三角函数的恒等变换
三角恒等变换公式大全
三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角sin(2α)=2sinα·cosα=2tan(α)/[1-tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=[1-tan^2 (α)]/[1+tan^2(α)]tan(2α)=2tanα/[1-tan^2(α)]三倍角sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=tanα×tan(60-α)tan(60+α)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα半角变形sin^2(α/2)=(1-cosα)/2sin(a/2)=√[(1-cosα)/2]a/2在一、二象限=-√[(1-cosα)/2]a/2在三、四象限cos^2(α/2)=(1+cosα)/2cos(a/2)=√[(1+cosα)/2]a/2在一、四象限=-√[(1+cosα)/2]a/2在二、三象限tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] a/2在一、三象限=-√[(1-cosα)/(1+cosα)]a/2在二、四象限恒等变形tan(a+π/4)=(tana+1)/(1-tana)tan(a-π/4)=(tana-1)/(1+tana)asinx+bcosx=[√(a^2+b^2)]{[a/√(a^2+b^2)]sinx+[b/√(a^2+b^2)]cosx}=[√(a^2+b^2)]sin(x+y)(辅助角公式)tany=b/a万能代换半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积和化差sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)](注:留意最前面是负号)和差化积sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]内角公式sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)tanA+tanB+tanC=tanAtanBtanCcot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1cotAcotB+cotBcotC+cotCcotA=1证明方法首先,在三角形ABC中,角A,B,C所对边分别为a,b,c若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D由CD=asinB=bsinA(做另两边的垂线,同理)可证明正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=cAD=bcosA,BD=acosBAD+BD=代c入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA即在A,B均为锐角的情况下,可证明正弦和的公式。
三角恒等变换公式大全
三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角sin(2α)=2sinα·cosα=2tan(α)/[1-tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=[1-tan^2(α)]/[1+tan^2(α)]tan(2α)=2tanα/[1-tan^2(α)]三倍角sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=tanα×tan(60-α)tan(60+α)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα半角变形sin^2(α/2)=(1-cosα)/2sin(a/2)=√[(1-cosα)/2] a/2在一、二象限=-√[(1-cosα)/2] a/2在三、四象限cos^2(α/2)=(1+cosα)/2cos(a/2)=√[(1+cosα)/2] a/2在一、四象限=-√[(1+cosα)/2] a/2在二、三象限tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] a/2在一、三象限=-√[(1-cosα)/(1+cosα)] a/2在二、四象限恒等变形tan(a+π/4)=(tana+1)/(1-tana)tan(a-π/4)=(tana-1)/(1+tana)asinx+b cosx=[√(a^2+b^2)]{[a/√(a^2+b^2)]sinx+[b/√(a^2+b^2)]cosx}=[√(a^2+b^2)]sin(x+y)(辅助角公式)tan y=b/a万能代换半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积和化差sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ= -(1/2)[cos(α+β)-cos(α-β)](注:留意最前面是负号)和差化积sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]内角公式sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)tanA+tanB+tanC=tanAtanBtanCcot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1cotAcotB+cotBcotC+cotCcotA=1证明方法首先,在三角形ABC中,角A,B,C所对边分别为a,b,c若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D 由CD=asinB=bsinA(做另两边的垂线,同理)可证明正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=c AD=bcosA,BD=acosB AD+BD=c 代入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA 即在A,B均为锐角的情况下,可证明正弦和的公式。
