寒假专题——圆(1)同步练习
人教版九年级数学上册24.1.1《圆》圆的有关性质同步测试及答案
圆 24.1__圆的有关性质__24.1.1 圆 [见B 本P36]1.下列命题正确的有( C )(1)半圆是弧;(2)弦是圆上两点之间的部分;(3)半径是弦;(4)直径是最长的弦;(5)在同一平面内,到定点的距离等于定长的点都在同一个圆上.A .1个B .2个C .3个D .4个【解析】 (1)弧是圆上任意两点间的部分;任意一条直径的两个端点在圆上把圆分成两条弧,每一条弧叫做半圆,因此(1)是正确的命题.(2)弦是连接圆上任意两点的线段,不是圆上两点之间的部分,因此(2)是错误的命题.(3)半径是连接圆心与圆上任意一点的线段,不是弦.因此(3)是假命题.(4)直径是过圆心的弦,也是最长的弦.如图所示,AB 是⊙O 的直径,CD 是任意一条不过圆心的弦,连接OC ,OD ,在△OCD 中,OC +OD >CD ,而AB =OC +OD ,则AB >CD ,因此直径是最长的弦.(5)圆心为O ,半径为r 的圆可以看成由所有到定点O 的距离等于定长r 的点组成的图形,因此(5)正确.所以(1),(4),(5)正确,选C.2.如图24-1-1所示,⊙O 中点A ,O ,D 以及点B ,O ,C 分别在同一直线上,图中弦的条数为( A )A .2B .3C .4D .5图24-1-1图24-1-2图24-1-33.如图24-1-2,P 是⊙O 内的一点,P 到⊙O 的最小距离为4 cm ,最大距离为9 cm ,则该⊙O 的直径为( C )A .6.5 cmB .2.5 cmC .13 cmD .不可求【解析】 过O ,P 作直径AB ,则AB =P A +PB =4+9=13(cm),故选C.4.图24-1-3中,__AC __是⊙O 的直径;弦有__AB ,BC ,AC __;劣弧有__AB ︵,BC ︵__;优弧有__BAC ︵,BCA ︵__.5.如图24-1-4所示,已知∠AOB =60°,则△AOB 是__等边__三角形.图24-1-4图24-1-56.如图24-1-5,AB 是⊙O 的直径,AC 是弦,若∠ACO =22°, 则∠COB 的度数等于__44°__.【解析】 ∵OA =OC ,∴∠A =∠C =22°,∴∠BOC =∠A +∠C =22°×2=44°.7.如图24-1-6,以O 为圆心的两个同心圆⊙O ,大圆O 的半径OC ,OD 分别交小圆O 于A ,B 两点,求证:AB ∥CD .证明:∵OA =OB ,OC =OD ,∴∠OAB =12(180°-∠O )=∠C ,∴AB ∥CD .图24-1-6图24-1-78.如图24-1-7,在⊙O 中,D ,E 分别为半径OA ,OB 上的点,且AD =BE ,点C 为弧AB 上一点,连接CD ,CE ,CO ,∠AOC =∠BOC .求证:CD =CE .证明:∵OA =OB ,AD =BE ,∴OA -AD =OB -BE ,即OD =OE .在△ODC 和△OEC 中,⎩⎪⎨⎪⎧OD =OE ,∠DOC =∠EOC ,OC =OC ,∴△ODC ≌△OEC ,∴CD =CE .9.如图24-1-8所示,已知⊙O 中,直径MN =10ABCD 的四个顶点分别在半径OM ,OP 以及⊙O 上,并且∠POM =45°,则AB 的长为__5__.【解析】 连接OA ,构造Rt △OAB ,利用勾股定理,求出AB 的长.设正方形ABCD 的边长为x ,则AB =BC =CD =x ,又∠POM =45°,∠DCO =90°,∴∠ODC =∠POM =45°,∴DC =OC =x ,∴OB =2x .在Rt △OAB 中,AB 2+OB 2=OA 2,OA =12MN =5,即x 2+(2x )2=52,∴x = 5.图24-1-810.如图24-1-9,AB ,AC 为⊙O 的弦,连接CO ,BO 并延长分别交弦AB ,AC 于点E ,F ,∠B =∠C .求证:CE =BF .证明:∵OB ,OC 是⊙O 的半径,∴OB =OC .又∵∠B =∠C ,∠BOE =∠COF ,∴△EOB ≌△FOC ,∴OE =OF ,∴CE =BF .11.如图24-1-10,半圆O 的直径AB =8,半径OC ⊥AB ,D 为弧AC 上一点,DE ⊥OC ,DF ⊥OA ,垂足分别为E ,F ,求EF 的长.图24-1-10解:连接OD .∵OC ⊥AB ,DE ⊥OC ,DF ⊥OA ,∴∠AOC =∠DEO =∠DFO =90°, ∴四边形DEOF 是矩形,∴EF =OD .∵OD =OA ,∴EF =OA =4.12.如图24-1-11,AB ,CD 是⊙O 的直径,DF ,BE 是⊙O 的弦,且弦DF =BE .求证:∠B =∠D .图24-1-11【解析】 连接OF ,OE ,证明△DOF ≌△BOE .证明:如图,连接OE ,OF .在△DOF 和△BOE 中,⎩⎪⎨⎪⎧OF =OE ,OD =OB ,DF =BE ,∴△DOF ≌△BOE (SSS).∴∠B =∠D .13.如图24-1-12所示,已知CD 是⊙O 的直径,∠EOD =51°,AE 交⊙O 于点B ,且AB =OC ,求∠A 的度数.图24-1-12【解析】已知∠EOD=51°,与未知∠A构成了内、外角关系,而∠E也未知,且AB=OC这一条件不能直接使用,因此想到同圆的半径相等,需连接半径OB,从而得到OB=AB.解:如图所示,连接OB.∵AB=OC,OB=OC,∴AB=OB,∴∠A=∠1.又∵OB=OE,∴∠E=∠2=∠1+∠A=2∠A,∴∠DOE=∠E+∠A=3∠A.而∠DOE=51°,∴3∠A=51°,∴∠A=17°.。
人教版九年级数学上册 24.1圆的有关性质同步训练(含答案)
E ,满足 AEC 65 ,连接 AD ,则 BAD
度.
答案: 一、选择题
1.(2020•青岛)如图,BD 是⊙O 的直径,点 A,C 在⊙O 上, = ,AC 交 BD 于点 G.若∠COD=126°,则 ∠AGB 的度数为( )
A.99°
B.108°
解:∵BD 是⊙O 的直径,
∴∠BAD=90°,
度数是( )
A.130°
B.140°
C.150°
解:由题意得到 OA=OB=OC=OD,作出圆 O,如图所示,
∴四边形 ABCD 为圆 O 的内接四边形,
∴∠ABC+∠ADC=180°,
∵∠ABC=40°,
∴∠ADC=140°,
故选:B.
D.160°
6.(2020•眉山)如图,四边形 ABCD 的外接圆为 O , BC CD , DAC 35 , ACD 45 ,则 ADB 的度数 为( )
∴∠OEC=∠OCE=40°+ x,
∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,
∴∠OED<20°+ x,
∴∠CED=∠OEC﹣∠OED>(40°+ x)﹣(20°+ x)=20°,
∵∠CED<∠ABC=40°, ∴20°<∠CED<40° 故选:C. 二、填空题
16.(2020•襄阳)在 O 中,若弦 BC 垂直平分半径 OA ,则弦 BC 所对的圆周角等于 60 或 120 . 解:如图,
上任意一点.则
A.10°
B.20°
C.30°
D.40°
解:连接 OD、OE, ∵OC=OA, ∴△OAC 是等腰三角形, ∵点 D 为弦 AC 的中点, ∴∠DOC=40°,∠BOC=100°, 设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°, ∵OC=OE,∠COE=100°﹣x,
人教版数学九年级上册《24.1.1圆》同步练习(含答案解析)
2022-2023人教版数学九年级上册同步练习:24.1.1 圆一.选择题(共15小题)1.下列说法错误的是()A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°3.如图,在⊙O中,弦的条数是()A.2B.3C.4D.以上均不正确4.以下说法正确的个数有()①半圆是弧.②三角形的角平分线是射线.③在一个三角形中至少有一个角不大于60°.④过圆内一点可以画无数条弦.⑤所有角的度数都相等的多边形叫做正多边形.A.1个B.2个C.3个D.4个5.如图所示圆规,点A是铁尖的端点,点B是铅笔芯尖的端点,已知点A与点B的距离是2cm,若铁尖的端点A固定,铅笔芯尖的端点B绕点A旋转一周,则作出的圆的直径是()A.1cm B.2cm C.4cm D.πcm6.下列语句中正确的有几个()①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.A.1B.2C.3D.47.点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()A.2B.3C.4D.58.下列说法错误的是()A.直径是圆中最长的弦B.半径相等的两个半圆是等弧C.面积相等的两个圆是等圆D.长度相等的两条弧是等弧9.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB 于点D,连接CD,则∠ACD=()A.10°B.15°C.20°D.25°10.下列说法:(1)长度相等的弧是等弧,(2)半径相等的圆是等圆,(3)等弧能够重合,(4)半径是圆中最长的弦,其中正确的有()A.1个B.2个C.3个D.4个11.下列说法正确的是()A.长度相等的弧是等弧B.相等的圆心角所对的弧相等C.面积相等的圆是等圆D.劣弧一定比优弧短12.下列说法错误的是()A.圆上的点到圆心的距离相等B.过圆心的线段是直径C.直径是圆中最长的弦D.半径相等的圆是等圆13.生活中处处有数学,下列原理运用错误的是()A.建筑工人砌墙时拉的参照线是运用“两点之间线段最短”的原理B.修理损坏的椅子腿时斜钉的木条是运用“三角形稳定性”的原理C.测量跳远的成绩是运用“垂线段最短”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”原理14.如图,四边形PAOB是扇形OMN的内接矩形,顶点P在上,且不与M、N重合,当P点在上移动时,矩形PAOB的形状,大小随之变化,则AB的长度()A.不变B.变小C.变大D.不能确定15.下列判断结论正确的有()(1)直径是圆中最大的弦.(2)长度相等的两条弧一定是等弧.(3)面积相等的两个圆是等圆.(4)同一条弦所对的两条弧一定是等弧.(5)圆上任意两点间的部分是圆的弦.A.1个B.2个C.3个D.4个二.填空题(共10小题)16.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是cm.17.线段AB=10cm,在以AB为直径的圆上,到点A的距离为5cm的点有个.18.点A、B在⊙O上,若∠AOB=40°,则∠OAB=.19.战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于.20.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为.(只考虑小于90°的角度)21.战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载,这句话里的“中”字的意思可以理解为.22.在同一平面内,1个圆把平面分成2个部分,2个圆把平面最多分成4个部分,3个圆把平面最多分成8个部分,4个圆把平面最多分成14个部分,那么10个圆把平面最多分成个部分.23.如图,AB是⊙O的直径,C是BA延长线上一点,点D在☉O上,且CD=OA,CD的延长线交⊙O于点E.若∠C=20°,则∠BOE的度数是.24.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB的长是.25.如图,△ABC中,∠ACB=90°,∠A=40°,以C为圆心、CB为半径的圆交AB 于点D,则∠ACD=度.三.解答题(共6小题)26.如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA的延长线于E,交半圆于C,且CE=AO,求∠E的度数.27.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于D,AD<BD,若CD=2cm,AB=5cm,求AD、AC的长.28.如图AB=3cm,用图形表示:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合(用阴影表示,注意边界上的点是否在集合中,如果在,用实线表示,如果不在,则用虚线表示).29.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB 于F,且AE=BF,AC与BD相等吗?为什么?30.已知点P、Q,且PQ=4cm,(1)画出下列图形:到点P的距离等于2cm的点的集合;到点Q的距离等于3cm的点的集合.(2)在所画图中,到点P的距离等于2cm,且到点Q的距离等于3cm的点有几个?请在图中将它们表示出来.31.如图所示,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠AEC=20°.求∠AOC的度数.参考答案与试题解析一.选择题(共15小题)1.【解答】解:A、直径是圆中最长的弦,所以A选项的说法正确;B、在同圆或等圆中,长度相等的两条弧是等弧,所以B选项的说法错误;C、面积相等的两个圆的半径相等,则它们是等圆,所以C选项的说法正确;D、半径相等的两个半圆是等弧,所以D选项的说法正确.故选:B.2.【解答】解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故选:B.3.【解答】解:如图,在⊙O中,有弦AB、弦DB、弦CB、弦CD.共有4条弦.故选:C.4.