小升初数学必考题型——组合图形的面积专项练习(可直接打印)带答案

合集下载

小升初圆与组合图形面积专题(含解析)

小升初圆与组合图形面积专题(含解析)

小学数学圆与组合图形面积专题1.如图所示,大正方形与小正方形的面积之差为50平方厘米,阴影部分的面积是( )平方厘米.A .33.5πB .37.5πC .40πD .47.5π2.如图中,三角形ABC 是等腰直角三角形,图中阴影部分和空白部分的面积相比较,( )A .阴影部分的面积大B .空白部分的面积大C .面积一样大D .无法判断 3.计算如图阴影部分面积,正确的列式是( )A .266 3.14() 3.142⨯-⨯ B .22166 3.14() 3.1422⨯⨯-⨯ C .2216[6 3.14() 3.14]22⨯⨯-⨯ D .1(62 3.146 3.14)2⨯⨯⨯-⨯ 4.下面是两张同样大小的正方形纸,分别剪出不同规格的圆片,剩下的面积( )A .第一张纸剩下的面积大B .第二张纸剩下的面积大C .两张纸剩下的面积一样大5.如图,长方形ABCD 的面积是26m ,圆的面积是 2m6.如图两个圆的半径都是4厘米,涂色部分的面积之和是 平方厘米.7.长方形里有两个圆(如图),阴影部分的面积是27cm ,那么一个圆的面积是 平方厘米.8.如图,这个图形的周长是 厘米.9.如图阴影部分的面积是25cm ,环形的面积是 2cm .三.计算题(共7小题)10.如图中正方形的边长为4cm ,求阴影部分的面积.11.求如图阴影部分的面积.(单位:厘米)12.计算如图图形中阴影部分的面积.13.求如图阴影部分的面积.14.求图中阴影部分面积.15.如图中,已知圆的周长是25.12厘米,圆的面积与长方形的面积相等,图中阴影部分的面积是多少平方厘米?cm16.求阴影部分的面积.(单位:)17.求如图阴影部分的面积和周长.面积:.周长:.18.如图,三角形ABC是等腰直角三角形,8C∠=︒,求:==,45AB AC cm(1)弧AD的长度;(2)图中阴影部分的面积.19.如图,三角形ABC是等腰直角三角形,D是圆周的中点,BC是半圆的直径,已知==厘米,求阴影部分的面积.AB BC1020.如图,ABCD是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求小路的面积.21.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为多少平方厘米?22.如图所示的多边形是由一个三角形和三个长方形组成的.已知三个长方形的面积分别是12平方厘米、4平方厘米和6平方厘米.三角形面积是多少平方厘米?23.公园里有一块长方形的草坪,为方便游客,在草坪中间开辟了两条小路(如图).现在m草坪的面积是多少?(单位:)24.如图,已知大圆半径为6cm,四个小圆的面积相等.阴影部分面积是多少平方厘米?(分合割补法)25.一个容积为550mL的水瓶,里面装了一些水,正放时,水面高20cm,倒放时,空气高7.5cm.求水有多少升?26.如图是直角三角形中有一个内接正方形,求图中阴影部分的面积.单位:厘米.提示:分拆图形时常用“分割、填补、组合、旋转”等方法.27.如图四边形ABCD中,角DAB和角DCB都是直角,边CD和边BC的长度相等,从点C 到边AB的垂线CE长为10厘米,求四边形ABCD的面积.28.图形计算(1)求下图阴影部分的周长和面积.(单位:厘米)(2)三条边长分别是6厘米、8厘米、10厘米的直角三角形.将它的最短边对折到斜边相重合,(如图)图中阴影部分面积是 平方厘米.29.如图,1S 的面积比2S 的面积大多少?30.图中正方形的边长是10厘米,三角形甲的面积比三角形乙的面积少20平方厘米,求线段AB 的长.。

小升初数学——组合图形的面积

小升初数学——组合图形的面积

如图,ABCD是一个矩形,其中有三块面积分别为11.如图,小正方形ABCD的边长为4厘米,大正方形CEFG的边长为8厘米,则图中阴影部分的面积是平方厘米.12.如图,圆内接一个边长为a的正方形ABCD,分别以正方形各边为直径向正方形外作半圆,则四个半圆与正方形外接圆的四条弧围成的四个新月形的面积为 .计算题 (共1小题,共 分)13.平行四边形ABCD的边BC长10厘米,直角三角形的直角边EC长8厘米.已知阴影部分的面积比三角形EGF的面积大9平方厘米.求CF的长.解答题 (共31小题,共 分)14.如图所示,AB是半圆的直径,O是圆心,AC=CD=DB,M是CD的中点,H是弦CD的中点,若N是OB上的一点,半圆面积等于12平方厘米,则图中阴影部分的面积是多少?15.在等腰梯形ABCD中,延长BC到E点,已知线段AC与BD互相垂直,AC与DE互相平行,AD=CE,AD+BC=10厘米,求三角形BDE的面积.16.一个梯形上底是5厘米,下底是8.2厘米,高是4.5厘米,如果在这个梯形中剪去一个最大的三角形,剩下的面积是多少平方厘米?17.图中正方形的边长是8厘米,三角形甲的面积比三角形乙的面积少8平方厘米,求CE的长是多少厘米?18.如图,长方形中阴影A的面积占长方形面积的3,阴影B的面积是8平方厘米,长方10形的面积是多少平方厘米?19.有一个正六边形.把六边的中点连起(如图),可得一个较小的正六边形.求小六边形的面积与大六边形面积之比.答案以最简分数表示.20.下面是两位同学的争论.A:“这道题不好算,给的条件也太少了!”B:“为什么你要这么说?”A:“你看,题中只告诉我们AB的长度等于12,却要求出阴影部分的面积!事实上我连这两个半圆的直径各是多少都不知道呢.”B:“不过AB可是小半圆的切线,而且它和大半圆的直径也是平行的呀!”A:“那也不顶用,我看一定是出题人把什么条件给遗漏啦!”请问,真是A说的这么回事吗?如果不是,你能求出阴影部分的面积吗?21.已知四边形ABCD是长方形,四边形ABFC是梯形,求阴影部分的面积.(单位:厘米)22.如图,是学校一个正方形花圃的设计图,图中阴影部分是花圃,空白部分是草坪,求花圃的面积是多少平方米?23.如图三角形ABC为直角三角形,中间正方形DEFB,斜边AE为6cm,CE为10cm,求阴影部分的面积.24.长方形ABCD中,AD=24厘米,AB=18厘米,图中阴影部分面积和是256平方厘米,则四边形GFEO的面积是多少?25.如图是一个面积为42平方厘米的三角形折叠后所形成的图形,如果图中,那么四边形ABCD的面积是阴影部分的面积是原来三角形面积的37平方厘米.26.求图中阴影部分的面积(π=3.14)27.求阴影部分的面积.(单位:厘米)28.如图中半圆的直径是6厘米,点O是半圆的圆心,A、B和它们之间的各点,把半圆的曲线部分等分成6份,求阴影部分的面积是多少?29.面积的计算:求图中阴影部分的面积.(π取3.14).30.如图,一只羊被4米长的绳子拴在长为3米,宽为2米的长方形水泥台的一个顶点上,水泥台的周围都是草地,问这头羊能吃到草的草地面积是多少?(结果精确到0.01平方米)31.求图中阴影部分的周长和面积.32.在长方形ABCD中,AD=15厘米,AB=8厘米,四边形EFGO的面积是9平方厘米,阴影部分的面积是多少平方厘米?33.如图中,大正方形的边长为6厘米,已知a:b=1:2.求阴影部分小正方形的面积.34.用若干块面积都是18平方厘米的长方形拼成一个大正方形(如图),那么阴影部分的面积是多少?35.在长方形ABCD中,AB=8,BC=15,E是CD的中点,F是BC的中点,连接BD,AE,AF把图形分成六块,求阴影部分的面积和是多少?36.某公司的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分,△BOC、△COD、△AOD的面积分别是5、2、1平方千米,公园陆地面积是8.11平方千米,求人工湖(阴影部分)面积.37.如图,长方形ABCD线点C顺时针旋转90°,求AD边扫过部分(阴影部分)的面积,(单位:厘米,II取3.14)38.如图,两个四分之一圆弧的半径分别是4和8,求两个阴影部分的面积之差.39.求各图形中阴影部分的面积.(单位:厘米)40.如图,正方形ABCD面积为1,E、F分别为AB、AD边中点,那么图中阴影四边形IGCH的面积是多少?41.如图所示,直角三角形ABC的斜边AB长为10厘米,∠ABC=60°,此时BC长5厘米.以B点位中心,将△ABC顺时针旋转120°,点A、C分别到达点E、D的位置.求图中阴影部分的面积.42.如图,每个圆的半径都是2厘米,三个圆的圆心正好是三角形的三个顶点.涂色部分的面积之和是多少?43.如图,两个相同的直角三角形部分重叠在一起,求阴影部分的面积.(单位:厘米)44.。

小升初真题专练组合图形的面积小学数学六年级下册人教版(含答案)

小升初真题专练组合图形的面积小学数学六年级下册人教版(含答案)

小升初真题特训:组合图形的面积-小学数学六年级下册人教版学校:___________姓名:___________班级:___________考号:___________A .(1)号面积最大B .(2)号面积最大二、填空题7.(2020·江苏南通·统考小升初真题)如图,大正方形被分成了4个相同的三角形和一个小正方形。

大正方形的周长为24厘米,已知,则小正方形的面积是( )平方厘米。

8.(2021·全国·小升初真题)(汉阳区)如图,将两个正三角形重叠作出一个星形,在重叠的图形中再作出一个小星形,即阴影部分,已知大星形的面积是40cm 2,那么小星形的面积是_____.9.(2020·北京海淀·小升初真题)如图,已知大正方形的面积是a ,则小正方形的面积是___________。

:2:1a b10.(2020·的面积的面积=的面积=,由此发现,,15.(2020·全国·小升初真题)5平方分米.三、图形计算20.(2022·湖北十堰·统考小升初真题)如图,两个正方形的边长分别是10cm 和4cm ,求阴影部分的面积。

21.(2022·山东临沂·统考小升初真题)求如图阴影部分的面积。

四、解答题22.(2022·湖南长沙·长沙市开福区青竹湖湘一外国语学校校考小升初真题)如图,大小正方形的边长分别是5厘米、3厘米,求三角形DBF 的面积。

23.(2020·江苏常州·校考小升初真题)如下图所示,把三角形DBE 沿线段AC 折叠,得到一个多边形28.(2020春·辽宁·六年级统考小升初模拟)如下图,一张边长为4cm的正方形纸,从相邻两边的中点连一条线段,沿这条线段剪去一个角,剩余部分面积是多少?29.(2021春·江苏·六年级统考小升初模拟)如图,一块长方形绿地中有一条弯曲的小路,准备在小路的两侧铺上草坪.草坪的面积是多少平方米?(单位:米)30.(2020·河北·小升初真题)李大爷家承包了如图所示的一块地,请你帮他计算一下这块地的面积(单位,米)。

(完整版)《组合图形的面积》练习题(含答案)

(完整版)《组合图形的面积》练习题(含答案)

(完整版)《组合图形的面积》练习题(含答
案)
-CAL-FENGHAI.-(YICAI)-Company One1
组合图形的面积
测试题
1、下面的图形是由两个三角形组成的,请画出这两个三角形。

A
B D
C
2、已知平行四边形的面积是48平方分米,求阴影部分的面积。

3dm
8dm
3、求下面个图形的面积、(单位:分米)
(1)(2) 14
8
6 6
12
3 6
12
(3)(4) 8
2.5
5.4 4 1.5
4.2 6
3
4、如图所示,梯形的周长是52厘米,求阴影部分的面积。

16
5、校园里有一块花圃,(如图所示),算出它的面积。

(单位:米)
6 2
2
5
6、大小正方形如图放置,阴影部分为重叠部分,求空白部分面积。

(单位:厘米)
7
7
22
7、有一块土地如图所示,你能用几种方法求出它的面积(
单位:米)
12
15
8
22
7、如图所示,一个平行四边形背分成A、B两被封,A的面积比B的面积打40平方米,A的上底是多少?
B
A
8米
【参考答案】。

【小升初】2020六年级下册数学总复习试题-组合图形的面积专项练 全国版(含答案)

【小升初】2020六年级下册数学总复习试题-组合图形的面积专项练   全国版(含答案)

组合图形的面积一、单选题1.如图中的阴影部分面积是()平方厘米A. 144B. 72C. 18D. 无法确定2.如图中阴影部分的面积是()平方厘米.(单位:厘米)A. 132B. 14.25C. 289D. 28.53.等腰梯形的一内角为45°,高等于上底,下底为9,那么梯形的面积为()。

A. 27B. 18C. 36D. 244.图中阴影部分的面积是()平方厘米.A. 24B. 28C. 325.下面三幅图的阴影部分的面积相比较,( )的面积大。

A. 图(1)大B. 图(2)大C. 图(3)大D. 同样大二、填空题6.求图中阴影部分的面积为________ (结果保留π).7.已知如图中三角形的面积是10平方厘米,图中圆的面积是________平方厘米.组合图形的面积是________平方厘米9.求下列图形的面积是________dm2。

(单位:dm)10.图中正方形的面积是12平方厘米,圆的面积是________平方厘米.11.计算下面图形阴影部分的面积________.(单位:厘米)12.(2015•长沙)如图,两个正方形的边长分别是8厘米和4厘米,则阴影部分的面积是________平方厘米.13.先求右面图形中涂色部分的面积,再求小正方形的面积.涂色面积________平方分米,小正方形面积________平方分米.平行四边形AFEB的面积S=________平方厘米平行四边形CFED的面积S=________平方厘米15.下图表示的是一间房子侧面墙的形状.它的面积是________平方米.16.求下面各图阴影部分的面积(1)________(2)________17.计算下面图形的面积________.(单位:厘米)18.有一条引水渠穿过了一块麦地,这块地的总面积是引水渠占去的面积的________倍?19.把一个长12厘米,宽8厘米的长方形纸片剪下一个最大的正方形,剩下部分的面积是________平方厘米.20.求阴影部分的面积.________平方厘米21.大正方形边长为8厘米,小正方形边长为4厘米,阴影部分的面积是________平方厘米。

小升初圆与组合图形面积专题(含解析)

小升初圆与组合图形面积专题(含解析)

