三角函数恒等变形公式
三角恒等变换公式大全
三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角sin(2α)=2sinα·cosα=2tan(α)/[1-tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=[1-tan^2 (α)]/[1+tan^2(α)]tan(2α)=2tanα/[1-tan^2(α)]三倍角sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=tanα×tan(60-α)tan(60+α)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα半角变形sin^2(α/2)=(1-cosα)/2sin(a/2)=√[(1-cosα)/2]a/2在一、二象限=-√[(1-cosα)/2]a/2在三、四象限cos^2(α/2)=(1+cosα)/2cos(a/2)=√[(1+cosα)/2]a/2在一、四象限=-√[(1+cosα)/2]a/2在二、三象限tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] a/2在一、三象限=-√[(1-cosα)/(1+cosα)]a/2在二、四象限恒等变形tan(a+π/4)=(tana+1)/(1-tana)tan(a-π/4)=(tana-1)/(1+tana)asinx+bcosx=[√(a^2+b^2)]{[a/√(a^2+b^2)]sinx+[b/√(a^2+b^2)]cosx}=[√(a^2+b^2)]sin(x+y)(辅助角公式)tany=b/a万能代换半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积和化差sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)](注:留意最前面是负号)和差化积sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]内角公式sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)tanA+tanB+tanC=tanAtanBtanCcot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1cotAcotB+cotBcotC+cotCcotA=1证明方法首先,在三角形ABC中,角A,B,C所对边分别为a,b,c若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D由CD=asinB=bsinA(做另两边的垂线,同理)可证明正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=cAD=bcosA,BD=acosBAD+BD=代c入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA即在A,B均为锐角的情况下,可证明正弦和的公式。
(完整版)三角恒等变换公式大全,推荐文档
三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角sin(2α)=2sinα·cosα=2tan(α)/[1-tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=[1-tan^2(α)]/[1+tan^2(α)]tan(2α)=2tanα/[1-tan^2(α)]三倍角sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=tanα×tan(60-α)tan(60+α)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα半角变形sin^2(α/2)=(1-cosα)/2sin(a/2)=√[(1-cosα)/2] a/2在一、二象限=-√[(1-cosα)/2] a/2在三、四象限cos^2(α/2)=(1+cosα)/2cos(a/2)=√[(1+cosα)/2] a/2在一、四象限=-√[(1+cosα)/2] a/2在二、三象限tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] a/2在一、三象限=-√[(1-cosα)/(1+cosα)] a/2在二、四象限恒等变形tan(a+π/4)=(tana+1)/(1-tana)tan(a-π/4)=(tana-1)/(1+tana)asinx+b cosx=[√(a^2+b^2)]{[a/√(a^2+b^2)]sinx+[b/√(a^2+b^2)]cosx}=[√(a^2+b^2)]sin(x+y)(辅助角公式)tan y=b/a万能代换半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积和化差sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ= -(1/2)[cos(α+β)-cos(α-β)](注:留意最前面是负号)和差化积sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]内角公式sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)tanA+tanB+tanC=tanAtanBtanCcot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1cotAcotB+cotBcotC+cotCcotA=1证明方法首先,在三角形ABC中,角A,B,C所对边分别为a,b,c若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D 由CD=asinB=bsinA(做另两边的垂线,同理)可证明正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=cAD=bcosA,BD=acosB AD+BD=c代入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA 即在A,B均为锐角的情况下,可证明正弦和的公式。
三角函数恒等变形公式
精品文档
.
精ห้องสมุดไป่ตู้文档
三角函数恒等变形公式
以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数
两角和与差的三角函数:
cos( α+β)=cos α· cosβ - sin α· sin β cos( α - β)=cos α· cosβ+sin α· sin β sin( α±β )=sin α· cosβ± cosα· sin β tan( α+β)=(tan α+tan β)/(1 - tan α· tan β) tan( α - β)=(tan α - tan β)/(1+tan α· tan β) 三角和的三角函数:
.
