2015-2016第1学期初1期末数学考试题附加卷答案 西城
2015-2016学年北京市西城区八年级第一学期期末数学试题
北京市西城区2015— 2016学年度第一学期期末试卷八年级数学 2016.1试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.计算22-的结果是( ). A.14 B.14- C.4 D.4-2.下列剪纸作品中,不是..轴对称图形的是( ).A B C D3.在下列分解因式的过程中,分解因式正确的是( ).A.()xz yz z x y -+=-+B. ()223232a b ab ab ab a b -+=-C. 232682(34)xy y y x y -=-D. 234(2)(x 2)3x x x x +-=+-+4.下列分式中,是最简分式的是( ).A .2xyx B .222x y - C .22x y x y +- D .22xx +5.已知一次函数(2)3y m x =-+的图象经过第一、二、四象限,则m 的取值范围是().A .0m <B .0m >C .2m <D .2m >6.分式11x --可变形为( ).A.11x+B.11x-+C.11x--D.11x-7.若一个等腰三角形的两边长分别为2和4,则这个等腰三角形的周长是为(). A. 8 B. 10 C. 8或10 D.6或12 8.如图,B,D,E,C四点共线,且△ABD≌△ACE,若∠AEC=105°,则∠DAE的度数等于().A. 30°B.40°C. 50°D.65°9.如图,在△ABC中,BD平分∠ABC,与AC交于点D,DE ⊥AB于点E,若BC=5,△BCD的面积为5,则ED的长为().A. 12B. 1C.2D.510.如图,直线y=﹣x+m与直线y=nx+5n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+5n>0的整数解为().A.﹣5 ,﹣4,﹣3B. ﹣4,﹣3C.﹣4 ,﹣3,﹣2D. ﹣3,﹣2二、填空题(本题共20分,第11~14题,每小题3分,第15~18题,每小题2分)11.若分式11-x 在实数范围内有意义,则x 的取值范围是 . 12.分解因式224x y -= .13.在平面直角坐标系xOy 中,点P (-2,3)关于y 轴的对称点的坐标是 .14.如图,点B 在线段AD 上,∠ABC =∠D , AB ED =.要使△ABC ≌△EDB ,则需要再添加的一个条件是(只需填一个条件即可).15.如图,在△ABC 中,∠ABC =∠ACB , AB 的垂直平分线交AC 于点M交AB 于点N .连接MB ,若AB=8,△MBC 的周长是14 ,则BC 的长为 .16.对于一次函数21y x =-+,当-2≤x ≤3时,函数值y 的取值范围是 .17.如图,要测量一条小河的宽度AB 的长,可以在小河的岸边作 AB 的垂线 MN ,然后在MN 上取两点C ,D ,使BC =CD ,再画出MN 的垂线DE ,并使点E 与点A ,C 在一条直线上,这时测得DE 的长就是AB 的长,其中用到的数学原理是:_ .18.甲、乙两人都从光明学校出发,去距离光明学校1500m 远的篮球馆打球,他们沿同一条道路匀速行走,乙比甲晚出发4min .设甲行走的时间为t (单位:min),甲、乙两人相距y (单位:m),表示y 与t 的函数关系的图象如图所示,根据图中提供的信息,下列说法:①甲行走的速度为30m/min②乙在距光明学校500m 处追上了甲③甲、乙两人的最远距离是480m④甲从光明学校到篮球馆走了30min 正确的是__ _(填写正确结论的序号).练习题改编,识图能力,如何提取信息,数形结合思想三、解答题(本题共50分,第19,20题每小题6分;第21题~25题每小题5分; 第26题6分,第27题7分)19.分解因式:(1)2()3()a b a b -+- (2)221218ax ax a -+解: 解:20.计算:(1)42223248515a b a b c c ÷ (2)24()212x x x x x x -⋅+++ 解: 解:21.已知2a b -=,求222()2ab a a a ba ab b ÷---+的值. 解:22.解分式方程 2242111x x x x x -+=+- 解:23.已知:如图,A ,O ,B 三点在同一条直线上,∠A =∠C ,∠1=∠2,OD =OB .中国地大物博,过去由于交通不便,一些地区的经济发展受到了制约,自从“高铁网络”在全国陆续延伸以后,许多地区的经济和旅游发生了翻天覆地的变化,高铁列车也成为人们外出旅行的重要交通工具.李老师从北京到某地去旅游,从北京到该地普快列车行驶的路程约为1352km ,高铁列车比普快列车行驶的路程少52km ,高铁列车比普快列车行驶的时间少8h .已知高铁列车的平均时速是普快列车平均时速的2.5倍,求高铁列车的平均时速.解:25.在平面直角坐标系xOy中,将正比例函数2y x=-的图象沿y轴向上平移4个单位长度后与y轴交于点B,与x轴交于点C.(1)画正比例函数2y x=-的图象,并直接写出直线BC的解析式;(2)如果一条直线经过点C且与正比例函数2=-的图象交于点P(m,2),求my x的值及直线CP的解析式.26.阅读下列材料:利用完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式, 我们把这样的变形方法叫做多项式2ax bx c ++的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:21124x x ++=222111111()()2422x x ++-+ =21125()24x +- =115115()()2222x x +++- =(8)(3)x x ++根据以上材料,解答下列问题:(1)用多项式的配方法将281x x +-化成2()x m n ++的形式;(2)下面是某位同学用配方法及平方差公式把多项式2340x x --进行分解因式的解答过程:(32416x y -+的值总为正数.(1)解:(2)正确的解答过程是:(3)证明:27.已知:△ABC 是等边三角形.(1)如图1,点D 在AB 边上,点E 在AC 边上,BD =CE ,BE 与CD 交于点F .?试判断BF 与CF 的数量关系,并加以证明;(2)点D 是AB 边上的一个动点,点E 是AC 边上的一个动点,且BD =CE ,BE 与CD 交于点F .若△BFD 是等腰三角形,求∠FBD 的度数.图1 备用图(1)BF 与CF 的数量关系为: .证明:(2)解:北京市西城区2015— 2016学年度第一学期期末试卷八年级数学附加题 2016.1试卷满分:20分 一、填空题(本题6分) 1.(1)已知32a b a +=,则b a= ; (2)已知115a b -=,则3533a ab b a ab b----= . 二、解答题(本题共14分,每小题7分)2.观察下列各等式:(8.1)(9)(8.1)(9)---=-÷-,11---=-÷-,()(1)()(1)22-=÷,424299-=÷,3322┅┅根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的等于它们的;(2)填空:-4=÷4;(3)请你再写两个实数,使它们具有上述等式的特征:-=÷;(4)如果用y表示等式左边第一个实数,用x表示等式左边第二个实数(x≠0 且x≠1),①x与y之间的关系可以表示为:(用x的式子表示y);②若x>1,当x时,y有最值(填“大”或“小”),这个最值为.3.如图1,在平面直角坐标系xOy中,点A在y轴上,点B是第一象限的点,且AB ⊥y轴,且AB=OA,点C是线段OA上任意一点,连接BC,作BD⊥BC,交x轴于点D.(1)依题意补全图1;(2)用等式表示线段OA,AC与OD之间的数量关系,并证明;②连接CD,作∠CBD的平分线,交CD边于点H,连接AH,求∠BAH的度数.图1 备用图(1)依题意补全图1;(2)线段OA,AC,OD之间的数量关系为:_____________________________;证明:(3)解:北京市西城区2015— 2016学年度第一学期期末试卷八年级数学参考答案及评分标准 2016.1一、选择题(本题共30分,每小题3分)二、填空题(本题共20分,第18题4分,其余每小题3分)三、解答题(本题共50分,第19题,第20题每小题6分,第21~25题每小题5分, 第26题6分,第27题7分) 19.(1)解: 2()3()a b a b -+-=()(3)a b a b --+ .................................. 3分 (2)解:221218ax ax a -+=22(69)a x x -+ .................................... 2分 =22(3)a x - ...................................... 3分20.(1)解: 42223248515a b a b c c ÷=42232241558a b c c a b⋅ ................................... 1分=232a c.......................................... 3分(2)解:24()212x xx x x x -⋅+++ =24()(2)1x xx x x -⋅++ ................................. 1分=(2)(2)(2)1x x xx x x +-⋅++ ................................ 2分=21x x -+ ........................................ 3分21.解:222()2ab a a a ba ab b ÷----=22()()ab a a a ba b ÷--- .................................... 1分= 2()ab aba ba b ÷-- ....................................... 2分 =2()ab a baba b -⋅- .......................................... 3分 =1a b- ............................................... 4分当2a b -=时,原式=12. .............................. 5分22.解:方程两边都乘以(1)(1)x x +-,约去分母,得22412(1)x x x x x -+-=- . (2)分解这个整式方程,得 12x =-. ........................ 4分经检验12x =-是原分式方程的解.所以,原分式方程的解为12x =-. ..................... 5分23.证明:∵点A ,O ,B 三点在同一条直线上,∴∠1 +∠COB ==180°,∠2+∠AOD=180°.∵∠1=∠2,∴∠COB =∠AOD . .1分 在△AOD ∴△AOD ≌△COB . 4分∴AD =CB . ........................................ 5分24.解:设普快列车的平均时速为x km/h ,则高铁列车的平均时速为2.5x km/h . .................................................... 1分 由题意,得135213525282.5xx--=. ........................... 2分解得:x =104. ....................................... 3分 经检验,x =104是原分式方程的解,且符合题意.......... 4分 则2.5x =260.答:高铁列车的平均时速为260km/h . .............. 5分∴22m =-.解得 1m =-. ....................................... 3分 ∴点P 的坐标为(1-,2). 由(1)直线BC 与x 轴交于点C , ∴点C 的坐标为(2,0).设直线CP 的解析式为=+y kx b (k ≠0),∴2,20.k b k b -+=⎧⎨+=⎩ (4)分解这个方程组得2,34.3k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线CP 的解析式为2433y x =-+. ......................5分26.解:(1)281x x +-=2228441x x ++-- ..................................... 1分=2(4)17x +- ......................................... 2分 (2)2340x x --=222333()()40222x x -+-- ............ 3分=23169()24x --=313313()()2222x x -+--=(5)(8)x x +- ................... 4分 (3)证明:222416x y x y +--+ =22214411x x y y -++-++=22(1)(2)11x y -+-+ .................................... 5分 ∵2(1)x -≥0,2(2)y -≥0, ∴22(1)(2)110x y -+-+>.∴x ,y 取任何实数时,多项式222416x y x y +--+的值总是正数.6分 27.(1)BF =CF . ..................................... 1分 证明:如图1,△ABC 是等边三角形,∴∠ABC =∠ACB =60°. ............................... 2分在△DBC 和△ECB 中,CB AFED,,,BD CE ABC ACB BC CB =⎧⎪∠=∠⎨⎪=⎩∴△DBC ≌△ECB . ................................... 3分 ∴∠DCB =∠EBC .∴BF =CF . ........................................... 4分 (2)由(1)∠FBC =∠FCB , ∠ABC =60°. 设∠FBC =∠FCB =α, ∴∠DBF =60°-α.当△BFD 是等腰三角形时,①若FD =FB ,则∠FBD =∠FDB >∠A . ∴∠FBD =∠FDB > 60°,但∠FBD <∠ABC ,∴∠FBD <60°.∴FD =FB 的情况不存在.②如图2,若DB =DF ,则∠FBD =∠BFD =2α. ∴∠60°—α=2α. ∴α=20°.图1CBAFE D图2∴∠FBD =40°. ..................................... 5分③如图3,若BD =BF ,则∠BDF =∠BFD =2α. 在△BDF 中,∠DBF +∠BDF +∠BFD =180°. ∴60° -α+2α+2α=180°. ∴α=40°. ∴∠FBD =20°.综上,∠FBD 的度数是20°或40°. ................... 7分北京市西城区2015— 2016学年度第一学期期末试卷八年级数学附加题参考答案及评分标准 2016.1 一、填空题(本题6分)1.(1)13; ........................................ 3分 (2)52. ........................................... 6分二、解答题(本题共14分,每小题7分)2.解:(1)163,163; ................................ 1分(2)差,商; ....................................... 2分 (3)答案不唯一,如:25255544-=÷等; ................. 3分(4)①21x y x =- (5)分C BA FED②若1x=时,y有最小值,最值为4............. 7分x>,当23.解:(1)补全图1;............................... 1分(2)OD = OA+AC;.................................. 2分证明:作BE⊥x轴于点E,∵AB⊥y轴,∴∠CAB =∠DEB =90°.∵AB=OA,∴OE=BE =AB=OA.∵BC⊥BD,∴∠DBC =90°.在四边形OCBD中,∠AOD +∠1+∠DBC +∠BCO =360°.∵∠AOD =90°,∴∠1+∠BCO =180°.又∵∠2+∠BCO =180°.∴∠1 =∠2.∴△EBD≌△ABC.∴ED = AC.∵OD=OE+ED,∴OD=OA+AC......................................... 4分(3)由(2)△EBD≌△ABC,∴BC=BD.∵BH平分∠CBD,∴BH⊥CD,∠CBH=∠DBH=45°.∴∠BCH=45°.∴∠CBH=∠BCH.∴CH=BH............................................ 5分作HM⊥AB于点M,HN⊥OA于点N.∴∠HNC=∠HMB=90°.在四边形BACH中,∠CAB +∠ABH+∠BHC+∠HCA=360°.∴∠HCA+∠ABH =180°.又∵∠HCA+∠3 =180°,∴∠3 =∠ABH.∴△NCA≌△MBH.∴HN=HM............................................ 6分∴∠HAO=∠HAB.∵∠BAO= 90°,∴∠HAB =45°...................................... 7分2020-2-8。
(完整word版)北京市西城区初二数学第一学期期末试题(含答案)
北京市西城区2014— 2015学年度第一学期期末试卷2015.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.下列图形中,是轴对称图形的是( ).A B C D2.用科学记数法表示0.000 053为( ).A .0.53×10-4B .53×10-6C .5.3×10-4D .5.3×10-53.函数y =3x -中自变量x 的取值范围是( ).A .x ≥3B .x ≤3C .x >3D .x ≠34.如图,△ABC 沿AB 向下翻折得到△ABD ,若∠ABC =30°,∠ADB =100°,则∠BAC 的度数是( ).A .30° B.100°C .50° D.80°5.下列二次根式中,最简二次根式是( ).A .21B .17C .75D .35a6.若将分式2xx y +中的字母x 与y 的值分别扩大为原来的10倍,则这个分式的值(). A .扩大为原来的10倍 B .扩大为原来的20倍C .不改变D .缩小为原来的1107.已知一次函数1y kx =+,y 随x 的增大而增大,则该函数的图象一定经过( ).A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.下列判断中错误..的是( ). A .有两角和其中一个角的对边对应相等的两个三角形全等B .有一边相等的两个等边三角形全等C .有两边和一角对应相等的两个三角形全等D .有两边和其中一边上的中线对应相等的两个三角形全等9.某施工队要铺设一条长为1500米的管道,为了减少施工对交通造成的影响,施工队实际的工作效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x 米,则根据题意所列方程正确的是( ).A .150015002(120%)x x -=-B .150015002(120%)x x=+- C .150015002(120%)x x -=+ D .150015002(120%)x x=++ 10.七个边长为1的正方形按如图所示的方式放置在平面直角坐标系xOy 中,直线l 经过点A (4,4的面积分成相等的两部分,则直线l 与x 轴的交点B 标为( ).A .23B .34C .45D .79二、填空题(本题共25分,第18题4分,其余每小题3分)11.若分式14x +在实数范围内有意义,则x 的取值范围是 . 12.分解因式:22363x xy y -+= .13.已知一次函数23y x =--的图象经过点A (-1,y 1)、点B (-2,y 2),则y 1 y 2.(填“>”、“<”或“=”)14.如图,在△ABC 中,边AB 的垂直平分线分别交BC 于点D 交AB 于点E .若AE =3,△ADC 的周长为8,则△ABC 的周长为 .15.计算:22224a b ab c c÷= . 16.若点M (a ,3)和点N (2,a +b )关于x 轴对称,则b 的值为 .17.如图,∠AOB =30°,OP 平分∠AOB ,PD ⊥OB 于点 交OA 于点C .若PC =10,则OC = ,PD三、解答题(本题共15分,第19题4分,第20题5分,第21题6分)19解:20.已知:如图,点A ,B ,C ,D 在一条直线上,AB =CD ,AE ∥FD ,且∠E =∠F .求证:EC=FB .证明:21.先化简,再求值:mm m m --⋅--+342)252(,其中34m =. 解:四、解答题(本题共16分,第23题6分,其余每小题5分)22.解分式方程:12422=-+-x x x . 解:24.已知:如图,线段AB 和射线BM 交于点B .(1)利用尺规..完成以下作图,并保留作图痕迹.(不要求写作法) ①在射线BM 上求作一点C ,使AC =AB ;②在线段AB 上求作一点D ,使点D 到BC ,AC 的距离相等;(2)在(1)所作的图形中,若∠ABM =72°,则图中与BC 相等的线段是 .五、解答题(本题共14分,每小题7分)26.已知:在△ABC 中,∠ABC <60°,CD 平分∠ACB 交AB 于点D ,点E 在线段CD 上(点E 不与点C ,D重合),且∠EAC =2∠EBC .(1)如图1,若∠EBC=27°,且EB=EC,则∠DEB=°,∠AEC=°;(2)如图2.①求证:AE+AC=BC;②若∠ECB=30°,且AC=BE,求∠EBC的度数.图1 图2(2)①证明:②解:北京市西城区2014— 2015学年度第一学期期末试卷八年级数学附加题2015.1试卷满分:20分一、填空题(本题6分)1.已知2(1.又如,+⨯=2(1=8+,反之,8+=2212112-122-=222-=2.参考以上方法解决下列问题:(1)将6+写成完全平方的形式为 ;(2)若一个正方形的面积为8-,则它的边长为 ;(3)4的算术平方根为 .二、解答题(本题共14分,每小题7分)2.我们知道,数轴上表示1x ,2x d =12-x x .类似地,在平面直角坐标系xOy 任意两点M (1x ,1y ),N (2x ,2y 为d (M ,N )=1212-+-x x y y .例如,点P (3,9)与Q (5,2-)之间的折线距离为d (P ,Q )=359(2)-+--=211+=13. 回答下列问题:(1)已知点A 的坐标为(2,0).①若点B 的坐标为(3-,6),则d (A ,B )= ;②若点C 的坐标为(1,t ),且d (A ,C )=5,则t = ;③若点D 是直线=y x 上的一个动点,则d (A ,D )的最小值为 ;(2)已知O 点为坐标原点,若点E (x ,y )满足d (E ,O )=1,请在图1中画出所有满足条件的点E组成的图形.备用图 图13.已知:在等腰三角形ABC 中,AB =AC ,AD ⊥BC 于点D .以AC 为边作等边三角形ACE ,直线BE 交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.①求证:∠FEA=∠FCA;②猜想线段FE,FA,FD之间的数量关系,并证明你的结论;(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的同侧时,利用图2探究线段FE,FA,FD之..间的数量关系,并直接写出你的结论.图1 图2解:(1)①证明:②线段FE,FA,FD之间的数量关系为:_____________________________;证明:(2)线段FE,FA,FD之间的数量关系为:_____________________________.。
北京市北京市西城区2015-2016学年七年级上学期末数学试卷及参考答案
如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应 走1段弧长,即从1→2为第2次“移位”.
家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.
(1)如果他家2016年全年使用300立方米天然气,那么需要交多少元天然气费?
(2)如果他家2016年全年使用500立方米天然气,那么需要交多少元天然气费? (3)如果他家2016年需要交1563元天然气费,他家2016年用了多少立方米天然气?
21. 先化简,再求值:5(4a2﹣2ab3)﹣4(5a2﹣3ab3),其中a=﹣1,b=2.
22. 解方程:
.
四、解答题
23. 如图,∠CDE+∠CED=90°,EM平分∠CED,并与CD边交于点M.DN平分∠CDE,并与EM交于点N. (1)依题意补全图形,并猜想∠EDN+∠NED的度数等于________ ; (2)证明以上结论. 证明:∵DN平分∠CDE,EM平分∠CED, ∴∠EDN= ∠CDE,∠NED=________ .(理由:________ ) ∵∠CDE+∠CED=90°, ∴∠EDN+∠NED=________ ×(∠________ +∠________ )=________ ×90°=________ °.
