最新山东省春季高考数学模拟试题(二)
2024年山东省春季高考二模考试数学试题
D.18
5.已知直线 l 与直线 x y 0 平行,且在 y 轴上的截距是 2 ,则直线 l 的方程是( ).
A. x y 2 0
B. x 2 y 4 0
C. x y 2 0
D. x 2 y 4 0
6.某几何体的三视图如图所示,则该几何体可能是( ).
A.三棱柱
B.圆柱
C.三棱锥
2024 年山东省春季高考二模考试数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 M 1, 2,3, 4, N 3,5,则 M N 等于( ).
A. 3
B. 1, 3
C.2,3, 4
D.1, 2,3, 4,5
边形,此时 BP 、 DD1 面 BB1D1D ,故 A 错误;
当 P 与 C1 重合时,此时 BP 、 B1C 面 BB1C1C ,故 B 错误;
当 P 与 C1 重合时,由正方体的特征可知四边形 ABC1D1 为平行四边形,此时 BP / / AD1 ,故 C 错误;
由正方体的特征可知四边形 ACC1A1 为平行四边形,
D.若 x 不是整数,则 x 不是自然数
10.已知函数 f x 3sin2x cos2x ,则下列结论正确的是( ).
A.函数 f x 的最大值是 3
B.函数
f
x
在
π 6
,
π 3
上单调递增
C.该函数的最小正周期是 2π
D.该函数向左平移 π 个单位后图象关于原点对称 6
11.已知点 M 在抛物线 y2 2 px( p 0) 上,若点 M 到抛物线对称轴的距离是 4,到准线
(完整版)山东省春季高考数学模拟试题(二)及答案
山东省春季高考数学模拟试题(二)2019.4.16注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷一、选择题(本大题共20小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1、设集合M={n },则下列各式中正确的是( )A n M ⊆B n M ∈C n M =D n M ∉ 2、“1x >”是“2x x >”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件3、函数y =的定义域为( )A [4,1]-B [4,0)-C (0,1]D [4,0)(0,1]-⋃4、从篮球队中随机选出5名队员,其身高分别为(单位:cm ):180、188、200、195、187、则身高的样本方差为( )A 47.6B 190C 51D 425、若偶函数()f x 在区间[3,7]上是增函数,且有最小值5,则()f x 在区间[7,3]--上是( ) A 增函数,最小值是-5 B 增函数,最大值是-5 C 减函数,最小值是5 D 减函数,最大值是563a 与3b的等比中项,则a b +等于( )A 8B 4C 1 D147、已知角α与单位圆的交点为(1,0)P -,则sin α的值为( ) A 0 B 12-C 12D 1 8、已知{}n a 为等差数列,且74321,0a a a -=-=,则公差d 等于( ) A 2- B 12-C 12D 2 9、过点(1,2)P -且与直线310x y +-=垂直的直线方程为( )A 350x y -+=B 350x y --=C 350x y ++=D 350x y -+=10、平面向量a r 与b r 的夹角为60o,(2,0)a =r ,||3b =r ,则|2|a b -=r r ( )A 2B 1C 5D 2511、若函数2()(1)xf x a =-在(0,)+∞上是增函数,则a 满足的条件为( ) A ||1a > B ||2a <C ||2a >D 1||2a <<12、函数2sin 4sin 3y x x =-+-的最大值为( ) A 1 B 2 C 3 D 013、在等差数列{}n a 中,若13518a a a ++= ,24624a a a ++= ,则前10项的和10S 等于( )A 110B 120C 130D 14014、已知2621201212(1)x x a a x a x a x -+=++++L ,则01212a a a a ++++L 的值是( )A 1B 2C -1D 015、在ABC ∆中,若3a =,60B ∠=o,面积934S =,则ABC ∆是( ) A 等腰直角三角形 B 直角三角形 C 等边三角形 D 钝角三角形16、如图所示,表示阴影部分的二元一次不等式组是( )A .232600y x y x ≥-⎧⎪-+>⎨⎪<⎩B .232600y x y x >-⎧⎪-+≥⎨⎪≤⎩C .232600y x y x >-⎧⎪-+>⎨⎪≤⎩D .232600y x y x >-⎧⎪-+<⎨⎪<⎩17、若直线0x y m -+=(0)m >与圆222x y +=相切,则m 等于( ) A2 B 2- C 2 D 22±18、若某学校要从5名男生和2名女生中选出3人作为青年志愿者,则选出的志愿者中男女生均不少于1名的概率为( ) A57 B 1021C 35D 174219、如果方程222x ky +=表示焦点在y 轴上的椭圆,则k 的取值范围是( )A (0,)+∞B (0,2)C (1,)+∞D (0,1)20、已知双曲线2221(0)2x y b b -=>的左、右焦点分别是1F 、2F ,其一条渐近线方程为y x =,点0)P y 在双曲线上,则12PF PF ⋅=u u u r u u u u r( )A 12-B 2-C 0D 4第Ⅱ卷二、填空题(本题共5个小题,每题3分,共15分) 21、已知()2xf x x =+,则(1)f x +=____________________ 22、函数22(cos sin )tan 2y x x x =-的最小正周期是____________________23、若椭圆的两个焦点将长轴三等分,则该椭圆的离心率等于________________________ 24、已知正方体的外接球的体积为323π,那么正方体的棱长等于______ 25、将3个人分到4个不同的班级,则不同的分发种数是________ 三、解答题(本题共5题,共45分)26、已知二次函数()f x 满足条件:(0)5,(2)(2)f f x f x =+=-,且在x 轴上截得的线段长为6求:(1)()f x 的解析式;(2)求()f x 在区间[1,1]-上的最大值和最小值28、已知政府收购某种产品的原价格为每担200元,其中征税标准为每100元征10元(即税率为10%),并计划收购a 万担,为了减轻农民负担,现决定将税率降低x 各百分点,预计收购量可增加2x个百分点。
2023年山东省春季高考模拟考试数学试题
2023年山东省春季高考第二次模拟考试数学试题一、选择题1.若全集U ={−1,0,1,2},P ={x ∈Z |x 2<2},则集合P 关于全集U 的补集是A.{2}B.{0,2}C.{−1,2}D.{−1,0,2}2.若a,b,c ∈R ,且a >b ,则下列不等式一定成立的是A.a +c >b −cB.(a −b )c 2≥0C.ac >bcD.c 2a−b >03.函数y =√log 0.5(3x −2)的定义域是A.[23,1)B.(23,+∞)C.(0,1]D.(23,1]4.设m ∈R ,命题存在m >0,使方程x 2+x −m =0有实根的否定是A.任意m >0,使方程x 2+x −m =0无实根B. 任意m ≤0,使方程x 2+x −m =0有实根C. 存在m >0,使方程x 2+x −m =0无实根D. 存在m ≤0,使方程x 2+x −m =0有实根5.设函数f (x )=(x +1)(x +a )为偶函数,则a =A.1B.−1C.−2D.26.在长方体ABCD −A 1B 1C 1D 1中,化简AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗ +CC 1⃗⃗⃗⃗⃗⃗⃗ =A.BD 1⃗⃗⃗⃗⃗⃗⃗⃗B.DB 1⃗⃗⃗⃗⃗⃗⃗⃗C.AC 1⃗⃗⃗⃗⃗⃗⃗D.CA 1⃗⃗⃗⃗⃗⃗⃗7.南北时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”·其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,夹在两个平行平面之间的两个几何体的体积分别为V1,V2,被平行于这两个平面的任意平面截得的两个截面的面积分别为S1,S2,则S1,S2总相等”是V1,V2相等”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们将发展到A.200只B.300只C.400只D.500只9.下列关于(a−b)11的说法中错误的是A.展开式中的二项式系数之和为2048B.展开式各项系数之和为0C.展开式中只有第6项的二项式系数最大D.展开式中第6项的系数最小10.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚疼减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起脚疼每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了?”根据此规律,求后3天一共走多少里A.156里B.66里C.42里D.36里⃗⃗⃗⃗⃗ ,则实数λ的值为11.已知点A(1,1),B(4,2)和向量a=(2,λ),若a ‖ABA.−32B.32C.−23D.2312.已知点P(1,2)在角α的终边上,那么sin2α的值是A.−45B.45C.−35D.3513.已知正四棱锥S−ABCD的直观图和正试图,如图所示,则该四棱锥的侧面积为A.√5B.4√5C.√6D.4√614.在北京冬奥会期间,共有1.8万多名赛会志愿者和20余万人次城市志愿者参与服务.据统计某高校共有本科生1600人,硕士生600人,博士生200人申请报名做志愿者,现用分层抽样方法从中抽取博士生30人,则该高校抽取的志愿者总人数为A.300B.320C.340D.36015.我校将对语、数、英、理、化、生六门学科进行期末考试,其中数学不能安排在第一场考,且语文不能安排在最后一场考,那么不同的考试安排方法有()种.A.600B.504C.480D.38416.甲乙两位射击运动员在一次射击中各射靶6次,每次命中的环数如下表:则下列说法正B.乙比甲射击的平均成绩高,乙比甲射击的成绩稳定C.甲比乙射击的平均成绩高,甲比乙射击的成绩稳定D.甲比乙射击的平均成绩高,乙比甲射击的成绩稳定17.已知直线平面,直线平面,给出下列命题,其中正确的是(1)α‖β⇒l⊥m(2)α⊥β⇒l‖m(3)l‖m⇒α⊥β(4)l⊥m⇒α‖βA.(1)(3)B.(2)(3)(4)C.(2)(4)D.(1)(2)(3)18.在ΔABC 中,若cos A cos B =b a =43,则ΔABC 是A.等腰三角形B.直角三角形C.等腰或直角三角形D.钝角三角形19.