2020高三年级理科数学第三次质量检测试卷
2019-2020年高三第三次质量检测数学(理)试题含答案(I).doc
2019-2020年高三第三次质量检测数学(理)试题含答案(I)一、选择题:本大12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集,{|(3)0},{|1},U R A x x x B x x ==+<=<- 则下图中 阴影部分表示的集合为A.{|31}x x -<<-B. }{3〈〈-x xC.{|0}x x >D.{|1}x x <- 【答案】A【Ks5u 解析】集合{|(3)0}{30}A x x x x x =+<=-<<,图中阴影部分为集合A B ,所以{31}AB x x =-<<-,选A.2." 2a ="是直线20ax y +=与直线1x y +=平行的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】C【Ks5u 解析】直线20ax y +=的斜截式方程为2a y x =-,斜率为2a-。
直线1x y +=的斜截式方程为1y x =-+,斜率为1-,要使两直线平行,则有12a-=-,解得2a =,所以"2a ="是直线20ax y +=与直线1x y +=平行的" 2a ="是直线20ax y +=与直线1x y +=平行的充要条件,选C.3.如图是某一几何体的三视图,则这个几何体的体积为( )1.A.4B.8C.16D.20 【答案】C【Ks5u 解析】由三视图可知,该几何体是一个四棱锥,四棱锥的高为4,底面为俯视图对应的矩形,俯视图的面积为2612⨯=,所以四棱锥的体积为1124163⨯⨯=,选C.4.已知∆ABC 中,a 、b 、c 分别为A ,B ,C 的对边, a=4,b=30∠=A ,则∠B 等于( )A.30B.30或150C.60D.60或120 【答案】D【Ks5u 解析】由正弦定理可知sin sin a b A B =。
河南郑州市2020届高三第三次统一考试数学(理科)试题 (解析版)
2020年高考数学三诊试卷(理科)一、选择题(共12小题).1.设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∩B=()A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D.{x|2<x<3} 2.若复数z满足(z﹣1)i=3+i(i为虚数单位),则z的虚部为()A.3 B.3i C.﹣3 D.﹣3i3.已知角α(0≤α<2π)终边上一点的坐标为(sin7π6,cos7π6),则α=()A.5π6B.7π6C.4π3D.5π34.各项均不相等的等差数列{a n}的前5项的和S5=﹣5,且a3,a4,a6成等比数列,则a7=()A.﹣14 B.﹣5 C.﹣4 D.﹣15.设a、b、c依次表示函数f(x)=x12−x+1,g(x)=log12x﹣x+1,h(x)=(12)x−x+1的零点,则a、b、c的大小关系为()A.a<b<c B.c<b<a C.a<c<b D.b<c<a6.已知α是给定的平面,设不在α内的任意两点M和N所在的直线为l,则下列命题正确的是()A.在α内存在直线与直线l相交B.在α内存在直线与直线l异面C.在α内存在直线与直线l平行D.存在过直线l的平面与α平行7.(x2﹣x﹣2)3的展开式中,含x4的项的系数是()8.如图是某一无上盖几何体的三视图,则该几何体的表面积等于()A.63πB.57πC.48πD.39π9.有编号分别为1,2,3,4的4个红球和4个黑球,随机取出3个,则取出的球的编号互不相同的概率是()A.47B.37C.27D.1710.设双曲线C:x 2a −y2b=1(a>0,b>0)的左、右焦点分别为F1、F2,与圆x2+y2=a2相切的直线PF1交双曲线C于点P(P在第一象限),且|PF2|=|F1F2|,则双曲线C的离心率为()A.103B.53C.32D.5411.已知函数f(x)=sinωx+cosωx(ω>14,x∈R),若f(x)的任何一条对称轴与x轴交点的横坐标都不属于区间(π2,π),则ω的取值范围是()A.[12,54]B.[12,2]C.(14,54]D.(14,2]12.设函数f(x)=ln(x+k)+2,函数y=g(x)的图象与y=e1−x2+1的图象关于直线x=1对称.若实数x1,x2满足f(x1)=g(x2),且2x1﹣x2有极小值﹣2,则实数k 的值是()二、填空题:13.已知|a →|=1,|b →|=2,且a →•(b →−a →)=﹣2,则向量a →与b →的夹角为 .14.已知数列{a n }的前n 项和为S n ,且满足2a n ﹣S n =1(n ∈N *),则a 4= . 15.焦点为F 的抛物线C :x 2=4y 的准线与坐标轴交于点A ,点P 在抛物线C 上,则|PA||PF|的最大值为 .16.如图,在平行四边形ABCD 中,∠BAD =60°,AB =2AD =2,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE ,设M 为线段A 1C 的中点.则在△ADE 翻折过程中,给出如下结论:①当A 1不在平面ABCD 内时,MB ∥平面A 1DE ; ②存在某个位置,使得DE ⊥A 1C ; ③线段BM 的长是定值;④当三棱锥C ﹣A 1DE 体积最大时,其外接球的表面积为13π3.其中,所有正确结论的序号是 .(请将所有正确结论的序号都填上)三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题: 17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B =(4c ﹣b )cos A . (Ⅰ)求cos A 的值;(Ⅱ)若b =4,点M 在线段BC 上,且AB →+AC →=2AM →,|AM →|=√6,求△ABC 的面积.18.某公司为提高市场销售业绩,促进某产品的销售,随机调查了该产品的月销售单价x (单位:元/件)及相应月销量y (单位:万件),对近5个月的月销售单价x i 和月销售量y i (i =1,2,3,4,5)的数据进行了统计,得到如表数据: 月销售单价x i (元/件) 9 9.5 10 10.5 11 月销售量y i (万件)1110865(Ⅰ)建立y 关于x 的回归直线方程;(Ⅱ)该公司开展促销活动,当该产品月销售单价为7元/件时,其月销售量达到18万件,若由回归直线方程得到的预测数据与此次促销活动的实际数据之差的绝对值不超过0.5万件,则认为所得到的回归直线方程是理想的,试问:(Ⅰ)中得到的回归直线方程是否理想?(Ⅲ)根据(Ⅰ)的结果,若该产品成本是5元/件,月销售单价x 为何值时(销售单价不超过11元/件),公司月利润的预计值最大?参考公式:回归直线方程y ̂=b ̂x +a,其中b ̂=∑ n i=1x i y i −nxy ∑ ni=1x i2−nx2,a ̂=y =b ̂x . 参考数据:∑ 5i=1x i y i =392,∑ 5i=1x i 2=502.5.19.如图,已知三棱柱ABC ﹣A 1B 1C 1的所有棱长均为2,∠B 1BA =π3. (Ⅰ)证明:B 1C ⊥AC 1;(Ⅱ)若平面ABB 1A 1⊥平面ABC ,M 为A 1C 1的中点,求B 1C 与平面AB 1M 所成角的正弦值.20.已知函数f(x)=(a+2)x2+ax﹣lnx(a∈R).(Ⅰ)当a=0时,求曲线y=f(x)在(1,f(1))处的切线方程;(Ⅱ)设g(x)=x2−2x3,若∀x1∈(0,1],∃x2∈[0,1],使得f(x1)≥g(x2)3成立,求实数a的取值范围.21.点M(x,y)与定点F(1,0)的距离和它到直线x=4的距离的比是常数1.2(Ⅰ)求点M的轨迹C的方程;(Ⅱ)过坐标原点O的直线交轨迹C于A,B两点,轨迹C上异于A,B的点P满足.直线AP的斜率为−32(ⅰ)求直线BP的斜率;(ⅱ)求△ABP面积的最大值.(二)选考题:[选修4-4:坐标系与参数方程](φ为参数),将曲线C1 22.在直角坐标系xOy中,曲线C1的参数方程为{x=1+cosφy=sinφ向左平移1个单位长度,再向上平移1个单位长度得到曲线C2.以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系.(Ⅰ)求曲线C1、C2的极坐标方程;(Ⅱ)射线OM:θ=α(ρ≥0)分别与曲线C1、C2交于点A,B(A,B均异于坐标原点O),若|AB|=√2,求α的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+|x+b|(a>0,b>0).(Ⅰ)当a=b=1时,解不等式f(x)<x+2;(Ⅱ)若f(x)的值域为[2,+∞),证明:1a+1+1b+1+1ab≥2.参考答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∩B=()A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D.{x|2<x<3} 【分析】先解出A={x|﹣1<x<2},然后进行交集的运算即可.解:A={x|﹣1<x<2};∴A∩B={x|1<x<2}.故选:C.【点评】考查描述法表示集合的概念,一元二次不等式的解法,以及交集的运算.2.若复数z满足(z﹣1)i=3+i(i为虚数单位),则z的虚部为()A.3 B.3i C.﹣3 D.﹣3i【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:由(z﹣1)i=3+i,得z=3+i i+1=(3+i)(−i)−i2+1=2−3i,∴z=2+3i.则z的虚部为3.故选:A.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.已知角α(0≤α<2π)终边上一点的坐标为(sin7π6,cos7π6),则α=()A.5π6B.7π6C.4π3D.5π3【分析】由题意利用任意角的三角函数的定义,诱导公式,求得α的范围以及正切值,可得α的值.解:角α(0≤α<2π)终边上一点的坐标为(sin7π6,cos7π6),α为第三象限角,则tanα=cos7π6sin7π6=cot7π6=cotπ6=√3,∴α=π+π3=4π3,故选:C.【点评】本题主要考查任意角的三角函数的定义,诱导公式,属于基础题.4.各项均不相等的等差数列{a n}的前5项的和S5=﹣5,且a3,a4,a6成等比数列,则a7=()A.﹣14 B.﹣5 C.﹣4 D.﹣1【分析】设等差数列{a n}的公差为d,d≠0,运用等差数列的求和公式,以及等比数列的中项性质和等差数列的通项公式,化简整理,解方程可得首项和公差,即可得到所求值.解:设等差数列{a n}的公差为d,d≠0,由S5=﹣5,可得5a1+12×5×4d=﹣5,即a1+2d=﹣1,①由a3,a4,a6成等比数列,可得a42=a3a6,即(a1+3d)2=(a1+2d)(a1+5d),化为a1d+d2=0,由d≠0,可得a1=﹣d,②由①②解得d=﹣1,a1=1,则a7=1+(7﹣1)×(﹣1)=﹣5.故选:B.【点评】本题考查等差数列的通项公式和求和公式,以及等比数列的中项性质,考查方程思想和运算能力,属于基础题.5.