【解答】解:圆的任意一条直径的端点把圆分成两条弧,每一条弧都叫做半圆,故①正确;根据三角形角平分线的定义可知,三角形的角平分线是一条线段,故②错误;在一个三角形中至少有一个角不大于60°,故③正确;过圆内一点可以画无数条弦,故④正确;矩形的四个角都相等,都等于90°,而矩形不是正四边形,故⑤错误;故选:C.5.【解答】解:∵AB=2cm,∴圆的直径是4cm,故选:C.6.【解答】解:①关于一条直线对称的两个图形一定能重合;正确.②两个能重合的图形一定关于某条直线对称;错误.③两个轴对称图形的对应点一定在对称轴的两侧;错误,也可以在对称轴上.④一个圆有无数条对称轴.正确.故选:B.7.【解答】解:由图可知,点A、B、E、C是⊙O上的点,图中的弦有AB、BC、CE,一共3条.故选:B.8.【解答】解:A、直径是圆中最长的弦,正确,不符合题意;B、半径相等的两个半圆是等弧,正确,不符合题意;C、面积相等的两个圆是等圆,正确,不符合题意;D、长度相等的两条弧是等弧,错误,符合题意,故选:D.9.【解答】解:∵∠ACB=90°,∠A=40°,∴∠B=50°,∵CD=CB,∴∠BCD=180°﹣2×50°=80°,∴∠ACD=90°﹣80°=10°;故选:A.10.【解答】解:(1)长度相等的弧是等弧,错误;(2)半径相等的圆是等圆,正确;(3)等弧能够重合,正确;(4)半径是圆中最长的弦,错误;11.【解答】解:A、能完全重合的弧才是等弧,故本选项错误;B、必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;C、面积相等的圆是等圆;故本选项正确;D、在同圆或等圆中,劣弧一定比优弧短.故本选项错误.故选:C.12.【解答】解:A、正确.圆上的点到圆心的距离相等;B、错误.过圆心的线段不一定是直径;C、正确.直径是圆中最长的弦;D、正确.半径相等的圆是等圆;故选:B.13.【解答】解:A、错误.建筑工人砌墙时拉的参照线是运用“两点确定一条直线”的原理;B、正确.修理损坏的椅子腿时斜钉的木条是运用“三角形稳定性”的原理;C、正确.测量跳远成绩的依据是垂线段最短;D、正确.将车轮设计为圆形是运用了“圆的旋转对称性”的原理;故选:A.14.【解答】解:∵四边形PAOB是扇形OMN的内接矩形,∴AB=OP=半径,当P点在上移动时,半径一定,所以AB长度不变,故选:A.15.【解答】解:(1)直径是圆中最大的弦,说法正确;(2)长度相等的两条弧一定是等弧,说法错误,在同圆或等圆中,能够完全重合的两段弧为等弧,不但长度相等,弯曲程度也要相同;(3)面积相等的两个圆是等圆,说法正确;(4)同一条弦所对的两条弧一定是等弧,说法错误,同一条弦所对的两条弧不一定是等弧,除非这条弦为直径;(5)圆上任意两点间的部分叫弧.错误;故选:B.二.填空题(共10小题)16.【解答】解:根据题意得:EF=BC,MN=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段BC形成一半径为2cm 的圆,线段BC是圆的周长,BC=EF=2π×2=4π,∴的长=EF==,∴n=120°,即∠MON=120°,∵OM=ON,∴∠M=30°,过O作OG⊥MN于G,∵OM=2,∴OG=1,MG=,∴MN=2MG=2,故答案为:2.17.【解答】解:如图所示:到点A的距离为5cm的点有2个.故答案为:2.18.【解答】解:如图,∵∠AOB=40°,OA=OB,∴∠OAB=∠OBA==70°,故答案为:70°.19.【解答】解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;故答案为:半径.20.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠PAB=20°,因而∠PBA=90°﹣20°=70°,在小量角器中弧PB所对的圆心角是70°,因而P在小量角器上对应的度数为70°.故答案为:70°;21.【解答】解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;故答案为:圆心22.【解答】解:∵1个圆把平面分成部分=2,2个圆把平面最多分成的部分=2+2=4,3个圆把平面最多分成的部分=2+2+4=2+2(1+2)=8,4个圆把平面最多分成的部分=2+2(1+2+3)=14,∴10个圆把平面最多分成的部分=2+2(1+2+3+4+5+6+7+8+9)=92.故答案为92.23.【解答】解:连接OD,∵CD=OA=OD,∠C=20°,∴∠ODE=2∠C=40°,∵OD=OE,∴∠E=∠EDO=40°,∴∠EOB=∠C+∠E=40°+20°=60°,故答案为:60°.24.【解答】解:连接OC,∵CD=4,OD=3,在Rt△ODC中,∴OC===5,∴AB=2OC=10,故答案为:10.25.【解答】解:∵△ABC中,∠ACB=90°,∠A=40°∴∠B=50°∵BC=CD∴∠B=∠BDC=50°∴∠BCD=80°∴∠ACD=10°.三.解答题(共6小题)26.【解答】解:连结OC,如图,∵CE=AO,而OA=OC,∴OC=EC,∴∠E=∠1,∴∠2=∠E+∠1=2∠E,∵OC=OD,∴∠D=∠2=2∠E,∵∠BOD=∠E+∠D,∴∠E+2∠E=75°,∴∠E=25°.27.【解答】解:连接OC,∵AB=5cm,∴OC=OA=AB=cm,Rt△CDO中,由勾股定理得:DO==cm,∴AD=﹣=1cm,由勾股定理得:AC==,则AD的长为1cm,AC的长为cm.28.【解答】解:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合如图所示:29.【解答】解:AC与BD相等.理由如下:连结OC、OD,如图,∵OA=OB,AE=BF,∴OE=OF,∵CE⊥AB,DF⊥AB,∴∠OEC=∠OFD=90°,在Rt△OEC和Rt△OFD中,,∴Rt△OEC≌Rt△OFD(HL),∴∠COE=∠DOF,∴AC弧=BD弧,∴AC=BD.30.【解答】解:(1)到点P的距离等于2cm的点的集合图中⊙P;到点Q的距离等于3cm的点的集合图中⊙Q.(2)到点P的距离等于2cm,且到点Q的距离等于3cm的点有2个,图中C、D.31.【解答】解:连接OD,如图,∵AB=2DE,而AB=2OD,∴OD=DE,∴∠DOE=∠E=20°,∴∠CDO=∠DOE+∠E=40°,而OC=OD,∴∠C=∠ODC=40°,∴∠AOC=∠C+∠E=60°.。
《圆》同步练习题含答案
九年级数学上册第24章《圆》同步练习一、选择题1.圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8 cm,时,直线与圆相交B.当d=4.5 cm时,直线与圆相离C.当d=6.5 cm时,直线与圆相切D.当d=13 cm时,直线与圆相切2.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连接CD.如果∠BAC=20°,则∠BDC=()A.80°B.70°C.60°D.50°3.如图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于()A.102 B.20 C.18 D .2024.如图,△ABC内接于⊙O,且∠ABC=700,则∠AOC为()(A)1400 (B)1200(C)900 (D)3505.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外 D.无法确定6.(3分)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30° B.45° C.60° D.90°7.(3分)(2015•牡丹江)如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于().A.32° B.38° C.52° D.66°8.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A.24cm B.48cm C.96cm D.192cm二、填空题9.用半径为6cm的半圆围成一个圆锥的侧面,则圆锥的底面半径等于cm.10.一个几何体的三视图如图,根据图示的数据计算该几何体的表面积为.(结果保留π)11.如果一个扇形的圆心角为120°,半径为6,那么该扇形的弧长是.12.如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为 cm.13.(3分)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径.14.(3分)边长为1的正三角形的内切圆半径为.15.(3分)(2015•郴州)已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为 cm2.16.(4分)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC= .三、解答题17.如图,已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,若AB=2,∠P=30°,求AP的长(结果保留根号).18.已知:如图,AB 为⊙O 的直径,AD 为弦,∠DBC =∠A 求证: BC 是⊙O 的切线;19.若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长.20.如图,已知⊙O 与BC 相切,点C 不是切点,AO ⊥OC ,∠OAC=∠ABO ,且AC=BO ,判断直线AB 与⊙O 的位置关系,并说明理由.21.已知,如图,直线MN 交⊙O 于A ,B 两点,AC 是⊙O 的直径,DE 切⊙O 于点D ,且DE ⊥MN 于点E . (1)求证:AD 平分∠CAM .(2)若DE=6,AE=3,求⊙O 的半径. 22.(10分)如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,点E 在⊙O 外,∠EAC=∠B . (1)求证:直线AE 是⊙O 的切线;(2)若∠D=60°,AB=6时,求劣弧AC 的长(结果保留π).O E D CB A参考答案1.C2.B.3.B.4.A5.B.6.D.7.B.8.B.9.310.24π.11.4π.12.4.13.1.14.6.15.3π.16.17.18.证明:(1)∵AB为⊙O的直径∴∠D=90°, ∠A+∠ABD=90°∵∠DBC =∠A∴∠DBC+∠ABD=90°∴BC⊥AB∴BC是⊙O的切线19.∵OC∥AD,∠D=90°,BD=6∴OC⊥BD∴BE=12BD=3∵O是AB的中点∴AD=2EO -∵BC⊥AB ,OC⊥BD∴△CEB ∽△BEO ,∴2BE CE OE =• ∵CE=4, ∴94OE = ∴AD=9220.直线AB 与⊙O 的位置关系是相离.理由见解析. 21.(1)证明见解析;(2)⊙O 的半径为7.5. 22.(1)证明见试题解析;(2)2π.。
(完整版)圆练习题及答案
(完整版)圆练习题及答案圆练习题及答案⼀、选择题1、下列结论正确的是( )A.弦是直径 B.弧是半圆 C.半圆是弧 D.过圆⼼的线段是直径2、下列说法正确的是( )A.⼀个点可以确定⼀条直线 B.两个点可以确定两条直线C.三个点可以确定⼀个圆 D.不在同⼀直线上的三点确定⼀个圆3、圆是轴对称图形,它的对称轴有( )A.⼀条 B 两条 C.⼀条 D.⽆数条4、若⊙P的半径为13,圆⼼P的坐标为(5, 12 ), 则平⾯直⾓坐标系的原点O与⊙P的位置关系是( ) A.在⊙P内 B.在⊙P内上 C.在⊙P外 D.⽆法确定5、已知⊙O的直径为10,圆⼼O到弦的距离OM的长为3,则弦AB的长是()A、4B、6C、7D、86、直⾓三⾓形两直⾓边长分别为3和l,那么它的外接圆的直径是( )A.1B.2C.3D.47、已知⊙O的半径长6cm,P为线段O A的中点,若点P在⊙O上,则OA的长是( )A.等于6cm B.等于12cm C.⼩于6cm D .⼤于12cm8、正⽅形ABCD的边长是l,对⾓线AC,BD相交于点O,若以O为圆⼼作圆.要使点A在⊙O外,则所选取的半径可能是( )A.12B.2C.3D.2⼆、填空题1、圆上各点到圆⼼的距离都等于 , 到圆⼼距离等于半径的点都在 .2、若圆的⼀条弦长为该圆的半径等于12cm,其弦⼼距等于 cm.3、在Rt△ABC中,∠C=900, CD⊥AB, AC=2, BC=3,若以C为圆⼼,以2为半径作⊙C,则点A在⊙C ,点B 在⊙C ,点D在⊙C .4、三⾓形的外⼼是三⾓形的三条的交点。
5、如图, AB是⊙O的直径,弦CD⊥AB于点M, AM = 2cm,BM = 8cm. 则CD的长为 cm.6、已知⊙O的半径为5cm,过⊙O内⼀点P的最短的弦长为8cm,则OP= .7、⼀个点到定圆上最近点的距离为4,最远点的距离为9,则此圆的半径是。
8、已知:如图,有⼀圆弧形拱桥,拱的跨度AB=16cm,拱⾼CD=4cm,那么拱形的半径是 cm.三、解答题1、已知,如图,OA,OB为⊙0的半径,C,D分别为OA , OB的中点.求证:(l)∠A=∠B; (2) AE=BE.2、如图,在平⾯直⾓坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平⾏四边形.求点C的坐标.3、已知:如图,∠PAC=300,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于 E、F两点,求圆⼼O到AP的距离及EF的长.4、某居民⼩区⼀处圆柱形的输⽔管道破裂,维修⼈员为更换管道,需确定管道圆形截⾯的半径,下图是⽔平放置的破裂管道有⽔部分的截⾯.(1)请你补全这个输⽔管道的圆形截⾯;(2)若这个输⽔管道有⽔部分的⽔⾯宽AB =16cm,⽔⾯最深地⽅的⾼度为4cm,求这个圆形截⾯的半径.B卷⼀、选择题1、AB为⊙0的直径,C为⊙O上⼀点,过C作CD⊥AB于点D,延长CD⾄E,使DE=CD,那么点E的位置( )A.在⊙0 内 B.在⊙0上 C.在⊙0外 D.不能确定2、出下列命题: (l )垂直于弦的直线平分弦; (2 )平分弦的直径必垂直于弦,并且平分弦所对的两条弧; (3 )平分弦的直线必过圆⼼; (4 )弦所对的两条弧的中点连线垂直平分弦。