三角恒等变换公式大全
三角恒等变换公式大全1.正弦和余弦的平方和差关系:sin²x + cos²x = 1sin²x = 1 - cos²xcos²x = 1 - sin²x2.正弦和余弦的和差关系:sin(x + x) = sin x cos x + cos x sin xsin(x - x) = sin x cos x - cos x sin xcos(x + x) = cos x cos x - sin x sin xcos(x - x) = cos x cos x + sin x sin x3.正切和余切的和差关系:tan(x + x) = (tan x + tan x) / (1 - tan x tan x)tan(x - x) = (tan x - tan x) / (1 + tan x tan x)cot(x + x) = (cot x cot x - 1) / (cot x + cot x)cot(x - x) = (cot x cot x + 1) / (cot x - cot x)4.正弦和余弦的二倍角关系:sin(2x) = 2sin x cos xcos(2x) = cos²x - sin²x = 2cos²x - 1 = 1 - 2sin²x 5.正切和余切的二倍角关系:tan(2x) = (2tan x) / (1 - tan²x)cot(2x) = (cot²x - 1) / (2cot x)6.正弦和余弦的三倍角关系:sin(3x) = 3sin x - 4sin³xcos(3x) = 4cos³x - 3cos x7.正切和余切的三倍角关系:tan(3x) = (3tan x - tan³x) / (1 - 3tan²x)cot(3x) = (cot³x - 3cot x) / (3cot²x - 1)8.正弦和余弦的半角关系:sin(x/2) = ± √(1 - cos x) / 2cos(x/2) = ± √(1 + cosx) / 29.正切和余切的半角关系:tan(x/2) = (1 - cos x) / sin x = sin x / (1 + cos x) cot(x/2) = (1 + cos x) / sin x = sin x / (1 - cos x) 10.和差的三角函数关系:sin x + sin x = 2 sin((x + x)/2) cos((x - x)/2) sin x - sin x = 2 cos((x + x)/2) sin((x - x)/2) cos x + cos x = 2 cos((x + x)/2) cos((x - x)/2) cos x - cos x = -2 sin((x + x)/2) sin((x - x)/2)这些是一些常见的三角恒等变换公式,应用在不同的数学问题和物理公式的推导中。
三角恒等变换公式大全
三角恒等变换公式大全三角函数是数学中的重要分支,它在许多科学与工程领域中具有广泛的应用。
而三角恒等变换公式是三角函数的重要性质之一。
它们可以将一个三角函数表达式转换为其他三角函数表达式,从而提供了在解决问题时的灵活性和简化计算的便利性。
在本文中,我们将介绍一些常用的三角恒等变换公式,帮助读者更好地理解和应用三角函数。
1. 正弦、余弦和正切的平方和差公式:- 正弦的平方和差公式:sin²(A ± B) = sin²A*cos²B ±2*sinA*sinB*cosA*cosB- 余弦的平方和差公式:cos²(A ± B) = cos²A*cos²B -2*sinA*sinB*cosA*cosB- 正切的平方和差公式:tan²(A ± B) = (tan²A ± tan²B) / (1 ∓tanA*tanB)2. 正弦和余弦的倍角公式:- 正弦的倍角公式:sin2A = 2*sinA*cosA- 余弦的倍角公式:cos2A = cos²A - sin²A = 2*cos²A - 1 = 1 -2*sin²A3. 正切的倍角公式:- 正切的倍角公式:tan2A = (2*tanA) / (1 - tan²A)4. 正弦、余弦和正切的半角公式:- 正弦的半角公式:sin(A / 2) = ± √[(1 - cosA) / 2]- 余弦的半角公式:cos(A / 2) = ± √[(1 + cosA) / 2]- 正切的半角公式:tan(A / 2) = ± √[(1 - cosA) / (1 + cosA)]5. 正切的和差公式:- 正切的和公式:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanA*tanB)6. 余弦的和差公式:- 余弦的和公式:cos(A ± B) = cosA*cosB ∓ sinA*sinB7. 三角函数的倒数公式:- sin(-A) = -sinA,cos(-A) = cosA,tan(-A) = -tanA8. 三角函数的互余关系:- sin(π/2 - A) = cosA,cos(π/2 - A) = sinA,tan(π/2 - A) = 1/tanA9. 三角函数的余角关系:- sin(π - A) = sinA,cos(π - A) = -cosA,tan(π - A) = -tanA10. 三角函数的化简公式:- sin(2π - A) = -sinA,cos(2π - A) = cosA,tan(2π - A) = tanA这些三角恒等变换公式为解决三角函数相关的数学问题提供了便利,读者在学习和应用时可根据具体情况选择合适的公式进行推导和计算。