设a、b、c依次表示函数f(x)=x12−x+1,g(x)=log12x﹣x+1,h(x)=(12)x−x+1的零点,则a、b、c的大小关系为()A.a<b<c B.c<b<a C.a<c<b D.b<c<a【分析】先确定三个函数在定义域上是增函数,再利用零点存在定理,求出三个函数零点的范围,从而比较大小,即可得解.解:函数f(x)=x12−x+1,g(x)=log12x﹣x+1,h(x)=(12)x−x+1的零点,就是方程x12=x﹣1,log12x=x﹣1,(12)x=x﹣1方程的的解,在坐标系中画出函数y=x12,y=log12x,y=(12)x,与y=x﹣1的图象,如图:可得b<c<a,故选:D.【点评】本题主要考查函数零点的大小判断,解题时注意函数的零点的灵活运用,考查数形结合的应用,属于中档题.6.已知α是给定的平面,设不在α内的任意两点M和N所在的直线为l,则下列命题正确的是()A.在α内存在直线与直线l相交B.在α内存在直线与直线l异面C.在α内存在直线与直线l平行D.存在过直线l的平面与α平行【分析】采用举反例方式,逐一排除,从而可得到正确答案.解:由题可知,直线l和平面α要么相交,要么平行.当平面α与直线l平行时,在α内就不存在直线与直线l相交,则A错;当平面α与直线l相交时,在α内就不存在直线与直线l平行,则C错;当平面α与直线l相交时,过直线l的平面与平面α都会相交,则D错;不论直线l和平面α相交还是平行,都会在α内存在直线与直线l异面,则B正确.故选:B.【点评】本题主要考查了点线面位置关系,考查了学生的直观想象能力,属于基础题.7.(x2﹣x﹣2)3的展开式中,含x4的项的系数是()A.9 B.﹣9 C.3 D.﹣3【分析】根据(x2﹣x﹣2)3=(x﹣2)3•(x+1)3=(x3﹣6x2+12x﹣8)(x3+3x2+3x+1),求得含x4的项的系数.解:∵(x2﹣x﹣2)3=(x﹣2)3•(x+1)3=(x3﹣6x2+12x﹣8)(x3+3x2+3x+1),含x4的项的系数为3﹣6×3+12=﹣3,故选:D.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.8.如图是某一无上盖几何体的三视图,则该几何体的表面积等于()A.63πB.57πC.48πD.39π【分析】直接利用三视图,判断几何体的构成,进一步利用几何体的表面积公式求出结果.解:根据几何体的三视图:该几何体是由底面半径为3,高为4的圆柱,挖去一个底面半径为3,高为4的倒圆锥构成的几何体.所以:S=32•π+6π×4+12×6π×5=48π.故选:C.【点评】本题考查的知识要点:三视图的应用,几何体的表面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.9.有编号分别为1,2,3,4的4个红球和4个黑球,随机取出3个,则取出的球的编号互不相同的概率是()A.47B.37C.27D.17【分析】显然取法总数为C83,要取出的球的编号互不相同可先选编号数C43,再定颜色有C21C21C21,则有C43C21C21C21种取法,相比即可.解:从8个球中随机取出3个的取法有C83=56种;其中取出的球的编号互不相同的取法有C43C21C21C21=32种,则取出的球的编号互不相同的概率P=3256=47.故选:A.【点评】本题考查乘法原理,组合数公式与概率相结合,属于基础题.10.设双曲线C:x 2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,与圆x2+y2=a2相切的直线PF1交双曲线C于点P(P在第一象限),且|PF2|=|F1F2|,则双曲线C的离心率为()A.103B.53C.32D.54【分析】设直线PF1与圆x2+y2=a2相切于点M,取PF1的中点N,连接NF2,由切线的性质和等腰三角形的三线合一,运用中位线定理和勾股定理可得|PF1|=4b,再由双曲线的定义和a,b,c的关系及离心率公式计算即可得到结果.解:设直线PF1与圆x2+y2=a2相切于点M,则|OM|=a,取PF1的中点N,连接NF2,由于|PF2|=|F1F2|=2c,则NF2⊥PF1,|NP|=|NF1|,由|NF2|=2|OM|=2a,则|NP|=√4c2−4a2=2b,即有|PF1|=4b,由双曲线的定义可得|PF1|﹣|PF2|=2a,即4b﹣2c=2a,即2b=a+c,即4b2=(c+a)2=4(c2﹣a2),整理得3c=5a,则e=ca=53.故选:B.【点评】本题主要考查圆的切线性质、等腰三角形的三线合一、中位线定理、勾股定理及双曲线的定义、离心率计算,属于中档题.11.已知函数f(x)=sinωx +cosωx(ω>14,x ∈R),若f (x )的任何一条对称轴与x 轴交点的横坐标都不属于区间(π2,π),则ω的取值范围是( )A .[12,54]B .[12,2]C .(14,54]D .(14,2]【分析】先利用辅助角公式,将函数f (x )化简为f(x)=sinωx +cosωx =√2sin(ωx +π4),观察选项,可以找两个特殊值ω=2和ω=13,进行试验排除.具体做法是,将ω=2和ω=13分别代入函数f (x ),求出对称轴,给k 赋值,判断对称轴是否能在区间(π2,π)即可得解.解:f(x)=sinωx +cosωx =√2sin(ωx +π4),∵f (x )的任何一条对称轴与x 轴交点的横坐标都不属于区间(π2,π),∴T2=πω≥π−π2=π2,∴ω≤2,即14<ω≤2,若ω=2,则f(x)=√2sin(2x +π4),令2x +π4=π2+kπ,k ∈Z ,得x =π8+kπ2,k ∈Z , 当k =1时,对称轴为x =5π8∈(π2,π),不符合题意,故ω≠2,排除选项B 和D ,若ω=13,则f(x)=√2sin(13x+π4),令13x+π4=π2+kπ,k∈Z,得x=3π4+3kπ,k∈Z,当k=0时,对称轴x=3π4∈(π2,π),不符合题意,故ω≠13,排除选项C.故选:A.【点评】本题考查辅助角公式和正弦函数的对称性,考查学生的逻辑推理能力、分析能力和运算能力,属于中档题.12.设函数f(x)=ln(x+k)+2,函数y=g(x)的图象与y=e1−x2+1的图象关于直线x=1对称.若实数x1,x2满足f(x1)=g(x2),且2x1﹣x2有极小值﹣2,则实数k 的值是()A.3 B.2 C.1 D.﹣1【分析】先由对称性求出g(x),然后由已知可设f(x1)=g(x2)=a,则分别表示x1=e a﹣2﹣k,x2=2ln(a﹣1),代入后结合导数及极值存在的条件可求.解:由题意可得g(x)=e x2+1.设f(x1)=g(x2)=a,则x1=e a﹣2﹣k,x2=2ln(a﹣1),∴2x1﹣x2=2e a﹣2﹣2ln(a﹣1)﹣2k,令h(a)=2e a﹣2﹣2ln(a﹣1)﹣2k,则h′(a)=2e a−2−2a−1=2(e a−2−1a−1)在(1,+∞)上单调递增且h′(2)=0,故当a>2时,h′(a)>0,h(a)单调递增,当1<a<2时,h′(a)<0,h(a)单调递减,故当a=2时,h(a)取得极小值h(2)=2﹣2k,由题意可知2﹣2k =﹣2, 故k =2. 故选:B .【点评】本题主要考查了利用导数研究函数极值存在的条件,解题的关键是利用已知表示出极值的条件. 二、填空题:13.已知|a →|=1,|b →|=2,且a →•(b →−a →)=﹣2,则向量a →与b →的夹角为2π3.【分析】根据题意,设向量a →与b →的夹角为θ,由数量积的运算性质可得a →•(b →−a →)=a →•b →−a →2=﹣2,变形解可得cos θ的值,结合θ的范围分析可得答案.解:根据题意,设向量a →与b →的夹角为θ,若a →•(b →−a →)=﹣2,则a →•(b →−a →)=a →•b →−a →2=﹣2, 即2cos θ﹣1=﹣2,解可得cos θ=−12,又由0≤θ≤π,则θ=2π3; 故答案:2π3.【点评】本题考查向量数量积的计算,注意向量数量积的计算公式,属于基础题. 14.已知数列{a n }的前n 项和为S n ,且满足2a n ﹣S n =1(n ∈N *),则a 4= 8 . 【分析】直接利用数列的递推关系式,逐步求解数列的项即可. 解:数列{a n }的前n 项和为S n ,且满足2a n ﹣S n =1(n ∈N *),n =1时,2a 1﹣S 1=1.可得a 1=1,n =2时,2a 2﹣S 2=1,即2a 2﹣a 2﹣a 1=1,解得a 2=2,n =3时,2a 3﹣S 3=1,即2a 3﹣a 3﹣a 2﹣a 1=1,解得a 3=4, n =4时,2a 4﹣S 4=1,即2a 4﹣a 4﹣a 3﹣a 2﹣a 1=1,解得a 4=8,故答案为:8.【点评】本题考查数列的递推关系式的应用,数列的项的求法,是基本知识的考查. 15.焦点为F 的抛物线C :x 2=4y 的准线与坐标轴交于点A ,点P 在抛物线C 上,则|PA||PF|的最大值为 √2 .【分析】根据题意作图,结合抛物线性质可得|PA||PF|=1sin ∠PAM,则当∠PAM 最小时,则|PA||PF|最大,即当PA 和抛物线相切时,|PA||PF|最大,设P (a ,a 24),利用导数求得斜率求出a 的值即可解:由题意可得,焦点F (0,1),A (0,﹣1),准线方程为y =﹣1 过点P 作PM 垂直于准线,M 为垂足, 由抛物线的定义可得|PF |=|PM |, 则|PA||PF|=|PA||PM|=1sin ∠PAM,∠PAM 为锐角.故当∠PAM 最小时,则|PA||PF|最大,故当PA 和抛物线相切时,|PA||PF|最大可设切点P (a ,a 24),则PA 的斜率为k =14a 2−1a,而函数y =x 24的导数为y ′=x2,则有a2=14a 2−1a,解得a =±2,可得P (2,1)或(﹣2,1),则|PM |=2,|PA |=2√2, 即有sin ∠PAM =|PM||PA|=√22, 则|PA||PF|=√2,故答案为:√2【点评】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.16.如图,在平行四边形ABCD 中,∠BAD =60°,AB =2AD =2,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE ,设M 为线段A 1C 的中点.则在△ADE 翻折过程中,给出如下结论:①当A 1不在平面ABCD 内时,MB ∥平面A 1DE ; ②存在某个位置,使得DE ⊥A 1C ; ③线段BM 的长是定值;④当三棱锥C ﹣A 1DE 体积最大时,其外接球的表面积为13π3.其中,所有正确结论的序号是 ①③④ .(请将所有正确结论的序号都填上)【分析】①取DC的中点N,连接NM、NB,可得MN∥A1D,NB∥DE,且MN、NB 和∠MNB均为定值,由平面与平面平行的判定可得面MNB∥面A1DE,则MB∥面A1DE;②用反证法,假设存在某个位置,使DE⊥A1C,在△CDE中,由勾股定理易知,CE⊥DE,再由线面垂直的判定定理可知,DE⊥面A1CE,所以DE⊥A1E,与已知相矛盾;③由①可知MN,NB,∠MNB,在△MNB中,由余弦定理可知,MB2=MN2+NB2﹣2MN•NB cos∠MNB,计算得线段BM的长是定值;④当三棱锥C﹣A1DE体积最大时,平面A1DE⊥平面CDE,又CE⊥DE,得CE⊥平面A1DE,设三棱锥C﹣A1DE的外接球的球心为O,由勾股定理求外接球的半径OE,.