15. 用含a的式子表示:
(1)比a的6倍小5的数:________
(2)如果北京某天的最低气温为a℃,中午12点的气温比最低气温上升了10℃,那么中午12点的气温为________ ℃
第一学期期末九年级数学试题参考答案
北京市西城区2015— 2016学年度第一学期期末试卷九年级数学参考答案及评分标准2016.1一、选择题(本题共30分,每小题3分)三、解答题(本题共72分,第17﹣26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=24(2-………………………………………………………3分=162-=112.…………………………………………………………………………5分18.解:∵AD⊥BC于点D,∴∠ADB=∠ADC=90°.∵在Rt△ABD中,AB=12,∠BAD=30°,∴BD=12AB=6,…………………………………1分AD=AB·cos∠BAD =12·cos30°=……………………………………2分∵BC=15,∴CD= BC-BD=15-6=9.………………………………………………………3分∴在Rt△ADC中,tan C=ADCD……………………………………………………4分………………………………………5分19.解:(1)令0=y,则2230x x-++=.解得11-=x,32=x.………………………………………………………1分∵点A在点B的左侧,∴A(1-,0),B(3,0).…………………………………………………2分对称轴为直线1=x . …………………………………………………………3分 (2)∵当1x =时,4=y ,∴顶点C 的坐标为(1,4). …………………………………………………4分∵点C ,D 关于x 轴对称,∴点D 的坐标为(1,4-).∵AB =4,∴=ACB DCB ACBD S S S ∆∆+四边形1442162=⨯⨯⨯=. ………………………………5分20.(1)证明:∵AD ∥BC ,∴∠ADB=∠DBC . ……………………1分 ∵∠A =∠BDC ,∴△ABD ∽△DCB . ……………………3分(2)解:∵△ABD ∽△DCB ,∴AB ADDC DB=. …………………………………………………………4分 ∵AB =12,AD =8,CD =15, ∴12815DB=. ∴DB =10. ………………………………………………………………5分21.解:根据题意,得 (213)(82)60x x --=. …………………………………………2分整理得 211180x x -+=.解得 12x =,29x =. …………………………………………………………3分 ∵9x =不符合题意,舍去,∴2x =. ……………………………………………………………………………4分答:人行通道的宽度是2米. ……………………………………………………5分 22.解:(1)∵抛物线1C :2124y x x k =-+与x 轴有且只有一个公共点,∴方程2240x x k -+=有两个相等的实数根.∴2(4)420k ∆=--⨯=. ……………………………………………………1分 解得 2k =. …………………………………………………………………2分(2)∵抛物线1C :21242y x x =-+22(1)x =-,顶点坐标为(1,0),抛物线2C :222(1)8y x =+-的顶点坐标为(-1,-8), ………………3分∴将抛物线1C 向左平移2个单位长度,再向下平移8个单位长度就可以得到抛物线2C . …………………………………………………………………4分(3)31m -<<. ……………………………………………………………………5分 23.解:(1)∵OC ⊥AB 于点D ,∴AD =DB , ……………………………………1分∵AB= ∴AD=∵∠AOD =2∠E ,∠E =30°,∴∠AOD =60°. ………………………………………………………………2分 ∵在Rt △AOD 中,∴OA =︒=∠60sin 32sin AOD AD =4. ………………………………………………3分 (2)∠BAF =75°或15°. ……………………………………………………………5分24.解:(1)∵在Rt △ADB 中,∠ADB =90°,∠B =45°, ∴∠BAD =90°—∠B =45°. ∴∠BAD =∠B .∴AD =DB . ……………………………1分 设AD =x ,∵在Rt △ADC 中,tan ∠ACD =ADDC,∠ACD =58°, ∴DC =tan58xo. ………………………………………………………………3分∵DB = DC + CB =AD ,CB =90,∴tan58xo+90=x . ……………………………………………………………4分 将tan58°≈1.60代入方程,解得x ≈240. …………………………………………………………………5分答:最高塔的高度AD 约为240米. 25.(1)证明:连接OC ,如图1.∵ PC 是⊙O 的切线,C 为切点,∴OC ⊥PC . ……………………………1分 ∴∠PCO =∠1+∠2=90°. ∵PD ⊥AB 于点D , ∴∠EDA =90°. ∴∠A +∠3=90°.图1∴∠A =∠1. ∴∠2=∠3. ∵∠3=∠4, ∴∠2=∠4.即∠PCE =∠PEC . …………………………………………………………2分(2)解:作PF ⊥EC 于点F ,如图2.∵AB 是⊙O 的直径, ∴∠ACB =90°.∵在Rt △ABC 中,AB =10,3sin 5A =, ∴BC =AB ·sin A =6.∴AC =22BC AB -=8.3分 ∵在Rt △AED 中,ED =32, ∴AE =sin ED A =52. ∴EC=AC -AE =112. ∵∠2=∠4, ∴PE=PC .∵PF ⊥EC 于点F , ∴FC=12……………………………………………………………4分 ∠PFC =90°. ∴∠2+∠5=90°.∵∠A +∠2=∠1+∠2=90°. ∴∠A =∠5. ∴sin ∠5 =35. ∴在Rt △PFC 中,PC =sin 5FC ∠=1255. ……………………………………5分26.解:(2)抛物线如图所示; ……………………1分(3)x =4-,1-或1; ……………………3分 (4)41x -<<-或1x >. ……………………5分27.解:(1)∵二次函数212y x bx c =-++,当0x =和5x =时所对应的函数值相等,∴二次函数212y x bx c =-++的图象的对称轴是直线52x =.∵二次函数212y x bx c =-++的图象经过点A (1,0),∴10,25.2b c b ⎧=-++⎪⎪⎨⎪=⎪⎩……………………………………………………………1分 解得 2,5.2c b =-⎧⎪⎨=⎪⎩∴二次函数的表达式为215222y x x =-+-. ………………………………2分(2)过点B 作BD ⊥x 轴于点D ,如图1.∵一次函数3y x =-+与二次函数212y x bx c =-++的图象分别交于B ,C 两点,∴2153222x x x -+=-+-.解得 12x =,25x =. ………………3分 ∴交点坐标为(2,1),(5,2-). ∵点B 在第一象限,∴点B 的坐标为(2,1). ∴点D 的坐标为(2,0). 在Rt △ABD 中,AD =1,BD =1,∴AB=2. …………………………………………………4分 (3)结论:四边形ABCN 的形状是矩形. ………………………………………5分证明:设一次函数3y x =-+的图象与x 轴交于点E ,连接MB ,MN ,如图2.∵点B 绕点M 旋转180°得到点N ,∴M 是线段BN 的中点.∴MB = MN .∵M 是线段AC 的中点, ∴MA = MC .∴四边形ABCN 是平行四边形. ……6分∵一次函数3y x =-+的图象与x 轴交于点E , 当0y =时,3x =. ∴点E 的坐标为(3,0). ∴DE =1= DB .∴在Rt △BDE 中,∠DBE =∠DEB =45°. 同理∠DAB =∠DBA =45°. ∴∠ABE =∠DBA +∠DBE =90°.∴四边形ABCN 是矩形. ……………………………………………7分28.解:(1 …………………………2分(2 ②结论:(1 AN ⊥DE .∴∠CAN +∠DAC =45°, ∠AND =90°.∴∠NAM =∠DAC . 4分在Rt △AND 中,ANAD =cos ∠DAN . 在Rt △ACB 中,ACAB =cos ∠CAB∵M 为AB 的中点,∴AB =2AM .∴22AC AC AB AM ==.∴AM AC . ∴AN AD =AMAC. ∴△ANM ∽△ADC . ∴∠AMN =∠ACD .∵点D 在线段BC 的延长线上, ∴∠ACD =180°-∠ACB =90°. ∴∠AMN =90°.∴NM ⊥AB . ………………………………………………………5分(3)当BD 的长为 6 时, ……………………………7分 29.解:(1)所得图形,如图1所示. ……………………1分(2)①45°; ………………………………………3分②(,12)或(12-); ……………5分 (3)①如图2,直线OQ 与⊙M 相切于点Q ,点Q 在第一象限,连接MQ ,过点Q 作QH ⊥x 轴于点H . ∵直线OQ 与⊙M 相切于点Q , ∴MQ ⊥OQ . ∴∠MQO =90°. ∵MO =2,MQ =1,∴在Rt △MQO 中,sin ∠MOQ=21=MO MQ .∴∠MOQ =30°.∴OQ =OM ﹒cos ∠MOQ =3. ∵QH ⊥x 轴, ∴∠QHO =90°. ∵∠QOH =90°-∠MOQ =60°, ∴在Rt △QOH 中,QH = OQ ﹒sin ∠QOH =23. …………………………6分 ②如图3,当反射光线PN 与坐标轴平行时,连接MP 并延长交x 轴于点D ,过点P 作PE ⊥OD 于点E ,过点O 作OF ⊥PD 于点F .∵直线l 是⊙M 的切线, ∴MD ⊥l .∴∠1+∠OPD =∠2+∠NPD =90°. ∵∠1=∠2,∴∠OPD =∠NPD . ∵PN ∥x 轴,图2∴∠NPD =∠PDO . ∴∠OPD =∠PDO . ∴OP =OD . ∵OF ⊥PD , ∴∠MFO =90°,PF =FD .∵cos OMF ∠=MF MOMO MD=, 设PF =FD =x ,而MO =2,MP =1, ∴12212x x+=+.解得34x -±=.∵0x >,∴x =. ∵PE ⊥OD , ∴∠PED =90°=∠MOD . ∴PE ∥MO .∴∠EPD =∠OMF .∴cos ∠EPD = cos ∠OMF . ∴MOMF PD PE =. ∴PD MO MFPE ⋅==122x x +⋅ (1)x x =+…………………………………………………………7分. 可知,当反射点P 从②中的位置开始,在⊙M 上沿逆时针方向运动,到与①中的点Q 重合之前,都满足反射光线与坐标轴无公共点,所以反射点P32P y <. ………………………………8分。
2015-2016学年北京市西城区七年级上期末数学试卷含答案解析
2015-2016学年北京市西城区七年级(上)期末数学试卷一、选择题(本题共28分,第1~8题每小题3分,第9、10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(2015秋•吴中区期末)下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)3D.(﹣2)22.(2015秋•西城区期末)科学家发现,距离银河系约2 500 000光年之遥的仙女星系正在向银河系靠近.其中2 500 000用科学记数法表示为()A.0.25×107B.2.5×106C.2.5×107D.25×1053.(2015秋•西城区期末)下列各式中正确的是()A.﹣(2x+5)=﹣2x+5 B.﹣(4x﹣2)=﹣2x+2C.﹣a+b=﹣(a﹣b) D.2﹣3x=﹣(3x+2)4.(2015秋•西城区期末)下列计算正确的是()A.7a+a=7a2B.3x2y﹣2yx2=x2yC.5y﹣3y=2 D.3a+2b=5ab5.(2015秋•西城区期末)已知a﹣b=1,则代数式2a﹣2b﹣3的值是()A.1 B.﹣1 C.5 D.﹣56.(2015秋•西城区期末)空调常使用的三种制冷剂的沸点如下表所示,那么这三种制冷剂按沸点从低到高排列的顺序是()A.R12,R22,R410A B.R22,R12,R410AC.R410A,R12,R22D.R410A,R22,R127.(2015秋•西城区期末)历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x 等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x﹣5的值记为f (﹣1),那么f(﹣1)等于()A.﹣7 B.﹣9 C.﹣3 D.﹣18.(2015秋•西城区期末)下列说法中,正确的是()①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10.A.①②B.②③C.②④D.③④9.(2分)(2015秋•西城区期末)点M,N,P和原点O在数轴上的位置如图所示,点M,N,P 对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O10.(2分)(2015秋•西城区期末)用8个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如图所示,那么从左面看它得到的平面图形一定不是()A.B.C.D.二、填空题(本题共23分,第11~13题每小题3分,第14、15题每小题3分,第16~18题每小题3分)11.(2015秋•宝应县期末)﹣2016的相反数是.12.(2015秋•西城区期末)单项式的次数是.13.(2015秋•西城区期末)用四舍五入法将3.886精确到0.01,所得到的近似数为.14.(4分)(2015秋•西城区期末)如图,∠AOB=72°30′,射线OC在∠AOB内,∠BOC=30°.(1)∠AOC=;(2)在图中画出∠AOC的一个余角,要求这个余角以O为顶点,以∠AOC的一边为边.图中你所画出的∠AOC的余角是∠,这个余角的度数等于.15.(4分)(2015秋•西城区期末)用含a的式子表示:(1)比a的6倍小5的数:;(2)如果北京某天的最低气温为a℃,中午12点的气温比最低气温上升了10℃,那么中午12点的气温为℃.16.(2分)(2015秋•西城区期末)请写出一个只含字母x的整式,满足当x=﹣2时,它的值等于3.你写的整式是.17.(2分)(2015秋•泰兴市期末)一件商品按成本价提高20%标价,然后打9折出售,此时仍可获利16元,则商品的成本价为元.18.(2分)(2015秋•西城区期末)如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应走1段弧长,即从1→2为第2次“移位”.若小明从编号为4的点开始,第1次“移位”后,他到达编号为的点,…,第2016次“移位”后,他到达编号为的点.三、计算题(本题共16分,每小题12分)19.(12分)(2015秋•西城区期末)(1)(﹣12)﹣(﹣20)+(﹣8)﹣15.(2)﹣.(3)19×+(﹣1.5)÷(﹣3)2.20.(4分)(2015秋•西城区期末)以下是一位同学所做的有理数运算解题过程的一部分:(1)请你在上面的解题过程中仿照给出的方式,圈画出他的错误之处,并将正确结果写在相应的圈内;(2)请就此题反映出的该同学有理数运算掌握的情况进行具体评价,并对相应的有效避错方法给出你的建议.四、先化简,再求值(本题5分)21.(5分)(2015秋•西城区期末)先化简,再求值:5(4a2﹣2ab3)﹣4(5a2﹣3ab3),其中a=﹣1,b=2.五、解答题(本题5分)22.(5分)(2015秋•西城区期末)解方程:.六、解答题(本题7分)23.(7分)(2015秋•西城区期末)如图,∠CDE+∠CED=90°,EM平分∠CED,并与CD边交于点M.DN平分∠CED,并与EM交于点N.(1)依题意补全图形,并猜想∠EDN+∠NED的度数等于;(2)证明以上结论.证明:∵DN平分∠CDE,EM平分∠CED,∴∠EDN=,∠NED=.(理由:)∵∠CDE+∠CED=90°,∴∠EDN+∠NED=×(∠+∠)=×90°=°.七、解决下列问题(本题共10分,每小题5分)24.(5分)(2015秋•西城区期末)已知右表内的各横行中,从第二个数起的数都比它左边相邻的数大m;各竖列中,从第二个数起的数都比它上边相邻的数大n.求m,n以及表中x的值.25.(5分)(2015秋•西城区期末)从2016年1月1日开始,北京市居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按2.28元/m3收费,超过350立方米的部分按2.5元/m3收费.小冬一家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.(1)如果他家2016年全年使用300立方米天然气,那么需要交多少元天然气费?(2)如果他家2016年全年使用500立方米天然气,那么需要交多少元天然气费?(3)如果他家2016年需要交1563元天然气费,他家2016年用了多少立方米天然气?八、解答题(本题6分)26.(6分)(2015秋•西城区期末)如图,数轴上A,B两点对应的有理数分别为10和15,点P 从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP=,AQ=;(2)当t=2时,求PQ的值;(3)当PQ=时,求t的值.九、附加题(试卷满分:20分)27.(6分)(2015秋•西城区期末)操作题:公元初,中美洲玛雅人使用的一种数字系统与其他计数方式都不相同,它采用二十进位制但只有3个符号,用点“•”划“”、卵形“”来表示我们所使用的自然数,如自然数1~19的表示见下表,另外在任何数的下方加一个卵形,就表示把这个数扩大到它的20倍,如表中20和100的表示.(1)玛雅符号表示的自然数是;(2)请你在右边的方框中画出表示自然数280的玛雅符号:.28.(5分)(2015秋•西城区期末)推理判断题七年级五个班的班长因为参加校学生干部培训会而没有观看年级的乒乓球比赛.年级组长让他们每人猜一猜其中两个班的比赛名次.这五个班长各自猜测的结果如表所示:年级组长说,每班的名次都至少被他们中的一人说对了,请你根据以上信息将一班~五班的正确名次填写在表中最后一行.29.(9分)(2015秋•西城区期末)解答题唐代大诗人李白喜好饮酒作诗,民间有“李白斗酒诗百篇”之说.《算法统宗》中记载了一个“李白沽酒”的故事.诗云:注:古代一斗是10升.大意是:李白在郊外春游时,做出这样一条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的19升酒.按照这样的约定,在第3个店里遇到朋友正好喝光了壶中的酒.(1)列方程求壶中原有多少升酒;(2)设壶中原有a0升酒,在第n个店饮酒后壶中余a n升酒,如第一次饮后所余酒为a1=2a0﹣19(升),第二次饮后所余酒为a2=2a1﹣19=2(2a0﹣19)﹣19=22a0﹣(21+1)×19(升),….①用a n的表达式表示a n,再用a0和n的表达式表示a n;﹣1②按照这个约定,如果在第4个店喝光了壶中酒,请借助①中的结论求壶中原有多少升酒.2015-2016学年北京市西城区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共28分,第1~8题每小题3分,第9、10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(2015秋•吴中区期末)下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)3D.(﹣2)2【考点】正数和负数.【分析】根据在一个数的前面机上负号就是这个数的相反数,负数的绝对值是它的相反数,负数的奇数次幂是负数,负数的偶数次幂是正数,可得答案.【解答】解:A、﹣(﹣2)=2,故A错误;B、|﹣2|=2,故B错误;C、(﹣2)3=﹣8,故C正确;D、(﹣2)2=4,故D错误;故选:C.【点评】本题考查了正数和负数,小于零的数是负数,化简各数是解题关键.2.(2015秋•西城区期末)科学家发现,距离银河系约2 500 000光年之遥的仙女星系正在向银河系靠近.其中2 500 000用科学记数法表示为()A.0.25×107B.2.5×106C.2.5×107D.25×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2 500 000用科学记数法表示为2.5×106.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2015秋•西城区期末)下列各式中正确的是()A.﹣(2x+5)=﹣2x+5 B.﹣(4x﹣2)=﹣2x+2C.﹣a+b=﹣(a﹣b) D.2﹣3x=﹣(3x+2)【考点】去括号与添括号.【专题】常规题型.【分析】分别根据去括号与添括号的法则判断各选项即可.【解答】解:A、﹣(2x+5)=﹣2x﹣5,故本选项错误;B、﹣(4x﹣2)=﹣2x+1,故本选项错误;C、﹣a+b=﹣(a﹣b),故本选项正确;D、2﹣3x=﹣(3x﹣2),故本选项错误.故选C.【点评】本题考查去括号与添括号的知识,注意掌握去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.4.(2015秋•西城区期末)下列计算正确的是()A.7a+a=7a2B.3x2y﹣2yx2=x2yC.5y﹣3y=2 D.3a+2b=5ab【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则和同类项的定义分别对每一项进行计算即可.【解答】解:A、7a+a=8a,故本选项错误;B、3x2y﹣2yx2=x2y,故本选项正确;C、5y﹣3y=2y,故本选项错误;D、3a+2b,不是同类项,不能合并,故本选项错误;故选B.【点评】此题考查了合并同类项,熟练掌握合并同类项的法则和同类项的定义是本题的关键.5.(2015秋•西城区期末)已知a﹣b=1,则代数式2a﹣2b﹣3的值是()A.1 B.﹣1 C.5 D.﹣5【考点】代数式求值.【专题】计算题;实数.【分析】原式前两项提取2变形后,将a﹣b=1代入计算即可求出值.【解答】解:原式=2(a﹣b)﹣3,当a﹣b=1时,原式=2﹣3=﹣1.故选B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.(2015秋•西城区期末)空调常使用的三种制冷剂的沸点如下表所示,那么这三种制冷剂按沸点从低到高排列的顺序是()A.R12,R22,R410A B.R22,R12,R410AC.R410A,R12,R22D.R410A,R22,R12【考点】有理数大小比较.【专题】应用题.【分析】数与负数以0为分界点,正数、0都比负数大;负数与负数比较大小,负号后面的数字越小,这个负数反而越大;反之,负号后面的数字越大,这个负数就越小.【解答】解:因为﹣52<﹣41<﹣32,所以这三种制冷剂按沸点从低到高排列的顺序是R410A,R22,R12,故选D【点评】此题考查了学生正、负数大小比较的方法,只要掌握方法就很好解答.但要注意,在负数与负数比较大小时,不要认为负号后面的数越大这个数越大.7.(2015秋•西城区期末)历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x 等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x﹣5的值记为f (﹣1),那么f(﹣1)等于()A.﹣7 B.﹣9 C.﹣3 D.﹣1【考点】代数式求值.【专题】新定义.【分析】把x=﹣1代入f(x)计算即可确定出f(﹣1)的值.【解答】解:根据题意得:f(﹣1)=1﹣3﹣5=﹣7.故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.8.(2015秋•西城区期末)下列说法中,正确的是()①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10.A.①②B.②③C.②④D.③④【考点】直线、射线、线段;两点间的距离;余角和补角.【分析】根据射线及线段的定义及特点可判断各项,从而得出答案.【解答】解:①射线AB和射线BA不是同一条射线,错误;②若AB=BC,点B在线段AC上时,则点B为线段AC的中点,错误;③同角的补角相等,正确;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10,正确.故选D.【点评】本题考查射线及线段的知识,注意基本概念的掌握是解题的关键.9.(2分)(2015秋•西城区期末)点M,N,P和原点O在数轴上的位置如图所示,点M,N,P 对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O【考点】数轴.【专题】探究型.【分析】根据数轴和ab<0,a+b>0,ac>bc,可以判断a、b、c对应哪一个点,从而可以解答本题.【解答】解:∵ab<0,a+b>0,∴数a表示点M,数b表示点P或数b表示点M,数a表示点P,则数c表示点N,∴由数轴可得,c>0,又∵ac>bc,∴a>b,∴数b表示点M,数a表示点P,即表示数b的点为M.故选A.【点评】本题考查数轴,解题的关键是明确数轴的特点能根据题目中的信息,判断各个数在数轴上对应哪一个点.10.(2分)(2015秋•西城区期末)用8个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如图所示,那么从左面看它得到的平面图形一定不是()A.B.C.D.【考点】简单组合体的三视图;由三视图判断几何体.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:A、加号的水平线上每个小正方形上面都有一个小正方形,故A正确;B、加号的水平线上左边小正方形上有一个小正方形中间位置的小正方形上有两个小正方形,故B 正确;C、加号的竖直的线上最上边小正方形上有两个小正方形,故C错误;D、加号的竖直的线上最上边小正方形上有两个小正方形,最下边的小正方形上有一个小正方形,故D正确;故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.二、填空题(本题共23分,第11~13题每小题3分,第14、15题每小题3分,第16~18题每小题3分)11.(2015秋•宝应县期末)﹣2016的相反数是﹣2016.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2016的相反数是﹣2016.故答案为:﹣2016..【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.(2015秋•西城区期末)单项式的次数是4.【考点】单项式.【分析】单项式中所有字母的指数的和叫单项式的次数.【解答】解:单项式的次数是4.故答案为:4.【点评】本题主要考查的是单项式的概念,掌握单项式的次数的定义是解题的关键.13.(2015秋•西城区期末)用四舍五入法将3.886精确到0.01,所得到的近似数为 3.89.【考点】近似数和有效数字.【分析】把千分位上的数字6进行四舍五入即可.【解答】解:3.886≈3.89(精确到0.01).故答案为3.89.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.14.(4分)(2015秋•西城区期末)如图,∠AOB=72°30′,射线OC在∠AOB内,∠BOC=30°.(1)∠AOC=42°30′;(2)在图中画出∠AOC的一个余角,要求这个余角以O为顶点,以∠AOC的一边为边.图中你所画出的∠AOC的余角是∠AOD,这个余角的度数等于47°30′.【考点】余角和补角;度分秒的换算.【分析】(1)根据图形进行角的计算即可;(2)根据余角的概念作图、计算即可.