cosα· sin β=(1/2)[sin( α+β) - sin( α - β)] cosα· cosβ=(1/2)[cos( α+β)+cos( α - β)] sin α· sin β=- (1/2)[cos( α+β)- cos( α - β)] 和差化积公式: sin α+sin β=2sin[( α+β)/2]cos[( α - β)/2] sin α - sin β=2cos[( α+β)/2]sin[( α - β)/2] cosα+cosβ=2cos[( α+β)/2]cos[( α - β)/2] cosα - cosβ=- 2sin[( α+β)/2]sin[( α - β)/2] 推导公式 tan α+cot α=2/sin2 α tan α - cot α=- 2cot2 α 1+cos2α=2cos2α 1- cos2α=2sin2 α 1+sin α=(sin α/2+cos α/2)2
三角恒等变换公式大全
三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角sin(2α)=2sinα·cosα=2tan(α)/[1-tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=[1-tan^2(α)]/[1+tan^2(α)]tan(2α)=2tanα/[1-tan^2(α)]三倍角sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=tanα×tan(60-α)tan(60+α)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα半角变形sin^2(α/2)=(1-cosα)/2sin(a/2)=√[(1-cosα)/2] a/2在一.二象限=-√[(1-cosα)/2] a/2在三.四象限cos^2(α/2)=(1+cosα)/2cos(a/2)=√[(1+cosα)/2] a/2在一.四象限=-√[(1+cosα)/2] a/2在二.三象限tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] a/2在一.三象限=-√[(1-cosα)/(1+cosα)] a/2在二.四象限恒等变形tan(a+π/4)=(tana+1)/(1-tana)tan(a-π/4)=(tana-1)/(1+tana)asinx+bcosx=[√(a^2+b^2)]{[a/√(a^2+b^2)]sinx+[b/√(a^2+b^2)]cosx}=[√(a^2+b^2)]sin(x+y)(帮助角公式)tan y=b/a全能代换半角的正弦.余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积和化差sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ= -(1/2)[cos(α+β)-cos(α-β)](注:留心最前面是负号)和差化积sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]内角公式sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)tanA+tanB+tanC=tanAtanBtanCcot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot (C/2)tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1 cotAcotB+cotBcotC+cotCcotA=1证实办法起首,在三角形ABC中,角A,B,C所对边分离为a,b,c若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D 由CD=asinB=bsinA(做另双方的垂线,同理)可证实正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=c AD=bcosA,BD=acosB AD+BD=c代入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA 即在A,B均为锐角的情形下,可证实正弦和的公式.应用正弦和余弦的界说及周期性,可证实该公式对随意率性角成立.于是有 cos(A+B)=sin(90-A-B)=sin (90-A)cos(-B)+cos(90-A)sin(-B)=cosAcosB-sinAsinB由此易得以上全体公式。
三角恒等变换公式大全
三角函数之阳早格格创做cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角sin(2α)=2sinα·cosα=2tan(α)/[1-tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=[1-tan^2(α)]/[1+tan^2(α)]tan(2α)=2tanα/[1-tan^2(α)]三倍角sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=tanα×tan(60-α)tan(60+α)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα半角变形sin^2(α/2)=(1-cosα)/2sin(a/2)=√[(1-cosα)/2] a/2正在一、二象限=-√[(1-cosα)/2] a/2正在三、四象限cos^2(α/2)=(1+cosα)/2cos(a/2)=√[(1+cosα)/2] a/2正在一、四象限=-√[(1+cosα)/2] a/2正在二、三象限tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] a/2正在一、三象限=-√[(1-cosα)/(1+cosα)] a/2正在二、四象限恒等变形tan(a+π/4)=(tana+1)/(1-tana)tan(a-π/4)=(tana-1)/(1+tana)asinx+bcosx=[√(a^2+b^2)]{[a/√(a^2+b^2)]sinx+[b/√(a^2+b^2)]cosx}=[√(a^2+b^2)]sin(x+y)(辅帮角公式)tan