函数f (x )=A sin (wx +φ)(A >0,w >0,−π<φ<0)的部分图像如图所示,为了得到g (x )=A sin wx 的图像,只需将函数y =f (x )的图像A.向左平移π3个单位长度B. 向左平移π12个单位长度 C. 向右平移π3个单位长度D. 向右平移π12个单位长度20.已知双曲线的一个焦点与抛物线的焦点F 重合,抛物线的准线与双曲线交于A,B 两点,且ΔOAB 的面积为6(O 为原点),则双曲线的方程为A.x 23−y 212=1B.x 236−y 232=1C.x 23−y 2=1D.x 2−y 23=1二、填空题21.已知函数f (x )={x +2,x >0x 2,x ≤0,则f [f (−2)]= 22.已知函数y =f (x )是定义在[−4,4]上的减函数,且f (a +1)>f (2a ),则a 的取值范围是23.已知A (−1,4),B (3,−2),以AB 为直径的圆的标准方程为24.从1,2,3,4,5五个数中任意取出2个不重复的数组成一个两位数,这个两位数是偶数的概率是25.已知x,y满足{x−y≤0 2x+y≥0x+y−1≤0,则目标函数z=−x+y的最大值是三、解答题26.已知二次函数f(x)=ax2+bx+c(a≠0),f(x+1)−f(x)=2x,且f(0)=1(1)求函数f(x)的解析式(2)求函数f(x)在区间[−1,1]上的值域27.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=−1(1)若a3+b3=5,求{b n}的通项公式(2)若T3=21,求S328.已知ΔABC的周长为4(√2+1),且sin B+sin C=√2sin A(1)求边长a的值(2)若SΔABC=3sin A,求cos A的值29.在四棱锥P−ABCD中,AD⊥平面PDC,AD‖BC,PD⊥PB,AD=1,BC=2,E为PB中点(1)求证:AE‖平面PCD(2)求证:PD⊥平面PBC30.已知椭圆c:x 2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,以点F1为圆心,以3为半径的圆与以点F2为圆心,以1为半径的圆相交,且交点在椭圆C上,设点A(0,b),在ΔAF1F2中,∠F1AF2=2π3(1)求椭圆C的方程(2)设过点P(2,−1)的直线l不经过点A,且与椭圆C相交于M,N两点,若直线AM与AN的斜率分别是k1,k2,求k1+k2的值。
2023年山东省春季高考济南市模拟考试数学
2023年山东省春季高考济南市模拟考试数学试题一、选择题1.已知集合M={1,3},B={1,2,3},则A∪B=A.∅B.{3}C.{1,2}D.{1,2,3}2.若a∈R,则a=2是a2−3a+2=0的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若a>b>0,c<d<0,则下列不等式一定成立的是A.ac<bdB.ac>bdC.ad<bcD.ad>bc4.设命题p或q为真,p且q为假,则A.p和q都假B.p和q都真C.p与¬q真假相同D.p与¬q真假不同5.如果a>1,则函数y=a−x与y=log a x在同一坐标系中的图像大致是6.已知函数f(x)是奇函数,当x<0时,f(x)=x2−x+2则f(−1)的值是A.−4B.4C.−2D.27.等差数列{a n}的前n项和S n,a1+a4+a7=15,a3+a6+a9=3,则该数列前9项和S9=A.27B.54C.45D.308.若向量a⃗,b⃗⃗满足a⃗+b⃗⃗=(−2,−1),a⃗−b⃗⃗=(4,−3),则a⃗⋅b⃗⃗=A.5B.−5C.−3D.−129.已知直线l:2x−y+3=0,与l垂直的直线斜率为A.2B.−2C.−12D.1210.若从1,2,3,…,9这9个整数种同时取4个不同的数,其和为偶数,则不同的取法共有A.60种B.63种C.65种D.66种11.把函数y=3sin x的图像上每个点的横坐标伸长到原来的两倍(纵坐标保持不变),然后再将整个图像向左平移π3个单位,所得图像的函数解析式是A.y=3sin(2x−π6)B.y=3sin(2x−π3)C.y=3sin(12x+π6)D.y=3sin(12x+π3)12.已知函数在上的增函数,则的取值集合为A.(−1,2)B.(−∞,−1)∪(2,+∞)C.(−2,1)D.(−∞,−2)∪(1,+∞)13.若二次函数y=ax2+bx+c,当x=3时有最大值−1,图像过点(4,−3),则a+b+c=A.−9B.−5C.5D.914.在(ax b+bx )4的二项展开式中,如果x3的系数为20,那么ab3=A.20B.15C.10D.515.圆心在点P(2,−1),且被直线x−y−1=0截的的弦长为2√2的圆的方程为A.(x−2)2+(y+1)2=2B.(x−2)2+(y+1)2=9C.(x−2)2+(y+1)2=4D.(x−2)2+(y+1)2=1016.已知m,n是两条异面直线,α,β是两个不同的平面,m⊂α,n⊂β,α∩β=l则A.l与m,n都相交B.l与m,n中至少一条相交C.l与m,n都不相交D.l与m,n中一条相交17.若点(x,y)位于曲线y=|x|与y=2所围成的封闭区域,则z=2x−y的最小值是A.2B.0C.−6D.−818.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验的米内夹谷,抽样取米一把,数的254粒内夹谷28粒,则这批米内夹谷约为A.134石B.169石C.338石D.365石19.已知ΔABC的内角A,B,C的对边分别是a,b,c,且a cos C,b cos B,c cos A成等差数列,则B=A.300B.600C.450D.120020.在椭圆x 2a2+y2b2=1(a>b>0)中,F为左焦点,A为右顶点,B为上顶点,O为坐标原点,M为OB线段的中点,若ΔFMA为直角三角形,则该椭圆的离心率为A.√5−2B.√5−12C.2√55D.√55二、填空题21.已知函数f(x)=2x2−mx+3在区间(−∞,1]上是减函数,在区间[1,+∞)上是增函数,则m的值等于22.若抛物线的焦点在直线2x−y−4=0上,则此抛物线的标准方程为23.设平面向量a⃗=(2,sinα),b⃗⃗=(8,2),且a⃗‖b⃗⃗,则cos(π2−α)=24.在半径为30米的圆形广场中央上空,设置一个照明光源,射向底面的光呈圆锥形,且其轴截面顶角为1200,若要光源恰好照亮整个广场,则其高应为25.有5本不同的书,其中语文书2本,数学书2本,英语书1本,若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是三、解答题26.设数列{a n }的前n 项和为S n =n 2(1)求数列{a n }的通项公式(2)若b n =2a n ,求{b n }的前n 项和T n27.已知函数f (x )=log a x (a >0,a ≠1)在区间[116,4]上的最大值为2(1)求a 的值(2)若a >1且f (|1−2m |)>1,求实数m 的取值集合28.已知函数f (x )=2√3sin x cos x −2cos 2x +1(1)求函数f (x )的单调递增区间(2)若f (x 0)=2,求sin (2x 0−π3)的值 29.已知多面体ABCDE 中,DE ⊥平面ACD,AB‖DE,AC =AD =CD =DE =2,AB =1,O 为CD 的中点(1)求证:AO ⊥平面CDE(2)求直线BD 与平面BCE 所成角的正切值30.已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的焦距是4,渐近线方程为y =±√33x (1)求双曲线的标准方程(2)若直线y =kx +√2与双曲线恒有两个不同的交点A 和B ,且OA ⃗⃗⃗⃗⃗⃗⋅OB ⃗⃗⃗⃗⃗⃗>2(其中O 为原点),求k 的取值范围。
山东省职教高考(春季高考)模拟考试数学试卷
山东省职教高考(春季高考)模拟考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一个选项正确)1. 已知全集U={1,2,3,4},集合A={2,4},B={2,3},则u C A B =( )A.∅B.{1,2,3}C.{1,2}D.{3} 2. 绝对值不等式2|1-x |<的解集为( )A .(-∞,-1)B .(3,+∞)C .(-1,3)D .(-∞,-1)∪(3,+∞) 3. 下列函数中,既是奇函数又是增函数的为( ).A .y =x +1B .y =-x 3C .y =1x D .y =x |x | 4. 向量(AB +MB )+(BO +BC )+OM 化简后等于( )A . BCB . ABC . ACD .AM 5. 圆22(2)(3)2x y -++=的圆心和半径分别是( ).A .(2,3)-,1B .(2,3)-,2C .(2,3)-D .(2,3)-6. 点P (-1,2)到直线8x-6y+15=0的距离为( )A. 2B. 21 C. 1 D.277. 某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( )A. 15,5,25B. 15,15,15C. 10,5,30D. 15,10,209. 在等差数列{a n }中,a 1+a 9=10,则a 5的值为 ( )A .5B .6C .8D .1010. 给出命题p :1与4的等比中项是2; q :φ={0},则在下列三个复合命题:“p ∧q 、p ∨q 、⌝p ”中,真命题的个数为( )A 、3个B 、2个C 、1个D 、0个11.若抛物线22y px =的焦点与双曲线2213y x -=的右焦点重合,则p 的值是( ) A . 4- B .2- C .2 D .412. 从9名学生中任意选出3名参加某项活动,其中甲被选中的概率为( )A .213B .715C .13D .32513. 已知椭圆x 210-m +y 2m -2=1,长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .815. 在△ABC 中,C =60°,AB =3,BC =2,那么A 等于( )A .135°B .105°C .45°D .75°516. 下图是某学校举行的运动会上,七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84, 4.84B .84, 1.6C .85, 1.6D .85, 417.自点1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( )B. 3C. 10D. 5A. 18.设 =( ,sinα), =(cosα, )且 ∥ ,则锐角α为( )A .30°B .60°C .45°D .75°19. 若l 、m 表示直线,α、β、γ表示平面,则使α∥β的条件是( )A .α⊥γ,β⊥γB .l ∥α,l ∥βC .α∩γ=l ,β∩γ=m 且l ∥mD .l ⊥α,l ⊥β20.若443322102)32(x a x a x a x a a x ++++=+,则()()2202413a a a a a ++-+=( )A. 1B. -1C. 0D. 2二、填空题(本大题5小题,每题4分,共20分.请将答案填在答题卡相应题号的横线上)22.在△ABC 中,若a =3,b =3,31C cos=∠,则△ABC 的面积等于________. 23. 若命题P:“存在x ∈R ,使得x 2+2x +5=0成立”则P ⌝为 ___________________.,则f(-3)= ________25. 如图,半径为2的半球内有一内接正六棱锥P —ABCDEF 则此正六棱锥的侧面积是________.三、解答题(本大题5小题,共40分.请在答题卡相应的题号处写出解答过程)26.(7分)设数列{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75 (1)求数列{a n }的通项公式; (2)若na n 2b ,证明数列{b n }为等比数列.27.(7分)为落实十九大报告“绿水青山就是金山银山”的理念,我国的沙漠治理工作得到了进一步加强。