【解答】解:(1)∠AOC=∠AOB﹣∠BOC=42°30′;(2)如图,∠AOC的余角是∠AOD,90°﹣42°30′=47°30′.故答案为:(1)42°30′;(2)AOD;47°30′.【点评】本题考查的是余角和补角的概念以及角的计算,掌握两个角的和为90°,则这两个角互余是解题的关键.15.(4分)(2015秋•西城区期末)用含a的式子表示:(1)比a的6倍小5的数:6a﹣5;(2)如果北京某天的最低气温为a℃,中午12点的气温比最低气温上升了10℃,那么中午12点的气温为(a+10)℃.【考点】列代数式.【分析】(1)被减数是6a,减数为5,依此即可求解;(2)根据题意可得:中午12点的气温=最低气温+升高的气温,依此即可求解.【解答】解:(1)a的6倍为6a,小5即为6a﹣5;(2)中午12点的气温为(a+10)℃.故答案为:6a﹣5;(a+10).【点评】考查了列代数式,(1)题关键是找好题中关键词,如“倍”;(2)注意气温上升为加.16.(2分)(2015秋•西城区期末)请写出一个只含字母x的整式,满足当x=﹣2时,它的值等于3.你写的整式是﹣x或x+5.【考点】代数式求值.【专题】计算题;开放型.【分析】写出一个整式,使x=﹣2时值为3即可.【解答】解:答案不唯一,如﹣x或x+5.故答案为:﹣x或x+5【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.17.(2分)(2015秋•泰兴市期末)一件商品按成本价提高20%标价,然后打9折出售,此时仍可获利16元,则商品的成本价为200元.【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品的成本价是x元,则商品的标价为x(1+20%),等量关系为:标价×90%=成本+利润,把相关数值代入求解即可.【解答】解:设这种商品的成本价是x元,则商品的标价为x(1+20%),由题意可得:x×(1+20%)×90%=x+16,解得x=200,即这种商品的成本价是200元.故答案为:200.【点评】此题考查一元一次方程的应用,得到售价的等量关系是解决本题的关键,难度一般,注意细心审题.18.(2分)(2015秋•西城区期末)如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应走1段弧长,即从1→2为第2次“移位”.若小明从编号为4的点开始,第1次“移位”后,他到达编号为3的点,…,第2016次“移位”后,他到达编号为4的点.【考点】规律型:数字的变化类;规律型:图形的变化类.【分析】从编号为4的点开始走4段弧:4→5→1→2→3,即可得出结论;依次求出第2,3,4,5次的结合寻找规律,根据规律分析第2016次的编号即可.【解答】解:从编号为4的点开始走4段弧:4→5→1→2→3,所以第一次“移位”他到达编号为3的点;第二次移位后:3→4→5→1,到编号为1的点;第三次移位后:1→2,到编号为2的点;第四次移位后:2→3→4,回到起点;可以发现:他的位置以“3,1,2,4,”循环出现,2016÷4=504,整除,所以第2016次移位后他的编号与第四次相同,到达编号为4的点;故答案为:3,4.【点评】此题主要考查循环数列规律的探索与应用,根据已知求出部分数据找到循环周期是解题的关键.三、计算题(本题共16分,每小题12分)19.(12分)(2015秋•西城区期末)(1)(﹣12)﹣(﹣20)+(﹣8)﹣15.(2)﹣.(3)19×+(﹣1.5)÷(﹣3)2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣12+20﹣8﹣15=﹣35+20=﹣15;(2)原式=﹣×3×(﹣8)=6;(3)原式=19.5×﹣1.5×=(19.5﹣1.5)×=18×=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(4分)(2015秋•西城区期末)以下是一位同学所做的有理数运算解题过程的一部分:(1)请你在上面的解题过程中仿照给出的方式,圈画出他的错误之处,并将正确结果写在相应的圈内;(2)请就此题反映出的该同学有理数运算掌握的情况进行具体评价,并对相应的有效避错方法给出你的建议.【考点】有理数的混合运算.【专题】图表型;实数.【分析】(1)出错地方有2处,一是绝对值求错,一是乘除运算顺序错误,改正即可;(2)根据有理数运算顺序写出建议即可.【解答】解:(1)如图所示:(2)有理数运算顺序为:先算乘方及绝对值运算,再算乘除运算,最后算加减运算,同级运算从左到右依次进行.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、先化简,再求值(本题5分)21.(5分)(2015秋•西城区期末)先化简,再求值:5(4a2﹣2ab3)﹣4(5a2﹣3ab3),其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=20a2﹣10ab3﹣20a2+12ab3=2ab3,当a=﹣1,b=2时,原式=﹣16.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、解答题(本题5分)22.(5分)(2015秋•西城区期末)解方程:.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母,得3(1﹣2x)﹣21=7(x+3),去括号,得3﹣6x﹣21=7x+21,移项,得﹣6x﹣7x=21﹣3+21,合并,得﹣13x=39,系数化1,得x=﹣3,则原方程的解是x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.六、解答题(本题7分)23.(7分)(2015秋•西城区期末)如图,∠CDE+∠CED=90°,EM平分∠CED,并与CD边交于点M.DN平分∠CED,并与EM交于点N.(1)依题意补全图形,并猜想∠EDN+∠NED的度数等于45°;(2)证明以上结论.证明:∵DN平分∠CDE,EM平分∠CED,∴∠EDN=,∠NED=CED.(理由:角平分线的定义)∵∠CDE+∠CED=90°,∴∠EDN+∠NED=×(∠CDE+∠CED)=×90°=45°.【考点】角的计算;角平分线的定义.【分析】(1)根据题意画出图形,然后由角平分线的定义可求得∠EDN+∠NED=45°;(2)根据角平分线的定义以及证明过程进行填写即可.【解答】(1)解:如图所示:猜想∠EDN+∠NED=45°.(2)证明:∵DN平分∠CDE,EM平分∠CED,∴∠EDN=,∠NED=CED.(理由:角平分线的定义),∵∵∠CDE+∠CED=90°,∴∠EDN+∠NED=(∠CDE+∠CED)==45°.故答案为:(1)45°;(2)CED;角平分线的定义;;CDE;CED;;45.【点评】本题主要考查的是角的计算、角平分线的定义,逆用乘法的分配律求得∠EDN+∠NED=(∠CDE+∠CED)是解题的关键.七、解决下列问题(本题共10分,每小题5分)24.(5分)(2015秋•西城区期末)已知右表内的各横行中,从第二个数起的数都比它左边相邻的数大m;各竖列中,从第二个数起的数都比它上边相邻的数大n.求m,n以及表中x的值.【考点】一元一次方程的应用.【分析】根据表内的各横行中,从第二个数起的数都比它左边相邻的数大m得出12+2m=18,解方程求出m的值;再由各竖列中,从第二个数起的数都比它上边相邻的数大n,得出(12+m)+3n=30,解方程求出n的值;进而求得x的值.【解答】解:∵各横行中,从第二个数起的数都比它左边相邻的数大m,∴12+2m=18,解得m=3.又∵各竖列中,从第二个数起的数都比它上边相邻的数大n,∴(12+m)+3n=30,将m=3代入上述方程得15+3n=30,解得n=5.此时x=12﹣2m+n=12﹣2×3+5=11.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.(5分)(2015秋•西城区期末)从2016年1月1日开始,北京市居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按2.28元/m3收费,超过350立方米的部分按2.5元/m3收费.小冬一家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.(1)如果他家2016年全年使用300立方米天然气,那么需要交多少元天然气费?(2)如果他家2016年全年使用500立方米天然气,那么需要交多少元天然气费?(3)如果他家2016年需要交1563元天然气费,他家2016年用了多少立方米天然气?【考点】一元一次方程的应用.【分析】(1)根据一般生活用气收费标准,可得小冬一家需要交天然气费2.28×300,计算即可;(2)根据一般生活用气收费标准,可得小冬一家需要交天然气费2.28×350+2.5×(500﹣350),计算即可;(3)设设小冬家2016年用了x立方米天然气.首先判断出小冬家2016年所用天然气超过了500立方米,然后根据他家2016年需要交1563元天然气费建立方程,求解即可.【解答】解:(1)如果他家2016年全年使用300立方米天然气,那么需要交天然气费2.28×300=684(元);(2)如果他家2016年全年使用500立方米天然气,那么需要交天然气费2.28×350+2.5×(500﹣350)=798+375=1173(元);(3)设小冬家2016年用了x立方米天然气.∵1563>1173,∴小冬家2016年所用天然气超过了500立方米.根据题意得2.28×350+2.5×(500﹣350)+3.9(x﹣500)=1563,解得x=600.答:小冬家2016年用了600立方米天然气.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.八、解答题(本题6分)26.(6分)(2015秋•西城区期末)如图,数轴上A,B两点对应的有理数分别为10和15,点P 从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP=5﹣t,AQ=10﹣2t;(2)当t=2时,求PQ的值;(3)当PQ=时,求t的值.【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】(1)先求出当0<t<5时,P点对应的有理数为10+t<15,Q点对应的有理数为2t<10,再根据两点间的距离公式即可求出BP,AQ的长;(2)先求出当t=2时,P点对应的有理数为10+2=12,Q点对应的有理数为2×2=4,再根据两点间的距离公式即可求出PQ的长;(3)由于t秒时,P点对应的有理数为10+t,Q点对应的有理数为2t,根据两点间的距离公式得出PQ=|2t﹣(10+t)|=|t﹣10|,根据PQ=列出方程,解方程即可.【解答】解:(1)∵当0<t<5时,P点对应的有理数为10+t<15,Q点对应的有理数为2t<10,∴BP=15﹣(10+t)=5﹣t,AQ=10﹣2t.故答案为5﹣t,10﹣2t;(2)当t=2时,P点对应的有理数为10+2=12,Q点对应的有理数为2×2=4,所以PQ=12﹣4=8;(3)∵t秒时,P点对应的有理数为10+t,Q点对应的有理数为2t,∴PQ=|2t﹣(10+t)|=|t﹣10|,∵PQ=,∴|t﹣10|=2.5,解得t=12.5或7.5.。
北京市西城区2015-2016学年七年级第一学期期末考试数学试题及答案-
54
班长
猜
四班
21
班长
猜
五班 3
4
班长
猜
正确
结果
年级组长说,每班的名次都至少被他们中
的一人说对了,请你根据以上信息将
一班~五班的正确名次填写在表中最后一行.
三、解答题(本题 9 分) 3.唐代大诗人李白喜好饮酒作 诗,民间有“李白斗酒
诗百篇”之说.《算法统宗》中 记载了一个“李白沽酒”
七年级期末 数学试卷 第 16 页(共 29 页)
CBC B B D A D A C 案
七年级期末 数学试卷 第 18 页(共 29 页)
19
二、填空题(本题共 23 分,第 11~13 题每小题 3
分,第 14、15 题每小题 4 分,第 16~18
题每小题 2 分)
11.2016. 12.4 . 13.3.89.
14.(1) 4230 ;(2)如图 1, AOD 或
余角以 O 为
顶点,以∠AOC 的一边为边.图中你所
画出的∠AOC
的余角是∠______,这个余角的度数等于
______.
15.用含 a 的式子表示:
(1)比 a 的 6 倍小 5 的数:
;
(2)如果北京某天的最低气温为 a℃,中午 12
点的气温比最低气温上升了 10℃,那么中
七年级期末 数学试卷 第 5 页(共 29 页)
B.
1 (4x 2) 2x 2 2
C. a b (a b)
D. 2 3x (3x 2)
4.下列计算正确的是( ). A. 7a a 7a2
B. 3x2 y 2x2 y x2 y C. 5y 3y 2
七年级期末 数学试卷 第 2 页(共 29 页)
6学北京市西城区八级第一学期期末数学试题(含答案)
北京市西城区2015— 2016学年度第一学期期末试卷八年级数学 2016.1试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的. 1.计算22-的结果是( ). A.14B.14-C.4D.4-2.下列剪纸作品中,不是..轴对称图形的是( ).A B C D3.在下列分解因式的过程中,分解因式正确的是( ).A.()xz yz z x y -+=-+B. ()223232a b ab ab ab a b -+=-C. 232682(34)xy y y x y -=-D. 234(2)(x 2)3x x x x +-=+-+ 4.下列分式中,是最简分式的是( ).A .2xy xB .222x y -C .22x y x y +-D .22x x +5.已知一次函数(2)3y m x =-+的图象经过第一、二、四象限,则m 的取值范围是( ).A .0m <B .0m >C .2m <D .2m > 6.分式11x--可变形为( ). A .11x + B .11x -+ C .11x -- D .11x -7.若一个等腰三角形的两边长分别为2和4,则这个等腰三角形的周长是为( ).A. 8B. 10C. 8或10D.6或128.如图,B ,D ,E ,C 四点共线,且△ABD ≌△ACE ,若∠AEC =105°, 则∠DAE 的度数等于( ). A. 30° B.40°C. 50°D.65°9.如图,在△ABC 中,BD 平分∠ABC ,与AC 交于点D ,DE ⊥AB 于点E ,若BC =5,△BCD 的面积为5,则ED 的长为( ). A.12B. 1C.2D.510.如图,直线y =﹣x +m 与直线y =nx +5n (n ≠0)的交点的横坐标为 ﹣2,则关于x 的不等式﹣x +m >nx +5n >0的整数解为( ). A.﹣5 ,﹣4,﹣3 B. ﹣4,﹣3 C.﹣4 ,﹣3,﹣2 D. ﹣3,﹣2二、填空题(本题共20分,第11~14题,每小题3分,第15~18题,每小题2分)11.若分式11-x 在实数范围内有意义,则x 的取值范围是 . 12.分解因式224x y -= .13.在平面直角坐标系xOy 中,点P (-2,3)关于y 轴的对称点的坐标是 .14.如图,点B 在线段AD 上,∠ABC =∠D , AB ED =.要使 △ABC ≌△EDB ,则需要再添加的一个条件是 (只需填一个条件即可).15.如图,在△ABC 中,∠ABC =∠ACB , AB 的垂直平分线交AC 于点M ,交AB 于点N .连接MB ,若AB=8,△MBC 的周长是14 ,则BC 的长 为 .16.对于一次函数21y x =-+,当-2≤x ≤3时,函数值y 的取值范围是 .17.如图,要测量一条小河的宽度AB 的长,可以在小河的岸边作AB 的垂线 MN ,然后在MN 上取两点C ,D ,使BC =CD ,再 画出MN 的垂线DE ,并使点E 与点A ,C 在一条直线上,这时 测得DE 的长就是AB 的长,其中用到的数学原理是:_ .18.甲、乙两人都从光明学校出发,去距离光明学校1500m 远的篮球馆打球,他们沿同一条道路匀速行走,乙比甲晚出发4min .设甲行走的时间为t (单位:min),甲、乙两人相距 y (单位:m),表示y 与t 的函数关系的图象如图所示,根据图中提供的信息,下列说法: ①甲行走的速度为30m/min②乙在距光明学校500m 处追上了甲 ③甲、乙两人的最远距离是480m ④甲从光明学校到篮球馆走了30min正确的是__ _(填写正确结论的序号).练习题改编,识图能力,如何提取信息,数形结合思想三、解答题(本题共50分,第19,20题每小题6分;第21题~25题每小题5分;第26题6分,第27题7分)19.分解因式:(1)2()3()a b a b -+- (2)221218ax ax a -+解: 解:20.计算:(1)42223248515a b a b c c ÷(2)24()212x x x x x x -⋅+++ 解: 解:21.已知2a b -=,求222()2ab a a a ba ab b ÷---+的值.解:22.解分式方程2242111x x xxx-+=+-解:23.已知:如图,A,O,B三点在同一条直线上,∠A=∠C,∠1=∠2,OD=OB.24.列方程解应用题中国地大物博,过去由于交通不便,一些地区的经济发展受到了制约,自从“高铁网络”在全国陆续延伸以后,许多地区的经济和旅游发生了翻天覆地的变化,高铁列车也成为人们外出旅行的重要交通工具.李老师从北京到某地去旅游,从北京到该地普快列车行驶的路程约为1352km,高铁列车比普快列车行驶的路程少52km,高铁列车比普快列车行驶的时间少8h.已知高铁列车的平均时速是普快列车平均时速的2.5倍,求高铁列车的平均时速.解:25.在平面直角坐标系xOy 中,将正比例函数2y x =-的图象沿y 轴向上平移4个单位长度后与y 轴交于点B ,与x 轴交于点C .(1)画正比例函数2y x =-的图象,并直接写出直线BC 的解析式;26.阅读下列材料:利用完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式, 我们把这样的变形方法叫做多项式2ax bx c ++的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式. 例如:21124x x ++=222111111()()2422x x ++-+=21125()24x +-=115115()()2222x x +++-=(8)(3)x x ++根据以上材料,解答下列问题:(1)用多项式的配方法将281x x +-化成2()x m n ++的形式;(2)下面是某位同学用配方法及平方差公式把多项式2340x x --进行分解因式的解答过程:老师说,这位同学的解答过程中有错误,请你找出该同学解答中开始出现错误的地方,并用“ ”标画出来,然后写出完整的、正确的解答过程:(3)求证:x ,y 取任何实数时,多项式222416x y x y +--+的值总为正数. (1)解:(2)正确的解答过程是:(3)证明:27.已知:△ABC是等边三角形.(1)如图1,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F.试判断BF与CF的数量关系,并加以证明;(2)点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD交于点F.若△BFD是等腰三角形,求∠FBD的度数.图1 备用图(1)BF与CF的数量关系为:.证明:(2)解:北京市西城区2015— 2016学年度第一学期期末试卷八年级数学附加题2016.1试卷满分:20分一、填空题(本题6分)1.(1)已知32a ba+=,则ba= ;(2)已知115a b-=,则3533a ab ba ab b----= .二、解答题(本题共14分,每小题7分)2.观察下列各等式:(8.1)(9)(8.1)(9)---=-÷-,11()(1)()(1)22---=-÷-,4242-=÷,993322-=÷,┅┅根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的等于它们的;(2)填空:-4=÷4;(3)请你再写两个实数,使它们具有上述等式的特征:-=÷;(4)如果用y表示等式左边第一个实数,用x表示等式左边第二个实数(x≠0 且x≠1),①x与y之间的关系可以表示为:(用x的式子表示y);②若x>1,当x时,y有最值(填“大”或“小”),这个最值为.3.如图1,在平面直角坐标系xOy中,点A在y轴上,点B是第一象限的点,且AB⊥y轴,且AB=OA,点C是线段OA上任意一点,连接BC,作BD⊥BC,交x轴于点D.(1)依题意补全图1;(2)用等式表示线段OA,AC与OD之间的数量关系,并证明;②连接CD,作∠CBD的平分线,交CD边于点H,连接AH,求∠BAH的度数.图1 备用图(1)依题意补全图1;(2)线段OA,AC,OD之间的数量关系为:_____________________________;证明:(3)解:北京市西城区2015— 2016学年度第一学期期末试卷八年级数学参考答案及评分标准 2016.1一、选择题(本题共30分,每小题3分)三、解答题(本题共50分,第19题,第20题每小题6分,第21~25题每小题5分,第26题6分,第27题7分) 19.(1)解: 2()3()a b a b -+-=()(3)a b a b --+ ....................................................................................... 3分(2)解:221218ax ax a -+=22(69)a x x -+ ........................................................................................... 2分 =22(3)a x - .................................................................................................. 3分20.(1)解: 42223248515a b a b c c ÷=42232241558a b c c a b ⋅........................................................................................... 1分 =232a c............................................................................................................ 3分(2)解:24()212x xx x x x -⋅+++ =24()(2)1x xx x x -⋅++ ...................................................................................... 1分 =(2)(2)(2)1x x xx x x +-⋅++ ................................................................................... 2分=21x x -+ ........................................................................................................ 3分 21.解:222()2ab a a a ba ab b ÷----=22()()ab a a a ba b ÷--- .......................................................................................... 1分= 2()ab aba ba b ÷-- .................................................................................................. 2分=2()ab a baba b -⋅- ...................................................................................................... 3分=1a b- .................................................................................................................... 4分 当2a b -=时,原式=12. ................................................................................. 5分 22.解:方程两边都乘以(1)(1)x x +-,约去分母,得22412(1)x x x x x -+-=- . ................................................................................ 2分解这个整式方程,得 12x =-. ....................................................................... 4分 经检验12x =-是原分式方程的解. 所以,原分式方程的解为12x =-. ................................................................. 5分23.证明:∵点A ,O ,B 三点在同一条直线上, ∴∠1 +∠COB ==180°,∠2+∠AOD=180°.∵∠1=∠2,∴∠COB =∠AOD . ...................................................................................... 1分在△AOD 和△COB 中,,,,AOD COB A C OD OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△COB . ..................................................................................... 4分 ∴AD =CB . ....................................................................................................... 5分 24.解:设普快列车的平均时速为x km/h ,则高铁列车的平均时速为2.5x km/h ........................................................................................................................ 1分 由题意,得135213525282.5x x--=. ................................................................ 2分 解得:x =104. ............................................................................................... 3分 经检验,x =104是原分式方程的解,且符合题意. ................................... 4分 则2.5x =260.