小学数学圆与组合图形面积专题1.如图所示,大正方形与小正方形的面积之差为50平方厘米,阴影部分的面积是( )平方厘米.A .33.5πB .37.5πC .40πD .47.5π2.如图中,三角形ABC 是等腰直角三角形,图中阴影部分和空白部分的面积相比较,()A .阴影部分的面积大B .空白部分的面积大C .面积一样大D .无法判断3.计算如图阴影部分面积,正确的列式是( )A .266 3.14() 3.142⨯-⨯B .22166 3.14() 3.1422⨯⨯-⨯C .2216[6 3.14() 3.14]22⨯⨯-⨯D .1(62 3.146 3.14)2⨯⨯⨯-⨯4.下面是两张同样大小的正方形纸,分别剪出不同规格的圆片,剩下的面积( )A .第一张纸剩下的面积大B .第二张纸剩下的面积大C .两张纸剩下的面积一样大5.如图,长方形ABCD 的面积是26m ,圆的面积是 2m6.如图两个圆的半径都是4厘米,涂色部分的面积之和是 平方厘米.7.长方形里有两个圆(如图),阴影部分的面积是27cm ,那么一个圆的面积是 平方厘米.8.如图,这个图形的周长是 厘米.9.如图阴影部分的面积是25cm ,环形的面积是 2cm .三.计算题(共7小题)10.如图中正方形的边长为4cm ,求阴影部分的面积.11.求如图阴影部分的面积.(单位:厘米)12.计算如图图形中阴影部分的面积.13.求如图阴影部分的面积.14.求图中阴影部分面积.15.如图中,已知圆的周长是25.12厘米,圆的面积与长方形的面积相等,图中阴影部分的面积是多少平方厘米?cm16.求阴影部分的面积.(单位:)17.求如图阴影部分的面积和周长.面积:.周长:.18.如图,三角形ABC是等腰直角三角形,8C∠=︒,求:==,45AB AC cm(1)弧AD的长度;(2)图中阴影部分的面积.19.如图,三角形ABC是等腰直角三角形,D是圆周的中点,BC是半圆的直径,已知==厘米,求阴影部分的面积.AB BC1020.如图,ABCD是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求小路的面积.21.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为多少平方厘米?22.如图所示的多边形是由一个三角形和三个长方形组成的.已知三个长方形的面积分别是12平方厘米、4平方厘米和6平方厘米.三角形面积是多少平方厘米?23.公园里有一块长方形的草坪,为方便游客,在草坪中间开辟了两条小路(如图).现在m草坪的面积是多少?(单位:)24.如图,已知大圆半径为6cm,四个小圆的面积相等.阴影部分面积是多少平方厘米?(分合割补法)25.一个容积为550mL的水瓶,里面装了一些水,正放时,水面高20cm,倒放时,空气高7.5cm.求水有多少升?26.如图是直角三角形中有一个内接正方形,求图中阴影部分的面积.单位:厘米.提示:分拆图形时常用“分割、填补、组合、旋转”等方法.27.如图四边形ABCD中,角DAB和角DCB都是直角,边CD和边BC的长度相等,从点C 到边AB的垂线CE长为10厘米,求四边形ABCD的面积.28.图形计算(1)求下图阴影部分的周长和面积.(单位:厘米)(2)三条边长分别是6厘米、8厘米、10厘米的直角三角形.将它的最短边对折到斜边相重合,(如图)图中阴影部分面积是 平方厘米.29.如图,1S 的面积比2S 的面积大多少?30.图中正方形的边长是10厘米,三角形甲的面积比三角形乙的面积少20平方厘米,求线段AB 的长.圆与组合图形面积专题参考答案与试题解析一.选择题(共4小题)1.如图所示,大正方形与小正方形的面积之差为50平方厘米,阴影部分的面积是( )平方厘米.A .33.5πB .37.5πC .40πD .47.5π【解答】解:235037.5()4cm ππ⨯⨯= 答:阴影部分的面积是37.5π平方厘米. 故选:B .2.如图中,三角形ABC 是等腰直角三角形,图中阴影部分和空白部分的面积相比较,()A .阴影部分的面积大B .空白部分的面积大C .面积一样大D .无法判断【解答】解:根据分析可得,②=③+④=三角形ABC 面积的一半,①=③那么,空白部分的面积=②+③=三角形ABC 面积的一半+③ 阴影部分的面积=①+④=③+④=三角形ABC 面积的一半 所以,空白部分的面积大; 故选:B .3.计算如图阴影部分面积,正确的列式是( )A .266 3.14() 3.142⨯-⨯B .22166 3.14() 3.1422⨯⨯-⨯C .2216[6 3.14() 3.14]22⨯⨯-⨯D .1(62 3.146 3.14)2⨯⨯⨯-⨯【解答】解:2216[6 3.14() 3.14]22⨯⨯-⨯127 3.142=⨯⨯ 42.39=(平方厘米)答:阴影部分面积是42.39平方厘米; 故选:C .4.下面是两张同样大小的正方形纸,分别剪出不同规格的圆片,剩下的面积( )A .第一张纸剩下的面积大B .第二张纸剩下的面积大C .两张纸剩下的面积一样大 【解答】解:第一张纸剩下的面积是:244 3.14(42)⨯-⨯÷ 16 3.144=-⨯ 1612.56=- 3.44=第二张纸剩下的面积是:244 3.14(422)4⨯-⨯÷÷⨯ 16 3.1414=-⨯⨯ 1612.56=- 3.44=所以两张纸剩下的一样多.答:剪完圆后,两张纸剩下的一样多. 故选:C .二.填空题(共5小题)5.如图,长方形ABCD 的面积是26m ,圆的面积是 9.42 2m【解答】解:623÷=(平方米) 3.1439.42⨯=(平方米)答:圆的面积是9.42平方米. 故答案为:9.42.6.如图两个圆的半径都是4厘米,涂色部分的面积之和是 12.56 平方厘米.【解答】解:23.1444⨯÷ 50.244=÷12.56=(平方厘米)答:阴影部分的面积是12.56平方厘米. 故答案为:12.56.7.长方形里有两个圆(如图),阴影部分的面积是27cm ,那么一个圆的面积是 21.98 平方厘米.【解答】解:设圆的半径为r 厘米, 227r r ⨯÷=27r =3.14721.98⨯=(平方厘米)答:一个圆的面积是 21.98平方厘米.故答案为:21.98.8.如图,这个图形的周长是 23.98 厘米.【解答】解:3.1462 3.1482(86)⨯÷+⨯÷+-9.4212.562=++23.98=(厘米)答:这个图形的周长是 23.98厘米.故答案为:23.98.9.如图阴影部分的面积是25cm ,环形的面积是 31.4 2cm .【解答】解:设大圆的半径为R ,小圆的半径为r ,因为2211522R r -=, 则2210R r -=,环形的面积:223.14()R r ⨯-3.1410=⨯31.4=(平方厘米)答:环形的面积是31.4平方厘米.故答案为:31.4.三.计算题(共7小题)10.如图中正方形的边长为4cm ,求阴影部分的面积.【解答】解:244 3.14(42)⨯-⨯÷16 3.144=-⨯1612.56=-23.44()cm =答:阴影部分的面积是23.44cm .11.求如图阴影部分的面积.(单位:厘米)【解答】解:633-=(厘米)(63)32+⨯÷272=÷13.5=(平方厘米)答:阴影部分的面积是13.5平方厘米.12.计算如图图形中阴影部分的面积.【解答】解:222020 3.14204 3.14(202)2⨯-⨯÷+⨯÷÷400314157=-+243=(平方厘米)答:阴影部分的面积是243平方厘米.13.求如图阴影部分的面积.【解答】解:26226()cm ⨯÷=答:阴影部分的面积是26cm .14.求图中阴影部分面积.【解答】解:8822⨯÷÷6422=÷÷16=(平方厘米)答:图中阴影部分的面积是16平方厘米.15.如图中,已知圆的周长是25.12厘米,圆的面积与长方形的面积相等,图中阴影部分的面积是多少平方厘米?【解答】解:半径:25.12 3.1424÷÷=(厘米)233.1444⨯⨯3.1412=⨯37.68=(平方厘米)答:阴影部分的面积是37.68平方厘米.16.求阴影部分的面积.(单位:)cm【解答】解:(47)42+⨯÷112=⨯22=(平方厘米)答:阴影部分的面积是22平方厘米.四.解答题(共14小题)17.求如图阴影部分的面积和周长.面积:9平方厘米.周长:.【解答】解:面积:6(62)2⨯÷÷632=⨯÷9=(平方厘米)周长:3.14626⨯÷+9.426=+15.42=(厘米)故答案为:9平方厘米,15.42厘米.18.如图,三角形ABC是等腰直角三角形,8AB AC cm==,45C∠=︒,求:(1)弧AD的长度;(2)图中阴影部分的面积.【解答】解:(1)因为45n=︒,8r=厘米所以弧AD的长为:45 3.148180⨯⨯2 3.14=⨯6.28=(厘米)答:弧AD的长度6.28厘米.(2)22 180 3.144145 3.148(88)3602360⨯⨯⨯⨯-⨯⨯-8 3.14(328 3.14)=⨯--⨯16 3.1432=⨯-18.24=(平方厘米)答:阴影部分的面积是18.24平方厘米.19.如图,三角形ABC是等腰直角三角形,D是圆周的中点,BC是半圆的直径,已知10AB BC==厘米,求阴影部分的面积.【解答】解:连接BD 、OD 、OA ,由于DO BC ⊥,AB BC ⊥,所以//DO AB , 则AOD BOD S S ∆∆=,而阴影部分的面积AOB AOD BOD S S S ∆∆=+-扇形,AOB BOD BOD S S S ∆∆=+-扇形, 211101*********()242222π=⨯⨯÷+⨯⨯-⨯⨯ 2519.62512.5=+-,32.125=(平方厘米).20.如图,ABCD 是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求小路的面积.+⨯-⨯=(平方米),【解答】解:小路面积为:(2014)22264答:小路的面积是64平方米.21.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为多少平方厘米?【解答】解:如图,,阴影部分A的面积等于空白部分B的面积,阴影部分C的面积等于空白部分D的面积,所以阴影部分的面积和等于正方形面积的一半,⨯÷=(平方厘米)4428答:图中阴影部分的面积为8平方厘米.22.如图所示的多边形是由一个三角形和三个长方形组成的.已知三个长方形的面积分别是12平方厘米、4平方厘米和6平方厘米.三角形面积是多少平方厘米?【解答】解:如图,设三角形面积为x平方厘米,则2:126:4x=x⨯=⨯42126x=872x÷=÷887289x=答:三角形面积是9平方厘米.23.公园里有一块长方形的草坪,为方便游客,在草坪中间开辟了两条小路(如图).现在m草坪的面积是多少?(单位:)⨯-⨯+⨯+⨯,【解答】解:2012(212220)22240(2440)4=-++,=-+,240644=(平方米);180答:现在草坪的面积是180平方米.24.如图,已知大圆半径为6cm,四个小圆的面积相等.阴影部分面积是多少平方厘米?(分合割补法)【解答】解:阴影部分的面积:(62)(62)2⨯⨯⨯÷,12122=⨯÷,1442=÷,272()cm =.答:阴影部分的面积是72平方厘米.25. 一个容积为550mL 的水瓶,里面装了一些水,正放时,水面高20cm ,倒放时,空气高7.5cm .求水有多少升?【解答】解:因为水的体积是不变的,瓶内空余部分的体积也是不变的, 所以水体积是空余部分体积的8207.53÷=倍, 885505504008311⨯=⨯=+毫升0.4=升, 答:水有0.4升.26.如图是直角三角形中有一个内接正方形,求图中阴影部分的面积.单位:厘米.提示:分拆图形时常用“分割、填补、组合、旋转”等方法.【解答】解:根据题干分析可得:18122108⨯÷=(平方厘米), 答:图中阴影部分的面积是108平方厘米.故答案为:108平方厘米.27.如图四边形ABCD 中,角DAB 和角DCB 都是直角,边CD 和边BC 的长度相等,从点C到边AB 的垂线CE 长为10厘米,求四边形ABCD 的面积.【解答】解:将三角形CEB 以C 点为中心顺时针旋转90度,如下图,四边形ABCD 的面积与新得到的正方形相等,所以面积为:1010100⨯=(平方厘米). 答:四边形ABCD 的面积是100平方厘米.28.图形计算(1)求下图阴影部分的周长和面积.(单位:厘米)(2)三条边长分别是6厘米、8厘米、10厘米的直角三角形.将它的最短边对折到斜边相重合,(如图)图中阴影部分面积是 6 平方厘米.【解答】解:(1)如图,阴影部分的周长:903.141022 3.1410231.415.747.1360︒⨯÷⨯+⨯⨯⨯=+=︒(厘米); 两个直角等腰三角形的面积:(直角边2+直角边22)210÷=(斜边2)2100250÷=÷=(平方厘米);阴影部分的面积:2903.141078.55028.5360︒⨯⨯-=-=︒(平方厘米). 答:阴影部分的周长是47.1厘米,面积是28.5平方厘米.(2)阴影部分大直角边长:1064-=(厘米);阴影部分小直角边长:623÷=(厘米);阴影部分面积:4326⨯÷=(平方厘米).答:图中阴影部分面积是6平方厘米.故答案为:(1)47.1厘米,28.5平方厘米;(2)629.如图,1S 的面积比2S 的面积大多少?【解答】解:如图:12S S -12()()BCGF BCGF S S S S =+-+ABC BCGE S S =-10(68)2106=⨯+÷-⨯7060=-10=(平方厘米)答:1S 的面积比2S 的面积大10平方厘米.30.图中正方形的边长是10厘米,三角形甲的面积比三角形乙的面积少20平方厘米,求线段AB 的长.【解答】解:三角形甲的面积比三角形乙的面积小20平方厘米;根据图形可得:三角形DCB的面积比正方形CDEA的面积大20平方厘米,所以三角形DCB的面积为:10102010020120⨯+=+=(平方厘米)又因为正方形的边长10CD=厘米所以CB的长度是:12021024⨯÷=(厘米)所以AB的长度为:241014-=(厘米)答:AB的长度是14厘米.。

2022小升初专题练 第16讲 组合图形的周长与面积(通用版,含详解) (1)

2022小升初专题练 第16讲 组合图形的周长与面积(通用版,含详解) (1)

第16讲组合图形的周长与面积一、精挑细选(共5题;每题2分,共10分)1. 下面三幅图中,正方形一样大,则三个阴影部分的面积()A.一样大B.第一幅图最大C.第二幅图最大D.第三幅图最大2. 如下图,甲部分的周长和乙部分相比()A.甲大B.乙大C.一样大3. (2021六上·海安期末)一个木匠用32米木围栏材料把一块花园围起来,花园有四种可能的设计,其中不能用32米的木围栏围起来的是()。

A. B.C. D.4. (2021六上·温江期末)如图,大圆内有3个大小不等的小圆,这四个圆的圆心都在同一直线上,若大圆的直径是5厘米,则三个小圆的周长之和是()厘米.A.7.85B.15.7C.31.4D.78.55. (2020六上·福田月考)如图:这两个图形中涂色的部分周长和面积的大小关系是()A.周长相等,面积不相等B.周长和面积都相等C.周长不相等,面积相等二、判断正误(共3题;每题2分,共6分)6. 用8个1立方厘米的小方块拼成一个正方体.如果拿去一个小方块,它的表面积不变.()7. (2012·广州)右图中的阴影部分面积占长方形的。

()8. 右图的阴影部分的周长是圆的周长+长方形的周长。

()三、填空题(共10题;每空1,共12分)9. 求下面图中阴影部分的面积.面积是________ .10. 一张长方形纸片,长10厘米,宽8厘米.在这张纸片上剪去一个最大的圆后,剩下部分的面积是________平方厘米?(保留两位小数)11. 一座隧道的入口上部是半圆,下部是个长方形(如下图).已知长方形的长是10米,宽是5米.这个隧道横截面的周长是________米?面积是________平方米?(保留一位小数)12. 用一张长8厘米、宽6厘米的长方形纸,剪一个尽可能大的圆后,剩下部分的面积是________平方厘米?(用一张纸剪一剪,再算一算)13. 小玲要在一个长6厘米、宽4厘米的长方形纸片上剪下一个最大的圆.(1)圆的面积是________平方厘米?(结果用小数表示)(2)剩下部分的面积是________平方厘米?(结果用小数表示)14. (2020六上·福田月考)如图,半圆的半径是2分米,则封闭图形的周长为________分米。

六年级数学小升初重点题型组合图形面积带答案

六年级数学小升初重点题型组合图形面积带答案

如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中 点,求三角形AEF的面积。
16÷2=8(平方厘米)
16÷4÷2=2(平方厘米) 8-2=6(平方厘米)
三角形ABC的面积是24平方厘米,且DC=2AD,E、F分别 是AF、BC的中点,那么阴影部分的面积是多少?
24÷6=4(平方厘米)
求阴影部分的面积。
6×6÷2=18(平方厘米) (6-4)×4÷2=4(平方厘米)
18-4=14(平方厘米)
差不变原理
图中两个完全一样的三角形重叠在一起,求阴影部分 的面积。(单位:厘米)
12-4=8(厘米) (8+12)×2÷2=20(平方厘米)
差不变原理
平行四边形ABCD的边长BC长为8厘米,直角三角形BCE的 直角边CE长为6厘米。已知两块阴影部分的面积和比三角形 EFG的面积大8平方厘米,求CF的长度?
S△BDE=8×6÷2=24(平方厘米)
S平行四边形ABCD=24+8=32(平方厘米)
CF=32÷8=4(厘米)
三角形ABC的面积是56平方米,BD=CD.求阴影部分的面 积.
56÷2=28(平方米)
如图阴影部分的面积是6平方厘米,OC=2AO,求梯形的面积。
6×2=12(平方厘米) 12×2=24(平方厘米) 6+12+12+24=54平方厘米)
2.5×4=10(平方厘米)
蝴蝶定理:梯形两翼三角形面积相等。
S△ABC=BC×h÷2 S△BCD=பைடு நூலகம்C×h÷2 S△ABC=S△BCD
B S△ABC-S△OBC=S△BCD-S△OBC
即 S△ABO=S△CDO
A
D
O

