金山概率卷0910(1)A

合集下载

2023-2024学年上海市金山区九年级(上)期末数学试卷(一模)(含解析)

2023-2024学年上海市金山区九年级(上)期末数学试卷(一模)(含解析)

2023-2024学年上海市金山区九年级(上)期末数学试卷(一模)一、选择题:本题共6小题,每小题4分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.把抛物线y=2x2向左平移1个单位后得到的新抛物线的表达式是( )A. y=2x2−1B. y=2x2+1C. y=2(x−1)2D. y=2(x+1)22.已知点E是平行四边形ABCD的边AD上一点,联结CE和BD相交于点F,如果AE:ED=1:2,那么DF:FB为( )A. 1:2B. 1:3C. 2:3D. 2:53.在直角坐标平面的第一象限内有一点A(a,b),如果射线OA与x轴正半轴的夹角为α,那么下列各式正确的是( )A. b=a⋅tanαB. b=a⋅cotαC. b=a⋅sinαD. b=a⋅cosα4.抛物线y=ax2+bx+c的图象如图所示,下列判断中不正确的是( )A. a<0B. b<0C. c>0D. a+b+c<05.将一张矩形纸片沿较长边的中点对折,如果得到的两个矩形都和原来的矩形相似,那么原来矩形较长边和较短边的比是( )A. 2:1B. 2:1C. 3:1D. 3:16.如图在4×1的方格中,每一个小正方形的顶点叫做格点,以其中三个格点为顶点的三角形称为格点三角形,△ABC就是一个格点三角形,现从△ABC的三个顶点中选取两个格点,再从余下的格点中选取一个格点联结成格点三角形,其中与△ABC相似的有( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共12小题,每小题4分,共48分。

7.如果a5=b3(b≠0),那么a−bb=______ .8.化简:2(−a+3b)−6b=______ .9.已知两个相似三角形的相似比为2:3,那么这两个三角形的周长比为______ .10.点P是线段AB的黄金分割点(AP>BP),AB=2,那么线段AP的长是______ .11.抛物线y=2x2−3的顶点坐标是______ .312.如果点A(2,a)、B(3,b)在二次函数y=x2−3x的图象上,那么a______ b(填“>”“<”或“=”).13.如果α是直角三角形的一个锐角,sinα=4,那么tanα=______ .514.如图,已知D、E、F分别是△ABC的边AB、AC、BC上的点,DE//BC,EF//AB,△ADE、△EFC的面积分别为1、4,四边形BFED的面积为______ .15.如图,在山坡上种树,要求株距(相邻两树间的水平距离)是4米,斜坡的坡度i=1:2,那么相邻两树间的坡面距离为______ 米.16.如图,为了绕开岛礁区,一艘船从A处向北偏东60°的方向行驶8海里到B处,再从B处向南偏东45°方向行驶到发点A正东方向上的C处,此时这艘船距离出发点A处______ 海里.17.把矩形ABCD绕点C按顺时针旋转90°得到矩形A′B′CD′,其中点A的对应点A′在BD的延长线上,如果AB=1,那么BC=______ .18.在△ABC中,AC=6,P是AB边上的一点,Q为AC边上一点,直线PQ把△ABC分成面积相等的两部分,且△APQ和△ABC相似,如果这样的直线PQ有两条,那么边AB长度的取值范围是______ .三、解答题:本题共7小题,共78分。

(好题)高中数学必修三第三章《概率》测试卷(答案解析)

(好题)高中数学必修三第三章《概率》测试卷(答案解析)

一、选择题1.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与另一段GN GN 的比例中项,即满足512MG NG MN MG -==,后人把这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.在矩形ABCD 中,E ,F 是线段AB 的两个“黄金分割”点.在矩形ABCD 内任取一点M ,则该点落在DEF 内的概率为( )A .52- B .51- C .52- D .51- 2.从[]2,3-中任取一个实数a ,则a 的值使函数()sin f x x a x =+在R 上单调递增的概率为( ) A .45B .35C .25D .153.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为( )A .13B .49C .59D .234.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .655.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰好有6个白球的概率为( )A .46801010100C C C ⋅ B .64208001010C C C ⋅ C .46208001010C C C ⋅ D .64801010100C C C ⋅ 6.若函数()201)((1)x lnx e x f x e x e ⎧+<<=⎨≤<⎩在区间()0,e 上随机取一个实数x ,则()f x 的值小于常数2e 的概率是( ) A .1eB .11e-C .2eD .21e-7.甲乙两艘轮船都要在某个泊位停靠,甲停靠的时间为4小时,乙停靠的时间为6小时,假定他们在一昼夜的时间段中随机到达,则这两艘船停靠泊位时都不需要等待的概率为( )A .916B .58C .181288D .5128.某研究机构在对具有线性相关的两个变量x 和y 进行统计分析时,得到如下数据:x 4 6 8 10 12 y12356由表中数据求得y 关于的回归方程为,则在这些样本点中任取一点,该点落在回归直线下方的概率为( ) A .25B .35C .34D .129.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若5AD =,3BD =,则在整个图形中随机取点,此点来自中间一个小正三角形(阴影部分)的概率为( )A.964B.449C.225D.2710.如图所示,在一个边长为2.的正方形AOBC内,曲2y x=和曲线y x=围成一个叶形图(阴影部分),向正方形AOBC内随机投一点(该点落在正方形AOBC内任何一点是等可能的),则所投的点落在叶形图内部的概率是()A.12B.14C.13D.1611.如图的折线图是某公司2018年1月至12月份的收入与支出数据,若从6月至11月这6个月中任意选2个月的数据进行分析,则这2个月的利润(利润=收入﹣支出)都不高于40万的概率为()A.15B.25C.35D.4512.在二项式42nxx的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为()A.16B.14C.512D.13二、填空题13.有一个底面半径为2,高为2的圆柱,点1O ,2O 分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点1O 或2O 的距离不大于1的概率是________.14.甲乙两艘轮船都要在某个泊位停靠8个小时,假定它们在一昼夜的时间段内随机地到达,则两船中有一艘在停靠泊位时、另一艘船必须等待的概率为______.15.某学校高三年级有A 、B 两个自习教室,甲、乙、丙3名学生各自随机选择其中一个教室自习,则甲、乙两人不在同一教室上自习的概率为________.16.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7, 8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________.17.有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为___________.18.在区间[,]22ππ-上随机取一个实数x ,则事件“13sin cos 2x x -≤+≤”发生的概率是__________.19.如图,在半径为1的圆上随机地取两点,B E ,连成一条弦BE ,则弦长超过圆内接正BCD ∆边长的概率是__________.20.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________三、解答题21.改革开放40年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图为体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).(Ⅰ)从2007年至2016年随机选择1年,求该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上的概率;(Ⅱ)从2007年至2016年随机选择3年,设X 是选出的三年中体育产业年增长率超过20%的年数,求X 的分布列与数学期望;(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)22.在这智能手机爆发的时代,大部分高中生都有手机,在手机面前,有些学生无法抵御手机尤其是手机游戏和短视频的诱惑,从而导致无法专心完成学习任务,成绩下滑;但是对于自制力强,能有效管理自己的学生,手机不仅不会对他们的学习造成负面影响,还能成为他们学习的有力助手,我校某研究型学习小组调查研究“中学生使用智能手机对学习的影响部分统计数据如下表:不使用手机 使用手机 合计 学习成绩优秀人数 28 12 40 学习成绩不优秀人数 14 26 40 合计423880参考数据:22()()()()()n ad bc K a c b d a b c d -=++++,其中n a b c d =+++.()20P K k ≥ 0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828(1)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用手机对学习有影响?(2)研究小组将该样本中不使用手机且成绩优秀的同学记为A组,使用手机且成绩优秀的同学记为B组,计划从A组推选的4人和B组推选的2人中,随机挑选两人来分享学习经验,求挑选的两人中一人来自A组、另一人来自B组的概率.23.某校某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图(已知本次测试成绩满分100分,且均为不低于50分的整数),请根据图表中的信息解答下列问题.(1)求全班的学生人数及频率分布直方图中分数在[70,80)之间的矩形的高;(2)为了帮助学生提高数学成绩,决定在班里成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[50,60)中的某一位同学,已知甲同学的成绩为53分,乙同学的成绩为96分,求甲、乙恰好被安排在同一小组的概率.24.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)求频率分布直方图中的a,b的值;(2)从阅读时间在[14,18)的学生中任选2人,求恰好有1人阅读时间在[14,16),另1人阅读时间在[16,18)的概率.25.在一次跳绳活动中,某学校从高二年级抽取了100位同学一分钟内跳绳,由测量结果得到如图所示的频率分布直方图,落在区间[140,150),[150,160),[160,170]内的频率之比为4:2:1.(1)求跳绳次数落在区间[150,160)内的频率;(2)用分层抽样的方法在区间[130,160)内抽取6位同学,将该样本看成一个总体,从中任意抽取2位同学,求这2位同学跳绳次数都在区间[130,150)内的概率.26.某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的1000名群众中随机抽取n名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],其中第1组[20,30)有6人,得到的频率分布直方图如图所示.(1)求m ,n 的值,并估计抽取的n 名群众中年龄在[40,60)的人数;(2)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别求出对应的面积,进而求得结论. 【详解】解:设正方形ABCD 的边长为1,则51AF BE -==,∴2152EF AF =-=, ∴所求的概率为21522DEFABCDEF ADSP S AD ⨯⨯-===正方形 故选:C . 【点睛】本题主要考查几何概型,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A 的基本事件对应的“几何度量” ()N A ,再求出总的基本事件对应的“几何度量” N ,最后根据()N A PN求解,属于中档题. 2.C解析:C 【分析】先利用导数求出函数()sin f x x a x =+在R 上单调递增时a 的范围,然后再由几何概型的知识解决问题.【详解】∵()'1cos f x a x =+,要使函数()sin f x x a x =+在R 上单调递增,则1cos 0a x +≥对任意实数x 都成立.∵1cos 1x -≤≤,∴①当0a >时,cos a a x a -≤≤,∴1a -≥-,∴01a <≤;②当0a =时适合;③当0a <时,cos a a x a ≤≤-,∴1a ≥-,∴10a -≤<,综上11a -≤≤,∴函数()sin f x x a x =+在R 上单调递增的概率为25P =.选C . 【点睛】 本题主要考查已知函数的单调性求参数的范围及几何概型问题,属中等难度题.3.C解析:C 【分析】列举法列举出所有可能的情况,利用古典概型的计算方法计算即可. 【详解】解:依题意得所拨数字可能为610,601,511,160,151,115,106,61,16,共9个,其中有5个是奇数,则所拨数字为奇数的概率为59,故选:C. 【点睛】本题考查概率的实际应用问题,考查古典概型的计算方法,同时考查了学生的阅读能力和文化素养,属于中档题.4.D解析:D 【分析】利用与面积有关的几何概型概率计算公式求解即可. 【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.5.C解析:C 【分析】根据古典概型的概率公式求解即可. 【详解】从袋中任取10个球,共有10100C 种,其中恰好有6个白球的有468020C C ⋅种即其中恰好有6个白球的概率为46208001010C C C ⋅ 故选:C 【点睛】本题主要考查了计算古典概型的概率,属于中档题.6.C解析:C 【分析】首先求出分段函数在各区间段的值域,然后利用几何概型求其概率. 【详解】 由题意得,当01x <<时,2()ln f x x e =+,则恒有2()f x e <,满足题意; 当1x e ≤<时,()xf x e =,若满足2()xf x e e =<,可得12x ≤<; 所以()f x 的值小于常数2e 的概率是2e. 故选:C. 【点睛】本题主要考查长度比值类型的几何概型,同时考查了分段函数值域的求解,属于基础题.7.C解析:C 【分析】设甲、乙到达的时间分别为,x y ,列出所有基本事件的约束条件,同时列出两艘船停靠泊位时都不需要等待的约束条件,利用线性规划做出平面区域,利用几何概型概率关系转化为面积比. 【详解】设甲、乙到达的时间分别为,x y ,则所有基本事件的构成的区域024{|}024x x y ≤≤⎧Ω=⎨≤≤⎩, 则这两艘船停靠泊位时都不需要等待包含的基本事件构成的区域024024{(,)|}46x y A x y y x x y ≤≤⎧⎪≤≤⎪=⎨≥+⎪⎪≥+⎩,做出Ω构成的区域,其面积为224=576,阴影部分为集合A 构成的区域,面积为221(2018)3622+=,这两艘船停靠泊位时都不需要等待的概率362181()576288P A ==. 故选:C.【点睛】本题考查利用线性规划做出事件对应的平面区域,再利用几何概型概率公式求出事件的概率,属于中档题.8.A解析:A 【分析】求出样本点的中心,求出ˆa的值,得到回归方程得到5个点中落在回归直线下方的有(6,2),(8,3),共2个,求出概率即可.【详解】8x =, 3.4y =,故3.40.658ˆa=⨯+,解得: 1.8a =-, 则0.65.8ˆ1yx =-, 故5个点中落在回归直线下方的有(6,2),(8,3),共2个, 故所求概率是25p =, 故选:A . 【点睛】本题考查回归方程概念、概率的计算以及样本点的中心,考查数据处理能力,是一道基础题.9.B解析:B 【分析】求得120ADB ∠=︒,在ABD 中,运用余弦定理,求得AB ,以及DE ,根据三角形的面积与边长之间的关系即可求解. 【详解】 解:18060120ADB ∠=︒-︒=︒,在ABD 中,可得2222cos AB AD BD AD BD ADB =+-⋅∠, 即为222153253492AB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,解得7AB =, 2DE AD BD =-=,224()749DEF ABCSS∴==. 故选:B . 【点睛】本题考查三角形的余弦定理,同时也考查了利用几何概型的概率公式计算概率,考查方程思想和运算能力,属于基础题.10.C解析:C 【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解.【详解】联立2y y x⎧=⎪⎨=⎪⎩(1,1)C . 由图可知基本事件空间所对应的几何度量1OBCA S =正方形, 满足所投的点落在叶形图内部所对应的几何度量:S(A )3123120021)()|33x dx x x ==-⎰13=. 所以P (A )1()1313OBCAS A S ===正方形. 故选:C . 【点睛】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.11.B解析:B 【分析】从7月至12月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)低于40万的有6月,9月,10月,由此即可得到所求. 【详解】如图的折线图是某公司2017年1月至12月份的收入与支出数据, 从6月至11月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)不高于40万的有6月,8月,9月,10月,∴这2个月的利润(利润=收入-支出)都不高于40万包含的基本事件个数246m C ==, ∴这2个月的利润(利润=收入-支出)都低于40万的概率为62155m P n ===, 故选:B 【点睛】本题主要考查了古典概型,考查了运算求解能力,属于中档题.12.C解析:C 【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果 【详解】因为n前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-= 163418118,0,1,2,82rr r r n n T C x r -+>∴=∴=⋅=,当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.二、填空题13.【分析】本题利用几何概型求解先根据到点的距离等于1的点构成图象特征求出其体积最后利用体积比即可得点到点的距离不大于1的概率;【详解】解:由题意可知点P 到点或的距离都不大于1的点组成的集合分别以为球心解析:16【分析】本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点P 到点1O ,2O 的距离不大于1的概率; 【详解】解:由题意可知,点P 到点1O 或2O 的距离都不大于1的点组成的集合分别以1O 、2O 为球心,1为半径的两个半球,其体积为314421233ππ⨯⨯⨯=,又该圆柱的体积为22228V r h πππ==⨯⨯=,则所求概率为41386P ππ==.故答案为:16【点睛】本题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.关键是明确满足题意的测度为体积比.14.【分析】利用几何概型的面积型概率计算作出边长为24的正方形面积求出部分的面积即可求得答案【详解】设甲乙两艘轮船到达的时间分为则记事件为两船中有一艘在停靠泊位时另一艘船必须等待则即∴故答案为:【点睛】解析:59【分析】利用几何概型的面积型概率计算,作出边长为24的正方形面积,求出||8x y -≤部分的面积,即可求得答案. 【详解】设甲乙两艘轮船到达的时间分为,x y ,则024,024x y ≤≤≤≤,记事件A 为两船中有一艘在停靠泊位时、另一艘船必须等待,则||8x y -≤, 即8,8,y x y x ≥-⎧⎨≤+⎩∴2222241625()1()2439S P A S -===-=阴影正方形. 故答案为:59.【点睛】本题考查几何概型,考查转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意对概率模型的抽象成面积型.15.【分析】利用乘法计数原理可计算出甲乙丙名学生各自随机选择其中一个教室自习共有种利用分步乘法计数原理计算出甲乙两人不在同一教室上自习的排法种数然后利用古典概型的概率公式可计算出所求事件的概率【详解】由解析:1 2【分析】利用乘法计数原理可计算出甲、乙、丙3名学生各自随机选择其中一个教室自习共有32种,利用分步乘法计数原理计算出甲、乙两人不在同一教室上自习的排法种数,然后利用古典概型的概率公式可计算出所求事件的概率.【详解】由题意可知,甲、乙、丙3名学生各自随机选择其中一个教室自习共有32种,甲、乙两人不在同一教室上自习,可先考虑甲在A、B两个自习教室选一间教室自习,然后乙在另一间教室自习,则丙可在A、B两个自习教室随便选一间自习教室自习,由分步计数原理可知,有224⨯=种选择.因此,甲、乙两人不在同一教室上自习的概率为41 82 =.故答案为:1 2 .【点睛】本题考查利用古典概型的概率公式计算事件的概率,同时也考查了分步计数原理的应用,考查计算能力,属于中等题.16.【分析】根据数据统计击中目标的次数再用古典概型概率公式求解【详解】由数据得射击4次至少击中3次的次数有15所以射击4次至少击中3次的概率为故答案为:【点睛】本题考查古典概型概率公式考查基本分析求解能解析:3 4【分析】根据数据统计击中目标的次数,再用古典概型概率公式求解.【详解】由数据得射击4次至少击中3次的次数有15,所以射击4次至少击中3次的概率为153 204=.故答案为:3 4【点睛】本题考查古典概型概率公式,考查基本分析求解能力,属基础题.17.【解析】【分析】列出所有的基本事件并找出事件所取三条线段能构成一个三角形所包含的基本事件再利用古典概型的概率公式计算出所求事件的概率【详解】所有的基本事件有:共个其中事件所取三条线段能构成一个三角形 解析:310【解析】 【分析】列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率. 【详解】所有的基本事件有:()2,3,5、()2,3,7、()2,3,9、()2,5,7、()2,5,9、()2,7,9、()3,5,7、()3,5,9、()3,7,9、()5,7,9,共10个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:()3,5,7、()3,7,9、()5,7,9,共3个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为310, 故答案为310. 【点睛】本题考查古典概型的概率的计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.18.【分析】用辅助角公式化简题目所给不等式解三角不等式求得点的取值范围利用几何概型的概率公式求得所求的概率【详解】由得故解得根据几何概型概率计算公式有概率为【点睛】本小题主要考查三角不等式的解法考查三角 解析:512【分析】用辅助角公式化简题目所给不等式,解三角不等式求得x 点的取值范围,利用几何概型的概率公式求得所求的概率. 【详解】由1cos x x -≤+≤π12sin 6x ⎛⎫-≤+≤ ⎪⎝⎭1πsin 262x ⎛⎫-≤+≤⎪⎝⎭,故πππ664x -≤+≤,解得ππ312x -≤≤,根据几何概型概率计算公式有概率为ππ5123ππ1222⎛⎫-- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭.【点睛】本小题主要考查三角不等式的解法,考查三角函数辅助角公式,考查几何概型的计算,属于基础题.19.【解析】【分析】取圆内接等边三角形的顶点为弦的一个端点当另一端点在劣弧上时求出劣弧的长度运用几何概型的计算公式即可得结果【详解】记事件{弦长超过圆内接等边三角形的边长}如图取圆内接等边三角形的顶点为解析:13【解析】 【分析】取圆内接等边三角形BCD 的顶点B 为弦的一个端点,当另一端点在劣弧CD 上时,BE BC >,求出劣弧CD 的长度,运用几何概型的计算公式,即可得结果.【详解】记事件A ={弦长超过圆内接等边三角形的边长},如图,取圆内接等边三角形BCD 的顶点B 为弦的一个端点, 当另一端点在劣弧CD 上时,BE BC >, 设圆的半径为r ,劣弧CD 的长度是23rπ, 圆的周长为2r π,所以()21323rP A r ππ==,故答案为13. 【点睛】本题主要考查“长度型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.20.【分析】求出小明等车时间不超过10分钟的时间长度代入几何概型概率计算公式可得答案【详解】设小明到达时间为当在7:50至8:00或8:20至8:30时小明等车时间不超过10分钟故故答案为【点睛】本题考解析:12【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案. 【详解】设小明到达时间为y ,当y 在7:50至8:00,或8:20至8:30时, 小明等车时间不超过10分钟, 故201402P ==. 故答案为12. 【点睛】本题考查的知识点是几何概型,难度不大,属于基础题.三、解答题21.(Ⅰ)25;(Ⅱ)详见解析;(Ⅲ)从2008年或2009年开始连续三年的体育产业年增长率方差最大.从2014年开始连续三年的体育产业年增加值方差最大. 【分析】(Ⅰ)由题意利用古典概型计算公式可得满足题意的概率值;(Ⅱ)由题意首先确定X 可能的取值,然后结合超几何概型计算公式得到分布列,然后求解其数学期望即可;(Ⅲ)由题意结合方差的性质和所给的图形确定方差的最大值即可. 【详解】(Ⅰ)设A 表示事件“从2007年至2016年随机选出1年,该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上”.由题意可知,2009年,2011年,2015年,2016年满足要求, 故42()105P A ==. (Ⅱ)由题意可知,X 的所有可能取值为0,1,2,3,且36310C 1(0)=C 6P X ==;1246310C C 1(1)=C 2P X ==;2146310C C 3(2)=C 10P X ==;34310C 1(3)=C 30P X ==.所以X 的分布列为:故X 的期望11316()01236210305E X =⨯+⨯+⨯+⨯=. (Ⅲ)从2008年或2009年开始连续三年的体育产业年增长率方差最大.从2014年开始连续三年的体育产业年增加值方差最大. 【点睛】本题主要考查统计图表的识别,超几何概型计算公式,离散型随机变量的分布列与期望的计算,古典概型计算公式等知识,意在考查学生的转化能力和计算求解能力. 22.(1)99.5%;(2)815. 【分析】(1)根据22⨯列联表中的数据,代入卡方计算,即可求解; (2)根据古典概型,列出基本时间,根据概率公式,即可求解. 【详解】 (1)根据公式得2280(28261412)9.8257.87942384040K ⨯⨯-⨯==≥⨯⨯⨯.所以有99.5%的把握认为中学生使用手机对学习有影响.(2)记A 组推选的4人为a ,b ,c ,d ,B 组推选的2人为e ,f , 则从这6人中任取两人有15种取法:()()()()(),,,,,a b a c a d a e a f ()()()(),,,,b c b d b e b f ()()()c,,,d c e c f ()(),,d e d f(),e f其中一人来自A 组、另一人来自B 组有8种取法, 故概率为815p =. 【点睛】本题考查(1)独立性检验(2)古典概型概率计算,考查计算能力,属于中等题型. 23.(1)50人,0.04;(2)18【分析】(1)先根据频数计算在[50,60)上的频率,继而求得全班总人数,再根据[70,80)之间的人数求得[70,80)之间的频率与高即可.(2)根据题意求得[50,60)中的人数与[90,100)分数段内的人数,再编号利用枚举法求解即可. 【详解】(1)由茎叶图知分数在[50,60)上的频数为4, 频率为0.008×10=0.08, 故全班的学生人数为40.08=50人, ∵分数在[70,80)间的频数为:50﹣(4+14+8+4)=20, ∴频率是200.450=,∴矩形的高是0.410=0.04. (2)成绩在[50,60)分数段内的人数有4人,记为甲、A 、B 、C , 成绩在[90,100)分数段内的人数有4人,记为乙、a ,b ,c , 则“二帮一”小组有以下24种分组办法:甲乙a ,甲乙b ,甲乙c ,甲ab ,甲ac ,甲bc ,A 乙a ,A 乙b , A 乙c ,Aab ,Aac ,Abc ,B 乙a ,B 乙b ,B 乙c ,Bab , Bac ,Bbc ,C 乙a ,C 乙b ,C 乙c ,Cab ,Cac ,Cbc ,其中,甲、乙两同学被分在同一小组有3种办法:甲乙a ,甲乙b ,甲乙c , ∴甲乙两同学恰好被安排在同一小组的概率为P 31248==. 【点睛】本题主要考查了茎叶图与频率分布直方图的应用,同时也考查了枚举法解决古典概型问题,属于基础题.24.(1)a=0.11,b=0.04;(2)23. 【分析】(1)课外阅读时间落在[6,8)的有22人,频率为0.22,由此能求出a ,课外阅读时间落在[2,4)的有8人,频率为0.08,由此能求出b ;(2)课外阅读时间落在[14,16)的有2人,设为m ,n ;课外阅读时间落在[16,18)的有2人为x ,y ,由此利用列举法能求出从课外阅读时间落在[14,18)的学生中任选2人,其中恰好有1人阅读时间在[14,16),另1人阅读时间在[16,18)的概率. 【详解】(1)课外阅读时间落在[6,8)的有22人,频率为0.22,所以0.220.112a == 课外阅读时间落在[2,4)的有8人,频率为0.08, 所以0.080.042b == (2)课外阅读时间落在[14,16)的有2人,设为m ,n ;课外阅读时间落在[16,18)的有2人为x ,y ,。