(完整版)三角恒等变换公式
三角恒等变换公式及其证明一、 两角和、差的三角函数公式(1)cos (α-β)=cos αcos β+sin αsin β ……………………………………………………①证明:利用三角函数线证明.(详见课本必修4 P125)cos (α+β)=cos αcos β-sin αsin β ………………………………………………………② 证明:cos (α+β)=cos [α-(-β)]=cos αcos (-β)+sin αsin (-β)=cos αcos β-sin αsin β.例:求cos 105°.解:cos 105°=cos (60°+45°)=cos 60°cos 45°-sin 60°sin 45° =12×2-2×2=4. (2)sin (α+β)=sin αcos β+cos αsin β ……………………………………………………③证明:sin (α+β)=cos =cos =cos cos β+sin sin β =sin αcos β+cos αsin β.sin (α-β)=sin αcos β-cos αsin β ………………………………………………………④ 证明:sin (α-β)=sin [α+(-β)]=sin αcos (-β)+cos αsin (-β)=sin αcos β-cos αsin β.(3)tan (α+β)=tan tan 1tan tan αβαβ+- …………………………………………………………⑤ 证明:tan (α+β)=sin()cos()αβαβ++=sin cos cos sin cos cos sin sin αβαβαβαβ+- =tan tan 1tan tan αβαβ+-. tan (α-β)=tan tan 1tan tan αβαβ-+ ……………………………………………………………⑥ 证明:tan (α-β)=tan [α+(-β)]=tan tan()1tan tan()αβαβ+---=tan tan 1tan tan αβαβ-+. [ ] π2-(α+β) [ ( ) ] π2-α -β ( ) π2-α ( )π2-α二、 二倍角公式(1)cos 2α=cos 2 α-sin 2 α ……………………………………………………………………⑦证明:cos 2α=cos (α+α)=cos αcos α-sin αsin α=cos 2 α-sin 2 α.(2)sin 2α=2sin αcos α …………………………………………………………………………⑧证明:sin 2α=sin (α+α)=sin αcos α+cos αsin α=2sin αcos α.(3)tan 2α=22tan 1tan αα- ………………………………………………………………………⑨ 证明:tan 2α=tan (α+α)=tan tan 1tan tan αααα+-=22tan 1tan αα-. 变式:公式⑦变式:cos 2α=cos 2 α-sin 2 α=(1-sin 2 α)-sin 2 α=1-2sin 2 α ……………………………⑩=cos 2 α-(1-cos 2 α)=2cos 2 α-1 ……………………………○11公式⑩变式:cos 2α=1-2sin 2 α2sin 2 α=1-cos 2αsin 2 α=1cos 22α-. ○12 公式○11变式:cos 2α=2cos 2 α-12cos 2 α=cos 2α+1cos 2 α=cos 212α+. ○13 公式○12和○13合称降幂公式.公式○12变式:sin 2α………………………………………………○14 证明: sin 2 α=1cos 22α- sin 2 2α=1cos 2α-sin2α公式○13变式:cos 2α………………………………………………○15 证明: cos 2 α=cos 212α+cos 2 2α=cos 12α+ cos2α公式○14和○15合称半角公式. 三、 辅助角公式a sin x ±b cos x(x ±ϕ),其中tanϕ=b a . …………………………○16 证明:(如图)a sin x ±b cos xsin xxsin x cos ϕ±cos x sin ϕ)(x ±ϕ).)。
三角函数式的恒等变换
三角函数式的恒等变换
三角函数式的恒等变换是无论三角形的形状与大小变化多少,它们之间所表示的角度和边长比之间的数值是一样的,与三角形的形状和大小大小无关。
这也是为什么三角函数式总是相同的。
这种等效性也可以用来解决很多数学问题,比如解决平面几何中三角形的边长,夹角大小等问题。
用来证明三角函数式恒等变换的基础是勾股定理。
勾股定理告诉我们,如果一个三角形的两个直角边之和等于最后一条边的平方,那么该三角形就是直角三角形,即斜边的长度的平方等于两条直角边的和。
这也是一个常见的三角函数式恒等变换的表达形式。
我们可以用另外一个概念来说明三角函数式恒等变换,这个概念叫做余弦定理。
这个定理规定,如果有一个三角形,它的俩直角边长为a和b,而斜边的长度为c,那么有a+b=c.这个等式中的a,b,c是构成三角形的三条边的长度,也可以表示成角度的大小,与三角形的几何形状无关。
所以这个定理也可以证明三角函数式的恒等变换。
此外,三角函数式的恒等变换还可以用来解决一些数学问题。
比如,有时我们需要求解一个复杂的平面几何图形,而这个图形中可能有许多复杂的三角形,我们可以利用三角函数式的恒等变换来简化这个问题,求出三角形的边长,两个夹角的大小等。
三角函数式的恒等变换也可以用来解决一些物理问题,比如电磁波传播中的波动形式,由于震荡的频率等保持不变,所以使用三角函数式的恒等变换就可以求出电磁波的传播方式。
总的来说,三角函数式的恒等变换可以解决许多数学问题,比如解决三角形的夹角大小,边长,或者解决电磁波的传播问题等,只要给出三角形的三条边或角度的数值,就可以用三角函数式的恒等变换来解决问题,而且这种变换不会因为三角形的形状和大小变化而变化。