y=b/a万能代换半角的正弦、余弦战正切公式(落幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积战化好sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ= -(1/2)[cos(α+β)-cos(α-β)](注:注意最前里是背号)战好化积sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]内角公式sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)tanA+tanB+tanC=tanAtanBtanCcot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot (C/2)tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1 cotAcotB+cotBcotC+cotCcotA=1说明要领最先,正在三角形ABC中,角A,B,C所对于边分别为a,b,c 若A,B均为钝角,则正在三角形ABC中,过C做AB边垂线接AB于D 由CD=asinB=bsinA(干另二边的垂线,共理)可说明正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=c AD=bcosA,BD=acosB AD+BD=c代进正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA 即正在A,B 均为钝角的情况下,可说明正弦战的公式.利用正弦战余弦的定义及周期性,可说明该公式对于任性角创造.于是有cos(A+B)=sin(90-A-B)=sin(90-A)cos(-B)+cos(90-A)sin(-B)=cosAcosB-sinAsinB由此易得以上局部公式。
三角函数的恒等式
三角函数的恒等式三角函数是数学中一个非常重要的概念,它在几何图形的分析、物理学、工程学等领域中都有广泛的应用。
而恒等式是指在特定条件下两个量始终相等的数学关系。
在三角函数中,有很多有趣的恒等式。
本文将介绍几个常见的三角函数恒等式,并探讨其应用。
首先,我们先来介绍一些基本的三角函数恒等式。
为了方便起见,我们假设a、b、c是任意的实数。
1. 正弦函数的恒等式:- 余弦的平方加正弦的平方等于1:sin^2(a) + cos^2(a) = 1- 正弦的倒数等于余弦:1 / sin(a) = csc(a)- 正弦的两倍角公式:sin(2a) = 2sin(a)cos(a)- 正弦的和差公式:sin(a ± b) = sin(a)cos(b) ± cos(a)sin(b)2. 余弦函数的恒等式:- 正弦的平方加余弦的平方等于1:sin^2(a) + cos^2(a) = 1- 余弦的倒数等于正弦:1 / cos(a) = sec(a)- 余弦的两倍角公式:cos(2a) = cos^2(a) - sin^2(a) = 2cos^2(a) - 1 = 1 - 2sin^2(a)- 余弦的和差公式:cos(a ± b) = cos(a)cos(b) - sin(a)sin(b)3. 正切函数的恒等式:- 正切的倒数等于余切:1 / tan(a) = cot(a)- 正切的和差公式:tan(a ± b) = (tan(a) ± tan(b)) / (1 ∓ tan(a)tan(b))这些恒等式在求解三角函数的值、简化复杂表达式等方面非常有用。
接下来,我们将介绍一些常见的实际应用。
1. 物理学中的应用:在物理学中,三角函数恒等式常用于描述波动、振动、旋转等现象。
例如,当一个物体绕固定轴旋转时,它的位置可以用正弦和余弦函数表示。
而波动现象通常也可以用正弦函数表示,比如声波、光波等。
三角恒等变形图文
交流电路
在交流电路中,三角函数用于描 述电压、电流等物理量的周期性
变化。
三角函数在工程学中应用
建筑设计
01
三角函数用于计算建筑物的角度、高度和距离等参数,以确保
设计的准确性和稳定性。
航空航天
02
在航空航天领域,三角函数用于描述飞行器的轨迹、速度和姿
态等运动特性。
测绘学
03
在测绘学中,三角函数用于进行地图投影、坐标转换和距离测
三角恒等变形图文
目 录
• 三角恒等式基本概念 • 三角恒等变形方法 • 图形化理解三角恒等变形 • 典型例题分析与解答 • 实际应用场景探讨 • 总结回顾与拓展延伸
01 三角恒等式基本概念
定义与性质
三角恒等式是指在三角函数中,无论角度如何变化,等式两边始终保持相等的数学 表达式。
三角恒等式具有普遍性、必然性和稳定性,是三角函数的重要基础。
03 图形化理解三角恒等变形
单位圆与三角函数关系
1 2
单位圆定义
平面直角坐标系中,以原点为圆心,半径为1的 圆。
三角函数与单位圆关系
正弦、余弦、正切等三角函数值可通过单位圆上 点的坐标来表示。
3
诱导公式推导
利用单位圆对称性,可推导出三角函数的诱导公 式。
三角函数图像变换规律
振幅变换
通过改变三角函数前的系数,可实现 图像在y轴方向上的拉伸或压缩。
三角恒等式的变形包括和差化积、积化和差、倍角公式、半角公式等,这些变形在 三角函数的计算、化简和证明中具有重要作用。
常见三角恒等式
基本三角恒等式
sin^2(x) + cos^2(x) = 1, tan(x) = sin(x)/cos(x)等。