代入球的表面积公式可得外接球的表面积为13π3解:如图,∵AB=2AD=2,E为边AB的中点,∠BAD=60°,∴△ADE(A1DE)为等边三角形,则DE=1.①取DC的中点N,连接NM、NB,则MN∥A1D,且MN=1=A1D=12;2NB∥DE,且NB=DE=1,∵MN⊄平面A1DE,A1D⊂平面A1DE,则MN∥平面A1DE,同理NB∥平面A1DE,又NM∩NB=N,∴平面NMB∥平面A1DE,则MB∥平面A1DE,故①正确;②假设存在某个位置,使DE⊥A1C.∵DE=1,可得CE=√3,∴CE2+DE2=CD2,即CE⊥DE,∵A1C∩CE=C,∴DE⊥面A1CE,∵A1E⊂面A1CE,∴DE⊥A1E,与已知∠DA1E=60°矛盾,故②错误;,NB=1.③由①知,∠MNB=∠A1DE=60°,MN=12由余弦定理得,MB2=MN2+NB2﹣2MN•NB cos∠MNB=1+1−2×12×1×12=34,4,故③正确;∴BM的长为定值√32当三棱锥C﹣A1DE体积最大时,平面A1DE⊥平面CDE,又CE⊥DE,∴CE⊥平面A1DE,设三棱锥C﹣A1DE的外接球的球心为O,则外接球的半径OE=(3)2+(32)2=√1312,3∴外接球的表面积S=4π×(√13)2=13π3,故④正确.12∴正确命题的序号是①③④.故答案为:①③④.【点评】本题考查空间中线面的位置关系,理清翻折前后不变的数量关系和位置关系,以及熟练运用线面平行或垂直的判定定理与性质定理是解题的关键,考查学生的空间立体感和逻辑推理能力,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:17.在△ABC中,角A,B,C所对的边分别为a,b,c,且a cos B=(4c﹣b)cos A.(Ⅰ)求cos A的值;(Ⅱ)若b=4,点M在线段BC上,且AB→+AC→=2AM→,|AM→|=√6,求△ABC的面积.【分析】(Ⅰ)由正弦定理,两角和的正弦函数公式化简已知等式可得sin C=4sin C cos A,结合在△ABC中,sin C≠0,可求cos A的值.(Ⅱ)解法一:由AB→+AC→=2AM→,两边平方,利用余弦定理可解得c的值,利用同角三角函数基本关系式可求sin A的值,进而根据三角形的面积公式即可求解;解法二:延长BA到N,使AB=AN,连接CN,由AB→+AC→=2AM→,M点为BC线段,利用余弦定理中点,|AM→|=√6,可求CN=2√6,cos∠CAN=cos(π−∠A)=−14可求c的值,进而根据三角形的面积公式即可求解.解:(Ⅰ)因为a cos B=(4c﹣b)cos A,由正弦定理得:sin A cos B=(4sin C﹣sin B)cos A,即sin A cos B+sin B cos A=4sin C cos A,可得sin C=4sin C cos A,在△ABC中,sin C≠0,.所以cosA=14(Ⅱ)解法一:∵AB→+AC→=2AM→,两边平方得:AB→2+2AB→⋅AC→+AC→2=4AM→2,,由b=4,|AM→|=√6,cosA=14可得:c2+2c⋅4⋅1+16=4×6,解得c=2或c=﹣4(舍).4,又sinA=√1−cos2A=√154所以△ABC的面积S=12×4×2×√154=√15.解法二:延长BA到N,使AB=AN,连接CN,∵AB→+AC→=2AM→,M点为BC线段中点,|AM→|=√6,∴CN=2√6,又∵b=4,cosA=14,cos∠CAN=cos(π−∠A)=−14,∴CN2=AC2+AN2﹣2AC•AN•cos∠CAN,即24=16+c2−2c⋅4⋅(−14),解得:c=2或c=﹣4(舍),又sinA=√1−cos2A=√154,∴△ABC的面积S=12×4×2×√154=√15.【点评】本题主要考查了正弦定理,两角和的正弦函数公式,余弦定理,同角三角函数基本关系式,三角形的面积公式以及平面向量的运算在解三角形中的综合应用,考查了数形结合思想和转化思想,属于中档题.18.某公司为提高市场销售业绩,促进某产品的销售,随机调查了该产品的月销售单价x (单位:元/件)及相应月销量y(单位:万件),对近5个月的月销售单价x i和月销售量y i(i=1,2,3,4,5)的数据进行了统计,得到如表数据:月销售单价x i(元/件)99.51010.511月销售量y i (万件) 11 10 8 6 5(Ⅰ)建立y 关于x 的回归直线方程;(Ⅱ)该公司开展促销活动,当该产品月销售单价为7元/件时,其月销售量达到18万件,若由回归直线方程得到的预测数据与此次促销活动的实际数据之差的绝对值不超过0.5万件,则认为所得到的回归直线方程是理想的,试问:(Ⅰ)中得到的回归直线方程是否理想?(Ⅲ)根据(Ⅰ)的结果,若该产品成本是5元/件,月销售单价x 为何值时(销售单价不超过11元/件),公司月利润的预计值最大?参考公式:回归直线方程y ̂=b ̂x +a,其中b ̂=∑ n i=1x i y i −nxy ∑ ni=1x i2−nx2,a ̂=y =b ̂x . 参考数据:∑ 5i=1x i y i =392,∑ 5i=1x i 2=502.5.【分析】(Ⅰ)求出样本中心,求出回归直线方程的斜率,然后求解y 关于x 的回归直线方程;(Ⅱ)利用过后直线方程,求出当该产品月销售单价为7元/件时,求出预测数据,通过判断由回归直线方程得到的预测数据与此次促销活动的实际数据之差的绝对值说法超过0.5万件,则认为所得到的回归直线方程是理想的,说明(Ⅰ)中得到的回归直线方程是否理想.(Ⅲ)设销售利润为M ,则M =(x ﹣5)(﹣3.2x +40)(5<x ≤11)M =﹣3.2x 2+56x ﹣200,求解x =8.75时,M 取最大值,得到结果.解:(Ⅰ)因为x =15(11+10.5+10+9.5+9)=10,y =15(5+6+8+10+11)=8. 所以b ̂=392−5×10×8502.5−5×102=−3.2,所以a ̂=8−(−3.2)×10=40,所以y 关于x 的回归直线方程为:y ̂=−3.2x +40. (Ⅱ)当x =7时,y ̂=−3.2×7+40=17.6,则|17.6﹣18|=0.4<0.5,所以可以认为所得到的回归直线方程是理想的.(Ⅲ)设销售利润为M,则M=(x﹣5)(﹣3.2x+40)(5<x≤11)M=﹣3.2x2+56x ﹣200,所以x=8.75时,M取最大值,所以该产品单价定为8.75元时,公司才能获得最大利润.【点评】本题考查回归直线方程的求法与应用,考查转化思想以及计算能力,是基本知识的考查.19.如图,已知三棱柱ABC﹣A1B1C1的所有棱长均为2,∠B1BA=π3.(Ⅰ)证明:B1C⊥AC1;(Ⅱ)若平面ABB1A1⊥平面ABC,M为A1C1的中点,求B1C与平面AB1M所成角的正弦值.【分析】(Ⅰ)取AB中点D,连接B1D,CD,BC1.证明B1C⊥BC1.B1D⊥AB,CD⊥AB.得到AB⊥平面B1CD.推出AB⊥B1C.即可证明B1C⊥平面ABC1,得到B1C⊥AC1.(Ⅱ)说明DB,DB1,DC两两垂直,以D为原点,DB为x轴,DC为y轴,DB1为z轴,建立空间直角坐标系.求出平面AB1M的法向量,利用空间向量的数量积求解B1C与平面AB1M所成的角的正弦值即可.【解答】证明:(Ⅰ)取AB中点D,连接B1D,CD,BC1.∵三棱柱的所有棱长均为2,∠B1BA=π3,∴△ABC 和△ABB 1是边长为2的等边三角形,且B 1C ⊥BC 1. ∴B 1D ⊥AB ,CD ⊥AB .∵B 1D ,CD ⊂平面B 1CD ,B 1D ∩CD =D ,∴AB ⊥平面B 1CD . ∵B 1C ⊂平面B 1CD ,∴AB ⊥B 1C .∵AB ,BC 1⊂平面ABC 1,AB ∩BC 1=B ,∴B 1C ⊥平面ABC 1, ∴B 1C ⊥AC 1.(Ⅱ)∵平面ABB 1A 1⊥平面ABC ,且交线为AB , 由(Ⅰ)知B 1D ⊥AB ,∴B 1D ⊥平面ABC .则DB ,DB 1,DC 两两垂直,则以D 为原点,DB 为x 轴,DC 为y 轴,DB 1为z 轴, 建立空间直角坐标系.则D (0,0,0),A (﹣1,0,0),B 1(0,0,√3),C(0,√3,0),C 1(−1,√3,√3),A 1(−2,0,√3)∵M 为A 1C 1的中点,∴M(−32,√32,√3),∴B 1C →=(0,√3,−√3),AB 1→=(1,0,√3),AM →=(−12,√32,√3),设平面AB 1M 的法向量为n →=(x ,y ,z),则{AB 1→⋅n →=x +√3z =0AM →⋅n →=−12x +√32y +√3z =0,取z =1,得n →=(−√3,−3,1). 设B 1C 与平面AB 1M 所成的角为α,则sinα=|B 1C →⋅n →||B 1C →|⋅|n →|=4√3√6⋅√13=2√2613.∴B 1C 与平面AB 1M 所成角的正弦值为2√2613.【点评】本题考查直线与平面所成角的正弦值的求法,直线与平面垂直的判断定理的应用,考查空间想象能力以及逻辑推理能力计算能力,是中档题. 20.已知函数f (x )=(a +2)x 2+ax ﹣lnx (a ∈一、选择题). (Ⅰ)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(Ⅱ)设g (x )=x 2−23x 3,若∀x 1∈(0,1],∃x 2∈[0,1],使得f (x 1)≥g (x 2)成立,求实数a 的取值范围.【分析】(Ⅰ)当a =0时,求出f ′(x)=4x −1x,求出切线的斜率以及切点坐标,然后求解切线方程.(Ⅱ)问题等价于∀x 1∈(0,1],∃x 2∈[0,1],f (x 1)min ≥g (x 2)min .求出g '(x )=2x ﹣2x 2,利用导函数的符号判断函数的单调性,求解函数的最小值,同理求解f (x )min ,利用转化不等式,构造函数,转化求解即可.解:(Ⅰ)当a =0时,f (x )=2x 2﹣lnx ,f ′(x)=4x −1x,则f (1)=2,f '(1)=3,故曲线y =f (x )在(1,f (1))处的切线方程为3x ﹣y ﹣1=0.(Ⅱ)问题等价于∀x 1∈(0,1],∃x 2∈[0,1],f (x 1)min ≥g (x 2)min . 由g(x)=x 2−23x 3得g '(x )=2x ﹣2x 2,由g '(x )=2x ﹣2x 2≥0得0≤x ≤1,所以在[0,1]上,g(x)是增函数,故g(x)min=g(0)=0.f(x)定义域为(0,+∞),而f′(x)=2(a+2)x+a−1x =2(a+2)x2+a−1xx=(2x_1)[(a+2)x−1]x.当a≤﹣2时,f'(x)<0恒成立,f(x)在(0,1]上是减函数,所以f(x)min=f(1)=2(a+1)≥0⇒a≥﹣1,不成立;当a>﹣2时,由f'(x)<0,得0<x<1a+2;由f'(x)>0,得x>1a+2,所以f(x)在(0,1a+2)单调递减,在(1a+2,+∞)单调递减.