九年级数学上册 24.1 圆(第1课时)同步练习 (新版)新人教版
24.1 圆(第一课时)知识点1、圆的定义:⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫,线段OA叫做。
⑵描述性定义:圆是到定点的距离等于的点的集合【特别注意】:1、在一个圆中,圆心决定圆的,半径决定圆的。
2、直径是圆中的弦,弦不一定是直径。
2、弦与弧:弦:连接圆上任意两点的叫做弦。
弧:圆上任意两点间的叫做弧,弧可分为、、三类。
3、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴,的直线都是它的对称轴。
⑵中心对称性:圆是中心对称图形,对称中心是。
一、选择题1.下列命题正确的有()①弦是圆上任意两点之间的部分②半径是弦③直径是最长的弦④弧是半圆,半圆是弧A.1个B.2个C.3个D.4个2.如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为(A.38B.52C.76D.1043.如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是(A.25°B.40°C.30°D.50°4.一个点到圆上的最小距离是4cm,最大距离是9cm,则圆的半径是().A.2.5cm或6.5 cmB.2.5cmC.6.5cmD.5cm或13cm5.如图,已知在⊙O中,AB、CD为直径,则AD与BC的关系是().A.AD=BCB.AD∥BCC.AD∥BC且AD=BCD.不能确定6.如图,已知AB为⊙O的直径,点C在⊙O上,∠C=15°,则∠BOC的度数为( ) A.15° B.30° C.45°D.60°二、填空题1.⊙O的半径为2cm,则它的弦长d cm的取值范围是.2.⊙O中若弦AB等于⊙O的半径,则△AOB的形状是 .3.如图,已知AB是⊙O的直径,点C在⊙O上,点D是BC的中点,若AC=10cm,则OD= cm.4.如图4,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠E=18°,∠C=______,∠AOC=________;5. P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最长弦长为_______,最短弦长为________;三、解答题1.在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,D为AB的中点,E为AC的中点,以B为圆心,BC为半径作⊙B,A、C、D、E与⊙B的位置关系如何?A2、如图, M,N为线段AB上的两个三等分点,点A、B在⊙O上,求证:∠OMN=∠ONM。
北师大版一年级语文上学期寒假综合专项同步练习及答案
北师大版一年级语文上学期寒假综合专项同步练习及答案班级:_____________ 姓名:_____________看拼音写词语1. 看拼音,写词语。
kāi xīn shūběn wǒmen cóng lái (________)(________)(________)(________)xiàhuíjǐgèyóu yǒng dàshuǐ(________)(________)(________)(________)shítou yìbǎquán duìrìzi (________)(________)(________)(________)2. 看拼音写词语。
hóng sèwài gōng bàba wǎn shangzài jiàn wán xiào mén wài zài huì3. 看拼音写词语。
shēng zìzuǒyòu hóng huāyǒu shíkāi dòng wàn yīdòng chēyòu shǒu4. 看拼音,写词语。
míng liàng jīn yú zhōng jiān liáng qìhé fēng xì yǔniǎo yǔhuāxiāng5. 看拼音写汉字。
dōng xībái yún kěshìrén kǒu lǐtóusìshírìyuèchóng zi ér zi dàhuǒ笔画填空6. 先写笔顺,再填空。
九年级(上)《圆》-同步练习(A4有答案)
九年级《圆》1 圆的基本性质(1)学习要求:理解圆的定义,理解弦、直径、圆弧、半圆、优弧、劣弧等有关概念.做一做:填空题:1.确定一个圆的要素是______和______.2.平面上,与已知点P的距离为3cm的所有点组成的图形是______.3.A、B是⊙O上不同的两点,⊙O的半径为r,则弦AB长的取值范围是______选择题:4.如图,⊙O中的点A、O、D以及点B、O、C分别在不同的两直线上,图中弦的条数为( )(A)2 (B)3 (C)4 (D)55.下列说法中,正确的是( )(A)过圆心的线段是直径(B)小于半圆的弧是优弧(C)弦是直径(D)半圆是弧6.下列说法中:①直径相等的两个圆是等圆;②圆中最长的弦是直径;③一条弦把圆分成两条弧,一条是优弧,另一条是劣弧;④顶点在圆心的角是圆心角.其中正确的是( )(A)①②(B)①②④(C)①②(D)②③解答题:7.已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB上的点,且AC=BD.求证:AD=BC.8.如图,在△ABC中,∠ACB=90°,AC=12,BC=5,分别以A为圆心,12为半径,以B为圆心,5为半径画弧,分别交斜边AB于M、N两点,求线段MN的长度.9.如图,在⊙O中,AB,CD为⊙O的两条直径,AE=BF,求证四边形CEDF是平行四边形.10.已知:如图,矩形ABCD的对角线AC和BD相交于O点,E、F、C、H分别为OD、OA、OB、OC 的中点.试说明:E、F、G、H四个点在以点O为圆心、OE为半径的同一个圆上.问题探究:11.如图,点A、D、G、M在半圆O上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,NH=c,则下列各式中正确的是( )(A)a>b>c(B)a=b=c(C)c>a>b(D)b>c>a九年级《圆》2 圆的基本性质(2)学习要求:探索并认识圆的轴对称性、中心对称性及圆的旋转不变性.掌握圆心角、弧、弦和弦心距之间的关系以及垂径定理.做一做:填空题:1.如图1,在⊙O中,=,若∠AOB=40°,则∠COD=______°.2.如图2,⊙O的半径为5,弦AB的长为6,OC⊥AB于C,则OC的长为______.3.如图3,四边形ABCD中,AB=AC=AD,若∠CAD=82°,则∠CBD=______度.图1 图2 图34.已知⊙O的半径为r,那么垂直平分半径的弦长为______.5.AB是⊙O的直径,弦CD⊥AB,E为垂足,若AB=9,BE=1,则CD=______.6.⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长为整数,则满足条件的点P有_个.选择题:7.在同圆或等圆中,若的长度=的长度,则下列说法正确的个数是( )①的度数等于;②所对的圆心角等于所对的圆心角;③和是等弧;④弦AB所对的弦心距等于弦CD所对的弦心距.(A)1个(B)2个(C)3个(D)4个8.下面四个命题中正确的一个是( )(A)平分一条直径的弦必垂直于这条直径(B)平分一条弧的直线垂直于这条弧所对的弦(C)弦的垂线必过这条弦所在圆的圆心(D)在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心9.如图,AB是⊙O直径,CD是⊙O的弦,AB⊥CD于E,则图中不大于半圆的相等弧有( )(A)1对(B)2对(C)3对(D)4对10.过⊙O内一点M的最长弦为4cm,最短的弦长为2cm,则OM的长为( )(A)3m (B)2m (C)1cm (D)3cm11.如图,AB 是⊙O 的直径,弦CD ⊥AB 于P ,35=CD ,25=OP ,则弦AC 的长为( )(A)56(B)36(C)35(D)55解答题:12.⊙O 的半径为5,弦AB ∥CD ,CD =6,AB =8,求AB 和CD 之间的距离.13.如图,CE 为⊙O 的直径,AB 为⊙O 的弦,且AB ⊥CE ,垂足为点D ,设⊙O 的半径为r ,AB +CD =2r ,CD =1,求⊙O 的半径.14.如图,半径为5的⊙P 与轴交于点M (0,-4),N (0,-10),函数)0(<=x xky的图像过点P ,求k 的值.问题探究:15.如图,在⊙O 中,AB =2CD .试判断与2是否相等,并说明理由.九年级《圆》3 圆的基本性质(3)学习要求:了解圆周角与圆心角的区别和联系,掌握圆周角的概念及性质,并学会应用圆周角的性质解决问题.做一做:填空题:1.如图1,已知圆心角∠AOB=100°,则圆周角∠ACB的度数为______.2.如图2,在⊙O中,=,若∠BOC=70°,则∠ABC=______°.3.如图3,AB为直径,∠BED=40°,则∠ACD=______度.图1 图2 图34.如图4,AB是⊙O的直径,点C在⊙O上,∠BAC=30°,点P在线段OB上运动.设∠ACP=x,则x的取值范围是____________.5.若一条弦把圆周分成2∶3的两段弧,则劣弧所对圆心角的度数是______度,弦所对的圆周角的度数是______.6.如图5,A、B、C、D是⊙O上四点,且点D是的中点,CD交OB于E,∠AOB=100°,∠OBC =55°,则∠OEC=______度.7.如图6,图中圆周角的个数是( )图4 图5 图6(A)9个(B)12个(C)8个(D)14个8.如图,C是以AB为直径的半圆弧上的一点,已知BC的弦心距与直径AB的比为3∶4,则所对的圆心角为( )(A)100°(B)90°(C)115°(D)120°9.下列命题中,正确的个数为( )(1)相等的圆周角所对的弧相等(2)同圆或等圆中,同弦或等弦所对的圆周角相等(3)一边上的中线等于这条边的一半的三角形是直角三角形(4)等弧所对的圆周角相等(A)1个(B)2个(C)3个(D)4个10.使用直角钢尺检查某一工件是否恰好是半圆形的凹面,成半圆形的为合格,如图所示的四种情况中的合格的是( )11.如图8,BD 为圆O 直径,弦AC 、BD 相交于点E ,下列结论一定成立的是( )(A)∠BAO =∠C (B)∠B =∠D (C)∠OAE =∠C (D)∠BAO =∠D 12.如图9,A 、B 、C 是⊙O 上的三点,∠α =140°,那么∠A 等于( )(A)70° (B)110° (C)140° (D)220° 13.如图10,A 点是半圆上一个三等分点,B 点是的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP +BP 的最小值为( )图8 图9 图10(A)1 (B)22(C)2 (D)13-解答题:14.如图,△ABC 中,已知AB =AC ,∠BAC =50°,以AB 为直径的圆分别交BC 、AC 于D 、E ,求,,的度数.15.如图,射线AM 交一圆于点B 、C ,射线AN 交该圆于点D 、E ,且=,求证:AC =AE .问题探究: 16.如图,△ABC 是⊙O 的内接三角形,点C 是优弧AB 上一点(点C 不与A ,B 重合),设∠OAB =α ,∠C =β .(1)当α =35°时,求β 的度数;(2)猜想α 与β 之间的关系,并给予证明.九年级《圆》4 与圆有关的位置关系(1)学习要求:理解点和圆的位置关系,以及确定一个圆的条件,了解三角形的外接圆的概念.做一做:填空题:1.若⊙O的半径为r,点A到圆心O的距离为d,当点A在圆外时,d______r;当点A在圆上时,d______r;当点A在圆内时,d______r.5长为半径画圆,2.在△ABC中,∠C=90°,AC=2cm,BC=4cm,CM是中线,以C为圆心,以cm 则A、B、C、M四点在圆外的有点______,在圆上的有点______,在圆内的有点______.3.已知⊙O的半径为1,点P与O的距离为d,且方程x2-2x+d=0有实数根,则P在⊙O的______.4.过一点A可作______个圆,过两点A、B可作______个圆,且圆心在线段AB的______上,过三点A、B、C,当这三点______时能且只能作一个圆,且圆心在______上.5.等边三角形的边长为6cm,则它的外接圆的面积为______.6.在Rt△ABC中,已知两直角边的长分别为6cm和8cm,那么Rt△ABC的外接圆的面积是7.锐角三角形的外心在______,直角三角形的外心在______,钝角三角形的外心在______.选择题:8.两个圆的圆心都是O,半径分别为r1和r2,且r1<OA<r2,那么点A在( )(A)⊙r1内(B)⊙r2外(C)⊙r1外,⊙r2内(D)⊙r1内,⊙r2外9.⊙O的半径r=10cm,圆心到直线L的距离OM=8cm,在直线L上有一点P,且PM=6,则点P( )(A)在⊙O内(B)在⊙O上(C)在⊙O外(D)可能在⊙O内也可能在⊙O外10.⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是( )(A)点P在⊙O内(B)点P在⊙O上(C)点P在⊙O外(B)点P在⊙O上或在⊙O外11.三角形的外心是( )(A)三条中线的交点(B)三条中垂线的交点(C)三条高的交点(D)三条角平分线的交点解答题:12.如图1,使用直尺和圆规确定如图所示的破残轮片的圆心位置.图113.点P到⊙O上的点的最大距离是6cm,最小距离是2cm,求⊙O的半径.14.某商场有三个销量较大的柜台,经理想修建一个收银台,使得三个柜台到收银台的距离相等.如果三个柜台的位置如图2所示,那么如何确定收银台的位置?