北师大版九年级数学上册《3.1用树状图或表格求概率》同步测试题带答案

北师大版九年级数学上册《3.1用树状图或表格求概率》同步测试题带答案

北师大版九年级数学上册《3.1用树状图或表格求概率》同步测试题带答案·知识点1游戏的公平性问题1.小强和小华两人玩“剪刀、石头、布”的游戏,随机出手一次,则小强获胜的概率为( )A.16B.13C.12D.232.小明、小颖和小凡都想去影院看电影,但现在只有一张电影票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是( )A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大3.学生甲、乙在学习了概率初步知识后设计了如下游戏:甲手中有6,8,10三张扑克牌,乙手中有5,7,9三张扑克牌,两人从各自手中随机取一张牌进行比较,数字大的则本局游戏获胜.(1)请用列表或画树状图的方法列举出此游戏所有可能出现的情况;(2)求学生乙本局游戏获胜的概率.·知识点2转盘问题4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )A.13B.14C.16D.185.(2023·聊城中考)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是.6.现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏,甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜.则甲获胜的概率是( )A.13B.23C.49D.597.甲、乙各抛一次质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数,若甲、乙的点数相同时,算两人平手;若甲的点数>乙的点数时,算甲获胜;若乙的点数>甲的点数时,算乙获胜.则甲获胜的概率是( )A.712B.512C.12D.138.从-2,-1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于.9.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是.【素养提升】10.福州国际马拉松赛事设有“马拉松(42.195千米)”,“半程马拉松(21.097 5千米)”,“迷你马拉松(5千米)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195千米)”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.【易错必究】·易错点:忽视等可能的前提条件【案例】用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是( )A.14B.13C.12D.1参考答案·知识点1游戏的公平性问题1.小强和小华两人玩“剪刀、石头、布”的游戏,随机出手一次,则小强获胜的概率为(B)A.16B.13C.12D.232.小明、小颖和小凡都想去影院看电影,但现在只有一张电影票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是(D)A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大3.学生甲、乙在学习了概率初步知识后设计了如下游戏:甲手中有6,8,10三张扑克牌,乙手中有5,7,9三张扑克牌,两人从各自手中随机取一张牌进行比较,数字大的则本局游戏获胜.(1)请用列表或画树状图的方法列举出此游戏所有可能出现的情况;(2)求学生乙本局游戏获胜的概率.【解析】略·知识点2转盘问题4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是(A)A.13B.14C.16D.185.(2023·聊城中考)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是16.6.现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏,甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜.则甲获胜的概率是(D)A.13B.23C.49D.597.甲、乙各抛一次质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数,若甲、乙的点数相同时,算两人平手;若甲的点数>乙的点数时,算甲获胜;若乙的点数>甲的点数时,算乙获胜.则甲获胜的概率是(B)A.712B.512C.12D.138.从-2,-1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于13.9.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是13.【素养提升】10.福州国际马拉松赛事设有“马拉松(42.195千米)”,“半程马拉松(21.097 5千米)”,“迷你马拉松(5千米)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195千米)”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.【解析】略【易错必究】·易错点:忽视等可能的前提条件【案例】用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是(C)A.14B.13C.12D.1。