三角恒等变换公式大全
三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角sin(2α)=2sinα·cosα=2tan(α)/[1-tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=[1-tan^2(α)]/[1+tan^2(α)]tan(2α)=2tanα/[1-tan^2(α)]三倍角sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=tanα×tan(60-α)tan(60+α)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα半角变形sin^2(α/2)=(1-cosα)/2sin(a/2)=√[(1-cosα)/2] a/2在一.二象限=-√[(1-cosα)/2] a/2在三.四象限cos^2(α/2)=(1+cosα)/2cos(a/2)=√[(1+cosα)/2] a/2在一.四象限=-√[(1+cosα)/2] a/2在二.三象限tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] a/2在一.三象限=-√[(1-cosα)/(1+cosα)] a/2在二.四象限恒等变形tan(a+π/4)=(tana+1)/(1-tana)tan(a-π/4)=(tana-1)/(1+tana)asinx+bcosx=[√(a^2+b^2)]{[a/√(a^2+b^2)]sinx+[b/√(a^2+b^2)]cosx}=[√(a^2+b^2)]sin(x+y)(帮助角公式)tan y=b/a全能代换半角的正弦.余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积和化差sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ= -(1/2)[cos(α+β)-cos(α-β)](注:留心最前面是负号)和差化积sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]内角公式sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)tanA+tanB+tanC=tanAtanBtanCcot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot (C/2)tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1 cotAcotB+cotBcotC+cotCcotA=1证实办法起首,在三角形ABC中,角A,B,C所对边分离为a,b,c若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D 由CD=asinB=bsinA(做另双方的垂线,同理)可证实正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=c AD=bcosA,BD=acosB AD+BD=c代入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA 即在A,B均为锐角的情形下,可证实正弦和的公式.应用正弦和余弦的界说及周期性,可证实该公式对随意率性角成立.于是有 cos(A+B)=sin(90-A-B)=sin (90-A)cos(-B)+cos(90-A)sin(-B)=cosAcosB-sinAsinB由此易得以上全体公式。
复杂的三角恒等变换
复杂的三角恒等变换三角恒等变换(Trigonometric Identity Transformation)是初级数学中的重要章节之一,通过对三角函数间的恒等式进行变形和化简,加深对三角函数的理解和掌握,提高解题能力。
以下是一些常见的三角恒等变换及其演化过程:1. 和差公式$\sin(a+b)=\sin a\cos b + \cos a\sin b$$\cos(a+b)=\cos a\cos b - \sin a\sin b$$\tan(a+b)=\frac{\tan a + \tan b}{1 - \tan a\tan b}$2. 镜像公式$\sin(\pi - a)=\sin a$$\cos(-a)=\cos a$$\tan(-a)=-\tan a$3. 反三角函数公式$\sin(\arcsin a)=a$$\cos(\arccos a)=a$$\tan(\arctan a)=a$4. 积分与微分公式$\frac{d}{dx}\sin x=\cos x$ $\frac{d}{dx}\cos x=-\sin x$ $\int\sin x\,dx=-\cos x+C$ $\int\cos x\,dx=\sin x+C$ 5. 简化公式$\sin^2 x + \cos^2 x = 1$ $\sec^2 x = \tan^2 x +1$ $\csc^2 x = \cot^2 x +1$$\cos^2 x = \frac{1 + \cos 2x}{2}$$\tan^2 x = \sec^2 x -1$6. 和积公式$\sin a\sin b = \frac{1}{2}(\cos(a-b) - \cos(a+b))$ $\cos a\cos b = \frac{1}{2}(\cos(a-b) + \cos(a+b))$ $\sin a\cos b = \frac{1}{2}(\sin(a-b) + \sin(a+b))$ 7. 特殊角度公式$\sin 30^\circ = \frac{1}{2}$$\cos 30^\circ = \frac{\sqrt{3}}{2}$$\tan 30^\circ = \frac{1}{\sqrt{3}}$$\sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}$ $\tan 45^\circ =1$$\cos 60^\circ = \frac{1}{2}$$\tan 60^\circ = \sqrt{3}$以上是一些常见的三角恒等变换,希望能对初学者有所帮助。