图2问题探究:15.已知:如图3,三个边长为2a个单位长度的正方形如图所示方式摆放.图①图②图③图3∴______为所求作的圆.∴______为所求作的圆.(1)画出覆盖图①的最小圆;(2)将图①中上面的正方形向右平移a个单位长度,得到图②,请用尺规作出覆盖新图形的最小圆(不写作法,保留作图痕迹);(3)可以利用图③,比较(1)和(2)中的两个圆的大小,通过计算简要说明理由.九年级《圆》5 与圆有关的位置关系(2)学习要求:探索与了解直线与圆的位置关系.掌握切线的识别方法,理解切线长定理和三角形的内切圆的概念.做一做:填空题:1.直线和圆的位置关系有:______、______、______.2.两个同心圆,大圆半径R=3cm,小圆半径r=2cm,d是圆心到直线l的距离,当d=2cm,l与小圆的交点个数为______,l与大圆的交点个数为______,当d=2.5cm,l与小圆的交点个数为______,l与大圆的交点个数为______.3.如图1,AB是⊙O的直径,点D在AB的延长线上,BD=OB,CD与⊙O切于C,那么∠CAB=______度.图14.两个同心圆的半径分别为3cm和5cm,大圆的弦AB与小圆相切,则AB=______cm.5.如图2,AB是半圆直径,直线MN切半圆于C,AM⊥MN,BN⊥MN,如果半圆直径为m,则AM+BN =______.图26.在△ABC中,若∠C=90°,∠A=30°,AC=3,则内切圆的直径为______.选择题:7.下列说法正确的是( )(A)若直线与圆有一个交点则直线是圆的切线(B)经过半径的外端的直线是圆的切线(C)和半径垂直的直线是圆的切线(D)经过圆心且垂直于切线的直线,必经过切点8.若CD是⊙O的切线,要判定AB⊥CD,还需要添加的条件是( )(A)AB经过圆心O(B)AB是直径(C)AB是直径,B是切点(D)AB是直线,B是切点9.在△ABC中,∠C=90°,AC=12cm,BC=5cm,若以C为圆心,5cm为半径作圆,则斜边AB与⊙O 的位置关系是( )(A)相离(B)相切(C)相交(D)不能确定10.如图,P A、PB分别与⊙O相切于A、B两点,C是⊙O上一点,且∠ACB=55°,则∠P等于( )(A)70°(B)65°(C)110°(D)55°11.如图,AB是半⊙O直径、P点是AB延长线上一点,PC切半⊙O于C,若∠P=32°,则∠A等于( )(A)30°(B)32°(C)29°(D)31°12.如图,⊙O的外切梯形ABCD中,若AD∥BC,那么∠DOC的度数为( )(A)70°(B)90°(C)60°(D)45°13.如图,以正方形ABCD的BC边为直径作半圆O,过点D作直线切半圆于点F,交AB边于E.则三角形ADE和直角梯形EBCD周长之比为( )(A)3∶4 (B)4∶5 (C)5∶6 (D)6∶714.如图,⊙O是△ABC的内切圆,D、E、F是切点,∠A=50°,∠C=60°,则∠DOE=( )(A)70°(B)110°(C)120°(D)130°解答题:15.在△ABC 中,AB =4cm ,AC =,cm 22若以A 为圆心,2cm 为半径的圆与直线BC 相切,求∠BAC的度数.16.如图,AB 是⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D . 求证:AC 平分∠DAB .17.(08福州)如图,AB 是⊙O 的直径,AD 是弦,∠DAB =22.5°,延长AB 到点C ,使∠ACD =45°(1)求证:CD 是⊙O 的切线; (2)若,22 AB 求BC 的长.问题探究:18.已知:如图,正方形ABCD 中,有一个直径为BC 的半圆,BC =2cm ,现有两点E 、F ,分别从点B 、点A 同时出发,点E 沿线段BA 以1cm/s 的速度向点A 运动,点F 沿折线A -D -C 以2cm/s 的速度向点C 运动,设点E 离开点B 的时间为t 秒. (1)当t 为何值时,线段EF 与BC 平行? (2)设1<t <2,当t 为何值时,EF 与半圆相切?九年级《圆》6 与圆有关的位置关系(3)学习要求:探索并了解圆与圆的五种位置关系及数量关系,学会区别的方法.做一做:填空题:1.两个同心圆,大圆的半径为9,小圆的半径为5,如果⊙O与这两圆都相切,那么⊙O的半径等于______.2.相切两圆的圆心距为18cm,其中小圆半径为7cm,则大圆半径为______.3.两圆半径分别为5cm和x cm,圆心距离为7cm,若两圆相交时,则x的取值范围是4.已知两圆的半径分别为7cm和11cm,当圆心距为3cm时,两圆位置关系为______;当圆心距为12cm 时,两圆位置关系为______.5.如图1,在12×6的网格图中(每个小正方形的边长均为1个单位),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B相切,那么⊙A由图示位置需向右平移______个单位.图16.如图2,图中各圆两两相切,⊙O的半径为6,⊙A和⊙B的半径相等,则⊙C的半径r=______.图27.两圆半径的比为5∶3,当这两圆外切时,圆心距是24,若这两圆相交,则圆心距d的取值范围是______.8.已知两圆内切,一个圆的半径是3,圆心距是2,那么另一个圆的半径是______.选择题:9.半径分别为5.5cm和4.5cm的两个圆内切,这两圆的圆心距是( )(A)0.5cm (B)1cm (C)5cm (D)10cm10.设两圆半径分别为R和r(R>r),圆心距d,若这两圆内含,则下列不等式成立的是( )(A)R+r<d(B)R-r>d(C)R-r<d(D)R+r>d>R-r11.两圆半径分别为3和5,圆心距d,若两圆相切,那么( )(A)d=2 (B)d=8(C)2<d<8 (D)d=2或d=8解答题:12.若两圆的圆心距d满足等式|d-4|=3,且两圆半径是方程x2-7x+12=0的两个根,判断这两圆的位置关系.13.已知:如图3,⊙O1与⊙O2交于A,B两点,O1A切⊙O2于A,若O1A=2cm,⊙O2半径为1cm,求AB的长.图3问题探究:14.在种植农作物时,一个很重要的问题就是“合理密植”.如图4是栽植一种蔬菜时的两种方法,A、B、C、D四株顺次连结成为一个菱形,且AB=BD;A′、B′、C′、D′四株顺次连结成为一个正方形.这两种图形的面积为四株作物所占的面积,两行作物间的距离为行距;一行中相邻两株作物的距离为株距;设这两种作物充分生长后,每株在地面上的影子近似成一个圆面(相邻两圆如图相切),其中阴影部分的面积表示生长后空隙地面积.在株距都为a,其他客观原因也相同的条件下,请从栽植的行距,蔬菜所占地面积,充分生长后空隙地面积三个方面比较两种栽植方法,哪种方法能更充分地利用土地.图4九年级《圆》7 正多边形与圆学习要求:理解正多边形的中心、半径、中心角、边心距等概念,学会用等分圆周的方法画正多边形.做一做:填空题:1.正六边形内接于⊙O,⊙O的半径为4cm,则这个正六边形的边长为______cm,面积为______cm2.2.等边三角形外接圆半径与内切圆半径之比为______.3.若等边三角形的边长为3,则它的外接圆的半径的长为______.4.一个正三角形与一个正六边形的周长相等,则它们的面积之比为______.解答题:5.已知正四边形的边心距为2,求它的外接圆的面积.6.如图1,圆内接正六边形ABCDEF中,对角线BD,EC相交于点G,求∠BGC的度数.图17.一个不等边三角形是不是一定有外接圆和内切圆?画图试一试.如果有,这两个圆是不是同心圆? 8.如图2,已知点A、B、C、D、E是⊙O的5等分点,画出⊙O的内接和外切正五边形.图29.要用圆形铁片截出边长为a的正方形铁片,选用的圆铁片的直径最小要多长?10.如图3,正六边形的螺帽的边长a =12mm ,这个搬手的开口b 最小应是多少?(结果精确到0.1mm)图311.试画出下列图形:问题探究:12.如图4,八边形A B C D E F G H 中,∠A =∠B =∠C =∠D =∠E =∠F =∠G =∠H =135°,AB =CD =EF =GH =1cm ,BC =DE =FG =HA =,cm 2则这个八边形的面积等于( )图4(A)7cm 2 (B)8cm 2(C)9cm 2(D)2cm 214九年级《圆》8 有关圆的计算学习要求:学会计算弧长及扇形的面积,学会计算圆锥的侧面积和全面积.做一做: 填空题:1.若⊙O 的半径为4cm ,其中一条弧长为2πcm ,则这条弧所对的圆心角是______ 2.一个扇形的圆心角为60°,半径是10cm ,则这个扇形的弧长是______cm .3.如图1,在正方形铁皮上剪下一个圆形和扇形,使之恰好围成一个圆锥模型,设圆的半径为r ,扇形半径为R ,则圆的半径与扇形半径之间的关系为______.4.如图2,矩形ABCD 的长为a ,宽为b ,以A ,B ,C ,D 为圆心的四个圆的半径都是r (a >b >2r ),则图中阴影部分的面积是______.5.圆锥可以看作是由______旋转而得的,圆锥的侧面展开图是______.6.一个圆锥的底面圆半径为4cm ,母线长为9cm ,则该圆锥的全面积为______.7.一个圆锥的侧面积是底面积的4倍,这个圆锥的侧面展开图圆心角的度数为______. 8.如图3是一人用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm .母线OE (OF )长为10cm .在母线OF 上的点A 处有一块爆米花残渣,且F A =2cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点.则此蚂蚁爬行的最短距离为______cm .图1 图2 图3选择题: 9.如图4,以O 为圆心的两个同心圆中,两圆半径分别为2和1,∠AOB =120°,则阴影部分的面积为( ) (A)4π(B)2π(C)π34(D)π10.如图5,图中实线部分是半径为9cm 的两条等弧组成的游泳池.若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( ) (A)12πcm (B)18πcm (C)20πcm (D)24πcm11.如图6,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC于F ,点P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是( )(A)π944-(B)π984-(C)π948-(D)π988-图4 图5 图612.如图7,在下列边长相同的正方形中,阴影部分的面积相同的有( )图7(A)1个(B)2个(C)3个(D)4个13.如图8,有六个等圆按甲、乙、丙三种摆放,使相邻两圆互相外切,圆心连线分别构成正六边形、平行四边形、正三角形,圆心连线外侧的六个扇形(阴影部分)的面积之和依次记为S、P、Q,则( )图8(A)S>P>Q(B)S>Q>P(C)S>P=Q(D)S=P=Q14.如图,圆锥形烟囱帽的底面直径是40cm,母线长是25cm,则这个圆锥形零件的展开图面积是( )(A)200πcm2(B)300πcm2(C)50πcm2(D)500πcm215.一个扇形的半径为30cm,圆心角为150°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为( )(A)12.5cm (B)30cm (C)25cm (D)35cm解答题:16.如图10,有一个半径为12米的圆形花坛,现要用两个同心圆把花坛的面积三等分,以便种植三种不同颜色的花卉,求这两个同心圆的半径.图1017.如图11,AB为半圆O的直径,C、D是的三等分点,若⊙O的半径为1,E为直线AB上任意一点,求图中阴影部分的面积.图1118.如图12,扇形AOB 的圆心角为直角,正方形OCDE 内接于扇形,点C 、E 、D 分别在OA 、OB 、上,过A 作AF ⊥ED 交ED 的延长线于F .如果正方形的边长为1,那么阴影部分的面积为多少?图1219.如图13,是一块从生日蛋糕中切下的楔型蛋糕.(1)计算扇形OAD 的面积;(2)计算楔型蛋糕的整个表面积.图1320.若△ABC 为等腰直角三角形,其中∠ABC =90°,,cm 22==BC AB ,求将等腰直角三角形绕其直线AC 旋转一周所得圆锥的表面积.问题探究:21.如图14所示的曲边三角形可按下述方法作出:分别以正三角形的一个顶点为圆心,边长为半径,画弧使其经过另外两个顶点,然后擦去正三角形,三段圆弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为π,求它的面积.图14圆 9 复 习学习要求:通过复习,进一步理解圆中的概念、性质,掌握运用圆的有关知识解决问题的方法.做一做: 选择题:1.如图1,在两半径不同的同心圆中,∠AOB =∠A ′OB ′=60°,则( )图1 (A)= (B)> (C)的度数=的度数 (D)的长度=的长度 2.下列说法正确的是( ) (A)两个半圆是等弧 (B)同圆中优弧与半圆的差必为劣弧 (C)同圆中优弧与劣弧的差必为劣弧 (D)由弦和弧组成的图形叫弓形3.已知⊙O 的直径是6cm ,若P 是⊙O 内部的一点,则OP 的长度的取值范围是( ) (A)OP <6cm (B)OP ≤3cm (C)0≤OP <3cm (D)0<OP <3cm4.如图2,已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上,一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如右图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )图25.已知⊙O 的半径为2cm ,弦AB 长cm 32,则这条弦的中点到弦所对劣弧的中点的距离为( ) (A)1cm(B)2cm(C)cm 2(D)cm 36.