答:高铁列车的平均时速为260km/h . ............................................................... 5分∴点P 的坐标为(1-,2). 由(1)直线BC 与x 轴交于点C , ∴点C 的坐标为(2,0).设直线CP 的解析式为=+y kx b (k ≠0),∴2,20.k b k b -+=⎧⎨+=⎩......................................................................................... 4分解这个方程组得2,34.3k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线CP 的解析式为2433y x =-+. ..................................................... 5分 26.解:(1)281x x +-=2228441x x ++-- ................................................................................... 1分 =2(4)17x +- ............................................................................................... 2分 (2)2340x x --=222333()()40222x x -+-- ............... 3分=23169()24x --=313313()()2222x x -+--=(5)(8)x x +- ................................... 4分(3)证明:222416x y x y +--+=22214411x x y y -++-++=22(1)(2)11x y -+-+ .................................................................................. 5分 ∵2(1)x -≥0,2(2)y -≥0,∴22(1)(2)110x y -+-+>.∴x ,y 取任何实数时,多项式222416x y x y +--+的值总是正数. ............... 6分 27.(1)BF =CF . ............................................................................................................... 1分证明:如图1,△ABC 是等边三角形,∴∠ABC =∠ACB =60°. ......................................................................... 2分 在△DBC 和△ECB 中,,,,BD CE ABC ACB BC CB =⎧⎪∠=∠⎨⎪=⎩∴△DBC ≌△ECB . ................................................................................ 3分 ∴∠DCB =∠EBC .∴BF =CF . ................................................................................................. 4分(2)由(1)∠FBC =∠FCB , ∠ABC =60°. 设∠FBC =∠FCB =α,∴∠DBF =60°-α.当△BFD 是等腰三角形时,①若FD =FB ,则∠FBD =∠FDB >∠A . ∴∠FBD =∠FDB > 60°, 但∠FBD <∠ABC , ∴∠FBD <60°.∴FD =FB 的情况不存在.②如图2,若DB =DF ,则∠FBD =∠BFD =2α. ∴∠60°—α=2α. ∴α=20°.∴∠FBD =40°. ...................................................................................................... 5分③如图3,若BD =BF ,则∠BDF =∠BFD =2α. 在△BDF 中,∠DBF +∠BDF +∠BFD =180°. ∴60° -α+2α+2α=180°. ∴α=40°.∴∠FBD =20°.CBAFE D图1CBAFE D CBAF ED图2图3综上,∠FBD 的度数是20°或40°. ...................................................................... 7分北京市西城区2015— 2016学年度第一学期期末试卷八年级数学附加题参考答案及评分标准 2016.1一、填空题(本题6分)1.(1)13; ............................................................................................................. 3分(2)52. ............................................................................................................... 6分二、解答题(本题共14分,每小题7分)2.解:(1)163,163; ...................................................................................................... 1分 (2)差,商; ......................................................................................................... 2分(3)答案不唯一,如:25255544-=÷等; ......................................................3分 (4)①21x y x =- ..................................................................................................... 5分②若1x >,当2x =时,y 有最小值,最值为4. .................................... 7分3.解:(1)补全图1; ...................................................................................................... 1分(2)OD = OA+AC ; ............................................................................................ 2分 证明:作BE ⊥x 轴于点E ,∵AB ⊥y 轴,∴∠CAB =∠DEB =90°. ∵AB=OA , ∴OE =BE =AB=OA . ∵BC ⊥BD , ∴∠DBC =90°.在四边形OCBD 中,∠AOD +∠1+∠DBC +∠BCO =360°. ∵∠AOD =90°, ∴∠1+∠BCO =180°. 又∵∠2+∠BCO =180°. ∴∠1 =∠2. ∴△EBD ≌△ABC .∴ED = AC.∵OD=OE+ED,∴OD=OA+AC........................................................................... 4分(3)由(2)△EBD≌△ABC,∴BC=BD.∵BH平分∠CBD,∴BH⊥CD,∠CBH=∠DBH=45°.∴∠BCH=45°.∴∠CBH=∠BCH.∴CH=BH................................................................................................ 5分作HM⊥AB于点M,HN⊥OA于点N.∴∠HNC=∠HMB=90°.在四边形BACH中,∠CAB +∠ABH+∠BHC+∠HCA=360°.∴∠HCA+∠ABH =180°.又∵∠HCA+∠3 =180°,∴∠3 =∠ABH.∴△NCA≌△MBH.∴HN=HM............................................................................................... 6分∴∠HAO=∠HAB.∵∠BAO= 90°,∴∠HAB =45°. ....................................................................................... 7分。
北京市西城区2015-2016学年高一上学期期末考试数学试题Word版含答案
北京市西城区2015 — 2016学年度第一学期期末试卷高一数学 2016.1试卷满分:150分 考试时间:120分钟A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有若向量 (=a二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11. sin45π= _____. 12. 如图所示,D 为ABC △中BC 边的中点,设AB =a ,AC =b , 则BD =_____.(用a ,b 表示)13. 角α终边上一点的坐标为(1,2),则tan 2α=_____. 14. 设向量(0,2),a b ==,则,a b 的夹角等于_____. 15. 已知(0,)α∈π,且cos sin8απ=-,则α=_____. 16. 已知函数()sin f x x ω=(其中0ω>)图象过(,1)π-点,且在区间(0,)3π上单调递增,ABCD则ω的值为_______.三、解答题:本大题共3小题,共36分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知2απ∈π(,),且3sin 5α=. (Ⅰ)求tan()4απ-的值;(Ⅱ)求sin2cos 1cos 2ααα-+的值.18.(本小题满分12分)如图所示,C B ,两点是函数()sin(2)3f x A x π=+(0>A )图象上相邻的两个最高点,D 点为函数)(x f 图象与x 轴的一个交点. (Ⅰ)若2=A ,求)(x f 在区间[0,]2π上的值域; (Ⅱ)若CD BD ⊥,求A 的值.19.(本小题满分12分)如图,在ABC △中,1AB AC ==,120BAC ∠=. (Ⅰ)求AB BC ⋅的值;(Ⅱ)设点P 在以A 为圆心,AB 为半径的圆弧BC 上运动,且AP xAB y AC =+,其中,x y ∈R . 求xy 的最大值.ACPB 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分. 把答案填在题中横线上. 1.设U =R ,{|0}A x x =>,{|1}B x x =>,则U A B =ð_____.2.2log =_____,31log 23+=_____.3.已知函数()f x =1,2,1.x x x x ⎧-⎪⎨⎪<⎩≥1,且()(2)0f a f +=,则实数a = _____.4.已知函数)(x f 是定义在R 上的减函数,如果()(1)f a f x >+在[1,2]x ∈上恒成立,那么实数a 的取值范围是_____.5. 通过实验数据可知,某液体的蒸发速度y (单位:升/小时)与液体所处环境的温度x (单位:℃)近似地满足函数关系ekx by +=(e 为自然对数的底数,,k b 为常数). 若该液体在0℃的蒸发速度是0.1升/小时,在30℃的蒸发速度为0.8升/小时,则该液体在20℃的蒸发速度为_____升/小时.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)已知函数26()1xf x x =+. (Ⅰ)判断函数)(x f 的奇偶性,并证明你的结论; (Ⅱ)求满足不等式(2)2xxf >的实数x 的取值范围. 7.(本小题满分10分)设a 为实数,函数2()2f x x ax =-.(Ⅰ)当1a =时,求()f x 在区间[0,2]上的值域;(Ⅱ)设函数()()g x f x =,()t a 为()g x 在区间[0,2]上的最大值,求()t a 的最小值. 8.(本小题满分10分)设函数()f x 定义域为[0,1],若()f x 在*[0,]x 上单调递增,在*[,1]x 上单调递减,则称*x 为函数()f x 的峰点,()f x 为含峰函数.(特别地,若()f x 在[0,1]上单调递增或递减,则峰点为1或0)对于不易直接求出峰点*x 的含峰函数,可通过做试验的方法给出*x 的近似值. 试验原理为:“对任意的1x ,2(0,1)x ∈,12x x <,若)()(21x f x f ≥,则),0(2x 为含峰区间,此时称1x 为近似峰点;若12()()f x f x <,则)1,(1x 为含峰区间,此时称2x 为近似峰点”.我们把近似峰点与*x 之间可能出现....的最大距离称为试验的“预计误差”,记为d ,其值为=d }}1,m ax {},,m ax {m ax {212121x x x x x x ---(其中},max{y x 表示y x ,中较大的数). (Ⅰ)若411=x ,212=x .求此试验的预计误差d . (Ⅱ)如何选取1x 、2x ,才能使这个试验方案的预计误差达到最小?并证明你的结论(只证明1x 的取值即可).(Ⅲ)选取1x ,2(0,1)x ∈,12x x <,可以确定含峰区间为2(0,)x 或1(,1)x . 在所得的含峰区间内选取3x ,由3x 与1x 或3x 与2x 类似地可以进一步得到一个新的预计误差d '.分别求出当411=x 和125x =时预计误差d '的最小值.(本问只写结果,不必证明)北京市西城区2015 — 2016学年度第一学期期末试卷高一数学参考答案及评分标准 2016.1A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.C ;2.B ;3.B ;4.C ;5.D ;6.D ;7.A ;8.A ;9.C ; 10.D . 二、填空题:本大题共6小题,每小题4分,共24分.11.2-; 12. 1()2-b a ; 13. 43-; 14.3π; 15. 85π; 16. 32. 三、解答题:本大题共3小题,共36分. 17.(本小题满分12分)解:(Ⅰ)因为2απ∈π(,),且3sin 5α=,所以4cos 5α==-. ………………3分所以sin 3tan cos 4ααα==-. ………………5分所以tan 1tan()741tan αααπ--==-+. ………………7分(Ⅱ)由(Ⅰ)知,24sin 22sin cos 25ααα==-, ………………9分2321cos 22cos 25αα+==. ………………11分所以244sin2cos 1255321cos 2825ααα-+-==-+. ………………12分18.(本小题满分12分)(Ⅰ)由题意()2sin(2)3f x x π=+,因为02x π≤≤,所以02x ≤≤π.所以42333x πππ≤+≤. ………………3分所以sin(2)13x π≤+≤. ………………6分 所以2)(3≤≤-x f ,函数)(x f的值域为[. ………………8分 (Ⅱ)由已知(,)12B A π,13(,)12C A π,(,0)3D π, ………………11分所以(,)4DB A π=-,3(,)4DC A π=.因为CD BD ⊥,所以⊥,223016DB DC A -π⋅=+=,解得A =又0A >,所以A =. ………………12分 19.(本小题满分12分)解:(Ⅰ)()AB BC AB AC AB ⋅=⋅- ………………2分213122AB AC AB =⋅-=--=-.………………4分(Ⅱ)建立如图所示的平面直角坐标系,则(1,0)B ,1(2C -. ………………5分 设(cos ,sin )P θθ, [0,]3θ2π∈, (6)分由AP xAB y AC =+,得1(cos ,sin )(1,0)(2x y θθ=+-. 所以cos,sin 2y x y θθ=-=.所以cos x θθ=+,y θ=,………………8分 2211cos sin sin 2cos 233333xy θθθθθ=+=+- 2112cos 2)3223θθ=-+………………10分21sin(2)363θπ=-+. ………………11分 因为2[0,]3θπ∈,2[,]666θππ7π-∈-.所以,当262θππ-=,即3θπ=时,xy 的最大值为1. ………………12分B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1. {|01}x x <≤;2. 1,62; 3. 1-; 4. {2}a a <; 5. 0.4. 注:2题每空2分.二、解答题:本大题共3小题,共30分. 6.(本小题满分10分) 解:(Ⅰ)因为26()1x f x x =+,所以26()1xf x x --=+ ()f x =-. ………………4分 所以()f x 为奇函数. ………………6分(Ⅱ)由不等式(2)2xxf >,得262221xx x⋅>+. ………………8分 整理得225x<, ………………9分所以22log 5x <,即21log 52x <. ………………10分 7.(本小题满分10分)解: (Ⅰ)当1a =时,2()2f x x x =-. 二次函数图象的对称轴为1x =,开口向上.所以在区间[0,2]上,当1x =时,()f x 的最小值为1-. ………………1分 当0x =或2x =时,()f x 的最大值为0. ………………2分 所以()f x 在区间[0,2]上的值域为[1,0]-. ………………3分 (Ⅱ)注意到2()2f x x ax =-的零点是0和2a ,且抛物线开口向上.当0a ≤时,在区间[0,2]上2()()2g x f x x ax ==-,()g x 的最大值()(2)44t a g a ==-. ………………4分当01a <<时,需比较(2)g 与()g a 的大小,22()(2)(44)44g a g a a a a -=--=+-,所以,当02a <<时,()(2)0g a g -<;当21a -≤<时,()(2)0g a g ->.所以,当02a <<时,()g x 的最大值()(2)44t a g a ==-. ………5分当21a ≤<时,()g x 的最大值2()()t a g a a ==. ………………6分 当12a ≤≤时,()g x 的最大值2()()t a g a a ==. ………………7分 当2a >时,()g x 的最大值()(2)44t a g a ==-. ………………8分所以,()g x的最大值244,2,(),22,44, 2.a a t a a a a a ⎧-<⎪⎪=≤≤⎨⎪->⎪⎩………………9分所以,当2a =时,()t a的最小值为12-………………10分 8.(本小题满分10分) 解:(Ⅰ)由已知114x =,212x =. 所以 121212max{max{,},max{,1}}d x x x x x x =---1111111max{max{,},max{,}}max{,}4442422===. ………………4分(Ⅱ)取113x =,23x 2=,此时试验的预计误差为31. ………………5分以下证明,这是使试验预计误差达到最小的试验设计. 证明:分两种情形讨论1x 点的位置. ① 当311<x 时,如图所示, 如果 21233x ≤<,那么 2113d x ≥->; 如果2213x ≤≤,那么 2113d x x ≥->. ………………7分 ② 当311>x ,113d x ≥>.综上,当113x ≠时,13d >. ………………8分 (同理可得当223x ≠时,13d >) 即113x =,23x 2=时,试验的预计误差最小. (Ⅲ)当411=x 和125x =时预计误差d '的最小值分别为14和15. ………………10分注:用通俗语言叙述证明过程也给分.11x 2x 31。
2015-2016学年北京市西城区七年级(上)期末数学试卷-含详细解析
2015-2016学年北京市西城区七年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共28.0分)1.下列算式中,运算结果为负数的是()A. B. C. D.2.科学家发现,距离银河系约2 500 000光年之遥的仙女星系正在向银河系靠近.其中2 500 000用科学记数法表示为()A. B. C. D.3.下列各式中正确的是()A. B.C. D.4.下列计算正确的是()A. B.C. D.5.已知a-b=1,则代数式2a-2b-3的值是()A. 1B.C. 5D.6.空调常使用的三种制冷剂的沸点如下表所示,那么这三种制冷剂按沸点从低到高排,,,,C. ,,D. ,,7.历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示,例如x=-1时,多项式f(x)=x2+3x-5的值记为f (-1),那么f(-1)等于()A. B. C. D.8.下列说法中,正确的是()①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10.A. ①②B. ②③C. ②④D. ③④9.点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A. 点MB. 点NC. 点PD. 点O10.用8个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如图所示,那么从左面看它得到的平面图形一定不是()A. B. C. D.二、填空题(本大题共8小题,共23.0分)11.-2016的相反数是______.12.单项式的次数是______.13.用四舍五入法将3.886精确到0.01,所得到的近似数为______.14.如图,∠AOB=72°30′,射线OC在∠AOB内,∠BOC=30°.(1)∠AOC=______;(2)在图中画出∠AOC的一个余角,要求这个余角以O为顶点,以∠AOC的一边为边.图中你所画出的∠AOC的余角是∠______,这个余角的度数等于______.15.用含a的式子表示:(1)比a的6倍小5的数:______;(2)如果北京某天的最低气温为a℃,中午12点的气温比最低气温上升了10℃,那么中午12点的气温为______℃.16.请写出一个只含字母x的整式,满足当x=-2时,它的值等于3.你写的整式是______.17.一件商品按成本价提高20%标价,然后打9折出售,此时仍可获利16元,则商品的成本价为______元.18.如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应走1段弧长,即从1→2为第2次“移位”.若小明从编号为4的点开始,第1次“移位”后,他到达编号为______的点,…,第2016次“移位”后,他到达编号为______的点.三、计算题(本大题共2小题,共17.0分)19.(1)(-12)-(-20)+(-8)-15.(2)-.(3)19×+(-1.5)÷(-3)2.20.先化简,再求值:5(4a2-2ab3)-4(5a2-3ab3),其中a=-1,b=2.四、解答题(本大题共9小题,共52.0分)21.以下是一位同学所做的有理数运算解题过程的一部分:(1)请你在上面的解题过程中仿照给出的方式,圈画出他的错误之处,并将正确结果写在相应的圈内;(2)请就此题反映出的该同学有理数运算掌握的情况进行具体评价,并对相应的有效避错方法给出你的建议.22.解方程:-1=.23.如图,∠CDE+∠CED=90°,EM平分∠CED,并与CD边交于点M.DN平分∠CED,并与EM交于点N.(1)依题意补全图形,并猜想∠EDN+∠NED的度数等于______;(2)证明以上结论.证明:∵DN平分∠CDE,EM平分∠CED,∴∠EDN=,∠NED=______.(理由:______)∵∠CDE+∠CED=90°,∴∠EDN+∠NED=______×(∠______+∠______)=______×90°=______°.24.已知右表内的各横行中,从第二个数起的数都比它左边相邻的数大m;各竖列中,从第二个数起的数都比它上边相邻的数大n.求m,n以及表中x的值.25.从2016年1月1日开始,北京市居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按2.28元/m3收费,超过350立方米的部分按2.5元/m3收费.小冬一家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.(1)如果他家2016年全年使用300立方米天然气,那么需要交多少元天然气费?(2)如果他家2016年全年使用500立方米天然气,那么需要交多少元天然气费?(3)如果他家2016年需要交1563元天然气费,他家2016年用了多少立方米天然气?26.如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5,用含t的式子填空:BP=____________________,AQ=__________;(2)当t=2时,求PQ的值;(3)当时,求t的值.27.操作题:公元初,中美洲玛雅人使用的一种数字系统与其他计数方式都不相同,它采用二十进位制但只有3个符号,用点“•”划“”、卵形“”来表示我们所使用的自然数,如自然数1~19的表示见下表,另外在任何数的下方加一个卵形,就表示把这个数扩大到它的20倍,如表中20和100的表示.(1)玛雅符号表示的自然数是______;(2)请你在右边的方框中画出表示自然数280的玛雅符号:.28.推理判断题七年级五个班的班长因为参加校学生干部培训会而没有观看年级的乒乓球比赛.年级组长让他们每人猜一猜其中两个班的比赛名次.这五个班长各自猜测的结果如表所示:年级组长说,每班的名次都至少被他们中的一人说对了,请你根据以上信息将一班~五班的正确名次填写在表中最后一行.29.解答题唐代大诗人李白喜好饮酒作诗,民间有“李白斗酒诗百篇”之说.《算法统宗》中记载了一个“李白沽酒”的故事.诗云:注:古代一斗是10升.大意是:李白在郊外春游时,做出这样一条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的19升酒.按照这样的约定,在第3个店里遇到朋友正好喝光了壶中的酒.(1)列方程求壶中原有多少升酒;(2)设壶中原有a0升酒,在第n个店饮酒后壶中余a n升酒,如第一次饮后所余酒为a1=2a0-19(升),第二次饮后所余酒为a2=2a1-19=2(2a0-19)-19=22a0-(21+1)×19(升),….①用a n-1的表达式表示a n,再用a0和n的表达式表示a n;②按照这个约定,如果在第4个店喝光了壶中酒,请借助①中的结论求壶中原有多少升酒.答案和解析1.【答案】C【解析】解:A、-(-2)=2,故A错误;B、|-2|=2,故B错误;C、(-2)3=-8,故C正确;D、(-2)2=4,故D错误;故选:C.根据在一个数的前面机上负号就是这个数的相反数,负数的绝对值是它的相反数,负数的奇数次幂是负数,负数的偶数次幂是正数,可得答案.本题考查了正数和负数,小于零的数是负数,化简各数是解题关键.2.【答案】B【解析】解:将2 500 000用科学记数法表示为2.5×106.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:A、-(2x+5)=-2x-5,故本选项错误;B、-(4x-2)=-2x+1,故本选项错误;C、-a+b=-(a-b),故本选项正确;D、2-3x=-(3x-2),故本选项错误.