三角恒等变换
三角恒等变换---完整版三角函数 —— 三角恒等变换公式:1 -cos1 cos :sin - _, cos —=.2; 2 2,2tan [cos :」一cos— sin:2 X cos 二sin 二 1 cos 一:>升幂公式两角和与差的三角函数关系!i倍角公式 sin( x 二 I '1 )=sin 二 cos L ;二 cos 、;sin ”i sin2d =2sin d cos.zi 2 2cos2 用=cos 用-sin 二jcos(:; 二 L : )=cos 二匸 cos" " sin J.sin 1'' :2 2=2cos a -1=1-2sin a性tana ±tan P tan=1 +ta n a ta n P丄小2ta na tan2 =21 - ta n a半角公式平方关系 2 a1+coS'f=2C0S —2 :1=sin 2 -:: + cos 2 -■ 降幂公式.2一 1 -cos2: sin21 .sin 二 cos _:i = —sin2工 2 2 a1-cos 、;=2sin — 2 a asin : =2 sin — cos—2 2a a1 ± sin t =( sin —匸COS —)2 2 co 『—1 cos2sin 2 二 cos 2 二 =1考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。
等,余弦互为相反数。
互余两角的正余弦相等。
”(2) 二倍角公式的灵活应用,特别是降幕、 “互补两角正弦相 和升幕公式的 应用。
(3)结合同角三角函数,化为二次函数求最值 一求二 (7)辅助角公式逆向应用 (4)角的整体代换 (5 )弦切互化 (6 )知 sin :-------- =ta n工 cos: 2 2sin a + cos a =1,商数关糸126、 A.(补全公式) 1 B. 1 488. A. 9、 C . 2(2013六校联考回归课本题) 11 C. — D.— 常见变式:计算1632cos20 (构造两角和差因子 +两式平方后相加)若sin )A<(诱导公式) -cos40 ° • cos60 ° • cos80° =( sin 10 sin 30 sin 50 sin 70 a — sin 3=( cos(X — COS 的=13=-,贝U cos( a- B )的值为B<23C.^ D . 1【2015广东东莞高一期末】sin 163sin 223 + sin 253sin 313 等于 BB. D.(构造两角和差因子 10、(逆向套用公式) +两边平方)【2015高考四川,理12】 tan23 丰 tan 37 丰 J3tan 23 tan 37 的值是sin 15 sin 75 = (1)熟悉公式特征:能结合诱导公式中两个常用的小结论“互补两角正弦相等,余弦互为相反数。
三角恒等变换所有公式
三角恒等变换所有公式三角恒等变换是指三角函数之间相互转化的一系列公式,利用这些公式可以简化三角函数的计算与证明。
下面是一些常用的三角恒等变换公式(完整版):1.倍角公式:- $\sin(2\theta) = 2\sin\theta\cos\theta$- $\cos(2\theta) = \cos^2\theta - \sin^2\theta =2\cos^2\theta - 1 = 1 - 2\sin^2\theta$- $\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$2.半角公式:- $\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{2}}$- $\cos\left(\frac{\theta}{2}\right) =\pm\sqrt{\frac{1+\cos\theta}{2}}$- $\tan\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$3.和差公式:- $\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm\cos\alpha\sin\beta$- $\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp\sin\alpha\sin\beta$- $\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm\tan\beta}{1 \mp \tan\alpha\tan\beta}$4.二倍角公式:- $\sin(2\alpha) = 2\sin\alpha\cos\alpha$- $\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha$- $\tan(2\alpha) = \frac{2\tan\alpha}{1-\tan^2\alpha}$5.和差化积公式:- $\sin\alpha\sin\beta = \frac{1}{2}(\cos(\alpha-\beta)-\cos(\alpha+\beta))$- $\cos\alpha\cos\beta = \frac{1}{2}(\cos(\alpha-\beta)+\cos(\alpha+\beta))$- $\sin\alpha\cos\beta =\frac{1}{2}(\sin(\alpha+\beta)+\sin(\alpha-\beta))$6.