高考数学试卷(解析版) (2)
山东省春季高考数学试卷一、选择题1.已知全集U={1,2},集合M={1},则∁U M等于()A.∅B.{1}C.{2}D.{1,2}2.函数的定义域是()A.[﹣2,2]B.(﹣∞,﹣2]∪[2,+∞)C.(﹣2,2)D.(﹣∞,﹣2)∪(2,+∞)3.下列函数中,在区间(﹣∞,0)上为增函数的是()A.y=x B.y=1 C.D.y=|x|4.二次函数f(x)的图象经过两点(0,3),(2,3)且最大值是5,则该函数的解析式是()A.f(x)=2x2﹣8x+11 B.f(x)=﹣2x2+8x﹣1 C.f(x)=2x2﹣4x+3 D.f(x)=﹣2x2+4x+35.等差数列{a n}中,a1=﹣5,a3是4与49的等比中项,且a3<0,则a5等于()A.﹣18 B.﹣23 C.﹣24 D.﹣326.已知A(3,0),B(2,1),则向量的单位向量的坐标是()A.(1,﹣1)B.(﹣1,1)C.D.7.“p∨q为真”是“p为真”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件8.函数y=cos2x﹣4cosx+1的最小值是()A.﹣3 B.﹣2 C.5 D.69.下列说法正确的是()A.经过三点有且只有一个平面B.经过两条直线有且只有一个平面C.经过平面外一点有且只有一个平面与已知平面垂直D.经过平面外一点有且只有一条直线与已知平面垂直10.过直线x+y+1=0与2x﹣y﹣4=0的交点,且一个方向向量的直线方程是()A.3x+y﹣1=0 B.x+3y﹣5=0 C.3x+y﹣3=0 D.x+3y+5=011.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是()A.72 B.120 C.144 D.28812.若a,b,c均为实数,且a<b<0,则下列不等式成立的是()A.a+c<b+c B.ac<bc C.a2<b2D.13.函数f(x)=2kx,g(x)=log3x,若f(﹣1)=g(9),则实数k的值是()A.1 B.2 C.﹣1 D.﹣214.如果,,那么等于()A.﹣18 B.﹣6 C.0 D.1815.已知角α的终边落在直线y=﹣3x上,则cos(π+2α)的值是()A.B.C.D.16.二元一次不等式2x﹣y>0表示的区域(阴影部分)是()A.B.C.D.17.已知圆C1和C2关于直线y=﹣x对称,若圆C1的方程是(x+5)2+y2=4,则圆C2的方程是()A.(x+5)2+y2=2 B.x2+(y+5)2=4 C.(x﹣5)2+y2=2 D.x2+(y﹣5)2=4 18.若二项式的展开式中,只有第4项的二项式系数最大,则展开式中的常数项是()A.20 B.﹣20 C.15 D.﹣1519.从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为()成绩分析表甲乙丙丁平均成绩96968585标准差s4242A.甲B.乙C.丙D.丁20.已知A1,A2为双曲线(a>0,b>0)的两个顶点,以A1A2为直径的圆与双曲线的一条渐近线交于M,N两点,若△A1MN的面积为,则该双曲线的离心率是()A.B.C.D.二、填空题:21.若圆锥的底面半径为1,母线长为3,则该圆锥的侧面积等于.22.在△ABC中,a=2,b=3,∠B=2∠A,则cosA=.23.已知F1,F2是椭圆+=1的两个焦点,过F1的直线交椭圆于P、Q两点,则△PQF2的周长等于.24.某博物馆需要志愿者协助工作,若从6名志愿者中任选3名,则其中甲、乙两名志愿者恰好同时被选中的概率是.25.对于实数m,n,定义一种运算:,已知函数f(x)=a*a x,其中0<a<1,若f(t﹣1)>f(4t),则实数t的取值范围是.三、解答题:26.已知函数f(x)=log2(3+x)﹣log2(3﹣x),(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)已知f(sinα)=1,求α的值.27.某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:①一次性缴纳50万元,可享受9折优惠;②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.请通过计算,帮助王亮同学判断那种方案交纳的保费较低.28.已知直三棱柱ABC﹣A1B1C1的所有棱长都相等,D,E分别是AB,A1C1的中点,如图所示.(1)求证:DE∥平面BCC1B1;(2)求DE与平面ABC所成角的正切值.29.已知函数.(1)求该函数的最小正周期;(2)求该函数的单调递减区间;(3)用“五点法”作出该函数在长度为一个周期的闭区间上的简图.30.已知椭圆的右焦点与抛物线y2=4x的焦点F重合,且椭圆的离心率是,如图所示.(1)求椭圆的标准方程;(2)抛物线的准线与椭圆在第二象限相交于点A,过点A作抛物线的切线l,l与椭圆的另一个交点为B,求线段AB的长.山东省春季高考数学试卷参考答案与试题解析一、选择题1.已知全集U={1,2},集合M={1},则∁U M等于()A.∅B.{1}C.{2}D.{1,2}【考点】1F:补集及其运算.【分析】根据补集的定义求出M补集即可.【解答】解:全集U={1,2},集合M={1},则∁U M={2}.故选:C.2.函数的定义域是()A.[﹣2,2]B.(﹣∞,﹣2]∪[2,+∞)C.(﹣2,2)D.(﹣∞,﹣2)∪(2,+∞)【考点】33:函数的定义域及其求法.【分析】根据函数y的解析式,列出不等式求出x的取值范围即可.【解答】解:函数,∴|x|﹣2>0,即|x|>2,解得x<﹣2或x>2,∴函数y的定义域是(﹣∞,﹣2)∪(2,+∞).故选:D.3.下列函数中,在区间(﹣∞,0)上为增函数的是()A.y=x B.y=1 C.D.y=|x|【考点】3E:函数单调性的判断与证明.【分析】根据基本初等函数的单调性,判断选项中的函数是否满足条件即可.【解答】解:对于A,函数y=x,在区间(﹣∞,0)上是增函数,满足题意;对于B,函数y=1,在区间(﹣∞,0)上不是单调函数,不满足题意;对于C,函数y=,在区间(﹣∞,0)上是减函数,不满足题意;对于C,函数y=|x|,在区间(﹣∞,0)上是减函数,不满足题意.故选:A.4.二次函数f(x)的图象经过两点(0,3),(2,3)且最大值是5,则该函数的解析式是()A.f(x)=2x2﹣8x+11 B.f(x)=﹣2x2+8x﹣1 C.f(x)=2x2﹣4x+3 D.f(x)=﹣2x2+4x+3【考点】3W:二次函数的性质.【分析】由题意可得对称轴x=1,最大值是5,故可设f(x)=a(x﹣1)2+5,代入其中一个点的坐标即可求出a的值,问题得以解决【解答】解:二次函数f(x)的图象经过两点(0,3),(2,3),则对称轴x=1,最大值是5,可设f(x)=a(x﹣1)2+5,于是3=a+5,解得a=﹣2,故f(x)=﹣2(x﹣1)2+5=﹣2x2+4x+3,故选:D.5.等差数列{a n}中,a1=﹣5,a3是4与49的等比中项,且a3<0,则a5等于()A.﹣18 B.﹣23 C.﹣24 D.﹣32【考点】8F:等差数列的性质;84:等差数列的通项公式.【分析】根据题意,由等比数列的性质可得(a3)2=4×49,结合解a3<0可得a3的值,进而由等差数列的性质a5=2a3﹣a1,计算即可得答案.【解答】解:根据题意,a3是4与49的等比中项,则(a3)2=4×49,解可得a3=±14,又由a3<0,则a3=﹣14,又由a1=﹣5,则a5=2a3﹣a1=﹣23,故选:B.6.已知A(3,0),B(2,1),则向量的单位向量的坐标是()A.(1,﹣1)B.(﹣1,1)C.D.【考点】95:单位向量.【分析】先求出=(﹣1,1),由此能求出向量的单位向量的坐标.【解答】解:∵A(3,0),B(2,1),∴=(﹣1,1),∴||=,∴向量的单位向量的坐标为(,),即(﹣,).故选:C.7.“p∨q为真”是“p为真”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由真值表可知:“p∨q为真命题”则p或q为真命题,故由充要条件定义知p∨q为真”是“p为真”必要不充分条件【解答】解:“p∨q为真命题”则p或q为真命题,所以“p∨q为真”推不出“p为真”,但“p为真”一定能推出“p∨q为真”,故“p∨q为真”是“p为真”的必要不充分条件,故选:B.8.函数y=cos2x﹣4cosx+1的最小值是()A.﹣3 B.﹣2 C.5 D.6【考点】HW:三角函数的最值.【分析】利用查余弦函数的值域,二次函数的性质,求得y的最小值.【解答】解:∵函数y=cos2x﹣4cosx+1=(cox﹣2)2﹣3,且cosx∈[﹣1,1],故当cosx=1时,函数y取得最小值为﹣2,故选:B.9.下列说法正确的是()A.经过三点有且只有一个平面B.经过两条直线有且只有一个平面C.经过平面外一点有且只有一个平面与已知平面垂直D.经过平面外一点有且只有一条直线与已知平面垂直【考点】LJ:平面的基本性质及推论.【分析】在A中,经过共线的三点有无数个平面;在B中,两条异面直线不能确定一个平面;在C中,经过平面外一点无数个平面与已知平面垂直;在D中,由线面垂直的性质得经过平面外一点有且只有一条直线与已知平面垂直.【解答】在A中,经过不共线的三点且只有一个平面,经过共线的三点有无数个平面,故A错误;在B中,两条相交线能确定一个平面,两条平行线能确定一个平面,两条异面直线不能确定一个平面,故B错误;在C中,经过平面外一点无数个平面与已知平面垂直,故C错误;在D中,由线面垂直的性质得经过平面外一点有且只有一条直线与已知平面垂直,故D正确.故选:D.10.过直线x+y+1=0与2x﹣y﹣4=0的交点,且一个方向向量的直线方程是()A.3x+y﹣1=0 B.x+3y﹣5=0 C.3x+y﹣3=0 D.x+3y+5=0【考点】IB:直线的点斜式方程.