故选:C.分别根据去括号与添括号的法则判断各选项即可.本题考查去括号与添括号的知识,注意掌握去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.4.【答案】B【解析】解:A、7a+a=8a,故本选项错误;B、3x2y-2yx2=x2y,故本选项正确;C、5y-3y=2y,故本选项错误;D、3a+2b,不是同类项,不能合并,故本选项错误;故选B.根据合并同类项的法则和同类项的定义分别对每一项进行计算即可.此题考查了合并同类项,熟练掌握合并同类项的法则和同类项的定义是本题的关键.5.【答案】B【解析】【分析】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.原式前两项提取2变形后,将a-b=1代入计算即可求出值.【解答】解:∵a-b=1,∴原式=2(a-b)-3=2-3=-1.故选B.6.【答案】D【解析】解:因为-52<-41<-32,所以这三种制冷剂按沸点从低到高排列的顺序是R410A,R22,R12,故选D数与负数以0为分界点,正数、0都比负数大;负数与负数比较大小,负号后面的数字越小,这个负数反而越大;反之,负号后面的数字越大,这个负数就越小.此题考查了学生正、负数大小比较的方法,只要掌握方法就很好解答.但要注意,在负数与负数比较大小时,不要认为负号后面的数越大这个数越大.7.【答案】A【解析】解:根据题意得:f(-1)=1-3-5=-7.故选:A.把x=-1代入f(x)计算即可确定出f(-1)的值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.8.【答案】D【解析】解:①射线AB和射线BA不是同一条射线,错误;②若AB=BC,仅当点B在线段AC上时,则点B才为线段AC的中点,错误;③同角的补角相等,正确;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10,正确.故选D.根据射线及线段的定义及特点可判断各项,从而得出答案.本题考查射线及线段的知识,注意基本概念的掌握是解题的关键.9.【答案】A【解析】解:∵ab<0,a+b>0,∴数a表示点M,数b表示点P或数b表示点M,数a表示点P,则数c表示点N,∴由数轴可得,c>0,又∵ac>bc,∴a>b,∴数b表示点M,数a表示点P,即表示数b的点为M.故选:A.根据数轴和ab<0,a+b>0,ac>bc,可以判断a、b、c对应哪一个点,从而可以解答本题.本题考查数轴,解题的关键是明确数轴的特点能根据题目中的信息,判断各个数在数轴上对应哪一个点.10.【答案】C【解析】解:A、加号的水平线上每个小正方形上面都有一个小正方形,故A正确;B、加号的水平线上左边小正方形上有一个小正方形中间位置的小正方形上有两个小正方形,故B正确;C、加号的竖直的线上最上边小正方形上有两个小正方形,故C错误;D、加号的竖直的线上最上边小正方形上有两个小正方形,最下边的小正方形上有一个小正方形,故D正确;故选:C.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.11.【答案】2016【解析】解:-2016的相反数是2016.故答案为:2016.根据只有符号不同的两个数互为相反数,可得答案.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.【答案】4【解析】解:单项式的次数是4.故答案为:4.单项式中所有字母的指数的和叫单项式的次数.本题主要考查的是单项式的概念,掌握单项式的次数的定义是解题的关键.13.【答案】3.89【解析】解:3.886≈3.89(精确到0.01).故答案为3.89.把千分位上的数字6进行四舍五入即可.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.14.【答案】42°30′;AOD;47°30′【解析】解:(1)∠AOC=∠AOB-∠BOC=42°30′;(2)如图,∠AOC的余角是∠AOD,90°-42°30′=47°30′.故答案为:(1)42°30′;(2)AOD;47°30′.(1)根据图形进行角的计算即可;(2)根据余角的概念作图、计算即可.本题考查的是余角和补角的概念以及角的计算,掌握两个角的和为90°,则这两个角互余是解题的关键.15.【答案】6a-5 (a+10)【解析】解:(1)a的6倍为6a,小5即为6a-5;(2)中午12点的气温为(a+10)℃.故答案为:6a-5;(a+10).(1)被减数是6a,减数为5,依此即可求解;(2)根据题意可得:中午12点的气温=最低气温+升高的气温,依此即可求解.考查了列代数式,(1)题关键是找好题中关键词,如“倍”;(2)注意气温上升为加.16.【答案】-x或x+5【解析】解:答案不唯一,如-x或x+5.故答案为:-x或x+5写出一个整式,使x=-2时值为3即可.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.17.【答案】200【解析】解:设这种商品的成本价是x元,则商品的标价为x(1+20%),由题意可得:x×(1+20%)×90%=x+16,解得x=200,即这种商品的成本价是200元.故答案为:200.设这种商品的成本价是x元,则商品的标价为x(1+20%),等量关系为:标价×90%=成本+利润,把相关数值代入求解即可.此题考查一元一次方程的应用,得到售价的等量关系是解决本题的关键,难度一般,注意细心审题.18.【答案】3;4【解析】解:从编号为4的点开始走4段弧:4→5→1→2→3,所以第一次“移位”他到达编号为3的点;第二次移位后:3→4→5→1,到编号为1的点;第三次移位后:1→2,到编号为2的点;第四次移位后:2→3→4,回到起点;可以发现:他的位置以“3,1,2,4,”循环出现,2016÷4=504,整除,所以第2016次移位后他的编号与第四次相同,到达编号为4的点;故答案为:3,4.从编号为4的点开始走4段弧:4→5→1→2→3,即可得出结论;依次求出第2,3,4,5次的结合寻找规律,根据规律分析第2016次的编号即可.此题主要考查循环数列规律的探索与应用,根据已知求出部分数据找到循环周期是解题的关键.19.【答案】解:(1)原式=-12+20-8-15=-35+20=-15;(2)原式=-×3×(-8)=6;(3)原式=19.5×-1.5×=(19.5-1.5)×=18×=2.【解析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.【答案】解:原式=20a2-10ab3-20a2+12ab3=2ab3,当a=-1,b=2时,原式=-16.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)如图所示:(2)有理数运算顺序为:先算乘方及绝对值运算,再算乘除运算,最后算加减运算,同级运算从左到右依次进行.【解析】(1)出错地方有2处,一是绝对值求错,一是乘除运算顺序错误,改正即可;(2)根据有理数运算顺序写出建议即可.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【答案】解:去分母,得3(1-2x)-21=7(x+3),去括号,得3-6x-21=7x+21,移项,得-6x-7x=21-3+21,合并,得-13x=39,系数化1,得x=-3,则原方程的解是x=-3.【解析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.【答案】45°;CED;角平分线的定义;;CDE;CED;;45【解析】(1)解:如图所示:猜想∠EDN+∠NED=45°.(2)证明:∵DN平分∠CDE,EM平分∠CED,∴∠EDN=,∠NED=CED.(理由:角平分线的定义),∵∵∠CDE+∠CED=90°,∴∠EDN+∠NED=(∠CDE+∠CED)==45°.故答案为:(1)45°;(2)CED;角平分线的定义;;CDE;CED;;45.(1)根据题意画出图形,然后由角平分线的定义可求得∠EDN+∠NED=45°;(2)根据角平分线的定义以及证明过程进行填写即可.本题主要考查的是角的计算、角平分线的定义,逆用乘法的分配律求得∠EDN+∠NED=(∠CDE+∠CED)是解题的关键.24.【答案】解:∵各横行中,从第二个数起的数都比它左边相邻的数大m,∴12+2m=18,解得m=3.又∵各竖列中,从第二个数起的数都比它上边相邻的数大n,∴(12+m)+3n=30,将m=3代入上述方程得15+3n=30,解得n=5.此时x=12-2m+n=12-2×3+5=11.【解析】根据表内的各横行中,从第二个数起的数都比它左边相邻的数大m得出12+2m=18,解方程求出m的值;再由各竖列中,从第二个数起的数都比它上边相邻的数大n,得出(12+m)+3n=30,解方程求出n的值;进而求得x的值.本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.【答案】解:(1)如果他家2016年全年使用300立方米天然气,那么需要交天然气费2.28×300=684(元);(2)如果他家2016年全年使用500立方米天然气,那么需要交天然气费2.28×350+2.5×(500-350)=798+375=1173(元);(3)设小冬家2016年用了x立方米天然气.∵1563>1173,∴小冬家2016年所用天然气超过了500立方米.根据题意得 2.28×350+2.5×(500-350)+3.9(x-500)=1563,解得x=600.答:小冬家2016年用了600立方米天然气.【解析】(1)根据一般生活用气收费标准,可得小冬一家需要交天然气费2.28×300,计算即可;(2)根据一般生活用气收费标准,可得小冬一家需要交天然气费2.28×350+2.5×(500-350),计算即可;(3)设设小冬家2016年用了x立方米天然气.首先判断出小冬家2016年所用天然气超过了500立方米,然后根据他家2016年需要交1563元天然气费建立方程,求解即可.本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.26.【答案】解:(1)∵当0<t<5时,P点对应的有理数为10+t<15,Q点对应的有理数为2t<10,∴BP=15-(10+t)=5-t,AQ=10-2t;故答案为5-t,10-2t;(2)当t=2时,P点对应的有理数为10+2=12,Q点对应的有理数为2×2=4,所以PQ=12-4=8;(3)∵t秒时,P点对应的有理数为10+t,Q点对应的有理数为2t,∴PQ=|2t-(10+t)|=|t-10|,∵PQ=,∴|t-10|=2.5,解得t=12.5或7.5.【解析】本题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,(3)中解方程时要注意分两种情况进行讨论.(1)先求出当0<t<5时,P点对应的有理数为10+t<15,Q点对应的有理数为2t<10,再根据两点间的距离公式即可求出BP,AQ的长;(2)先求出当t=2时,P点对应的有理数为10+2=12,Q点对应的有理数为2×2=4,再根据两点间的距离公式即可求出PQ的长;(3)由于t秒时,P点对应的有理数为10+t,Q点对应的有理数为2t,根据两点间的距离公式得出PQ=|2t-(10+t)|=|t-10|,根据PQ=列出方程,解方程即可.27.【答案】18【解析】解:(1)玛雅符号表示的自然数是18;(2)表示自然数的玛雅符合为:.故答案为:(1)18.(1)根据玛雅符号与自然数的关系确定出玛雅符号表示的自然数即可;(2)280=14×20,画出表示自然数280的玛雅符号即可.此题考查了有理数,弄清玛雅符号与自然数之间的关系是解本题的关键.28.【答案】解:∵每班的名次都至少被他们中的一人说对了,∴五班名次一定是第4,∴四班名次为第5,进而可知三班名次为第1,一班名次为第3,二班名次为第2.【解析】分别假设一班班长所猜正确,进而推导出其他班级的名次,即可得出正确答案.此题主要考查了推理与论证,根据题意正确进行假设进而推理分析是解题关键.29.【答案】解:(1)设壶中原有x升酒.依题意得:2[2(2x-19)-19]-19=0,去中括号,得4(2x-19)-3×19=0.去括号,得:8x-7×19=0.系数化1,得x=16,答:壶中原有16升酒;(2)①a n=2a n-1-19,a n=2n a0-(2n-1+2n-2+…+1)×19,(或a n=2n a0-(2n-1)×19);②当n=4时,a4=24a0-(23+22+21+1)×19.(或写成a4=24a0-(24-1)×19)∵在第4个店喝光了壶中酒,∴24a0-(23+22+21+1)×19=0,(或写成24a0-(24-1)×19=0)即16a0-15×19=0.解得:a0=17,答:在第4个店喝光了壶中酒时,壶中原有17升酒.【解析】(1)分别表示出酒壶中剩余的酒量,利用在第3个店里遇到朋友正好喝光了壶中的酒进而得出等式求出答案;(2)①利用已知第一次饮后所余酒为a1=2a0-19(升),第二次饮后所余酒为a2=2a1-19=2(2a0-19)-19=22a0-(21+1)×19(升),…,进而用a0和n的表达式表示a n;②利用①中所求,进而代入求出答案.此题主要考查了一元一次方程的应用以及数字变化规律等知识,正确得出相邻关系式变化规律是解题关键.。
2015-2016年北京市西城区七年级(上)数学期末试卷及解析PDF
2015-2016学年北京市西城区七年级(上)期末数学试卷一、选择题(本题共28分,第1~8题每小题3分,第9、10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)3D.(﹣2)22.(3分)科学家发现,距离银河系约2 500 000光年之遥的仙女星系正在向银河系靠近.其中2 500 000用科学记数法表示为()A.0.25×107B.2.5×106C.2.5×107D.25×1053.(3分)下列各式中正确的是()A.﹣(2x+5)=﹣2x+5 B .﹣(4x﹣2)=﹣2x+2C.﹣a+b=﹣(a﹣b)D.2﹣3x=﹣(3x+2)4.(3分)下列计算正确的是()A.7a+a=7a2B.3x2y﹣2yx2=x2yC.5y﹣3y=2 D.3a+2b=5ab5.(3分)已知a﹣b=1,则代数式2a﹣2b﹣3的值是()A.1 B.﹣1 C.5 D.﹣56.(3分)空调常使用的三种制冷剂的沸点如下表所示,那么这三种制冷剂按沸点从低到高排列的顺序是()制冷剂编号R22R12R410A制冷剂二氟一氯甲烷二氟二氯甲烷二氟甲烷50%,五氟乙烷50%﹣41﹣30﹣52沸点近似值(精确到1℃)A.R12,R22,R410A B.R22,R12,R410AC.R410A,R12,R22D.R410A,R22,R127.(3分)历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x ﹣5的值记为f(﹣1),那么f(﹣1)等于()A.﹣7 B.﹣9 C.﹣3 D.﹣18.(3分)下列说法中,正确的是()①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10.A.①②B.②③C.②④D.③④9.(2分)点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O10.(2分)用8个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如图所示,那么从左面看它得到的平面图形一定不是()A.B.C.D.二、填空题(本题共23分,第11~13题每小题3分,第14、15题每小题3分,第16~18题每小题3分)11.(3分)﹣2016的相反数是.12.(3分)单项式的次数是.13.(3分)用四舍五入法将3.886精确到0.01,所得到的近似数为.14.(4分)如图,∠AOB=72°30′,射线OC在∠AOB内,∠BOC=30°.(1)∠AOC=;(2)在图中画出∠AOC的一个余角,要求这个余角以O为顶点,以∠AOC的一边为边.图中你所画出的∠AOC的余角是∠,这个余角的度数等于.15.(4分)用含a的式子表示:(1)比a的6倍小5的数:;(2)如果北京某天的最低气温为a℃,中午12点的气温比最低气温上升了10℃,那么中午12点的气温为℃.16.(2分)请写出一个只含字母x的整式,满足当x=﹣2时,它的值等于3.你写的整式是.17.(2分)一件商品按成本价提高20%标价,然后打9折出售,此时仍可获利16元,则商品的成本价为元.18.(2分)如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应走1段弧长,即从1→2为第2次“移位”.若小明从编号为4的点开始,第1次“移位”后,他到达编号为的点,…,第2016次“移位”后,他到达编号为的点.三、计算题(本题共16分,每小题12分)19.(12分)(1)(﹣12)﹣(﹣20)+(﹣8)﹣15.(2)﹣.(3)19×+(﹣1.5)÷(﹣3)2.20.(4分)以下是一位同学所做的有理数运算解题过程的一部分:(1)请你在上面的解题过程中仿照给出的方式,圈画出他的错误之处,并将正确结果写在相应的圈内;(2)请就此题反映出的该同学有理数运算掌握的情况进行具体评价,并对相应的有效避错方法给出你的建议.四、先化简,再求值(本题5分)21.(5分)先化简,再求值:5(4a2﹣2ab3)﹣4(5a2﹣3ab3),其中a=﹣1,b=2.五、解答题(本题5分)22.(5分)解方程:﹣1=.六、解答题(本题7分)23.(7分)如图,∠CDE+∠CED=90°,EM平分∠CED,并与CD边交于点M.DN 平分∠CED,并与EM交于点N.(1)依题意补全图形,并猜想∠EDN+∠NED的度数等于;(2)证明以上结论.证明:∵DN平分∠CDE,EM平分∠CED,∴∠EDN=,∠NED=.(理由:)∵∠CDE+∠CED=90°,∴∠EDN+∠NED=×(∠+∠)=×90°=°.七、解决下列问题(本题共10分,每小题5分)24.(5分)已知右表内的各横行中,从第二个数起的数都比它左边相邻的数大m;各竖列中,从第二个数起的数都比它上边相邻的数大n.求m,n以及表中x的值.25.(5分)从2016年1月1日开始,北京市居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按2.28元/m3收费,超过350立方米的部分按2.5元/m3收费.小冬一家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.(1)如果他家2016年全年使用300立方米天然气,那么需要交多少元天然气费?(2)如果他家2016年全年使用500立方米天然气,那么需要交多少元天然气费?(3)如果他家2016年需要交1563元天然气费,他家2016年用了多少立方米天然气?八、解答题(本题6分)26.(6分)如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A 出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP=,AQ=;(2)当t=2时,求PQ的值;(3)当PQ=时,求t的值.九、附加题(试卷满分:20分)27.(6分)操作题:公元初,中美洲玛雅人使用的一种数字系统与其他计数方式都不相同,它采用二十进位制但只有3个符号,用点“•”划“”、卵形“”来表示我们所使用的自然数,如自然数1~19的表示见下表,另外在任何数的下方加一个卵形,就表示把这个数扩大到它的20倍,如表中20和100的表示.(1)玛雅符号表示的自然数是;(2)请你在右边的方框中画出表示自然数280的玛雅符号:.28.(5分)推理判断题七年级五个班的班长因为参加校学生干部培训会而没有观看年级的乒乓球比赛.年级组长让他们每人猜一猜其中两个班的比赛名次.这五个班长各自猜测的结果如表所示:一班名次二班名次三班名次四班名次五班名次一班班长猜35二班班长猜14三班班长猜54四班班长猜21五班班长猜34正确结果年级组长说,每班的名次都至少被他们中的一人说对了,请你根据以上信息将一班~五班的正确名次填写在表中最后一行.29.(9分)解答题唐代大诗人李白喜好饮酒作诗,民间有“李白斗酒诗百篇”之说.《算法统宗》中记载了一个“李白沽酒”的故事.诗云:注:古代一斗是10升.大意是:李白在郊外春游时,做出这样一条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的19升酒.按照这样的约定,在第3个店里遇到朋友正好喝光了壶中的酒.(1)列方程求壶中原有多少升酒;(2)设壶中原有a0升酒,在第n个店饮酒后壶中余a n升酒,如第一次饮后所余酒为a1=2a0﹣19(升),第二次饮后所余酒为a2=2a1﹣19=2(2a0﹣19)﹣19=22a0﹣(21+1)×19(升),….的表达式表示a n,再用a0和n的表达式表示a n;①用a n﹣1②按照这个约定,如果在第4个店喝光了壶中酒,请借助①中的结论求壶中原有多少升酒.2015-2016学年北京市西城区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共28分,第1~8题每小题3分,第9、10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)3D.(﹣2)2【解答】解:A、﹣(﹣2)=2,故A错误;B、|﹣2|=2,故B错误;C、(﹣2)3=﹣8,故C正确;D、(﹣2)2=4,故D错误;故选:C.2.(3分)科学家发现,距离银河系约2 500 000光年之遥的仙女星系正在向银河系靠近.其中2 500 000用科学记数法表示为()A.0.25×107B.2.5×106C.2.5×107D.25×105【解答】解:将2 500 000用科学记数法表示为2.5×106.故选B.3.(3分)下列各式中正确的是()A.﹣(2x+5)=﹣2x+5 B.﹣(4x﹣2)=﹣2x+2C.﹣a+b=﹣(a﹣b)D.2﹣3x=﹣(3x+2)【解答】解:A、﹣(2x+5)=﹣2x﹣5,故本选项错误;B、﹣(4x﹣2)=﹣2x+1,故本选项错误;C、﹣a+b=﹣(a﹣b),故本选项正确;D、2﹣3x=﹣(3x﹣2),故本选项错误.故选C.4.(3分)下列计算正确的是()A.7a+a=7a2B.3x2y﹣2yx2=x2yC.5y﹣3y=2 D.3a+2b=5ab【解答】解:A、7a+a=8a,故本选项错误;B、3x2y﹣2yx2=x2y,故本选项正确;C、5y﹣3y=2y,故本选项错误;D、3a+2b,不是同类项,不能合并,故本选项错误;故选B.5.(3分)已知a﹣b=1,则代数式2a﹣2b﹣3的值是()A.1 B.﹣1 C.5 D.﹣5【解答】解:原式=2(a﹣b)﹣3,当a﹣b=1时,原式=2﹣3=﹣1.故选B.6.(3分)空调常使用的三种制冷剂的沸点如下表所示,那么这三种制冷剂按沸点从低到高排列的顺序是()制冷剂编号R22R12R410A制冷剂二氟一氯甲烷二氟二氯甲烷二氟甲烷50%,五氟乙烷50%﹣41﹣30﹣52沸点近似值(精确到1℃)A.R12,R22,R410A B.R22,R12,R410AC.R410A,R12,R22D.R410A,R22,R12【解答】解:因为﹣52<﹣41<﹣32,所以这三种制冷剂按沸点从低到高排列的顺序是R410A,R22,R12,故选D7.(3分)历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x ﹣5的值记为f(﹣1),那么f(﹣1)等于()A.﹣7 B.﹣9 C.﹣3 D.﹣1【解答】解:根据题意得:f(﹣1)=1﹣3﹣5=﹣7.故选A.8.(3分)下列说法中,正确的是()①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10.A.①②B.②③C.②④D.③④【解答】解:①射线AB和射线BA不是同一条射线,错误;②若AB=BC,点B在线段AC上时,则点B为线段AC的中点,错误;③同角的补角相等,正确;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10,正确.故选D.9.(2分)点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O【解答】解:∵ab<0,a+b>0,∴数a表示点M,数b表示点P或数b表示点M,数a表示点P,则数c表示点N,∴由数轴可得,c>0,又∵ac>bc,∴a>b,∴数b表示点M,数a表示点P,即表示数b的点为M.故选A.10.(2分)用8个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如图所示,那么从左面看它得到的平面图形一定不是()A.B.C.D.【解答】解:A、加号的水平线上每个小正方形上面都有一个小正方形,故A正确;B、加号的水平线上左边小正方形上有一个小正方形中间位置的小正方形上有两个小正方形,故B正确;C、加号的竖直的线上最上边小正方形上有两个小正方形,故C错误;D、加号的竖直的线上最上边小正方形上有两个小正方形,最下边的小正方形上有一个小正方形,故D正确;故选:C.二、填空题(本题共23分,第11~13题每小题3分,第14、15题每小题3分,第16~18题每小题3分)11.(3分)﹣2016的相反数是2016.【解答】解:﹣2016的相反数是2016.故答案为:2016.12.(3分)单项式的次数是4.【解答】解:单项式的次数是4.故答案为:4.13.(3分)用四舍五入法将3.886精确到0.01,所得到的近似数为 3.89.【解答】解:3.886≈3.89(精确到0.01).故答案为3.89.14.(4分)如图,∠AO B=72°30′,射线OC在∠AOB内,∠BOC=30°.(1)∠AOC=42°30′;(2)在图中画出∠AOC的一个余角,要求这个余角以O为顶点,以∠AOC的一边为边.图中你所画出的∠AOC的余角是∠AOD,这个余角的度数等于47°30′.【解答】解:(1)∠AOC=∠AOB﹣∠BOC=42°30′;(2)如图,∠AOC的余角是∠AOD,90°﹣42°30′=47°30′.故答案为:(1)42°30′;(2)AOD;47°30′.15.(4分)用含a的式子表示:(1)比a的6倍小5的数:6a﹣5;(2)如果北京某天的最低气温为a℃,中午12点的气温比最低气温上升了10℃,那么中午12点的气温为(a+10)℃.【解答】解:(1)a的6倍为6a,小5即为6a﹣5;(2)中午12点的气温为(a+10)℃.故答案为:6a﹣5;(a+10).16.(2分)请写出一个只含字母x的整式,满足当x=﹣2时,它的值等于3.你写的整式是﹣x或x+5.【解答】解:答案不唯一,如﹣x或x+5.故答案为:﹣x或x+517.(2分)一件商品按成本价提高20%标价,然后打9折出售,此时仍可获利16元,则商品的成本价为200元.【解答】解:设这种商品的成本价是x元,则商品的标价为x(1+20%),由题意可得:x×(1+20%)×90%=x+16,解得x=200,即这种商品的成本价是200元.故答案为:200.18.(2分)如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应走1段弧长,即从1→2为第2次“移位”.若小明从编号为4的点开始,第1次“移位”后,他到达编号为3的点,…,第2016次“移位”后,他到达编号为4的点.【解答】解:从编号为4的点开始走4段弧:4→5→1→2→3,所以第一次“移位”他到达编号为3的点;第二次移位后:3→4→5→1,到编号为1的点;第三次移位后:1→2,到编号为2的点;第四次移位后:2→3→4,回到起点;可以发现:他的位置以“3,1,2,4,”循环出现,2016÷4=504,整除,所以第2016次移位后他的编号与第四次相同,到达编号为4的点;故答案为:3,4.三、计算题(本题共16分,每小题12分)19.(12分)(1)(﹣12)﹣(﹣20)+(﹣8)﹣15.(2)﹣.(3)19×+(﹣1.5)÷(﹣3)2.【解答】解:(1)原式=﹣12+20﹣8﹣15=﹣35+20=﹣15;(2)原式=﹣×3×(﹣8)=6;(3)原式=19.5×﹣1.5×=(19.5﹣1.5)×=18×=2.20.