD中,∠A=65°,∠D=105°,∠B的外角是60°,则么∠C等于( )A. 110°B. 90°C. 80°D. 70°3.过多边形的一个顶点可以引9条对角线,那么这个多边形的内角和为()A. 1620°B. 1800°C. 1980°D. 2160°4.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A. 4B. 5C. 6D. 75.已知△ABC的周长为50cm,中位线DE=8cm,中位线EF=10cm,则另一条中位线DF的长是()A. 5cmB. 7cmC. 9cmD. 10cm6.下列哪一个角度可以作为一个多边形的内角和( )A. 2080ºB. 1240ºC. 1980ºD. 1600º7.如图,平行四边形ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为()A. 8.3B. 9.6C. 12.6D. 13.68.如图所示,四边形ABCD的对角线AC , BD相交于点O ,下列判断正确的是()A. 若AO=OC ,则ABCD是平行四边形,B. 若AC=BD ,则ABCD是平行四边形,C. 若AO=BO ,CO=DO ,则ABCD是平行四边形,D. 若AO=OC , BO=OD ,则ABCD是平行四边形.9.已知△ABC的各边长度分别为3cm、4cm、5cm,则连接各边中点的三角形周长为()A. 2cmB. 7cmC. 5cmD. 6cm10.如图,△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A. 3B. 4C. 5D. 611.A,B,C是平面内不在同一条直线上的三点,D是平面内任意一点,若A,B,C,D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有( )A. 1个B. 2个C. 3个D. 4个二、填空题12.已知一个多边形的内角和是540°,则这个多边形是________.13.平行四边形的周长等于56cm,两邻边长的比为3:1,那么这个平行四边形较长的边长为________ cm.14.如果▱ABCD的周长为28cm,且AB:BC=2:5,那么AD=________cm,CD=________cm.15.如图,▱ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=________度.16.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2= ________17.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确的命题是________ (将命题的序号填上即可).18.在▱ABCD中,∠A+∠C=260°,则∠C=________ ∠B=________19. 如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件 ________(只添一个即可),使四边形ABCD是平行四边形.20.已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=________.21.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为________.三、解答题22.一个多边形的外角和是内角和的,求这个多边形的边数.23.如图,在四边形ABCD中,AC、BD相交于点O,E、F是AD、BC的中点,EF分别交AC、BD于M、N,且OM=ON.求证:AC=BD.24.△ABC的中线BD、CE相交于O,F,G分别是BO、CO的中点,求证:EF∥DG,且EF=DG.25.如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)点D在运动过程中能否使得四边形ACFE为平行四边形?如不能,请说明理由;如能,求出此时∠A 的度数.参考答案一、选择题D C B C B C B D D A C二、填空题12.五边形13.2114.4;1015.2516.270°17.②18.130°;50°19.BO=DO20.3或721.110°三、解答题22.解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为923.证明:取AB和CD的中点分别为G、H,连接EG、GF、FH、EH,则EH∥AC,EH=AC,HF∥BD,FH=BD,∴∠3=∠2,∠1=∠4,∵OM=ON,∴∠1=∠2,∴∠4=∠3=∠1=∠2,同理∠EFH=∠GFE=∠1=∠2,∴∠4=∠EFH,∴EH=HF,∵EH=AC,FH=BD,∴AC=BD.24.证明:连接DE,FG,∵BD、CE是△ABC的中线,∴D,E是AB,AC边中点,∴DE∥BC,DE=BC,同理:FG∥BC,FG=BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.25.(1)证明:∵BE⊥AD,∴∠AEB=90°,在Rt△AEB中,∵点C为线段BA的中点,∴CE= AB=CB,∴∠CEB=∠CBE.∵∠CEF=∠CBF=90°,∴∠BEF=∠EBF,∴EF=BF.∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°,∴∠FED=∠EDF,∵EF=FD.∴BF=FD(2)能.理由如下:若四边形ACFE为平行四边形,则AC ∥EF,AC=EF,∴BC=BF,∴BA=BD,∠A=45°.∴当∠A=45°时四边形ACFE为平行四边形.创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A .