【分析】求出交点坐标,代入点斜式方程整理即可.【解答】解:由,解得:,由方向向量得:直线的斜率k=﹣3,故直线方程是:y+2=﹣3(x﹣1),整理得:3x+y﹣1=0,故选:A.11.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是()A.72 B.120 C.144 D.288【考点】D8:排列、组合的实际应用.【分析】根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,②、取出的4个节目有3个歌舞类节目,1个语言类节目,③、取出的4个节目有2个歌舞类节目,2个语言类节目,分别求出每种情况下可以排出节目单的数目,由分类计数原理计算可得答案.【解答】解:根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,有1种取法,将4个节目全排列,有A44=24种可能,即可以排出24个不同节目单,②、取出的4个节目有3个歌舞类节目,1个语言类节目,有C21C43=8种取法,将4个节目全排列,有A44=24种可能,则以排出8×24=192个不同节目单,③、取出的4个节目有2个歌舞类节目,2个语言类节目,有C22C42=6种取法,将2个歌舞类节目全排列,有A22=2种情况,排好后有3个空位,在3个空位中任选2个,安排2个语言类节目,有A32=6种情况,此时有6×2×6=72种可能,就可以排出72个不同节目单,则一共可以排出24+192+72=288个不同节目单,故选:D.12.若a,b,c均为实数,且a<b<0,则下列不等式成立的是()A.a+c<b+c B.ac<bc C.a2<b2D.【考点】R3:不等式的基本性质.【分析】A,由a<b<0,可得a+c<b+c;B,c的符号不定,则ac,bc大小关系不定;C,由a<b<0,可得a2>b2;D,由a<b<0,可得﹣a>﹣b⇒;【解答】解:对于A,由a<b<0,可得a+c<b+c,故正确;对于B,c的符号不定,则ac,bc大小关系不定,故错;对于C,由a<b<0,可得a2>b2,故错;对于D,由a<b<0,可得﹣a>﹣b⇒,故错;故选:A13.函数f(x)=2kx,g(x)=log3x,若f(﹣1)=g(9),则实数k的值是()A.1 B.2 C.﹣1 D.﹣2【考点】4H:对数的运算性质.【分析】由g(9)=log39=2=f(﹣1)=2﹣k,解得即可.【解答】解:g(9)=log39=2=f(﹣1)=2﹣k,解得k=﹣1,故选:C14.如果,,那么等于()A.﹣18 B.﹣6 C.0 D.18【考点】9R:平面向量数量积的运算.【分析】由已知求出及与的夹角,代入数量积公式得答案.【解答】解:∵,,∴,且<>=π.则==3×6×(﹣1)=﹣18.故选:A.15.已知角α的终边落在直线y=﹣3x上,则cos(π+2α)的值是()A.B.C.D.【考点】GO:运用诱导公式化简求值;G9:任意角的三角函数的定义.【分析】由直线方程,设出直线上点的坐标,可求cosα,利用诱导公式,二倍角的余弦函数公式可求cos(π+2α)的值.【解答】解:若角α的终边落在直线y=﹣3x上,(1)当角α的终边在第二象限时,不妨取x=﹣1,则y=3,r==,所以cosα=,可得cos(π+2α)=﹣cos2α=1﹣2cos2α=;(2)当角α的终边在第四象限时,不妨取x=1,则y=﹣3,r==,所以sinα=,cosα=,可得cos(π+2α)=﹣cos2α=1﹣2cos2α=,故选:B.16.二元一次不等式2x﹣y>0表示的区域(阴影部分)是()A.B.C.D.【考点】7B:二元一次不等式(组)与平面区域.【分析】利用二元一次不等式(组)与平面区域的关系,通过特殊点判断即可.【解答】解:因为(1,0)点满足2x﹣y>0,所以二元一次不等式2x﹣y>0表示的区域(阴影部分)是:C.故选:C.17.已知圆C1和C2关于直线y=﹣x对称,若圆C1的方程是(x+5)2+y2=4,则圆C2的方程是()A.(x+5)2+y2=2 B.x2+(y+5)2=4 C.(x﹣5)2+y2=2 D.x2+(y﹣5)2=4【考点】J1:圆的标准方程.【分析】由已知圆的方程求出圆心坐标和半径,求出圆C1的圆心关于y=﹣x 的对称点,再由圆的标准方程得答案.【解答】解:由圆C1的方程是(x+5)2+y2=4,得圆心坐标为(﹣5,0),半径为2,设点(﹣5,0)关于y=﹣x的对称点为(x0,y0),则,解得.∴圆C2的圆心坐标为(0,5),则圆C2的方程是x2+(y﹣5)2=4.故选:D.18.若二项式的展开式中,只有第4项的二项式系数最大,则展开式中的常数项是()A.20 B.﹣20 C.15 D.﹣15【考点】DB:二项式系数的性质.【分析】先求出n的值,可得二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值.【解答】解:∵二项式的展开式中只有第4项的二项式系数最大,∴n=6,=C6r•(﹣1)r•x.则展开式中的通项公式为T r+1令6﹣3r=0,求得r=2,故展开式中的常数项为C62•(﹣1)2=15,故选:C.19.从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为()成绩分析表甲乙丙丁平均成绩96968585标准差s4242A.甲B.乙C.丙D.丁【考点】BC:极差、方差与标准差.【分析】根据平均成绩高且标准差小,两项指标选择即可.【解答】解:根据表中数据知,平均成绩较高的是甲和乙,标准差较小的是乙和丙,由此知乙同学成绩较高,且发挥稳定,应选乙参加.故选:B.20.已知A1,A2为双曲线(a>0,b>0)的两个顶点,以A1A2为直径的圆与双曲线的一条渐近线交于M,N两点,若△A1MN的面积为,则该双曲线的离心率是()A.B.C.D.【考点】KC:双曲线的简单性质.【分析】由题意求得双曲线的渐近线方程,利用点到直线的距离公式求得A1(﹣a,0)到直线渐近线的距离d,根据三角形的面积公式,即可求得△A1MN的面积,即可求得a和b的关系,利用双曲线的离心率公式,即可求得双曲线的离心率.【解答】解:由双曲线的渐近线方程y=±x,设以A1A2为直径的圆与双曲线的渐近线y=x交于M,N两点,则A1(﹣a,0)到直线y=x的距离d==,△A1MN的面积S=×2a×==,整理得:b=c,则a2=b2﹣c2=c2,即a=c,双曲线的离心率e==,故选B.二、填空题:21.若圆锥的底面半径为1,母线长为3,则该圆锥的侧面积等于3π.【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】圆锥侧面展开图是一个扇形,半径为l,弧长为2π,则圆锥侧面积S=πrl,由此能求出结果.【解答】解:圆锥侧面展开图是一个扇形,半径为l,弧长为2πr∴圆锥侧面积:S==πrl=π×1×3=3π.故答案为:3π.22.在△ABC中,a=2,b=3,∠B=2∠A,则cosA=.【考点】HR:余弦定理.【分析】由二倍角的正弦函数公式,正弦定理即可计算得解.【解答】解:∵∠B=2∠A,∴sin∠B=2sin∠Acos∠A,又∵a=2,b=3,∴由正弦定理可得:,∵sin∠A≠0,∴cos∠A=.故答案为:.23.已知F1,F2是椭圆+=1的两个焦点,过F1的直线交椭圆于P、Q两点,则△PQF2的周长等于24.【考点】K4:椭圆的简单性质.【分析】利用椭圆的定义|PF1|+|PF2|=2a=12,|QF1|+|QF2|=2a=12即可求得△PQF2的周长.【解答】解:椭圆+=1的焦点在y轴上,则a=6,b=4,设△PQF2的周长为l,则l=|PF2|+|QF2|+|PQ|,=(|PF1|+|PF2|)+(|QF1|+|QF2|)=2a+2a,=4a=24.∴△PQF2的周长24,故答案为:24.24.某博物馆需要志愿者协助工作,若从6名志愿者中任选3名,则其中甲、乙两名志愿者恰好同时被选中的概率是.【考点】CB:古典概型及其概率计算公式.【分析】先求出基本事件总数n=,其中甲、乙两名志愿者恰好同时被选中包含的基本事件个数:m==4,由此能求出甲、乙两名志愿者恰好同时被选中的概率.【解答】解:某博物馆需要志愿者协助工作,从6名志愿者中任选3名,基本事件总数n=,其中甲、乙两名志愿者恰好同时被选中包含的基本事件个数:m==4,∴其中甲、乙两名志愿者恰好同时被选中的概率是:p===.故答案为:.25.对于实数m,n,定义一种运算:,已知函数f(x)=a*a x,其中0<a<1,若f(t﹣1)>f(4t),则实数t的取值范围是(﹣,2] .【考点】5B:分段函数的应用.【分析】求出f(x)的解析式,得出f(x)的单调性,根据单调性得出t﹣1和4t的大小关系,从而可得t的范围.【解答】解:∵0<a<1,∴当x≤1时,a x≥a,当x>1时,a>a x,∴f(x)=.∴f(x)在(﹣∞,1]上单调递减,在(1,+∞)上为常数函数,∵f(t﹣1)>f(4t),∴t﹣1<4t≤1或t﹣1≤1<4t,解得﹣<t≤或.∴﹣.故答案为:(﹣,2].三、解答题:26.已知函数f(x)=log2(3+x)﹣log2(3﹣x),(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)已知f(sinα)=1,求α的值.【考点】4N:对数函数的图象与性质.【分析】(1)要使函数f(x)=log2(3+x)﹣log2(3﹣x)有意义,则⇒﹣3<x<3即可,由f(﹣x)=log2(3﹣x)﹣log2(3+x)=﹣f(x),可判断函数f(x)为奇函数.(2)令f(x)=1,即,解得x=1.即sinα=1,可求得α.【解答】解:(1)要使函数f(x)=log2(3+x)﹣log2(3﹣x)有意义,则⇒﹣3<x<3,∴函数f(x)的定义域为(﹣3,3);∵f(﹣x)=log2(3﹣x)﹣log2(3+x)=﹣f(x),∴函数f(x)为奇函数.(2)令f(x)=1,即,解得x=1.∴sinα=1,∴α=2k,(k∈Z).27.某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:①一次性缴纳50万元,可享受9折优惠;②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.请通过计算,帮助王亮同学判断那种方案交纳的保费较低.【考点】5D:函数模型的选择与应用.【分析】分别计算两种方案的缴纳额,即可得出结论.【解答】解:若按方案①缴费,需缴费50×0.9=45万元;若按方案②缴费,则每天的缴费额组成等比数列,其中a1=,q=2,n=20,∴共需缴费S20===219﹣=524288﹣≈52.4万元,∴方案①缴纳的保费较低.28.已知直三棱柱ABC﹣A1B1C1的所有棱长都相等,D,E分别是AB,A1C1的中点,如图所示.(1)求证:DE∥平面BCC1B1;(2)求DE与平面ABC所成角的正切值.【考点】MI:直线与平面所成的角;LS:直线与平面平行的判定.