(4分)以下是一位同学所做的有理数运算解题过程的一部分:(1)请你在上面的解题过程中仿照给出的方式,圈画出他的错误之处,并将正确结果写在相应的圈内;(2)请就此题反映出的该同学有理数运算掌握的情况进行具体评价,并对相应的有效避错方法给出你的建议.【解答】解:(1)如图所示:(2)有理数运算顺序为:先算乘方及绝对值运算,再算乘除运算,最后算加减运算,同级运算从左到右依次进行.四、先化简,再求值(本题5分)21.(5分)先化简,再求值:5(4a2﹣2ab3)﹣4(5a2﹣3ab3),其中a=﹣1,b=2.【解答】解:原式=20a2﹣10ab3﹣20a2+12ab3=2ab3,当a=﹣1,b=2时,原式=﹣16.五、解答题(本题5分)22.(5分)解方程:﹣1=.【解答】解:去分母,得3(1﹣2x)﹣21=7(x+3),去括号,得3﹣6x﹣21=7x+21,移项,得﹣6x﹣7x=21﹣3+21,合并,得﹣13x=39,系数化1,得x=﹣3,则原方程的解是x=﹣3.六、解答题(本题7分)23.(7分)如图,∠CDE+∠CED=90°,EM平分∠CED,并与CD边交于点M.DN 平分∠CED,并与EM交于点N.(1)依题意补全图形,并猜想∠EDN+∠NED的度数等于45°;(2)证明以上结论.证明:∵DN平分∠CDE,EM平分∠CED,∴∠EDN=,∠NED=CED.(理由:角平分线的定义)∵∠CDE+∠CED=90°,∴∠EDN+∠NED=×(∠CDE+∠CED)=×90°=45°.【解答】(1)解:如图所示:猜想∠EDN+∠NED=45°.(2)证明:∵DN平分∠CDE,EM平分∠CED,∴∠EDN=,∠NED=CED.(理由:角平分线的定义),∵∠CDE+∠CED=90°,∴∠EDN+∠NED=(∠CDE+∠CED)==45°.故答案为:(1)45°;(2)CED;角平分线的定义;;CDE;CED;;45.七、解决下列问题(本题共10分,每小题5分)24.(5分)已知右表内的各横行中,从第二个数起的数都比它左边相邻的数大m;各竖列中,从第二个数起的数都比它上边相邻的数大n.求m,n以及表中x的值.【解答】解:∵各横行中,从第二个数起的数都比它左边相邻的数大m,∴12+2m=18,解得m=3.又∵各竖列中,从第二个数起的数都比它上边相邻的数大n,∴(12+m)+3n=30,将m=3代入上述方程得15+3n=30,解得n=5.此时x=12﹣2m+n=12﹣2×3+5=11.25.(5分)从2016年1月1日开始,北京市居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按2.28元/m3收费,超过350立方米的部分按2.5元/m3收费.小冬一家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.(1)如果他家2016年全年使用300立方米天然气,那么需要交多少元天然气费?(2)如果他家2016年全年使用500立方米天然气,那么需要交多少元天然气费?(3)如果他家2016年需要交1563元天然气费,他家2016年用了多少立方米天然气?【解答】解:(1)如果他家2016年全年使用300立方米天然气,那么需要交天然气费2.28×300=684(元);(2)如果他家2016年全年使用500立方米天然气,那么需要交天然气费2.28×350+2.5×(500﹣350)=798+375=1173(元);(3)设小冬家2016年用了x立方米天然气.∵1563>1173,∴小冬家2016年所用天然气超过了500立方米.根据题意得2.28×350+2.5×(500﹣350)+3.9(x﹣500)=1563,解得x=600.答:小冬家2016年用了600立方米天然气.八、解答题(本题6分)26.(6分)如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A 出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP=5﹣t,AQ=10﹣2t;(2)当t=2时,求PQ的值;(3)当PQ=时,求t的值.【解答】解:(1)∵当0<t<5时,P点对应的有理数为10+t<15,Q点对应的有理数为2t<10,∴BP=15﹣(10+t)=5﹣t,AQ=10﹣2t.故答案为5﹣t,10﹣2t;(2)当t=2时,P点对应的有理数为10+2=12,Q点对应的有理数为2×2=4,所以PQ=12﹣4=8;(3)∵t秒时,P点对应的有理数为10+t,Q点对应的有理数为2t,∴PQ=|2t﹣(10+t)|=|t﹣10|,∵PQ=,∴|t﹣10|=2.5,解得t=12.5或7.5.九、附加题(试卷满分:20分)27.(6分)操作题:公元初,中美洲玛雅人使用的一种数字系统与其他计数方式都不相同,它采用二十进位制但只有3个符号,用点“•”划“”、卵形“”来表示我们所使用的自然数,如自然数1~19的表示见下表,另外在任何数的下方加一个卵形,就表示把这个数扩大到它的20倍,如表中20和100的表示.(1)玛雅符号表示的自然数是18;(2)请你在右边的方框中画出表示自然数280的玛雅符号:.【解答】解:(1)玛雅符号表示的自然数是18;(2)表示自然数的玛雅符合为:.故答案为:(1)18.28.(5分)推理判断题七年级五个班的班长因为参加校学生干部培训会而没有观看年级的乒乓球比赛.年级组长让他们每人猜一猜其中两个班的比赛名次.这五个班长各自猜测的结果如表所示:一班名次二班名次三班名次四班名次五班名次一班班长猜35二班班长猜14三班班长猜54四班班长猜21五班班长猜34正确结果年级组长说,每班的名次都至少被他们中的一人说对了,请你根据以上信息将一班~五班的正确名次填写在表中最后一行.【解答】解:∵每班的名次都至少被他们中的一人说对了,∴五班名次一定是第4,∴四班名次为第5,进而可知三班名次为第1,一班名次为第3,二班名次为第2.一班名次二班名次三班名次四班名次五班名次正确结果3215429.(9分)解答题唐代大诗人李白喜好饮酒作诗,民间有“李白斗酒诗百篇”之说.《算法统宗》中记载了一个“李白沽酒”的故事.诗云:注:古代一斗是10升.大意是:李白在郊外春游时,做出这样一条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的19升酒.按照这样的约定,在第3个店里遇到朋友正好喝光了壶中的酒.(1)列方程求壶中原有多少升酒;(2)设壶中原有a0升酒,在第n个店饮酒后壶中余a n升酒,如第一次饮后所余酒为a1=2a0﹣19(升),第二次饮后所余酒为a2=2a1﹣19=2(2a0﹣19)﹣19=22a0﹣(21+1)×19(升),….①用a n的表达式表示a n,再用a0和n的表达式表示a n;﹣1②按照这个约定,如果在第4个店喝光了壶中酒,请借助①中的结论求壶中原有多少升酒.【解答】解:(1)设壶中原有x升酒.依题意得:2[2(2x﹣19)﹣19]﹣19=0,去中括号,得4(2x﹣19)﹣3×19=0.去括号,得:8x﹣7×19=0.系数化1,得x=16,答:壶中原有16升酒;(2)①a n=2a n﹣1﹣19,a n=2n a0﹣(2n﹣1+2n﹣2+…+1)×19,(或a n=2n a0﹣(2n﹣1)×19);②当n=4时,a4=24a0﹣(23+22+21+1)×19.(或写成a4=24a0﹣(24﹣1)×19)∵在第4个店喝光了壶中酒,∴24a0﹣(23+22+21+1)×19=0,(或写成24a0﹣(24﹣1)×19=0)即16a0﹣15×19=0.解得:a0=17,答:在第4个店喝光了壶中酒时,壶中原有17升酒.。
北京市西城区2015—2016学年度第一学期期末试卷
北京市西城区2015— 2016学年度第一学期期末试卷九年级数学2016.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.二次函数()257y x=-+的最小值是().A.7-B.7C.5-D.5【答案】B【解析】当5x=时y取得最小值,最小值为7.2.如图,在Rt ABC△中,90C∠=︒,3AC=,4BC=,则cos A的值为().A.35B.53C.45D.34【答案】A【解析】在Rt ABC△中,由勾股定理得:5AB=.∴3 cos5ACAAB==.3.如图,⊙C与AOB∠的两边分别相切,其中OA边与⊙C相切于点P.若90AOB∠=︒,6OP=,则OC的长为().A.12B.C .D . 【答案】C【解析】如图,连接C 点与切点,则QCPO 为正方形,∴CO ==4.将二次函数265y x x =-+用配方法化成2()y x h k =-+的形式,下列结果中正确的是( ).A .2(6)5y x =-+B .2(3)5y x =-+C .2(3)4y x =--D .2(3)9y x =+-【答案】C【解析】22265(3)95(3)4y x x x x =-+=--+=--.5.若一个扇形的半径是18cm ,且它的弧长是12πcm ,则此扇形的圆心角等于( ). A .30︒ B .60︒ C .90︒ D .120︒ 【答案】D 【解析】∵π180n rl =, ∴18018012π120ππ18l n r ⨯===︒⨯.6.如图,在平面直角坐标系xOy 中,点A 的坐标为(1,2)-,AB x ⊥轴于点B .以原点O 为位似中心,将OAB △放大为原来的2倍,得到11OA B △,且点1A 在第二象限,则点1A 的坐标为( ).A .(2,4)-B .1(,1)2-C .(2,4)-D .(2,4) 【答案】A【解析】将OAB △放大为原来的2倍, 且点A 的坐标为(1,2)-, ∴1A 坐标为(2,4)-.7.如图,一艘海轮位于灯塔P 的南偏东37︒方向,距离灯塔40海里的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的正东方向上的B 处.这时,B 处与灯塔P 的距离BP 的长可以表示为( ).A .40海里B .40tan37︒海里C .40cos37︒海里D .40sin37︒海里【答案】D【解析】由图像知cos 40cos5340sin 37BP AP APB =⋅∠=⋅︒=⋅︒.8.如图,A ,B ,C 三点在已知的圆上,在ABC △中,70ABC ∠=︒,30ACB ∠=︒,D 是BAC 的中点,连接DB ,DC ,则DBC ∠的度数为( ).A .30︒B .45︒C .50︒D .70︒ 【答案】C【解析】由题知18080BAC ABC ACB ∠=︒-∠-∠=︒, ∴80BDC BAC ∠=∠=︒, ∵D 是BAC 的中点, ∴BD CD =, ∴180502BDCDBC ︒-∠∠==︒.9.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x 元后,每星期售出商品的总销售额为y 元,则y 与x 的关系式为( ).A .60(30020)y x =+B .(60)(30020)y x x =-+C .300(6020)y x =-D .(60)(30020)y x x =-- 【答案】B【解析】由题知y 与x 的关系式为(60)(30020)y x x =-+.10.二次函数228y x x m =-+满足以下条件:当21x -<<-时,它的图象位于x 轴的下方;当67x <<时,它的图象位于x 轴的上方,则m 的值为( ).A .8B .10-C .42-D .24-【答案】D【解析】函数对称轴为直线22bx a=-=. 又当21x -<<-时,它的图象位于x 轴的下方;当67x <<时,∴222(2)8(2)026860m m ⎧⨯--⨯-+⎪⎨⨯-⨯+⎪⎩≤≥, 解得24m =-.二、填空题(本题共18分,每小题3分) 11.若34a b =,则a bb +的值为 . 【答案】74【解析】34a b =,∴34a b =,∴3(1)744ba b b b ++==.12.点1(3,)A y -,2(2,)B y 在抛物线25y x x =-上,则1y 2y .(填“>”,“<”或“=”) 【答案】>【解析】函数对称轴为直线5522x -=-=,且函数开口向上, 3-离对称轴更远,∴12y y >.13.ABC △的三边长分别为5,12,13,与它相似的DEF △的最小边长为15,则DEF △的周长为 . 【答案】90【解析】ABC △与DEF △相似,且DEF △的最小边长为15, ∴相似比为51153=, ∵ABC △的周长为5121330++=, ∴DEF △的周长为33090⨯=.14.如图,线段AB 和射线AC 交于点A ,30A ∠=︒,20AB =.点D 在射线AC 上,且ADB∠是钝角,写出一个满足条件的AD 的长度值:AD = .【答案】10【解析】如图,过点B 作BE AC ⊥交AC 于点E ,∴cos30AE AB =⋅︒=∵点D 在射线AC 上,且ADB ∠是钝角, ∴0AD AE <<. ∴AD 可以为10.15.程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?” 【注释】1步5=尺. 译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?”如图,假设秋千的绳索长始终保持直线状态,OA 是秋千的静止状态,A 是踏板,CD 是地面,点B 是推动两步后踏板的位置,弧AB 是踏板移动的轨迹.已知1AC =尺,10CD EB ==尺,人的身高5BD =尺.设绳索长OA OB x ==尺,则可列方程为____________.【答案】222(4)10x x =-+【解析】∵5EC BD ==尺,1AC =尺,∴514EA EC AC =-=-=尺,(4)OE OA AE x =-=-尺, 在Rt OEB △中,(4)OE x =-尺,OB x =尺,10EB =尺, 根据勾股定理得:222(4)10x x =-+.16.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:小敏的作法如下:老师认为小敏的作法正确.请回答:连接OA ,OB 后,可证90OAP OBP ∠=∠=︒,其依据是____________;由此可证明直线PA ,PB 都是⊙O 的切线,其依据是____________.【答案】直径所对的圆周角是直角;经过半径外端并且垂直于这条半径的直线是圆的切线 【解析】直径所对的圆周角是直角;经过半径外端并且垂直于这条半径的直线是圆的切线三、解答题(本题共72分,第17﹣26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17.计算:24cos30tan 60sin 45︒⋅︒-︒.18.如图,ABC △中,12AB =,15BC =,AD BC ⊥于点D ,30BAD ∠=︒.求tan C 的值.19.已知抛物线223y x x =-++与x 轴交于A ,B 两点,点A 在点B 的左侧.(1)求A ,B 两点的坐标和此抛物线的对称轴;(2)设此抛物线的顶点为C ,点D 与点C 关于x 轴对称,求四边形ACBD 的面积.20.如图,四边形ABCD 中,AD BC ∥,A BDC ∠=∠. (1)求证:ABD DCB ∽△△;(2)若12AB =,8AD =,15CD =,求DB 的长.21.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x 米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?22.已知抛物线1C :2124y x x k =-+与x 轴只有一个公共点. (1)求k 的值;(2)怎样平移抛物线1C 就可以得到抛物线2C :222(1)4y x k =+-?请写出具体的平移方法;(3)若点(1,)A t 和点(,)B m n 都在抛物线2C :222(1)4y x k =+-上,且n t <,直接写出m的取值范围.23.如图,AB 是⊙O 的一条弦,且AB =C ,E 分别在⊙xOy 上,且OC AB ⊥于点D ,30E ∠=︒,连接l .(1)求OA 的长;(2)若AF 是⊙P 的另一条弦,且点O 到AF 的距离为BAF ∠的度数.24.奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B 处测得最高塔塔顶A 的仰角为45︒,然后向最高塔的塔基直行90米到达C 处,再次测得最高塔塔顶A 的仰角为58︒.请帮助他们计算出最高塔的高度1P 约为多少米.(参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈)25.如图,ABC △内接于⊙O ,AB 是⊙O 的直径.PC 是⊙O 的切线,C 为切点,PD AB⊥于点D ,交AC 于点E . (1)求证:PCE PEC ∠=∠; (2)若10AB =,32ED =,3,求PC 的长.26.阅读下面材料:如图1,在平面直角坐标系xOy 中,直线1y ax b =+与双曲线2ky x=交于(1,3)A 和(3,1)B --两点. 观察图象可知:①当3x =-或1时,12y y =; ②当30x -<<或1x >时,12y y >,即通过观察函 数的图象,可以得到不等式kax b x+>的解集. 有这样一个问题:求不等式32440x x x +-->的解集.某同学根据学习以上知识的经验,对求不等式32440x x x +-->的解集进行了探究. 下面是他的探究过程,请将(2)、(3)、(4)补充完整: (1)将不等式按条件进行转化当0x =时,原不等式不成立;当0x >时,原不等式可以转化为2441x x x +->; 当0x <时,原不等式可以转化为2441x x x+-<; (2)构造函数,画出图象设2341y x x =+-,44y x=,在同一坐标系 中分别画出这两个函数的图象. 双曲线44y x=如图2所示,请在此坐标系中 画出抛物线.....2341y x x =+-; (不用列表)(3)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足34y y =的所有x 的值为 ; (4)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式32440x x x +-->的解集为 .27.如图,在平面直角坐标系xOy 中,二次函数212y x bx c =-++的图象经过点(1,0)A ,且当0x =和5x =时所对应的函数值相等.一次函数3y x =-+与二次函数212y x bx c =-++的图象分别交于B ,C 两点,点B 在第一象限.(1)求二次函数212y x bx c =-++的表达式;(2)连接AB ,求AB 的长; (3)连接AC ,M 是线段AC 的中点,将点B 绕点M 旋转180︒得到点N ,连接AN ,CN ,判断四边形ABCN 的形状,并证明你的结论.28.在ABC △中,90ACB ∠=︒,4AC BC ==,M 为AB 的中点.D 是射线BC 上一个动点,连接AD ,将线段AD 绕点A 逆时针旋转90︒得到线段AE ,连接ED ,N 为ED 的中点,连接AN ,MN .(1)如图1,当2BD =时,AN = _______,NM 与AB 的位置关系是____________; (2)当48BD <<时,①依题意补全图2;②判断(1)中NM 与AB 的位置关系是否发生变化,并证明你的结论;(3)连接ME ,在点D 运动的过程中,当BD 的长为何值时,ME 的长最小?最小值是多少?请直接写出结果.29.在平面直角坐标系xOy 中,过⊙C 上一点P 作⊙C 的切线l .当入射光线照射在点P 处时,产生反射,且满足:反射光线与切线l 的夹角和入射光线与切线l 的夹角相等,点P 称为反射点.规定:光线不能“穿过”⊙C ,即当入射光线在⊙C 外时,只在圆外进行反射;当入射光线在⊙C 内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线.光线在⊙C 外反射的示意图如图1所示,其中12∠=∠.(1)自⊙C 内一点出发的入射光线经⊙C 第一次反射后的示意图如图2所示,1P 是第1个反射点.请在图2中作出光线经⊙C 第二次反射后的反射光线; (2)当⊙O 的半径为1时,如图3,①第一象限内的一条入射光线平行于x 轴,且自⊙O 的外部照射在其上点P 处,此光线经⊙O 反射后,反射光线与y 轴平行,则反射光线与切线l 的夹角为__________︒;②自点(1,0)A -出发的入射光线,在⊙O 内不断地反射.若第1个反射点1P 在第二象限,且第12个反射点12P 与点A 重合,则第1个反射点1P的坐标为______________;(3)如图4,点M 的坐标为(0,2),⊙M 的半径为1.第一象限内自点O 出发的入射光线经⊙M 反射后,反射光线与坐标轴无公共点,求反射点P 的纵坐标的取值范围.北京市西城区2015— 2016学年度第一学期期末试卷九年级数学参考答案及评分标准2016.1一、选择题(本题共30分,每小题3分)三、解答题(本题共72分,第17﹣26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式24= 162=- 112=.18.解:∵AD BC ⊥于点D , ∴90ADB ADC ∠=∠=︒.∵在Rt ABD △中,12AB =,30BAD ∠=︒, ∴162BD AB ==, cos 12cos30AD AB BAD =⋅∠=⋅︒=∵15BC =,∴ 1569CD BC BD ==-=-. ∴在Rt ADC △中,tan AD C CD ===19.解:(1)令0y =,则2230x x -++=.解得 11x =-,23x =. ∵点A 在点B 的左侧,∴(1,0)A -,(3,0)B .对称轴为直线1x =. (2)∵当1x =时,4y =,∴顶点C 的坐标为(1,4). ∵点C ,D 关于x 轴对称,∴点D 的坐标为(1,4)-. ∵4AB =,∴1=442162ACB DCB ACBD S S S +=⨯⨯⨯=四边形△△.20.(1)证明:∵AD BC ∥,∴ADB DBC ∠=∠. ∵A BDC ∠=∠, ∴ABD DCB ∽△△.(2)解:∵ABD DCB ∽△△,∴AB ADDC DB=. ∵12AB =,8AD =,15CD =, ∴12815DB =. ∴10DB =. 21.解:根据题意,得(213)(82)60x x --=.整理得211180x x -+=.解得12x =,29x =. ∵9x =不符合题意,舍去,∴2x =.答:人行通道的宽度是2米.22.解:(1)∵抛物线1C :2124y x x k =-+与x 轴有且只有一个公共点,∴方程2240x x k -+=有两个相等的实数根. ∴2(4)420k ∆=--⨯=. 解得 2k =.(2)∵抛物线1C :21242y x x =-+22(1)x =-,顶点坐标为(1,0),抛物线2C :222(1)8y x =+-的顶点坐标为(1,8)--,∴将抛物线1C 向左平移2个单位长度,再向下平移8个单位长度就可以得到抛物线2C .(3)31m -<<. 23.解:(1)∵OC AB ⊥于点D ,∴AD DB =,90ADO ∠=︒.∵AB =∴AD =∵2AOD E ∠=∠,30E ∠=︒, ∴60AOD ∠=︒.∵在Rt AOD △中,sin ADAOD OA∠=,∴4sin AD OA AOD ===∠.(2)75BAF ∠=︒或15︒.24.解:(1)∵在Rt ADB △中,90ADB ∠=︒,45B ∠=︒,∴9045BAD B ∠=︒-∠=︒. ∴BAD B ∠=∠. ∴AD DB =. 设AD x =,∵在Rt ADC △中,tan ADACD DC∠=,58ACD ∠=︒, ∴tan58xDC =︒.∵ DB DC CB AD =+=,90CB =,∴90tan58xx +=︒.将tan58 1.60︒≈代入方程, 解得240x ≈.答:最高塔的高度AD 约为240米.25.(1)证明:连接OC ,如图1.∵PC 是⊙O 的切线,C 为切点, ∴OC PC ⊥.∴1290PCO ∠=∠+∠=︒. ∵PD AB ⊥于点D , ∴90EDA ∠=︒.∴390A ∠+∠=︒. ∵OA OC =, ∴1A ∠=∠. ∴23∠=∠. ∵34∠=∠, ∴24∠=∠. 即PCE PEC ∠=∠.(2)解:作PF EC ⊥于点F ,如图2.∵AB 是⊙O 的直径, ∴90ACB ∠=︒.∵在Rt ABC △中,10AB =,3sin 5A =, ∴sin 6BC AB A =⋅=.∴8AC ==. ∵在Rt AED △中,32ED =, ∴5sin 2ED AE A ==. ∴112EC AC AE =-=. ∵24∠=∠, ∴PE PC =.∵PF EC ⊥于点F ,∴11124FC EC ==,90PFC ∠=︒.∴2590∠+∠=︒.∵21290A ∠+∠=∠+∠=︒. ∴5A ∠=∠. ∴3sin 55∠=. ∴在Rt PFC △中,55sin 512FC PC ==∠. 26.解:(2)抛物线如图所示;(3)x =4-,1-或1; (4)41x -<<-或1x >.27.解:(1)∵二次函数212y x bx c =-++,当0x =和5x =时所对应的函数值相等,∴二次函数212y x bx c =-++的图象的对称轴是直线52x =. ∵二次函数212y x bx c =-++的图象经过点(1,0)A ,∴10252b c b ⎧=-++⎪⎪⎨⎪=⎪⎩.解得 252c b =-⎧⎪⎨=⎪⎩.∴二次函数的表达式为215222y x x =-+-.(2)过点B 作BD x ⊥轴于点D ,如图1.∵一次函数3y x =-+与二次函数212y x bx c =-++的图象分别交于B ,C 两点,∴2153222x x x -+=-+-.解得 12x =,25x =. ∴交点坐标为(2,1),(5,2)-. ∵点B 在第一象限,∴点B 的坐标为(2,1). ∴点D 的坐标为(2,0).在Rt ABD △中,1AD =,1BD =,∴AB(3)结论:四边形ABCN 的形状是矩形.证明:设一次函数3y x =-+的图象与x 轴交于点E ,连接MB ,MN ,如图2.∵点B 绕点M 旋转180︒得到点N ,∴M 是线段BN 的中点.∴ MB MN =.∵M 是线段AC 的中点, ∴ MA MC =. ∴四边形ABCN 是平行四边形.∵一次函数3y x =-+的图象与x 轴交于点E , 当0y =时,3x =. ∴点E 的坐标为(3,0). ∴1 DE DB ==.∴在Rt BDE △中,45DBE DEB ∠=∠=︒. 同理45DAB DBA ∠=∠=︒. ∴90ABE DBA DBE ∠=∠+∠=︒. ∴四边形ABCN 是矩形.28.解:(1(2)①补全图形如图所示;②结论:(1)中NM 与AB 的位置关系不变. 证明:∵90ACB ∠=︒,AC BC =, ∴45CAB B ∠=∠=︒. ∴ 45CAN NAM ∠+∠=︒.∵AD 绕点A 逆时针旋转90︒得到线段AE , ∴AD AE =,90DAE ∠=︒. ∵N 为ED 的中点,∴1452DAN DAE ∠=∠=︒,AN DE ⊥. ∴ 45CAN DAC ∠+∠=︒,90AND ∠=︒. ∴ NAM DAC ∠=∠.在Rt AND △中,cos cos 45AN DAN AD =∠=︒=在Rt ACB △中,cos cos 45AC CAB AB =∠=︒=. ∵M 为AB 的中点,∴2AB AM =.∴2AC AC AB AM ==.∴AM AC =. ∴AN AD =AMAC. ∴ANM ADC ∽△△.∴AMN ACD ∠=∠.∵点D 在线段BC 的延长线上, ∴18090ACD ACB ∠=︒-∠=︒. ∴90AMN ∠=︒. ∴NM AB ⊥.(3)当BD 的长为6时,ME 的长的最小值为2.29.解:(1)所得图形,如图1所示.(2)①45︒;②1(,)2或1(2-. (3)①如图5,直线OQ 与⊙M 相切于点Q ,点Q 在第一象限,连接MQ ,过点Q 作QH x ⊥轴于点H . ∵直线OQ 与⊙M 相切于点Q , ∴MQ OQ ⊥.∴90MQO ∠=︒. ∵2MO =,1MQ =, ∴在Rt MQO △中,1sin 2MQ MOQ MO ∠==. ∴30MOQ ∠=︒.∴OQ OM cos MOQ =⋅∠= ∵QH x ⊥轴, ∴90QHO ∠=︒.∵9060QOH MOQ ∠=︒-∠=︒,∴在Rt QOH △中,3sin 2QH OQ QOH =⋅∠=. …………………………6分 ②如图6,当反射光线PN 与坐标轴平行时,连接MP 并延长交x 轴于点D ,过点P 作PE OD ⊥于点E ,过点O 作OF PD ⊥于点F .∵直线l 是⊙M 的切线, ∴MD l ⊥.∴12 90OPD NPD ∠+∠=∠+∠=︒. ∵12∠=∠,∴OPD NPD ∠=∠. ∵PN x ∥轴,∴NPD PDO ∠=∠.∴OPD PDO ∠=∠. ∴OP OD =. ∵OF PD ⊥,∴ 90MFO ∠=︒,PF FD =.∵cos OMF ∠=MF MOMO MD=, 设PF FD x ==,而2MO =,1M P =, ∴12212x x+=+.解得x =. ∵0x >,∴x =∵PE OD ⊥,∴ 90PED MOD ∠=︒=∠. ∴PE MO ∥.∴ EPD OMF ∠=∠.∴cos cos EPD OMF ∠=∠. ∴PE MFPD MO=. ∴MFPE PD MO=⋅ 122xx +=⋅ (1)x x =+=可知,当反射点P 从②中的位置开始,在⊙M 上沿逆时针方向运动,到与①中的点Q 重合之前,都满足反射光线与坐标轴无公共点,所以反射点P 的纵32P y <.。