初三数学概率试题答案及解析

初三数学概率试题答案及解析

初三数学概率试题答案及解析1.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同,现在两辆汽车经过这个十字路口.(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果;(2)求这两辆汽车都向左转的概率.【答案】(1)详见解析;(2).【解析】(1)利用树形图”或“列表法”即可求出两辆汽车行驶方向所有可能的结果.(2)由(1)中的图表情况,根据概率公式即可求出这两辆汽车都向左转的概率.试题解析:解:(1)两辆汽车所有9种可能的行驶方向如下:(2)∵两辆汽车所有9种可能的行驶方向中两辆汽车都向左转的情况有1种,∴两辆汽车都向左转的概率是:.【考点】1.列表法或树状图法;2.概率.2.如图,暑假快要到了,某市准备组织同学们分别到A,B,C,D四个地方进行夏令营活动,前往四个地方的人数.(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数?(2)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树形图分析这种方法对姐弟俩是否公平?【答案】(1)40;(2)不公平.【解析】(1)假设出去B地的人数为x,根据去B地参加夏令营活动人数占总人数的40%,进而得出方程求出即可;(2)根据已知列表得出所有可能,进而利用概率公式求出即可.试题解析:(1)设去B地的人数为x,则由题意有:;解得:x=40.∴去B地的人数为40人.(2)列表:∴姐姐能参加的概率P(姐)=,弟弟能参加的概率为P(弟)=,∵P(姐)=<P(弟)=,∴不公平.【考点】1.条形统计图;2.列表法与树状图法;3.游戏公平性.3.如图,小华和小丽两人玩游戏,她们准备了A、B两个分别被平均分成三个、四个扇形的转盘.游戏规则:小华转动A盘、小丽转动B盘.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6,小华获胜.指针所指区域内的数字之和大于6,小丽获胜.(1)用树状图或列表法求小华、小丽获胜的概率;(2)这个游戏规则对双方公平吗?请判断并说明理由.【答案】(1)小华获胜:P小于6=;小丽获胜:P大于6=(2)由小华获胜的概率大可知游戏规则对双方不公平.【解析】(1)先列表将所有可能的结果表示出来,然后求出概率;(2)由(1)中所求得的概率即可知是否公平.试题解析:(1)列表如下:小华获胜:P小于6=;小丽获胜:P大于6=(2)∵,∴游戏规则对双方不公平.【考点】列表法及树状图法求概率4.如图,有6张扑克处于,从中随机抽取一张,点数为偶数的概率是A.B.C.D.【答案】D【解析】∵有6张扑克牌,从中随机抽取一张,点数为偶数的有红心4、方块8、方块10共有3种情况,∴从中随机抽取一张,点数为偶数的概率是:=.故选D.【考点】概率5.把一副扑克牌中的三张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当两张牌的牌面数字相同时,小王赢;当两张牌的牌面数字不同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平,并说明理由.【答案】不公平,理由见解析【解析】解:游戏规则不公平.理由如下:列表如下:小李小王3故,.∵<,∴此游戏规则不公平,小李赢的可能性大.6.某电视台举行歌手大奖赛,每场比赛都有编号为1~10号,共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手分别抽走了2号,7号题,第3位选手抽中8号题的概率是()A.B.C.D.【答案】C.【解析】先求出题的总号数及8号的个数,再根据概率公式解答即可.前两位选手抽走2号、7号题,第3位选手从1、3、4、5、6、8、9、10共8位中抽一个号,共有8种可能,每个数字被抽到的机会相等,所以抽中8号的概率为.故选C.考点: 概率公式.7.小烈和小伟玩一种扑克版的游戏,若小烈手里有3张牌是K,小伟从小烈手中抽到K的概率为,则小烈手里共有扑克牌()A.4张B.9张C.12张D.15张【答案】C.【解析】设小烈手里有x中扑克牌,再根据小烈手里有3张牌是K,小伟从小烈手中抽到K的概率为,求出x的值即可.设小烈手里有x中扑克牌,∵小烈手里有3张牌是K,小伟从小烈手中抽到K的概率为,∴,解得x=12.故选C.考点: 概率公式.8.在“石头、剪子、布”的游戏中,规则是:石头胜剪子,剪子胜布,布胜石头,当你出“石头”时,对手与你打平的概率是()A.B.C.D.【答案】.【解析】当你出“石头”时,对手可能出石头或剪子或布,只有对手出石头时,对手与你打平,然后根据概率公式计算.当你出“石头”时,对手与你打平的概率=.考点: 概率公式.9.在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n=.【答案】4.【解析】随机从口袋中摸出一个恰好是黄球的概率为,说明黄球的数目是口袋中所有球的数目的,则可列方程:,解得:n=4.【考点】概率的定义.10.张明想给单位打电话,可电话号码中的一个数字记不清楚了,只记得6352□87,张明在□的位置上随意选了一个数字补上,恰好是单位电话号码的概率是 .【答案】【解析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。

概率论09-10A附答案

概率论09-10A附答案

概率论09-10A附答案(总4页)重庆理工大学考试试卷2009~ 2010 学年第 2 学期班级 学号 姓名 考试科目 概率与数理统计 A 卷 闭卷 一、 单项选择题(每小题2分,共22分)1、设事件A 与B 互为对立事件,且()0,()0,P A P B >>则下列命题不成立的是( )A 、A 与B 不相容 B 、A 与B 相互独立C 、A 与B 不独立D 、A B 与互不相容2、设()F x 是连续型随机变量X 的分布函数,12,x x 为任意两实数,且12x x <,则( )不一定成立 A 、()F x 在1x 点连续 B 、12()()F x F x ≤ C 、12()()F x F x < D 、{}2112()()F x F x P x x x -=<≤3、设随机变量X 的分布函数为()⎪⎩⎪⎨⎧>≤≤<=1110003x x x x x F ,则()E X =( ) A 、⎰+∞04dx x B 、+⎰14dx x ⎰+∞1xdx C 、⎰133dx x D 、⎰+∞33dx x4、设127,,,X X X 取自总体2~(0,0.5)X N ,则7214i i P X =⎧⎫>=⎨⎬⎩⎭∑( )(22220.050.0250.010.05(7)14.067,(7)16.012,(7)18.474,(6)12.592χχχχ====)A 、0.5B 、0.025C 、0.05D 、0.015、每张彩票中奖的概率为0.1,某人购买了20张号码杂乱的彩票,设中奖的张数为X ,则X 服从( )分布。

A 、01- B 、 二项 C 、泊松 D 、指数.6、由()()()E XY E X E Y =可断定( ) A 、X 与Y 相互独立B 、X 与Y 不独立C 、X 与Y 不相关D 、X 与Y 相关7、设商店售盐,每包重量是一个随机变量,其数学期望为1kg ,方差为0.0005kg ,500包这种食盐总重量在499~501kg 之间的概率为( ).A 、2(1)1Φ-B 、1(2)-ΦC 、1(1)-ΦD 、2(2)1Φ-8、将n 只球随机地投入n 只盒子中,则每只盒子中各有一只球的概率为( )。

九年级概率试题及答案

九年级概率试题及答案

九年级概率试题及答案一、选择题1. 某班有50名学生,其中男生30人,女生20人。

随机抽取一名学生,求抽到男生的概率。

A. 1/2B. 2/5C. 3/5D. 4/5答案:C2. 抛一枚均匀硬币,求正面朝上的概率。

A. 1/2B. 1/3C. 2/3D. 1/4答案:A3. 一个袋子里有3个红球,2个蓝球,随机摸出一个球,求摸到红球的概率。

A. 1/2B. 3/5C. 2/5D. 4/5答案:B4. 某地区连续3天下雨的概率是0.3,求该地区连续3天不下雨的概率。

A. 0.7B. 0.9C. 0.49D. 0.51答案:B5. 某工厂生产的零件,合格率为95%,求生产出不合格零件的概率。

A. 0.05B. 0.1C. 0.95D. 0.5答案:A二、填空题6. 某班有40名学生,其中10名是优秀学生。

随机抽取一名学生,求抽到优秀学生的概率是________。

答案:1/47. 某次考试,共有100道选择题,每题有4个选项,随机选择答案,求至少答对60题的概率。

答案:此题需要使用二项分布概率公式计算,较为复杂,答案略。

8. 某班有50名学生,随机抽取5名学生,求这5名学生中恰好有2名男生的概率。

答案:此题需要使用组合概率计算,答案略。

三、解答题9. 一个不透明的袋子里有5个红球,3个白球,2个蓝球。

求以下事件的概率:(1) 随机摸出一个球,是红球的概率。

(2) 随机摸出两个球,都是红球的概率。

解答:(1) 袋子里共有10个球,其中5个是红球。

因此,摸出一个球是红球的概率为 \( P(\text{红球}) = \frac{5}{10} = \frac{1}{2} \)。

(2) 摸出两个球都是红球的概率,可以使用组合概率计算。

首先计算摸出第一个红球的概率为 \( \frac{5}{10} \),然后从剩下的9个球中摸出第二个红球的概率为 \( \frac{4}{9} \)。

所以,两个都是红球的概率为 \( P(\text{两个红球}) = \frac{5}{10} \times\frac{4}{9} = \frac{2}{9} \)。

九年级数学概率练习题及答案

九年级数学概率练习题及答案

九年级数学概率练习题及答案九年级数学概率练习题及答案在九年级的数学学习中,概率是一个非常重要的概念。

概率可以帮助我们预测事件发生的可能性,也可以用来解决实际生活中的问题。

下面我将给大家提供一些九年级数学概率练习题及答案,希望能对大家的学习有所帮助。

1. 一个骰子有六个面,分别标有1到6的数字。

小明投掷了这个骰子一次,求小明投掷的结果是一个偶数的概率。

解答:一个骰子有6个可能的结果,其中有3个是偶数(2、4、6)。

所以小明投掷的结果是一个偶数的概率为3/6,即1/2。

2. 一副标有数字1到10的牌,从中随机抽取一张牌,求抽到的牌是一个质数的概率。

解答:一副牌中有10张牌,其中有4张是质数(2、3、5、7)。

所以抽到的牌是一个质数的概率为4/10,即2/5。

3. 一袋中有红、蓝、绿三种颜色的球,红球有4个,蓝球有3个,绿球有5个。

从袋中随机抽取一个球,求抽到的球是红色的概率。

解答:一共有12个球,其中有4个是红球。

所以抽到的球是红色的概率为4/12,即1/3。

4. 有一个有10个人的班级,其中有6个男生和4个女生。

从班级中随机选取一个人,求选取的人是女生的概率。

解答:班级中共有10个人,其中有4个是女生。

所以选取的人是女生的概率为4/10,即2/5。

5. 一副扑克牌中有52张牌,其中有4个花色(红桃、黑桃、方块、梅花),每个花色有13张牌。

从中随机抽取一张牌,求抽到的牌是红桃的概率。

解答:一共有52张牌,其中有13张是红桃。

所以抽到的牌是红桃的概率为13/52,即1/4。

通过以上习题的解答,我们可以看出,概率的计算主要是通过计算事件发生的可能性与总体样本空间的比值来得到。

在实际生活中,我们可以运用概率的概念来解决各种问题,比如购买彩票中奖的概率、天气预报的准确率等等。

当然,概率也有一些基本的性质和规律,比如概率的范围是0到1之间,事件不可能发生时概率为0,事件一定发生时概率为1。

此外,概率的计算还可以通过频率的方法来进行,即通过实验的结果来估算概率。

(完整版)北师大版九年级数学上册第三章《概率》专题练习(含答案)

(完整版)北师大版九年级数学上册第三章《概率》专题练习(含答案)

北师大版九年级数学上册第三章《概率》专题练习一.知识梳理(一)事件的分类:1. 频率二频数/总数,频率随着试验的不同而不同,它是一个不确定数。

2. 事件发生的——大小叫做概率。

事件的概率是一个确定的常数。

3. 事件的分类:确定事件和随机事件。

确定事件包括必然事件和不可能事件4. 必然事件的概率为1;不可能事件的概率为0;随机事件的概率位于0--1之间。

(二)概率的计算:当事件发生的结果具有有限性和等可能性时:(1) 一步试验或几何图形,利用概率的定义直接计算(2) 两步试验,且结果较少,用树状图和列表格求概率都可以;(3) 两步试验,但每步结果较多,适合用列表法求概率;(4) 三步或三步以上,适合用画树状图求概率。

(5) 用画树状图或列表法求概率时应注意:要清楚所以结果有哪些?要清楚我们关注的是哪些结果?(三)用频率估计概率概率和频率的关系:通过试验获得事件发生的频率,而大量重复试验时的频率会稳定在概率的附近,所以可以用大量试验的频率估计概率;同时也可以利用概率预测事件发生的频率。

二.简单概率计算一步试验:1. 十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,亮绿灯的概率是________________2. 一个不透明的袋子中放入除颜色外均相同的2个白球和6个红球,从中任意抽取一个球,抽到红球的概率是________________ 3. 在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其他无任何差别,搅匀后随机从中摸出一个求恰好是黄球的概率是】,则放入口袋中的黄球总数是n= _____________________3两步试验:仔细区分:(1)放回;(2)不放回4. 在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色不同,从袋子中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次都摸到白球的概率为_________5. 某校安排了3辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王和小菲都可以从这三辆车中任意选取1辆搭乘,则小王和小菲同车的概率是_______6. 某校决定从2名男生和3名女生中选出2名同学作为兰州国际马拉松赛的志愿者,则选出1男1女的概率是 ___________7. 袋子中放着型号,大小完全相同的红,白,黑三种颜色的衣服,红色2件,黑色1件,白色1件,小明随意从袋中取出2件衣服,则取出的是1红1白的概率是 ________三步试验:8. 随机安排甲乙丙3人在3天节日中值班,每人值班一天,则按“乙,甲,丙”的先后顺序值班的概率是____________三:概率与其他知识的综合9. 在x2口2xy 口y2的“口”中分别填上“ +”或“-”,在所得的代数式中,能构成完全平方式的概率是__________A.1B. 3C.丄D.丄4 2 410. 已知a,b可以取-2 , -1,1,2中的任意一个值(a z b),则直线y=ax+b的图像不经过第四象限的概率是____________11. 一个盒子里有完全相同的三个小球,球上分别标有数字-2,1,4,随机摸出一个小球(不放回),其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于X的方程x2px q 0有实数根的概率是 _ _12. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0 ,1,2,连续抛掷两次,朝下一面的数字分别为a,b,将其作为M点横,纵坐标,则点M(a,b)落在以A (-2,0 ) , B (2,0 ) , C (0,2 )为顶点的三角形内(包括边界)的概率是_______________________________________ 标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的数字之和为负数的概率是 _____________________ 14.在盒子里放有3张分别写有整式a+1,a+2,2的卡片,从中随机抽出2张卡片,把2张卡片上的整式分别作为分子和分母,贝惟组成分式的概率是—15. 有四根木棒,长度分别为2,3,4,5,从中任选3根,恰好能搭成一个三角形的概率是——16. 小明和小亮用如图所示的两个转盘做“配紫色”游戏,游戏规则是:分别转动两个转盘,若其中一个转盘转出红色,另一个转盘转出蓝色,则可以配成紫色,此时小明的1分,否则小亮的1分.用树状图或列表求出小明获胜的概率;(2)这游戏对双方公平吗?请说明理由.若不公平,如何修改规则才能使游戏对双方公平?17. 端午节前,小明爸爸去超市购买了大小,形状,重量等相同的火腿粽子和豆沙粽子若干,放入不透明的盒子中,此时从盒中随机取出火腿13. 一个不透明的袋子中有3个分别标有3,1 , -2的球,这些球除了所粽子的概率为1;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷3爷和奶奶后,这时随机取出火腿粽子的概率为2 .(1)请你用所学知5识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)四.样本估计总体18. 一个口袋中有红球24个和绿球若干个,从口袋中随机摸出一个球记下其颜色,再把它放回口袋中摇匀,重复上述过程,实验200次,其中有125次摸到绿球,由此估计口袋中共有球 __________ 个。