如图3,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 两点,AB =10cm ,CD =6cm ,则AC 的长为( )图3 (A)0.5cm(B)1cm(C)1.5cm(D)2cm7.在⊙O 中,圆心角∠AOB =90°,点O 到弦AB 的距离为4,则⊙O 的直径的长为( ) (A)24(B)28(C)24( D)168.⊙O 的弦AB 等于半径,那么弦AB 所对的圆周角一定是( ) (A)30° (B)150° (C)30°或150° (D)60°9.如图,有一圆心角为120°、半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,那么圆锥的高是( )(A)cm 24(B)cm 35(C)cm 62(D)cm 32 10.如图,A 、B 、C 、D 是圆上四点,AB 、DC 延长线交于点E ,、分别为120°、40°,则∠E 等于( )(A)40° (B)35°(C)60°(D)30°11.如图,D 是的中点,与∠ABD 相等的角的个数是( )(A)7个 (B)3个 (C)2个 (D)1个12.如图,⊙O 与直线MN 相切于C 、AB 是⊙O 的直径,∠ABC =56°,则∠BCN 等于( )(A)34°(B)56° (C)24°(D)124°13.等边三角形的内切圆半径、外接圆半径和高的比为( )(A)321::(B)321::(C)231::(D)1∶2∶314.已知△ABC 的三边长分别为6,8,10,分别以A ,B ,C 三点为圆心,作两两相外切的三个圆,那么这三个圆的半径分别为( ) (A)3,4,5 (B)2,4,6 (C)6,8,10 (D)4,6,8填空题:15.一个圆的最大的弦长为10cm ,则此圆的半径为______. 16.已知:⊙O 的半径为4cm ,弦AB 所对的劣弧为圆的31,则弦AB 的长为______cm ,AB 的弦心距为______cm .17.圆内接三角形三个内角所对的弧长之比为3∶4∶5,那么这个三角形内角的度数分别为 18.如图8,圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的侧面积是______cm 2.图819.如图9,小丽要制作一个圆锥模型,要求圆锥的母线长为9cm ,底面圆的直径为10cm ,那么小丽要制作的这个圆锥模型的侧面展开扇形的纸片的圆心角度数是______.图920.如图10,矩形ABDC 中,AC =2,DC =4,以 AB 为直径的半圆O 与DC 相切于点E ,则阴影部分的面积为______(结果保留 )图1021.如图11①,O 1,O 2,O 3,O 4为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是______;如图11②,O 1,O 2,O 3,O 4,O 5为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是______.图11解答题:22.已知:⊙O的半径OA=1,弦AB、AC的长分别是2、3,求∠BAC的度数.23.如图12,在矩形ABCD中,AB=24,AD=7,以A为圆心作圆,如果B、C、D三点中,至少有一个点在圆内,且至少有一个点在圆外,求⊙A的半径R的取值范围.图1224.如图13,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形.求点C的坐标.图1325.如图14,BC为直径,G为半圆上任一点,A为中点,AP⊥BC于P.求证:AE=BE=EF.图1426.已知:如图15,AB是⊙O的直径,AC⊥l,BD⊥l,C、D是垂足,且AC+BD=AB.求证:DC是⊙O的切线.图1527.已知:如图16,A、C为⊙O上两点,AD为直径,∠1=∠2(1)求证:AB是⊙O的切线;(2)若AC=10cm,∠2=30°,求图中阴影部分面积.图1628.在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm 的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图17所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.方案一方案二图17圆10 测试题选择题:(每题4分,共40分)1.如图,是一个由四个同心圆构成的靶子示意图,点O 为圆心,且OA =AB =BC =CD =1,则周长更接近于20的是( )(A)以OA 为半径的圆 (B)以OB 为半径的圆 (C)以OC 为半径的圆 (D)以OD 为半径的圆2.在同圆或等圆中,如果=2,则AB 与CD 的关系是( )(A)AB >2CD (B)AB =2CD (C)AB <2CD (D)AB =CD3.在⊙O 中,两弦AB <CD ,OM ,ON 分别为这两条弦的弦心距,则OM ,ON 的关系是( ) (A)OM >ON (B)OM =ON (C)OM <ON (D)无法确定 4.一个点到一个圆的最短距离是3cm ,最长距离是6cm ,则这个圆的半径是( ) (A)4.5cm (B)1.5cm (C)4.5cm 或1.5cm (D)9cm 或3cm 5.在下列三角形中,外心在它一条边上的三角形是( ) (A)边长分别为2cm 、2cm 、3cm (B)三角形的边长都等于5cm(C)三角形的边长分别为5cm 、12cm 、13cm (D)三角形的边长为4cm 、6cm 、8cm 6.如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A 、B 两点)上移动时,点P ( )(A)到CD 的距离保持不变 (B)位置不变 (C)等分 (D)随C 点的移动而移动7.圆的弦与直径相交成30°角,并且分直径为6cm 和4cm 两部分,则弦心距为( ) (A)33 (B)3(C)21 (D)23 8.△ABC 中,∠B =90°,以BC 为直径作圆交AC 于E ,若BC =12,312=AB 则的度数为( )(A)60° (B)80°(C)100°(D)120°9.如图,BC 为半圆O 直径,A 、D 为半圆O 上两点,3=AB ,BC =2,则∠D 的度数是( ) (A)60° (B)120° (C)135°(D)150°10.如图,P A 、PB 切⊙O 于点A 、B ,C 是优弧上的点,∠C =64°,那么∠P 等于( )(A)26° (B)62° (C)60° (D)52°填空题:(每题4分,共28分)11.如图5,在⊙O 的内接四边形ABCD 中,若∠BAD =110°,则∠BCD 等于______.12.如图6,一把宽为2cm 的刻度尺在⊙O 上移动,当刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为______cm .13.已知圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径长的比是______.14.如图7,是一个水平放置的圆柱形水管的截面,已知水面高cm 22+=CD 水面宽AB =22cm ,那么水管截面圆的半径是______cm图5 图6 图715.如图8,∠ABC =90°,O 为射线BC 上一点,以点O 为圆心、BO 21长为半径作⊙O ,当射线BA 绕点B 按顺时针方向旋转______度时与⊙O 相切. 16.如图9,外接圆半径为r 的正六边形周长为______.17.如图10,AB 是半圆O 的直径,点C 、点D 是半圆O 的三等分点,若CD 为cm 3,则图中阴影部分的面积为______.图8 图9 图10解答题:(每题8分,共32分)18.已知:如图11,在Rt △ABC 中,∠C =90°,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC ,AB 分别交于点D ,E ,且∠CBD =∠A .判断直线BD 与⊙O 的位置关系,并证明你的结论.图1119.如图12,AB 是⊙O 的直径,过圆上一点D 作⊙O 的切线DE ,与过点A 的直线垂直于E ,弦BD 的延长线与直线AE 交于C 点,若=21,⊙O 的半径为r ,求由线段DE 、AE 、和所围成的阴影部分的面积.图1220.如图13,已知△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =8cm ,以OA 为直径的⊙D 与⊙O 的弦AC交于E 点,若CE =2cm . 求:(1)AC 的长;(2)所对的圆周角.图1321.如图14,六边形ABCDEF 内接于半径为r (常数)的⊙O ,其中AD 为直径,且AB =CD =DE =F A . (1)当∠BAD =75°时,求的长;(2)求证:BC ∥AD ∥FE .图14参考答案第二十四章 圆九年级《圆》1 圆的基本性质(1)1.圆心,半径 2.以点P 为圆心,3cm 长为半径的圆 3.0<AB ≤2r 4.B 5.D 6.B 7.提示:可证△AOD ≌△BOC 8.4 9.证OC =OD ,OE =OF 即可 10.提示:证明E 、F 、G 、H 四个点到点O 的距离相等 11.B九年级《圆》1 圆的基本性质(2)1.40 2.4 3.41 4.r 3 5.24 6.5 7.D 8.D9.C 10.A 11.C 12.AB 、CD 在圆心O 的同侧时,距离为1;AB 、CD 在圆心O 的异侧时,距离为7 13.25=r 14.28 15.提示:取的中点E ,则= ∴AE =EB ∵AE +EB >AB =2CD ∴2AE >2CD ∴AE >CD ,∴>,∴2>2∴>2九年级《圆》1 圆的基本性质(3)1.50° 2.72.5 3.50 4.30°≤x ≤90° 5.144;72度或108度 6.80 7.B 8.D 9.B 10.C 11.A 12.B 13.C 14.连OD ,OE .,,的度数分别是50°,50°,80° 15.连接C E ,利用“在同圆中等弧所对圆周角相等”,证出 ∠DEC =∠BCE ,∴AC =AE 16.(1)连接OB ,β =55° (2)α +β =90°九年级《圆》2 与圆有关的位置关系(1)1.>,=,< 2.B ,M ,A 、C 3.P 在⊙O 的内部或圆周上 4.无数个,无数个,垂直平分线,不在同一条直线上,其中任意两条线段的中垂线的交点 5.12πcm 2 6.25πcm 2 7.三角形内部,斜边中点上,三角形外部 8.C 9.B 10.A 11.B 12.提示:在圆弧上任取两条不平行的弦,分别作它们的垂直平分线,交点即为圆心 13.点P 在⊙O 外,21=r (PB -P A )=2cm ;点P 在⊙O 内,21=r (PB +P A )=4cm 14.提示:过不共线的三点作圆,找出圆心的位置 15.(1)∴⊙O 为所求作的圆(2)方法一: 方法二:∴⊙O '为所求作的圆.(3)计算过程略,(1)中的圆比 (2)中的圆大.九年级《圆》2 与圆有关的位置关系(2)1.相交,相切,相离 2.一个,两个;没有,两个 3.30 4.8 5.m 6.33- 7.D 8.C 9.C 10.A 11.C 12.B 13.D 14.B 15.∠BAC =105°或∠BAC =15° 16.提示:连结OC 17.(1)连接OD ,∠ODC =90° (2)BC =OC -OB =22-18.(1)34(2)222+九年级《圆》2 与圆有关的位置关系(3)1.2或7 2.11cm 或25cm 3.2<x <12 4.内含;相交 5.2、4、6、86.2 7.6<d <24 8.5或1 9.B 10.B 11.D 12.d =1时,两圆内切,d =7时,两圆外切 13.cm 55414.种植方法 (1)比种植方法 (2)能更充分地利用土地 九年级《圆》3 正多边形与圆1.4,324 2.2 3.1 4.2∶3 5.8π 6.60° 7.有,不是同心圆 8.图略 9.a 2 10.约为20.8mm 11.提示:先画圆的三等分点,再利用对称 12.A九年级《圆》4 有关圆的计算1.90 2.π3103.R =4r 4.ab -πr 2 5.一个直角三角形,扇形 6.52πcm 2 7.90° 8.412 9.B 10.D 11.A 12.D 13.D 14.D 15.A 16.34米和64米 12.43 18.提示:连结OD ,OD =OA =2,S阴影=S矩形ACDF =(OA -OC )CD =(OD -OC )CD =12-19.(1)20πcm 2 (2)3220240(+π)cm 2 20.提示:作BD ⊥AC 于D ,2πcm 28=表S 21.232π-复 习1.C 2.B 3.C 4.D 5.A 6.D 7.B 8.C9.A 10.A 11.B 12.A 13.D 14.B 15.5cm 16.2,3417.45°,60°,75° 18.60π 19.200° 20.π 21.O 1,O 3,如图①(答案不惟一,过O 1O 3与O 2O 4交点O 的任意直线都能将四个圆分成面积相等的两部分);O 5,O ,如图②(答案不惟一,如AO 4,DO 3,EO 2,CO 1等均可).图① 图②22.当AC 、AB 位于OA 同侧时,∠BAC =15°;当AC 、AB 位于OA 两侧时,∠BAC =75° 23.7<R <25 24.(1,3)25.连AB .证∠EAB =∠EBA ,∠EAF =∠EF A。
人教版-数学-九年级上册-二十四章 圆 24.1圆 同步练习
初中-数学-打印版
人教新课标版九年级上二十四章圆
24.1.1 圆同步练习
一、判断题
1.两个圆的面积相等是等圆.( )
2.半圆是半个圆和一条直径所围成的图形.( )
3.A、B是圆O上的两点,则OA与OB之和是圆的直径.( )
4.圆中没有最短的弦.( )
二、填空题
1.Rt△AOC中,∠C=90°,AC=4,OC=3,E为AO中点,以O为圆心,OC为半径作圆,试判断:点E和⊙O的位置关系是__________.