若1a+2>1,即﹣2<a<﹣1时,f(x)在(0,1]是减函数,所以f(x)min=f(1)=2(a+1)≥0⇒a≥﹣1,不成立;若0<1a+2≤1,即a≥﹣1时,f(x)在x=1a+2处取得最小值,f(x)min=f(1a+2)=1+ ln(a+2)−1a+2,令h(a)=1+ln(a+2)−1a+2(a≥−1),则h′(a)=1a+2+1(a+2)2=a+3(a+2)2>0在[﹣1,+∞)上恒成立,所以h(a)在[﹣1,+∞)是增函数且h(a)min=h(﹣1)=0,此时f(x)min=f(1a+2)≥0成立,满足条件.综上所述,a≥﹣1.【点评】本题考查函数的导数的应用,切线方程以及函数的单调性,函数的最值的求法,转化思想的应用,是难题.21.点M(x,y)与定点F(1,0)的距离和它到直线x=4的距离的比是常数12.(Ⅰ)求点M 的轨迹C 的方程;(Ⅱ)过坐标原点O 的直线交轨迹C 于A ,B 两点,轨迹C 上异于A ,B 的点P 满足直线AP 的斜率为−32. (ⅰ)求直线BP 的斜率; (ⅱ)求△ABP 面积的最大值.【分析】(Ⅰ)利用点M (x ,y )与定点F (1,0)的距离和它到直线x =4的距离的比是常数12,列出方程化简求解即可.(Ⅱ)(ⅰ)设点A (x 1,y 1),则点B (﹣x 1,﹣y 1),满足x 124+y 123=1,设点P (x 2,y 2),满足x 224+y 223=1,利用平方差法求解AP 的斜率,BP 的斜率即可.(ⅱ)说明S △ABP =2S △OAP ,设直线AP :y =−32x +m ,代入曲线C :x 24+y 23=1化简得:3x 2﹣3mx +m 2﹣3=0,设A (x 1,y 1),P (x 2,y 2),利用韦达定理、弦长公式以及点到直线的距离公式,转化求解三角形面积的表达式,然后求解最值即可. 解:(Ⅰ)由已知得√(x−1)2+y 2|x−4|=12,两边平方并化简得3x 2+4y 2=12,即点M 的轨迹C 的方程为:x 24+y 23=1.(Ⅱ)(ⅰ)设点A (x 1,y 1),则点B (﹣x 1,﹣y 1),满足x 124+y 123=1,①设点P (x 2,y 2),满足x 224+y 223=1,②由①﹣②得:(x 1−x 2)(x 1+x 2)4+(y 1−y 2)(y 1+y 2)3=0,∵k AP =y 1−y 2x 1−x 2−=−32,k BP =y 1+y2x 1+x 2,∴k BP =y 1+y2x 1+x 2=12.(ⅱ)∵A,B关于原点对称,∴S△ABP=2S△OAP,设直线AP:y=−32x+m,代入曲线C:x24+y23=1化简得:3x2﹣3mx+m2﹣3=0,设A(x1,y1),P(x2,y2),由△>0得:m2<12,x1+x2=m,x1x2=m2−33,|AP|=√1+94|x1−x2|=√1+94√(x1+x2)2−4x1x2=√1+94√4−m 23,点O到直线AP的距离d=√1+94,∴S△ABP =2S△OAP=2×12×|AP|⋅d=|m|√4−m23=√4m2−m43,∴S△ABP =√−m43+4m2=√−13(m2−6)2+12,当m2=6时,∴S△ABP取到最大值2√3.【点评】本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,平方差法以及距离公式的应用,三角形面积的最值的求法,是中档题.(二)选考题:[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为{x=1+cosφy=sinφ(φ为参数),将曲线C1向左平移1个单位长度,再向上平移1个单位长度得到曲线C2.以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系.(Ⅰ)求曲线C1、C2的极坐标方程;(Ⅱ)射线OM:θ=α(ρ≥0)分别与曲线C1、C2交于点A,B(A,B均异于坐标原点O),若|AB|=√2,求α的值.【分析】(Ⅰ)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用极径的应用和三角函数关系式的恒等变换,及正弦型函数的性质的应用求出结果.解:(Ⅰ)由题意:{x =1+cosφy =sinφ⇒{x −1=cosφy =sinφ⇒(x −1)2+y 2=1.∵ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, ∴曲线C 1的极坐标方程为ρ=2cos θ. 因曲线C 1是圆心为(1,0),半径为1的圆, 故曲线C 2的直角坐标方程为x 2+(y ﹣1)2=1. ∴曲线C 2的极坐标方程为ρ=2sin θ. (Ⅱ)设A (ρ1,α),B (ρ2,α),则|AB|=|ρ1−ρ2|=2|sinα−cosα|=2√2|sin(α−π4)|=√2. 所以sin(α−π4)=±12,因为2kπ<α<2kπ+π2,所以α−π4=2kπ±π6(k ∈Z).所以α=2kπ+π12(k ∈Z)或α=2kπ+5π12(k ∈Z).【点评】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,极径的应用,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. [选修4-5:不等式选讲]23.已知函数f (x )=|x ﹣a |+|x +b |(a >0,b >0). (Ⅰ)当a =b =1时,解不等式f (x )<x +2; (Ⅱ)若f (x )的值域为[2,+∞),证明:1a+1+1b+1+1ab≥2.【分析】(Ⅰ)由绝对值的定义分段脱绝对值求解.(Ⅱ)由绝对值不等式求函数f (x )的值域可确定a +b =2,再配凑均值不等式的形式,两次用均值不等式即可证明.解:(Ⅰ)当a=b=1时,不等式为|x﹣1|+|x+1|<x+2,当x<﹣1时,不等式化为−2x<x+2⇒x>−23,此时不等式无解;当﹣1≤x<1时,不等式化为2<x+2⇒x>0,故0<x<1;当x≥1时,不等式化为2x<x+2⇒x<2,故1≤x<2.综上可知,不等式的解集为{x|0<x<2}.(Ⅱ)f(x)=|x﹣a|+|x+b|≥|a+b|,当且仅当x﹣a与x+b同号时,f(x)取得最小值|a+b|,∵f(x)的值域为[2,+∞),且a>0,b>0,故a+b=2.故1a+1+1b+1+1ab=14(1a+1+1b+1)[(a+1)+(b+1)]+1ab=14(2+b+1a+1+a+1 b+1)+1ab≥14(2+2√b+1a+1⋅a+1b+1)+(2a+b)2=1+1=2(当且仅当a=b=1时取等号).【点评】本题考查绝对值不等式的解法,利用基本不等式证明不等式,属于中低档题.。
2020合肥三模理科数学答案
合肥市2020届高三第三次教学质量检测数学试题(理科)参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACDCBCBDACA、填空题:本大题共4小题, 每小题5分,共20分.13.480 14.-960 15.4 16.①②④⑤、解答题:本大题共6小题, 满分70分.17.(本小题满分12分)解:(1)f x cos x sinx .3cos x1 sin2 x31 cos2 x i 2丘sin 2 x2232由1 sin 2 x —1得,f x 的值域是—1 , 3 1.…… ......................... 5分322⑵ T 0 x ,•——2 x —23333由正弦函数的图像可知,fx —在区间0, 上恰有两个实数解,必须2 2- 32 3解得54. .......................................... 12分6318.(本小题满分12分)解:(1) •••四边形AACG 是菱形,• AC AG ,又••• AC .3AG ,••• ACC , =600 , • ACC 是等边三角形. •••点M 为线段AC 的中点,• GM AC . 又T AC // AG , • GM AC 1. •••在等边 ABC 中,BM AC , 由 AC // AG 可得,BM AG . 又 T BM I C 1M M , • AC 1 平面 BMC 1 ,••• A 1C 1 平面ABG ,•平面BMG 丄平面ABG ................................................ 5分 (2) T BM AC ,平面ABCL 平面AACG ,且交线为AC •- BM 平面ACC 1A 1 , •直线MB , MC , MG 两两垂直. 以点M 为坐标原点,分别以MB , MC , MG 所在直线为坐 标轴建立空间直角坐标系,如图,则 B 3 , 0, 0 , G 0, 0, 3 , A 0, uuuir uuu - -•- AC 1 0, 2 0 , BG 3 , 0, 3 , 2, 3 uuuuCC 1 ,C 0, 1, 0 , 1, 3 .0, 设平面ABG 的一个法向量为nuuuur r A C 1 n …uuun rx , y, z1,得nBG n 019.(本小题满分12分)解:(1)由频率分布直方图可得,空气质量指数在(90, 110]的天数为2天,所以估计空气质量指数在 (90, 100]的天数为1天,故在这30天中空气质量等级属于优或良的天数为28无 ................3分 (2)①在这30天中, …P X 0?C 30• X 的分布列为⑵ 由⑴知,当a 2时,fx e x e x 2x 在R 上单调递增,• gx f ln x x 1x 2ln x 在 0, 当n Z 且n 2时, n 1 2l n n 1n.••n Z 且 .n 2 时,1 22n In n n 1n1 1 1 1 1 L 1 i2 i l n i 13 24 n 1 上单调递增. 1 n 21 2ln1 0 ,即卩 2ln n , 1 n 1 1 n 1 n 1 1 1113 n2 n 212分n 1 2 n n 1 2n n 1备孚即点C 到平面ABC 的距离为孚12分1 29,1 22 -29 5②甲不宜进行户外体育运动的概率为—,乙不宜进行户外体育运动的概率为—,10EX 0 -92 14548 145221 9』 …P C 3C 2 10 103 710 1010 567 5000012分20.(本小题满分12分) 解:(1) f x e x e 当ax 2 时,f x e a , a 1 24 2 ,a a 2 4 aa 2 4,InU In 2 22时,由f x在R 上单调递增;a . a 2 4 ln .2时,f x 0 ,••• fx在'『「P 和时,f0.上单调递增,在 lndJ^2,ln122 2上单调递减.…d乙不宜进行户外体育运动,且甲适宜进行户外体育运动的天数共6天,92145_ 1 _ 1C 6 C 24 48C 6 P X 1 6 £ , P X 26. C 30145C 30解:设点 P X o , y , A X i , y i , B x 2, y 2 . (1) T 直线|经过坐标原点,x 2 x 1, y 2 y 1 .2..X0222X0— y 。
2020届四川省绵阳市高三第三次诊断性测试理科数学试题(word版含答案)
13.已知 则sinα=____
14.若曲线f(x)=excosx-mx,在点(0, f(0))处的切线的倾斜角为 则实数m=_____.