初三数学概率试题答案及解析

初三数学概率试题答案及解析

初三数学概率试题答案及解析1. A、B、C、D四名选手参加50米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道,若A首先抽签,则A抽到1号跑道的概率是()A.1 B. C. D.【答案】D.【解析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,∵赛场共设1,2,3,4四条跑道,∴A首先抽签,则A抽到1号跑道的概率是:.故选D.【考点】概率公式.2.小月的讲义夹里放了大小相同的试卷共12页,其中语文5页、数学4页、英语3页,她随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率是()A.B.C.D.【解析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵3个苹果和3个雪梨共6个,∴任选1个,则选中苹果的概率是.故选A.【考点】概率.3.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中剩余的编号为1~7的小正方形中任意一个涂黑,则所得图案是一个轴对称图形的概率是.【答案】.【解析】将图中剩余的编号为1-7的小正方形中任意一个涂黑共7种情况,其中涂黑3,4,7,1,6有5种情况可使所得图案是一个轴对称图形(如图),故其概率是.【考点】1.轴对称图形;2.几何概率.4.军军掷一枚硬币,现在已知他连续9次都得到正面朝上,那么他掷第10次得到正面朝上的概率为A.100%B.90%C.10%D.50%【答案】D.【解析】因为掷硬币为独立的重复试验,每次掷硬币出现正面的概率都为,所以第9次掷硬币出现正面朝上的概率为.故选D.【考点】概率的意义.5.在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,卡片上的实数是无理数的概率是________.(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数.请你用列表法或画树状(形)图法,求出两次抽取的卡片上的实数之差为有理数的概率.【答案】(1);(2).【解析】(1)由在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,+3,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果与两次好抽取的卡片上的实数之差为有理数的情况,再利用概率公式求解即可求得答案.试题解析:(1);(2)列表如下:因此,所求概率为:P= .考点: 1.列表法与树状图法;2.概率公式.6.一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是________.【答案】15【解析】由题意可得,×100%=20%,解得,a=15个.7.如图,4张背面完全相同的纸牌(用①、②、③、④表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌出现的所有可能结果;(2)以两次摸出牌上的结果为条件,求能判断四边形ABCD是平行四边形的概率.【答案】(1)见解析(2)【解析】解:(1)画树状图得:则共有12种等可能的结果;(2)∵能判断四边形ABCD是平行四边形的有:①②,①③,②①,②④,③①,③④,④②,④③共8种情况,∴能判断四边形ABCD是平行四边形的概率为=.8.书包里有数学书3本,英语书2本,语文书5本,从中任意抽取一本,是数学书的概率是()A.B.C.D.【答案】B.【解析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,∵书包里有数学书3本,英语书2本,语文书5本,共10本书,∴从中任意抽取一本,是数学书的概率是.故选B.【考点】概率.9.一个口袋中有6个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,……,不断重复上述过程.小明共摸了100次 ,其中60次摸到白球.根据上述数据,小明可估计口袋中的白球大约有个.【答案】9.【解析】设口袋中有x个白球,根据利用频率估计概率得到估计摸到白球的概率为,然后根据概率公式得到,解得:x=9,即可估计口袋中的白球大约有9个.故答案是9.【考点】用频率估计概率.10.某火车站的显示屏每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏正好显示火车班次信息的概率是()A.B.C.D.【答案】B.【解析】由于显示屏每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,所以显示屏上每隔5分钟就有一分钟的显示时间,某人到达该车站时正好显示火车班次信息的概率是.故选B.【考点】概率公式.11.如图所示,一个圆形转盘被等分成五个扇形区域,上面分别标有数字,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为(偶数),指针指向标有奇数所在区域的概率为(奇数),则(偶数)_______(奇数)(填“”“”或“”).【答案】<.【解析】∵一个圆形转盘被等分成五个扇形区域,有2个偶数区,3个奇数区,∴有(偶数)=,(奇数)=,所以(偶数)<(奇数).故答案是<.【考点】几何概率.12.下列事件为必然事件的是( )A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球【答案】D.【解析】必然事件指在一定条件下一定发生的事件.根据定义解答.A、B、C是随机事件;D是必然事件;故选D.考点: 必然事件.13.掷一个均匀的小正方体,小正方体各面写有数字1、2、3、4、5、6,朝上一面出现质数的概率是 .【答案】.【解析】共有6种等可能的结果数,其中质数占3种(2,3,5),所以朝上一面出现质数的概率=.【考点】概率.14.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,视为无效,重新转动一次转盘),此过程称为一次操作.(1)求事件“一次操作,得到的数恰好是0”发生的概率;(2)用树状图或列表法,求事件“两次操作,第一次操作得到的数与第二次操作得到的数绝对值相等”发生的概率.【答案】(1);(2).【解析】(1)看0的情况占总数的多少即可;(2)列举出所有情况,看转动两次,第一次得到的数与第二次得到的数,它们的绝对值相等的情况占总情况的多少即可.试题解析:(1)共有3个数,0的情况只有1种,所以概率是.(2)画树状图法如下:∵共有9种情况,转动两次,第一次得到的数与第二次得到的数,它们的绝对值相等的情况有5种,∴所以概率是.【考点】1.列表法或树状图法;2.概率;3.绝对值.15.元旦期间,某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得_________元购物券,最多可得_________元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.【答案】(1) 20 , 80 ;(2).【解析】(1)如果两次都得到最小面值(10元)的购物券,则他两次得到的购物券之和最小,此时为20元,如果两次得到的购物券都是面值最大(40元)的购物券,则他两次得到的购物券之和最大,此时为80元;(2)转动转盘两次的结果如表所示,共有16种结果,其中购物券总金额不低于50元的有10种,所以该顾客所获金额不低于50元的概率为.试题解析:(1)_20_,__80_;(2)10203040由上表可知,转两次转盘可能出现的结果一共有16种,它们出现的可能性相同,而金额不低于50元的结果有10种,所以,该顾客所获金额不低于50元的概率为.【考点】用列举法求概率.16.有四张正面分别标有数字-2,-1,1,2的卡片,它们除数字不同外其余全部相同,现将它们正面朝下,洗匀后从中抽出一张记下数字,放回洗匀后再从中抽出一张记下数字.(1)请用列表或画树状图的方法表示两次抽出卡片上的数字的所有结果;(2)若将第一次抽出的数字作为点的横坐标a,第二次抽出的数字作为点的纵坐标b,求点(a,b)落在双曲线上的概率.【答案】(1)列表详见解析;(2),理由详见解析.【解析】(1)求两次抽出卡片上的数字的所有结果,应依据题意利用画树形图法或列表法分析所有等可能出现的结果.一般地,当一次实验涉两个因素时采用列表法比较简单,当一次实验涉及3个或更多因素时,宜采用画树形图法.无论哪种方法关键是要弄清一次实验分几步完成.本题实验需两步完成,因此宜采用列表法.然后据表分析所有等可能出现的结果.(2)求点(a,b)落在双曲线上的概率.即求两次抽出卡片上的数字的积为2出现的概率.根据概率公式求出该事件的概率.试题解析:解:(1)列表分析如下:(2)∵上述16种结果出现的可能性相同,而在双曲线上的点有四个,它们分别是(-2,-1),(-1,-2),(1,2),(2,1),∴点(a,b)落在双曲线上的概率是.【考点】用列表法与树形图法求概率.17.不透明的袋中装有3个大小相同的小球,其中两个为白色,一个为红色,随机地从袋中摸取一个小球后放回,再随机地摸取一个小球,(用列表或树形图求下列事件的概率)(1)两次取的小球都是红球的概率;(2)两次取的小球是一红一白的概率.【答案】(1);(2).【解析】(1)用列表法列举出所有情况,看所求的情况与总情况的比值即可得答案,(2)由(1)的图表,可得要求的情况,与总情况作比即可得答案.试题解析:(1)根据题意,有两次取的小球都是红球的概率为;(2)由(1)可得,两次取的小球是一红一白的有4种;故其概率为.【考点】列表法与树状图法.18.小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是A.B.C.D.【答案】C【解析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。

7.1 条件概率及全概率(精练)(解析版)--人教版高中数学精讲精练选择性必修三

7.1 条件概率及全概率(精练)(解析版)--人教版高中数学精讲精练选择性必修三

6
18
9
则 P A C ______.
【答案】 5 9
1
【解析】由题意知, P
A
B
C
P
A
C
PB
C
8 9

PB
C
PB C PC
18 1
1 3

6
则 P A C P A B C P B C 8 1 5 .故答案为: 5 .
93 9
9
2 全概率
1.(2022 春·重庆九龙坡·高二四川外国语大学附属外国语学校期末)(多选)甲罐中有 5 个红球, 2 个白球 和 3 个黑球,乙罐中有 4 个红球,3 个白球和 3 个黑球.先从甲罐中随机取出一球放入乙罐,分别以 A1、A2 和
则 P A 4 , P B 2 , P B A 3 ,所以 P AB P A P B A 4 3 1 .故选:C
15
15
8
15 8 10
2.(2022 春·吉林白城·高二校考阶段练习)某班有 6 名班干部,其中 4 名男生,2 名女生.从中选出 3 人参加
学校组织的社会实践活动,在男生甲被选中的情况下,女生乙也被选中的概率为( )
由题可得 P A 4 , P A 5 , P B A 7 , P B A 4 ,
9
9
12
12
所以 P B
4
7
5
4
4 .
9 12 9 12 9
4 故答案为: 9 .
4.(2022·高二单元测试)小李计划周六去北京参加会议,有飞机和火车两种交通工具可供选择,它们能准
时到达的概率分别为 0.8,0.95,若当天天晴则乘飞机,否则乘火车.天气预报显示当天天睛的概率为 0.7,

华师版九年级数学上册第25章3 列举所有机会均等的结果

华师版九年级数学上册第25章3 列举所有机会均等的结果

知2-练
2-1. [中考·常德]从1,2,3,4,5 这五个数中任选两个数, 其和为偶数的概率为( B )
A.
1 5
B.
2 5
C.
3 5
D.
4 5
知2-练
2-2. 端午节早上,小颖为全家人蒸了2 个蛋黄粽,3 个鲜 肉粽,她从中随机挑选了两个孝敬爷爷奶奶, 则爷爷 2 奶奶吃到同类粽子的概率是____5____.
B (B,A)
(B,C) (B,D)
C (C,A) (C,B)
(C,D)
D (D,A) (D,B) (D,C)
知2-练
由表格可知共有12 种等可能的结果,其中抽到的两张 邮票恰好是“立春”和“立夏”的结果有2 种. 故其概 率为122= 16. 答案:C
知2-练
3-1. [中考·重庆]一个口袋中有1 个红色球,有1 个白色球, 有1 个蓝色球,这些球除颜色外都相同.从中随机摸 出一个球,记下颜色后放回,摇匀后再从中随机摸出 1 一个球,则两次都摸到红球的概率是___9____.
知2-练
解题秘方:抓住小明、小刚同时进行两种相同的 操作的情况来列表,然后利用概率公式求概率.
(1)一次出牌小刚出“象”牌的概率是多少? 解:P(一次出牌小刚出“象”牌)=13.
知2-练
知2-练
(2)如果用A,B,C分别表示小刚的象、虎、鼠三张牌,用 A1,B1,C1分别表示小明的象、虎、鼠三张牌,那么一 次出牌小刚胜小明的概率是多少?用列表法加以说明.
知2-练
例 3 “二十四节气”是中华上古农耕文明的智慧结晶, 被国际气象界誉为“中国第五大发明”,小文购买 了“二十四节气”主题邮票,他要将“立春”“立 夏”“秋分”“大暑”四张邮票(如图25.2-11)中的两 张送给好朋友小乐.

2024-2025学年度北师版九上数学-专题5-概率的综合问题【课外培优课件】

2024-2025学年度北师版九上数学-专题5-概率的综合问题【课外培优课件】

数学 九年级上册 BS版
2. 有三张正面分别写有数字-2,-1,1的卡片,它们的背面完
全相同.将这三张卡片背面朝上洗匀后,从中随机抽取一张,以
其正面的数字作为 x 的值,放回卡片,洗匀,再从三张卡片中随
机抽取一张,以其正面的数字作为 y 的值,两次结果记为( x ,
1
y ),则使分式 2 2 有意义的( x , y )的概率为(
现取出红球的频率越来越稳定于0.2,则 m + n 的值是 7 .

数学 九年级上册 BS版
+1
= 0.5,
+1
【解析】根据题意,得൞+
−2
= 0.2.
+−2
整理,得
− = − 1,
= 3,
= 3,

解得ቊ
经检验,ቊ
是原分式方程
4 − = 8.
= 4.
=4
组的解,且符合题意.∴ m + n =7.故答案为7.
数学 九年级上册 BS版
第三章
概率的进一步认识
专题5
概率的综合问题
数学 九年级上册 BS版
1. 为了调查某批乒乓球的质量,根据所做试验,得到这批乒乓
球“优等品”的频率如图所示,则这批乒乓球“优等品”的概
率的估计值(精确到0.01)为( B )
A. 0.94
B. 0.95
C. 0.96
D. 0.97
分别记为B1,B2,B3,其中的特等品为A2,A3,B1,B2.根据题
意,列表如下:
B1
B2
B3
A1
(A1,B1)
(A1,B2)
(A1,B3)
A2
(A2,B1)
(A2,B2)
(A2,B3)

上海上师初级中学九年级数学上册第五单元《概率初步》测试卷(包含答案解析)

上海上师初级中学九年级数学上册第五单元《概率初步》测试卷(包含答案解析)