三角恒等变换课件
解答
根据三角函数的基本关系式,我们有 $cos^2theta = 1 - sin^2theta$,代入 $sintheta = -frac{2}{3}$, 得到 $cos^2theta = 1 - left(-frac{2}{3}right)^2 = 1 - frac{4}{9} = frac{5}{9}$,所以 $costheta = sqrt{frac{5}{9}} = frac{sqrt{5}}{3}$。再根据 $tantheta = frac{sintheta}{costheta}$,得到 $tantheta = frac{-frac{2}{3}}{frac{sqrt{5}}{3}} = sqrt{frac{2}{5}} = -frac{sqrt{10}}{5}$。
举例
利用诱导公式,将cos(π/2 - x) 转换为sin(x),通过角度的变换
简化表达式。
函数名称的变换
总结词
通过改变函数名称来简化表达式。
详细描述
在三角恒等变换中,有时可以通过改变函数名称来简化表达式。例如,将cos(x)转换为sin(-x),或将sin(x)转换为 cos(π/2 - x)等。这种变换通常基于三角函数的性质和恒等式。
三角恒等变换课件
目录
• 三角恒等变换概述 • 三角恒等变换的基本公式 • 三角恒等变换的技巧 • 三角恒等变换的实例解析 • 三角恒等变换的习题与解答
01
三角恒等变换概述
定义与性质
定义
三角恒等变换是数学中一种重要 的变换方法,通过代数运算将一 个三角函数式转换为另一个三角 函数式。
性质
三角恒等变换具有一些重要的性 质,如线性性质、乘积性质、幂 的性质等,这些性质在变换过程 中起着重要的作用。
简单的三角恒等变换
简单的三角恒等变换三角恒等变换是数学中非常重要的基础知识,它能够帮助我们解决很多与三角函数相关的问题。
在学习三角恒等变换的过程中,我们需要掌握一些基本的变换公式,这样才能灵活地运用它们来解决实际问题。
首先,我们来看正弦函数的恒等变换。
对于任意实数x,有如下公式:sin(x) = sin(x + 2πk) = sin(-x + 2πk)其中k为任意整数。
这意味着,在正弦函数中,每隔2π,函数的值会重复出现。
此外,我们还可以通过对称性质,得到以下两个恒等式:sin(π + x) = -sin(x)sin(π - x) = sin(x)这两个恒等式告诉我们当x逐渐增大或减小,正弦函数的值也会相应地发生变化。
接下来,我们来看余弦函数的恒等变换。
对于任意实数x,有如下公式:cos(x) = cos(x + 2πk) = cos(-x + 2πk)其中k为任意整数。
这表明在余弦函数中也存在着每隔2π重复的特征。
此外,我们还可以得到以下两个恒等式:cos(π + x) = -cos(x)cos(π - x) = -cos(x)这两个恒等式告诉我们,当x逐渐增大或减小,余弦函数的值也会相应地发生变化,并与正弦函数产生相反的变化。
最后,我们来看正切函数的恒等变换。
对于任意实数x,有如下公式:tan(x) = tan(x + πk)其中k为任意整数且x不为(π/2 + πk)。
这意味着正切函数也存在2π周期性。
此外,我们还可以得到以下两个恒等式:tan(π + x) = tan(x)tan(π/2 - x) = 1/tan(x)这两个恒等式告诉我们,正切函数在π/2和π处会出现无穷大和无穷小的特征,并且在这两个点附近的图像非常陡峭。
总之,三角恒等变换是非常重要的数学基础知识,它能够帮助我们解决非常多与三角函数相关的问题。
在学习的过程中,我们需要认真掌握各种基本变换公式,并能够正确地运用它们来解决实际问题。
希望读者能够通过学习,更好地掌握这一知识点。
三角恒等变换万能公式
三角恒等变换万能公式
三角恒等变换(Trigonometric Identities)是指由三角函数相互组合而成的等式。
其中,最为常用的三角恒等变换是万能公式(Universal Formula),也称作Euler公式。
该公式如下:
cos²x + sin²x = 1
这个公式表明,在任何角度下,正弦(sin)和余弦(cos)的平方和等于1。
这个公式可以用来化简和证明许多其他的三角函数等式,例如:
tan x = sin x / cos x,代入万能公式可得:
sin²x / cos²x + 1 = 1 / cos²x
整理后得到:
sin²x = 1 - cos²x
这个等式被称为余弦的补充公式。
sin(-x) = -sin x,代入万能公式可得:
cos²(-x) + sin²(-x) = 1
由于cos函数是偶函数,即cos(-x) = cos x,所以上式可以改写为:
cos²x + sin²(-x) = 1
同时,由于sin函数是奇函数,即sin(-x) = -sin x,所以上式可以进一步改写为:
cos²x - sin²x = 1
这个等式被称为正弦和余弦的差公式。
通过这些等式,我们可以将三角函数的复杂计算转化为更为简单的形式,从而更加便捷地进行求解和证明。
三角函数的恒等变换
三角函数的恒等变换
三角函数恒等变换是指把三角函数的形式在一定的变量的乘性和加性变换时不变的性质。
换句话说,只要给定函数原形式是三角函数,只要满足变化的函数形式也是三角函数,就称为三角函数恒等变换。
三角函数恒等变换有三类基本恒等变换:乘积形式恒等变换,
被加令恒等变换和被乘令恒等变换。
1.乘积形式恒等变换
所谓乘积形式恒等变换,就是把三角函数乘以因式形成的积函数,其函数形式仍然是
三角函数。
其表达式形式:
f(x) = a*sinx*cosbx