B .
C .
D .
八年级数学期末复习试题(六)
班级: 姓名 :
一、精心选一选(本大题共8小题,每题3分,共24分)
1.已知点M (-2,3 )在双曲线x k y =
上,则下列各点一定在该双曲线上的是………( ) A .(3,2)
B .(-2,-3 )
C .(2,3 )
D .(3,-2 ) 2.不等式组2133
x x +⎧⎨>-⎩≤的解集在数轴上表示正确的是…………………………………( )
3.计算:a b a b b a a -⎛⎫-÷=
⎪⎝⎭………………………………………………………………( ) A .a b b + B .a b b - C .a b a - D .a b a
+ 4. 把分式)0,0(≠≠+y x xy
y x 中的x 、y 缩小为原来的21,那么分式的值…………( )A .改变为原来的41 B .扩大2倍 C .缩小2倍 D .不改变 5. 一次函数y =kx +b 与反比例函数x k y =
的图象如图所示,则下列说法正确的是…( ) A .它们的函数值y 随着x 的增大而增大 B .它们的函数值y 随着x 的增大而减小 C .它们的自变量x 的取值为全体实数 D .k <0
6. 反比例函数x
y 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是…………………………………………………………( )
A .321y y y <<
B .312y y y <<
C .213y y y <<
D .123y y y <<
7.如图,在△ABC 中,P 为AB 上一点,则下列条件中(1)∠ACP=∠B ;(2)∠APC=∠ACB ;(3)AC 2=AP •AB ;(4)AB •CP=AP •CB ,其中使△APC 和△ACB 相似的条件有……( )
A 、1个
B 、2个
C 、3个
D 、4个
第5题 第7题 第8题 8.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm ,下半身长x 与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为…………………………………………………………………( )
A .4cm
B .6cm
C .8cm
D .10cm
9.定义新运算:a ⊕b =()()10a a b a a b b b
⎧-⎪⎨-⎪⎩≤,>且≠.则函数y =3⊕x 的图象大致是 ( )
A .
B .
C .
D .
A
P B C
二、细心填一填(本大题共10题,10空,每空2分,共20分)
10.不等式612<-x 的所有正整数解的和等于 .
11.如果关于x 的分式方程x
m x x -=--552无解,则m 的值为 . 12.请写出一个图像在第二、四象限的函数: . 13.已知点A 是反比例函数3y x =-
图象上的一点.若AB 垂直于y 轴,垂足为B ,则AOB △的面积= . 14.在比例尺为1︰20000的地图上测得AB 两地间的图上距离为8cm ,则AB 两地间的实际距离为 km .
15.某一时刻,身高为165cm 的小丽影长是55cm ,此时,小玲在同一地点测得旗杆的影长为5m ,则该旗杆的高度为
m .
16. 甲、乙两班学生参加植树造林,已知甲班每天比乙班多植树6棵,甲班植80棵树所用的天数与乙班植70棵树所用的天数相
等.若设甲班每天植树x 棵,则根据题意可列出方程 .
17.已知关于x 的方程
32
2=-+x m x 的解是正数,则m 的取值范围为 . 18.如图,一次函数y ax b =+的图象与x 轴,y 轴交于A 、B 两点, 与反比例函数k y x =的图象相交于C 、D 两点,分别过C 、D 两点作 y 轴、x 轴的垂线,垂足为E 、F ,连接CF 、DE .有下列四个结论:
①AC BD =;②△DCE≌△CDF;③△CEF 与△DEF 的面积相等; ④△AOB∽△FOE.其中正确的结论是 .
(把你认为正确结论的序号都填上) 第18题图
19.如图,点A 在双曲线1y x =
上,点B 在双曲线3y x
=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .
第17题 第18题
20.如图,图1是一块边长为1、面积记为S 1的正三角形纸板,沿图1的底边剪去一块边长为12
的正三角形纸板后得到图2,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的12
)后,得图3,4,…,记第n (n ≥3) 块纸板的面积为S n ,则S n -1-S n =_____________.