【分析】(1)取AC的中点F,连结EF,DF,则EF∥CC1,DF∥BC,故平面DEF∥平面BCC1B1,于是DE∥平面BCC1B1.(2)在Rt△DEF中求出tan∠EDF.【解答】(1)证明:取AC的中点F,连结EF,DF,∵D,E,F分别是AB,A1C1,AC的中点,∴EF∥CC1,DF∥BC,又DF∩EF=F,AC∩CC1=C,∴平面DEF∥平面BCC1B1,又DE⊂平面DEF,∴DE∥平面BCC1B1.(2)解:∵EF∥CC1,CC1⊥平面BCC1B1.∴EF⊥平面BCC1B1,∴∠EDF是DE与平面ABC所成的角,设三棱柱的棱长为1,则DF=,EF=1,∴tan∠EDF=.30.已知椭圆的右焦点与抛物线y2=4x的焦点F重合,且椭圆的离心率是,如图所示.(1)求椭圆的标准方程;(2)抛物线的准线与椭圆在第二象限相交于点A,过点A作抛物线的切线l,l与椭圆的另一个交点为B,求线段AB的长.【考点】KL:直线与椭圆的位置关系.【分析】(1)根据题意得F(1,0),即c=1,再通过e=及c2=a2﹣b2计算可得椭圆的方程;(2)将准线方程代入椭圆方程,求得A点坐标,求得抛物线的切线方程,由△=0,求得k的值,分别代入椭圆方程,求得B点坐标,利用两点之间的距离公式,即可求得线段AB的长.【解答】解:(1)根据题意,得F(1,0),∴c=1,又e=,∴a=2,∴b2=a2﹣c2=3,故椭圆的标准方程为:(2)抛物线的准线方程为x=﹣1由,解得,,由A位于第二象限,则A(﹣1,),过点A作抛物线的切线l的方程为:即直线l:4x﹣3y﹣4=0由整理得整理得:ky2﹣4y+4k+6=0,当k=0,解得:y=,不符合题意,当k≠0,由直线与抛物线相切,则△=0,∴(﹣4)2﹣4k(4k+6)=0,解得:k=或k=﹣2,当k=时,直线l的方程y﹣=(x+1),则,整理得:(x+1)2=0,直线与椭圆只有一个交点,不符合题意,当k=﹣2时,直线l的方程为y﹣=﹣2(x+1),由,整理得:19x2+8x﹣11=0,解得:x1=﹣1,x2=,则y1=,y2=﹣,由以上可知点A(﹣1,),B(,﹣),∴丨AB丨==,综上可知:线段AB长度为29.已知函数.(1)求该函数的最小正周期;(2)求该函数的单调递减区间;(3)用“五点法”作出该函数在长度为一个周期的闭区间上的简图.【考点】HI:五点法作函数y=Asin(ωx+φ)的图象;H2:正弦函数的图象.【分析】(1)由已知利用两角差的正弦函数公式可得y=3sin(2x﹣),利用周期公式即可得解.(2)令2kπ+≤2x﹣≤2kπ+,k∈Z,解得:kπ+≤x≤kπ+,k∈Z,可得函数的单调递减区间.(3)根据五点法作图的方法先取值,然后描点即可得到图象.【解答】解:(1)∵=3sin(2x﹣),∴函数的最小正周期T==π.(2)∵令2kπ+≤2x﹣≤2kπ+,k∈Z,解得:kπ+≤x≤kπ+,k∈Z,∴函数的单调递减区间为:[kπ+,kπ+],k∈Z,(3)列表:x2x﹣0π2πy030﹣30描点、连线如图所示:。
山东省春季高考数学模拟试题及答案
山东省春季高考数学模拟试题2019.11.6注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷一、选择题(本大题共20小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1、已知全集U ={a, b, c},集合 A ={a},集合B ={a, b},则∁C U (A ∪B) =( ) A. {a, b, c} B. {c} C. {a} D. {b}2、在等差数列{a n }中,已知a 3+a 8=15,那么a 2+a 9的值是( ) A. 5 B. 10 C. 15 D. 203、下列关于对数函数y =log a x 的性质叙述正确的是( ) A. 对数函数的定义域为R B. 对数函数值域为(0,+∞)C. 当a >1时,对数函数是增函数D. 当0<a <1时,对数函数是增函数 4、已知角α的终边与单位圆的交点为P ,则点P 的坐标为( ) A. (-cosα,-sinα) B. (sinα, cosα) C. (cosα, sinα) D. (sinα,-cosα)5、如果圆的圆心在坐标原点,直径为2,则圆的方程是( ) A. x 2+(y -1)2=4 B. x 2+y 2=2 C. x 2+y 2=1 D. x 2+y 2=46、与同一条直线所成的角相等的两个平面的位置关系是 ( ) A. 平行 B. 相交 C. 相交或平行 D. 垂直7、把2封信投到3个不同的邮箱,共有__________种投法.( ) A. 9 B. 6 C. 8 D. 16 8、已知下列样本数据23 28 21 22 29 26 28则该样本数据的极差为( ) A. 5 B. 4 C. 7 D. 89、已知a, b 是实数,则“a >0且b >0”是“a +b >0且ab >0”的 ( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件10、已知角α的终边经过点P(4t ,-3t)(其中t >0),则sinα等于( )A. 45B. 35C. -45D. -3511、如果向量a =(-1, x)与向量b =(-x, 2)平行且方向相同,则x 的值为( ) A. - 2 B. 2 C. 3 D. -212、已知函数f(x)=(1+cos2x)sin 2x ,x ∈R ,则f(x)是( )A. 最小正周期为π的奇函数B. 最小正周期为π2的奇函数C. 最小正周期为π的偶函数D. 最小正周期为π2的偶函数13、已知y =f(x)为奇函数,当x >0时,f(x)=x(1+x),则当x <0时,f(x)的表达式为( ) A. -x(1-x) B. x(1-x) C. -x(1+x) D. x(1+x)14、如果{a n }是等比数列,且a n >0, a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值是( ) A. 1 B. 5 C. 10 D. 1515、某运动会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( )A. 36种B. 12种C. 18种D. 48种16、抛物线y 2=8x 的焦点为F ,点P 在抛物线上,若|PF|=5,则P 点的坐标是( ) A. (3, 26) B. (-3,-26)C. (3, 26)或(-3, 26)D. (3, 26)或(3,-26) 17、给定下列四个命题:① 若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ② 若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③ 垂直于同一直线的两条直线相互平行;④ 若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是 ( )A. ①和②B. ②和③C. ③和④D. ②和④18、若ax 2+5x +c >0 的解集为⎩⎨⎧⎭⎬⎫x|13<x <12,则a 和c 的值为( )A. a =6, c =1B. a =6, c =-1C. a =-6, c =1D. a =-6, c =-119、若非零向量a ,b 满足|a +b |=|a -b |,则a 与b 所成角的大小为( ) A. 0° B. 60° C. 90° D. 120° 20、函数y =lg |x|是( )A. 偶函数,在区间 (-∞, 0) 上单调递增B. 偶函数,在区间 (-∞, 0) 上单调递减C. 奇函数,在区间 (0,+∞) 上单调递增D. 奇函数,在区间 (0,+∞) 上单调递减第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)21、在一个小组中有8名女同学和4名男同学,从中任意选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是__________(结果用分数表示).22、已知sin x 2+cos x2=2,则sinx =__________.23、设{a n }是公差为-2的等差数列,如果a 1+a 4+a 7+…+a 97=50,则a 3+a 6+…+a 99的值等于______________.24、双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2 (r >0)相切,则r =________.25、 如图,在半径为3的球面上有A 、 B 、 C 三点, ∠ABC =90°, BA =BC ,球心O 到平面ABC 的距离是322,则B 、 C 两点的距离是________.三、解答题(本大题共5小题,共45分)26、已知二次函数f(x)的图象如图所示.第26题图(1) 求f(x)的解析式;(2) 讨论f(x)的单调性.27、设向量a=(4cosα,sinα), b=(sinβ,4cosβ), c=(cosβ,-4sinβ),(1) 若a与b-2c垂直,求tan(α+β)的值;(2) 求|b+c|的最大值.28、长方体ABCDA1B1C1D1的底面ABCD是正方形,二面角C1BDC的大小为60°,求异面直线BC1与AC夹角的余弦值.29、某工厂三年的生产计划是从第二年起,每一年比上一年增长的产值相同,三年的总产值为300万元,如果三年分别比原计划的产值多10万元、10万元、11万元,那么每一年比上一年的产值增长的百分率相同.求原计划各年的产值.30、中心在原点,焦点在x 轴上的双曲线C 的离心率为233,且焦点到渐近线的距离为1.(1) 求双曲线C 的方程;(2) 过点M(2, 1)作直线l 交双曲线于A 、B 两点,且M 恰为AB 的中点,问这样的直线是否存在?若存在,求出l 的方程;若不存在,请说明理由.山东省春季高考数学模拟试题 答案一、选择题1、B 分析: A ∪B ={a, b }.2、C 分析: 在等差数列{a n }中,当m +n =p +q 时,a m +a n =a p +a q ,所以a 3+a 8=a 2+a 9.3、C 分析 :本题考察对数函数的性质,对数函数的定义域为(0,+∞),值域为R ,当a >1时,对数函数是增函数,当0<a <1时,对数函数是减函数.4、 C5、D6、C7、A 分析: 分步计数原理.8、 D 分析: 极差是样本数据的最大值与最小值的差.9、C 分析 :对于“a >0且b >0”可以推出“a +b >0且ab >0”, 反之也是成立的, 故选C.10、D 分析: 利用三角函数的定义求解. 