f(x)=a*cosx*sina
其中a,b为任意数值。
2.被加令恒等变换。
三角函数式的恒等变换
三角函数式的恒等变换
三角函数是以三角形为准则,在极坐标系中定义的角度函数。
三角函数可以用来计算不同角度所代表的变化情况,可以实现指定角度变换到相应角度,这就是所谓的“恒等变换”。
恒等变换是指将一个角度变换成另一个角度的变换,即保持角度弧度不变。
在三角函数中,其实就是保持角度和正弦值不变,在不同的角度上可以获得相同的结果。
例如,将一个角度增加90度,那么
正弦值也将增加90度,即保持正弦值和角度不变。
恒等变换涉及到三角函数的弧度、角度与正弦值之间的相互转换,其原理为:在极坐标系中,弧度值和角度值之间的关系为:弧度值=
角度值×3.14;正弦值和角度值之间的关系为:正弦值=sin(角度值);因此,只要知道角度值,就可以计算出其正弦值和弧度值,从而实现恒等变换。
以sin x为例,假设当x=60度时,其正弦值为1/2;如果要将
角度值增加90度,则其正弦值也要增加90度,即sin(x+90)=1/2;又因为sin x+90=sin x,故可以说这是一种恒等变换,即以角度变
换为准则,正弦值也发生变化,以达到相同的目的。
另一方面,恒等变换还可以帮助我们理解三角函数的应用。
例如,通过恒等变换,我们可以计算出不同角度下的正弦值,从而为计算机图形制作提供便利。
此外,恒等变换还可以应用于求解各类几何问题,例如三角形的周长、面积、角度等等。
总之,三角函数的恒等变换是通过角度变换实现保持正弦值不变
的变换,其在三角函数理论中占有重要地位,具有广泛的应用和重要意义。
三角恒等变换所有公式
三角恒等变换所有公式三角恒等变换是指三角函数之间相互转化的一系列公式,利用这些公式可以简化三角函数的计算与证明。
下面是一些常用的三角恒等变换公式(完整版):1.倍角公式:- $\sin(2\theta) = 2\sin\theta\cos\theta$- $\cos(2\theta) = \cos^2\theta - \sin^2\theta =2\cos^2\theta - 1 = 1 - 2\sin^2\theta$- $\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$2.半角公式:- $\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{2}}$- $\cos\left(\frac{\theta}{2}\right) =\pm\sqrt{\frac{1+\cos\theta}{2}}$- $\tan\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$3.和差公式:- $\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm\cos\alpha\sin\beta$- $\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp\sin\alpha\sin\beta$- $\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm\tan\beta}{1 \mp \tan\alpha\tan\beta}$4.二倍角公式:- $\sin(2\alpha) = 2\sin\alpha\cos\alpha$- $\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha$- $\tan(2\alpha) = \frac{2\tan\alpha}{1-\tan^2\alpha}$5.和差化积公式:- $\sin\alpha\sin\beta = \frac{1}{2}(\cos(\alpha-\beta)-\cos(\alpha+\beta))$- $\cos\alpha\cos\beta = \frac{1}{2}(\cos(\alpha-\beta)+\cos(\alpha+\beta))$- $\sin\alpha\cos\beta =\frac{1}{2}(\sin(\alpha+\beta)+\sin(\alpha-\beta))$6.积化和差公式:- $\sin\alpha+\sin\beta =2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\sin\alpha-\sin\beta = 2\sin\left(\frac{\alpha-\beta}{2}\right)\cos\left(\frac{\alpha+\beta}{2}\right)$- $\cos\alpha+\cos\beta =2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\cos\alpha-\cos\beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$7.和差化积与积化和差的关系:- $\sin\alpha\pm\sin\beta =2\sin\left(\frac{\alpha\pm\beta}{2}\right)\cos\left(\frac{\alpha \mp\beta}{2}\right)$- $\cos\alpha+\cos\beta =2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\cos\alpha-\cos\beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$8.和差化积的平方形式:- $\sin^2\alpha+\sin^2\beta = 1 -\cos(\alpha+\beta)\cos(\alpha-\beta)$- $\cos^2\alpha+\cos^2\beta = 1 +\cos(\alpha+\beta)\cos(\alpha-\beta)$这些公式在解三角方程、化简三角函数表达式、证明三角恒等式等方面有重要应用。