六年级下册数学试题-小升初复习讲练:组合图形的面积 (含答案)sc

六年级下册数学试题-小升初复习讲练:组合图形的面积 (含答案)sc

组合图形的面积典题探究例1.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是.例2.如图,梯形ABCD中,BC=2AD,E、F分别为BC、AB的中点.连接EF、FC.若三角形EFC的面积为a,则梯形ABCD的面积是.例3.如图,每个小方格的面积是1cm2,那么△ABC的面积是cm2.例4.如图等腰三角形中阴影部分的面积是.例5.求右图直角梯形中阴影部分的面积.(单位:厘米)例6.求阴影部分的面积.(单位,厘米)演练方阵A档(巩固专练)一.选择题(共15小题)1.如图中,阴影部分的面积甲()乙.A.大于B.小于C.等于D.无法确定2.如图中阴影甲的面积比阴影乙的面积大多少()A.6(平方厘米)B.8(平方厘米)C.4(平方厘米)D.10(平方厘米)3.由四个相同的直角三角形和中间的小正方形拼成的一个大正方形(如图).如果直角三角形的两条直角边的长分别是3厘米和2厘米,大正方形的面积是()平方厘米.A.13 B.14 C.15 D.254.图中阴影部分的面积之和是()平方厘米.A.20 B.24 C.26 D.305.如图是由面积都是5平方厘米的8个三角形组成,图中阴影部分的面积是多少平方厘米?列式是()A.8+8×B.5+5×C.5×8×D.××6.如图,涂色部分面积是长方形面积的()A.B.C.无法计算7.下图中梯形ABCD的面积是40平方分米,三角形ABC的面积是25平方分米,则三角形BCD的面积是()A.25平方分米B.15平方分米C.40平方分米8.如图,黑色部分的面积为96平方厘米,则空白部分的面积为()A.96 B.240 C.120 D.1009.(•南城县)图中阴影部分占总面积的()A.B.C.D.10.(•泉州)下列各图中的正方形面积相等,图()的阴影面积与另外三图不同.A.B.C.D.11.(•康县)如图中,两三角形的面积之和占长方形面积的()A.B.C.D.12.(•徐水县)在一长方形草地里有一条宽1米的曲折小路,如图所示,小路的面积是()平方米.A.10 B.20 C.3013.(•揭阳)下面三幅图中,正方形的边长相等,这些图形中阴影部分的面积()大.A.图(1)B.图(2)C.图(3)D.一样大14.(•崇文区)从甲、乙两块厚度、边长均相等的正方形钢板上冲制出一些圆形(如图,每块上的圆形大小分别相同),剩下的边角料重量相比,下面说法正确的是()A.甲重B.乙重C.重量相等15.(•秀屿区)从一个长为3,宽为2的长方形中擦去一个直径为1的圆(如图,单位厘米),下列表示各平方厘米数中最接近阴影部分的面积是()A.6B.5C.4二.填空题(共13小题)16.大小正方形如图.小正方形边长a厘米,阴影面积是_________平方厘米.17.如图,大正方形边长为8cm,小正方形边长为6cm,则阴影部分的面积是_________.18.如图正方形ABCD边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.阴影部分甲与阴影部分乙的面积差是_________平方厘米.19.如图所示,正六边形ABCDEF的面积是36平方厘米,AG=AB,CH=CD,则四边形BCHG的面积是_________平方厘米.20.如图,有一块正方形的草坪,周边用边长为6分米的方砖铺了一条宽15分米的小路(如图阴影部分),共用方砖300块.则小路所围草坪的面积是_________平方分米.21.如图,长方形ABCD的面积是100平方厘米,M在AD边上,且AM=AD,N在AB 边上,且AN=BN.那么,阴影部分的面积等于_________平方厘米.22.如图,ABCD是长方形,图中的数是各部分的面积数,则图中阴影部分的面积为_________.23.(•江油市模拟)图中阴影部分为2cm,AB:AE=4:1,长方形ABCD面积为_________24.(•长沙模拟)下列图形的边长为2厘米,阴影部分面积相等的图形有_________.25.一个机器零件,形状如图阴影所示,这个机器零件的面积是_________dm2.26.如图,在边长相等的五个正方形中,画了两个三角形,三角形A的面积是15平方厘米,那么三角形B的面积是_________平方厘米.27.如图,已知三角形ABC的面积等于18平方厘米,∠ABC、∠DEC都是直角,AC=8厘米,BD=2DC.DE的长是_________厘米.28.如图,平行四边形中阴影A的面积是6平方厘米,阴影B的面积占平行四边形面积的,平行四边形面积是_________平方厘米.B档(提升精练)一.选择题(共15小题)1.(•剑川县模拟)一块边长是4米的正方形草地上,一条对角线的两个顶点各有1棵树,树上各栓1只羊,绳长4米,两头羊都能吃到的草地面积为()平方米.A.6.28 B.9.12 C.12.56 D.50.242.下列图形的面积是()A.800 B.700 C.750 D.6003.(•郑州模拟)如图,将四条长为16cm,宽为2cm的长方形垂直相交平放在桌面上,则桌面被盖住的面积是()A.72cm2B.128cm2C.20cm2D.112cm24.(•牡丹江)如图,四边形ABCD是一个梯形,由三个直角三角形拼成,它的面积是()平方厘米.A.1.92 B.16 C.4D.85.下列图形中,每个小正方形都是边长1cm,图中阴影面积最大的是()A.B.C.6.如图所示:任意四边形ABCD,E是AB中点,F是CD中点,已知四边形ABCD面积是10,则阴影部分的面积是()A.5B.6C.7D.87.(2004•宜兴市)如图,ABCD是一个长方形.三角形PAB、PBC和PCD的面积分别是44平方厘米,144平方厘米和260平方厘米.图中阴影部分的面积是()A.44平方厘米B.60平方厘米C.100平方厘米D.144平方厘米8.(•万州区)如图中,阴影部分的面积占平行四边形面积的()A.B.C.D.9.(•河西区)如图长方形ABEF中AF=10分米,其中梯形ABCG、平行四边形CDFG和三角形DEF的面积比为3:1:1,DE=()分米.A.2B.C.4D.10.(•济源模拟)甲、乙、丙三名小朋友用相同的正方形手工纸剪成圆形,甲剪了一个最大的扇形,乙剪了一最大的圆,丙剪了四个最大的圆.(如图)三个人中对手工纸的利用率情况是()A.甲最高B.乙最高C.丙最高D.三人相同11.(•开化县模拟)如图A、B分别是长方形长和宽的中点,阴影部分面积是长方形的()A.B.C.D.12.(•无锡)用三张边长都是8厘米的正方形铁皮,分别按如图剪下不同规格的圆片.哪张铁皮剩下的废料多?()A.甲铁皮剩下的废料多B.乙铁皮剩下的废料多C.丙铁皮剩下的废料多D.剩下的废料同样多13.(•广东模拟)右图中三角形a,b的面积都是长方形面积的,则阴影部分面积是长方形面积的()A.B.C.D.14.(•中山模拟)如图,图中每个圆的直径都为2cm,阴影部分的周长和的面积各是()A.2π﹣4 π﹣4 B.4π4πC.2π4﹣πD.4715.(•湛江模拟)如图所示,甲和乙两幅图的阴影面积相比,下列说法正确的是()A.甲>乙B.甲<乙C.甲=乙二.填空题(共13小题)16.(•成都)如图,阴影部分的面积是_________.17.(•常熟市)如图:三角形的面积为5平方厘米,求圆的面积是_________平方厘米.18.(•阜阳模拟)如图,求涂色部分的面积是_________平方分米.19.(•台湾模拟)如图正方形的边长为10公分,四边形ABCD的面积为6平方公分,那么,阴影部分的面积为_________平方公分.20.(•广州模拟)在如图中,平行四边形的面积是80平方厘米,图中A、B两个三角形的面积比是_________,阴影部分的面积是_________平方厘米.21.(•雁江区模拟)图中阴影部分的面积是_________cm2,周长是_________cm.22.(•广州)如图ABCD是一个长方形,AB=10厘米,AD=4厘米,E、F分别是BC、AD 的中点,G是线段CD上意一点,则图中阴影部分的面积为_________.23.(•东莞)如图,B、C分别是正方形边上的中点,己知正方形的周长是80厘米.阴影部分的面积是_________平方厘米.24.(•中山模拟)在半径为10cm的圆内,C为AO的中点,则阴影的面积为_________.25.(•泸州模拟)如图,以直角三角形的直角边长20厘米为直径画一个半圆,阴影部分①的面积比②的面积小16平方厘米.BC=_________.26.(•长沙模拟)如图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是_________平方厘米.27.(•长沙模拟)如图,长方形ABCD中,AB=12厘米,BC=8厘米,平行四边形BCEF的一边BF交CD于G,若梯形CEFG的面积为64平方厘米,则DG长为_________.28.(•顺德区模拟)如图是两个一样的直角三角形重叠在一起,图中阴影部分面积是_________.C档(跨越导练)一.填空题(共9小题)1.(•揭阳)图中,平行四边形ABCD的面积是32cm2阴影部分的面积是_________cm2.2.(•广西)如图中,梯形的下底是12厘米,高是5厘米.阴影部分的面积是_________平方厘米.3.(•绍兴县)图中三角形ABC三个顶点上都是半径为1厘米的圆,图中阴影部分的面积是_________.4.(•河北)如图是一个长方形,面积是18平方厘米,P是长方形内任意一点,图中两个阴影部分的面积和是_________平方厘米.5.(•渠县)求阴影部分面积.(单位:cm)6.(•上海)如图中,两个正方形的边长分别为6cm和4cm,求阴影部分的面积.(4%)7.(•长汀县)图中3号图形的面积占七巧板面积的_________.8.(•游仙区模拟)一个圆形纸片,直径是8厘米,把它剪成一个最大的正方形,剪掉的面积是_________平方厘米.9.(•河西区)如图所示,O1、O2分别是所在圆的圆心.如果两圆半径均为2厘米,且图中两块阴影部分的面积相等,那么EF的长度是_________厘米.二.解答题(共13小题)10.(•绍兴县)求图中阴影部分的面积(单位:厘米)11.(•乐清市)左图正方形边长为2厘米.以顶点A为圆心边长AB为半径作圆弧,再分别以AB、AC为直径作半圆弧.求阴影部分面积.12.(•延边州)求图中阴影部分的面积.(单位:厘米)13.(•麟游县)求图中阴影部分的面积(单位:厘米)14.(•金沙县)如图,求阴影部分的面积.已知:r=10cm.15.(•东莞)如图:阴影2比阴影1面积大2.75平方厘米,圆的半径5厘米;求BC的长.16.(•重庆)已知S圆=S长方形求阴影部分周长和面积.17.(•长寿区)第1、2题求阴影部分周长和面积,第3﹣6题只求阴影部分面积.18.(•宁波)如图,直角梯形中,高是5厘米,下底是14厘米,求阴影部分的面积?19.(•天柱县)如图中,小正方形边长为1分米,大正方形边长为2分米,阴影部分面积是多少?20.(•康县模拟)求下列图形的阴影部分的面积.21.(•紫金县)(1)求阴影部分周长(2)求图阴影部分的面积.22.(•郑州)草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(如图).问:这只羊能够活动的范围有多大?组合图形的面积答案典题探究例1.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是18.考点:组合图形的面积;等积变形(位移、割补).分析:根据题意,过点E作BC的垂线于点F,延长CB、EA交点G,因∠AED=135°,所以∠AEF=45°,在三角形EFG中,∠EFG=90°,所以∠EGF=45°,EF=FG=5,即三角形EFG是等腰直角三角形,在三角形ABG中,∠AGB=45°,∠BAG=90°,所以∠ABG=45°,那么三角形ABG是等腰直角三角形,根据三角形、四边形的面积公式可计算出各自的面积,最后再用长方形CDEF的面积加上等腰直角三角形EFG再减去等腰直角三角形ABG即可,列式解答即可得到答案.解答:解:三角形EFG的面积是:5×5÷2=12.5,长方形CDEF的面积是2×5=10,延长出的三角形ABG的面积是:3×3÷2=4.5,组合图形的面积是:12.5+10﹣4.5=18,答这个五边形的面积是18.点评:解答此题的关键是将组合图形的两条边延长分为三角形和长方形,然后再减去延长部分所得到的面积即可.例2.如图,梯形ABCD中,BC=2AD,E、F分别为BC、AB的中点.连接EF、FC.若三角形EFC的面积为a,则梯形ABCD的面积是6a.考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图,连接AE,因为BC=2AD,E为BC的中点,所以四边形AECD是平行四边形,且三角形ABE和平行四边形AECD等底等高,所以平行四边形的面积是这个三角形的面积的2倍,又因为三角形EFC的面积为a,所以三角形BEF的面积也是a,又因为F是AB的中点,所以可得三角形ABE的面积是2a,则平行四边形的面积就是2a×2=4a,据此即可解答问题.解答:解:连接AE,因为BC=2AD,E为BC的中点,所以四边形AECD是平行四边形,且三角形ABE和平行四边形AECD等底等高,所以平行四边形的面积是这个三角形的面积的2倍,又因为三角形EFC的面积为a,所以三角形BEF的面积也是a,又因为F是AB的中点,所以可得三角形ABE的面积是2a,则平行四边形的面积就是2a×2=4a,所以这个梯形的面积是2a+4a=6a.答:则梯形ABCD的面积是6a.故答案为:6a.点评:此题考查了高一定时,三角形的面积与底成正比例的性质以及等底等高的平行四边形是三角形的面积的2倍的灵活应用.例3.如图,每个小方格的面积是1cm2,那么△ABC的面积是8.5cm2.考点:组合图形的面积;三角形的周长和面积.分析:△ABC的面积为长方形RPCQ的面积减三角形ARB的面积减三角形BPC的面积再减三角形CQA的面积,将数据代入公式即可求解.解答:解:如图所示,S△ARB=S长方形ARBH=×6=3(平方厘米),S△BPC=S长方形BPCE=×5=2.5(平方厘米),S△CQA=S长方形CQAF=×12=6(平方厘米),则,S△ABC=S长方形﹣S△ARB﹣S△BPC﹣S△CQA,=20﹣3﹣2.5﹣6,=8.5(平方厘米).故答案为:8.5.点评:此题主要考查组合图形的面积,关键是将图形进行合理的分割.例4.如图等腰三角形中阴影部分的面积是 2.86.考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图所示,阴影部分的面积等于两条直角边为4的等腰直角三角形的面积减去两条直角边为2的等腰直角三角形的面积,再减去半径为2的圆面积的四分之一,据此计算即可解答.解答:解:4÷2=24×4÷2﹣2×2÷2﹣3.14×22÷4=8﹣2﹣3.14=2.86答:阴影部分的面积是2.86.点评:本题主要考查组合图形的面积,解答本题的关键是找出图中阴影部分是哪几部分相减得到的.例5.求右图直角梯形中阴影部分的面积.(单位:厘米)考点:组合图形的面积;三角形的周长和面积;梯形的面积;圆、圆环的面积.专题:压轴题;平面图形的认识与计算.分析:用梯形底面积减去半径是2厘米的圆面积的四分之一,减去一个底是4﹣2=2厘米,高是2厘米的三角形的面积,得到的差就是阴影部分的面积.解答:解:(3+4)×2÷2﹣3.14×22×﹣(4﹣2)×2÷2,=7﹣3.14﹣2,=1.86(平方厘米);答:阴影部分的面积是1.86平方厘米.点评:本题考查了梯形,圆,三角形的面积公式的掌握与运用情况,同时也考查了学生的计算能力.例6.求阴影部分的面积.(单位,厘米)考点:组合图形的面积.专题:压轴题.分析:我们可以右边的小阴影割后移动到左边补上,从图中可以观察到,割补后只要用长方形AODE的面积减去三角形AOC的面积就是整个阴影部分的面积.解答:解:由图知,经过割补后,S阴=S AOED﹣S AOC,=3×6﹣3×3÷2,=18﹣4.5,=13.5(平方厘米);故答案:13.5平方厘米.点评:此题考查了组合图形的面积和割补的思想.演练方阵A档(巩固专练)一.选择题(共15小题)1.如图中,阴影部分的面积甲()乙.A.大于B.小于C.等于D.无法确定考点:组合图形的面积.分析:根据题意甲乙均为三角形,那么在梯形ABCD中,三角形ABC与三角形BCD是等底等高的三角形,所以它们的面积相等,甲部分的面积等于三角形ABC减去三角形BCO,乙部分的面积等于三角形BCD的面积减去三角形BCO的面积,因为三角形ABC与三角形BCD面积相等,所以三角形ABO的面积等于三角形CDO的面积,即甲的面积=乙的面积.解答:解:如图:三角形ABC与三角形BCD是等底等高的三角形,所以三角形ABC的面积等于三角形BCD的面积,甲的面积等于三角形ABC﹣三角形BCO,乙的面积等于三角形BCD﹣三角形BCO,所以甲的面积等于乙的面积.故选:C.点评:解答此题的关键是把甲乙两部分的面积放在同底等高的两个三角形中,同底等高的两个三角形的面积相等,然后去掉共同拥有的三角形BCO,所剩面积也会相等.2.如图中阴影甲的面积比阴影乙的面积大多少()A.6(平方厘米)B.8(平方厘米)C.4(平方厘米)D.10(平方厘米)考点:组合图形的面积.专题:平面图形的认识与计算.分析:求阴影甲与阴影乙的面积差,实际上是求大三角形与正方形的面积差,将数据代入三角形和正方形的面积公式即可求解.解答:解:(6+8)×6÷2﹣6×6,=14×6÷2﹣36,=42﹣36,=6(平方厘米);答:阴影甲的面积比阴影乙的面积大6平方厘米.故选:A.点评:解答此题的关键是明白:求阴影甲与阴影乙的面积差,实际上是求大三角形与正方形的面积差.3.由四个相同的直角三角形和中间的小正方形拼成的一个大正方形(如图).如果直角三角形的两条直角边的长分别是3厘米和2厘米,大正方形的面积是()平方厘米.A.13 B.14 C.15 D.25考点:组合图形的面积.专题:平面图形的认识与计算.分析:由图意可知:中间小正方形的边长为3﹣2=1厘米,则大正方形的面积=直角三角形的面积×4+小正方形的面积,代入数据即可求解.解答:解:3×2÷2×4+(3﹣2)×(3﹣2),=12+1,=13(平方厘米);答:大正方形的面积是13平方厘米.故选:A.点评:由三角形的直角边长求出小正方形的边长,是解答本题的关键.4.图中阴影部分的面积之和是()平方厘米.A.20 B.24 C.26 D.30考点:组合图形的面积.专题:平面图形的认识与计算.分析:等底等高的三角形的面积相等,由图形可知,图中两个空白三角形的面积相等,根据三角形的面积公式:s=ah÷2,把数据代入公式求出两个空白三角形的面积,再根据长方形的面积公式:s=ab,把数据代入公式求出长方形的面积,然后用长方形的面积减去两个空白三角形的面积即可.据此解答.解答:解:8×6﹣6×4÷2×2=48﹣24=24(平方厘米),答:阴影部分的面积是24平方厘米.故选:B.点评:解决此题的关键是利用等积转换,即等底等高的三角形面积相等,用长方形减去空白面积就是阴影面积,5.如图是由面积都是5平方厘米的8个三角形组成,图中阴影部分的面积是多少平方厘米?列式是()A.8+8×B.5+5×C.5×8×D.××考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图所示,三角形②的面积是5,而三角形①的面积是三角形②面积的一半,则阴影部分的面积是5+5×,据此解答即可.解答:解:如上图所示,三角形②的面积是5,而三角形①的面积是三角形②面积的一半,则阴影部分的面积是5+5×,故选:B.点评:将阴影部分进行分割,再据已知条件,即可求出阴影部分的面积.6.如图,涂色部分面积是长方形面积的()A.B.C.无法计算考点:组合图形的面积;分数的意义、读写及分类.专题:平面图形的认识与计算.分析:设长方形的长和宽分别为a和b,两个三角形的高之和正好等于长方形的宽,即等于b,则两个阴影三角形的面积和为a(b1+b2)=ab,所以涂色部分面积是长方形面积的.解答:解:设长方形的长和宽分别为a和b,则两个阴影三角形的面积和为ab,所以涂色部分面积是长方形面积的.故选:B.点评:解答此题的主要依据是:三角形的面积是与其等底等高的平行四边形面积的一半.7.下图中梯形ABCD的面积是40平方分米,三角形ABC的面积是25平方分米,则三角形BCD的面积是()A.25平方分米B.15平方分米C.40平方分米考点:组合图形的面积;三角形的周长和面积.专题:平面图形的认识与计算.分析:根据图知道用梯形ABCD的面积减去三角形ABC的面积即可求出三角形BCD的面积.解答:解:40﹣25=15(平方分米),答:三角形BCD的面积15平方分米;故选:B.点评:关键是根据图得出梯形ABCD的面积减去三角形ABC的面积就是三角形BCD的面积.8.如图,黑色部分的面积为96平方厘米,则空白部分的面积为()A.96 B.240 C.120 D.100考点:组合图形的面积.专题:平面图形的认识与计算.分析:根据平行四边形的面积公式S=ah,得出h=S÷a,由此求出黑色部分的高,即长方形的宽,再根据图得出空白部分的面积等于长方形的面积减去黑色部分的面积,由此再利用长方形的面积公式解答.解答:解:96÷8=12(厘米)(20+8)×12﹣96=28×12﹣96=336﹣96=240(平方厘米)答:空白部分的面积是240平方厘米;故选:B.点评:本题主要是灵活利用平行四边形的面积公式与长方形的面积公式解答.9.(•南城县)图中阴影部分占总面积的()A.B.C.D.考点:组合图形的面积.分析:把阴影部分的图形进行拼凑,把①放到②处,即可得到阴影部分的面积是总面积的.解答:解:由图可知阴影部分的面积是,故选:A.点评:本题把图形进行拼凑,即可得到答案.10.(•泉州)下列各图中的正方形面积相等,图()的阴影面积与另外三图不同.A.B.C.D.考点:组合图形的面积.专题:压轴题;平面图形的认识与计算.分析:从图中可以看出阴影部分的面积=正方形的面积﹣圆的面积.观察图形可发现:四个正方形是全等的,面积是相等;A、C、D三个图形中空白部分可以组成一个完整的圆,根据圆的面积相等可得这三个图形中阴影部分的面积相等,得出答案.解答:解:由图可知:从左到右A、C、D的空白处均可组成一个完整的半径相等的圆,而正方形的面积相等,根据等量减去等量差相等的原理得这三个图形中阴影部分的面积相等.故选:B.点评:此题考查了面积及等积变换,将阴影面积转化为易求的图形的面积的差或和是解题的常用方法.11.(•康县)如图中,两三角形的面积之和占长方形面积的()A.B.C.D.考点:组合图形的面积;分数的意义、读写及分类.专题:压轴题;分数和百分数.分析:假设每个小正方形的面积是1,则2个小三角形的面积都是,2个小三角形的面积和就为1,而长方形的面积为4,于是问题容易得解.解答:解:假设每个小正方形的面积是1,则2个小三角形的面积都是,2个小三角形的面积和就为1,而长方形的面积为4,1÷4=,所以两三角形的面积之和占长方形面积的;故选:C.点评:解答此题的关键是:利用假设法先求出两个三角形的面积和,问题即可得解.12.(•徐水县)在一长方形草地里有一条宽1米的曲折小路,如图所示,小路的面积是()平方米.A.10 B.20 C.30考点:组合图形的面积.专题:压轴题;平面图形的认识与计算.分析:我们把图形进行分割,把①②③排在一起就是一个长方形长是11米,宽是1米,把④⑤⑥图形沿着大长方形的宽排列,得到的长方形的长(10﹣1)米,宽是1米的长方形.解答:解:画图如下:11×1+(10﹣1)×1,=11+9,=20(平方米);故选:B.点评:本题运用长方形的面积公式进行就即可,即“长×宽=面积”.13.(•揭阳)下面三幅图中,正方形的边长相等,这些图形中阴影部分的面积()大.A.图(1)B.图(2)C.图(3)D.一样大考点:组合图形的面积;圆、圆环的面积.分析:这三幅图中,正方形的边长相等,说明正方形的面积相等,求这些图形中阴影部分的面积,都可以认为是从正方形的面积里减去同一个圆的面积,由此得解.解答:解:正方形的边长相等,说明三幅图正方形的面积相等,里面的圆的半径也相等;(1)阴影部分的面积=正方形的面积﹣4×圆的面积;(2)阴影部分的面积=正方形的面积﹣2×圆的面积;(3)阴影部分的面积=正方形的面积﹣圆的面积;所以这些图形中阴影部分的面积一样大.故选:D.点评:此题属于求组合图形的面积,要求阴影部分的面积,就从外面图形面积里减去里面的小图形的面积.14.(•崇文区)从甲、乙两块厚度、边长均相等的正方形钢板上冲制出一些圆形(如图,每块上的圆形大小分别相同),剩下的边角料重量相比,下面说法正确的是()A.甲重B.乙重C.重量相等考点:组合图形的面积;圆、圆环的面积.分析:要解决剩下的边角料重量相比问题,根据题干,只要比较出剩下的边角料的面积大小即可,剩下面积大的重,由此只要求得甲乙两个图中的阴影部分的面积即可解决问题.解答:解:设甲乙两个正方形的边长为12,则甲中圆的半径为:12÷2÷2=3,乙中的圆的半径为12÷3÷2=2,甲剩下的部分为:12×12﹣3.14×32×4,=144﹣113.04,=30.96;乙剩下的部分为:12×12﹣3.14×22×9,=144﹣113.04,=30.96,所以甲乙剩下部分的面积相等,故选:C.点评:此题考查了在正方体中切割等圆的方法,得出每个圆的半径是解决此类问题的关键.15.(•秀屿区)从一个长为3,宽为2的长方形中擦去一个直径为1的圆(如图,单位厘米),下列表示各平方厘米数中最接近阴影部分的面积是()A.6B.5C.4考点:组合图形的面积.专题:压轴题;平面图形的认识与计算.分析:我们运用长方形的面积减去圆的面积就是阴影部分的面积,得出的差再与下列选项进行比较再进行选择.解答:解:3×2﹣3.14×(1÷2)2,=6﹣0.785,=5.215(平方厘米);5.215与5最接近.故选:B.点评:本题考查了长方形及圆的面积公式的掌握与运用情况,同时考查了数的大小比较和近似数.二.填空题(共13小题)16.大小正方形如图.小正方形边长a厘米,阴影面积是a2平方厘米.考点:组合图形的面积.分析:如图所示,连接BC,则三角形ABC和三角形CEB等底等高,则二者的面积相等,它们分别去掉公共部分三角形CFB,剩余部分的面积仍然相等,即三角形CEF的面积和三角形ABF的面积相等,于是阴影部分就转化成了小正方形的面积的一半,问题得解.解答:解:连接BC,则S△ABC=S△CEB,于是S△ABC﹣S△CFB=S△CEB﹣S△CFB,即S△ABF=S△CEF,所以阴影部分的面积=a2;故答案为:a2.点评:解答此题的关键是作出辅助线,将阴影部分的面积转化成小正方形的面积的一半,问题即可得解.17.如图,大正方形边长为8cm,小正方形边长为6cm,则阴影部分的面积是32平方厘米.。