11、B 分析: 注意a 与b 方向相同.12、D 分析: f(x)=(1+cos2x)sin 2x =(1+2cos 2x -1)sin 2x =2cos 2xsin 2x =12sin 22x.13、 B 分析: 设x <0, 则-x >0, ∴ f(-x)=-x(1-x), 又∵ f(x)为奇函数, ∴ f(-x)=-f(x), ∴ -f(x)=-x(1-x), ∴ f(x)=x(1-x).14、B 分析: a 2a 4=a 23, a 4a 6=a 25, a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25 ∵ a n >0, ∴ a 3+a 5=5, 故选B.15、A 分析: 分两类: 若小张或小赵入选, 则有选法C 12C 12A 33 =24;若小张、小赵都入选, 则有选法A 22A 23 =12, 共有选法36种, 选A.16、D 分析: 由抛物线的方程可知,其焦点坐标为(2, 0),准线方程x =-2,点P 到焦点的距离为5,所以到准线的距离也是5,所以P 点横坐标为3.17、D 分析: ① 错, ② 正确, ③ 错, ④ 正确.故选D.18、 D 分析: 由题意知: 13与12是方程ax 2+5x +c =0的两个根, 由一元二次方程的根与系数的关系可求得: a =-6, c =-1.19、C 分析: ∵ |a +b |2=|a -b |2, ∴ |a |2+2ab +|b |2=|a |2-2ab +|b |2 ∴ ab =0, ∴ a, b =90°.20、B 分析: 由y =lg |x|是偶函数,排除C 与D ;而函数y =lg |x|在(0,+∞)上单调递增,故该函数在 (-∞, 0) 上单调递减.二、 填空题21、 1433 分析: P = C 28C 212=1433.22、1 分析: ⎝⎛⎭⎫sin x 2+cos x22=(2)2 sin 2x 2+2sin x 2cos x 2+cos 2x 2=2 1+sinx =2 sinx =1.23、-82 分析: a 3+a 6+…+a 99=(a 1+2d)+(a 4+2d)+(a 7+2d)+…+(a 97+2d)=50+33×2d =-82.24、3 分析: 本题考查双曲线性质及圆的切线知识, 由圆心到渐近线的距离等于r, 可求r = 3.25、 3 分析: ∵ AC 是小圆的直径.所以过球心O 作小圆的垂线, 垂足O ′ 是AC 的中点.O ′C =32-⎝⎛⎭⎪⎫3222=322, AC =32, ∴ BC =3. 三 解答题26、解: (1) 由题中图象可以设f(x)=ax 2+bx +2 则有: ⎩⎪⎨⎪⎧3=4a -2b +2-2=-b2a ,解得: a =-14, b =-1 ∴ f(x)=-14x 2-x +2. (2) 当x ∈(-∞, -2]时, f(x)是增函数. 当x ∈[-2, +∞)时, f(x)是减函数.27、解: (1) 由a 与b -2c 垂直, a · (b -2c )=ab -2ac =0,即4sin(α+β )-8cos(α+β )=0, tan(α+β)=2. (2) 因为b +c =(sinβ+cosβ, 4cosβ-4sinβ ), 所以|b +c |2= sin 2β+2sinβcosβ+cos 2β+16cos 2β-32cosβsinβ+16sin 2β=17-30sinβcosβ=17-15sin2β 最大值为32, 所以|b +c |的最大值为4 2.28、解: 设BD 交AC 于点O ,∠COC 1是二面角C 1BDC 的平面角,所以∠COC 1=60设AB 、AD 长为1,在△COC 1中求得CC 1=62. 连结AD 1,则∠CAD 1是异面直线BC 1与AC 的夹角. 在△CAD 1中,AC =2,D 1C =AD 1=102,由余弦定理得,cos ∠CAD 1=55.29、解: 原计划各年产值为等差数列, 设为a -d, a, a +d, 由a -d +a +a +d =300, 得a =100, 现各年产值110-d, 110, 111+d 为等比数列, 由1102=(110-d)·(111+d)易求得d =10,d =-11(舍去).故原计划各年产值分别为90万元, 100万元, 110万元.30、解: (1) 设双曲线方程为x 2a 2-y 2b 2=1, 其渐近线方程为y =±bax, 即不妨设一焦点为(c, 0)根据题意, 有: ⎩⎨⎧c a =233|bc|a 2+b 2=1a 2+b 2=c2解得: ⎩⎪⎨⎪⎧a 2=3b 2=1∴ 双曲线方程为x 23-y 2=1. (2) 这样的直线不存在. 假设若存在直线l 与曲线C 交于A 、B 且M(2, 1)是A(x 1, y 1),B(x 2, y 2)的中点. ∵ A 、B 在双曲线上, 有: ⎩⎨⎧x 213-y 21=1x 223-y 22=1得l 的斜率k =23,∴ l 的方程为y -1=23(x -2), 即: 2x -3y -1=0,联立l 与双曲线的方程, 消去y 得: x 2-4x +10=0 Δ=-24<0,∴ l 与双曲线无交点, 与题设矛盾.因此这样的直线不存在。
春季高考数学模拟卷
春季高考数学模拟卷(本试卷共3页,满分150分)一、单项选择题(共30 小题,每小题4分,共120分)1. 已知集合 M=|1,2,3,4|,则下列关系正确的是( )A.0∈MB.1⊆MC.|2}∈MD.|1,2|UM=M2. 设x∈R,则' x²−5x <0”是“0<x<3”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3. 不等式|x|<2的解集为( )A.(-2,2)B.(-∞,-2)∪(2,+∞)C.(-∞,2)D.(-∞,-2]∪[2,+∞)4.不等式 2x²−7x +3>0的解集为( )A.(−3,−12)B.(12,3)C.(−∞,−3)∪(−12,+∞)D.(−∞,12)∪(3,+∞)5. 函数 f (x )=√x−5的定义域是( )A.(0,5)B.(0,+∞)C.(5,+∞)D.[5,+∞)6. 函数 y =x³−2的值域为( )A.(-2,+∞)B.(-∞,+∞)C.(1,+∞)D.(0,+∞)7. 函数f(x)=log ₂(x-1)是( )A. 在(0,+∞)上的增函数B. 在(0,+∞)上的减函数C. 在(1,+∞)上的增函数D. 在(1,+∞)上的减函数8. 函数 y =x²−2x −4的图像的顶点坐标为( )A.(-1,-5)B.(-1,5)C.(1,-5)D.(1,5)9.已知函数 f (x )=x³+x 若f(a)=4,则f(-a)=( )A.4B.-4C.5D.-510. 函数 y =−3x²+2x −5的对称轴为( )A.x =56B.x =−13C.x =12D.x =1311.已知幂函数y=f(x)的图象经过点 (16,12),则其解析式为( )A.f (x )=x 1−4B.f (x )=x 14C.f (x )=x²D.f (x )=x12.当a>0,且m,n∈R 时,下列选项不正确的是( )A.a 1a 2=a −1 B.√a 22=a C.a ′m+n =a ′m a ′n D.(aⁿ)²=a ′2+n13.log₃15−log₃5=( )A.-1B.1C.5D.314.7/4π化为角度是( )A.630°B.320°C.157.5°D.315°15.已知α是第二象限角, cosα=−13,则cos2α=( )A.29B.−79C.79D.−2316.若角α的终边与单位圆交于点 P (−35,45),则sinα=( )A.35B.−35C.45D.−4517. 已知|an|为等差数列. a₂+a₇=12,则|a ₙ|的前8项和S=( )A.48B.40C.38D.3618. 在等比数列|a ₙ|中 a 1=19,a 4=3,则a ₇=( )A.9B.27C.81D.24319. 数列2,a,10是等差数列,则等差中项a=( )A.3B.6C.-3D.-620.已知向量a=(2,4),则|-2a|=( )A.2 √5B.4 √5C.-2 √5D.-4√5 21. 已知直线x+2y-6=0.与直线mx-6y+3=0平行,则m=( )A.2B.13C.3D.-322. 直线 3x −2y +6=0与两坐标轴围成的三角形的面积为( )A.3B.32C.2D.52 23. 椭圆 x 23+y 24=1与x 轴正半轴的交点坐标为( )A.(0,2)B.(2,0)C.(0, √3)D.(√3,0) 24. 双曲线 x 29−y 216=1的渐近线方程为( )A.y =±34xB.y =+54xC.y =±43xD.y =+53x25.焦点在x轴,开口向右且焦点到准线的距离为3的抛物线方程为( )A.y²=−3xB.y²=6xC.y²=3xD.y²=−6x26.直径为6的球的体积为( )A.144πB.108πC.36πD.163π27.5 人站成一排,如果甲、乙两人必须不相邻,那么不同的排法总数为( )A.72种B.36种C.30种D.24种28. 若平面α∥平面β,直线a∥平面a,且a∉平面β,点P为平面β内一点,则过点 P且在平面β内的直线中( )A.不一定存在与a平行的直线B.只有一条与a平行的直线C.只有两条与a平行的直线D.存在无数条与a平行的直线29.魔术师将6个质地、颜色都相同的小球放到两个盒子里,且每个盒子里至少有一个小球,则不同的投放方法有( )A.15种B.12种C.10种D.5种30. 曲线y=x²;在x=-3.处的导数值为( )A.-6B.0C.6D.9二、判断题(共 10 小题,每小题3分,共30分。
山东省春季高考数学模拟试卷(综合训练2 含答案)
山东省春季高考模拟试题2 数学一、选择题1.已知集合{1,0,1,2,3}A =-,1{|0}B x x=<,则B A ⋂等于A . 1-B . {}1-C . (,0)-∞D . {}1,0- 2.不等式6<的解集是A.x <B .22x -<< C.x -≤≤D.x -<<3.已知等差数列}{n a 中,7916,a a +=,则8a 的值是A . 1B . 2C . 3D . 4 4.已知奇函数的图象过点(1,2),则该函数的图象必过点A .(1,2)B .(-1,-2)C .(-2,-1)D . (2,1)5."21sin "=A 是"30"A =的A .充分不必要条件B .必要不充分条件C .充分必要条件D . 既不充分也不必要条件6.一条直线若同时平行于两个相交平面,则这条直线与这两个相交平面的位置关系是A . 异面B .相交C .平行D .平行或相交 7.点P 在直线04=-+y x 上,O 为原点,则|OP|的最小值为A .-2B . 22C .6 D .108.若向量|a |=1,| b |=2, c = a +b 且c ⊥a ,则向量a 与b 的夹角为A .30 B .60 C . 120 D . 1509.若抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则P 的值为 A . -2 B . 2 C . ﹣4 D . 410.在等差数列{}n a 中,若69121530a a a a +++=,则数列前20项的和20S 的值为A .250B .200C . 150D .10011.已知正方体的外接球的体积是π332,那么正方体的棱长等于 A . 22 B .332 C . 324 D . 334 12.函数x y 2cos =在下列哪个区间是减函数A .