2015-2016学年北京市西城区九年级(上)期末数学试卷-含详细解析
2015-2016学年北京市西城区九年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.二次函数y=(x-5)2+7的最小值是()A. B. 7 C. D. 52.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则cos A的值为()A.B.C.D.3.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A. 12B.C.D.4.将二次函数y=x2-6x+5用配方法化成y=(x-h)2+k的形式,下列结果中正确的是()A. B. C. D.5.若一个扇形的半径是18cm,且它的弧长是12πcm,则此扇形的圆心角等于()A. B. C. D.6.如图,在平面直角坐标系xOy中,点A的坐标为(-1,2),AB⊥x轴于点B.以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,则点A1的坐标为()A.B.C.D.7.如图,一艘海轮位于灯塔P的南偏东37°方向,距离灯塔40 海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的正东方向上的B处.这时,B处与灯塔P的距离BP的长可以表示为()A. 40海里B. 海里C. 海里D. 海里8.如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为()A.B.C.D.9.某商品现在的售价为每件60元,每星期可卖出300件市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为A. B.C. D.10.二次函数y=2x2-8x+m满足以下条件:当-2<x<-1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方,则m的值为()A. 8B.C.D.二、填空题(本大题共6小题,共18.0分)11.若,则的值为______.12.点A(-3,y1),B(2,y2)在抛物线y=x2-5x上,则y1______y2.(填“>”,“<”或“=”)13.△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,则△DEF的周长为______.14.如图,线段AB和射线AC交于点A,∠A=30°,AB=20.点D在射线AC上,且∠ADB是钝角,写出一个满足条件的AD的长度值:AD=______.15.程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”【注释】1步=5尺.译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?”如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=116.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是______;由此可证明直线PA,PB都是⊙O的切线,其依据是______.三、解答题(本大题共13小题,共72.0分)17.计算:4cos30°•tan60°-sin245°.18.如图,△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,求tan C的值.19.已知抛物线y=-x2+2x+3与x轴交于A,B两点,点A在点B的左侧.(1)求A,B两点的坐标和此抛物线的对称轴;(2)设此抛物线的顶点为C,点D与点C关于x轴对称,求四边形ACBD的面积.20.如图,在四边形ABCD中,AD∥BC,∠A=∠BDC.(1)求证:△ABD∽△DCB;(2)若AB=12,AD=8,CD=15,求DB的长.21.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?22.已知抛物线C1:y1=2x2-4x+k与x轴只有一个公共点.(1)求k的值;(2)怎样平移抛物线C1就可以得到抛物线C2:y2=2(x+1)2-4k?请写出具体的平移方法;(3)若点A(1,t)和点B(m,n)都在抛物线C2:y2=2(x+1)2-4k上,且n<t,直接写出m的取值范围.23.如图,AB是⊙O的一条弦,且AB=.点C,E分别在⊙O上,且OC⊥AB于点D,∠E=30°,连接OA.(1)求OA的长;(2)若AF是⊙O的另一条弦,且点O到AF的距离为,直接写出∠BAF的度数.24.奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B处测得最高塔塔顶A的仰角为45°,然后向最高塔的塔基直行90米到达C处,再次测得最高塔塔顶A的仰角为58°.请帮助他们计算出最高塔的高度AD约为多少米.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)25.如图,△ABC内接于⊙O,AB是⊙O的直径.PC是⊙O的切线,C为切点,PD⊥AB于点D,交AC于点E.(1)求证:∠PCE=∠PEC;(2)若AB=10,ED=,sin A=,求PC的长.26.阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=交于A(1,3)和B(-3,-1)两点.观察图象可知:①当x=-3或1时,y1=y2;②当-3<x<0或x>1时,y1>y2,即通过观察函数的图象,可以得到不等式ax+b>的解集.有这样一个问题:求不等式x3+4x2-x-4>0的解集.某同学根据学习以上知识的经验,对求不等式x3+4x2-x-4>0的解集进行了探究.下面是他的探究过程,请将(2)、(3)、(4)补充完整:(1)将不等式按条件进行转化:当x=0时,原不等式不成立;当x>0时,原不等式可以转化为x2+4x-1>;当x<0时,原不等式可以转化为x2+4x-1<;(2)构造函数,画出图象设y3=x2+4x-1,y4=,在同一坐标系中分别画出这两个函数的图象.双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x-1;(不用列表)(3)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为______;(4)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2-x-4>0的解集为______.27.如图,在平面直角坐标系xOy中,二次函数y=-+bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=-x+3与二次函数y=-+bx+c 的图象分别交于B,C两点,点B在第一象限.(1)求二次函数y=-+bx+c的表达式;(2)连接AB,求AB的长;(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.28.在△ABC中,∠ACB=90°,AC=BC=4,M为AB的中点.D是射线BC上一个动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED,N为ED的中点,连接AN,MN.(1)如图1,当BD=2时,AN=______,NM与AB的位置关系是______;(2)当4<BD<8时,①依题意补全图2;②判断(1)中NM与AB的位置关系是否发生变化,并证明你的结论;(3)连接ME,在点D运动的过程中,当BD的长为何值时,ME的长最小?最小29.在平面直角坐标系xOy中,过⊙C上一点P作⊙C的切线l.当入射光线照射在点P处时,产生反射,且满足:反射光线与切线l的夹角和入射光线与切线l的夹角相等,点P称为反射点.规定:光线不能“穿过”⊙C,即当入射光线在⊙C外时,只在圆外进行反射;当入射光线在⊙C内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线.光线在⊙C外反射的示意图如图1所示,其中∠1=∠2.(1)自⊙C内一点出发的入射光线经⊙C第一次反射后的示意图如图2所示,P1是第1个反射点.请在图2中作出光线经⊙C第二次反射后的反射光线;(2)当⊙O的半径为1时,如图3,①第一象限内的一条入射光线平行于x轴,且自⊙O的外部照射在其上点P处,此光线经⊙O反射后,反射光线与y轴平行,则反射光线与切线l的夹角为______°;②自点A(-1,0)出发的入射光线,在⊙O内不断地反射.若第1个反射点P1在第二象限,且第12个反射点P12与点A重合,则第1个反射点P1的坐标为______;(3)如图4,点M的坐标为(0,2),⊙M的半径为1.第一象限内自点O出发的入射光线经⊙M反射后,反射光线与坐标轴无公共点,求反射点P的纵坐标的取值范围.答案和解析1.【答案】B【解析】解:∵y=(x-5)2+7∴当x=5时,y有最小值7.故选B.根据二次函数的性质求解.本题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=-,函数最小值y=;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=-,函数最大值y=.2.【答案】A【解析】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理,得AB==5.cosA==,故选:A.根据勾股定理,可得AB的长,根据锐角的余弦等于邻边比斜边,可得答案.本题考查了锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.【答案】C【解析】解:连接CP,∵OA边与⊙C相切于点P,∴CP⊥AO,∴∠POC=45°,∴OP=CP=6,∴OC==6,故选:C.连接CP,由切线的性质可得CP⊥AO,再由切线长定理可得∠POC=45°,进而可得△POC是等腰直角三角形,利用勾股定理即可求出OC的长.本题考查了切线的性质定理、切线长定理以及勾股定理的运用,能够正确的判定△POC是等腰直角三角形是解题关键.4.【答案】C【解析】解:y=x2-6x+5=x2-6x+9-4=(x-3)2-4,故选:C.运用配方法把一般式化为顶点式即可.本题考查的是二次函数的三种形式,正确运用配方法把一般式化为顶点式是解题的关键.5.【答案】D【解析】解:根据弧长的公式l=,得n===120°,故选:D.把弧长公式进行变形,代入已知数据计算即可.本题考查的是弧长的计算,掌握弧长的公式l=是解题的关键.6.【答案】A【解析】解:∵点A的坐标为(-1,2),以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,∴点A1的坐标为(-2,4).直接利用位似图形的性质以及结合A点坐标直接得出点A1的坐标.此题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.7.【答案】D【解析】解:∵一艘海轮位于灯塔P的南偏东37°方向,∴∠BAP=37°,∵AP=40海里,∴BP=AP•sin37°=40sin37°海里;故选D.根据已知条件得出∠BAP=37°,再根据AP=40海里和正弦定理即可求出BP的长.本题考查解直角三角形,用到的知识点是方位角、直角三角形、锐角三角函数的有关知识,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.8.【答案】C【解析】解:∵∠ABC=70°,∠ACB=30°,∴∠A=80°,∴∠D=∠A=80°,∵D是的中点,∴,∴BD=CD,∴∠DBC=∠DCB==50°,故选:C.根据三角形的内角和定理得到∠A=80°,根据圆周角定理得到∠D=∠A=80°,根据等腰三角形的内角和即可得到结论.本题考查了圆周角定理,圆心角、弧、弦的关系,等腰三角形的性质,熟练掌握圆周角定理是解题的关键.9.【答案】B【解析】解:降价x元,则售价为(60-x)元,销售量为(300+20x)件,根据题意得,y=(60-x)(300+20x),故选:B.根据降价x元,则售价为(60-x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.此题主要考查了根据实际问题列二次函数解析式,关键是正确理解题意,找出题目中的等量关系,再列函数解析式.10.【答案】D【解析】不如先通过顶点坐标位置特征求出m的范围,将A选项剔除后,将B、C、D 选项带入其中,并根据二次函数对称周两侧图象增减性特点令x=-2时y值小于零和x=6时y值大于零去取舍各位合理.忘老师能够采纳.解:∵抛物线y=2x2-8x+m=2(x-2)2-8+m的对称轴为直线x=2,而抛物线在-2<x<-1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方,∴m<0,当m=-10时,则y=2x2-8x-10,令y=0,则2x2-8x-10=0,解得x1=-1,x2=5,则有当-2<x<-1时,它的图象位于x轴的上方;当m=-42时,则y=2x2-8x-42,令y=0,则2x2-8x-42=0,解得x1=-3,x2=7,则有当6<x<7时,它的图象位于x轴的下方;当m=-24时,则y=2x2-8x-24,令y=0,则2x2-8x-24=0,解得x1=-2,x2=6,则有当-2<x<-1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方;故选:D.根据抛物线顶点式得到对称轴为直线x=2,通过顶点坐标位置特征求出m的范围,将A选项剔除后,将B、C、D选项带入其中,并根据二次函数对称性和增减性特点判断是否合理.本题考查了抛物线与x轴的交点以及抛物线的轴对称性:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.11.【答案】【解析】解:根据比例的合比性质,已知=,则=.已知的比值,根据比例的合比性质即可求得.熟练应用比例的合比性质.12.【答案】>【解析】解:当x=-3时,y1=x2-5x=24;当x=2时,y2=x2-5x=-6;∵24>-6,∴y1>y2.故答案为:>.分别计算自变量为-3、2时的函数值,然后比较函数值的大小即可.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.13.【答案】90【解析】解:∵△ABC的三边长分别为5,12,13,∴△ABC的周长为:5+12+13=30,∵与它相似的△DEF的最小边长为15,∴△DEF的周长:△ABC的周长=15:5=3:1,∴△DEF的周长为:3×30=90.故答案为90.由△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,即可求得△ABC的周长以及相似比,又由相似三角形的周长的比等于相似比,即可求得答案.此题考查了相似三角形的性质.熟练掌握相似三角形的周长比等于相似比是解题关键.14.【答案】10【解析】解:过B作BE⊥AC于E,∵∠A=30°,AB=20,∴AE=10,∵∠ADB是钝角,∴∠ADB>∠AEB,∴0<AD<10,∴AD=10,故答案为:10.过B作BE⊥AC于E,由∠A=30°,AB=20,得到AE=10,推出∠ADB>∠AEB,即可得到结论.本题考查了含30°角的直角三角形的性质,熟记直角三角形的性质是解题的关键.15.【答案】102+(x-5+1)2=x2【解析】解:设绳索长OA=OB=x尺,由题意得,102+(x-5+1)2=x2.故答案为:102+(x-5+1)2=x2.设绳索有x尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理列出方程.本题考查了由实际问题抽象出一元二次方程,考查学生理解题意能力,关键是能构造出直角三角形,用勾股定理来求解.16.【答案】直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线【解析】解:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是:直径所对的圆周角是90°;由此可证明直线PA,PB都是⊙O的切线,其依据是:经过半径外端,且与半径垂直的直线是圆的切线.故答案为:直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线.分别利用圆周角定理以及切线的判定方法得出答案.此题主要考查了切线的判定以及圆周角定理,正确把握切线的判定方法是解题关键.17.【答案】解:原式=4××-()2=6-=.【解析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.18.【答案】解:∵△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,∴∠ADB=∠ADC=90°,∴AB=2BD,∴BD=6,∴CD=BC-BD=15-6=9,∴AD=,∴tan C=.即tan C的值是.【解析】根据在△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,可以求得BD、AD、CD的长,从而可以求得tanC的值.本题考查解直角三角形,解题的关键是计算出题目中各边的长,找出所求问题需要的条件.19.【答案】解:(1)令y=0,则-x2+2x+3=0,解得:x1=-1,x2=3.则A的坐标是(-1,0),B的坐标是(3,0).y=-x2+2x+3=-(x-1)2+4,则对称轴是x=1,顶点C的坐标是(1,4);(2)D的坐标是(1,-4).AB=3-(-1)=4,CD=4-(-4)=8,则四边形ACBD的面积是:AB•CD=×4×8=16.【解析】(1)令y=0解方程即可求得A和B的横坐标,然后利用配方法即可求得对称轴和顶点坐标;(2)首先求得D的坐标,然后利用面积公式即可求解.本题考查了待定系数法求函数解析式以及配方法确定二次函数的对称轴和顶点坐标,正确求得A和B的坐标是关键.20.【答案】(1)证明:∵AD∥BC,∴∠ADB=∠DBC.∵∠A=∠BDC,∴△ABD∽△DCB;(2)∵△ABD∽△DCB,AB=12,AD=8,CD=15,∴=,即=,解得DB=10,DB的长10.【解析】(1)根据平行线的性质,可得∠ADB与∠DBC的关系,根据两个角对应相等的两个三角形相似,可得答案;(2)根据相似三角形的性质,可得答案.本题考查了相似三角形的判定与性质,利用了两个角对应相等的两个三角形相似,利用相似三角形的对应边成比例是解题关键.21.【答案】解:设人行道的宽度为x米,由题意得,2××(8-2x)=60,解得:x1=2,x2=9(不合题意,舍去).答:人行道的宽度为2米.【解析】设人行道的宽度为x米,则矩形绿地的长度为:,宽度为:8-2x,根据两块绿地的面积之和为60平方米,列方程求解.本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.22.【答案】解:(1)根据题意得:△=16-8k=0,解得:k=2;(2)C1是:y1=2x2-4x+2=2(x-1)2,抛物线C2是:y2=2(x+1)2-8.则平移抛物线C1就可以得到抛物线C2的方法是向左平移2个单位长度,向下平移8个单位长度;(3)当x=1时,y2=2(x+1)2-8=0,即t=0.在y2=2(x+1)2-8中,令y=0,解得:x=1或-3.则当n<t时,即2(x+1)2-8<0时,m的范围是-3<m<1.【解析】(1)抛物线与x轴只有一个公共点,则判别式△=0,据此即可求得k的值;(2)把C1化成顶点式的形式,利用函数平移的法则即可确定;(3)首先求得t的值,然后求得等y=t时C2中对应的自变量的值,结合函数的性质即可求解.本题考查抛物线与x轴的交点的个数的确定,以及函数的平移方法,根据函数的性质确定m的范围是关键.23.【答案】解:(1)∵OC⊥AB,AB=,∴AD=DB=2,∵∠E=30°,∴∠AOD=60°,∠OAB=30°,∴OA==4;(2)如图,作OH⊥AF于H,∵OA=4,OH=2,∴∠OAF=45°,∴∠BAF=∠OAF+∠OAB=75°,则∠BAF′=∠OAF′-∠OAB=15°,∴∠BAF的度数是75°或15°.【解析】(1)根据垂径定理求出AD的长,根据圆周角定理求出∠AOD的度数,运用正弦的定义解答即可;(2)作OH⊥AF于H,根据勾股定理和等腰直角三角形的性质求出∠OAF的度数,分情况计算即可.本题考查的是垂径定理、圆周角定理和勾股定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧、在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键,注意分情况讨论思想的应用.24.【答案】解:∵∠B=45°,AD⊥DB,∴∠DAB=45°,∴BD=AD,设DC=x,则BD=BC+DC=90+x,∴AD=90+x,∴tan58°===1.60,解得:x=150,∴AD=90+150=240(米),答:最高塔的高度AD约为240米.【解析】根据已知条件求出BD=AD,设DC=x,得出AD=90+x,再根据tan58°=,求出x的值,即可得出AD的值.本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.25.【答案】解:(1)∵PC是圆O的切线,∴∠PCA=∠B.∵AB是圆O的直径,∴∠ACB=90°.∴∠A+∠B=90°.∵PD⊥AB,∴∠A+∠AED=90°.∴∠AED=∠B.∵∠PEC=∠AED,∴∠PCE=∠PEC.(2)如图所示,过点P作PF⊥AC,垂足为F.∵AB=10,sin A=,∴BC=AB•=6.∴AC==8.∵DE=,sin A=,∴AE=.∴EC=AC-AE=8-=.∵PC=PE,PF⊥EC,∴EF=.∵∠AED=∠PEF,∠EDA=∠EFP,∴△AED∽△PEF.∴,.解得:EP=.∴PC=.【解析】(1)由弦切角定理可知∠PCA=∠B,由直角所对的圆周角等于90°可知∠ACB=90°.由同角的余角相等可知∠AED=∠B,结合对顶角的性质可知∠PCE=∠PEC;(2)过点P作PF⊥AC,垂足为F.由锐角三角函数的定义和勾股定理可求得AC=8,AE=,由等腰三角形三线合一的性质可知EF=,然后证明△AED∽△PEF,由相似三角形的性质可求得PE的长,从而得到PC的长.本题主要考查的是切线的性质、圆周角定理、锐角三角函数的定义、勾股定理、相似三角形的性质和判定、等腰三角形的性质,证得△AED∽△PEF是解题的关键.26.【答案】±1和-4;x>1或-4<x<-1【解析】解:(2);(3)两个函数图象公共点的横坐标是±1和-4.则满足y3=y4的所有x的值为±1和-4.故答案是:±1和-4;(4)不等式x3+4x2-x-4>0即当x>0时,x2+4x-1>,此时x的范围是:x>1;当x<0时,x2+4x-1<,则-4<x<-1.故答案是:x>1或-4<x<-1.(2)首先确定二次函数的对称轴,然后确定两个点即可作出二次函数的图象;(3)根据图象即可直接求解;(4)根据已知不等式x3+4x2-x-4>0即当x>0时,x2+4x-1>,;当x<0时,x2+4x-1<,根据图象即可直接写出答案.本题考查了二次函数与不等式,正确理解不等式x3+4x2-x-4>0即当x>0时,x2+4x-1>,;当x<0时,x2+4x-1<,分成两种情况讨论是本题的关键.27.【答案】解:(1)当x=0时,y=c,即(0,c).由当x=0和x=5时所对应的函数值相等,得(5,c).将(5,c)(1,0)代入函数解析式,得,解得.故抛物线的解析式为y=-x2+x-2;(2)联立抛物线与直线,得,解得,,即B(2,1),C(5,-2).由勾股定理,得AB==;(3)如图:,四边形ABCN是平行四边形,证明:∵M是AC的中点,∴AM=CM.∵点B绕点M旋转180°得到点N,∴BM=MN,∵M是线段AC的中点,∴MA=MC.∴四边形ABCN是平行四边形.一次函数y=-x+3的图像于x轴交于点E.当y=0时,x=3.∴点E的坐标为(3,0)∴DE=1=DB.在Rt BDE中,DBE=DEB=45同理DAB=DBA=450∴ABE=DBA+DBE=900∴四边形ABCN是矩形.【解析】(1)根据当x=0和x=5时所对应的函数值相等,可得(5,c),根据待定系数法,可得函数解析式;(2)联立抛物线与直线,可得方程组,根据解方程组,可得B、C点坐标,根据勾股定理,可得AB的长;(3)根据线段中点的性质,可得M点的坐标,根据旋转的性质,可得MN与BM的关系,根据平行四边形的判定,可得答案.本题考查了二次函数综合题,利用函数值相等得出点(5,c)是解题关键,又利用了待定系数法求函数解析式;利用解方程组得出交点坐标,又利用了勾股定理;利用了平行四边形的判定:对角线互相平分的四边形是平行四边形.28.【答案】;垂直;BD为6,ME最小为7.【解析】解:(1)∵∠ACB=90°,AC=BC=4,BD=2,∴CD=2,∴AD==2,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴△ADE是等腰直角三角形,∴DE=AD=2,∵N为ED的中点,∴AN=DE=,∵M为AB的中点,∴AM=AB=2,∵=,==,∴,∵∠CAB=∠DAN=45°,∴∠CAD=∠MAN,∴△ACD∽△AMN,∴∠AMN=∠C=90°,∴MN⊥AB,故答案为:,垂直;(2)①补全图形如图2所示,②(1)中NM与AB的位置关系不发生变化,理由:∵∠ACB=90°,AC=BC,∴∠CAB=∠B=45°,∴∠CAN+∠NAM=45°,∵线段AD绕点A逆时针旋转90°得到线段AE,∴AD=AE,∠DAE=90°,∵N为ED的中点,∴,AN⊥DE,∴∠CAN+∠DAC=45°,∴∠NAM=∠DAC,在Rt△AND中,DAN=cos45°=,同理=,∴,∵∠DAC=45°-∠CAN=∠MAN,∴△ANM∽△ADC,∴∠AMN=∠ACD,∵D在BC的延长线上,∴∠ACD=180°-∠ACB=90°,∴∠AMN=90°,∴MN⊥AB;(3)连接ME,EB,过M作MG⊥EB于G,过A作AK⊥AB交BD的延长线于K,则△AKB等腰直角三角形,在△ADK与△ABE中,,∴△ADK≌△ABE,∴∠ABE=∠K=45°,∴△BMG是等腰直角三角形,∵BC=4,∴AB=4,MB=2,∴MG=2,∵∠G=90°,∴ME≥MG,∴当ME=MG时,ME的值最小,∴ME=BE=2,∴DK=BE=2,∵CK=BC=4,∴CD=2,∴BD=6,∴BD的长为6时,ME的长最小,最小值是7.(1)根据已知条件得到CD=2,根据勾股定理得到AD==2,根据旋转的性质得到△ADE是等腰直角三角形,求得DE=AD=2,根据直角三角形的性质得到AN=DE=,AM=AB=2,推出△ACD∽△AMN,根据相似三角形的性质即可得到结论;(2)①根据题意补全图形即可;②根据等腰直角三角形的性质得到∠CAB=∠B=45°,求得∠CAN+∠NAM=45°根据旋转的性质得到AD=AE,∠DAE=90°,推出△ANM△ADC,由相似三角形的性质得到∠AMN=∠ACD,即可得到结论;(3)连接ME,EB,过M作MG⊥EB于G,过A作AK⊥AB交BD的延长线于K,得到△AKB等腰直角三角形,推出△ADK≌△ABE,根据全等三角形的性质得到∠ABE=∠K=45°,证得△BMG是等腰直角三角形,求出BC=4,AB=4,MB=2,由ME≥MG,于是得到当ME=MG时,ME的值最小,根据等量代换即可得到结论.本题考查了旋转的性质,勾股定理,全等三角形的性质和判定,相似三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形的性质,正确的作出辅助线是解题的关键.29.【答案】45;(-,【解析】解:(1)答案如图:(2)①由题意:∠1=∠2,∠APB=90°,∴∠1=45°,∴反射光与切线的夹角为45°.②由题意:这些反射点组成的多边形是正十二边形,∴入射光线与反射光线夹角为150°,∴∠AOP1=30°,∵OP1=1,∴P1(-,).(3)如图:当反射光PA∥X轴时,反射光线与坐标轴没有交点.作PD⊥OC,PN⊥OM垂足分别为M,N,设PD=m.∵∠GPO=∠HPA,∠GPC=∠HPC=90°,∴∠OPC=∠APC=∠PCO,∴OP=OC,在RT△PON中,∵ON=PD=m,PN2=1-(2-m)2,∴PO2=m2+1-(2-m)2,∵PD∥OM,∵,∴CP=,CD2=()2-m2,∴OC=PN+CD,OC2=(+)2,由:PO2=OC2得到:()2-m2=(+)2,∴m1=2-,(m2=2+,m3=4,不合题意舍弃),∴根据左右对称性得到:满足条件的反射点P的纵坐标:1.(1)(2)两个问题,要根据题意,画出图象,可以解决.(3)当反射光线平行X轴时,反射光线与坐标轴没有交点,只要求出这样的反射点,就可以解决这个问题了.这是个几何,代数综合题.考查的知识点比较多,用到数形结合的思想,要求作图能力强,学会用方程的思想去思考.。