小升初组合图形的面积典型试题

小升初组合图形的面积典型试题

小升初组合图形的面积典型试题一.解答题(共18小题)1.(2015•北京模拟)求阴影部分的面积.2.(2015•安溪县校级模拟)求图形阴影部分的面积3.(2015•吉林模拟)如图,已知阴影部分面积是35平方厘米,求图中三角形面积.4.(2012•诸暨市)图中的两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积.5.(2013•高碑店市)李大爷家承包了如图所示的一块地,请你帮他计算一下这块地的面积(单位,米).6.(2014秋•临川区期末)李大爷家有一块菜地(如图),这块菜地的面积有多少平方米?7.(2014秋•微山县校级期末)如图是一面墙,如果砌这面墙平均每平方米用砖160块,一共用砖多少块?8.(2013秋•黄冈期末)计算下面组合图形的面积.(单位cm)9.(2012春•遵义县期中)李大爷家有一块菜地(如图),这块菜地的面积有多少平方米?10.(2013秋•吴江市校级期末)计算下面图形的面积.(单位:厘米)11.(2011秋•伊通县校级期末)学校开运动会要制作一些锦旗,式样如下图.一面锦旗需要多少平方厘米的布料?做5面呢?12.(2012秋•宝鸡校级期末)在秋游活动的场所,同学们看到了很多这样的指示牌,你能求出它的面积吗?13.(2012秋•平度市期末)有一块不规则菜地,如图(单位:米).它的面积是多少平方米?14.(2015秋•姜堰市期中)求图形的面积.15.(2013秋•西安期末)如图是教室的一面墙,如果粉刷这面墙每平方米需要涂料1.2千克.这面墙一共需要多少千克涂料?16.(2012秋•神木县期末)计算如图的面积.(单位:厘米)17.(2012秋•临泉县校级期末)(1)求图1的面积(单位:厘米)(2)求图2阴影部分的面积(单位:厘米)18.(2013秋•南开区校级期末)如图是一面墙,中间有一个长2米、宽1.5米的窗户,如果砌这面墙平均每平方米用砖160块,一共用砖多少块?19.计算阴影部分的面积.20.计算图形的面积21.计算组合图形的面积(单位:dm).22.如图,已知平行四边形的面积是72平方厘米,求阴影部分的面积.23.计算下列组合图形的面积.(单位:米)24.求组合图形面积25.三角形面积是37.5平方分米,求梯形的面积.26.求下面各图形的面积.(单位:分米)27.(2008•杭州校级自主招生)如果你完成上述题目觉得正确无误后,可考虑解决以下问题,注意:本题不计入总分.两个正方形如图放置,其中D、C、G在同一条直线上,小正方形ECGF的边长为6,连AE、EG、AG,求图中阴影部分的面积.28.求阴影部分的面积.(单位,厘米)29.求图中阴影部分的面积(单位:厘米)30.求阴影部分面积.31.如图,△ABC是等腰直角三角形,腰长8厘米,求阴影部分的面积.32.(2011•杭州校级自主招生)如图,一个半径为10cm的圆沿图中“凸”字形的内壁滚动“凸”字形的一圈又回到原地.圆扫过的面积是多少平方厘米?(单位:cm)33.(2011春•平和县期末)一个零件形状如图,计算它的周长和面积.(单位:厘米)34.(2012秋•自贡期末)东湖小学2010年感恩之声大家唱会演学校要布置一个如图形状的舞台,这个舞台用每㎡12.4元的地毯铺地布置,铺完这个舞台需要多少元?35.(2013秋•吴江市校级期末)计算下面图形的面积.(单位:厘米)36.(2013秋•黄冈期末)计算下面组合图形的面积.(单位cm)37.(2014秋•德江县校级期中)求阴影部分面积(单位:厘米)38.下面阴影部分的面积.39.已知大正方形比小正方形的边长多4cm,大正方形比小正方形的面积大96cm2,求小正方形的面积.40.如图是一块长方形草地,长16米,宽10米,中间有两条长方形道路,求草地的面积(阴影部分)有多大?41.一个正方形,如果它的边长增加5cm(如图),所形成的正方形的面积比原来正方形的面积增加105cm2.原来正方形的面积是多少平方厘米?42.如图中小正方形和大正方形的边长分别是4厘米和6厘米.阴影部分的面积是多少平方厘米?43.图中八条边的长度正好分别是1、2、3、4、5、6、7、8厘米.已知a=2厘米,b=4厘米,c=5厘米,求图形的面积.44.计算下面组合图形的面积.(单位:厘米)45.求图中阴影部分的面积.46.求图中阴影部分的面积.47.(2008•淳安县)如图是一个组合图形,请用两种方法计算出这个图形的面积(单位:米)48.(2009•锦江区自主招生)如图:ABCD是长8厘米、宽6厘米的长方形,AF长4厘米,求阴影部分的面积.二.填空题(共27小题)1.(2010•上海校级自主招生)如图,长方形ABCD中,AB=24cm,BC=36cm,E是BC的中点,BF=DG=6cm,H为AD上任意一点,则阴影部分的总面积是cm2.2.(2010•福州模拟)下图中的大正方形ABCD的面积是1平方分米,其它点都是它所在的边的中点.请问:阴影三角形的面积是平方分米.3.(2010秋•泰兴市校级期末)如图,长方形与平行四边形部分重叠,已知梯形甲的面积是12平方厘米,梯形乙的面积是平方厘米.4.(2009•天心区)如图中长方形的面积是24平方分米,阴影部分的面积是平方分米.5.(2008•上海校级自主招生)在长方形ABCD中,AE=EB,BF=FG=GC,DH=3HE,那么△HFG的面积是长方形ABCD的面积的.(填几分之几)6.(2007•南充自主招生)如图,梯形ABCD的面积为35平方厘米.DF:FC=1:1,甲、乙、丙三个三角形的面积都相等.那么阴影部分的面积是平方厘米.7.(2005•武汉自主招生)如图,一块形状为平行四边形的土地分成A、B、C、D四块,其中B、C两块的面积分别是9cm2和6cm2,则A(阴影部分)的面积为cm2.8.(2005•青羊区校级自主招生)如图,ABCD是直角梯形,AD=5厘米,DC=3厘米,三角形DOC的面积是1.5平方厘米,则阴影部分的面积是平方厘米.9.(2005•青羊区校级自主招生)在梯形ABCD中,己知OC=3AO,图中阴影部分的面积为6,则梯形的面积为.10.(2000•上海校级自主招生)下图中,在长方形内画了一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是.11.(1998•上海校级自主招生)图中正方形ABCD的边长是5cm,AEGD是长方形,三角形ECH的面积为10cm2,则FG=cm.12.(1997•崇安区校级自主招生)如图,正方形ABCD边长为6分米,长方形AEFG的长AG为7分米,右点G在DC上,点B在EF上,则长方形宽AE是分米.13.图中ABCD是平行四边形,△ABF和△DEF的面积大,因为.14.如图,AECD是平行四边形,阴影部分的面积是30平方厘米,梯形ABCD的面积是平方厘米15.如图所示,阴影部分的面积是2cm2,AE=ED,BD=2DC,则△ABC的面积是cm2.16.在平行四边形ABCD中,AE与ED的比是1:2,BF是FA的1/3,则阴影部分的面积是平行四边形面积的.17.求阴影部分面积:18.如图,在∠MON的两边分别有A,C,E及B,D,F六个点,并且△OAB,△ABC,△BCD,△CDE,△DEF的面积都为1,则△DCF的面积为.19.如图,AB=3,阴影部分甲的面积为13,阴影部分乙的面积为.20.如图ABCD,CEFG是正方形,EF=3cm,则S阴影=cm2.21.如图,正方形ABCD的面积是72平方厘米,CD=3EF,则两块阴影部分相差平方厘米.22.求下面图形的面积.(单位:cm)23.如图所示,已知AB=15cm,AD=12cm,S阴=150cm2,则S梯形ABCD=cm2.24.如图,ABCD是一个矩形,其中有三块面积分别为12,47,33,则图中阴影部分为.25.如图,小正方形ABCD的边长为4厘米,大正方形CEFG的边长为8厘米,则图中阴影部分的面积是平方厘米.26.如图,阴影部分四边形的外接图形是边长为10cm的正方形,则阴影部分四边形的面积是平方厘米.27.如图,梯形的上底和其中一腰均为10cm,小正方形的边长为8cm,两个图形拼在一起,则图中阴影部分面积是.28.求阴影部分的面积.29.求阴影部分的面积.30.求阴影部分的面积.31.求阴影部分的面积32.求阴影部分的面积积.33,求阴影部分的面积34.求阴影部分的面积35.求阴影部分的面积36.求阴影部分的面积37.求阴影部分的面积38.求阴影部分的面积.39.求阴影部分的面积40.求阴影部分的面积。

人教版小学数学组合图形的面积 (经典例题含答案)

人教版小学数学组合图形的面积 (经典例题含答案)

班级小组姓名成绩(满分120)一、组合图形的面积(一)组合图形的面积计算(共4小题,每题3分,共计12分)例1.求下面图形的面积。

(单位:cm)32×10÷2+32×203×4÷2+(5+10)×5÷210×12-(4+8)×2÷2=160+640=6+37.5=120-12=800(cm²)=43.5(cm²)=108(cm²)例1.变式1.先回答问题,再计算图形的面积。

(单位:cm)(1)组合图形的面积=(长方形)面积+(三角形)面积36×24+24×21÷2=1116(平方厘米)(2)52阴影部分的面积=(梯形)面积-(三角形)面积(30+52)×28÷2-30×28÷2=728(cm²)例1.变式2.计算下面图形的面积,你能用不同的计算方法吗?5×2.5+(3+5)×(5-2.5)÷2=5×2.5+8×2.5÷2=12.5+10=22.5(平方米)5×3+(2.5+5)×(5-3)÷2=5×3+7.5×2÷2=15+7.5=22.5(平方米)例1.变式3.如图,左边阴影部分的面积是60平方厘米。

求右边空白部分(梯形)的面积。

(单位:厘米)60×2÷8=15(厘米)(16+16+8)×15÷2=40×15÷2=300(平方厘米)答:空白部分的面积是300平方厘米.(二)组合图形的面积计算(共4小题,每题3分,共计12分)例2.计算下列组合图形的面积。

(单位:cm)(8.5+15)×13÷2-8.5×4÷2=135.75(cm²)例2.变式1.解决问题。

小升初复习-组合图形的面积(专项突破)小升初数学复习计算问题重难点特训真题练

小升初复习-组合图形的面积(专项突破)小升初数学复习计算问题重难点特训真题练

小升初复习-组合图形的面积(专项突破)小升初数学复习计算问题重难点特训真题练一、计算题1.计算组合图形的面积(单位:米)2.求下面图形中阴影部分的面积。

3.如图,两个正方形的边长分别是10cm和4cm,求阴影部分的面积。

4.计算下面图形的面积。

5.计算下面各图形的面积。

6.计算第一个图形的面积和周长,第二个图形计算体积。

7.计算下面图形阴影部分的面积。

(单位:㎝)8.计算下面图形中阴影部分的面积。

(1)(2)9.计算下面图形的面积。

(单位:cm)10.计算下面阴影部分的面积(单位:厘米)。

11.图中爱心是由一个正方形和两个半圆拼成的,请计算出它的周长和面积。

12.看图计算面积(单位:厘米)13.求图形的彩色部分面积。

14.求阴影部分的面积。

15.求阴影的面积。

(单位:厘米)16.求下面各图阴影部分的面积。

(单位:厘米)17.计算下面图形的面积(单位:分米)。

18.如图,阴影部分的面积是16平方厘米,求环形的面积。

19.看图计算。

计算下面图中阴影部分的面积。

(单位:厘米)20.梯形的面积是25平方厘米,求出阴影部分的面积。

21.计算出两个组合图形的面积(单位:cm)。

22.下图阴影部分是由一个半圆和一个三角形组合而成,图中正方形的边长是6厘米,求阴影部分的面积是多少平方厘米?23.求图中阴影部分的面积。

(单位:厘米)24.下图是一个直角梯形,求图中阴影部分的周长和面积。

(单位:厘米)25.如图,三个边长分别为4,8,6的正方形拼在一起,求阴影部分的面积。

参考答案 1.238平方米【分析】观察图可知,组合图形的面积=平行四边形的面积+三角形的面积,根据平行四边形的面积=底×高,三角形的面积=底×高÷2,据此列式解答。