三、认真答一答(本大题共5小题,满分32分)21.(解不等式(组),并要求把解集在数轴上表示出来...........
. (1)3125->+-x x (2) ⎪⎩⎪⎨⎧-≥-+<-x x x x 23712
1)1(334
22.(本题共有2小题,每题4分)
⑴ 计算:111--
--a a 2
1221-=+--x x x
23.(本题满分6分)先将代数式21111x x x x ⎛
⎫⎛⎫-÷+ ⎪ ⎪+-⎝⎭⎝⎭
化简,再从33x -<<的范围内选取一个合适的整数..x 代入求值.
22.(本题满分8分)小明和小颖做掷骰子的游戏,骰子6个面上分别标有数字1到6,规则如下:
①游戏前,每人选一个数字;
②每次同时掷两枚均匀骰子;
③如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜.
(1)用列表法或树状图列出同时掷两枚均匀骰子所有可能出现的结果:
(2)小明选的数字是5,小颖选的数字是6.如果你也加入游戏,你会选什么数字,使自己获胜的概率比他们大?请说明理由.
24.(本题满分4分)一司机驾驶汽车从甲地去乙地,以80km/h 的平均速度用6h 到达目的地.(1)当他按原路匀速返回时,求汽车速度v(km/h )与时间t(h )之间的函数关系式; (2)如果该司机匀速返回时,用了8h ,求返回时的速度. ww w. xkb1. com
如图,在梯形ABCD 中,AD ∥BC ,∠D =90°,BE ⊥AC ,E 为垂足, AC =BC .
⑴求证:CD =BE .
⑵若AD =3,DC =4,求AE .
25.(本题满分6分) 如图,在△ABC 和△ADE 中,∠BAD=∠CAE ,∠ABC=∠ADE .
找出图中的一对相似三角形,并说明理由.
A D C
B E
四、动脑想一想(本大题共2小题,满分22分)新 课标 第 一网
26.(本题满分10分) 某校原有600张旧课桌急需维修,原计划由工程队A 独立承担,正好在规定时间内完工。

可是在工程队A 完成一半后,由于主管部门要求缩短工期,改由工程队B 接手,已知工程队B 的工作效率是工程队A 的2倍,结果提前了5天完工. ⑴求工程队A 原来平均每天维修课桌的张数;
⑵学校又清理出需要维修的课桌360张交由工程队A 维修.在工作2天后,为了不超过8天时限,工程队A 决定从第3天开始,提高工作效率.这样工程队A 至少还需要3天才能成整个维修任务。

如果工程队A 提高工作效率后平均每天维修课桌x 张,求x 的取值范围.
⑶如果工程队A 维修一张旧课桌收维修费3元,工程队B 维修一张旧课桌收维修费5元,现有一批旧课桌急需维修.经过计划主管部门要求平均每天需完成维修100张,并由工程队A 和工程队B 协商完成.请问在⑵的条件下,工程队A 每天维修多少张旧课桌才能使每天的维修总费用最低?最低费用是多少元?为什么?
27(本题满分12分) 阅读理解:
对于任意正实数a 、b ,∵2≥0,
∴a b -≥0,
∴a b +≥a =b 时,等号成立。

结论:在a b +≥a 、b 均为正实数)中,若ab 为定值p ,则a+b ≥
只有当a =b 时,a+b 有最小值
根据上述内容,回答下列问题:xk b1. co m
(1)若m >0,只有当m = 时,1m m
+有最小值 ; 若m >0,只有当m = 时,2m
m 8+有最小值 . (2)如图,已知直线L 1:112y x =
+与x 轴交于点A ,过点A 的另一直线L 2与双曲线8(0)y x x
-=>相交于点B (2,m ),求直线L 2的解析式.
(3)在(2)的条件下,若点C为双曲线上任意一点,作CD∥y轴交直线L1于点D,试求当线段CD最短时,点A、B、C、D 围成的四边形面积.。

相关文档
最新文档