15.已知 是椭圆C: 的两个焦点,P是椭圆C.上的一点, 且 的面积为 则b=____.
16.在一个半径为2的钢球内放置一个用来盛特殊液体的正四棱柱容器,要使该容器所盛液体尽可能多,则该容器的高应为____.
(2)设点P(x0, 0),若点M恒在以FP为直径的圆外,求 的取值范围.
(二)选考题:共10分。请考生在第22、23题中任选一题做答。如果多做,则按所做的第一题记分。
22.[选修4-4:坐标系与参数方程] (10分)
如图,在极坐标系中,曲线 是以C1(4, 0)为圆心的半圆,曲线 是以 为圆心的圆,曲线C1、 都过极点O.
C. f(2)< f(0)<f(1)D. f(2)<f(1)< f(0)
11.已知x为实数,[x]表示不超过x的最大整数,若函数f(x)=x-[x],则函数 的零点个数为
A.1B.2C.3D.4
12.在△ABC中,∠C=90°, AB=2, D为AC上的一点(不含端点),将△BCD沿直线BD折起,使点C在平面ABD上的射影O在线段AB上,则线段OB的取值范围是
若将频率视为概率,试解答如下问题:
(1).该物流公司负责人决定随机抽出3天的数据来分析配送的蔬菜量的情况,求这3天配送的蔬菜量中至多有2天小于120件的概率;
(2)该物流公司拟一次性租赁一批货车专门运营从甲地到乙地的蔬菜运输.已知一辆货车每天只能运营一趟,每辆货车每趟最多可装载40件,满载才发车,否则不发车.若发车,则每辆货车每趟可获利2000元;若未发车,则每辆货车每天平均亏损400元.为使该物流公司此项业务的营业利润最大,该物流公司应一次性租赁几辆货车?
2020年陕西省西安市高考数学第三次质检试卷(理科)(三模)
在平面直角坐标系中,直线 的方程为 = ,以原点为极点, 轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为: = .
(1)写出曲线 的直角坐标方程和直线 的参数方程;
(2)设直线 与曲线 相交于 , 两点,设 ,若 = ,求直线 的斜率.
A. B. C. D.
二.填空题(本题共4小题,每小题5分,共20分)
甲、乙两人下棋,结果是一人获胜或下成和棋,已知甲不输的概率为 ,乙不输的概率为 ,则两人下成和棋的概率为________.
设等差数列 的前 项和为 ,若 = ,则 =________.
已知函数 , 的最小正周期是________.
1.
【答案】
B
【考点】
交、并、补集的混合运算
【解析】
求出集合 中的不等式的解集,确定出集合 ,根据全集 = ,找出集合 的补集,然后找出集合 补集与集合 的公共部分,即可求出所求的集合
【解答】
[由指数函数的性质,可知集合 = =
又全集 = = ,
∴ = ,
集合 = ,
∴ = .
2.
【答案】
A
【考点】
(1)求证: 平面 ;
(2)求二面角 的余弦值.
已知函数 = .
(1)证明 ;
(2)若 对 恒成立,求实数 的取源自范围.已知椭圆 的离心率为 ,直线 = 交椭圆 于 、 两点,椭圆 的右顶点为 ,且满足 .
Ⅰ 求椭圆 的方程;
Ⅱ 若直线 = 与椭圆 交于不同两点 、 ,且定点 满足 ,求实数 的取值范围.
A. B. C. D.
3.已知向量 ,向量 ,则 的值为()
安徽省合肥市2020年高三第三次教学质量检测数学(理科)试卷文字版含答案
合肥市2020年高三第三次教学质量检测数学试题(理科)(考试时间:120分钟 满分:150 分)注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.第Ⅰ卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知R 为实数集,集合{}20<<=x x A ,{}3<=x x B 则B A C R I )(=A .{}32<<x xB .{}32<≤x xC .{}320<≤<x x x 或D .{}320<≤≤x x x 或2.若复数21,z z 在复平面内对应的点关于原点对称,i z +=11,则21z z ⋅=A .2-B .i 2-C .2D .i 23.某居委会从辖区内A ,B ,C 三个小区志愿者中各选取2人,随机安排到这三个小区,协助小区保安做好管理和宣传工作.若每个小区安排2人,则每位志愿者不安排在自已居住小区,且每个小区安排的志愿者来自不同小区的概率为A .95B .94C .454D .1352 4.已知双曲线)0(12222>>=-b a b y a x 的顶点到渐近线的距离为2a ,则该双曲线的离心率为 A .32 B .2 C .23 D .332 5.“关于x 的方程x x a 2)12(=+有实数解”的一个充分不必要条件是A .131<<aB .21≥aC .132<<aD .121<≤a 6.已知23)3tan(=+πα,则ααααsin cos 3cos sin 3-+= A .91 B .93 C .31 D .33 7.公元前1650年的埃及莱因德纸草书上载有如下问题:“十人分十斗玉米,从第二人开始,各人所得依次比前人少八分之一,问每人各得玉米多少斗?”在上述问题中,第一人分得玉米A .18870109-⨯斗B .10101078810-⨯斗C .1010978810-⨯斗D .1010878810-⨯斗 8.已知△ABC 三个内角A ,B ,C 的对边分别为a ,b ,c .若B c b a cos 2=+,则2)(bc a b +的最小值为 A .22 B .3 C .32 D .49.某校高一年级研究性学习小组利用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,该激光测速仪工作原理是:激光器发出的光平均分成两束后射出,并在被测物体表面汇聚,探测器接收反射光,当被测物体横向速度为零时,反射光与探测光频率相同;当横向速度不为零时,反射光相对探测光会发生频移λϕsin 2v f p =,其中v 为测速仪测得被测物体的横向速度,入为激光波长,ϕ为两束探测光线夹角的一半,如图.若该激光测速仪安装在距离高铁1m 处,发出的激光波长为1550nm (1nm=9-10m ) ,测得某时刻频移为)(h /110030.99⨯,则该时刻高铁的速度约等于A .h km /320B .h km /330C .h km /340D .h km /35010.在长方体1111D C B A ABCD -中,AB=AD=6,AA 1=2,M 为棱BC 的中点,动点P 满足∠APD=∠CPM ,则点P 的轨迹与长方体的面DCC 1D 1的交线长等于A .32πB .πC .34π D .π2 11.已知不等式)]1ln([1+->--x x m x e x 对一切正数x 都成立,则实数m 的取值范围是A .]3,(e -∞B .]2,(e -∞ C .]1,(-∞ D .],(e -∞12.在矩形ABCD 中,AB=4,BC=34,点G ,H 分别是直线BC ,CD 上的动点,AH 交DG 于点P .若)(,10212<<==λλλCB CG DC DH ,矩形ABCD 的对称中心M 关于直线AD 的对称点是N ,则△PMN 的周长为A .12B .16C .λ24D .λ32第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题—第21题为必考题,每个试题考生都必须作第22题、第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.把答案填在答题卡上的相应位置.13.某高中各年级男女生人数统计如下表:性别人数年级高一 高二 高三男生592 563 520 女生 528 517 a 按年级分层抽样,若抽取该校学生80人中,高二学生有27人,则上表中a= .14.5)44(x x +-的展开式中2x 的系数为 .15.已知数列{}n a 中n a n =.数列{}n b 的前n 项和12-=n n S .若数列⎭⎬⎫⎩⎨⎧n n b a 的前n 项和M T n <对于*N n ∈∀都成立,则实数M 的最小值等于 .16.已知三棱锥A —BCD 的三条侧棱AB ,AC ,AD 两两垂直.其长度分别为a ,b ,c .点A 在底面BCD 内的射影为O ,点A ,B ,C ,D 所对面的面积分别为S A ,S B ,S C ,S D ,在下列所给的命题中,正确的有 (请写出所有正确命题的编号)。
陕西省2020届高三下学期第三次教学质量检测数学(理)试题含解析
【答案】-40
【解析】
【分析】
利用二项式定理求出二项式 的展开式的通项公式,令 的指数为零,求得 的值,然后代入二项式 的展开式的通项公式即可求解。
【详解】由题意知,二项式 的展开式的通项公式为
,
令 ,解得 ,
所以二项式 的展开式的常数项为
【答案】 (1)。 (2)。
【解析】
【分析】
根据题中条件,先得到从第二行开始,每一行相邻的两个数之和都等于这两个数上一行对应的数字,由此可求出第10行从左边数第3个位置上的数;以及满足的关系式.
【详解】由题中条件可得, , , , , , , , , ,……,
由此可得,从第二行开始,每一行相邻的两个数之和都等于这两个数上一行对应的数字;
12. 已知椭圆 : 与双曲线 : ( , )有共同的焦点 , ,且在第一象限的交点为 ,满足 (其中 为原点)。设 , 的离心率分别为 , ,当 取得最小值时, 的值为( )
A。 B.
C。 D。
【答案】D
【解析】
【分析】
作 ,利用椭圆和双曲线定义可表示出 ,由 ,可得点 的横坐标为 ,利用勾股定理可得 ,即 ,再利用基本不等式可求出最值,并求出此时 的值.