⎥⎦⎤⎢⎣⎡-4,4ππ B .⎥⎦⎤⎢⎣⎡-43,4ππ C .⎥⎦⎤⎢⎣⎡2,0π D .⎥⎦⎤⎢⎣⎡ππ,2 13.从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有A . 108种B . 186 种C . 216种D . 270种 14.函数c bx x x f ++=2)(对任意的实数t 都有)2()2(t f t f -=+,则A . )4()1()2(f f f <<B . )4()2()1(f f f <<C . )1()4()2(f f f <<D . )1()2()4(f f f <<15.已知过点A .(-2,m )和B .(m,4)的直线与直线2x+y-1=0平行,则m 的值为A . 0B . -8C . 2D . 1016.双曲线19422=-y x 的渐近线方程A . x y 32±= B . x y 94±= C . x y 23±= D . x y 49±=17.在下列函数中,函数的图象关于y 轴对称的是A . 3x y =B . x y 21log = C . x y cos = D . xy 2=18.将x y cos =的图象上的所有点的纵坐标不变,横坐标缩小到原来的一半,然后再将图象沿x 轴负方向平移4π个单位,则所得图象的解析式为 A . x y sin = B . x y 2sin -= C .)42cos(π+=x y D . )42cos(π+=x y 19.在10件产品中有7件正品,3件次品,从这10件产品中任取3件,至少有一件次品的概率是A .724 B .1724 C .310 D .71020.建造一个容积为83cm ,深为2m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为A . 1700元B . 1720元C . 1740元D . 1760元 21.已知()1,2tan 2αππα∈=,,则sin cos αα+的值是 A. B. CD22.在等差数列{}n a 中,已知93S =,则34567a a a a a ++++的值为A .13B .53C .75D .9523.已知抛物线24y x =上一点P 到y 轴的距离是3,则点P 到该抛物线焦点的距离是A .2B .3C .4D .524.若双曲线虚轴的一个端点为M ,12F F 、为其两个焦点,12120F MF ∠=︒,则此双曲线的离心率为AB.2C.3D.325.若正四面体S ABC -的棱长为1,则二面角S AC B --的平面角的余弦值是A .13B .12C.2D26.若袋中有3个红球,2个白球,一次取出2个球,则恰好红球白球各1个的概率是A .35B .310C .25D .1527.若直线2x =被圆()224x a y -+=截得的弦长为a 等于A .3-或1- BC .1或3D .28.某厂2008年的产值为a 万元,预计产值每年以5%递增,则该厂到2018年的产值(万元)为A .()915%a +B .()1015%a +C .()1115%a +D .()1215%a +29.函数()2234f x x x =+-在2x =处的导数为A .11B .12C .13D .1430.函数()22log f x x =在区间()(),00,-∞+∞上A .是奇函数且在()0,+∞上是增函数B .是偶函数且在()0,+∞上是增函数C .是奇函数且在()0,+∞上是减函数D .是偶函数且在()0,+∞上是减函数二、填空题31.函数R x x x y ∈-⋅=,1cos sin 2的值域 32.不等式021>-+x x 的解集 33.抛物线x y 82=的准线方程是 34.某工厂2008年产值为150万元,若每年比上一年平均增长5%,那么5年后该工厂的年产值为________________万元(精确到0.01). 三、解答题35.在四棱锥P-ABCD 中,底面ABCD 是正方形,侧面PAD 是正三角形,平面PAD ⊥ 底面ABCD(1) 证明AB ⊥平面PAD(2) 求面PAD 与面PDB 所成的二面角的正切值36.设二次方程)(01*12N n x a x a n n ∈=+-+有两根α和β,且满足3626=+-βαβα (1) 试用n a 表示1+n a ;(2) 求证:}32{-n a 是等比数列;(3) 当671=a 时,求数列}{n a 的通项公式。
2023年山东春考真题(数学)含答案
2023年山东春考真题(数学)含答案题目一:简答题(共10分)1.用两种或以上的方法,解决下列不等式组,并列举每种方法的限制条件。
$$ \\begin{cases} 2x - y \\leq 4 \\\\ x + 3y \\geq 6\\end{cases} $$2.给定一个函数f(f)=2f2−5f+3,求该函数的极值点。
解答:1.方法一:解不等式组的方法之一是图解法,并可通过图形解的方式找到解。
首先,将不等式组转化为标准形式:$$ \\begin{cases} y \\geq 2x - 4 \\\\ y \\leq -\\frac{1}{3}x + 2 \\end{cases} $$然后,在坐标系上绘制出上述两个不等式所对应的直线f=2f−4和 $y = -\\frac{1}{3}x + 2$。
找到两条直线的交点(4,4),该点即为不等式组的解。
此方法的限制条件是,两个不等式所对应的直线在坐标系上有交点。
2.方法二:解不等式组的方法之二是代入法。
首先,将第一个不等式 $2x - y \\leq 4$ 转化为等式2f−f=4,然后解得f=2f−4。
将f=2f−4代入第二个不等式 $x + 3y\\geq 6$ 中,得到 $x + 3(2x - 4) \\geq 6$,化简后得$x \\geq 2$。
因此,满足不等式组的解为 $x \\geq 2$。
此方法的限制条件是,其中一个不等式可以转化为等式,并且通过代入得到一个合理的结果。
题目二:计算题(共20分)1.已知函数f(f)=f2−2f,求函数的对称轴和顶点坐标。
解答:首先,给出函数f(f)=f2−2f的标准形式f=f2−2f。
对于标准形式的二次函数f=f(f−f)2+f,其中(f,f)为顶点坐标,对称轴的方程为f=f。
比较给定函数和标准形式,可得f=1,f=1,f=−1。
因此,函数的对称轴方程为f=1,顶点坐标为(1,−1)。
2.计算等差数列$1, 4, 7, 10, \\ldots$ 的第f项和f f。
春季高考模拟试题
春季高考模拟试题一、语文(本题共40分)1. 阅读理解(20分)阅读以下文章,回答1-4题。
(文章内容略)1. 文章中提到的“春天的使者”指的是什么?(5分)2. 作者通过哪些细节描写来表现春天的景象?(5分)3. 文章中“春天的脚步”这个比喻,体现了作者怎样的情感?(5分)4. 根据文章内容,分析作者对春天的总体态度。
(5分)2. 写作(20分)请以“春天的故事”为题,写一篇不少于800字的记叙文,要求内容具体,情感真挚。
二、数学(本题共30分)1. 选择题(10分,每题2分)(1)设A={1,2,3},B={2,3,4},则集合A∩B的元素个数是A. 1B. 2C. 3D. 4(2)若函数f(x)=x^2-2x+1在区间[0,3]上是增函数,则f(x)的最小值是A. 0B. -1C. 1D. 32. 填空题(10分,每空2分)(1)已知等差数列的前三项分别为2,5,8,则该数列的通项公式为______。
(2)若圆的半径为5,圆心到直线的距离为3,则圆与直线的位置关系是______。
3. 解答题(10分)已知函数f(x)=x^3-6x^2+9x+2,求f(x)的极值点。
三、英语(本题共30分)1. 阅读理解(20分)阅读以下短文,回答5-8题。
(文章内容略)5. What is the main idea of the passage?(5分)6. What does the author think about the role of technology in education?(5分)7. According to the passage, which of the following is NOT a benefit of using technology in the classroom?(5分)8. What conclusion can be drawn from the passage?(5分)2. 翻译(10分)将以下句子从英文翻译成中文。
春季高考高职单招数学模拟试题 (2) Word版含答案
春季高考高职单招数学模拟试题 (2)Word版含答案春季高考高职单招数学模拟试题一、选择题1.已知集合 $M=\{0,1,2\}$,$B=\{1,4\}$,那么集合$A\cup B$ 等于()A) $\{1\}$B) $\{4\}$C) $\{2,3\}$D) $\{1,2,3,4\}$2.在等比数列 $\{a_n\}$ 中,已知 $a_1=2$,$a_2=4$,那么 $a_5$ 等于A) 6B) 8C) 10D) 163.已知向量 $\vec{a}=(3,1)$,$\vec{b}=(-2,5)$,那么$2\vec{a}+\vec{b}$ 等于()A) $(-1,11)$B) $(4,7)$C) $(1,6)$D) $(5,-4)$4.函数 $y=\log_2(x+1)$ 的定义域是()A) $(0,+\infty)$B) $(-1,+\infty)$C) $(1,+\infty)$D) $[-1,+\infty)$5.如果直线 $3x-y=$ 与直线 $mx+y-1=$ 平行,那么$m$ 的值为()A) $-3$B) $-\dfrac{11}{33}$C) $\dfrac{11}{33}$D) $3$6.函数 $y=\sin(\omega x)$ 的图象可以看做是把函数$y=\sin(x)$ 的图象上所有点的纵坐标保持不变,横坐标缩短到原来的 $\dfrac{1}{2}$ 倍而得到,那么 $\omega$ 的值为()A) 4B) 2C) 3D) $\dfrac{3}{2}$7.在函数 $y=x$,$y=2$,$y=\log_2(x)$,$y=\dfrac{3x}{x+3}$ 中,奇函数的是()A) $y=x$B) $y=2$C) $y=\log_2(x)$D) $y=\dfrac{3x}{x+3}$8.$\sin\left(\dfrac{11\pi}{12}\right)$ 的值为()A) $-\dfrac{1}{2}$B) $-\dfrac{\sqrt{2}}{2}$C) $\dfrac{\sqrt{2}}{2}$D) $\dfrac{1}{2}$9.不等式 $x^2-3x+2<0$ 的解集是()A) $x>2$B) $x>1$C) $1<x<2$D) $x2$10.实数 $\log_4 5+2\log_5 2$ 的值为()A) 2B) 5C) 10D) 2011.某城市有大型、中型与小型超市共 1500 个,它们的个数之比为 1:5:9.为调查超市每日的零售额情况,需通过分层抽样抽取 30 个超市进行调查,那么抽取的小型超市个数为()A) 5B) 9C) 18D) 2112.已知平面 $\alpha\parallel\beta$,直线 $m\in\alpha$,那么直线 $m$ 与平面 $\beta$ 的关系是()A。