2.底边为6cm,面积为6cm2的三角形顶点轨迹是_____________________.
3.夹在距离为5cm的两条平行线间的线段的中点的轨迹是___________.
4.已知一边和这边上中线等于定长的三角形顶点轨迹是____________.
参考答案
一、判断题
1.√2.×3.×4.√
二、填空题
1.点E在⊙O内
2.和6厘米长的底边平行, 且距离为2cm的两条直线.
3.和这两条平行线距离都等于2.5cm的一条平行线.
4.以这边中点为圆心, 这边上中线为半径的圆.(这边或这边两端的延长线与圆相交的交点除外)
初中-数学-打印版。
人教版九年级上册数学 24.1.1圆 同步练习(含解析)
24.1.1圆同步练习一.选择题1.到圆心的距离大于半径的点的集合是()A.圆的内部B.圆的外部C.圆D.圆的外部和圆2.已知点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为圆O1,过点B、C的圆记作为圆O2,过点C、A的圆记作为圆O3,则下列说法中正确的是()A.圆O1可以经过点C B.点C可以在圆O1的内部C.点A可以在圆O2的内部D.点B可以在圆O3的内部3.把半径为0.5m的地球仪的半径增大0.5m,其赤道长度的增加量记为X,把地球的半径也增加0.5m,其赤道长度的增加量记为Y,那么X、Y的大小关系是()A.X>Y B.X<Y C.X=Y D.X+2π=Y4.下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心5.下列说法:①直径是弦;②长度相等的两条弧是等弧;③任何一条直径所在的直线都是圆的对称轴;④任何一条直径都是圆的对称轴,其中正确的有()A.1个B.2个C.3个D.4个6.下列说法错误的是()A.长度相等的两条弧是等弧B.直径是圆中最长的弦C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧7.以下说法正确的个数有()①半圆是弧.②三角形的角平分线是射线.③在一个三角形中至少有一个角不大于60°.④过圆内一点可以画无数条弦.⑤所有角的度数都相等的多边形叫做正多边形.A.1个B.2个C.3个D.4个8.下列语句正确的有()①直径是弦;②半圆是弧;③长度相等的弧是等弧;④经过圆内一定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.A.3 个B.2个C.1 个D.4个9.如图,在⊙O中,点A,O,D在一条直线上,点B,O,C在一条直线上,那么图中有弦()A.2条B.3条C.4条D.5条10.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理11.下列说法:①直径是弦;②弦是直径;③过圆上任意一点有无数条弦,且这些弦都相等;④直径是圆中最长的弦.其中正确的是()A.1个B.2个C.3个D.4个12.下列说法正确的有()①在同圆或等圆中能够完全重合的弧叫等弧;②在同一平面内,圆是到定点距离等于定长的点的集合;③度数相等的弧叫做等弧;④优弧大于劣弧;⑤直角三角形的外心是其斜边中点.A.①②③④⑤B.①②⑤C.①②③⑤D.②④⑤二.填空题13.有下列说法:①半径是弦;②半圆是弧,但弧不一定是半圆;③面积相等的两个圆是等圆,其中正确的是(填序号)14.如图,圆O的周长为4π,B是弦CD上任意一点(与C,D不重合),过B作OC的平行线交OD于点E,则EO+EB=.(用数字表示)15.如图,OA、OB是⊙O的半径,C是⊙O上一点,∠AOB=40°,∠OBC=50°,则∠OAC=°.16.如图:AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,已知AB=2DE,∠E=16°,则∠AOC的大小是°.17.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=74°,则∠E =.三.解答题18.已知:如图,AB是⊙O的直径,AC是⊙O的弦,AB=2,∠BAC=30°.在图中作弦AD,使AD=1,并求∠CAD的度数.参考答案1.解:根据点和圆的位置关系,知圆的外部是到圆心的距离大于的所有点的集合;故选:B.2.解:∵点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为圆O1,∴点C可以在圆O1的内部,故A错误,B正确;∵过点B、C的圆记作为圆O2,∴点A可以在圆O2的外部,故C错误;∵过点C、A的圆记作为圆O3,∴点B可以在圆O3的外部,故D错误.故选:B.3.解:∵地球仪的半径为0.5米,∴X=2×(0.5+0.5)π﹣2×0.5π=πm.设地球的半径是r米,可得增加后,圆的半径是(r+0.5)米,∴Y=2(r+0.5)π﹣2πr=πm,∴X=Y,故选:C.4.解:A.圆既是轴对称图形又是中心对称图形,正确;B.圆有无数条对称轴,正确;C.圆的每一条直径所在直线都是它的对称轴,此选项错误;D.圆的对称中心是它的圆心,正确;故选:C.5.解:①直径是最长的弦,故本小题正确;②在等圆或同圆中,长度相等的两条弧是等弧,故本小题错误;③经过圆心的每一条直线都是圆的对称轴,故本小题正确;④经过圆心的每一条直线都是圆的对称轴,故本小题错误.故选:B.6.解:A、长度相等的弧的度数不一定相等,故错误;B、直径是圆中最长的弦,正确;C、面积相等的两个圆是等圆,正确;D、半径相等的两个半圆是等弧,正确,故选:A.7.解:圆的任意一条直径的端点把圆分成两条弧,每一条弧都叫做半圆,故①正确;根据三角形角平分线的定义可知,三角形的角平分线是一条线段,故②错误;在一个三角形中至少有一个角不大于60°,故③正确;过圆内一点可以画无数条弦,故④正确;矩形的四个角都相等,都等于90°,而矩形不是正四边形,故⑤错误;故选:C.8.解:①直径是弦;正确,②半圆是弧;正确,③长度相等的弧是等弧;错误,④经过圆内一定点可以作无数条弦;正确,⑤经过圆内一定点可以作无数条直径;错误.其中真命题共有3个.故选:A.9.解:弦为AB、CE、BC.故选:B.10.解:A、把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理,正确;B、木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“两点确定一条直线”的原理,故错误;C、将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理,正确;D、将车轮设计为圆形是运用了“圆的旋转对称性”的原理,正确,故选:B.11.解:①因为直径的两个端点在圆上,直径是连接圆上这两个端点的线段.所以直径是弦是正确的.②弦是连接圆上两点的线段,如果过圆心就是直径,不过圆心就不是直径.所以弦是直径不正确.③过圆内一点是有无数多条弦,但这些弦不一定相等,其中过圆心的弦是最长的.所以③不正确.④直径是过圆心的弦,当然是圆中最长的弦.所以④正确.故选:B.12.解:①在同圆或等圆中能够完全重合的弧叫等弧正确;②在同一平面内,圆是到定点距离等于定长的点的集合,正确;③度数相等的弧叫做等弧,错误;④同圆中优弧大于劣弧,故原命题错误;⑤直角三角形的外心是其斜边中点,正确.故选:B.13.解:①半径是弦,错误,因为半径的一个端点为圆心;②半圆是弧,弧不一定是半圆,正确;③面积相等的两个圆是等圆,正确;正确的结论有②③.故答案为:②③.14.解:∵⊙O的周长为4π,∴OD=2,∵OC=OD,∴∠C=∠D,∵BE∥OC,∴∠EBD=∠C,∴∠EBD=∠D,∴BE=DE,∴EO+EB=OD=2,故答案为:2.15.解:连接OC,∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°×2=80°,∴∠AOC=80°+40°=120°,∵OC=OA,∴∠OAC=∠OCA=30°,故答案为:30.16.解:连结OD,如图,∵AB=2DE,∴DE=DO,∴∠E=∠DOE=16°,∴∠CDO=∠E+∠DOE=32°,∵OC=OD,∴∠C=∠CDO=32°,∴∠AOC=∠C+∠E=32°+16°=48°.故答案为48.17.解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,∵OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×74°=()°.故答案是:()°.18.解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=30°,∴BC=AB=1,∠B=60°,以A圆心BC长为半径画弧可得点D,再连接AD即可;∵AD=BC,∴=,∴∠DAB=∠B=60°,∴∠DAC=60°﹣30°=30°;同理可得:∠D′AC=60°+30°=90°;综上所述:∠CAD的度数为30°或90°.。
人教版数学九年级上册:24.1.1 圆 同步练习(附答案)
24.1.1 圆1.下列条件中,能确定一个圆的是()A.以点O为圆心B.以2 cm长为半径C.以点O为圆心,以5 cm长为半径D.经过点A2.下列命题中正确的有()①弦是连接圆上任意两点的线段;②半径是弦;③直径是圆中最长的弦;④弧是半圆,半圆是弧.A.1个 B.2个 C.3个 D.4个3.如图,在⊙O中,点A,O,D和点B,O,C分别在一条直线上,图中共有3条弦,它们分别是.4.如图,在⊙O中,点B在⊙O上,四边形AOCB是矩形,对角线AC的长为5,则⊙O的半径长为.5.如图,AB是⊙O的直径,∠C=20°,则∠BOC的度数是( )A.40° B.30° C.20° D.10°6.如图,已知AB,CD是⊙O的两条直径,∠ABC=30°,那么∠BAD等于(D) A.45° B.60°C.90° D.30°7.如图,在△ABC中,BD,CE是两条高,点O为BC的中点,连接OD,OE,求证:B,C,D,E四个点在以点O为圆心的同一个圆上.8.如图,AB,AC为⊙O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C.求证:CE=BF.9.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为() A.50° B.60° C.70° D.80°10.下列四边形:①平行四边形;②菱形;③矩形;④正方形.其中四个顶点在同一个圆上的有()A.1个 B.2个 C.3个 D.4个11.如图,A,B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为()A.2rB.3r C.R D.2r12.已知A ,B 是半径为6 cm 的圆上的两个不同的点,则弦长AB 的取值范围是 cm. 13.如图,CE 是⊙O 的直径,AD 的延长线与CE 的延长线交于点B ,若BD =OD ,∠AOC =114°,求∠AOD 的度数.14.如图,AB 是⊙O 的弦,半径OC ,OD 分别交AB 于点E ,F ,且AE =BF ,请你找出线段OE 与OF 的数量关系,并给予证明.15.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E 点,已知AB =2DE ,∠E =18°,求∠AOC 的度数.16.如图,AB ,CD 是⊙O 的直径,且AB ⊥CD ,点P ,Q 为CB ︵上的任意两点,作PE ⊥CD ,PF ⊥AB ,QM ⊥CD ,QN ⊥AB ,则线段EF ,MN 的大小关系为EF MN.(填“<”“>”或“=”)参考答案: 1.C 2.B3. AE ,DC ,AD . 4.5. 5.A 6.D7.证明:∵BD ,CE 是两条高, ∴∠BDC =∠BEC =90°.∵△BEC 为直角三角形,点O 为BC 的中点, ∴OE =OB =OC =12BC.同理:OD =OB =OC =12BC.∴OB =OC =OD =OE.∴B ,C ,D ,E 在以点O 为圆心的同一个圆上. 8.证明:∵OB ,OC 是⊙O 的半径, ∴OB =OC.又∵∠B =∠C ,∠BOE =∠COF , ∴△EOB ≌△FOC (ASA ). ∴OE =OF.∵CE =CO +OE ,BF =BO +OF , ∴CE =BF. 9.C 10.B 11.B12.0<AB ≤12. 13.解:设∠B =x °. ∵BD =OD , ∴∠DOB =∠B =x °.∴∠ADO =∠DOB +∠B =2x °. ∵OA =OD ,∴∠A =∠ADO =2x °. ∵∠AOC =∠A +∠B ,∴2x+x=114.解得x=38.∴∠AOD=180°-∠A-∠ADO=180°-4x°=180°-4×38°=28°. 14.解:OE=OF.证明:∵OA,OB是⊙O的半径,∴OA=OB.∴∠OBA=∠OAB.又∵AE=BF,∴△OAE≌△OBF(SAS).∴OE=OF.15.解:连接OD.∵AB为⊙O的直径,OC,OD为半径,AB=2DE,∴OC=OD=DE.∴∠DOE=∠E,∠OCE=∠ODC.又∵∠ODC=∠DOE+∠E,∴∠OCE=∠ODC=2∠E.∵∠E=18°,∴∠OCE=36°.∴∠AOC=∠OCE+∠E=36°+18°=54°.16.=。