8. 在 中,若 ,则下列等式中一定成立的是( )
A. B。 C. D。
【答案】A
【解析】
【分析】
利用降次公式得到 ,展开得到 ,得到
【详解】∵ ,
∴ 。
∵ .
故选A。
【点睛】本题考查了三角恒等变换,也可以利用特殊值法排除选项得到答案.
9. “ ”是“ ”的( )
A. 充分不必要条件B. 必要不充分条件C。 充要条件D。 既不充分也不必要条件
2019-2020年高三年级第三次质量检测数学试卷(理科).doc
2019-2020年高三年级第三次质量检测数学试卷(理科)注意事项:1.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120 分钟.2.请将第第I 卷选择题的答案用2B 铅笔填涂在答题卡上,第II 卷在各题后直接作答。
参考公式:如果事件A 、B 互斥,那么 P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么 P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率kn k k n n P P C k P --=)1()(球的表面积公式 24R S π= 其中R 表示球的半径 球的体积公式 334R V π=球 其中R 表示球的半径第Ⅰ卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分。
在每题给出的四个选项中,只有一项是最符合题目要求的。
)1.设集合U=R ,集合P={x|x 2≥x},Q={x|x>0},则下列关系中正确的是 ( )A .P ∩Q ⊂QB .P ∪Q ⊂QC .P ∪Q ≠RD .Q ∩Q=φ2.已知f (x )的反函数0)(),2(log )(21=+=-x f x x f 则方程的根为( )A .1B .0C .-23D .23.设a 、b 表示直线,α、β表示平面,P 是空间一点,下面命题正确的是 ( ) A .a ⊄α,则a//α B .a//α,b ⊂α,则a//b C .α//β,a ⊄α,b ⊂α,则a//b D .P ∈a ,P ∈β,a//α,α//β则a ⊂β 4.设圆x 2+y 2-2x+6y+1=0上有关于直线2x+y+c=0对称的两点,则c 的值为 ( ) A .2 B .-1 C .-2 D .1 5.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-31a 11的值为 ( )A .14B .15C .16D .17 6.设复数z+i (z 为复数)在映射f 下的象为zi ,则-2+2i 的象是 ( )A .1-2iB .-1-2iC .2-2iD .-2-2i 7.已知)tan(,cos )sin(),2(53sin βααβαπβπβ+=+<<=则等于 ( )A .-2B .2C .1D .258 8.点P 是椭圆6410022y x +=1上一点,F 1、F 2为椭圆的两个焦点,若∠F 1PF 2=30°,则△PF 1F 2有面积为( )A .64B .3364C .64(2+3)D .64(2-3)9.已知△ABC 中,S ABC 与则,5||,3||,415,0,,===<⋅==∆的夹角是( )A .30°B .-150°C .150°D .120° 10.已知αααπα22sincos33)(),2,0(+=∈M 则的最小值为( )A .3B .23C .4D .不存在11.某公司新招聘进8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部分,另外三名电脑编程人员也不能分在同一个部门,则不同的分配方案共有 ( ) A .36种 B .38种 C .108种 D .24种 12.若f(x)=2ax 2+bx+c(a>0,x ∈R),f(-1)=0,则“b<-2a ”是“f(2)<0”的 ( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件第Ⅱ卷(非选择题)二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上)13.某校对全校男女学生共1200名进行健康调查,选用分层抽样取一个容量为200的样本,已知男生比女生多抽了10人,则该校男生人数为 人. 14.(1-x+x 2)(1+x)6展开式中x 3项的系数是 . 15.表面积为S 的正八面体的各项点均在体积为π32的球面上,则S 的值为 . 16.已知实数x 、y 满足约速条件:y x z N y x y x x x y +=⎪⎪⎩⎪⎪⎨⎧∈≥+-≤≤+且,,012,4,3的最大值为12,则k 的取值范围是 .三、解答题(本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知M (1+cos2x ,1)N (1,3sin2x +a )(x ∈R ,a ∈R ,a 是常数),且y=OM ⋅(O 为坐标原点). (Ⅰ)求y 关于x 的函数关系式y=f (x )(Ⅱ)若x ∈[0,2π]时,f (x )的最大值为4,求a 的值,并说明此时f (x )的图象可由 )6sin(2π+=x y 的图像经过怎样的变换而得到.18.(本小题满分12分)在长方形ABCD —A 1B 1C 1D 1中,AA 1=1,AD=DC=3. (Ⅰ)求直线A 1C 与D 1C 1所成角的大小;(Ⅱ)在线段A 1C 1上有一点Q 使平面QDC 与平面A 1DC所成的角为30°,求C 1Q 的长.19.(本小题满分12分)某人参加一项专业技能考试,最多有5次参加考试机会,每次考试及格的概率均为32,每次考试的成绩互不影响,当有两次考试及格,考试就能通过.(以后有考试机会也不能参加)(Ⅰ)求某人通过专业技能考试的概率;(Ⅱ)如果考试通过或已参加5次考试则不再参加考试.设某人参加考试次数为ξ,求ξ的分布列及数学期望.20.(本小题满分12分)已知函数f(x)=ln(e x +1)-ax(a>0).(Ⅰ)若函数y=f(x)的导函数是奇函数,求a 的值;(Ⅱ)求函数y=f(x)的单调区间. 21.(本小题满分12分)设P 是双曲线16422=-y x 右支上任一点. (Ⅰ)过点P 分别作两渐近线的垂线,垂足分别为E 、F ,求||||⋅的值; (Ⅱ)过点P 的直线与两渐近线分别交于A 、B 两点,△ABO 的面积为9,且PB AP λ= (λ>0),求λ的值.22.(本小题满分14分)已知函数f (x )满足ax ·f (x )=b +f (x ),(ab ≠0),f (1)=2,并且使f (x )=2x 成立的实数x 有且只有一个.(Ⅰ)求f (x )的解析式;(Ⅱ)若数列{a n }前n 项和为S n ,a n 满足n a f S n a n n =-≥=)(2,2,231时当,求数列{a n } 的通项公式;(Ⅲ)当n ∈N *,且n ≥3时,在(II )的条件下,令求证:.1341122110+->+++++--n d C d C d C d C C n n n n n n n n n参考答案一、选择题1—5AADDC 6—10BADCB 11—12AB二、填空题:13.63014.1115.23 16. )14,12[三、解答题:17.解:(1)a x x y +++=⋅=2sin 32cos 1∴f (x )=cos2x +3sin2x +1+a .………………………………………………(5分) (2)a x x f +++=1)62sin(2)(π]2,0[6,262ππππ∈==+∴x x 即时,f (x )取最大值3+a ,由3+a =4,得a =1∴f (x )=2sin(2x +6π)+2……………………………………………………(10分) ∴将y=2sin(x +6π)图像上每一点的横坐标缩短到原来的21,纵坐标保持不变,再向上平移2个单位长度可得y=2sin(2x +6π)+2的图像…………………………(12分)18.解法一:(I )建立空间直角坐标系,如图所示,则D (0,0,0)D 1(0,0,1),A 1(3,0,1), C (0,3,0),C 1(0,3,1)..721373,cos ).0,3,0(),1,3,3(111111111111=⋅=>=<∴=--=∴C D A C D C A ∴直线A 1C 与D 1C 1所成的角为arccos721.……………………6′(II )设Q (x 0,y 0,z 0)∵点Q 在直线A 1C 1上,).1),1(3,3(.1),1(3,3)0,3,3()1,3,(000000111λλλλλλ-∴=-==⇒-=--⇔=∴Q z y x z y x A C C设平面QDC 与平面A 1DC 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).……3′由⎪⎩⎪⎨⎧=-⋅=⋅⇒⎪⎩⎪⎨⎧=⋅=⋅0)1),1(3,3(),,(,0)0,3,0(),,(,0,011111111λλz y x z y x DQ n n 01).3,0,1(,1.03,00)1,0,3(),,(,0)0,3,0(),,(0,08).3,0,1(,1.03,02222222222212211111'-==⎩⎨⎧=+=⇒⎪⎩⎪⎨⎧=⋅=⋅⇒⎪⎩⎪⎨⎧=⋅=⋅'-==⎩⎨⎧=+=⇒ n x z x y z y x z y x DA n n n x z x y 则令由则令λλ∵二面角Q —DC —A 1为30°,21.36||31||||11.3123|31231|23|,cos |11111221'==='⇒⇒=++⇒=><∴ A C A C Q C n n λλλλ故 解法二:(I )∵A 1B 1 //D 1C 1,∴∠B 1A 1C 为异面直线A 1与D 1C 1所成的角……2′ 连B 1C ,在Rt △A 1B 1C 中,A 1B 1=3,B 1C=2,)772sin 721(cos .33232tan 111111111=∠=∠===∠∴C A B C A B B A C B C A B 或∴异面直线A 1C 与D 1C 1所成的角为arctan332.……………………6′ (II )在平面A 1C 1内过点Q 作EF//A 1B 1, ∴EF//CD ,连FC 、ED.∵B 1C ⊥DC ,FC ⊥DC ,∴∠B 1CF 为二面角A 1—DC —Q 的平面角.…………………………9′ ∴∠B 1CF=30°.又B 1C 1=3,CC 1=1, ∴tan 311111==∠CC C B CC B , ∴∠B 1CC 1=60°,∴CF 为∠B 1CC 1的角平分线,∴∠FCC 1=30°,3631.3330tan 11111111111==⇒===∴A C Q C B C F C A C Q C CC FC 又19.解:(1)记“考试通过”为事件A ,其对立事件为A ,则5415)31()31(32)(+⨯⨯=C A P∴243232])35()31(32[1)(5415=+⨯⋅-=C A P …………………………(6分) (2)考试次数ξ的可能取值为2,3,4,524327)31()32()31(32)31(32)5(27432)31(32)4(278323132)3(94)32()2(5415314213122=+⨯+⨯⨯⨯===⨯⨯⨯===⨯⨯⨯=====C C P C P C P P ξξξξ……………………………………(11分) 24371124327527442783942=⨯+⨯+⨯+⨯=ξE ……………………(12分) 21.解:(1)由已知得a e e x f xx-+='1)(………………………………(2分) ∵函数y=f (x )的导函数是奇函数,.21),()(='-=-'∴a x f x f 解得……………………………………(4分)(2)由(1)a e a e e x f x xx -+-=-+='1111)( 当a ≥1时,f ′(x )<0恒成立.