积化和差公式:- $\sin\alpha+\sin\beta =2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\sin\alpha-\sin\beta = 2\sin\left(\frac{\alpha-\beta}{2}\right)\cos\left(\frac{\alpha+\beta}{2}\right)$- $\cos\alpha+\cos\beta =2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\cos\alpha-\cos\beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$7.和差化积与积化和差的关系:- $\sin\alpha\pm\sin\beta =2\sin\left(\frac{\alpha\pm\beta}{2}\right)\cos\left(\frac{\alpha \mp\beta}{2}\right)$- $\cos\alpha+\cos\beta =2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\cos\alpha-\cos\beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$8.和差化积的平方形式:- $\sin^2\alpha+\sin^2\beta = 1 -\cos(\alpha+\beta)\cos(\alpha-\beta)$- $\cos^2\alpha+\cos^2\beta = 1 +\cos(\alpha+\beta)\cos(\alpha-\beta)$这些公式在解三角方程、化简三角函数表达式、证明三角恒等式等方面有重要应用。
三角函数恒等变
三角函数恒等变
三角函数恒等变形公式是cos(α +β )=cosα.cosβ。
三角函数是数学中属于初等函数中的超越函数的函数。
它们的本质是任何角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的。
90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。
90°的偶数倍+α的三角函数与α的三角函数绝对值相同。
也就是“奇余偶同,奇变偶不变”。
将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。
也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。
常见的三角函数包括正弦函数、余弦函数和正切函数。
在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。
不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
倍角公式,是三角函数中非常实用的一类公式。
就是把二倍角的三角函数用本角的三角函数表示出来。
在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。
和差化积公式:包括正弦、余弦、正切和余切的和差化积公式,是三角函数中的一组恒等式,和差化积公式共10组。
在应
用和差化积时,必须是一次同名(正切和余切除外)三角函数方可实行。
若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次。
三角函数的恒等变换
三角函数的恒等变换三角函数是数学中的重要概念,由正弦函数、余弦函数和正切函数组成。
在解决数学问题中,我们经常需要使用到三角函数的恒等变换,以便简化计算或者转换问题的表达形式。
本文将介绍三角函数的恒等变换的概念、常用恒等变换公式以及它们的应用。
一、恒等变换的概念三角函数的恒等变换是指在三角函数表达式中,通过变换将一个三角函数替换成另一个三角函数的等价形式,从而得到相同结果的变换过程。
通过利用恒等变换,我们可以将一个复杂的三角函数表达式简化为更加简洁的形式,方便计算和理论推导。
二、常用恒等变换公式1. 余弦函数的恒等变换(1)余弦函数的倒数公式:cos(x) = 1 / sec(x)(2)余弦函数的平方公式:cos^2(x) + sin^2(x) = 1(3)余弦函数的倍角公式:cos(2x) = 2*cos^2(x) - 1(4)余弦函数的半角公式:cos^2(x/2) = (1 + cos(x)) / 2 2. 正弦函数的恒等变换(1)正弦函数的倒数公式: sin(x) = 1 / csc(x)(2)正弦函数的平方公式: sin^2(x) + cos^2(x) = 1(3)正弦函数的倍角公式: sin(2x) = 2*sin(x)*cos(x)(4)正弦函数的半角公式: sin^2(x/2) = (1 - cos(x)) / 2 3. 正切函数的恒等变换(1)正切函数的倒数公式: tan(x) = 1 / cot(x)(2)正切函数的平方公式: tan^2(x) + 1 = sec^2(x)(3)正切函数的补角公式:tan(π/2 - x) = 1 / tan(x)三、应用示例以下是几个常见的应用示例,展示了三角函数的恒等变换在解决实际问题中的应用。
1. 三角函数表达式的简化通过利用恒等变换公式,我们可以将一个复杂的三角函数表达式简化为更加简洁的形式。
例如,可以根据恒等变换将 sin^2(x) + cos^2(x) 简化为 1,从而简化数学计算过程。
三角恒等变换的基本公式与应用
三角恒等变换的基本公式与应用三角恒等变换是指由三角函数之间的关系,通过变换得到等价关系的过程。
它们是解决三角函数计算和证明题非常有用的工具。
本文将介绍三角恒等变换的基本公式、根据这些公式的应用以及相关的数学问题。
一、基本公式1. 正弦定理对于任意三角形ABC,其三边长度分别为a、b、c,夹角分别为A、B、C,则正弦定理表达式如下:a/sin(A) = b/sin(B) = c/sin(C)该定理可以用于求解三角形的边长或角度,甚至用于构造和证明三角形的性质。
2. 余弦定理对于任意三角形ABC,其三边长度分别为a、b、c,夹角分别为A、B、C,则余弦定理表达式如下:c² = a² + b² - 2abcos(C)该定理可以用于求解三角形的边长或角度,尤其适用于解决非特殊角的计算问题。