【详解】14×12+14×10÷2=168+140÷2=168+70=238(平方米)【点睛】把组合图形的面积看成三角形和平行四边形的面积之和是解决此题的关键,掌握三角形和平行四边形的面积公式。

六年级下册数学试题-小升初复习讲练:组合图形的面积 (含答案)sc

六年级下册数学试题-小升初复习讲练:组合图形的面积 (含答案)sc

组合图形的面积典题探究例1.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是.例2.如图,梯形ABCD中,BC=2AD,E、F分别为BC、AB的中点.连接EF、FC.若三角形EFC的面积为a,则梯形ABCD的面积是.例3.如图,每个小方格的面积是1cm2,那么△ABC的面积是cm2.例4.如图等腰三角形中阴影部分的面积是.例5.求右图直角梯形中阴影部分的面积.(单位:厘米)例6.求阴影部分的面积.(单位,厘米)演练方阵A档(巩固专练)一.选择题(共15小题)1.如图中,阴影部分的面积甲()乙.A.大于B.小于C.等于D.无法确定2.如图中阴影甲的面积比阴影乙的面积大多少()A.6(平方厘米)B.8(平方厘米)C.4(平方厘米)D.10(平方厘米)3.由四个相同的直角三角形和中间的小正方形拼成的一个大正方形(如图).如果直角三角形的两条直角边的长分别是3厘米和2厘米,大正方形的面积是()平方厘米.A.13 B.14 C.15 D.254.图中阴影部分的面积之和是()平方厘米.A.20 B.24 C.26 D.305.如图是由面积都是5平方厘米的8个三角形组成,图中阴影部分的面积是多少平方厘米?列式是()A.8+8×B.5+5×C.5×8×D.××6.如图,涂色部分面积是长方形面积的()A.B.C.无法计算7.下图中梯形ABCD的面积是40平方分米,三角形ABC的面积是25平方分米,则三角形BCD的面积是()A.25平方分米B.15平方分米C.40平方分米8.如图,黑色部分的面积为96平方厘米,则空白部分的面积为()A.96 B.240 C.120 D.1009.(•南城县)图中阴影部分占总面积的()A.B.C.D.10.(•泉州)下列各图中的正方形面积相等,图()的阴影面积与另外三图不同.A.B.C.D.11.(•康县)如图中,两三角形的面积之和占长方形面积的()A.B.C.D.12.(•徐水县)在一长方形草地里有一条宽1米的曲折小路,如图所示,小路的面积是()平方米.A.10 B.20 C.3013.(•揭阳)下面三幅图中,正方形的边长相等,这些图形中阴影部分的面积()大.A.图(1)B.图(2)C.图(3)D.一样大14.(•崇文区)从甲、乙两块厚度、边长均相等的正方形钢板上冲制出一些圆形(如图,每块上的圆形大小分别相同),剩下的边角料重量相比,下面说法正确的是()A.甲重B.乙重C.重量相等15.(•秀屿区)从一个长为3,宽为2的长方形中擦去一个直径为1的圆(如图,单位厘米),下列表示各平方厘米数中最接近阴影部分的面积是()A.6B.5C.4二.填空题(共13小题)16.大小正方形如图.小正方形边长a厘米,阴影面积是_________平方厘米.17.如图,大正方形边长为8cm,小正方形边长为6cm,则阴影部分的面积是_________.18.如图正方形ABCD边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.阴影部分甲与阴影部分乙的面积差是_________平方厘米.19.如图所示,正六边形ABCDEF的面积是36平方厘米,AG=AB,CH=CD,则四边形BCHG的面积是_________平方厘米.20.如图,有一块正方形的草坪,周边用边长为6分米的方砖铺了一条宽15分米的小路(如图阴影部分),共用方砖300块.则小路所围草坪的面积是_________平方分米.21.如图,长方形ABCD的面积是100平方厘米,M在AD边上,且AM=AD,N在AB 边上,且AN=BN.那么,阴影部分的面积等于_________平方厘米.22.如图,ABCD是长方形,图中的数是各部分的面积数,则图中阴影部分的面积为_________.23.(•江油市模拟)图中阴影部分为2cm,AB:AE=4:1,长方形ABCD面积为_________24.(•长沙模拟)下列图形的边长为2厘米,阴影部分面积相等的图形有_________.25.一个机器零件,形状如图阴影所示,这个机器零件的面积是_________dm2.26.如图,在边长相等的五个正方形中,画了两个三角形,三角形A的面积是15平方厘米,那么三角形B的面积是_________平方厘米.27.如图,已知三角形ABC的面积等于18平方厘米,∠ABC、∠DEC都是直角,AC=8厘米,BD=2DC.DE的长是_________厘米.28.如图,平行四边形中阴影A的面积是6平方厘米,阴影B的面积占平行四边形面积的,平行四边形面积是_________平方厘米.B档(提升精练)一.选择题(共15小题)1.(•剑川县模拟)一块边长是4米的正方形草地上,一条对角线的两个顶点各有1棵树,树上各栓1只羊,绳长4米,两头羊都能吃到的草地面积为()平方米.A.6.28 B.9.12 C.12.56 D.50.242.下列图形的面积是()A.800 B.700 C.750 D.6003.(•郑州模拟)如图,将四条长为16cm,宽为2cm的长方形垂直相交平放在桌面上,则桌面被盖住的面积是()A.72cm2B.128cm2C.20cm2D.112cm24.(•牡丹江)如图,四边形ABCD是一个梯形,由三个直角三角形拼成,它的面积是()平方厘米.A.1.92 B.16 C.4D.85.下列图形中,每个小正方形都是边长1cm,图中阴影面积最大的是()A.B.C.6.如图所示:任意四边形ABCD,E是AB中点,F是CD中点,已知四边形ABCD面积是10,则阴影部分的面积是()A.5B.6C.7D.87.(2004•宜兴市)如图,ABCD是一个长方形.三角形PAB、PBC和PCD的面积分别是44平方厘米,144平方厘米和260平方厘米.图中阴影部分的面积是()A.44平方厘米B.60平方厘米C.100平方厘米D.144平方厘米8.(•万州区)如图中,阴影部分的面积占平行四边形面积的()A.B.C.D.9.(•河西区)如图长方形ABEF中AF=10分米,其中梯形ABCG、平行四边形CDFG和三角形DEF的面积比为3:1:1,DE=()分米.A.2B.C.4D.10.(•济源模拟)甲、乙、丙三名小朋友用相同的正方形手工纸剪成圆形,甲剪了一个最大的扇形,乙剪了一最大的圆,丙剪了四个最大的圆.(如图)三个人中对手工纸的利用率情况是()A.甲最高B.乙最高C.丙最高D.三人相同11.(•开化县模拟)如图A、B分别是长方形长和宽的中点,阴影部分面积是长方形的()A.B.C.D.12.(•无锡)用三张边长都是8厘米的正方形铁皮,分别按如图剪下不同规格的圆片.哪张铁皮剩下的废料多?()A.甲铁皮剩下的废料多B.乙铁皮剩下的废料多C.丙铁皮剩下的废料多D.剩下的废料同样多13.(•广东模拟)右图中三角形a,b的面积都是长方形面积的,则阴影部分面积是长方形面积的()A.B.C.D.14.(•中山模拟)如图,图中每个圆的直径都为2cm,阴影部分的周长和的面积各是()A.2π﹣4 π﹣4 B.4π4πC.2π4﹣πD.4715.(•湛江模拟)如图所示,甲和乙两幅图的阴影面积相比,下列说法正确的是()A.甲>乙B.甲<乙C.甲=乙二.填空题(共13小题)16.(•成都)如图,阴影部分的面积是_________.17.(•常熟市)如图:三角形的面积为5平方厘米,求圆的面积是_________平方厘米.18.(•阜阳模拟)如图,求涂色部分的面积是_________平方分米.19.(•台湾模拟)如图正方形的边长为10公分,四边形ABCD的面积为6平方公分,那么,阴影部分的面积为_________平方公分.20.(•广州模拟)在如图中,平行四边形的面积是80平方厘米,图中A、B两个三角形的面积比是_________,阴影部分的面积是_________平方厘米.21.(•雁江区模拟)图中阴影部分的面积是_________cm2,周长是_________cm.22.(•广州)如图ABCD是一个长方形,AB=10厘米,AD=4厘米,E、F分别是BC、AD 的中点,G是线段CD上意一点,则图中阴影部分的面积为_________.23.(•东莞)如图,B、C分别是正方形边上的中点,己知正方形的周长是80厘米.阴影部分的面积是_________平方厘米.24.(•中山模拟)在半径为10cm的圆内,C为AO的中点,则阴影的面积为_________.25.(•泸州模拟)如图,以直角三角形的直角边长20厘米为直径画一个半圆,阴影部分①的面积比②的面积小16平方厘米.BC=_________.26.(•长沙模拟)如图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是_________平方厘米.27.(•长沙模拟)如图,长方形ABCD中,AB=12厘米,BC=8厘米,平行四边形BCEF的一边BF交CD于G,若梯形CEFG的面积为64平方厘米,则DG长为_________.28.(•顺德区模拟)如图是两个一样的直角三角形重叠在一起,图中阴影部分面积是_________.C档(跨越导练)一.填空题(共9小题)1.(•揭阳)图中,平行四边形ABCD的面积是32cm2阴影部分的面积是_________cm2.2.(•广西)如图中,梯形的下底是12厘米,高是5厘米.阴影部分的面积是_________平方厘米.3.(•绍兴县)图中三角形ABC三个顶点上都是半径为1厘米的圆,图中阴影部分的面积是_________.4.(•河北)如图是一个长方形,面积是18平方厘米,P是长方形内任意一点,图中两个阴影部分的面积和是_________平方厘米.5.(•渠县)求阴影部分面积.(单位:cm)6.(•上海)如图中,两个正方形的边长分别为6cm和4cm,求阴影部分的面积.(4%)7.(•长汀县)图中3号图形的面积占七巧板面积的_________.8.(•游仙区模拟)一个圆形纸片,直径是8厘米,把它剪成一个最大的正方形,剪掉的面积是_________平方厘米.9.(•河西区)如图所示,O1、O2分别是所在圆的圆心.如果两圆半径均为2厘米,且图中两块阴影部分的面积相等,那么EF的长度是_________厘米.二.解答题(共13小题)10.(•绍兴县)求图中阴影部分的面积(单位:厘米)11.(•乐清市)左图正方形边长为2厘米.以顶点A为圆心边长AB为半径作圆弧,再分别以AB、AC为直径作半圆弧.求阴影部分面积.12.(•延边州)求图中阴影部分的面积.(单位:厘米)13.(•麟游县)求图中阴影部分的面积(单位:厘米)14.(•金沙县)如图,求阴影部分的面积.已知:r=10cm.15.(•东莞)如图:阴影2比阴影1面积大2.75平方厘米,圆的半径5厘米;求BC的长.16.(•重庆)已知S圆=S长方形求阴影部分周长和面积.17.(•长寿区)第1、2题求阴影部分周长和面积,第3﹣6题只求阴影部分面积.18.(•宁波)如图,直角梯形中,高是5厘米,下底是14厘米,求阴影部分的面积?19.(•天柱县)如图中,小正方形边长为1分米,大正方形边长为2分米,阴影部分面积是多少?20.(•康县模拟)求下列图形的阴影部分的面积.21.(•紫金县)(1)求阴影部分周长(2)求图阴影部分的面积.22.(•郑州)草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(如图).问:这只羊能够活动的范围有多大?组合图形的面积答案典题探究例1.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是18.考点:组合图形的面积;等积变形(位移、割补).分析:根据题意,过点E作BC的垂线于点F,延长CB、EA交点G,因∠AED=135°,所以∠AEF=45°,在三角形EFG中,∠EFG=90°,所以∠EGF=45°,EF=FG=5,即三角形EFG是等腰直角三角形,在三角形ABG中,∠AGB=45°,∠BAG=90°,所以∠ABG=45°,那么三角形ABG是等腰直角三角形,根据三角形、四边形的面积公式可计算出各自的面积,最后再用长方形CDEF的面积加上等腰直角三角形EFG再减去等腰直角三角形ABG即可,列式解答即可得到答案.解答:解:三角形EFG的面积是:5×5÷2=12.5,长方形CDEF的面积是2×5=10,延长出的三角形ABG的面积是:3×3÷2=4.5,组合图形的面积是:12.5+10﹣4.5=18,答这个五边形的面积是18.点评:解答此题的关键是将组合图形的两条边延长分为三角形和长方形,然后再减去延长部分所得到的面积即可.例2.如图,梯形ABCD中,BC=2AD,E、F分别为BC、AB的中点.连接EF、FC.若三角形EFC的面积为a,则梯形ABCD的面积是6a.考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图,连接AE,因为BC=2AD,E为BC的中点,所以四边形AECD是平行四边形,且三角形ABE和平行四边形AECD等底等高,所以平行四边形的面积是这个三角形的面积的2倍,又因为三角形EFC的面积为a,所以三角形BEF的面积也是a,又因为F是AB的中点,所以可得三角形ABE的面积是2a,则平行四边形的面积就是2a×2=4a,据此即可解答问题.