∴当a ≥1时,函数y= f (x )在R 上单调递减…………………………(7分) 当0<a <1时,解f ′(x )>0得(1-a )(e x +1)>1,………………12′即aax a e x->-+->1ln,111 当),1(ln )(,10+∞-=<<aax f y a 在时内单调递增 在)1ln,(aa--∞内单调递减……………………………………(11分) ∴当a ≥1时,函数y=f (x )在R 上单调递减 当0<a <1时,y=f (x )在(aa-1ln ,+∞)内单调递增 在)1ln,(aa--∞内单调递减……………………………………(12分) 21.(I )设.1641164),,(2020202000=-⇒=-y x y x y x P 则∵两渐近线方程为2x ±y=0,……………………………………(2分) 由点到直线的距离公式得)5(.5165|4|||||5|2|||,5|2|||20200000分 =-=⋅∴+=-=y x y x PF y x PE(II )如图,设渐近线y=2x 的倾斜角为θ则542sin sin ,532cos 2tan ==∠-=⇒=θθθAOB ,……(7分)设A (x 1,2x 1),B (x 2,-2x 2), ∵0,>=λλ∴P 为有向线段AB 的内分点, ∴x 1>0,x 2>0. ∴,5||,5||21x OB x OA ==)9(.29,922sin ||||212121分 =∴===∴∆x x x x OB OA S ABO θ 又)12,1(,2121λλλλλ+-++=x x x x p 得,代入双曲线方程化简得:.212,)1(29)1(2221或解得即=+=+=λλλλλx x故21=λ或2.……………………………………………………(12分) 22.解:(1)由f(1)=2得2a=b+2 ①由f(x)=2x ,得ax ·2x=b+2x ,即2ax 2-2x -b=0只有一个x 满足f(x)=2x ,又a ·b ≠0, 则a ≠0 ∴△=4+8ab=0 ②由①②解得 a=1,21-=b ………………………………(2分) )4()2(22)(2012,1)()12(分则 ≠-=∴≠⇒≠--=-∴x xx f x xx f x(2)当n ≥2时,2222+=+∴=--n a S n a S n n nn∵当23212323,1111=⇒+=+=+=a a S n 时…………(6分) ∴当n ≥2(n ∈N*)时,S n +a n =n+2,则S n -1+a n -1=n+1两式相减得:2a n -a n -1=1(n ≥2)∴2(a n -1)=a n -1-1,即a n -1=21(a n -1-1) (n ≥2) ∴数列{a n -1}是以21为首项,以21为公式的等比数列.n n n n a a 211)21(2111+=∴=-∴-……………………(9分)(3)1)21(log )1211(log 121121+==-+=++n d n n n)14(1341341)1(2112)12(2)(2222,3112])[(11111)11(112)1()1()1()1()1(11]12)2)(1()[1()1()2)(1(111221101101101111101112111112211011分时当分 +->++++∴+-=++>+-∴+>+++=⋅=≥+-=-++++=++++++=+++∴+=⋅-++--+⋅+=⋅--++---=+=∴--++++++++++++--++n d C d C d C d C C n n n n n C C C n n c c c c n n C n C n C d C d C d C C n C K k k k n n n n n k k k k k n n n n k C d C n n n n n n n n n n nn n n n n n n n n n n n n n n n n n n n nk n k n k k n。
惠州市2020届高三第三次调研考试 理科数学 参考答案
初高中数学学习资料的店第 1 页,共 11 页 初高中数学学习资料的店惠州市2020届高三第三次调研考试 理科数学参考答案及评分细则一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DBDACADDADBC1.【解析】{21}{0}x A x x x =<=<,{0}U C A x x =≥,故选D.2.【解析】21313i i 2222z =+=-+(),所以对应的点在第二象限,故选B.3.【解析】20201log πa =2020log 10<=,20201πb ⎛⎫= ⎪⎝⎭()01∈,,1π2020c =1>,所以a b c <<.故选D.4.【解析】因为角θ终边落在直线3y x =上,所以tan 3θ=,21cos 10θ=, 所以3sin(2)2πθ-24cos 2(2cos 1).5θθ=-=--=故选A. 5.【解析】如图所示,MP →=AP →-AM →=12AD →-45AC →=12AD →-45(AB →+AD →)=12b r -45(a r +b r )=-45a r -310b r.故选C. 6.【解析】依题意,知-4a =-12a ,且-52a ≠12,解得a =±2.故选A.7.【解析】1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-L L2221n n a a a ++=-=-,所以201920211S a =-,故选D.8.【解析】11332815.14C C P C +==故选D. 9.【解析】()21sin 1xf x x e⎛⎫=- ⎪+⎝⎭1sin 1x x e x e ⎛⎫-= ⎪+⎝⎭是偶函数,排除C 、D ,又(1)0,f >Q 故选A. 10.【解析】如图:α//面CB 1D 1,α∩面ABCD =m ,α∩面ABA 1B 1=n ,可知n//CD 1,m//B 1D 1,因为△CB 1D 1是正三角形,m n 、所成角为60°. 则m 、n 所成角的正弦值为√32.故选D .z。
2020届高三第三次调研考试 理科数学 试题正式版
惠州市2020届高三第三次调研考试 理科数学 2020.1全卷满分150分,时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.作答选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。
3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.已知全集U R =,{}|21x A x =<,则U A =ð( ).2.设i 为虚数单位,复数212z ⎛⎫=+ ⎪ ⎪⎝⎭,则z 在复平面内对应的点在第( )象限.A .一B .二C .三D .四 3.已知20201log πa =,20201πb ⎛⎫= ⎪⎝⎭,1π2020c =,则( ).A .c a b <<B .a c b <<C .b a c <<D .a b c <<4.在直角坐标系xOy 中,已知角θ 的顶点与原点O 重合,始边与x 轴的非负半轴重合, 终边落在直线3y x =上,则3sin(2)2πθ-= ( ). A .45 B .45- C .35- D .125.在平行四边形ABCD 中,AB a =u u u r r ,AD b =u u u r r ,4AM MC =u u u u r u u u u r,P 为AD 的中点, 则MP u u u r= ( ).A .43510a b +r rB .4354a b +r rC .43510a b --r rD .1344a b --r r6.设a R ∈,则“2a =”是“直线1:250l x ay +-=与直线2:420l ax y ++=平行”的 ( ) 条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要 7.数列{}n a :1,1,2,3,5,8,13,21,34,……,称为斐波那契数列,它是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。
2020届福州市高中毕业班第三次质量检查(理科数学)含答案解析
A.1
B.2
C.3
D.4
数学试题(第 1 页 共 6 页)
4. 某种疾病的患病率为 0.5%,已知在患该种疾病的条件下血检呈阳性的概率为 99%,则
患该种疾病且血检呈阳性的概率为
A.0.495%
B.0.940 5%
C.0.999 5%
D.0.99%
5. 函数 f x ex x2 2x 的图象大致为
.
三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要 求作答.
(一)必考题:共 60 分. 17. (本小题满分 12 分)
已知数列 an 和bn 的前 n 项和分别为 Sn , Tn , a1 2 , b1 1,且 an1 a1 2Tn .
成角的余弦值为
.
15. 在 △ABC 中,内角 A, B,C 的对边分别为 a,b, c ,若 2sin2 A cos B 1 ,则 c 的取值 ba
范围为
.
16. 已知梯形 ABCD 满足 AB ∥CD,BAD 45 ,以 A, D 为焦点的双曲线 经过 B,C 两
点.若 CD 7 AB ,则 的离心率为
用 0.5 毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中的横线上.
13. 已知向量 AB 1, 2 , CB 2,5 , MN t,1 .若 AC ∥ MN ,则实数 t
.
14. 正方体 ABCD A1B1C1D1 中, P 为 BC1 中点, Q 为 A1D 中点,则异面直线 DP 与 C1Q 所
2020年陕西西安高三三模数学试卷(理科)
. ①, ,
.
, .
12. C
解析:
方程
,由图( )可知 有三个不同值
,
,
,而且 , ,
,由图( )知
是减函数,所以有三个解.
故选 .
13.
解析:
设甲胜的概率为 ,乙胜的概率为 ,和棋的概率为 ,则
得
,又
,所以
, .
,两式相加
14.
9
解析:
在等差数列
中,设公差为 ,
由
,可得
,
即
,
即
,
所以
.
15. 解析: 由题得
,
( 为参数,
).
(2) .
解析:
( 1 )曲线 的极坐标方程为
所以
,
∴曲线 的直角坐标方程为
直线 的参数方程为
,
, ( 为参数,
).
( 2 )把直线 的参数方程带入
得
,
设此方程两根为 , ,
∵定点 在圆 外且在直线 上,
所以
,
∴
,
∴
,
,
可得
,
∴
,所以直线 的斜率为 .
23.( 1 )证明见解析.
(2)
A. B. C. D.
10. 已知函数 A. B. C. D.
11. 已知 是双曲线 : 的面积为( ).
A. B. C. D.
图象的一条对称轴是
,则 的值为( ).
的一个焦点,点 在 上, 为坐标原点,若
,则
3
12. 定义域和值域均为
(常数
)的函数
和
的图象如图所示,则方程
解的个数为( ).
乌鲁木齐地区2020年高三理科数学第三次质量监测含答案
21.已知函数 f x ax2 x 2a e x , g x b ln x 1 .
(Ⅰ)当 a 0 时,求 f x 的单调区间;
(Ⅱ)当 a 0 时, f x g x 在 x 0, 上恒成立,求实数 b 的取值范围.
选考题:共 10 分,请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一 题计分.作答时用 2B 铅笔在答题卡上把所选题目的题号涂黑.
乌鲁木齐地区 2020 年高三年级第三次质量监测
理科数学(问卷)
(卷面分值:150 分;考试时间:120 分钟)
注意事项: 1.本试卷分为问卷(4 页)和答卷(4 页),答案务必书写在答卷(或答题卡)的指定
位置上. 2.答题前,先将答卷密封线内的项目(或答题卡中的相关信息)填写清楚.
第 I 卷(选择题 共 60 分)
23.设 a,b 均为正数,且 a2 b2 2 ,证明:
(Ⅰ) a b a3 b3 4 ;
(Ⅱ) a b 2 .
乌鲁木齐地区 2020 年高三年级第三次质量监测 数学理科试卷(问卷) 第 4页 (共 4 页)
乌鲁木齐地区 2020 年高三年级第三次质量监测
理科数学(答案)
一、选择题:每小题 5 分. 1~5. ADCBD 6~10. ADABB 二、填空题:每小题 5 分.