(完整word版)2015-2016学年北京市西城区初一上学期期末数试卷(含答案)
北京市西城区2015-2016学年度第一学期期末试卷七年级数学 2016。
1试卷满分:100分,考试时间:100分钟一、选择题(本题共28分,第1~8题每小题3分,第9、10题每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列算式中,运算结果为负数的是( ). A. (2)--B 。
2-C. 3(2)-D. 2(2)-2.科学家发现,距离银河系约2 500 000光年之遥的仙女星系正在向银河系靠近.其中2 500 000 用科学记数法表示为( ).A .70.2510⨯B .62.510⨯C .72.510⨯D .52510⨯3.下列各式中,正确的是( ).A. (25)25x x -+=-+ B 。
1(42)222x x --=-+C 。
()a b a b -+=--D. 23(32)x x -=-+4.下列计算正确的是( ).A 。
277a a a += B. 22232x y x y x y -= C 。
532y y -=D. 325a b ab +=5.已知1a b -=,则代数式223a b --的值是( ).A. 1B 。
1-C 。
5D 。
5-6.空调常使用的三种制冷剂的沸点如下表所示,那么这三种制冷剂按沸点从低到高排列的顺序是( ).A. R12,R22,R410A B 。
R22,R12,R410AC. R410A ,R12,R22D 。
R410A ,R22,R127.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项 式的值用()f a 来表示,例如1x =-时,多项式2()35f x x x =+-的值记为(1)f -,那么(1)f -等于( ). A. 7-B 。
9-C 。
3-D. 1-8.下列说法中,正确的是( ). ①射线AB 和射线BA 是同一条射线;②若AB =BC ,则点B 为线段AC 的中点; ③同角的补角相等;④点C 在线段AB 上,M ,N 分别是线段AC ,CB 的中点。
西城区-度第一学期期末九年级数学试题.doc
北京市西城区2015— 2016学年度第一学期期末试卷九年级数学 2016.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.二次函数()257y x =-+的最小值是 A .7-B .7C .5-D .52.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,则cos A 的值为A .35B .53C .45 D .343.如图,⊙C 与∠AOB 的两边分别相切,其中OA 边与⊙C 相切于点P .若∠AOB =90°,OP =6,则OC 的长为A .12B .C .D .4.将二次函数265y x x =-+用配方法化成2()y x h k =-+的形式,下列结果中正确的是 A .2(6)5y x =-+B .2(3)5y x =-+C .2(3)4y x =--D .2(3)9y x =+-5.若一个扇形的半径是18cm ,且它的弧长是12π cm ,则此扇形的圆心角等于 A .30° B .60° C .90° D .120°6.如图,在平面直角坐标系xOy 中,点A 的坐标为(1-,2), AB ⊥x 轴于点B .以原点O 为位似中心,将△OAB 放大为 原来的2倍,得到△OA 1B 1,且点A 1在第二象限,则点A 1 的坐标为A .(2-,4)B .(12-,1)C .(2,4-)D .(2,4)7.如图,一艘海轮位于灯塔P 的南偏东37°方向,距离灯塔40 海里的A 处,它沿正北方向航行一段时间后, 到达位于灯塔P 的正东方向上的B 处.这时,B 处与 灯塔P 的距离BP 的长可以表示为A .40海里B .40tan37°海里C .40cos37°海里D .40sin37°海里8.如图,A ,B ,C 三点在已知的圆上,在△ABC 中, ∠ABC =70°,∠ACB =30°,D 是 的中点, 连接DB ,DC ,则∠DBC的度数为A .30°B .45°C .50°D .70°9.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x 元后,每星期售出商品的总销售额为y 元,则y 与x 的关系式为A .60(30020)y x =+B .(60)(30020)y x x =-+C .300(6020)y x =-D .(60)(30020)y x x =--10.二次函数228y x x m =-+满足以下条件:当21x -<<-时,它的图象位于x 轴的下方;当67x <<时,它的图象位于x 轴的上方,则m 的值为A .8B .10-C .42-D .24-二、填空题(本题共18分,每小题3分) 11.若34a b =,则a bb +的值为 . 12.点A (3-,1y ),B (2,2y )在抛物线25y x x =-上,则1y 2y .(填“>”,“<”或“=”) 13.△ABC 的三边长分别为5,12,13,与它相似的△DEF 的最小边长为15,则△DEF 的周长为 .14.如图,线段AB 和射线AC 交于点A ,∠A =30°,AB =20.点D 在射线AC 上,且∠ADB 是钝角,写出一个满足条件 的AD 的长度值:AD = .15.程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?” 【注释】1步=5尺. 译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?” 如图,假设秋千的绳索长始终保持直线状态,OA 是秋千的静止状态,A 是踏板,CD 是地面,点B 是推动两步后踏板的位置,弧AB 是踏板移动的轨迹.已知AC =1尺,CD =EB =10尺,人的身高BD =5尺.设绳索长OA =OB =x 尺,则可列方程为 .BAC16.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:小敏的作法如下:老师认为小敏的作法正确.请回答:连接OA ,OB 后,可证∠OAP =∠OBP =90°,其依据是;由此可证明直线P A ,PB 都是⊙O 的切线,其依据是 .三、解答题(本题共72分,第17﹣26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:24cos30tan60sin 45︒⋅︒-︒.18.如图,△ABC 中,AB =12,BC =15,AD ⊥BC 于点D ,∠BAD 求tan C 的值.19.已知抛物线223y x x =-++与x 轴交于A ,B 两点,点A 在点B 的左侧.(1)求A ,B 两点的坐标和此抛物线的对称轴;(2)设此抛物线的顶点为C ,点D 与点C 关于x 轴对称,求四边形ACBD 的面积.20.如图,四边形ABCD 中,AD ∥BC ,∠A =∠BDC . (1)求证:△ABD ∽△DCB ;(2)若AB =12,AD =8,CD =15,求DB 的长.21.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x 米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?22.已知抛物线1C :2124y x x k =-+与x 轴只有一个公共点. (1)求k 的值;(2)怎样平移抛物线1C 就可以得到抛物线2C :222(1)4y x k =+-?请写出具体的平移方法;(3)若点A (1,t )和点B (m ,n )都在抛物线2C :222(1)4y x k =+-上,且n t <,直接写出m 的取值范围.23.如图,AB 是⊙O 的一条弦,且AB =C ,E 分别在⊙O 上,且OC ⊥AB 于点D ,∠E =30°,连接OA . (1)求OA 的长;(2)若AF 是⊙O 的另一条弦,且点O 到AF 的距离为,直接写出∠BAF 的度数.24.奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B 处测得最高塔塔顶A 的仰角为45°,然后向最高塔的塔基直行90米到达C 处,再次测得最高塔塔顶A 的仰角为58°.请帮助他们计算出最高塔的高度AD 约为多少米.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)25.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径.PC 是⊙O 的切线,C 为切点,PD ⊥AB 于点D ,交AC 于点E .(1)求证:∠PCE =∠PEC ; (2)若AB =10,ED =32,sin A =35,求PC 的长.26.阅读下面材料:如图1,在平面直角坐标系xOy 中,直线1y ax b =+双曲线2ky x=交于A (1,3)和B (3-,1-)两点. 观察图象可知:①当3x =-或1时,12y y =; ②当30x -<<或1x >时,12y y >,即通过观察函 数的图象,可以得到不等式kax b x+>的解集. 有这样一个问题:求不等式32440x x x +-->的解集.某同学根据学习以上知识的经验,对求不等式32440x x x +-->的解集进行了探究. 下面是他的探究过程,请将(2)、(3)、(4)补充完整: (1)将不等式按条件进行转化当0x =时,原不等式不成立;当0x >时,原不等式可以转化为2441x x x +->; 当0x <时,原不等式可以转化为2441x x x+-<;(2)构造函数,画出图象设2341y x x =+-,44y x=中分别画出这两个函数的图象.双曲线44y x=如图2所示,请在此坐标系中画出抛物线.....2341y x x =+-; (不用列表)(3)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足34y y =的所有x 的值为 ; (4)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式32440x x x +-->的解集为 .27.如图,在平面直角坐标系xOy 中,二次函数212y x bx c =-++的图象经过点A (1,0),且当0x =和5x =时所对应的函数值相等.一次函数3y x =-+与二次函数212y x b x c=-++的图象分别交于B ,C 两点,点B 在第一象限. (1)求二次函数212y x bx c =-++的表达式;(2)连接AB ,求AB 的长;(3)连接AC ,M 是线段AC 的中点,将点B 绕点M 旋转180°得到点N ,连接AN ,CN ,判断四边形ABCN 的形状,并证明你的结论.28.在△ABC 中,∠ACB =90°,AC =BC = 4,M 为AB 的中点.D 是射线BC 上一个动点,连接AD ,将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接ED ,N 为ED 的中点,连接AN ,MN .(1)如图1,当BD =2时,AN =_______,NM 与AB 的位置关系是____________; (2)当4<BD <8时,①依题意补全图2;②判断(1)中NM 与AB 的位置关系是否发生变化,并证明你的结论;(3)连接ME ,在点D 运动的过程中,当BD 的长为何值时,ME 的长最小?最小值是多少?请直接写出结果.图1 图2 备用图29.在平面直角坐标系xOy中,过⊙C上一点P作⊙C的切线l.当入射光线照射在点P处时,产生反射,且满足:反射光线与切线l的夹角和入射光线与切线l的夹角相等,点P称为反射点.规定:光线不能“穿过”⊙C,即当入射光线在⊙C外时,只在圆外进行反射;当入射光线在⊙C内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线.光线在⊙C外反射的示意图如图1所示,其中∠1=∠2.图1 图2 图3 (1)自⊙C内一点出发的入射光线经⊙C第一次反射后的示意图如图2所示,P1是第1个反射点.请在图2中作出光线经⊙C第二次反射后的反射光线;(2)当⊙O的半径为1时,如图3,①第一象限内的一条入射光线平行于x轴,且自⊙O的外部照射在其上点P处,此光线经⊙O反射后,反射光线与y轴平行,则反射光线与切线l的夹角为__________°;,0)出发的入射光线,在⊙O内不断地反射.若第1个反射点P1在第②自点A(1二象限,且第12个反射点P12与点A重合,则第1个反射点P1的坐标为______________;(3)如图4,点M的坐标为(0,2),⊙M的半径为1.第一象限内自点O出发的入射光线经⊙M反射后,反射光线与坐标轴无公共点,求反射点P的纵坐标的取值范围.图4。
北京市西城区2015
北京市西城区2015-2016学年度第一学期期末试卷七年级数学参考答案及评分标准2016.1一、选择题(本题共28分,第1~8题每小题3分,第9、10题每小题2分)二、填空题(本题共23分,第11~13题每小题3分,第14、15题每小题4分,第16~18 题每小题2分)11.2016. 12.4 . 13.3.89.14.(1)4230'︒;(2)如图1,AOD 或COE ,4730'︒.(画图1分,每空1分) 15.(1)65a -;(2)10a +.(每空2分) 16.答案不唯一,如32x -或5x +. 17.200. 18.3,4.(每空1分) 三、解答题(本题共16分,每小题4分)19.(12)(20)(8)15---+--1220815=-+-- …… 2分202015=-+-15=-.………… 4分20.311(3)()42-⨯+÷- 11(3)()48=-⨯+÷-……………1分13(8)4=-⨯⨯-…………………… 2分6=.………………………………4分 21.21119(1.5)(3)29⨯+-÷- 1119(1.5)929=⨯+-÷ ……… 1分1119.5 1.599=⨯-⨯ ……………… 2分1(19.5 1.5)9=⨯- …………3分 1189=⨯2=……… 4分22.解:(1)………………………… 2分 说明:两处错误及改错各1分.(2)根据学生解答酌情给分………………………… 4分四、先化简,再求值(本题5分) 23.解:23235(42)4(53)a ab a ab ---232320102012a a b a a b=--+ ………………………… 2分 32ab =.………………………………………………… 3分 当1a =-,2b =时,原式32(1)2=⨯-⨯ ………………………………… 4分 2816=-⨯=-.………………………………… 5分 五、解答题(本题5分) 24.123173x x -+-=. 解:去分母,得 3(12)217(3)x x --=+.…………………………… 1分 去括号,得 3621721x x --=+. …………………………2分 移项,得 6721321x x --=-+.………………………… 3分 合并,得 1339x -=.…………………………………… 4分 系数化1,得 3x =-.……………………………… 5分 所以原方程的解是 3x =-. 六、解答题(本题7分)25.(1)补全图形见图2.……………………………1分猜想EDN NED ∠+∠的度数等于45︒. …………………………………………2分(2)证明:∵ DN 平分CDE ∠,EM 平分CED ∠, ∴ 12EDN CDE ∠=∠,12NED CED ∠=∠.…………………3分 (理由: 角平分线的定义) …………………4分 ∵ 90CDE CED ∠+∠=︒, ∴ 1( )2EDN NED CDE CED ∠+∠=⨯∠+∠ ……………… 5分 1902=⨯︒ ………6分45 =︒ .…… 7分七、解决下列问题(本题10分,每小题5分)26.解:∵ 各横行中,从第二个数起的数都比它左边相邻的数大m , ∴ 12218m +=.…………………… 1分解得3m =.………………………………………………2分 又∵ 各竖列中,从第二个数起的数都比它上边相邻的数大n ,∴ (12)330m n ++=.…………………… 3分将 3m =代入上述方程得 15330n +=.解得5n =.…………… 4分 此时1221223511x m n =-+=-⨯+=.………………5分 27.解:(1)2.28300684⨯=(元).…………………… 1分(2)2.28350+2.5(500350)7983751173⨯⨯-=+=(元).………… 2分 (3)设小冬家2016年用了x 立方米天然气.∵ 1563>1173,∴ 小冬家2016年所用天然气超过了500立方米. 根据题意得 2.28350+2.5(500350) 3.9(500)1563x ⨯⨯-+-=. 即 1173 3.9(500)1563x +-=.………………… 3分 移项,得 3.9(500)390x -=. 系数化1得 500100x -=.移项,得 600x =. …………………………4分答:小冬家2016年用了600立方米天然气.………… 5分 说明:以上两题其他解法相应给分. 八、解答题(本题6分)28.解:(1) 5 BP t =-, 102 AQ t =-;…………………… 2分(2)当2t =时,AP <5,点P 在线段AB 上;OQ <10,点Q 在线段OA 上.(如图3所示)此时(PQ OP OQ =-=4分 (3)()(10)210PQ OP OQ OA AP OQ t t t =-=+-=+-=-. ∵ 12PQ AB =,∴ 10 2.5t -=. 解得 7.5t =或12.5t =. …… 6分 说明:t 的两个值各1分,不同解法相应给分.。
最新高一数学题库 ,1西城高一数学答案
北京市西城区2015 — 2016学年度第一学期期末试卷高一数学参考答案及评分标准 2016.1A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.C ;2.B ;3.B ;4.C ;5.D ;6.D ;7.A ;8.A ;9.C ; 10.D . 二、填空题:本大题共6小题,每小题4分,共24分.11.; 12. 1()2-b a ; 13. 43-;14.3π; 15. 85π; 16. 32.三、解答题:本大题共3小题,共36分. 17.(本小题满分12分)解:(Ⅰ)因为2απ∈π(,),且3sin 5α=,所以4cos 5α==-. ………………3分所以sin 3tan cos 4ααα==-. ………………5分所以tan 1tan()741tan αααπ--==-+. ………………7分(Ⅱ)由(Ⅰ)知,24sin 22sin cos 25ααα==-, ………………9分2321cos 22cos 25αα+==. ………………11分 所以244sin2cos 1255321cos 2825ααα-+-==-+. ………………12分18.(本小题满分12分)(Ⅰ)由题意()2sin(2)3f x x π=+,因为02x π≤≤,所以02x ≤≤π.所以42333x πππ≤+≤. ………………3分所以sin(2)13x π≤+≤. ………………6分 所以2)(3≤≤-x f ,函数)(x f的值域为[. ………………8分(Ⅱ)由已知(,)12B A π,13(,)12C A π,(,0)3D π, ………………11分 所以(,)4DB A π=-,3(,)4DC A π=.因为CD BD ⊥,所以⊥,223016DB DC A -π⋅=+=,解得A =又0A >,所以A =………………12分 19.(本小题满分12分)解:(Ⅰ)()AB BC AB AC AB ⋅=⋅- ………………2分213122AB AC AB =⋅-=--=-.………………4分(Ⅱ)建立如图所示的平面直角坐标系,则(1,0)B ,1(2C -. ………………5分 设(cos ,sin )P θθ,[0,]3θ2π∈, ………………6分由AP x AB y AC =+,得1(cos ,sin )(1,0)(2x y θθ=+-. 所以cos ,sin 2y x y θθ=-=.所以cos x θθ=,y θ=,………………8分 2211sin cos sin 2cos 233333xy θθθθθ=+=+- 2112cos 2)323θθ=-+ ………………10分 21sin(2)363θπ=-+. ………………11分 因为2[0,]3θπ∈,2[,]666θππ7π-∈-.所以,当262θππ-=,即3θπ=时,xy 的最大值为1.………………12分B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1. {|01}x x <≤;2. 1,62; 3. 1-; 4. {2}a a <; 5. 0.4. 注:2题每空2分.二、解答题:本大题共3小题,共30分. 6.(本小题满分10分) 解:(Ⅰ)因为26()1x f x x =+,所以26()1xf x x --=+ ()f x =-. ………………4分 所以()f x 为奇函数. ………………6分(Ⅱ)由不等式(2)2xxf >,得262221xx x ⋅>+. ………………8分整理得225x <, ………………9分所以22log 5x <,即21log 52x <. ………………10分 7.(本小题满分10分)解: (Ⅰ)当1a =时,2()2f x x x =-. 二次函数图象的对称轴为1x =,开口向上.所以在区间[0,2]上,当1x =时,()f x 的最小值为1-. ………………1分 当0x =或2x =时,()f x 的最大值为0. ………………2分 所以()f x 在区间[0,2]上的值域为[1,0]-. ………………3分 (Ⅱ)注意到2()2f x x ax =-的零点是0和2a ,且抛物线开口向上.当0a ≤时,在区间[0,2]上2()()2g x f x x ax ==-,()g x 的最大值()(2)44t a g a ==-. ………………4分当01a <<时,需比较(2)g 与()g a 的大小,22()(2)(44)44g a g a a a a -=--=+-,所以,当02a <<时,()(2)0g a g -<;当21a ≤<时,()(2)0g a g ->.所以,当02a <<时,()g x 的最大值()(2)44t a g a ==-. ………5分当21a -≤<时,()g x 的最大值2()()t a g a a ==. ………………6分 当12a ≤≤时,()g x 的最大值2()()t a g a a ==. ………………7分 当2a >时,()g x 的最大值()(2)44t a g a ==-. ………………8分所以,()g x的最大值244,2,(),22,44, 2.a a t a a a a a ⎧-<⎪⎪=≤≤⎨⎪->⎪⎩………………9分所以,当2a =时,()t a的最小值为12-………………10分 8.(本小题满分10分) 解:(Ⅰ)由已知114x =,212x =.所以 121212max{max{,},max{,1}}d x x x x x x =---1111111max{max{,},max{,}}max{,}4442422===. ………………4分(Ⅱ)取113x =,23x 2=,此时试验的预计误差为31. ………………5分以下证明,这是使试验预计误差达到最小的试验设计. 证明:分两种情形讨论1x 点的位置. ① 当311<x 时,如图所示, 如果 21233x ≤<,那么 2113d x ≥->;如果2213x ≤≤,那么 2113d x x ≥->. ………………7分② 当311>x ,113d x ≥>.综上,当113x ≠时,13d >. ………………8分 (同理可得当223x ≠时,13d >)即113x =,23x 2=时,试验的预计误差最小. (Ⅲ)当411=x 和125x =时预计误差d '的最小值分别为14和15. ………………10分注:用通俗语言叙述证明过程也给分.11x 2x 31。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13 .…………………………………………………………… ቤተ መጻሕፍቲ ባይዱ 分 16 13 答:在第 4 个店喝光了壶中酒时,壶中原有 17 升酒. 16
解得 a0 17
七年级数学附加题参考答案及评分标准 第 1 页(共 1 页)
北京市西城区 2015-2016 学年度第一学期期末试卷
七年级数学附加题参考答案及评分标准
一、 操作题(本题 6 分) 1. (1)18; (2) . (各 3 分)
2016.1
二、推理判断题(本题 5 分) 2. 一班名次 正确结果 3 二班名次 2 三班名次 1 四班名次 5 五班名次 4
说明:每个班的名次各 1 分. 三、解答题(本题 9 分) 3.解: (1)设壶中原有 x 升酒.…………………………………………………………… 1 分 依题意得 22(2 x 19) 19 19 0 .……………………………………… 3 分 去中括号,得 4(2 x 19) 3 19 0 . 去括号,得 8 x 7 19 0 . 系数化 1,得 x 16 .……………………………………………………… 4 分 答:壶中原有 16 升酒. (2)① an 2an1 19 . …………………………………………………………… 5 分
5 8
5 8
an 2n a0 (2n-1 2n2 1) 19 .……………………………………… 7 分
(或写成 an 2n a0 (2n 1) 19 ) ②当 n 4 时, a4 24 a0 (23 22 21 1) 19 . (或写成 a4 24 a0 (24 1) 19 ) ∵ 在第 4 个店喝光了壶中酒, ∴ 24 a0 (23 22 21 1) 19 0 .……………………………………… 8 分 (或写成 24 a0 (24 1) 19 0 ) 即 16a0 15 19 0 .