山东省春季高考枣庄市2023届高三第二次模拟知识考试数学试题(2)
一、单选题1.函数的图象所有点的横坐标变为原来的倍,纵坐标不变,得到函数的图象,则下列说法不正确的是( )A.函数的最小正周期为B.函数的图象关于直线对称C.函数的图象关于对称D .函数在上递增2. 在边长为的等边三角形中,点分别是边上的点,满足且,将沿直线折到的位置. 在翻折过程中,下列结论成立的是( )A .在边上存在点,使得在翻折过程中,满足平面B .存在,使得在翻折过程中的某个位置,满足平面平面C.若,当二面角为直二面角时,D.在翻折过程中,四棱锥体积的最大值记为,的最大值为3. 现行普通高中学生在高一时面临着选科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有两理一文意愿的学生数量多于有两文一理意愿的学生数量C .样本中的男生偏爱两理一文D .样本中的女生偏爱两文一理4. 如图所示,点F 是椭圆的右焦点,A ,C 是椭圆上关于原点O 对称的两点,直线与椭圆的另一个交点为B ,若,则椭圆M 的离心率为()A.B.C.D.5. 函数的图象大致为( )山东省春季高考枣庄市2023届高三第二次模拟知识考试数学试题(2)山东省春季高考枣庄市2023届高三第二次模拟知识考试数学试题(2)二、多选题A.B.C.D.6. 已知为双曲线的右焦点,为的右顶点,为上的点, 且垂直于轴若的斜率为,则的离心率为( )A.B.C.D.7. 函数的图象大致是( )A.B.C.D.8. 已知某简单组合体的三视图如图所示,则其表面积为()A.B.C.D.9.已知集合,若,则的取值可以是( )A .2B .3C .4D .510. 已知实数a ,b满足,则下列说法正确的有( )A.B.C .若,则D.三、填空题四、解答题11. 已知向量,,则下列结论正确的是( )A .若,则B.若,则C.若与的夹角为,则D.若与方向相反,则在上的投影向量的坐标是12.已知正项数列的前项和为,若对于任意的,,都有,则下列结论正确的是( )A.B.C .若该数列的前三项依次为,,,则D.数列为递减的等差数列13. 已知集合,,则______.14.已知函数.若存在使得不等式成立,则实数的取值范围是________.15.已知函数,当时,,则实数的取值范围是______.16. 2021年春节,由贾玲导演的春节档电影《你好,李焕英》总票房已突破50亿元,影片的感人情节引起同学们广泛热议.开学后,某校团委在高三年级中(其中男生200名,女生150名),对是否观看该影片进行了问卷调查,各班男生观看人数统计记为组,各班女生观看人数统计记为组,得到如图的茎叶图.已知全年级恰有3个班级观看该影片的人数超过40.(Ⅰ)根据茎叶图绘制列联表,并判断是否有的把握认为观看该影片与性别有关?(Ⅱ)若先从组人数超过20的数据中随机抽取一个数据,再从组人数少于20的数据中随机抽取一个数据,求抽到的这两个数据来自同一个班的概率.参考数据及公式如下:0.10.050.0250.010.0050.0012.7063.8415.0246.6357.87910.828,.17. 为探究某药物对小鼠的生长抑制作用,将40只小鼠均分为两组,分别为对照组(不加药物)和实验组(加药物).(1)设其中两只小鼠中在对照组中小鼠数目为,求的分布列和数学期望;(2)测得40只小鼠体重如下(单位:):(已按从小到大排好)对照组:17.3 18.4 20.1 20.4 21.5 23.2 24.6 24.8 25.0 25.426.1 26.3 26.4 26.5 26.8 27.0 27.4 27.5 27.6 28.3实验组:5.4 6.6 6.8 6.9 7.8 8.2 9.4 10.0 10.4 11.214.4 17.3 19.2 20.2 23.6 23.8 24.5 25.1 25.2 26.0(i )求40只小鼠体重的中位数,并完成下面列联表:合计对照组实验组合计(ii)根据列联表,能否有的把握认为药物对小鼠生长有抑制作用.附:,其中.0.100.050.0102.7063.841 6.63518. 某新华书店将在六一儿童节进行有奖促销活动,凡在该书店购书达到规定金额的小朋友可参加双人赢取“购书券”的游戏.游戏规则为:游戏共三局,每局游戏开始前,在不透明的箱中装有个号码分别为、、、、的小球(小球除号码不同之外,其余完全相同).每局由甲、乙两人先后从箱中不放回地各摸出一个小球(摸球者无法摸出小球号码).若双方摸出的两球号码之差为奇数,则甲被扣除个积分,乙增加个积分;若号码之差为偶数,则甲增加个积分,乙被扣除个积分.游戏开始时,甲、乙的初始积分均为零,游戏结束后,若双方的积分不等,则积分较大的一方视为获胜方,将获得“购书券”奖励;若双方的积分相等,则均不能获得奖励.(1)设游戏结束后,甲的积分为随机变量,求的分布列;(2)以(1)中的随机变量的数学期望为决策依据,当游戏规则对甲获得“购书券”奖励更为有利时,记正整数的最小值为.①求的值,并说明理由;②当时,求在甲至少有一局被扣除积分的情况下,甲仍获得“购书券”奖励的概率.19.已知抛物线的焦点为,点到直线的距离为.(1)求抛物线的方程;(2)点为坐标原点,直线、经过点,斜率为的直线与抛物线交于、两点,斜率为的直线与抛物线交于、两点,记,若,求的最小值.20. 设的内角A,B,C所对的边分别为,,,且有.(1)求角A;(2)若BC边上的高,求.21. 已知椭圆的左、右顶点分别为、,短轴长为,点上的点满足直线、的斜率之积为.(1)求的方程;(2)若过点且不与轴垂直的直线与交于、两点,记直线、交于点.探究:点是否在定直线上,若是,求出该定直线的方程;若不是,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年山东省春季高考数学模拟试题(二)
一、 选择题
1、设全集R U =,集合{}{}2,3<=<=x x B x x A ,则=B C A U ( ) A.{}32<≤x x B.{}32≤<x x C.{}32≥<x x x 或 D.R
2、下列函数中,为奇函数的是( )
A. x x y sin +=
B.x y 3log =
C.x x y 232-=
D.x
y ⎪⎭
⎫ ⎝⎛=31 3、设,25=a 则用a 表示4log 5为( )
A.a 2
B.2a
C.a 21
D.21a
4、()x x x f cos 4sin 3+=,则( )
A.有最大值7,周期π
B.有最小值7,周期π2
C.有最大值5,周期π
D.有最大值5,周期π2
5、下列函数中,其图像可由函数x y 2sin =的图像平移向量⎪⎭
⎫ ⎝⎛-0,43π得到的是( ) A.⎪⎭⎫ ⎝⎛+=π232sin x y B.⎪⎭⎫ ⎝⎛-=π232sin x y C.⎪⎭⎫ ⎝⎛+=π432sin x y D.⎪⎭⎫ ⎝
⎛-=π432sin x y 6、不等式153<-x 的解集是( ) A.)(2,∞- B.⎪⎭⎫ ⎝⎛+∞,34 C.()⎪⎭⎫ ⎝⎛+∞∞-,342, D.⎪⎭
⎫ ⎝⎛2,34
7、数列{}n a 中的首项为2011、公差为-2的等差数列,则它的前2012项的和是( ) A.2012 B.2011 C.0 D.2011-
8、设向量()(),6,4,3,2-=-=→
→CD AB 则四边形ABCD 是( )
A.矩形
B.菱形
C.平行四边形
D.梯形
9、实数3log 2与2log 3的大小关系是( )
A.2log 3log 32>
B.2log 3log 32<
C.2log 3log 32=
D.不能确定
10、设,1:<x p ,11:>x
q 则P 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件
11、在ABC ∆中,,7,5,3===c b a 则ABC ∆形状是( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形
12、设向量b a ,的坐标分别为()1,2-和()2,3-,它们的夹角是( )
A.零角或平角
B.锐角
C.钝角
D.直角
13、设,5.0,4.0log 4.05.0==b a 则b a 、的大小关系是( )
A.b a <
B.b a =
C.b a >
D.不能确定
14、与 956-角终边相同的最小正角是( )
A. 34
B. 56
C. 124
D. 214
15、()x a y -=2在其定义域内是减函数,则a 的取值范围是( )
A.()1,0
B.()2,1
C.()3,2
D.()2,1-
16、若A={1、2、3、4},B={0、2、4、6、},则A B 为( )
A 、{2}
B 、{0、1、2、3、4、6}
C 、{2、4、6}
D 、{2、4}
17、下列关系不成立是( )
A 、a>b ⇔a+c>b+c
B 、a>b ⇔ac>bc
C 、a>b 且b>c ⇔a>c
D 、a>b 且c>d ⇔a+c>b+d
18、下列函数是偶函数的是( )
A 、Y=X 3
B 、Y=X 2
C 、Y=SinX
D 、Y=X+1
19、斜率为2,在Y 轴的截距为-1的直线方程为( )
A 、2X+Y -1=0
B 、2X -Y -1=0
C 、2X -Y+1=0
D 、2X+Y+1=0
20、圆X 2+Y 2+4X=0的圆心坐标和半径分别是( )
A 、(-2,0),2
B 、(-2,0),4
C 、(2,0),2
D 、(2,0),4
二、
三、填空题
21、已知全集{},N x x U ∈=,集合{
},,,,3,2,1 n A C U =则集合=A 22、已知,5
34tan =⎪⎭⎫ ⎝⎛+απ则αtan 的值是 23、设向量()(),2,1,0,2-=-=b a 则向量b a 76+=
2,7==→→AD →→+AD 的值是
25、等比数列{}n a 中,,5,151==a a 则=3a
三、解答题:
26.设函数()()()()x x x g x x x f -+-=-+=5log 1log ,1
3log 777
,()()()x g x f x F += (1)求函数()x F 的定义域;(2)若(),1>a F 求a 的取值范围;
27.已知,833sin )6sin(=⎪⎭
⎫ ⎝⎛+∙+παπα求α4cos 的值
28.已知数列{}n a 的前n 项和为n S 且满足2
1),2(0211=≥=∙+-a n S S a n n n (1)求证:⎭
⎬⎫⎩⎨⎧n S 1是等差数列;(2)求n a 的表达式; 29.在ABO ∆中,已知,2
1,31→→→→==OB OD OA OC AD 与BC 相交于点E ,设→→→→==BC BE AD AE μλ,. (1)
(2)用向量→OA 和→OB 表示向量→
OE ;(2)求λ和μ的值;(3)若()()4,3,3,4B A -,求点E 的坐标;
30.过双曲线13
22
=y x -右焦点作倾角为45°的弦AB ,求AB 的长。