1 小时
15
10
25
1 小时
5
15
20
合计
20
25
45
∵ K 2 451515 5102 441 5.5125 6.635 ,
20 25 25 20 80 ∴没有 99% 的把握认为“高三学生的这次摸底成绩与其在线学习时长有关”;
…6 分
(Ⅱ)从上述 2 2 列联表中可以看出,这次数学成绩超过120 分的学生中每天在线学习时长超
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx 届高三年级理科数学第三次质量检测试卷本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷为1—8题,共40分,第II 卷为9—21题,共110分。
全卷共计150分。
考试用时120分钟.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合要求的.1.已知集合A={}4,3,2,1,那么A 的真子集的个数是( ) A .3 B .16 C .15 D .42.已知向量)3,(),2,4(x b a ==向量,且a ∥b ,则x = ( )A .9B .6C .5D .13.函数12sin cos y x x=++的最大值是 ( )A .21- B .21+ C .21-D . 21-- 4. 若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( ) A .32 B .1 C .-1 D .-325.若函数ln y x ax =-的减区间为(1,0)-,则a 的值是 ( )A.01a <<B.01<<-aC. 1a =-D. 1a = 6. 在ABC ∆中,“A>B ”是“sin sin A B >”成立的 ( )A .充要条件B .2充分部必要条件C .必要不充分条件D .既不充分也不必要条件7.设等比数列{}n a 的公比为q ,前n 项和为s n ,若s n+1,s n ,s n +2成等差数列,则公比q 为 ( )A .2-=qB .1=qC.12=-=q q 或D .12-==q q 或8.已知函数()d cx bx ax x f +++=23的图象如右图,则 ( )A . ()0,∞-∈bB .()1,0∈bC .()2,1∈bD .()+∞∈,2b二、填空题:本大题共7小题,每小题5分,满分30分.其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前两题得分.9.计算2111333324()3a b a b ---÷-= (其中0,0a b >>) ;10.曲线sin y x =在点(32π)处的切线方程为 ;11.从10名女生和5名男生中选出6名组成课外学习小组,如果按性别比例分层抽样,则组成此课外学习小组的概率是 ;12.在的面积则中,若ABC BC AB A ABC ∆===∠∆,7,5,1200= ;13.(坐标系与参数方程选做题)以极坐标系中的点 1 , 6π⎛⎫ ⎪⎝⎭为圆心,1为半径的圆的方程是 ;14.(不等式选讲选做题)不等式|4||3|2x x -+-<的解集是 ;15.(几何证明选讲选做题),,,D EF AD C O EF O AB 于于切圆的直径是圆⊥2,6,AD AB ==则AC 长为_______.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在△ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,已知11tan ,tan 23A B ==,且最长边的边长为l.求:(I )角C 的大小;(II )△ABC 最短边的长.17. (本小题满分12分)在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一巨大汽油罐.已知只有5发子弹备用,且首次命中只能使汽油流出,再次命中才能引爆成功,每次射击命中率都是32.,每次命中与否互相独立. (Ⅰ) 求油罐被引爆的概率.(Ⅱ) 如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及ξ的数学期望;18. (本小题满分14分)BAOFCED 第15题设S n 是正项数列}{n a 的前n 项和,且4321412-+=n n n a a S , (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)n n n nn b a b a b a T b +++==Λ2211,2求已知的值19. (本小题满分14分)据调查,某地区100万从事传统农业的农民,人均收入3000元,为了增加农民的收入,当地政府积极引进资本,建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作,据估计,如果有x (x >0)万人进企业工作,那么剩下从事传统农业的农民的人均收入有望提高2x %,而进入企业工作的农民的人均收入为3000a 元(a >0)。
(I )在建立加工企业后,要使从事传统农业的农民的年总收入不低于加工企业建立前的农民的年总收入,试求x 的取值范围;(II )在(I )的条件下,当地政府应该如何引导农民(即x 多大时),能使这100万农民的人均年收入达到最大。
20.(本小题满分14分)设21,x x 是函数322()(0)32a b f x x x a x a =+->的两个极值点,且2||||21=+x x (Ⅰ)求a 的取值范围;(Ⅱ)求证:43||b ≤. 21.(本小题满分14分)已知二次函数t t t t y l c bx ax x f .20(8:,)(212≤≤+-=++=其中直线为常数);2:2=x l .若直线l 1、l 2与函数f (x )的图象以及l 1,y 轴与函数f (x )的图象所围成的封闭图形如阴影所示. (Ⅰ)求a 、b 、c 的值(Ⅱ)求阴影面积S 关于t 的函数S (t )的解析式;(Ⅲ)若,ln 6)(m x x g +=问是否存在实数m ,使得y=f (x )的图象与y=g (x )的图象有且只有两个不同的交点?若存在,求出m 的值;若不存在,说明理由.参考答案一.选择题:CBBA CAAA二.填空题:9、6a -; 10、203x y π-=; 11、43105615C C C ⋅60143=;12、4315; 13、2cos 6πρθ⎛⎫=- ⎪⎝⎭; 14、59{}64x x <<; 15、三.解答题:16.解:(I )tanC =tan[π-(A +B )]=-tan (A +B )11tan tan 231111tan tan 123A B A B ++=-=-=---⨯ ∵0C π<<, ∴34C π=……………………5分 (II )∵0<tanB<tanA ,∴A 、B 均为锐角, 则B<A ,又C 为钝角,∴最短边为b ,最长边长为c ……………………7分由1tan 3B =,解得sin B = ……………………9分由sin sin b c B C =,∴1sin sin c B b C ⋅=== ………………12分 17.解:(I )“油罐被引爆”的事件为事件A ,其对立事件为A ,则P (A )=C 5415313132⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛…………4分 ∴P (A )=1-2432323131325415=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛•C答:油罐被引爆的概率为232243…………6分(II )射击次数ξ的可能取值为2,3,4,5, …………7分P (ξ=2)=94322=⎪⎭⎫⎝⎛, P(ξ=3)=C 27832313212=... ,P(ξ=4)=C 274323132213=⎪⎭⎫ ⎝⎛.., P(ξ=5)=C 913131324314=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛. …………10分故ξ的分布列为:E ξ=2×94+3×278+4×274+5×91=2779 …………12分 18.解(Ⅰ)当n = 1时,21111113,424a s a a ==+-解出a 1 = 3 , …………1分 又4s n = a n 2 + 2a n -3 ①当2n ≥时 4s n -1 = 21-n a + 2a n-1-3②①-② 221142()n n n n n a a a a a --=-+-, 即0)(21212=+----n n n n a a a a …………3分∴)2)((11=--+--n n n n a a a a ,2011=-∴>+--n n n n a a a a Θ(2≥n )…………5分}{n a 数列∴是以3为首项,2为公差的等差数列12)1(23+=-+=∴n n a n …………7分(Ⅱ)123252(21)2n n T n =⨯+⨯+++⋅L③又23123252(21)2(21)2n n n T n n +=⨯+⨯+-⋅++L④ …………9 分④-③ 13212)12()222(223++++++-⨯-=n n n n T Λ …………11分112)12(2286++⋅++⨯-+-=n n n …………13分 22)12(1+-=+n n …………14分19. 解:(I )由题意得(100-x )·3000·(1+2x%)≥100×3000,即x 2-50x ≤0,解得0≤x≤50, ……………………4分 又∵x >0 ∴0<x≤50; ……………………6分 (II )设这100万农民的人均年收入为y 元,则y= (100-x )×3000×(1+2x %)+3000ax 100 = -60x 2+3000(a +1)x +300000100=-35[x -25(a +1)]2+3000+475(a +1)2 (0<x ≤50) ………………9分(i )当0<25(a +1)≤50,即0<a ≤1,当x=25(a +1)时,y 最大; ………………11分(ii )当25(a +1)>50,即a >1,函数y 在(0,50]单调递增,∴当x=50时,y 取最大值。
…………13分答:在0<a ≤1时,安排25(a +1)万人进入企业工作,在a >1时安排50万人进入企业工作,才能使这100万人的人均年收入最大 ………………14分20.解证:(I )易得22')(a bx ax x f -+=…………………………………………1分)(,21x f x x 是Θ的两个极值点,0)(,'21=∴x f x x 是的两个实根,又a >0abx x a x x -=+<-=2121,0……………………………………………………3分∴1212||||||x x x x +=-==∵2||||21=+x x , )1(44444232222a a a a b a ab -=-==+∴,即1002≤<∴≥a b Θ ……………………………………………7分(Ⅱ)设,44)(322a a a gb -==则)32(4128)(2'a a a a a g -=-= 由''22()0,0,()0133g a a g a a ><<<<≤得由得 ………………10分 ∴()g a 在2(0,)3上单调递增;在2(,1)3上单调递减………………12 分∴23x =时,()g a 取得极大值也是最大值 max 216[()]()327g a g ∴==,b ∴………………………………………14分 22.(本小题满分14分)解:(I )由图形可知二次函数的图象过点(0,0),(8,0),并且f(x)的最大值为16则220188080416,4c a a b c b c ac b a⎧⎪==-⎧⎪⎪⋅+⋅+==⎨⎨=⎪-⎪⎩=⎪⎩解之得:, ∴函数f (x )的解析式为x x x f 8)(2+-=…………………………4分(Ⅱ)由⎪⎩⎪⎨⎧+-=+-=xx y t t y 8822得,8,,0)8(8212t x t x t t x x -==∴=--- ∵0≤t ≤2,∴直线l 1与f (x )的图象的交点坐标为()8,2t t t +-…………………………6分由定积分的几何意义知:222220()[(8)(8)][(8)(8]ttS t t t x x dx x x t t dx =-+--++-+--+⎰⎰23322220[(8)(4)][(4)(8)]33ttx x t t x x x t t x =-+--++-+--+⋅32440101633t t t =-+-+………………………………9分 (Ⅲ)令.ln 68)()()(2m x x x x f x g x ++-=-=ϕ因为x >0,要使函数f (x )与函数g (x )有且仅有2个不同的交点,则函数m x x x x ++-=ln 68)(2ϕ的图象与x 轴的正半轴有且只有两个不同的交点)0()3)(1(2682682)(2'>--=+-=+-=∴x xx x x x x x x x ϕ∴x=1或x=3时,0)('=x ϕ当x ∈(0,1)时,)(,0)('x x ϕϕ>是增函数; 当x ∈(1,3)时,)(,0)('x x ϕϕ<是减函数 当x ∈(3,+∞)时,)(,0)('x x ϕϕ>是增函数∴;7)1()(-=m x ϕϕ极大值为153ln 6)3()(-+=m x ϕϕ极小值为……………12分 又因为当x →0时,-∞→)(x ϕ;当+∞→+∞→)(x x ϕ时, 所以要使0)(=x ϕ有且仅有两个不同的正根,必须且只须⎩⎨⎧>=⎩⎨⎧<=0)1(0)3(0)3(0)1('ϕϕϕϕ或 即⎩⎨⎧>-=-+⎩⎨⎧<-+=-070153ln 60153ln 607m m m m 或, ∴m=7或.3ln 615-=m ∴当m=7或.3ln 615-=m 时,函数f (x )与g (x )的图象有且只有两个不同交点。