九年级数学圆同步练习
3.1 圆 同步练习1.下列说法正确的是( )A .一个点可以确定一条直线B .两个点可以确定两条直线C .三个点可以确定一个圆D .不在同一直线上的三点确定一个圆2.下列说法不正确的是( )A .过一点可作无数个圆,那是因为圆心不确定,半径也不确定B .过两个点可以画无数个圆,圆心在这两点连线段的中垂线上C .过不在同一直线上的三个点只能画一个圆,圆心是这三点构成的三角形的三内角平分线的交点,叫做内心D .过不在同一直线上的三个点只能画一个圆,圆心是这三点构成的三角形的三边中垂线的交点,叫做外心3.l ,那么它的外接圆的直径是( )A.1B.2C.3D.44. 已知线段PQ ,如图,用直尺和圆规求作以PQ 为直径的⊙O.5. 下图是一个圆形轮子的一部分,请你用直尺和圆规把它补完整.·QP●B组提高训练6. 如果以平行四边形的对角线的交点为圆心,以它和一边中点的距离为半径画圆,若这个四边形四条边的中点都在这个圆上,那么这个四边形是()A.矩形 B.正方形 C.等腰梯形D.菱形7. 下列命题正确的个数有( )①矩形的四个顶点在同一个圆上;②梯形的四个顶点在同一个圆上;③菱形的四边中点在同一个圆上;④平行四边形的四边中点在同一个圆上.A. 1个B. 2个C. 3个D. 4个8. 如图所示,在△ABC中,BD, CE是两条高线,求证:B,C,D, E四点在同一个圆上.课外拓展练习●A组基础练习1.判断正误.(1)三点确定一个圆. ( )(2)已知圆心和半径可以确定一个圆. ( )(3)已知圆心和圆上一点可以确定一个圆. ( )(4) 已知半径和圆上一点可以确定一个圆. ( )(5)已知半径和圆上两点可以确定一个圆. ( )2. 三角形的外心在它的内部;三角形的外心在它的外部;三角形的外心在它的边上.3. 下列命题中,正确的是()A.三角形的外心是三角形的三条高线的交点 B.等腰三角形的外心一定在它的内部C.任何一个三角形有且仅有一个外接圆 D.任何一个四边形都有一个外接圆4.过任意四边形 ABCD 的三个顶点能画圆的个数最多为()A. 0 个B. 1 个C. 3 个D. 4 个5.等边三角形的外心在它的()A.外部 B.内部 C.边上 D.顶点处6.任意画一个钝角三角形,然后作出它的外接圆.●B组提高训练7.已知矩形的两边长分别为6和8 ,则矩形的四个顶点在以为圆心,以为半径的圆上.8.在Rt△ABC中,AB=6 , BC=8,那么这个三角形的外接圆直径是()A. 5B.10C.5 或 4D. 10或8 9.已知圆上两点A, B(如图),用直尺和圆规求作以AB为一腰的圆内接等腰三角形,这样的三角形能作几个?若作以AB为一边的圆内接等腰三角形,能作几个?。
九年级数学圆专题训练
九年级数学圆专题训练摘要:1.圆的概述2.圆的相关概念3.圆的性质4.圆的计算5.圆的应用正文:九年级数学圆专题训练旨在帮助学生深入理解圆的相关知识,提高解决与圆相关的数学问题的能力。
本文将从圆的概述、相关概念、性质、计算和应用五个方面进行讲解。
一、圆的概述圆是平面上到定点距离等于定长的所有点的集合。
定点称为圆心,定长称为半径。
圆可以分为内接圆、外接圆、同心圆等。
二、圆的相关概念1.圆心:圆中心的点。
2.半径:从圆心到圆上任意一点的线段。
3.直径:通过圆心,并且两端都在圆上的线段。
4.弧:圆上任意两点间的部分。
5.圆周角:以圆心为顶点,以两条射线分别与圆相交所构成的角。
6.圆心角:以圆心为顶点,以两条射线分别与圆相交所构成的角。
三、圆的性质1.圆的直径等于半径的两倍。
2.圆周角等于其所对的圆心角的两倍。
3.在同圆或等圆中,同弧或等弧所对的圆周角相等,所对的圆心角相等。
4.在同圆或等圆中,直径所对的圆周角为直角,直径所对的圆心角为平角。
四、圆的计算1.计算圆的面积:圆的面积公式为πr,其中r 为半径。
2.计算圆的周长:圆的周长公式为2πr,其中r 为半径。
3.计算圆弧长:圆弧长公式为θr,其中θ为圆心角的弧度制表示,r 为半径。
4.计算圆扇形的面积:圆扇形的面积公式为(θ/360)πr,其中θ为圆心角的弧度制表示,r 为半径。
五、圆的应用1.解直角三角形:利用圆的性质,可以将直角三角形的斜边作为直径,构造外接圆,从而求解其他边和角。
2.解圆与直线的交点:通过求解圆与直线的交点,可以解决一些实际问题,如求两个圆的交点等。
3.解圆与圆的位置关系:判断两个圆的位置关系,如内含、内切、外切、相交等。
人教版九年级数学上学期《24.1.1 圆》 同步练习
人教新版九年级上学期《24.1.1 圆》2020年同步练习卷一.选择题1.已知⊙O中,最长的弦长为16cm,则⊙O的半径是()A.4cm B.8cm C.16cm D.32cm2.下列说法正确的是()A.弦是直径B.弧是半圆C.直径是圆中最长的弦D.半圆是圆中最长的弧3.下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形B.圆的每一条直径都是它的对称轴C.圆有无数条对称轴D.圆的对称中心是它的圆心4.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E 等于()A.42°B.28°C.21°D.20°5.如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有()A.2条B.3条C.4条D.5条二.填空题6.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,若△COD为直角三角形,则∠E的度数为°.7.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB的长是.三.解答题8.如图,BD=OD,∠B=38°,求∠AOD的度数.9.如图所示,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠AEC=20°.求∠AOC的度数.10.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.已知AB=2DE,∠AEC=25°,求∠AOC的度数.11.已知:如图,BD、CE是△ABC的高,M为BC的中点.试说明点B、C、D、E在以点M为圆心的同一个圆上.12.已知;如图,在⊙O中,C、D分别是半径OA、BO的中点,求证:AD=BC.13.如图,点A、B、C是⊙O上的三点,BO平分∠ABC.求证:BA=BC.14.如图,半圆O的直径AB=8,半径OC⊥AB,D为弧AC上一点,DE⊥OC,DF⊥OA,垂足分别为E、F,求EF的长.15.如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.求证:AF=BE.参考答案一.选择题1.解:∵最长的弦长为16cm,∴⊙O的直径为16cm,∴⊙O的半径为8cm.故选:B.2.解:A、直径是弦,但弦不一定是直径,故错误,不符合题意;B、半圆是弧,但弧不一定是半圆,故错误,不符合题意;C、直径是圆中最长的弦,正确,符合题意;D、半圆是小于优弧而大于劣弧的弧,故错误,不符合题意,故选:C.3.解:A.圆既是轴对称图形又是中心对称图形,正确;B.圆的每一条直径所在直线都是它的对称轴,故B错误;C.圆有无数条对称轴,正确;D.圆的对称中心是它的圆心,正确.故选:B.4.解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故选:B.5.解:图中的弦有AB,BC,CE共三条,故选:B.二.填空题6.解:∵AB是⊙O的直径,∵AB=2DO,而AB=2DE,∴DO=DE,∴∠DOE=∠E,∵△COD为直角三角形,而OC=OD,∴△COD为等腰直角三角形,∴∠CDO=45°,∵∠CDO=∠DOE+∠E,∴∠E=∠CDO=22.5°.故答案为22.5°.7.解:连接OC,∵CD=4,OD=3,在Rt△ODC中,∴OC===5,∴AB=2OC=10,故答案为:10.三.解答题8.解:∵BD=OD,∠B=38°,∴∠DOB=∠B=38°,∴∠ADO=∠DOB+∠B=2×38°=76°,∵OA=OD,∴∠A=∠ADO=76°,∴∠AOD=180°﹣∠A﹣∠ADO=180°﹣76°﹣76°=28°.9.解:连接OD,如图,∵AB=2DE,而AB=2OD,∴OD=DE,∴∠DOE=∠E=20°,∴∠CDO=∠DOE+∠E=40°,而OC=OD,∴∠C=∠ODC=40°,∴∠AOC=∠C+∠E=60°.10.解:连接OD,∵AB=2DE=2OD,∴OD=DE,又∵∠E=25°,∴∠DOE=∠E=25°,∴∠ODC=50°,同理∠C=∠ODC=50°∴∠AOC=∠E+∠OCE=75°.11.证明:连接ME、MD,∵BD、CE分别是△ABC的高,M为BC的中点,∴ME=MD=MC=MB=BC,∴点B、C、D、E在以点M为圆心的同一圆上.12.解:∵OA、OB是⊙O的两条半径,∴AO=BO,∵C、D分别是半径OA、BO的中点,∴OC=OD,在△OCB和△ODA中,,∴△OCB≌△ODA(SAS),∴AD=BC.13.证明:连OA、OC,如图,∵OA=OB,OB=OC,∴∠ABO=∠BAO,∠CBO=∠BCO,∵BO平分∠ABC,∴∠ABO=∠CBO,∴∠BAO=∠BCO,∴△OAB≌△OCB,∴AB=BC.14.解:连接OD.∵OC⊥AB DE⊥OC,DF⊥OA,∴∠AOC=∠DEO=∠DFO=90°,∴四边形DEOF是矩形,∴EF=OD.∵OD=OA∴EF=OA=4.15.解:∵AB、CD为⊙O中两条直径,∴OA=OB,OC=OD,∵CE=DF,∴OE=OF,在△AOF和△BOE中,,∴△AOF≌△BOE(SAS),∴AF=BE.。
人教版数学九年级上册第24章 圆 专项同步练习
【圆】专项同步练习一.选择题1.如图,AB为⊙O的直径,C、D为⊙O上两点,若∠CAB=35°,则∠D等于()A.35°B.55°C.65°D.70°2.如图,已知OB为⊙O的半径,且OB=10cm,弦CD⊥OB于M,若OM:MB=4:1,则CD长为()A.3cm B.6cm C.12cm D.24cm3.如图,已知AB是⊙O的直径,CD是弦,若∠BCD=36°,则∠ABD等于()A.54°B.56°C.64°D.66°4.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则△OFC的面积是()A.40cm2B.20cm2C.10cm2D.5cm25.把半径为0.5m的地球仪的半径增大0.5m,其赤道长度的增加量记为X,把地球的半径也增加0.5m,其赤道长度的增加量记为Y,那么X、Y的大小关系是()A.X>Y B.X<Y C.X=Y D.X+2π=Y6.下列说法错误的是()A.⊙O中,直径CD平分弦AB,则CD⊥ABB.半圆是弧,直径是弦C.菱形ABCD四边的中点依次为E、F、G、H,则E、F、G、H四点共圆D.⊙O的直径为10,弦AB=8,则点O到AB的距离为37.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm8.用一个半径为15、圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.5B.10C.5πD.10π9.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,则阴影部分的面积是()A.2﹣πB.﹣4C.2﹣πD.π10.图1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图2的新几何体,则该新几何体的体积为()A.48πcm3B.60πcm3C.72πcm3D.84πcm3二.填空题11.如图,半径为5的圆O中,AB、DE是互相垂直的两条弦,垂足为P,且AB=ED=8,则OP =.12.如图,四边形ABCD内接于半径为6的⊙O,∠ABC=100°,则劣弧AC的长为.13.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为度.14.如图,⊙O为△ABC的外接圆,∠A=60°,BC=3,则⊙O的半径为.15.圆上有四个点,若它们两两连结后得到的所有线段只有两个不同的长度,则这四个点依次分圆弧的比为.三.解答题16.两个圆柱的高相等,其中一个圆柱的底面积与另一个圆柱的底面积的比为2:1,求这两个圆柱的侧面积的比.17 .已知⊙O的半径为5,点A、B、C都在⊙O上,∠CAB的平分线交⊙O于点D.(1)如图1,若BC为⊙O的直径,AB=6,求AC和BD的长;(2)如图2,若∠CAB=60°,过圆心O作OE⊥BD于点E,求OE的长.18.矩形ABCD的一边长AB=4,且BC>AB,以边AB为直径的⊙O交对角线AC于H,AH=2,如图,点K为下半圆上一点.(1)求∠HAB的度数;(2)求CH的长;(3)求图中阴影部分的面积;(4)若圆上到直线AK距离等于3的点有且只有一个,请直接写出线段AK的长.19.如图,某石拱桥的桥拱是圆弧形,拱的跨度AB为24m,点O是所在圆的圆心,⊙O的半径为13m,求桥拱的高度.(弧的中点到弦的距离)20.如图,已知⊙O是△ABC的外接圆,直径AD与BC垂直,垂足为点E.(1)求证:∠ABC=∠ACB;(2)连接OB,CD,若OB=,CD=5,求CE的长.。