3. 正弦、余弦、正切的关系三角函数的基本关系:sin²(A) + cos²(A) = 1tan(A) = sin(A)/cos(A)这些关系可以通过三角函数间的相互转化和运算来推导和应用。
二、应用1. 角度推导与证明三角恒等变换的基本公式可以用于推导和证明角度之间的关系。
例如,我们可以利用正弦定理推导两角和差公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)这个公式在三角函数运算中非常常用。
2. 三角函数的化简与计算三角函数的公式化简是三角恒等变换的重要应用之一。
例如,我们可以利用tan(A) = sin(A)/cos(A)将复杂的三角函数表达式化简为更简洁的形式。
另外,当我们需要计算某些特殊角度的三角函数值时,也可以利用三角恒等变换的公式得到准确的数值结果。
3. 三角方程的求解三角方程是指含有未知角度的方程。
解决三角方程的关键是将其转化为已知角度的三角函数公式。
通过利用三角恒等变换的公式,我们可以将复杂的三角方程转化为简单的代数方程,从而求解出未知角度的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数恒等变形公式
以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数
两角和与差的三角函数:
cos( a + 3)=cos a • cos 3 -sin a •sin 3
cos( a - 3)=cos a • cos 3 +sin a •sin 3
sin( a ±3 )=sin a • cos 3 ±cos a • sin 3
tan( a + 3)=(tan a +tan 3 )/(1-tan a • tan 3 )
tan( a - 3)=(tan a -tan 3 )/(1+tan a • tan 3 )
三角和的三角函数:
sin( a + 3 +Y )=sin a • cos 3 • cos 丫+cos a • sin 3 • cos 丫+cos a • cos 3 • sin 丫-sin a • sin 3 • sin 丫cos( a + 3 + Y )=cos a • cos 3 • cos 丫-cos a • sin 3 • sin Y -sin a • cos 3 • sin 丫-sin a • sin 3 • cos 丫
tan( a + 3 + Y )=(tan a +tan 3 +tan 丫-tan a •tan 3 • tan 丫)/(1-tan a • tan 3 -tan 3 • tan 丫-tan 丫• tan a ) 辅助角公式:
Asin a +Bcos a =(A2+B2)A( 1/2)sin( a +t),其中
si nt=B/(A2+B2)A(1/2)
cost=A/(A2+B2)A(1/2)
tan t=B/A
As in a -Bcos a =(A2+B2)A(1/2)cos( a -t) , tan t=A/B
倍角公式:
sin (2 a )=2sin a• cos a :=2/(tan a +cot a )
cos(2 a )=cos2( a )- sin2( a )=2cos2( a )-仁1- 2sin2( a )
tan (2 a )=2tan a/[1- tan2( a )]
三倍角公式:
sin (3 a )=3sin a-4sin3( a )=4sin a-sin(60+ a )sin(60- a )
cos(3 a )=4cos3( a )-3cos a =4cos a-cos(60+ a)cos(60- a )
tan(3 a )=tan a • tan( n /3+a) • tan( n /3-a)
半角公式:
Sin( a /2)= ±V((1 -cos a )/2)
cos( a /2)= ±V ((1+cos a )/2)
tan( a /2)= ±V ((1 -cos a )/(1+cos a ))=sin a /(1+cos a )=(1-cos a )/sin a 降幕公式
sin2( a )=(1-cos(2 a ))/2=versin(2 a )/2
cos2( a )=(1+cos(2 a ))/2=covers(2 a )/2
tan2( a )=(1-cos(2 a ))/(1+cos(2 a ))
万能公式:
sin a =2tan( a /2)/[1+tan2( a /2)]
cos a =[1- tan2( a /2)]/[1+tan2( a /2)]
tan a =2tan( a /2)/[1- tan2( a /2)]
积化和差公式:
sin a • cos 3 =(1/2)[sin( a + 3 )+sin( a - 3 )]
cos a • sin 3 =(1/2)[sin( COS a • cos 3 =(1/2)[cos( sin a • sin 3 =-(1/2)[cos( 和差化积公式: a + 3 )-sin( a - 3 )] a + 3 )+cos( a - 3 )] a + 3 )-cos( a - 3 )] sin sin cos
cos 推导公式 +sin 3 =2sin[( a + 3 )/2]cos[( a - 3 )/2] -sin 3 =2cos[( a + 3 )/2]sin[( a - 3 )/2] +cos 3 =2cos[( a + 3 )/2]cos[( a - 3 )/2] -cos 3 =-2sin[( a + 3 )/2]sin[( a - 3 )/2] a =2/si n2 tan a +cot tan a -cot a =-2cot2 1+COS2 a =2cos2 a 1-cos2 a =2sin2 a 1+sin a =(sin a /2+cos a /2)2。