三角恒等变换的基本公式与应用
三角恒等变换的基本公式与应用三角恒等变换是指由三角函数之间的关系,通过变换得到等价关系的过程。
它们是解决三角函数计算和证明题非常有用的工具。
本文将介绍三角恒等变换的基本公式、根据这些公式的应用以及相关的数学问题。
一、基本公式1. 正弦定理对于任意三角形ABC,其三边长度分别为a、b、c,夹角分别为A、B、C,则正弦定理表达式如下:a/sin(A) = b/sin(B) = c/sin(C)该定理可以用于求解三角形的边长或角度,甚至用于构造和证明三角形的性质。
2. 余弦定理对于任意三角形ABC,其三边长度分别为a、b、c,夹角分别为A、B、C,则余弦定理表达式如下:c² = a² + b² - 2abcos(C)该定理可以用于求解三角形的边长或角度,尤其适用于解决非特殊角的计算问题。
3. 正弦、余弦、正切的关系三角函数的基本关系:sin²(A) + cos²(A) = 1tan(A) = sin(A)/cos(A)这些关系可以通过三角函数间的相互转化和运算来推导和应用。
二、应用1. 角度推导与证明三角恒等变换的基本公式可以用于推导和证明角度之间的关系。
例如,我们可以利用正弦定理推导两角和差公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)这个公式在三角函数运算中非常常用。
2. 三角函数的化简与计算三角函数的公式化简是三角恒等变换的重要应用之一。
例如,我们可以利用tan(A) = sin(A)/cos(A)将复杂的三角函数表达式化简为更简洁的形式。
另外,当我们需要计算某些特殊角度的三角函数值时,也可以利用三角恒等变换的公式得到准确的数值结果。
3. 三角方程的求解三角方程是指含有未知角度的方程。
解决三角方程的关键是将其转化为已知角度的三角函数公式。
通过利用三角恒等变换的公式,我们可以将复杂的三角方程转化为简单的代数方程,从而求解出未知角度的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3三角函数的恒等变换一、知识导学1.两角和、差、倍、半公式(1) 两角和与差的三角函数公式βαβαβαs i n c o s s i n s i n )s i n(±+=± βαβαβαs i n s i n c o s c o s )c o s( =± βαβαβαt a n t a n 1t a n t a n )t a n ( ±=± (2) 二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -= (3) 半角公式2cos 12sin 2αα-=, 2c o s 12c o s 2αα+= , αααcos 1cos 12tan 2+-= αααααsin cos 1cos 1sin 2tan -=+= 2.恒等变形主要是运用三角公式对式子进行等价变形,常见于化简求值和恒等式证明.恒等式证明就是利用公式消除等式两边的差异,有目的地化繁为简,使左右相等,常用方法为:(1)从一边开始证得它等于另一边,一般由繁到简;(2)证明左右两边都等于同一个式子(或数值).二、疑难知识导析1.两角和与差的三角函数公式的内涵是揭示同名不同角的三角函数的运算规律,常用于解决求值、化简和证明题.2.倍角公式的内涵是揭示具有倍数关系的两个角的三角函数的运算规律.如αααcos sin 22sin =成立的条件是“α是任意角,αα是2的2倍角”,精髓体现在角的“倍数”关系上.3.公式使用过程中(1)要注意观察差异,寻找联系,实现转化,要熟悉公式的正用逆用和变形使用,也要注意公式成立的条件.例)tan tan 1)(tan(tan tan βαβαβα ±=±、22cos 1sin 2αα-=、22cos 1cos 2αα+=等. 4. 三角公式由角的拆、凑很灵活.如)()(2βαβαα-++=、ββαα-+=)(、 22βαβαβ+-+=,)2()2(2βαβαβα+--=-等,注意到倍角的相对性.5.化为三角函数式,常见的思路为化“三同”即同名、同角、同次,切割化弦、特殊值与特殊角的三角函数互化等.6. 三角恒等式的证明包括无条件恒等式和有条件恒等式(1)无条件恒等式证明,要认真分析等式两边三角函数的特点,角度和函数关系,找出差异寻找突破口.(2)有条件的等式证明,常常四寻找条件与需证式的区别与联系,对条件或须证式进行变形.采用消去法或基本量法等求证.三、典型例题导讲[例1] 在∆ABC 中,2sinA+cosB=2,sinB+2cosA=3,则∠C 的大小应为( )A .6πB .3πC .6π或π65D .3π或32π 错解:C错因:求角C 有两解后未代入检验.正解:A[例2] 已知tan α tan β是方程x 2+33x+4=0的两根,若α,β∈(-2,2ππ),则α+β=( ) A .3π B .3π或-π32 C .-3π或π32 D .-π32 错解:B.错因:未能准确限制角的范围.正解:D.[例3] 若sin cos θθ+=1,则对任意实数n n n ,sin cos θθ+的取值为( )A. 1B. 区间(0,1)C. 121n - D. 不能确定错解:C错因:此题极易认为答案A 最不可能,怎么能会与n 无关呢?其实这是我们忽略了一个隐含条件sin cos 221θθ+=,导致了错选为C 或D.正解:解法一 设点(sin cos )θθ,,则此点满足 x y x y +=+=⎧⎨⎩1122 解得x y ==⎧⎨⎩01或x y ==⎧⎨⎩10 即sin cos sin cos θθθθ==⎧⎨⎩==⎧⎨⎩0110或 ∴+=s i n cos n n θθ1∴选A解法二:用赋值法,令sin cos θθ==01,同样有sin cos n nθθ+=1∴选A [例4] △ABC 中,已知cosA=135,sinB=53,则cosC 的值为( ) A.6516 B.6556 C.6516或6556 D.6516- 错解:C错因:是忽略对题中隐含条件的挖掘.