解答:解:连接AE,因为BC=2AD,E为BC的中点,所以四边形AECD是平行四边形,且三角形ABE和平行四边形AECD等底等高,所以平行四边形的面积是这个三角形的面积的2倍,又因为三角形EFC的面积为a,所以三角形BEF的面积也是a,又因为F是AB的中点,所以可得三角形ABE的面积是2a,则平行四边形的面积就是2a×2=4a,所以这个梯形的面积是2a+4a=6a.答:则梯形ABCD的面积是6a.故答案为:6a.点评:此题考查了高一定时,三角形的面积与底成正比例的性质以及等底等高的平行四边形是三角形的面积的2倍的灵活应用.例3.如图,每个小方格的面积是1cm2,那么△ABC的面积是8.5cm2.考点:组合图形的面积;三角形的周长和面积.分析:△ABC的面积为长方形RPCQ的面积减三角形ARB的面积减三角形BPC的面积再减三角形CQA的面积,将数据代入公式即可求解.解答:解:如图所示,S△ARB=S长方形ARBH=×6=3(平方厘米),S△BPC=S长方形BPCE=×5=2.5(平方厘米),S△CQA=S长方形CQAF=×12=6(平方厘米),则,S△ABC=S长方形﹣S△ARB﹣S△BPC﹣S△CQA,=20﹣3﹣2.5﹣6,=8.5(平方厘米).故答案为:8.5.点评:此题主要考查组合图形的面积,关键是将图形进行合理的分割.例4.如图等腰三角形中阴影部分的面积是 2.86.考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图所示,阴影部分的面积等于两条直角边为4的等腰直角三角形的面积减去两条直角边为2的等腰直角三角形的面积,再减去半径为2的圆面积的四分之一,据此计算即可解答.解答:解:4÷2=24×4÷2﹣2×2÷2﹣3.14×22÷4=8﹣2﹣3.14=2.86答:阴影部分的面积是2.86.点评:本题主要考查组合图形的面积,解答本题的关键是找出图中阴影部分是哪几部分相减得到的.例5.求右图直角梯形中阴影部分的面积.(单位:厘米)考点:组合图形的面积;三角形的周长和面积;梯形的面积;圆、圆环的面积.专题:压轴题;平面图形的认识与计算.分析:用梯形底面积减去半径是2厘米的圆面积的四分之一,减去一个底是4﹣2=2厘米,高是2厘米的三角形的面积,得到的差就是阴影部分的面积.解答:解:(3+4)×2÷2﹣3.14×22×﹣(4﹣2)×2÷2,=7﹣3.14﹣2,=1.86(平方厘米);答:阴影部分的面积是1.86平方厘米.点评:本题考查了梯形,圆,三角形的面积公式的掌握与运用情况,同时也考查了学生的计算能力.例6.求阴影部分的面积.(单位,厘米)考点:组合图形的面积.专题:压轴题.分析:我们可以右边的小阴影割后移动到左边补上,从图中可以观察到,割补后只要用长方形AODE的面积减去三角形AOC的面积就是整个阴影部分的面积.解答:解:由图知,经过割补后,S阴=S AOED﹣S AOC,=3×6﹣3×3÷2,=18﹣4.5,=13.5(平方厘米);故答案:13.5平方厘米.点评:此题考查了组合图形的面积和割补的思想.演练方阵A档(巩固专练)一.选择题(共15小题)1.如图中,阴影部分的面积甲()乙.A.大于B.小于C.等于D.无法确定考点:组合图形的面积.分析:根据题意甲乙均为三角形,那么在梯形ABCD中,三角形ABC与三角形BCD是等底等高的三角形,所以它们的面积相等,甲部分的面积等于三角形ABC减去三角形BCO,乙部分的面积等于三角形BCD的面积减去三角形BCO的面积,因为三角形ABC与三角形BCD面积相等,所以三角形ABO的面积等于三角形CDO的面积,即甲的面积=乙的面积.解答:解:如图:三角形ABC与三角形BCD是等底等高的三角形,所以三角形ABC的面积等于三角形BCD的面积,甲的面积等于三角形ABC﹣三角形BCO,乙的面积等于三角形BCD﹣三角形BCO,所以甲的面积等于乙的面积.故选:C.点评:解答此题的关键是把甲乙两部分的面积放在同底等高的两个三角形中,同底等高的两个三角形的面积相等,然后去掉共同拥有的三角形BCO,所剩面积也会相等.2.如图中阴影甲的面积比阴影乙的面积大多少()A.6(平方厘米)B.8(平方厘米)C.4(平方厘米)D.10(平方厘米)考点:组合图形的面积.专题:平面图形的认识与计算.分析:求阴影甲与阴影乙的面积差,实际上是求大三角形与正方形的面积差,将数据代入三角形和正方形的面积公式即可求解.解答:解:(6+8)×6÷2﹣6×6,=14×6÷2﹣36,=42﹣36,=6(平方厘米);答:阴影甲的面积比阴影乙的面积大6平方厘米.故选:A.点评:解答此题的关键是明白:求阴影甲与阴影乙的面积差,实际上是求大三角形与正方形的面积差.3.由四个相同的直角三角形和中间的小正方形拼成的一个大正方形(如图).如果直角三角形的两条直角边的长分别是3厘米和2厘米,大正方形的面积是()平方厘米.A.13 B.14 C.15 D.25考点:组合图形的面积.专题:平面图形的认识与计算.分析:由图意可知:中间小正方形的边长为3﹣2=1厘米,则大正方形的面积=直角三角形的面积×4+小正方形的面积,代入数据即可求解.解答:解:3×2÷2×4+(3﹣2)×(3﹣2),=12+1,=13(平方厘米);答:大正方形的面积是13平方厘米.故选:A.点评:由三角形的直角边长求出小正方形的边长,是解答本题的关键.4.图中阴影部分的面积之和是()平方厘米.A.20 B.24 C.26 D.30考点:组合图形的面积.专题:平面图形的认识与计算.分析:等底等高的三角形的面积相等,由图形可知,图中两个空白三角形的面积相等,根据三角形的面积公式:s=ah÷2,把数据代入公式求出两个空白三角形的面积,再根据长方形的面积公式:s=ab,把数据代入公式求出长方形的面积,然后用长方形的面积减去两个空白三角形的面积即可.据此解答.解答:解:8×6﹣6×4÷2×2=48﹣24=24(平方厘米),答:阴影部分的面积是24平方厘米.故选:B.点评:解决此题的关键是利用等积转换,即等底等高的三角形面积相等,用长方形减去空白面积就是阴影面积,5.如图是由面积都是5平方厘米的8个三角形组成,图中阴影部分的面积是多少平方厘米?列式是()A.8+8×B.5+5×C.5×8×D.××考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图所示,三角形②的面积是5,而三角形①的面积是三角形②面积的一半,则阴影部分的面积是5+5×,据此解答即可.解答:解:如上图所示,三角形②的面积是5,而三角形①的面积是三角形②面积的一半,则阴影部分的面积是5+5×,故选:B.点评:将阴影部分进行分割,再据已知条件,即可求出阴影部分的面积.6.如图,涂色部分面积是长方形面积的()A.B.C.无法计算考点:组合图形的面积;分数的意义、读写及分类.专题:平面图形的认识与计算.分析:设长方形的长和宽分别为a和b,两个三角形的高之和正好等于长方形的宽,即等于b,则两个阴影三角形的面积和为a(b1+b2)=ab,所以涂色部分面积是长方形面积的.解答:解:设长方形的长和宽分别为a和b,则两个阴影三角形的面积和为ab,所以涂色部分面积是长方形面积的.故选:B.点评:解答此题的主要依据是:三角形的面积是与其等底等高的平行四边形面积的一半.7.下图中梯形ABCD的面积是40平方分米,三角形ABC的面积是25平方分米,则三角形BCD的面积是()A.25平方分米B.15平方分米C.40平方分米考点:组合图形的面积;三角形的周长和面积.专题:平面图形的认识与计算.分析:根据图知道用梯形ABCD的面积减去三角形ABC的面积即可求出三角形BCD的面积.解答:解:40﹣25=15(平方分米),答:三角形BCD的面积15平方分米;故选:B.点评:关键是根据图得出梯形ABCD的面积减去三角形ABC的面积就是三角形BCD的面积.8.如图,黑色部分的面积为96平方厘米,则空白部分的面积为()A.96 B.240 C.120 D.100考点:组合图形的面积.专题:平面图形的认识与计算.分析:根据平行四边形的面积公式S=ah,得出h=S÷a,由此求出黑色部分的高,即长方形的宽,再根据图得出空白部分的面积等于长方形的面积减去黑色部分的面积,由此再利用长方形的面积公式解答.解答:解:96÷8=12(厘米)(20+8)×12﹣96=28×12﹣96=336﹣96=240(平方厘米)答:空白部分的面积是240平方厘米;故选:B.点评:本题主要是灵活利用平行四边形的面积公式与长方形的面积公式解答.9.(•南城县)图中阴影部分占总面积的()A.B.C.D.考点:组合图形的面积.分析:把阴影部分的图形进行拼凑,把①放到②处,即可得到阴影部分的面积是总面积的.解答:解:由图可知阴影部分的面积是,故选:A.点评:本题把图形进行拼凑,即可得到答案.10.(•泉州)下列各图中的正方形面积相等,图()的阴影面积与另外三图不同.A.B.C.D.考点:组合图形的面积.专题:压轴题;平面图形的认识与计算.分析:从图中可以看出阴影部分的面积=正方形的面积﹣圆的面积.观察图形可发现:四个正方形是全等的,面积是相等;A、C、D三个图形中空白部分可以组成一个完整的圆,根据圆的面积相等可得这三个图形中阴影部分的面积相等,得出答案.解答:解:由图可知:从左到右A、C、D的空白处均可组成一个完整的半径相等的圆,而正方形的面积相等,根据等量减去等量差相等的原理得这三个图形中阴影部分的面积相等.故选:B.点评:此题考查了面积及等积变换,将阴影面积转化为易求的图形的面积的差或和是解题的常用方法.11.(•康县)如图中,两三角形的面积之和占长方形面积的()A.B.C.D.考点:组合图形的面积;分数的意义、读写及分类.专题:压轴题;分数和百分数.分析:假设每个小正方形的面积是1,则2个小三角形的面积都是,2个小三角形的面积和就为1,而长方形的面积为4,于是问题容易得解.解答:解:假设每个小正方形的面积是1,则2个小三角形的面积都是,2个小三角形的面积和就为1,而长方形的面积为4,1÷4=,所以两三角形的面积之和占长方形面积的;故选:C.点评:解答此题的关键是:利用假设法先求出两个三角形的面积和,问题即可得解.12.(•徐水县)在一长方形草地里有一条宽1米的曲折小路,如图所示,小路的面积是()平方米.A.10 B.20 C.30考点:组合图形的面积.专题:压轴题;平面图形的认识与计算.分析:我们把图形进行分割,把①②③排在一起就是一个长方形长是11米,宽是1米,把④⑤⑥图形沿着大长方形的宽排列,得到的长方形的长(10﹣1)米,宽是1米的长方形.解答:解:画图如下:11×1+(10﹣1)×1,=11+9,=20(平方米);故选:B.点评:本题运用长方形的面积公式进行就即可,即“长×宽=面积”.13.(•揭阳)下面三幅图中,正方形的边长相等,这些图形中阴影部分的面积()大.A.图(1)B.图(2)C.图(3)D.一样大考点:组合图形的面积;圆、圆环的面积.分析:这三幅图中,正方形的边长相等,说明正方形的面积相等,求这些图形中阴影部分的面积,都可以认为是从正方形的面积里减去同一个圆的面积,由此得解.解答:解:正方形的边长相等,说明三幅图正方形的面积相等,里面的圆的半径也相等;(1)阴影部分的面积=正方形的面积﹣4×圆的面积;(2)阴影部分的面积=正方形的面积﹣2×圆的面积;(3)阴影部分的面积=正方形的面积﹣圆的面积;所以这些图形中阴影部分的面积一样大.故选:D.点评:此题属于求组合图形的面积,要求阴影部分的面积,就从外面图形面积里减去里面的小图形的面积.14.(•崇文区)从甲、乙两块厚度、边长均相等的正方形钢板上冲制出一些圆形(如图,每块上的圆形大小分别相同),剩下的边角料重量相比,下面说法正确的是()A.甲重B.乙重C.重量相等考点:组合图形的面积;圆、圆环的面积.分析:要解决剩下的边角料重量相比问题,根据题干,只要比较出剩下的边角料的面积大小即可,剩下面积大的重,由此只要求得甲乙两个图中的阴影部分的面积即可解决问题.解答:解:设甲乙两个正方形的边长为12,则甲中圆的半径为:12÷2÷2=3,乙中的圆的半径为12÷3÷2=2,甲剩下的部分为:12×12﹣3.14×32×4,=144﹣113.04,=30.96;乙剩下的部分为:12×12﹣3.14×22×9,=144﹣113.04,=30.96,所以甲乙剩下部分的面积相等,故选:C.点评:此题考查了在正方体中切割等圆的方法,得出每个圆的半径是解决此类问题的关键.15.(•秀屿区)从一个长为3,宽为2的长方形中擦去一个直径为1的圆(如图,单位厘米),下列表示各平方厘米数中最接近阴影部分的面积是()A.6B.5C.4考点:组合图形的面积.专题:压轴题;平面图形的认识与计算.分析:我们运用长方形的面积减去圆的面积就是阴影部分的面积,得出的差再与下列选项进行比较再进行选择.解答:解:3×2﹣3.14×(1÷2)2,=6﹣0.785,=5.215(平方厘米);5.215与5最接近.故选:B.点评:本题考查了长方形及圆的面积公式的掌握与运用情况,同时考查了数的大小比较和近似数.二.填空题(共13小题)16.大小正方形如图.小正方形边长a厘米,阴影面积是a2平方厘米.考点:组合图形的面积.分析:如图所示,连接BC,则三角形ABC和三角形CEB等底等高,则二者的面积相等,它们分别去掉公共部分三角形CFB,剩余部分的面积仍然相等,即三角形CEF的面积和三角形ABF的面积相等,于是阴影部分就转化成了小正方形的面积的一半,问题得解.解答:解:连接BC,则S△ABC=S△CEB,于是S△ABC﹣S△CFB=S△CEB﹣S△CFB,即S△ABF=S△CEF,所以阴影部分的面积=a2;故答案为:a2.点评:解答此题的关键是作出辅助线,将阴影部分的面积转化成小正方形的面积的一半,问题即可得解.17.如图,大正方形边长为8cm,小正方形边长为6cm,则阴影部分的面积是32平方厘米.。