一、选择题1.下列事件是必然事件的是()A.打开电视机,正在播放动画片B.2022年世界杯德国队一定能夺得冠军C.某彩票中奖率是1%,买100张一定会中奖D.在一只装有5个红球的袋中摸出1球,一定是红球2.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数3.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是()A.14B.34C.12D.384.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.打开电视,正在播放广告C.抛掷一枚质地均匀且6个面上分别标上数字1~6的骰子,朝上一面的数字小于7 D.一个不透明的袋子中只装有2个黑球,搅匀后从中随机摸出一个球,结果是红球5.下列问题中是必然事件的有()个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b+=-(其中a、b都是实数);(4)水往低处流.A.1 B.2 C.3 D.46.在一个不透明的箱子中有3张红卡和若干张绿卡,它们除了颜色外其他完全相同,通过多次抽卡试验后发现,抽到绿卡的概率稳定在75%附近,则箱中卡的总张数可能是()A.1张B.4张C.9张D.12张7.现有两个可以自由转动的转盘,每个转盘分成三个相同的扇形,涂色情况如图所示,指针的位置固定,同时转动两个转盘,则转盘停止后指针指向同种颜色区域的概率是()A.19B.16C.23D.138.四张质地、大小相同的卡片上,分别画上如图所示的四种汽车标志,在看不到图形的情况下从中任意抽出一张,则抽出的卡片既是中心对称图形,又是轴对称图形的概率是()A.12B.14C.34D.19.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.11610.盒子中装有形状、大小完全相同的3个小球,球上分别标有数字-1,1,2,从中随机取出一个,其上的数字记为k,放回后再取一次,其上的数记为b,则函数y=kx+b是增函数的概率为()A.38B.116C.12D.2311.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是()A.①B.②C.①③D.②③第II卷(非选择题)请点击修改第II卷的文字说明参考答案12.下列事件属于不可能事件的是()A.太阳从东方升起B.1+1>3C.1分钟=60秒D.下雨的同时有太阳二、填空题13.在一个不透明的袋子中,装有4个红球和白球若干个,若抽到红球的概率为13,则袋中白球有___________.14.综合实践小组的同学做了某种黄豆在相同条件下的发芽试验,结果如表,那么这种黄豆发芽的概率约为__________.(结果精确到0.01)每批粒数n800100012001400160018002000发芽的频数m76294811421331151817101902发芽的频率mn0.9530.9480.9520.9510.9490.9500.95115.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是__m2.16.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是__________.17.在一个不透明的盒子里装有6个形状大小完全相同的乒乓球,上面分别标有-1,-2,0,0.5,1,2,六个数字,现将它们摇匀后从中任取一个乒乓球,将该乒乓球上的数字记为m ,则使关于x 的一元二次方程mx 2+4x+4=0有实数根,且使关于x 的分式方程112m x -=-有正数解的概率为______. 18.大成蔬菜公司以2.1元/千克的成本价购进10000kg 番茄,公司想知道番茄的损坏率,从所有随机抽取若干进行统计,部分结果如表: 番茄总质量()m kg 100200300400 5001000损坏番茄质量()m kg10.6019.4230.63 39.2449.54101.10番茄损坏的频率0.106 0.097 0.1020.098 0.099 0.101估计这批番茄损坏的概率为______(精确到0.1),据此,若公司希望这批番茄能获得利润15000元,则销售时(去掉损坏的番茄)售价应至少定为______元/千克.19.一个不透明的袋中有四张形状大小质地完全相同的卡片,它们上面分别标有数字﹣1、2、3、4,随机抽取一张卡片不放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为奇数的概率是_____20.如图,小明和小亮两人在玩转盘游戏,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘,停止后指针所指的两个数字之和为奇数时,小明胜;数字之和为偶数时,小亮胜.那么小明获胜的概率是__________.三、解答题21.为了更好地适应现代医学发展的需要,提高医护人员专业水平,2020年11月,福州市甲、乙、丙、丁四家医院共选派若干名医生和护士参加培训,参加培训人数情况制成了两张不完整的统计图.(1)丁医院选派的医生有______人;(2)为了了解培训成果,准备从丁医院选派的医生(男女医生人数恰好相等)中随机选择2人进行考核,若每名医生被选中的机会均等,请用列表法或树状图求出选中的两名医生中至少有一名女医生的概率.22.一个口袋中放有16个球,其中红球6个,白球和黑球各若干个,每个球除了颜色外没有任何区别.小明通过大量反复的试验(每次将球搅匀后,任意摸出一个球记下颜色后再放回)发现,取出黑球的频率稳定在14附近,请你估计袋中白球的个数23.如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.24.在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n个球,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?25.在一只不透明的口袋里,装有若干个除了颜色外均相同的小球,某数学学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5996b295480601摸到白球的频率mna0.640.580.590.600.601(1)上表中的a=________,b=________;(2)“摸到白球的”的概率的估计值是_________(精确到0.1);(3)如果袋中有12个白球,那么袋中除了白球外,还有多少个其它颜色的球?26.小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排志愿者被随机分到A组(体温检测)、B组(便民代购)、C组(环境消杀).(1)小红的爸爸被分到B组的概率是______;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据随机事件和必然事件定义一一判定即可,必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】解:A. 打开电视机,正在播放动画片,可能发生,也可能不发生,是随机事件,故此项错误;B. 2022年世界杯德国队一定能夺得冠军,可能发生,也可能不发生,是随机事件,故此项错误;C. 某彩票中奖率是1%,买100张一定会中奖,可能发生,也可能不发生,是随机事件,故此项错误;D. 在一只装有5个红球的袋中摸出1球,一定是红球,一定发生,所以是必然事件.故选:D.【点睛】该题考查的是对必然事件的概念的理解;必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.C解析:C【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D 、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误; 故选C . 【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.3.D解析:D 【分析】根据几何概率的求法,可得:小球最终停在黑色区域的概率等于黑色区域的面积与总面积的比值. 【详解】 根据图示,∵黑色区域的面积等于6块方砖的面积,总面积等于16块方砖的面积, ∴小球最终停留在黑色区域的概率是:63=168. 故选D . 【点睛】此题主要考查了几何概率问题,用到的知识点为:概率=黑色区域的面积与总面积之比.4.C解析:C 【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】解:A 、是随机事件,故A 错误; B 、是随机事件,故B 错误; C 、是必然事件,故C 正确; D 、是不可能事件,故D 错误; 故选:C . 【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.B解析:B 【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案. 【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件;因此,(1)(4)为必然事件, 故答案为A. 【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握: 必然事件:事先肯定它一定会发生的事件; 不确定事件:无法确定它会不会发生的事件; 不可能事件:一定不会发生的事件.6.D解析:D 【分析】设箱中卡的总张数可能是x 张,则绿卡有(x-3)张,根据抽到绿卡的概率稳定在75%附近,利用概率公式列方程求出x 的值即可得答案. 【详解】设箱中卡的总张数可能是x 张, ∵箱子中有3张红卡和若干张绿卡, ∴绿卡有(x-3)张,∵抽到绿卡的概率稳定在75%附近,∴375%x x-=, 解得:x=12,∴箱中卡的总张数可能是12张, 故选:D. 【点睛】本题考查等可能情形下概率的计算,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.7.A解析:A 【分析】列举出所有情况,看转盘停止后指针指向同种颜色区域的情况数占总情况数的多少即可. 【详解】 解:如图共9种情况,转盘停止后指针指向同种颜色区域的情况数是1, 所以概率为19. 故选A . 【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的易错点.8.B解析:B 【分析】从四个图形中找到中心对称图形的个数,然后利用概率公式求解即可. 【详解】∵四种汽车标志中,既是中心对称图形,又是轴对称图形的有1个, ∴既是中心对称图形,又是轴对称图形的概率为14; 故选B . 【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()P A =m n. 9.C解析:C 【分析】根据题意,由列表法得到投放的所有结果,然后正确的只有1种,即可求出概率. 【详解】解:由列表法,得:∴共有12种等可能的结果数,其中将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的结果为1种, ∴投放正确的概率为:112P =; 故选择:C. 【点睛】本题考查了列表法与树状图法求概率,解题的关键是正确求出所有等可能的结果数.10.D解析:D 【分析】分别计算所有情况数及满足条件的情况数,代入概率计算公式,可得答案.【详解】盒子中装有形状、大小完全相同的3个小球,球上分别标有数字-1,1,2,从中随机取出一个,其上的数字记为k,放回后再取一次,其上的数记为b,则共有9种情况,分别为:(-1,-1),(-1,1),(-1,2),(1,-1),(1,1),(1,2),(2,-1),(2,1),(2,2),其中函数y=kx+b是增函数有6种情况,分别为:(1,-1),(1,1),(1,2),(2,-1),(2,1),(2,2),故函数y=kx+b是增函数的概率P=62 93 ,故选:D.【点睛】此题考查概率计算公式,解题关键在于列出所有可能出现的情况.11.B解析:B【分析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812.故②正确;虽然该球员“罚球命中”的频率的平均值是0.809,但是“罚球命中”的概率不是0.809,故③错误.故选:B.【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.12.B解析:B【分析】不可能事件就是一定不会发生的事件,依据定义即可判断.【详解】A.太阳从东方升起,是必然事件,故本选项错误;B. 1+1=2<3,故原选项是不能事件,故本选项正确;C. 1分钟=60秒,是必然事件,故本选项错误;D.下雨的同时有太阳,是随机事件,故本选项错误.故选:B.【点睛】本题考查了不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题13.8个【分析】设袋中白球有x个根据简单事件的概率公式建立方程然后解方程即可得【详解】设袋中白球有x个由题意得:解得经检验是所列分式方程的解则袋中白球有8个故答案为:8个【点睛】本题考查了简单事件的概率解析:8个【分析】设袋中白球有x个,根据简单事件的概率公式建立方程,然后解方程即可得.【详解】设袋中白球有x个,由题意得:41 43x=+,解得8x=,经检验,8x=是所列分式方程的解,则袋中白球有8个,故答案为:8个.【点睛】本题考查了简单事件的概率计算、分式方程,熟练掌握简单事件的概率计算公式是解题关键.14.【分析】观察表格得到这种黄豆发芽的频率稳定在095附近即可估计出这种黄豆发芽的概率【详解】当n足够大时发芽的频率逐渐稳定于095故用频率估计概率黄豆发芽的概率估计值是095故答案为:095【点睛】本解析:0.95【分析】观察表格得到这种黄豆发芽的频率稳定在0.95附近,即可估计出这种黄豆发芽的概率.【详解】当n足够大时,发芽的频率逐渐稳定于0.95,故用频率估计概率,黄豆发芽的概率估计值是0.95.故答案为:0.95.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15.1【详解】解:由题意可知正方形的面积为4平方米因为小石子落在不规则区域的频率稳定在常数025附近所以不规则区域的面积约是4×025=1平方米故答案为:1解析:1 【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近, 所以不规则区域的面积约是4×0.25=1平方米. 故答案为:116.【分析】列举出所有等可能的情况数找出能构成三角形的情况数即可求出所求概率【详解】从长为35710的四条线段中任意选取三条作为边所有等可能情况有:357;3510;3710;5710共4种其中能构成三 解析:12【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率. 【详解】从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种, 则P (能构成三角形)=2142=, 故答案为12. 【点睛】此题考查了列表法与树状图法,以及三角形的三边关系,其中概率=所求情况数与总情况数之比.17.【分析】根据一元二次方程有实数根以及分式方程有正数解求出m 的取值范围再根据概率公式即可解答【详解】解:∵关于x 的一元二次方程mx2+4x+4=0有实数根∴解得:且又∵关于x 的分式方程有正数解∴且解得解析:16【分析】根据一元二次方程有实数根以及分式方程有正数解,求出m 的取值范围,再根据概率公式即可解答. 【详解】解:∵关于x 的一元二次方程mx 2+4x+4=0有实数根, ∴16160m ∆=-≥,解得:1m 且0m ≠, 又∵关于x 的分式方程112m x -=-有正数解, ∴10x m =+>,且12x m =+≠, 解得:1m >-且1m ≠,∴m 的取值范围为:11m -<< ∴符合条件的m 只有0.5, ∴符合条件的概率为16, 故答案为:16. 【点睛】本题考查了概念的计算以及一元二次方程根的判别式的应用,分式方程的解,解题的关键是根据题意求出m 的取值范围.18.01【分析】利用频率估计概率可求出这批番茄损坏的概率;根据概率计算出完好番茄的重量设每千克番茄的销售价为x 元根据总利润=每千克利润×完好番茄的重量列方程解答【详解】解:根据表中番茄损坏的频率估计这批解析:0.1 11330【分析】利用频率估计概率可求出这批番茄损坏的概率;根据概率计算出完好番茄的重量,设每千克番茄的销售价为x 元,根据“总利润=每千克利润×完好番茄的重量”列方程解答. 【详解】解:根据表中番茄损坏的频率估计这批番茄损坏的概率为0.1,所以估计在购进的10000kg 番茄中,完好番茄的重量为:()1000010.19000kg ⨯-=, 设每千克番茄的销售价为x 元, 由题意得:()15000 2.19000x =-⨯, 解得:11330x =, 即销售时(去掉损坏的番茄)售价应至少定为11330元/千克, 故答案为:0.1,11330. 【点睛】本题考查了利用频率估计概率,一元一次方程的应用,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率.19.【分析】画树状图求出所有等可能的结果数再找出两次抽取的卡片上数字之和为奇数的结果数然后根据概率公式求解【详解】根据题意画树状图如下:∵共有12种等可能的结果数其中两次抽取的卡片上数字之和为奇数的情况解析:23【分析】画树状图求出所有等可能的结果数,再找出两次抽取的卡片上数字之和为奇数的结果数,然后根据概率公式求解.【详解】根据题意画树状图如下:∵共有12种等可能的结果数,其中两次抽取的卡片上数字之和为奇数的情况数为8,∴两次抽取的卡片上数字之和为奇数的概率是:82123,故答案为:23.【点睛】本题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.【分析】列举出所有情况根据概率公式即可得到小明获胜的概率【详解】共9种情况和为奇数的情况数有5种小明获胜的概率为故答案为:【点睛】本题考查了列表格或画树状图求概率正确画出树状图是解答本题的关键解析:5 9【分析】列举出所有情况,根据概率公式即可得到小明获胜的概率.【详解】共9种情况,和为奇数的情况数有5种,小明获胜的概率为59.故答案为:59.【点睛】本题考查了列表格或画树状图求概率.正确画出树状图是解答本题的关键.三、解答题21.(1)4;(2)5 6【分析】(1)根据扇形图与条形图计算出四个医院的总人数,再用总人数×24%即可求得丁医院拍出的人数,再减去护士人数即可;(2)根据题意画出树状图或列表法求得两名医生中至少有1名女医生被选中的概率.【详解】(1)∵甲医院一共派了10人,占总人数的20%,∴四个医院总人数=10÷20%=50(人),∴丁医院人数=50×24%=12(人),∴丁医院选派的医生人数=12-8=4(人),故答案为:4.(2)解法一:画树状图如下:由树状图可知,共有12种结果,每种结果的可能性相同,其中两名医生中至少有1名女医生被选中的有10种,∴两名医生中至少有1名女医生被选中的概率为105=.126解法二:列表如下:男男女女男——男、男女、男女、男男男、男——女、男女、男女男、女男、女——女、女女男、女男、女女、女——被选中的有10种,∴两名医生中至少有1名女医生被选中的概率为105=.126【点睛】此题考查了折线统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.6【分析】取出黑球的频率稳定在14左右,即可估计取出黑球的概率稳定为14,乘以球的总数即为所求的球的数目;【详解】黑球个数:16×14=4白球个数:16-6-4=6(个)答:白球有6个;【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.部分的具体数目=总体数目×相应频率.23.1 2【解析】试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.试题解:画树状图如答图:∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,∴P(A,C两个区域所涂颜色不相同)=4182.考点:1.画树状图或列表法;2.概率.24.(1)n=5或6;(2)n=1或2;(3)n=3或4【分析】(1)利用必然事件的定义确定n的值;(2)利用不可能事件的定义确定n的值;(3)利用随机事件的定义确定n的值.【详解】(1)当n=5或6时,这个事件必然发生;(2)当n=1或2时,这个事件不可能发生;(3)当n=3或4时,这个事件为随机事件.【点睛】本题考查了随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.也考查了必然事件和不可能事件.25.(1)0.59,116.(2)0.6. (3)8个.【分析】(1)根据表中的数据,计算得出摸到白球的频率.(2)由表中数据即可得;(3)根据摸到白球的频率即可求出摸到白球概率.根据口袋中白球的数量和概率即可求出口袋中球的总数,用总数减去白颜色的球数量即可解答.【详解】(1)a=59100=0.59,2000.58116b=⨯=.(2)由表可知,当n很大时,摸到白球的频率将会接近0.6;.(3)120.6128÷-=(个).答:除白球外,还有大约8个其它颜色的小球.【点睛】本题考查如何利用频率估计概率,解题关键是要注意频率和概率之间的关系.26.(1)13;(2)13.【分析】(1)共有3种可能出现的结果,被分到“B组”的有1中,可求出概率.(2)用列表法表示所有可能出现的结果,进而计算“他与小红的爸爸”分到同一组的概率.【详解】(1)共有3种可能出现的结果,被分到“B组”的有1种,因此被分到“B组”的概率为13,故答案为:13;(2)用列表法表示所有可能出现的结果如下:。

上海市北初级中学九年级数学上册第五单元《概率初步》检测(含答案解析)

上海市北初级中学九年级数学上册第五单元《概率初步》检测(含答案解析)