正解:A[例5] 已知53sin +-=m m θ,524cos +-=m m θ(πθπ<<2),则=θtan ( ) A 、324--m m B 、m m 243--± C 、125- D 、12543--或 错解:A 错因:是忽略1cos sin 22=+θθ,而解不出m正解:C[例6]求值:sin cos sin cos sin sin 71587158+⋅-⋅=_______________ 解:答32-解法一原式=-+⋅--⋅sin()cos sin cos()sin sin 158158158158=⋅⋅s i n cos cos cos 158158==-tg tg 154530() =-+=-+=-133133333323 解法二(余同解法一)…原式==⋅=++=-+-+=158cos 15cos 28cos 15sin 27cos 23cos 7sin 23sin )7cos 23(cos 217cos )7sin 23(sin 217sin tg[例7] 已知θ是第三象限的角,若sin cos sin 44592θθθ+=,则等于( ) A. 223 B. -223 C. 43 D. -23解:选A.解析:sin cos 44θθ+=+-(s i n c o s )s i n c o s 222222θθθθ =-=1122592s i n θ ∴=s i n 2289θ 223242243202223k k k k k Z ππθππππθππθθ+<<+∴+<<+∈∴>∴=()s i n s i n [例8]βαβαβα2cos 2cos 21cos cos sin sin 2222⋅-⋅+⋅化简 分析:对三角函数式化简的目标是:(1)次数尽可能低;(2)角尽可能少;(3)三角函数名称尽可能统一;(4)项数尽可能少.观察欲化简的式子发现:(1)次数为2(有降次的可能);(2)涉及的角有α、β、2α、2β,(需要把2α化为α,2β化为β);(3)函数名称为正弦、余弦(可以利用平方关系进行名称的统一);(4)共有3项(需要减少),由于侧重角度不同,出发点不同,本题化简方法不止一种. 解法一:(复角→单角,从“角”入手)原式)1cos 2)(1cos 2(21cos cos sin sin 222222--⋅-⋅+⋅=βαβαβα =⋅+⋅-⋅--+sin sin cos cos (cos cos cos cos )22222222124221αβαβαβαβ=⋅-⋅++-s i n s i n cos cos cos cos 22222212αβαβαβ=⋅++-s i n s i n cos sin cos 2222212αβαββ=+-2sin cos ββ212 =-=11212解法二: (从“名”入手,异名化同名) 原式=⋅+-⋅-⋅sin sin (sin )cos cos cos 222211222αβαβαβ =---⋅cos sin (cos sin )cos cos 22221222βαββαβ =-⋅-⋅cos sin cos cos cos 2221222βαβαβ =-⋅+cos cos (sin cos )222122ββαα =+-+-⎡⎣⎢⎤⎦⎥1222121222cos cos sin (sin )ββαα =+-=12212212cos cos ββ 解法三 (从“幂”入手,利用降幂公式先降次)原式=-⋅-++⋅+-⋅1221221221221222cos cos cos cos cos cos αβαβαβ =+⋅--++⋅++14122221412222(cos cos cos cos )(cos cos cos cos )αβαβαβαβ -⋅⋅1222c o s c o s αβ =+=141412 解法四 (从“形”入手,利用配方法,先对二次项配方)原式=⋅-⋅+⋅⋅⋅-⋅(sin sin cos cos )sin sin cos cos cos cos αβαβαβαβαβ221222 =++⋅-⋅cos ()sin sin cos cos 212221222αβαβαβ =+-⋅+c o s()c o s ()21222αβαβ []=+-⋅+-cos ()cos ()221221αβαβ=12点评:在对三角式作变形时,以上四种方法,提供了四种变形的角度,这也是研究其他三角问题时经常要用的变形手法.四、典型习题导练1.已知集合M=}{R x x x y y ∈+=,cos sin ,N=}{R x x x y y ∈=,cos sin π则MUN 等于( )A .M B.N C.ф D.}{22≤≤-y y2.若sin α+cos α=2,则tan α+cot α=( )A.1B.2C.-1D.-23.已知2л<α<л<,sin α=54,则cos 2α的值为( ) A.25或-55B.- 55C. 55D.以上都不对4.已知θ=5л,则`34an 3an 334an 3t θθθθt t t an ++= .5.计算sin 10лsin 1013л= .6.已知tanA·tanB=tanA+tanB+1,则cos(A+B)的值是( )A .22- B .22 C .22± D .21±7.求值:tg tg tg tg 204032040 ++⋅=__________8.函数y x x =++sin cos 2的最小值为( )A. 22-B. 22+C. 0D. 19.已知角A 是△ABC 的一个内角,且32cos sin =+A A ,则△ABC 是() A .锐角三角形 B .钝角三角形 C .直角三角形 D .形状不确定10.已知向量.552||),sin ,(cos ),sin ,(cos =-==b a b a ββαα(1)求)cos(βα-的值;(2)若αββππαsin ,135sin ,02,20求且-=<<-<<的值.。