小学数学 多边形面积与组合图形面积(含答案)

小学数学 多边形面积与组合图形面积(含答案)

多边形与组合图形面积精选题一.计算题(共2小题)1.计算如图所示各图形的面积.2.平行四边形ABCD的边BC长10厘米,直角三角形的直角边EC长8厘米.已知阴影部分的面积比三角形EGF的面积大9平方厘米.求CF的长.二.解答题(共48小题)3.求图中所示阴影部分的面积.(单位:cm)4.计算如图图形中阴影部分的面积.5.如图所示是学校生态园的平面图,你能算出生态园的面积吗?(单位:m)6.计算下面图形的面积.7.图形由两个正方形组成,求阴影部分的面积.(单位:cm)8.计算阴影部分的面积.9.在如图所示中剪出一个最大的长方形,画出来并求出剩余部分的面积.10.求如图平面图形的面积.11.李大爷家有一块菜地(如图所示)你能用巧妙的方法算出菜地的周长和面积吗?12.一张长8厘米,宽4厘米的长方形纸,从下边的中点和右上角顶点连线一条线段,沿这条线段剪去一个角(如图所示),剩下的面积是多少?13.用篱笆围一块菜地,如图的梯形,一边利用房屋的墙壁,已知梯形上、下底的比为3:5,篱笆长40米,求菜地面积.14.把一个大平行四边形分成3块,(如图)已知图形阴影部分是平行四边形,面积是12平方米,求三角形和梯形的面积各是多少?15.如图,三角形ABC的面积是56平方米,BD=DC,DE垂直于AC,AC=14米.求图中阴影部分的面积.16.李大伯一边利用房屋干墙壁,另三边用篱笆围成一个梯形养鸡场地(如图).篱笆总长是36米.求这个养鸡场的面积是多少?17.求下列图形中阴影部分的面积.18.看图计算如图图形的面积.19.认真观察,巧计算.(用两种方法计算组合图形的面积)20.一块水稻田的形状如下图.如果按照平均每穴30平方分米插秧,大约要插多少穴?21.求组合图形的面积.(1)图1的面积是:;(2)图2的面积是:.22.如图,已知四条线段的长分别是:AB=2厘米,CE=6厘米,CD=5厘米,AF=4厘米,并且有两个直角.求四边形ABCD的面积.23.如图,长方形里有四个三角形,已知其中的三角形的面积,求三角形ADE 的面积.24.(如图)三角形ABC的周长为80厘米,形内有一点P到三角形三条边的距离都是8厘米,求三角形ABC的面积.25.求如图图形的面积.26.我会计算阴影部分的面积.27.如图:ABCE是一个梯形,其中ABCD是长8厘米,宽7厘米的长方形,AF 长是4厘米,求阴影部分的面积?28.如图是由两个完全一样的直角三角形叠在一起而成的,求阴影部分的面积.(单位:厘米)29.计算下列图形的面积.(单位:厘米)30.如图所示,长方形的ABCD面积被线段AE,AF分成三等份,且三角形AEF 的面积是35平方厘米,求长方形的面积.31.图中长方形的面积是432平方厘米,求阴影部分的面积.32.如图所示,已知正方形和三角形有一部分重叠,三角形乙比三角形甲面积大7平方厘米,则X=厘米.33.用篱笆围成一个养鸡场(如图所示),一面靠墙,篱笆总长90米,下底长度是上底长度的3倍.求这个养鸡场的面积.34.如图正方形ABCD的边长是4分米,长方形EFGD的长GD是5分米,求DE 的长.35.已知如图大正方形的边长是5厘米,小正方形的边长是3厘米,求阴影部分的面积.36.如图所示,长方形ABCD的面积是180平方厘米,CD长15厘米,ED长17厘米,求三角形ACE的面积.37.图中的两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积.38.如图ABCD是梯形,∠A=∠B=90°,AB=12cm,BC=6cm,甲、乙两阴影面积之差为24cm2,求ABCD的面积.39.有一块如图形状的菜田,算一算:①占地多少公顷?所需数据在图中选择.(单位:m)②如果每公顷需要施化肥50千克,这块地一共要施肥多少千克?40.你能求出下列图形的周长吗?41.求组合图形的面积.(单位:米)42.如图,一个梯形的上底是5厘米,下底是8厘米.三角形的高是4厘米,并把三角形分为面积相等的甲乙两部分,求阴影部分的面积.43.求如图的面积或阴影面积:44.如图,是大小两个正方形组成的图形,大正方形边长是8厘米,小正方形边长为6厘米,求阴影部分的面积.45.如图,正方形ABCD的边AB、BC分别在三角形BEF的BE、BF边上,顶点D 在EF边上,点D把EF分成两段,DE=12米,DF=15米,求两个阴影三角形的面积和.46.在长方形ABCD中,AD=15厘米,AB=8厘米,四边形EFGO的面积是9平方厘米,阴影部分的面积是多少平方厘米?47.如图是由两个平行四边形组成的,这个图形的面积是多少?48.如图,四边形ACEH是梯形,ACEG是平行四边形,ABGH是正方形,CDFG 是长方形.已知,AC=8厘米,HE=13厘米,求阴影部分的面积.49.图中长方形的面积是180平方厘米,S1的面是45平方厘米,S2的面积是60平方厘米.求阴影部分的面积.50.有一块铁皮,形状如图所示.如要油饰这块铁皮的一面,每平方米用油漆0.6千克,刷完这块铁皮需要多少千克油漆?多边形与组合图形面积精选题参考答案与试题解析一.计算题(共2小题)1.【解答】解:(1)8×6÷2=24(平方厘米)答:三角形的面积是24平方厘米.(2)(8+20)×11÷2=28×11÷2=154(平方厘米)答:梯形的面积是154平方厘米.(3)12×8+10×3÷2=96+15=111(平方分米)答:这个图形的面积是111平方分米.2.【解答】解:设EF长为x厘米,则CF就是8﹣x厘米,根据题干分析可得方程:10×(8﹣x)=10×8÷2+9 80﹣10x=49 10x=31 x=3.18﹣3.1=4.9(厘米);答:CF长为4.9厘米.二.解答题(共48小题)3.【解答】解:8.5×5﹣8.5×5÷2=42.5﹣21.25=21.25(cm2),答:阴影部分的面积为21.25cm2.4.【解答】解:6×6+4×4﹣6×6÷2﹣4×4÷2﹣6×(6﹣4)÷2=36+16﹣18﹣8﹣6=20(平方厘米)答:阴影部分的面积是20平方厘米.5.【解答】解:20﹣12=8(米)16﹣10=6(米)12×16+8×6÷2=192+24216(平方米)答:生态园的面积是216平方米.6.【解答】解:15×4=60(平方米),答:它的面积是60平方米.7.【解答】解:(10+8)×10÷2=18×5=90(平方厘米)答:阴影部分的面积是90平方厘米.8.【解答】解:30×28÷2=30×14=420(平方厘米)答:阴影部分的面积是420平方厘米.9.【解答】解:如图所示,(12﹣6)×(10﹣5)÷2=6×5÷2=15(平方厘米)答:剩余部分的面积是15平方厘米.10.【解答】解:(1)15×30=450(平方厘米)答:平行四边形的面积是450平方厘米.(2)5×2÷2+5×3=5+15=20(平方米)答:这个图形的面积是20平方米.11.【解答】解:周长是:(17+8+23)×2=48×2=96(米)面积是:(17+8)×23﹣(23﹣8)×17=25×23﹣15×17=575﹣255=320(平方米)答:周长是96米,面积是329平方米.12.【解答】解:(8+8÷2)×4÷2=(8+4)×4÷2=12×4÷2=24(平方厘米),答:剩下的面积为24平方厘米.13.【解答】解:如图:5﹣3=240×=8(米)40×=20(米)40×=12(米)(12+20)×8÷2=32×8÷2=128(平方米)答:菜地面积是128平方米.14.【解答】解:因为大平行四边形的对边平行且相等,所以阴影部分的高=12÷3=4(米),所以三角形的面积=×3×4=6(平方厘米),梯形的面积=(3+6)×4=18(平方厘米).答:三角形的面积是6平方厘米,梯形的面积是18平方厘米.15.【解答】解:因为BD=DC,所以三角形ABD和三角形ADC的面积相等,因为三角形ABC的面积是56平方米,所以图中阴影部分的面积为:56÷2=28(平方米)答:阴影部分的面积是28平方米.16.【解答】解:(36﹣10)×10÷2=26×10÷2=130(平方米)答:这个养鸡场的面积是130平方米.17.【解答】解:(2+9+2)×(2+4+2)+2×2×4=13×8﹣16=104﹣16=88(平方厘米)答:阴影部分的面积是88平方厘米.18.【解答】解:(1)8×3=24(平方分米)答:图形的面积是24平方(2)25×14÷2=25×7=175(平方米)答:图形的面积是175960平方厘米.(3)分米.(26+34)×32÷2=60×32÷2=960(平方分米)答:图形的面积是960平方分米.(4)26×20+(26+30)×5÷2=520+56×5÷2=520+140=660(平方厘米)答:图形的面积是60平方厘米.(5)6×7+(8﹣6)×(7﹣2.5)÷2=42+2×4.5÷2=42+4.5=46.5(平方厘米)答:图形的面积是46.5平方厘米.19.【解答】解:(1)如图所示,,4×10+(9+10)×(5﹣4)÷2=40+9.5=49.5(平方厘米)(2)如图所示,,5×9+(4+5)×(10﹣9)÷2=45+4.5=49.5(平方厘米)答:组合图形的面积是49.5平方厘米.20.【解答】解:8×11÷2+(11+22)×10÷2=44+165=209(平方分米)209÷30=6(穴)…29(平方分米)6+1=7(穴)答:大约要插7穴.21.【解答】解:(1)24×8+10×24÷2=192+120=312(平方米)答:组合图形的面积为312平方米.(2)12×6+(12+6)×6÷2=72+18×3=72+54=126(平方米)答:组合图形的面积为126平方米.故答案为:312,126.22.【解答】解:连接AC,就变成ADC和ABC两个三角形,如图:三角形ABC 已知底AB=2(厘米)高就是CE=6(厘米)那么三角形ABC面积就是2×6÷2=6(平方厘米)三角形ADC已知底DC=5(厘米)高就是AF=4(厘米)三角形ADC 面积是5×4÷2=10(平方厘米)ABCD面积是10+6=16(平方厘米)答:四边形ABCD的面积16平方厘米.23.【解答】解:如图:S △ABE面积+S△DEC面积=(AB×EF)÷2+(DC×EG)÷2,因为AB=DC,两个三角形高的和等于AD,所以,S△ABE面积+S△DEC面积=AB×AD÷2=长方形面积的一半;同理,另两个三角形面积的和也是长方形面积的一半,即S△ABE面积+S△EDC面积=S△ADE面积+S△BCE面积,即S△=37+29﹣41=25.24.【解答】解:如图:S△ABC =S△APB+S△APC+S△BPC=AB×BP÷2+AC×PE÷2+BC×PD÷2=PD×(AB+AC+BC)=×8×80=320(平方厘米)答:三角形ABC的面积是320平方厘米.25.【解答】解:(1)14×12÷2=168÷2=84(平方厘米),答:面积是84平方厘米;(2)(12+18)×16÷2=30×16÷2=240(平方米),答:面积是240平方米.26.【解答】解:15×9﹣6×6=135﹣36=99(平方分米)答:阴影部分的面积是99平方分米.27.【解答】解:8×7÷2﹣8×4÷2=28﹣16=12(cm2)答:阴影部分的面积是12平方厘米.28.【解答】解:S=[(8﹣3)+8]×5÷2=65÷2=32.5(平方厘米);答:阴影部分的面阴影积是32.5平方厘米.29.【解答】解:(1)12×8﹣×(12﹣4﹣4)×3,=96﹣6,=90(平方厘米);(2)12×8+×10×(12﹣5),=96+35,=131(平方厘米).30.【解答】解:根据以上分析知:S△EFC=EC×CF=×BC×CD=BC ×CD=×ABCD的面积,四边形AECF的面积=×ABCD的面积,设长方形ABCD 的面积为S,根据题意得:(﹣)×S=35 S=35,S=126.答:这个长方形有面积是126平方厘米.31.【解答】解:432÷36×6÷2=12×6÷2=72÷2=36(平方厘米)答:阴影部分的面积是36平方厘米.32.【解答】解:三角形乙的面积比三角形甲的面积大7平方厘米,根据图形可得:三角形ABE的面积比正方形ABCD 的面积大7平方厘米,所以三角形ABE的面积为:7×7+7=49+7=56(平方厘米),又因为AB=7厘米,所以BE的长度是:56×2÷7=16(厘米),所以CE的长度为:16﹣7=9(厘米),即X=9厘米.答:X的长度是9厘米.故答案为:9.33.【解答】解:3﹣1=290÷(3+3)=15(米)下底:15×3=45(米)高:15×2=30(米)面积:(15+45)×30÷2=30×30=900(平方米)答:这个养鸡场的面积是900平方米.34.【解答】解:4×4÷2=8(平方分米),8×2÷5=3.2(分米).答:DE的长是3.2分米.35.【解答】解:(5+3)×3÷2+5×5÷2﹣3×(3+5)÷2,=8×3÷2+5×5÷2﹣3×8÷2,=12+12.5﹣12,=12.5(平方厘米).答:阴影部分的面积是12.5平方厘米.36.【解答】解:连接ED,AD=BC=180÷15=12(厘米),AE2=172﹣122=145(平方厘米),AE=,三角形ACE的面积是:×12÷2,=6(平方厘米);答:三角形ACE的面积是6平方厘米.37.【解答】解:大三角形面积:10×(10+6)÷2=80(平方厘米),小三角形面积:10×10÷2=50(平方厘米),阴影部分三角形面积:80﹣50=30(平方厘米).答:阴影部分的面积是30平方厘米.38.【解答】解:12×AD÷2﹣12×6÷2=24,6AD﹣36=24,6AD=60,AD=10;梯形的面积为:(6+10)×12÷2,=16×12÷2,=96(平方厘米);答:ABCD的面积是96平方厘米.39.【解答】解:①×(75+125)×40+×125×48=4000+3000=7000(平方米),7000平方米=0.7公顷;答:占地0.7公顷.②0.7×50=35(千克);答:这块地一共要施肥35千克.40.【解答】解:(1)4+3+3=10(2)(5+3)×2=16(3)4+2+3+5+2=16.41.【解答】解:5×4÷2+7×5+(5+12)×3÷2=5×4÷2+7×5+17×3÷2=10+35+25.5=70.5(平方米)答:面积是70.5平方米.42.【解答】解:[5﹣(8﹣5)+5]×4÷2,=[5﹣3+5]×4÷2,=[2+5]×4÷2,=7×4÷2,=28÷2,=14(平方厘米);答:阴影部分的面积为14平方厘米.43.【解答】解:(1)(15+20)×25÷2+12×20÷2=437.5+120=557.5答;图形的面积是557.5.(2)12×8﹣4×8÷2=96﹣16=80答:阴影部分的面积是80.44.【解答】解:阴影部分的面积:6×6÷2=36÷2=18(平方厘米)答:阴影部分的面积是18平方厘米.45.【解答】解:据分析解答如下:12×15÷2=90(平方米);答:两个阴影三角形的面积和是90平方米.46.【解答】解:15×8﹣15×8÷2+9,=120﹣60+9,=69(平方厘米).答:阴影部分的面积是69平方厘米.47.【解答】解:3×7.5=22.5(平方厘米).答:这个图形的面积是22.5平方厘米.48.【解答】解:因为ACEG是平行四边形,所以AC=GE=8厘米又已知HE=13厘米,所以HG=13﹣8=5(厘米)故GB=5厘米所以红色三角形的面积是:8×5÷2=20(平方厘米)即阴影部分的面积是20平方厘米.答:阴影部分的面积是20平方厘米.49.【解答】解:连接BD,则S△BCD=180÷2=90(平方厘米),S△BDF=90﹣60=30(平方厘米),所以BF:BC:=1:3;同理,BE:AB=1:2,因此S△BEF=BE×BF,=×BC×AB,=BC×AB,=×180,=15(平方厘米);阴影部分的面积:180﹣60﹣45﹣15,=180﹣120,=60(平方厘米).答:阴影部分的面积是60平方厘米.50.【解答】解:(3×1.2÷2+5×2.4)×0.6,=(1.8+12)×0.6,=13.8×0.6,=8.28(千克);答:刷完这块铁皮需要8.28千克油漆.。

六年级下册数学试题-小升初复习讲练:组合图形的面积(含答案解析)全国通用 (2份打包)

六年级下册数学试题-小升初复习讲练:组合图形的面积(含答案解析)全国通用 (2份打包)