一、选择题1.下列事件:①打开电视机,正在播广告;②从只装红球的口袋中,任意摸出一个球恰好是白球; ③同性电荷,相互排斥;④抛掷硬币1000次,第1000次正面向上. 其中为随机事件的是( ) A .①②B .①④C .②③D .②④2.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是( )A .两个转盘转出蓝色的概率一样大B .如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性变小了C .游戏者配成紫色的概率为16D .先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同 3.现有三张正面分别标有数字1-,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点()P m n ,在第二象限的概率为( ) A .12B .13C .23D .294.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是( )A .14B .34C .12D .385.一位批发商从某服装制造公司购进60包型号为L 的衬衫,由于包装工人疏忽,在包裹中混进了型号为M 的衬衫,每包混入的M 号衬衫数及相应的包数如表所示.一位零售商从60包中任意选取一包,则包中混入M 号衬衫数不超过3的概率是( ) A .120B .115C .920D .4276.在“众志成城,共战疫情”党员志愿者进社区服务活动中,小晴和小霞分别从“A ,B ,C 三个社区”中随机选择一个参加活动,两人恰好选择同一社区的概率是( ) A .13B .23C .19D .297.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是( )A .116B .716C .14D .188.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )个. A .20B .16C .12D .159.同时抛掷完全相同的,A B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),两个立方体朝上的数字分别为,x y ,并以此确定(,)P x y ,那么点P 落在函数29y x =-+上的概率为( ) A .118B .112C .19D .1610.四张质地、大小相同的卡片上,分别画上如图所示的四种汽车标志,在看不到图形的情况下从中任意抽出一张,则抽出的卡片既是中心对称图形,又是轴对称图形的概率是( )A.12B.14C.34D.111.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.11612.下列说法正确的是()A.“穿十条马路连遇十次红灯”是不可能事件B.任意画一个三角形,其内角和是180°是必然事件C.某彩票中奖概率为1%,那么买100张彩票一定会中奖D.“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是1 2二、填空题13.在一个不透明的袋子中放有m个球,其中有6个红球,这些球除颜色外完全相同.若每次把球充分搅匀后,任意摸出一球记下颜色后再放回袋子,通过大量重复试验后,发现摸到红球的频率稳定在0.3左右,则m的值约为________.14.在一个不透明的盒子里装有4个标有1,2,3,4的小球,它们形状、大小完全相同.小明从盒子里随机取出一个小球,记下球上的数字,作为点P的横坐标x,放回然后再随机取出一个小球,记下球上的数字,作为点P的纵坐标y.则点P在以原点为圆心,5为半径的圆上的概率为_____.15.在一个不透明的袋子中装有红球和黑球一共12个,每个球除颜色不同外其余都一样,任意摸出一个球是黑球的概率为14,那么袋中的红球有_________个.16.一个不透明的口袋中装有3个红球和5个黄球,它们除颜色外,其他都相同,往口袋中再放入x个红球和y个黄球,若从口袋中随机摸出一个红球的概率是14,则y与x之间的函数表达式是_______.17.四张质地、大小、背面完全相同的卡片上,正面分别画有平行四边形、矩形、等腰三角形、菱形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为___________________.18.在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色球共20只.其中,黑球6只试估算口袋中再加入黑球______只,才能使摸出黑球的概率是13?19.在x2□2xy□y2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是_______.20.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是___________.三、解答题21.为了解某校落实新课改精神的情况,现以该校某班的同学参加课外活动的情况为样本,对其参加“球类”,“绘画类”,“舞蹈类”,“音乐类”,“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为________人,参加球类活动的人数的百分比为________;(2)请把条形统计图补充完整;(3)若该校学生共1600人,那么参棋类活动的大约有多少人?(4)该班参加舞蹈类活动4位同学中,有1位男生(用E表示)和3位女生(分别F,G,H表示),现准备从中选取两名同学组成舞伴,请用列表或画树状的方法求恰好选中一男一女的概率.22.为弘扬我校核心文化——“坿”文化,积极培育学生“敢进取”的精神,我校举行一次数学探究实验. 在一个不透明的箱子里放有n个除颜色外其他完全相同的小球(数量不详),只知其中有5个红球.(1)若先从箱子里拿走m个红球,这时从箱子里随机摸出一个球是红球的事件为“随机事件”,则m的最大值为________.(2)若在原来的箱子里再加入3个红球后进行摸球实验,每次摸球前先将箱子里的球摇匀,任意摸出一个球记下颜色后再放回箱子,通过大量重复摸球实验后发现摸到红球的频率稳定在40%左右,你能估计n的值是多少吗?23.先后两次抛掷一枚质地均匀的骰子,第一次抛掷正面朝上的点数记为a,第二次掷正面朝上的点数记为b.(1)求先后两次抛掷的点数之和为6的概率;(2)求以(a,b)为点在直线y=-x+5上的概率;24.在一个不透明的口袋里,装有若干个完全相同的A、B、C三种球,其中A球x个,B 球x个,C球(x+1)个.若从中任意摸出一个球是A球的概率为0.25.(1)这个袋中A、B、C三种球各多少个?(2)若小明从口袋中随机模出1个球后不放回,再随机摸出1个.请你用画树状图的方法求小明摸到1个A球和1个C球的概率.25.一只不透明的箱子里共有8个球,其中2个白球,1个红球,5个黄球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)再往箱子中放入多少个黄球,可以使摸到白球的概率变为0.2?26.在一只不透明的口袋里,装有若干个除了颜色外均相同的小球,某数学学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)上表中的a=________,b=________;(2)“摸到白球的”的概率的估计值是_________(精确到0.1);(3)如果袋中有12个白球,那么袋中除了白球外,还有多少个其它颜色的球?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据随机事件、不可能事件、必然事件的定义逐个判断即可得.【详解】①打开电视机,正在播广告,是随机事件;②从只装红球的口袋中,任意摸出一个球恰好是白球,是不可能事件;③同性电荷,相互排斥,是必然事件;④抛掷硬币1000次,第1000次正面向上,是随机事件;综上,为随机事件的是①④,故选:B.【点睛】本题考查了随机事件、不可能事件、必然事件,掌握理解各定义是解题关键.2.C解析:C【分析】根据古典概率模型的定义和列树状图求概率分别对每个选项逐一判断可得.【详解】解:A、A盘转出蓝色的概率为12、B盘转出蓝色的概率为13,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为16,D、由于A、B两个转盘是相互独立的,先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;故选:C.【点睛】此题考查了列表法或树状图法求概率.注意用到的知识点为:概率=所求情况数与总情况数之比.3.D解析:D【分析】画树状图展示所有9种等可能的结果数,利用第二象限内点的坐标特征确定点(,)P m n在第二象限的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中点(,)P m n 在第二象限的结果数为2, 所以点(,)P m n 在第二象限的概率29. 故选:D . 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了点的坐标.4.D解析:D 【分析】根据几何概率的求法,可得:小球最终停在黑色区域的概率等于黑色区域的面积与总面积的比值. 【详解】 根据图示,∵黑色区域的面积等于6块方砖的面积,总面积等于16块方砖的面积, ∴小球最终停留在黑色区域的概率是:63=168. 故选D . 【点睛】此题主要考查了几何概率问题,用到的知识点为:概率=黑色区域的面积与总面积之比.5.C解析:C 【解析】 由题意得760+2060=920,所以选C. 6.A解析:A 【分析】画树状图展示所有9种等可能的结果数,找出两人恰好选择同一社区的结果数,然后根据概率公式求解即可. 【详解】 画树状图如图:共有9种等可能的结果数,其中两人恰好选择同一社区的结果为3种,∴两人恰好选择同一社区的概率=39=13. 故选:A . 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.7.C解析:C 【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案. 【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域, 从转盘中找出蓝色区域的扇形有4份, 又因为转盘总的等分成了16份, 因此,获得签字笔的概率为:41164=, 故答案为C. 【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.8.C解析:C 【分析】由摸到红球的频率稳定在25%附近,可以得出口袋中得到红色球的概率,进而求出白球个数即可得到答案. 【详解】解:设白球个数为x 个,∵摸到红球的频率稳定在25%左右, ∴口袋中得到红色球的概率为25%, ∴4144x =+, 解得:12x =,经检验,12x =是原方程的解 故白球的个数为12个. 故选C 【点睛】本题主要考查了随机概率,利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键,应掌握概率与频率的关系,从而更好的解题.9.B解析:B 【分析】画树状图展示所有36种等可能的结果数,其中点(2,5)、(3,3)、(4,1)在直线y=-2x+9上,然后根据概率公式求解即可. 【详解】 解:画树状图为:共有36种等可能的结果数,其中点(2,5)、(3,3)、(4,1)在直线y=-2x+9上, 所以点P 在直线y=-2x+9上的概率为313612=. 故选:B. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.10.B解析:B 【分析】从四个图形中找到中心对称图形的个数,然后利用概率公式求解即可. 【详解】∵四种汽车标志中,既是中心对称图形,又是轴对称图形的有1个, ∴既是中心对称图形,又是轴对称图形的概率为14; 故选B . 【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()P A =m n. 11.C解析:C 【分析】根据题意,由列表法得到投放的所有结果,然后正确的只有1种,即可求出概率. 【详解】解:由列表法,得:∴共有12种等可能的结果数,其中将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的结果为1种,∴投放正确的概率为:112P ;故选择:C.【点睛】本题考查了列表法与树状图法求概率,解题的关键是正确求出所有等可能的结果数. 12.B解析:B【分析】直接利用随机事件的定义以及确定事件的定义分别分析得出答案.【详解】A、“穿十条马路连遇十次红灯”是随机事件,错误;B、三角形内角和是180°,所以任意画一个三角形,其内角和是180°,是必然事件,是正确的;C、“彩票中奖概率为1%,那么买100张彩票不一定会中奖”是随机事件,故原选项错误;D、“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是37,故原选项错误.故选:B.【点睛】此题主要考查了随机事件以及确定事件,正确把握定义是解题关键.二、填空题13.20【分析】根据频率估计概率简单事件的概率公式即可得【详解】由题意得:任意摸出一球是红球的概率约为则解得故答案为:20【点睛】本题考查了频率估计概率简单事件的概率公式熟练掌握频率估计概率是解题关键解析:20【分析】根据频率估计概率、简单事件的概率公式即可得.【详解】由题意得:任意摸出一球是红球的概率约为0.3,则60.3 m≈,解得20m≈,故答案为:20.【点睛】本题考查了频率估计概率、简单事件的概率公式,熟练掌握频率估计概率是解题关键.14.【分析】用列表法列举出所有可能出现的情况注意每一种情况出现的可能性是均等的而点P在以原点为圆心5为半径的圆上的结果有2个即(34)(43)由概率公式即可得出答案【详解】(1)由列表法列举所有可能出现解析:1 8【分析】用列表法列举出所有可能出现的情况,注意每一种情况出现的可能性是均等的,而点P在以原点为圆心,5为半径的圆上的结果有2个,即(3,4),(4,3),由概率公式即可得出答案.【详解】(1)由列表法列举所有可能出现的情况:∵点P在以原点为圆心,5为半径的圆上的结果有2个,即(3,4),(4,3),∴点P在以原点为圆心,5为半径的圆上的概率为21 168=故答案为18.【点睛】本题考查了列表法或树状图法求等可能事件发生的概率,利用这种方法注意每一种情况出现的可能性是均等的.15.9【分析】首先设袋中的黑球有x个根据题意得:解此分式方程即可求得答案【详解】解:设袋中的黑球有x个根据题意得:解得:x=3即袋中的黑球有3个所以红球个数:12-3=9(个)故答案为9【点睛】此题考查解析:9【分析】首先设袋中的黑球有x个,根据题意得:1124x=,解此分式方程即可求得答案.【详解】解:设袋中的黑球有x 个, 根据题意得:1124x =, 解得:x=3,即袋中的黑球有3个. 所以红球个数:12-3=9(个) 故答案为9. 【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.16.【分析】根据题意直接利用概率公式求解可得:继而求得答案【详解】根据题意得:整理得:则y 与x 之间的函数关系式为:故答案为:【点睛】此题考查了根据概率公式求概率用到的知识点为:概率=所求情况数与总情况数解析:34y x =+ 【分析】根据题意,直接利用概率公式求解可得:31354x x y +=+++,继而求得答案.【详解】 根据题意得:31354x x y +=+++,整理得:34y x =+, 则y 与x 之间的函数关系式为: 34y x =+. 故答案为:34y x =+. 【点睛】此题考查了根据概率公式求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.【分析】由四张质地大小背面完全相同的卡片上正面分别画有平行四边形矩形等腰三角形菱形四个图案平行四边形矩形菱形是中心对称图形等腰三角形是轴对称图形直接利用概率公式求解即可求得答案【详解】解:∵四张质地解析:34【分析】由四张质地、大小、背面完全相同的卡片上,正面分别画有平行四边形、矩形、等腰三角形、菱形四个图案.平行四边形、矩形、菱形是中心对称图形,等腰三角形是轴对称图形,直接利用概率公式求解即可求得答案. 【详解】解:∵四张质地、大小、背面完全相同的卡片上,正面分别画有平行四边形、矩形、等腰三角形、菱形四个图案.中心对称图形的是平行四边形、矩形、菱形, ∴从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为:34. 故答案为:34. 【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.18.1【分析】设再加入x 只黑球利用求概率的公式列出方程即可求出答案【详解】解:设再加入x 只黑球则解得:;∴再加入黑球1只才能使摸出黑球的概率是;故答案为:1【点睛】本题考查了分式方程的应用以及概率公式解解析:1 【分析】设再加入x 只黑球,利用求概率的公式,列出方程,即可求出答案. 【详解】解:设再加入x 只黑球,则61203x x +=+, 解得:1x =;∴再加入黑球1只,才能使摸出黑球的概率是13; 故答案为:1. 【点睛】本题考查了分式方程的应用,以及概率公式,解题的关键是熟练掌握题意,正确列出方程,从而进行解题.19.50【分析】能构成完全平方式的情况有++;-+两种情况共有的情况为++;--;+-;-+共四种情况【详解】能有的共有4种情况能构成平方式的有两种情况==50故能构成完全平方式的概率是50故答案为:5解析:50% 【分析】能构成完全平方式的情况有+,+;-,+两种情况,共有的情况为+,+;-,-;+,-;-,+共四种情况. 【详解】能有的共有4种情况,能构成平方式的有两种情况.24=12=50%. 故能构成完全平方式的概率是50%. 故答案为:50%. 【点睛】本题考查完全平方式的概念,求出构成完全平方式有几种情况,能填几种情况,从而可求出概率.20.【解析】【分析】列举出所有情况看两个指针同时落在偶数上的情况数占总情况数的多少即可【详解】列表得:(16)(26)(36)(46)(56)(15)(25)(35)(45)(55)解析:6 25【解析】【分析】列举出所有情况,看两个指针同时落在偶数上的情况数占总情况数的多少即可.【详解】列表得:∴两个指针同时落在偶数上的概率是625.故答案为:6 25.【点睛】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.三、解答题21.(1)7,30%;(2)见解析;(3)280;(4)1 2【分析】(1)先由绘画类人数及其所占百分比求出总人数,总人数乘以音乐类对应百分比求出其人数,用球类人数除以总人数可得其所占百分比(2)根据以上所求结果可补全图形(3)总人数乘以参棋类活动的人数所占比例即可得(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.【详解】(1)总人数为1025%40÷=(人),音乐类人数为4017.5%7⨯=(人),参加球类活动的人数为4010747----=12(人),∴参加球类活动的人数的百分比为12100%30%40⨯=,故答案为:7,30%;(2)补全图形:;(3)该校学生共1600人,则参棋类活动的大约有7160028040⨯=(人);(4)列树状图如下:共有12种等可能的情况,其中恰好选中一男一女的有6种,∴P(恰好选中一男一女)=61122=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)4;(2)17.【分析】(1)由随机事件的定义,即可求出m的值;(2)根据利用频率估计概率得到摸到黄球的概率为40%,然后根据概率公式计算n的值即可;【详解】解:(1)∵从盒子里随机摸出一个球是红球的事件为“随机事件”∴不透明的盒子中至少有一个红球,∴m的最大值=514-=,故答案为:4;(2)解:由题意得530.43n +=+ 解之得:n=17;经检验,17n =是原分式方程的解. 【点睛】本题考查了利用频率估计概率,随机事件的定义,解题的关键是熟练掌握所学的知识,正确求出答案. 23.(1)536;(2)19.【分析】(1)根据列举法列出所有的可能性,求出概率即可. (2)根据(1)中的可能性求出概率即可. 【详解】解:当a=1时,b=1,2,3,4,5,6; 当a=2时b=1,2,3,4,5,6; 当a=3时b=1,2,3,4,5,6; 当a=4时b=1,2,3,4,5,6; 当a=5时b=1,2,3,4,5,6; 当a=6时b=1,2,3,4,5,6;共36种等可能结果,其中符合题意的有5种 所以两次抛掷点数之和为6的概率为536. (2)点在y=-x+5上记作B 事件,共36种等可能结果,其中符合题意的有4种 则()41369p B ==. 【点睛】此题考查列举法求概率,涉及到一次函数,难度一般.24.(1)这个袋中A 、B 、C 三种球分别为1个、1个、2个;(2)13【分析】(1)由题意列方程,解方程即可;(2)首先画树状图,由概率公式即可得出答案. 【详解】解:由题意得:14[x +x +(x +1)]=x , 解得:x =1,∴x +1=2,答:这个袋中A 、B 、C 三种球分别为1个、1个、2个;(2)由题意,画树状图如图所示共有12个等可能的结果,摸到1个A 球和1个C 球的结果有4个,∴摸到1个A球和1个C球的概率为41123=.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意方程思想的应用.25.(1)14;(2)放入2个黄球.【分析】(1)根据白球的个数和球的总个数利用概率公式进行计算即可;(2)设再往箱子中放入黄球x个,利用概率公式列出方程求解即可.【详解】解:(1)P(白球)=28=14,答:随机摸出一个白球的概率是14.(2)设再往箱子中放入黄球x个,根据题意,得(8+x)×0.2=2,答:放入2个黄球.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.26.(1)0.59,116.(2)0.6. (3)8个.【分析】(1)根据表中的数据,计算得出摸到白球的频率.(2)由表中数据即可得;(3)根据摸到白球的频率即可求出摸到白球概率.根据口袋中白球的数量和概率即可求出口袋中球的总数,用总数减去白颜色的球数量即可解答.【详解】(1)a=59100=0.59,2000.58116b=⨯=.(2)由表可知,当n很大时,摸到白球的频率将会接近0.6;.(3)120.6128÷-=(个).答:除白球外,还有大约8个其它颜色的小球.【点睛】本题考查如何利用频率估计概率,解题关键是要注意频率和概率之间的关系.。