新人教版九年级数学上册第24章 《圆》同步练习
新人教版九年级数学上册第24章《圆》同步练习一、选择题1.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40°B.50°C.60°D.80°2.在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30° B.45° C.60° D.90°3.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连接CD.如果∠BAC=20°,则∠BDC=()A.80°B.70°C.60°D.50°4.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是()m.A.42 B.5 C.30 D.2155.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.55° B.60° C.65° D.70°6.如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A 、42°B 、48°C 、52°D 、58°7.一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是( )A .5:4B .5:2C .5:2D .5:28.如图,以等边三角形ABC 的BC 边为直径画半圆,分别交AB ,AC 于点E ,D ,DF 是圆的切线,过点F 作BC 的垂线交BC 于点G .若AF 的长为2,则FG 的长为( )(A )4 (B )33 (C )6 (D )329.一个圆锥的母线长是10,高为8,那么这个圆锥的表面积是 ( )(A )116π (B )96π (C )80π (D )60π10.如图,在半径为2,圆心角为90°的扇形内,以BC 为直径作半圆交AB 于点D ,连接CD ,则阴影部分的面积是( )A .112π-B .122π- C .2π- D .1π- 11.如图,AB 是⊙O 的直径,C .D 是⊙O 上的两点,分别连接AC 、BC 、CD 、OD .若∠DOB=140°,则∠ACD=( )A.20° B.30° C.40° D.70°12.如图,AB是⊙O的直径,C、D是⊙O上两点,∠CDB=20°,过点C作⊙O的切线交AB 的延长线于点E,则∠E等于()A.40° B.50° C.60° D.70°二、填空题13.如图,⊙O中,OA⊥BC,∠AOB=52°,则∠ADC的度数为.14.(2015•娄底)如图,在⊙O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD= 度.15.(2015•郴州)如图,已知AB是⊙O的直径,点C在⊙O上,若∠CAB=40°,则∠ABC的度数为.16.已知扇形的圆心角为120°,半径为6,则扇形的弧长是.17.已知等腰△ABC中,AB=AC=13cm,BC=10cm,则△ABC的内切圆半径为cm.18.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆O n与直线33y x相切,设半圆O1,半圆O2,…,半圆O n的半径分别是r1,r2,…,r n,则当r1=1时,r2015= .19.(2015•天水)相切两圆的半径分别是5和3,则该两圆的圆心距是.20.如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是.三、解答题21.如图,正方形ABCD中,以BC为直径作半圆,BC=2cm.现有两动点E、F,分别从点B、点A同时出发,点E沿线段BA以1cm/秒的速度向点A运动,点F沿折线A-D-C以2cm/秒的速度向点C运动.当点E到达A点时,E、F同时停止运动,设点E运动时间为t.(1)当t为何值时,线段EF与BC平行?(2)设1<t<2,当t为何值时,EF与半圆相切?(3)如图2,将图形放在直角坐标系中,当1<t<2时,设EF与AC相交于点P,双曲线y=kx(k≠0)经过点P,并且与边AB交于点H,求出双曲线的函数关系式,并直接写出BHAH的值.22.如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC 的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长?23.如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙O的两条切线,C、D为切点.(1)如图1,求⊙O的半径;(2)如图1,若点E是BC的中点,连接PE,求PE的长度;(3)如图2,若点M是BC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN.24.如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=6,∠ABE=60°.①求AD的长;②求出图中阴影部分的面积.25.如图,AB为⊙O的直径,直线l与⊙O相切于点C,过点A作AD⊥l于点D,交⊙O于点E.l EDA O BC(1)求证:∠CAD =∠BAC ;[(2)若sin ∠BAC =53,BC =6,求DE 的长.参考答案1.B .2.D .3.B .4.C .5.C .6.B .7.A8.B9.B10.D .11.A .12.B13.26°.14.50°.15.50°.16.4π.17.r=10318.32014.19.2或8.20.8<AB≤10.21.(1)43;(2)222+.(3)45BH AH =. 22.(1)略;(23223.(1)2;(2)25(3)证明略.24.(1)略.(3分)(2)AD=4.5(6分) (3)S 阴影=-∏3349(8分) 25.(1)略 (2)DE=185。
人教版九年级数学上册24.1.1 圆同步练习
24.1 圆的有关性质24.1.1 圆1.下列说法中,正确的是( )A 、弦是直径B 、半圆是弧C 、过圆心的线段是直径D 、圆心相同半径相同的两个圆是同心圆2、如图,在⊙O 中,点B 、O 、C 和点A 、O 、D 分别在同一条直线上,则图中有( )条弦。
A. 2B. 3C. 4D. 53、过圆内一点可以做圆的最长弦( )A. 1条B.2条C. 3条D. 4条 4、设⊙O 的半径为r ,P 到圆心的距离为d 不大于r ,则点P 在( ) A. 在⊙O 内 B. 在⊙O 外 C. 不在⊙O 内 D.不在⊙O 外 5、设⊙O 的半径为5,圆心的坐标为(0,0),点 P 的坐标为(4,-3),则点P 在( )。
A. 在⊙O 内 B. 在⊙O 外 C. 在⊙O 上 D.在⊙O 内或外 6、如图点A 、D 、G 、B 在半圆上,四边形ABOC,DEOF,HMNO 均为矩形,设BC=a,EF=b,NH=c,则下列说法正确的是( )A. a >b >cB. a =b =cC. c >a >bD. b >c >a7、在⊿ABC 中,∠C=90°,AB =3cm ,BC =2cm,以点A 为圆心,以2.5cm 为半径作圆,则点C 和⊙A 的位置关系是( )A.C 在⊙A 上B.C 在⊙A 外C.C 在⊙A 内D.C 在⊙A 位置不能确定。
8、一个点到圆的最大距离为11cm ,最小距离为5cm,则圆的半径为( ) A.16cm 或6cm, B.3cm 或8cm C.3cm D.8cm 9、下列说法正确的是( )A 、两个半圆是等弧B 、同圆中优弧与半圆的差必是劣弧C 、长度相等的弧是等弧D 、同圆中优弧与劣弧的差必是优弧 10、(2008四川省资阳市)已知矩形ABCD 的边AB =15,BC =20,以点B 为圆心作圆,使A 、C 、D 三点至少有一点在⊙B 内,且至少有一点在⊙B 外,则⊙B 的半径r 的取值范围是 A .r >15 B .15<r <20 C .15<r <25 D .20<r <25 11、如图,在Rt ABC △中,90ACB =o ∠,6AC =,10AB =,CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( ) A.点P 在⊙O 内 B.点P 在⊙O 上C.点P 在⊙O 外 D.无法确定 12、⊙O 直径为8cm ,有M 、N 、P 三点,OM=4cm ,ON=8cm ,OP=2cm ,则M 点在 ,N 点在圆 ,P 点在圆 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学——圆(一)同步练习
(答题时间:40分钟)
一. 选择题。
1. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB =10,CD =8,那么AE 的长为( )
A. 2
B. 3
C. 4
D. 5
2. 一种花边由图弓形组成,ACB ⌒
的半径为5,弦AB =8,则弓形的高CD 为( )
A. 2
B.
52
C. 3
D.
163
3. 若圆的一条弦把圆分成度数比为1∶3的两条弧,则劣弧所对圆周角等于( ) A. 45° B. 90° C. 135° D. 270°
4. 下列命题中正确的是( ) A. 三点确定一个圆
B. 平分弦的直线垂直于弦
C. 相等的圆心角所对弧相等
D. 同圆中,同弦所对圆周角相等
5. 如图,BC 为半圆O 的直径,A 、D 为半圆O 上两点,AB BC ==32,,则∠D 的
度数是( )
A. 60°
B. 120°
C. 135°
D. 150°
二. 填空题。
6. 半径为1的圆中有一条弦,如果它的长为3,那么这条弦所对的圆周角的度数为___________。
7. 圆内接四边形ABCD中,如果∠A∶∠B∶∠C=2∶3∶4,那么∠D=__________度。
8. 如图,AB是⊙O的弦,AC切⊙O于点A,且∠BAC=45°,AB=2,则⊙O的面积为______________(结果保留 )。
9. 如图,PA、PC分别切⊙O于A、C两点,B为⊙O上与A、C不重合点,若∠P=50°,则∠ABC=_____________。
10. 如图,点O为△ABC内心,∠A=56°,则∠BOC=_____________。
三. 解答题。
11. 已知:如图,△ABC内接于⊙O,直线DE与⊙O切于点A,BD∥CA。
求证:AB·DA=BC·BD
12. 如图,圆外切等腰梯形ABCD,E、F为切点,中位线EF=15cm,求:等腰梯形ABCD 周长。
13. 已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高。
(1)求证:AC·BC=BE·CD;
(2)已知CD=6,AD=3,BD=8,求⊙O的直径BE的长。
【试题答案】
一. 选择题。
1. A 2. A 3. A
4. D
5. C
二. 填空题。
6. 60°或120°
7. 90 8. 2π
9. 65°或115° 10. 118° 三. 解答题。
11. 解:∵BD ∥CA ∴∠DBA =∠BAC ∵DE 切⊙O 于A ∴∠BAD =∠BCA ∴△ABC ∽△BDA ∴
=AB BC BD
DA
∴AB ·DA =BC ·
BD
12. 解:∵等腰梯形ABCD 外切于⊙O
∴AB 、BC 、CD 、DA 分别切⊙O 于点E 、N 、F 、M ∴AM =AE ,DM =DF ,BE =BN ,NC =FC ∵等腰梯形ABCD 中位线EF =15
∴
+=∴+=∴+++=∴+++=∴+++=∴+=∴+++=AD BC
AD BC AM MD BN NC AE DF BE FC AE BE DF FC AB DC AD BC AB DC 2
153030
30
3030
60
∴等腰梯形ABCD 周长为60
13. 解:(1)连结CE
∵BE 是⊙O 的直径 ∴∠ECB =90° ∵CD ⊥AB
∴∠ADC =90° ∴∠ECB =∠ADC 又∵∠A =∠E ∴△ADC ∽△ECB
∴
=
∴=AC EB DC
CB
AC BC BE CD
·· (2)在Rt △ACD 和Rt △BCD 中 ∵CD =6,AD =3,BD =8
∴=+=+==+=+=BC BD CD AC AD CD 22222
2
2
2
86103635
由(1)有AC ·BC =BE ·CD 即35106⨯=BE · ∴BE =55
∴⊙O 的直径BE 的长是55。