上海金山区教师进修学院附属中学九年级数学上册第五单元《概率初步》测试题(包含答案解析)

上海金山区教师进修学院附属中学九年级数学上册第五单元《概率初步》测试题(包含答案解析)

一、选择题1.从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a﹣8=0有实数解,又要使关于x的分式方程211 xa ax x++--=3有正数解,则符合条件的概率是()A.15B.25C.35D.452.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是()A.指针落在标有5的区域内B.指针落在标有10的区域内C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内3.某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九环以上”的频率(结果保留两位小数)0.900.850.820.840.820.82A.0.90 B.0.82 C.0.85 D.0.844.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是()A.必然事件B.不可能事件C.随机事件D.确定事件5.如图是一个圆形的地板图案,其中大圆直径恰好等于两个小圆直径的和.若在地板上任意扔一颗小玻璃珠,则小玻璃珠静止后,滚落在阴影部分的概率是().A.12B.13C.14D.1π6.下列问题中是必然事件的有()个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b+=-(其中a、b都是实数);(4)水往低处流.A.1 B.2 C.3 D.47.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()A.34B.13C.12D.148.在一个不透明的口袋中装有5个黑棋子和若干个白棋子,它们除颜色外完全相同,小明与他的朋友经过多次摸棋子试验后,发现摸到白色棋子的频率稳定在80%附近,则口袋中白色棋子的个数可能是()A.25个B.24个C.20个D.16个9.在智力竞答节目中,某参赛选手答对最后两题单选题就能利通关,两题均有四个选项,此选手只能排除第1题的一个错误选项,第2题完全不会,他还有两次“求助”机会(使用可去掉一个错误选项),为提高通关概率,他的求助使用策略为()A.两次求助都用在第1题B.两次求助都用在第2题C.在第1第2题各用一次求助D.无论如何使用通关概率都相同10.下列事件:(1)如果a、b都是实数,那么a+b=b+a;(2)从分别标有数字1~10的10张小标签中任取1张,得到10号签;(3)同时抛掷两枚骰子向上一面的点数之和为13;(4)射击1次中靶.其中随机事件的个数有( )A.0个B.1个C.2个D.3个11.数字“”中,数字“”出现的频率是()A.38B.12C.13D.4912.在四边形ABCD 中,从以下四个条件中:①//AB CD ②//AD BC ③AD BC =④B D ∠=∠,其中任选两个能判定四边形ABCD 为平行四边形的概率为( )A .13B .12C .23D .56二、填空题13.在一个不透明的袋子中,装有4个红球和白球若干个,若抽到红球的概率为13,则袋中白球有___________.14.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.15.从2-,1-,3,2这四个数中随机抽取两个数分别记为x ,y ,把点A 的坐标记为(,)x y ,若点B 为(3,0)-,则在平面直角坐标系内直线AB 不经过第一象限的概率为______.16.在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色球共20只.其中,黑球6只试估算口袋中再加入黑球______只,才能使摸出黑球的概率是13? 17.为了解某校九年级学生每周的零花钱情况,随机抽取了该校100名九年级学生,他们每周的零花钱x (元)统计如下:根据以上结果,随机抽查该校一名九年级学生,估计他每周的零花钱不低于80元的概率是_________.18.已知一个口袋中装有7张只有颜色不同的卡片,其中3张白色卡片,4张黑色卡片,若往口袋中再放入x 张白色卡片和y 张黑色卡片,从口袋中随机取出一张白色卡片的概率是14,则y 与x 之间的函数关系式为_____. 19.甲、乙、丙三人每人写好一张卡片放入一个盒子里,每人摸出一张,甲恰好摸到自己的卡片的概率为___.20.现有4张完全相同的卡片分别写着数字-1、1、2、3,将卡片的背面朝上并洗匀,从中任意抽取一张, 将卡片上的数字记作a ,再从余下的卡片中任意抽取一张,将卡片上的数字记作b ,则+a b 为奇数的概率为________.参考答案三、解答题21.小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形,同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请用画树状图或者列表的方式说明理由.22.把一副普通扑克牌中的4张:黑2,红3,梅4,方5,洗匀后正面朝下放在桌面上.(1)从中随机抽取一张牌是红心的概率是;(2)从中随机抽取一张,再从剩下的牌中随机抽取另一张.请用表格或树状图表示抽取的两张牌牌面数字所有可能出现的结果,并求抽取的两张牌牌面数字之和大于7的概率.23.在一只不透明的布袋中装有红球2个、黄球1个,这些球除颜色外都相同,均匀摇匀.(1)从布袋中一次摸出1个球,计算“摸出的球恰是黄球”的概率;(2)从布袋中一次摸出2个球,计算“摸出的球恰是一红一黄”的概率(用“画树状图”或“列表”).24.小亮与小明做掷骰子(质地均匀的正方体,6个面上的点数分别为1,2,3,4,5,6)的试验,(1)他们共做了50次试验,试验结果如下:①填空:试验中,“朝上的点数为1”的频率是.②小亮说:“根据试验,出现朝上的点数为1的概率最大”他的说法正确吗?为什么?(2)两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜,小亮与小明谁获胜的可能性大?试说明理由.25.某校期末评选出四名“三好学生”,其中有2名男生和2名女生,若从他们中任选2人作为“三好学生”代表发言,请用画树状图(或列表)的方法,求恰好选中1男1女的概率.26.甲、乙两同学玩转盘游戏时,把质地相同的两个盘A、B分别平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两同学分别同时转动两个转盘各1次,当转盘停止后,指针所在区域的数字之积为偶数时甲胜;数字之积为奇数时乙胜.若指针恰好在分割线上,则需要重新转动转盘. (1)用树状图或列表的方法,求甲获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先利用判别式的意义得到a≠0且△=(2a ﹣4)2﹣4a (a ﹣8)>0,再解把分式方程化为整式方程得到x =34a+,利用分式方程有正数解可得到关于a 的不等式组,则可求得a 的取值范围,则可求得满足条件的整数a 的个数. 【详解】解:∵方程ax 2+(2a ﹣4)x+a ﹣8=0有两个不相等的实数根, ∴a≠0且△=(2a ﹣4)2﹣4a (a ﹣8)>0, 解得:a >﹣1且a≠0,分式方程2311x a ax x++=--, 去分母得x+a ﹣2a =﹣3(x ﹣1),解得x =34a+, ∵分式方程2311x a ax x++=--有正数解, ∴34a +>0且34a+≠1, 解得a >﹣3且a≠1,∴a 的范围为﹣1<a 且a≠0,a≠1,∴从﹣2,0,1,2,3中任取一个数作为a ,符合条件的整数a 的值是2,3,即符合条件的a只有2个,故符合条件的概率是25.故选:B.【点睛】本题主要考查概率,掌握一元二次方程根的判别式,分式方程的解法是解题的关键.2.C解析:C【分析】根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可,从而确定正确的选项即可.【详解】解:A、指针落在标有5的区域内的概率是18;B、指针落在标有10的区域内的概率是0;C、指针落在标有偶数或奇数的区域内的概率是1;D、指针落在标有奇数的区域内的概率是12;故选:C.【点睛】此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性.3.B解析:B【分析】根据大量的实验结果稳定在0.82左右即可得出结论.【详解】解:∵从频率的波动情况可以发现频率稳定在0.82附近,∴这名运动员射击一次时“射中九环以上”的概率是0.82.故选:B.【点睛】本题主要考查的是利用频率估计概率,熟知大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率是解答此题的关键.4.C解析:C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是随机事件, 故选:C . 【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.A解析:A 【分析】小玻璃珠滚落在阴影部分的概率为该阴影部分的面积与总面积的比值. 【详解】解:设小圆的半径为r ,则大圆半径为2r ∴大圆面积为:π(2r )2=4πr 2阴影部分的面积为:大圆面积-2个小圆的面积=4πr 2-2πr 2=2πr 2∴滚落在阴影部分的概率是222142r r ππ=.故答案为A . 【点睛】本题考查几何概率的求法,确定大圆面积和阴影部分的面积是解答本题的关键.6.B解析:B 【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案. 【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件; 因此,(1)(4)为必然事件, 故答案为A. 【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握: 必然事件:事先肯定它一定会发生的事件; 不确定事件:无法确定它会不会发生的事件; 不可能事件:一定不会发生的事件.7.C解析:C 【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】解:设小正方形的边长为1,则其面积为1. 圆的直径正好是大正方形边长,∴,∴,2=,则小球停在小正方形内部(阴影)区域的概率为12. 故选:C . 【点睛】概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.8.C解析:C 【分析】首先设口袋中白色棋子有x 个,再结合题目已知可得口袋中摸到白色棋子的概率为80%,然后利用白色棋子的个数除以棋子的总个数列方程求解即可,注意分式方程要验根. 【详解】解:设口袋中白色棋子有x 个,因为摸到白色棋子的频率稳定在80%附近,所以从口袋中摸到白色棋子的概率为80%,所以,80%5xx =+ 解得:x=20经检验,x=24是原方程的解, 所以口袋中白色棋子的个数可能是20个 故选:C 【点睛】本题考查的是利用频率估计概率,解答此类题目的关键是熟练掌握利用频率估计概率的知识,由题目信息得到口袋中摸到白色棋子的概率为80%,这是解题的突破口.9.A解析:A 【分析】根据题意,分类讨论,然后分别画出树状图,根据概率公式求出每一种情况下的概率,即可判断. 【详解】解:①若两次求助都用在第1题,根据题意可知,第1题肯定能答对,第2题答对的概率为14故此时该选手通关的概率为:14;②若在第1第2题各用一次求助,画树状图如下:上层A、B表示第一题剩下的两个选项,下层A、B、C表示第二题剩下的三个选项,共有6种等可能的结果,其中该选手通关的可能只有1种,故此时该选手通关的概率为:16;③两次求助都用在第2题画树状图如下:上层A、B、C表示第一题剩下的三个选项,下层A、B表示第二题剩下的二个选项,共有6种等可能的结果,其中该选手通关的可能只有1种,故此时该选手通关的概率为:16.∵14>16∴两次求助都用在第1题,该选手通关的概率大,故选A.【点睛】此题考查的是求概率问题,掌握画树状图的方法、概率公式和分类讨论的数学思想是解决此题的关键.10.C解析:C【分析】根据必然事件、不可能事件、随机事件的概念找到各类事件的个数即可.【详解】(1)如果a、b都是实数,那么a+b=b+a,是必然事件,故此选项错误;(2)从分别标有数字1~10的10张小标签中任取1张,得到10号签,是随机事件;(3)同时抛掷两枚骰子,向上一面的点数之和为13,是不可能事件,故此选项错误;(4)射击1次,中靶,是随机事件.故随机事件的个数有2个.故选:C.【点睛】此题主要考查了随机事件、不可能事件和随机事件定义,用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.A解析:A【分析】首先计算数字的总数,以及2出现的频数,根据频率公式:频率=频数÷总数即可求解.【详解】数字的总数是8,有3个数字“”,因而“”出现的频率是:38.故选:A.【点睛】本题考查了频数的计算公式,理解公式是关键.12.C解析:C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能使四边形ABCD成为平行四边形的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有12种等可能的结果,能使四边形ABCD成为平行四边形的有8种情况,分别为:①②,①④,②③,②④,②①,④①,③②,④②,∴从中任选两个条件,能使四边形ABCD成为平行四边形的概率是:82123.故选:C.【点睛】此题考查了平行四边形的判定及列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比,熟练掌握平行四边形的判定方法是解决本题的关键.二、填空题13.8个【分析】设袋中白球有x个根据简单事件的概率公式建立方程然后解方程即可得【详解】设袋中白球有x个由题意得:解得经检验是所列分式方程的解则袋中白球有8个故答案为:8个【点睛】本题考查了简单事件的概率解析:8个【分析】设袋中白球有x个,根据简单事件的概率公式建立方程,然后解方程即可得.【详解】设袋中白球有x个,由题意得:41 43x=+,解得8x=,经检验,8x=是所列分式方程的解,则袋中白球有8个,故答案为:8个.【点睛】本题考查了简单事件的概率计算、分式方程,熟练掌握简单事件的概率计算公式是解题关键.14.【分析】根据题意使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目根据概率的计算方法计算可得答案【详解】根据题意从有4根细木棒中任取3根有234;345;235;24解析:3 4【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=3 4 .故其概率为:34.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】根据题意画出树状图得出所有情况数然后判断出直线不经过第一象限的情况数再根据概率公式即可得出答案【详解】解:根据题意画树状图如下:由树状图可知共有12种等可能的情况数当点的坐标为(-2-1)(解析:1 2【分析】根据题意画出树状图得出所有情况数,然后判断出直线AB不经过第一象限的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画树状图如下:由树状图可知,共有12种等可能的情况数,当点A 的坐标为(-2,-1),(-1,-2),(3,-2),(3,-1),(2,-2),(2,-1)时,直线AB 不经过第一象限,共6种情况,∴直线AB 不经过第一象限的概率为:61122=, 故答案为:12. 【点睛】此题考查的是一次函数的图象和性质,用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.16.1【分析】设再加入x 只黑球利用求概率的公式列出方程即可求出答案【详解】解:设再加入x 只黑球则解得:;∴再加入黑球1只才能使摸出黑球的概率是;故答案为:1【点睛】本题考查了分式方程的应用以及概率公式解解析:1 【分析】设再加入x 只黑球,利用求概率的公式,列出方程,即可求出答案. 【详解】解:设再加入x 只黑球,则61203x x +=+, 解得:1x =;∴再加入黑球1只,才能使摸出黑球的概率是13; 故答案为:1. 【点睛】本题考查了分式方程的应用,以及概率公式,解题的关键是熟练掌握题意,正确列出方程,从而进行解题.17.【分析】先计算出样本中零花钱不低于80元的频率然后根据利用频率估计概率求解【详解】解:每周的零花钱不低于80元的概率是:故答案为:【点睛】本题考查了利用频率估计概率:大量重复实验时事件发生的频率在某解析:17 100【分析】先计算出样本中零花钱不低于80元的频率,然后根据利用频率估计概率求解.【详解】解:每周的零花钱不低于80元的概率是:1717 6374017100=+++,故答案为:17 100.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.18.y=3x+5【分析】根据取出白色卡片的概率公式得到相应的方程求解即可【详解】解:∵取出一个白色卡片的概率P=∴12+4x=7+x+y∴y与x的函数关系式为:y=3x+5故答案为:y=3x+5【点睛】解析:y=3x+5【分析】根据取出白色卡片的概率公式得到相应的方程求解即可.【详解】解:∵取出一个白色卡片的概率P=31 74xx y+=++,∴12+4x=7+x+y,∴y与x的函数关系式为:y=3x+5,故答案为:y=3x+5.【点睛】本题考查了概率的计算,熟练掌握并灵活运用是解题的关键.19.【分析】直接利用概率公式求解即可【详解】解:共有3个盒子有自己写的纸条的有1个所以每人摸出一张甲恰好摸到自己的卡片的概率为故答案为:【点睛】考查了概率公式解题的关键是牢记概率公式难度不大解析:1 3【分析】直接利用概率公式求解即可.【详解】解:共有3个盒子,有自己写的纸条的有1个,所以每人摸出一张,甲恰好摸到自己的卡片的概率为13,故答案为:13.【点睛】考查了概率公式,解题的关键是牢记概率公式,难度不大.20.【分析】画出树状图然后由树状图求得所有等可能的结果和为奇数的结果即可求出概率【详解】解:根据题意画出树状图如下:由树状图可知共有12种等可能的结果其中为奇数的有6种∴为奇数的概率为:;故答案为:【点解析:1 2【分析】画出树状图,然后由树状图求得所有等可能的结果和+a b为奇数的结果,即可求出概率.【详解】解:根据题意,画出树状图如下:由树状图可知共有12种等可能的结果,其中+a b为奇数的有6种,∴+a b为奇数的概率为:61122P==;故答案为:1 2 .【点睛】本题考查了树状图法或列表法求概率,解题的关键是熟练运用树状图求出等可能的结果.三、解答题21.公平,图表见解析【分析】画出树状图,求出配成紫色的概率判断即可.【详解】解:这个游戏对双方公平,理由如下:画树状图如下:由树状图可知,所有等可能的结果共有6种,其中能配成紫色的结果有3种, ∴()31==62P 小颖去,()31==62P 小亮去, ∵11=22, ∴这个游戏对双方是公平的. 【点睛】本题考查了游戏公平性的判断,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平,画出树状图,求出各自获胜的概率是解答本题的关键. 22.(1)14;(2)图表见解析,13【分析】(1)根据概率的意义,从4张扑克牌中,任选一张,是红心的概率为14; (2)用列表法表示所有可能出现的结果情况,再求相应的概率即可. 【详解】解:(1)从黑2,红3,梅4,方5这4张扑克牌中任摸一张,是红心的可能性为14, 故答案为:14; (2)用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中和大于7的有4种, 所以抽取的两张牌牌面数字之和大于7的概率为412=13. 【点睛】本题考查用列表法或树状图法求概率,注意树状图法与列表法要不重复不遗漏所有可能的结果,概率=所求情况与总情况数之比.23.(1)“摸出的球恰是黄球”的概率为13;(2)“摸出的球恰是一红一黄”的概率为23.【分析】(1)用黄球个数除以球的总个数即可得;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果及“摸出的球恰是一红一黄”的情况数,继而根据概率公式计算可得.【详解】(1)由于袋子中一共有4个球,其中黄球只有1个,所以“摸出的球恰是黄球”的概率为:13;(2)画树状图得:则共有6种等可能的结果,其中“摸出的球恰是一红一黄”的有4种,所以“摸出的球恰是一红一黄”的概率为:42 63 .【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24.(1)①0.2;②不正确,因为在一次试验中频率并不一定等于概率,只有当试验次数很大时,频率才趋近于概率;(2)小亮获胜的可能性大,理由见解析;【分析】(1)①根据概率计算即可;②根据概率和频率的不同判断即可;(2)根据列表法计算即可;【详解】(1)①1010==0.2 10+9+6+9+8+850;②不正确,因为在一次试验中频率并不一定等于概率,只有当试验次数很大时,频率才趋近于概率.(2)小亮获胜的可能性大,理由如下.列表如下:第2枚骰子掷得第1枚的点数骰子掷得的点数123456123456723456783456789 45678910 567891011 678910112所以P(点数之和超过6)=2173612=,P(点数之和不超过6)=1553612=.因为751212>,所以小亮获胜的可能性大.【点睛】本题主要考查了概率的计算及根据列表法判断,准确计算是解题的关键.25.2 3【分析】首先根据题意画出正确的树状图,据此根据树状图进一步分析求解即可.【详解】画树状图如下:∴P(选中1男1女)82123==【点睛】本题主要考查了概率的计算,熟练掌握相关方法是解题关键.26.(1)23;(2)这个游戏规则对甲、乙双方不公平.【分析】(1)画树状图展示所有6种等可能的结果数,找出指针所在区域的数字之积为偶数的结果数,然后根据概率公式计算;(2)利用甲胜的概率=23,乙胜的概率=13,从而可判断这个游戏规则对甲、乙双方不公平.【详解】解:(1)画树状图为:共有6种等可能的结果数,其中指针所在区域的数字之积为偶数的结果数为4,所以甲胜的概率=46=23;(2)这个游戏规则对甲、乙双方不公平.理由如下:∵甲胜的概率=23,∴乙胜的概率=13,∵23≠13,∴这个游戏规则对甲、乙双方不公平.【点睛】本题考查了游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.。

九年级数学下册6_6_3简单的概率计算同步练习新版青岛版

九年级数学下册6_6_3简单的概率计算同步练习新版青岛版

6.6.3 简单的概率计算1.如图,一个圆形转盘被等分为八个扇形区域,上面别离标有数字一、二、3、4.转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有“3”所在区域的概率为P(3),指针指向标有“4”所在区域的概率为P(4),则P(3)_______P(4)(填“>”、“<”或“=”).2.如图,数轴上有两点A、B,在线段AB上任取一点C,则点C到表示1的点的距离不大于2的概率是_______.3.如图所示,同时自由转动两个转盘,指针落在每一个数上的机遇均等,转盘停止后,两个指针同时落在奇数上的概率是()A.425B.525C.625D.9254.小明与小华在玩一个掷飞镖游戏,如图(1)是一个把两个同心圆平均分成8份的靶,当飞镖掷中阴影部份时,小明胜,不然小华胜(没有掷中靶或掷到边界限时重掷).(1)不考虑其他因素,你以为那个游戏公平吗?说明理由;(2)请你在图(2)中,设计一个不同于图(1)的方案,使游戏两边公平.解:5.如图,甲转盘被分成 3 个面积相等的扇形,乙转盘被分成 4 个面积相等的扇形,每一个扇形都标有相1 54325 9876应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x,乙转盘中指针所指区域内的数字为y(当指针指在边界限上时,重转一次,直到指针指向一个区域为止).(1)求出点(),x y落在第二象限内的概率;(2)直接写出点(),x y落在函数1yx=-图象上的概率.解:参考答案1.> 2.234.(1)P(小明)=21;P(小华)=21;因此公平 (2)略 5.(1)P=122=61;(2)P= 123=41。

【中小学资料】上海市金山区山阳镇九年级数学下册 26.2 等可能情形下的概率计算 26.2.3 等可能情形下的概率

【中小学资料】上海市金山区山阳镇九年级数学下册 26.2 等可能情形下的概率计算 26.2.3 等可能情形下的概率

26.2.3等可能情形下的概率计算同步检测一、选择题:1.在100张奖劵中,有4张有奖。

某人从中任抽一张,则他中奖的概率是( ) (A)251 (B)41 (C) 1001 (D)201 2. 两人在玩“石头”、“剪刀”、“布”的游戏中,那么石头获胜的概率为( ) (A)81 (B)92 (C) 41 (D)313. 一个不透明的袋中装有大小、质量都相同的5个红球和3个黄球。

从中随机摸出一个,则摸到黄球的概率为( ) (A)81 (B)31 (C)83 (D)53 4.下列说法正确的是( )(A )一颗质地均匀的骰子已连续掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点(B )某种彩票中奖的概率是1%,因此买100张该彩票一定会中奖 (C )天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨 (D )抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等5.把分别写有1,2,3,4,…,9的9张牌混在一起,从中抽出一张,下面结论正确的是( )(A )写有奇数的牌的可能性大 (B )写有偶数的牌的可能性大 (C )写有奇数和写有偶数的可能性相同 (D )无法确定 二、填空题:6.一个口袋里有相同的红、绿、黄三种颜色的小球,其中有6个红球, 5个绿球.若任意摸出一个绿球的概率是41,则任意摸出一个黄球的概率是 . 7.某中学八(1)班有45名学生参加期末数学考试,其中39人及格.从所有考卷中任意抽取一张,抽中不及格考卷的概率是 .8.要在一个口袋中装入若干个大小、质量都完全相同的球,使得从袋中摸到一个红球的概率是51,可以怎样放球 . 三、解答题:9.小红和她爸爸玩“石头”、“剪刀”、“布”的游戏,每次用一只手可以出石头、剪刀、布三种手势之一.规则为石头赢剪刀,剪刀赢布,布赢石头.若两人出相同手势,则算打平. (1)请你帮小红算算爸爸出“石头”手势的概率是多少? (2)小红决定这次出“布”手势,她赢的机会有多大? (3)小红和爸爸出相同手势的概率是多少?10.两个正四面体的骰子,每一个正四面体的四个面上都分别标有1~4个点,一次掷出两个骰子。

(2021年整理)初三数学概率试题大全(含答案)

(2021年整理)初三数学概率试题大全(含答案)

初三数学概率试题大全(含答案)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三数学概率试题大全(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三数学概率试题大全(含答案)的全部内容。

舑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建农林大学金山学院考试试卷 ( A )卷
2009——2010 学年第 一 学期
课程名称: 《概率论》 考试时间 120分钟
专业 年级 班 学号 姓名
一、填空题(除第5题,其余每空格2分,共 30 分)
1. 已知 (),(),(),P A a P B b P AUB c === 则 ()P AB =
2.某公司有员工 40 人 ,其中有驾照的 31人,有私家车的 20人, 有8人没有驾照 也没有私家车,则有驾照也有私家车的概率为 3.设随机变量)(~λP X ,且{5}{6}P X P X ===,
{8}P X == =)(2X E ,
4.设随机变量X 服从均匀分布,即 ~(,)X U a b , 3,EX = 3DX = 则 a = b =
5.(4分)设随机变量),(~2
σμN X ,其概率密度 2
932
()
x bx f x ++-=
,则a = , b = , EX = .σ= 6.已知 2
~(3,2),(0.5)0.69,(1)0.84,(2)0.97,X N Φ=Φ=Φ=
(2.5)0.99Φ= 则
=≤≤)52(X P ,=<<-)72(X P
7.设~(200,0.1)X B 2~(3),~(1,2)Y P Z N , 且X ,,Y Z 相互独立,
则(2325)E X Y Z --+= , (2325)D X Y Z --+= .
8. 12,8,{12}0.25..EX DX P X c c ==-≥≤求 9. 设随机变量(,)X Y 服从A 上的均匀分布,
即 {}(,)~(),(,)10,0,0X Y A A x y x y x y =++≥<< , 则 ()E XY = 10. 设随机变量X 的概率密度为
,0()1/5,020,2x Ae x f x x x ⎧<⎪
=≤<⎨⎪≤⎩
, A =
二、单项选择题(每小题 3分,共 15分)
1. 袋中有大小相同的10个球,其中6个红球,4个白球。

今从中任取5个, 则 5个球中恰有 2 个红球的概率是 ( )
(A )2/5 ; (B ) 26
510C P C =
(C ) 23
64510C C P C = (D )23
645
10
P P P P = 2. 设 ()0P AB = ,则必有 ( ) (A )()()P A B P A -= (B )()0()0P A P B ==或 (C ) A B 与互不相容 (D )A B 与相互独立
3.某人射击,命中率为3/4, 若射击直到命中为止,则射击次数为 3 的概率是 ( )
(A )
2764; (B ) 164 ; (C ) 964 ; (D )364。

4. 设随机变量,X Y 相互独立,且2~(5,2)X N , 2~(6,3)Y N 则
Z X Y =+ 服从正态分布,且有 ( )
(A )~(11,36)Z N (B )~(11,13)Z N (C )~(30,13)Z N (D )~(11,5)Z N 5. 设随机变量X 的分布函数为 ()arctan ,.F x A B x x R =+∈
则常数,A B 分别为 ( ) (A )11,2π-; (B )11,2π ; (C )11,2π- ; (D )11,2π
--。

三、计算题(共 12分)
1.一个口袋中有 6 个球,其颜色可能有 3 种情况,令 1A ={6 个球颜色为 4 红 2 白},
2A ={6 个球颜色为 3 红 3白},3A ={6 个球颜色为 2 红 4 白}, 已知 123()1/2,()1/6,()1/3,P A P A P A ===
(1)今从口袋中任取1个,求取白球的概率. (2)已知从口袋中取1个是白球,求 3A 的概率。

四、(本题10分)
设随机变量X 的概率密度为 /8,()0,x f x ⎧=⎨⎩04
x <<其他
求 28Y X =+ 的概率密度
五、(14分)
(,)X Y 的联合概率密度1,1,(,)0,
e x y
f x y ⎧>>⎪
=⎨⎪⎩
-y+1
2x 其他
(1)求关于X 和Y 的边际概率密度; (2)判别X 与Y 是否相互独立; (3) 求(12,13)P X Y ≤≤≤≤
六、综合题(12分)
设随机变量X 服从指数分布,即 ~(5),X E 其概率密度为
55,0()0,0x e x f x x -⎧>=⎨≤⎩
(1) 求事件{2}X ≥ 的概率;
(2) 对事件{2}X ≥进行 10 次独立观察,求至少3次发生{2}X ≥的概率。

(只列式)
七、(7分)
设随机变量 X 与Y 相互独立,且均服从正态分布1(0,)2
N 求数学期望 ()E X Y。

相关文档
最新文档