组合图形的面积典题探究例1.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是.例2.如图,梯形ABCD中,BC=2AD,E、F分别为BC、AB的中点.连接EF、FC.若三角形EFC的面积为a,则梯形ABCD的面积是.例3.如图,每个小方格的面积是1cm2,那么△ABC的面积是cm2.例4.如图等腰三角形中阴影部分的面积是.例5.求右图直角梯形中阴影部分的面积.(单位:厘米)例6.求阴影部分的面积.(单位,厘米)演练方阵A档(巩固专练)一.选择题(共15小题)1.如图中,阴影部分的面积甲()乙.A.大于B.小于C.等于D.无法确定2.如图中阴影甲的面积比阴影乙的面积大多少()A.6(平方厘米)B.8(平方厘米)C.4(平方厘米)D.10(平方厘米)3.由四个相同的直角三角形和中间的小正方形拼成的一个大正方形(如图).如果直角三角形的两条直角边的长分别是3厘米和2厘米,大正方形的面积是()平方厘米.A.13 B.14 C.15 D.254.图中阴影部分的面积之和是()平方厘米.A.20 B.24 C.26 D.305.如图是由面积都是5平方厘米的8个三角形组成,图中阴影部分的面积是多少平方厘米?列式是()A.8+8×B.5+5×C.5×8×D.××6.如图,涂色部分面积是长方形面积的()A.B.C.无法计算7.下图中梯形ABCD的面积是40平方分米,三角形ABC的面积是25平方分米,则三角形BCD的面积是()A.25平方分米B.15平方分米C.40平方分米8.如图,黑色部分的面积为96平方厘米,则空白部分的面积为()A.96 B.240 C.120 D.1009.(•南城县)图中阴影部分占总面积的()A.B.C.D.10.(•泉州)下列各图中的正方形面积相等,图()的阴影面积与另外三图不同.A.B.C.D.11.(•康县)如图中,两三角形的面积之和占长方形面积的()A.B.C.D.12.(•徐水县)在一长方形草地里有一条宽1米的曲折小路,如图所示,小路的面积是()平方米.A.10 B.20 C.3013.(•揭阳)下面三幅图中,正方形的边长相等,这些图形中阴影部分的面积()大.A.图(1)B.图(2)C.图(3)D.一样大14.(•崇文区)从甲、乙两块厚度、边长均相等的正方形钢板上冲制出一些圆形(如图,每块上的圆形大小分别相同),剩下的边角料重量相比,下面说法正确的是()A.甲重B.乙重C.重量相等15.(•秀屿区)从一个长为3,宽为2的长方形中擦去一个直径为1的圆(如图,单位厘米),下列表示各平方厘米数中最接近阴影部分的面积是()A.6B.5C.4二.填空题(共13小题)16.大小正方形如图.小正方形边长a厘米,阴影面积是_________平方厘米.17.如图,大正方形边长为8cm,小正方形边长为6cm,则阴影部分的面积是_________.18.如图正方形ABCD边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.阴影部分甲与阴影部分乙的面积差是_________平方厘米.19.如图所示,正六边形ABCDEF的面积是36平方厘米,AG=AB,CH=CD,则四边形BCHG的面积是_________平方厘米.20.如图,有一块正方形的草坪,周边用边长为6分米的方砖铺了一条宽15分米的小路(如图阴影部分),共用方砖300块.则小路所围草坪的面积是_________平方分米.21.如图,长方形ABCD的面积是100平方厘米,M在AD边上,且AM=AD,N在AB 边上,且AN=BN.那么,阴影部分的面积等于_________平方厘米.22.如图,ABCD是长方形,图中的数是各部分的面积数,则图中阴影部分的面积为_________.23.(•江油市模拟)图中阴影部分为2cm,AB:AE=4:1,长方形ABCD面积为_________24.(•长沙模拟)下列图形的边长为2厘米,阴影部分面积相等的图形有_________.25.一个机器零件,形状如图阴影所示,这个机器零件的面积是_________dm2.26.如图,在边长相等的五个正方形中,画了两个三角形,三角形A的面积是15平方厘米,那么三角形B的面积是_________平方厘米.27.如图,已知三角形ABC的面积等于18平方厘米,∠ABC、∠DEC都是直角,AC=8厘米,BD=2DC.DE的长是_________厘米.28.如图,平行四边形中阴影A的面积是6平方厘米,阴影B的面积占平行四边形面积的,平行四边形面积是_________平方厘米.B档(提升精练)一.选择题(共15小题)1.(•剑川县模拟)一块边长是4米的正方形草地上,一条对角线的两个顶点各有1棵树,树上各栓1只羊,绳长4米,两头羊都能吃到的草地面积为()平方米.A.6.28 B.9.12 C.12.56 D.50.242.下列图形的面积是()A.800 B.700 C.750 D.6003.(•郑州模拟)如图,将四条长为16cm,宽为2cm的长方形垂直相交平放在桌面上,则桌面被盖住的面积是()A.72cm2B.128cm2C.20cm2D.112cm24.(•牡丹江)如图,四边形ABCD是一个梯形,由三个直角三角形拼成,它的面积是()平方厘米.A.1.92 B.16 C.4D.85.下列图形中,每个小正方形都是边长1cm,图中阴影面积最大的是()A.B.C.6.如图所示:任意四边形ABCD,E是AB中点,F是CD中点,已知四边形ABCD面积是10,则阴影部分的面积是()A.5B.6C.7D.87.(2004•宜兴市)如图,ABCD是一个长方形.三角形PAB、PBC和PCD的面积分别是44平方厘米,144平方厘米和260平方厘米.图中阴影部分的面积是()A.44平方厘米B.60平方厘米C.100平方厘米D.144平方厘米8.(•万州区)如图中,阴影部分的面积占平行四边形面积的()A.B.C.D.9.(•河西区)如图长方形ABEF中AF=10分米,其中梯形ABCG、平行四边形CDFG和三角形DEF的面积比为3:1:1,DE=()分米.A.2B.C.4D.10.(•济源模拟)甲、乙、丙三名小朋友用相同的正方形手工纸剪成圆形,甲剪了一个最大的扇形,乙剪了一最大的圆,丙剪了四个最大的圆.(如图)三个人中对手工纸的利用率情况是()A.甲最高B.乙最高C.丙最高D.三人相同11.(•开化县模拟)如图A、B分别是长方形长和宽的中点,阴影部分面积是长方形的()A.B.C.D.12.(•无锡)用三张边长都是8厘米的正方形铁皮,分别按如图剪下不同规格的圆片.哪张铁皮剩下的废料多?()A.甲铁皮剩下的废料多B.乙铁皮剩下的废料多C.丙铁皮剩下的废料多D.剩下的废料同样多13.(•广东模拟)右图中三角形a,b的面积都是长方形面积的,则阴影部分面积是长方形面积的()A.B.C.D.14.(•中山模拟)如图,图中每个圆的直径都为2cm,阴影部分的周长和的面积各是()A.2π﹣4 π﹣4 B.4π4πC.2π4﹣πD.4715.(•湛江模拟)如图所示,甲和乙两幅图的阴影面积相比,下列说法正确的是()A.甲>乙B.甲<乙C.甲=乙二.填空题(共13小题)16.(•成都)如图,阴影部分的面积是_________.17.(•常熟市)如图:三角形的面积为5平方厘米,求圆的面积是_________平方厘米.18.(•阜阳模拟)如图,求涂色部分的面积是_________平方分米.19.(•台湾模拟)如图正方形的边长为10公分,四边形ABCD的面积为6平方公分,那么,阴影部分的面积为_________平方公分.20.(•广州模拟)在如图中,平行四边形的面积是80平方厘米,图中A、B两个三角形的面积比是_________,阴影部分的面积是_________平方厘米.21.(•雁江区模拟)图中阴影部分的面积是_________cm2,周长是_________cm.22.(•广州)如图ABCD是一个长方形,AB=10厘米,AD=4厘米,E、F分别是BC、AD 的中点,G是线段CD上意一点,则图中阴影部分的面积为_________.23.(•东莞)如图,B、C分别是正方形边上的中点,己知正方形的周长是80厘米.阴影部分的面积是_________平方厘米.24.(•中山模拟)在半径为10cm的圆内,C为AO的中点,则阴影的面积为_________.25.(•泸州模拟)如图,以直角三角形的直角边长20厘米为直径画一个半圆,阴影部分①的面积比②的面积小16平方厘米.BC=_________.26.(•长沙模拟)如图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是_________平方厘米.27.(•长沙模拟)如图,长方形ABCD中,AB=12厘米,BC=8厘米,平行四边形BCEF的一边BF交CD于G,若梯形CEFG的面积为64平方厘米,则DG长为_________.28.(•顺德区模拟)如图是两个一样的直角三角形重叠在一起,图中阴影部分面积是_________.C档(跨越导练)一.填空题(共9小题)1.(•揭阳)图中,平行四边形ABCD的面积是32cm2阴影部分的面积是_________cm2.2.(•广西)如图中,梯形的下底是12厘米,高是5厘米.阴影部分的面积是_________平方厘米.3.(•绍兴县)图中三角形ABC三个顶点上都是半径为1厘米的圆,图中阴影部分的面积是_________.4.(•河北)如图是一个长方形,面积是18平方厘米,P是长方形内任意一点,图中两个阴影部分的面积和是_________平方厘米.5.(•渠县)求阴影部分面积.(单位:cm)6.(•上海)如图中,两个正方形的边长分别为6cm和4cm,求阴影部分的面积.(4%)7.(•长汀县)图中3号图形的面积占七巧板面积的_________.8.(•游仙区模拟)一个圆形纸片,直径是8厘米,把它剪成一个最大的正方形,剪掉的面积是_________平方厘米.9.(•河西区)如图所示,O1、O2分别是所在圆的圆心.如果两圆半径均为2厘米,且图中两块阴影部分的面积相等,那么EF的长度是_________厘米.二.解答题(共13小题)10.(•绍兴县)求图中阴影部分的面积(单位:厘米)11.(•乐清市)左图正方形边长为2厘米.以顶点A为圆心边长AB为半径作圆弧,再分别以AB、AC为直径作半圆弧.求阴影部分面积.12.(•延边州)求图中阴影部分的面积.(单位:厘米)13.(•麟游县)求图中阴影部分的面积(单位:厘米)14.(•金沙县)如图,求阴影部分的面积.已知:r=10cm.15.(•东莞)如图:阴影2比阴影1面积大2.75平方厘米,圆的半径5厘米;求BC的长.16.(•重庆)已知S圆=S长方形求阴影部分周长和面积.17.(•长寿区)第1、2题求阴影部分周长和面积,第3﹣6题只求阴影部分面积.18.(•宁波)如图,直角梯形中,高是5厘米,下底是14厘米,求阴影部分的面积?19.(•天柱县)如图中,小正方形边长为1分米,大正方形边长为2分米,阴影部分面积是多少?20.(•康县模拟)求下列图形的阴影部分的面积.21.(•紫金县)(1)求阴影部分周长(2)求图阴影部分的面积.22.(•郑州)草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(如图).问:这只羊能够活动的范围有多大?组合图形的面积答案典题探究例1.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是18.考点:组合图形的面积;等积变形(位移、割补).分析:根据题意,过点E作BC的垂线于点F,延长CB、EA交点G,因∠AED=135°,所以∠AEF=45°,在三角形EFG中,∠EFG=90°,所以∠EGF=45°,EF=FG=5,即三角形EFG是等腰直角三角形,在三角形ABG中,∠AGB=45°,∠BAG=90°,所以∠ABG=45°,那么三角形ABG是等腰直角三角形,根据三角形、四边形的面积公式可计算出各自的面积,最后再用长方形CDEF的面积加上等腰直角三角形EFG再减去等腰直角三角形ABG即可,列式解答即可得到答案.解答:解:三角形EFG的面积是:5×5÷2=12.5,长方形CDEF的面积是2×5=10,延长出的三角形ABG的面积是:3×3÷2=4.5,组合图形的面积是:12.5+10﹣4.5=18,答这个五边形的面积是18.点评:解答此题的关键是将组合图形的两条边延长分为三角形和长方形,然后再减去延长部分所得到的面积即可.例2.如图,梯形ABCD中,BC=2AD,E、F分别为BC、AB的中点.连接EF、FC.若三角形EFC的面积为a,则梯形ABCD的面积是6a.考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图,连接AE,因为BC=2AD,E为BC的中点,所以四边形AECD是平行四边形,且三角形ABE和平行四边形AECD等底等高,所以平行四边形的面积是这个三角形的面积的2倍,又因为三角形EFC的面积为a,所以三角形BEF的面积也是a,又因为F是AB的中点,所以可得三角形ABE的面积是2a,则平行四边形的面积就是2a×2=4a,据此即可解答问题.解答:解:连接AE,因为BC=2AD,E为BC的中点,所以四边形AECD是平行四边形,且三角形ABE和平行四边形AECD等底等高,所以平行四边形的面积是这个三角形的面积的2倍,又因为三角形EFC的面积为a,所以三角形BEF的面积也是a,又因为F是AB的中点,所以可得三角形ABE的面积是2a,则平行四边形的面积就是2a×2=4a,所以这个梯形的面积是2a+4a=6a.答:则梯形ABCD的面积是6a.故答案为:6a.点评:此题考查了高一定时,三角形的面积与底成正比例的性质以及等底等高的平行四边形是三角形的面积的2倍的灵活应用.例3.如图,每个小方格的面积是1cm2,那么△ABC的面积是8.5cm2.考点:组合图形的面积;三角形的周长和面积.分析:△ABC的面积为长方形RPCQ的面积减三角形ARB的面积减三角形BPC的面积再减三角形CQA的面积,将数据代入公式即可求解.解答:解:如图所示,S△ARB=S长方形ARBH=×6=3(平方厘米),S△BPC=S长方形BPCE=×5=2.5(平方厘米),S△CQA=S长方形CQAF=×12=6(平方厘米),则,S△ABC=S长方形﹣S△ARB﹣S△BPC﹣S△CQA,=20﹣3﹣2.5﹣6,=8.5(平方厘米).故答案为:8.5.点评:此题主要考查组合图形的面积,关键是将图形进行合理的分割.例4.如图等腰三角形中阴影部分的面积是 2.86.考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图所示,阴影部分的面积等于两条直角边为4的等腰直角三角形的面积减去两条直角边为2的等腰直角三角形的面积,再减去半径为2的圆面积的四分之一,据此计算即可解答.解答:解:4÷2=24×4÷2﹣2×2÷2﹣3.14×22÷4=8﹣2﹣3.14=2.86答:阴影部分的面积是2.86.点评:本题主要考查组合图形的面积,解答本题的关键是找出图中阴影部分是哪几部分相减得到的.例5.求右图直角梯形中阴影部分的面积.(单位:厘米)考点:组合图形的面积;三角形的周长和面积;梯形的面积;圆、圆环的面积.专题:压轴题;平面图形的认识与计算.分析:用梯形底面积减去半径是2厘米的圆面积的四分之一,减去一个底是4﹣2=2厘米,高是2厘米的三角形的面积,得到的差就是阴影部分的面积.解答:解:(3+4)×2÷2﹣3.14×22×﹣(4﹣2)×2÷2,=7﹣3.14﹣2,=1.86(平方厘米);答:阴影部分的面积是1.86平方厘米.点评:本题考查了梯形,圆,三角形的面积公式的掌握与运用情况,同时也考查了学生的计算能力.例6.求阴影部分的面积.(单位,厘米)考点:组合图形的面积.专题:压轴题.分析:我们可以右边的小阴影割后移动到左边补上,从图中可以观察到,割补后只要用长方形AODE的面积减去三角形AOC的面积就是整个阴影部分的面积.解答:解:由图知,经过割补后,S阴=S AOED﹣S AOC,=3×6﹣3×3÷2,=18﹣4.5,=13.5(平方厘米);故答案:13.5平方厘米.点评:此题考查了组合图形的面积和割补的思想.演练方阵A档(巩固专练)一.选择题(共15小题)1.如图中,阴影部分的面积甲()乙.A.大于B.小于C.等于D.无法确定考点:组合图形的面积.分析:根据题意甲乙均为三角形,那么在梯形ABCD中,三角形ABC与三角形BCD是等底等高的三角形,所以它们的面积相等,甲部分的面积等于三角形ABC减去三角形BCO,乙部分的面积等于三角形BCD的面积减去三角形BCO的面积,因为三角形ABC与三角形BCD面积相等,所以三角形ABO的面积等于三角形CDO的面积,即甲的面积=乙的面积.解答:解:如图:三角形ABC与三角形BCD是等底等高的三角形,所以三角形ABC的面积等于三角形BCD的面积,甲的面积等于三角形ABC﹣三角形BCO,乙的面积等于三角形BCD﹣三角形BCO,所以甲的面积等于乙的面积.故选:C.点评:解答此题的关键是把甲乙两部分的面积放在同底等高的两个三角形中,同底等高的两个三角形的面积相等,然后去掉共同拥有的三角形BCO,所剩面积也会相等.2.如图中阴影甲的面积比阴影乙的面积大多少()A.6(平方厘米)B.8(平方厘米)C.4(平方厘米)D.10(平方厘米)考点:组合图形的面积.专题:平面图形的认识与计算.分析:求阴影甲与阴影乙的面积差,实际上是求大三角形与正方形的面积差,将数据代入三角形和正方形的面积公式即可求解.解答:解:(6+8)×6÷2﹣6×6,=14×6÷2﹣36,=42﹣36,=6(平方厘米);答:阴影甲的面积比阴影乙的面积大6平方厘米.故选:A.点评:解答此题的关键是明白:求阴影甲与阴影乙的面积差,实际上是求大三角形与正方形的面积差.3.由四个相同的直角三角形和中间的小正方形拼成的一个大正方形(如图).如果直角三角形的两条直角边的长分别是3厘米和2厘米,大正方形的面积是()平方厘米.A.13 B.14 C.15 D.25考点:组合图形的面积.专题:平面图形的认识与计算.分析:由图意可知:中间小正方形的边长为3﹣2=1厘米,则大正方形的面积=直角三角形的面积×4+小正方形的面积,代入数据即可求解.解答:解:3×2÷2×4+(3﹣2)×(3﹣2),=12+1,=13(平方厘米);答:大正方形的面积是13平方厘米.故选:A.点评:由三角形的直角边长求出小正方形的边长,是解答本题的关键.4.图中阴影部分的面积之和是()平方厘米.A.20 B.24 C.26 D.30考点:组合图形的面积.专题:平面图形的认识与计算.分析:等底等高的三角形的面积相等,由图形可知,图中两个空白三角形的面积相等,根据三角形的面积公式:s=ah÷2,把数据代入公式求出两个空白三角形的面积,再根据长方形的面积公式:s=ab,把数据代入公式求出长方形的面积,然后用长方形的面积减去两个空白三角形的面积即可.据此解答.解答:解:8×6﹣6×4÷2×2=48﹣24=24(平方厘米),答:阴影部分的面积是24平方厘米.故选:B.点评:解决此题的关键是利用等积转换,即等底等高的三角形面积相等,用长方形减去空白面积就是阴影面积,5.如图是由面积都是5平方厘米的8个三角形组成,图中阴影部分的面积是多少平方厘米?列式是()A.8+8×B.5+5×C.5×8×D.××考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图所示,三角形②的面积是5,而三角形①的面积是三角形②面积的一半,则阴影部分的面积是5+5×,据此解答即可.解答:解:如上图所示,三角形②的面积是5,而三角形①的面积是三角形②面积的一半,则阴影部分的面积是5+5×,故选:B.点评:将阴影部分进行分割,再据已知条件,即可求出阴影部分的面积.6.如图,涂色部分面积是长方形面积的()A.B.C.无法计算考点:组合图形的面积;分数的意义、读写及分类.专题:平面图形的认识与计算.分析:设长方形的长和宽分别为a和b,两个三角形的高之和正好等于长方形的宽,即等于b,则两个阴影三角形的面积和为a(b1+b2)=ab,所以涂色部分面积是长方形面积的.解答:解:设长方形的长和宽分别为a和b,则两个阴影三角形的面积和为ab,所以涂色部分面积是长方形面积的.故选:B.点评:解答此题的主要依据是:三角形的面积是与其等底等高的平行四边形面积的一半.7.下图中梯形ABCD的面积是40平方分米,三角形ABC的面积是25平方分米,则三角形BCD的面积是()A.25平方分米B.15平方分米C.40平方分米考点:组合图形的面积;三角形的周长和面积.专题:平面图形的认识与计算.分析:根据图知道用梯形ABCD的面积减去三角形ABC的面积即可求出三角形BCD的面积.解答:解:40﹣25=15(平方分米),答:三角形BCD的面积15平方分米;故选:B.点评:关键是根据图得出梯形ABCD的面积减去三角形ABC的面积就是三角形BCD的面积.8.如图,黑色部分的面积为96平方厘米,则空白部分的面积为()A.96 B.240 C.120 D.100考点:组合图形的面积.专题:平面图形的认识与计算.分析:根据平行四边形的面积公式S=ah,得出h=S÷a,由此求出黑色部分的高,即长方形的宽,再根据图得出空白部分的面积等于长方形的面积减去黑色部分的面积,由此再利用长方形的面积公式解答.解答:解:96÷8=12(厘米)(20+8)×12﹣96=28×12﹣96=336﹣96=240(平方厘米)答:空白部分的面积是240平方厘米;故选:B.点评:本题主要是灵活利用平行四边形的面积公式与长方形的面积公式解答.9.(•南城县)图中阴影部分占总面积的()A.B.C.D.考点:组合图形的面积.分析:把阴影部分的图形进行拼凑,把①放到②处,即可得到阴影部分的面积是总面积的.解答:解:由图可知阴影部分的面积是,故选:A.点评:本题把图形进行拼凑,即可得到答案.10.(•泉州)下列各图中的正方形面积相等,图()的阴影面积与另外三图不同.A.B.C.D.考点:组合图形的面积.专题:压轴题;平面图形的认识与计算.分析:从图中可以看出阴影部分的面积=正方形的面积﹣圆的面积.观察图形可发现:四个正方形是全等的,面积是相等;A、C、D三个图形中空白部分可以组成一个完整的圆,根据圆的面积相等可得这三个图形中阴影部分的面积相等,得出答案.解答:解:由图可知:从左到右A、C、D的空白处均可组成一个完整的半径相等的圆,而正方形的面积相等,根据等量减去等量差相等的原理得这三个图形中阴影部分的面积相等.故选:B.点评:此题考查了面积及等积变换,将阴影面积转化为易求的图形的面积的差或和是解题的常用方法.11.(•康县)如图中,两三角形的面积之和占长方形面积的()A.B.C.D.考点:组合图形的面积;分数的意义、读写及分类.专题:压轴题;分数和百分数.分析:假设每个小正方形的面积是1,则2个小三角形的面积都是,2个小三角形的面积和就为1,而长方形的面积为4,于是问题容易得解.解答:解:假设每个小正方形的面积是1,则2个小三角形的面积都是,2个小三角形的面积和就为1,而长方形的面积为4,1÷4=,所以两三角形的面积之和占长方形面积的;故选:C.点评:解答此题的关键是:利用假设法先求出两个三角形的面积和,问题即可得解.12.(•徐水县)在一长方形草地里有一条宽1米的曲折小路,如图所示,小路的面积是()平方米.A.10 B.20 C.30考点:组合图形的面积.专题:压轴题;平面图形的认识与计算.分析:我们把图形进行分割,把①②③排在一起就是一个长方形长是11米,宽是1米,把④⑤⑥图形沿着大长方形的宽排列,得到的长方形的长(10﹣1)米,宽是1米的长方形.解答:解:画图如下:11×1+(10﹣1)×1,=11+9,=20(平方米);故选:B.点评:本题运用长方形的面积公式进行就即可,即“长×宽=面积”.13.(•揭阳)下面三幅图中,正方形的边长相等,这些图形中阴影部分的面积()大.A.图(1)B.图(2)C.图(3)D.一样大考点:组合图形的面积;圆、圆环的面积.分析:这三幅图中,正方形的边长相等,说明正方形的面积相等,求这些图形中阴影部分的面积,都可以认为是从正方形的面积里减去同一个圆的面积,由此得解.解答:解:正方形的边长相等,说明三幅图正方形的面积相等,里面的圆的半径也相等;(1)阴影部分的面积=正方形的面积﹣4×圆的面积;(2)阴影部分的面积=正方形的面积﹣2×圆的面积;(3)阴影部分的面积=正方形的面积﹣圆的面积;所以这些图形中阴影部分的面积一样大.故选:D.点评:此题属于求组合图形的面积,要求阴影部分的面积,就从外面图形面积里减去里面的小图形的面积.14.(•崇文区)从甲、乙两块厚度、边长均相等的正方形钢板上冲制出一些圆形(如图,每块上的圆形大小分别相同),剩下的边角料重量相比,下面说法正确的是()A.甲重B.乙重C.重量相等考点:组合图形的面积;圆、圆环的面积.分析:要解决剩下的边角料重量相比问题,根据题干,只要比较出剩下的边角料的面积大小即可,剩下面积大的重,由此只要求得甲乙两个图中的阴影部分的面积即可解决问题.解答:解:设甲乙两个正方形的边长为12,则甲中圆的半径为:12÷2÷2=3,乙中的圆的半径为12÷3÷2=2,甲剩下的部分为:12×12﹣3.14×32×4,=144﹣113.04,=30.96;乙剩下的部分为:12×12﹣3.14×22×9,=144﹣113.04,=30.96,所以甲乙剩下部分的面积相等,故选:C.点评:此题考查了在正方体中切割等圆的方法,得出每个圆的半径是解决此类问题的关键.15.(•秀屿区)从一个长为3,宽为2的长方形中擦去一个直径为1的圆(如图,单位厘米),下列表示各平方厘米数中最接近阴影部分的面积是()A.6B.5C.4考点:组合图形的面积.专题:压轴题;平面图形的认识与计算.分析:我们运用长方形的面积减去圆的面积就是阴影部分的面积,得出的差再与下列选项进行比较再进行选择.解答:解:3×2﹣3.14×(1÷2)2,=6﹣0.785,=5.215(平方厘米);5.215与5最接近.故选:B.点评:本题考查了长方形及圆的面积公式的掌握与运用情况,同时考查了数的大小比较和近似数.二.填空题(共13小题)16.大小正方形如图.小正方形边长a厘米,阴影面积是a2平方厘米.考点:组合图形的面积.分析:如图所示,连接BC,则三角形ABC和三角形CEB等底等高,则二者的面积相等,它们分别去掉公共部分三角形CFB,剩余部分的面积仍然相等,即三角形CEF的面积和三角形ABF的面积相等,于是阴影部分就转化成了小正方形的面积的一半,问题得解.解答:解:连接BC,则S△ABC=S△CEB,于是S△ABC﹣S△CFB=S△CEB﹣S△CFB,即S△ABF=S△CEF,所以阴影部分的面积=a2;故答案为:a2.点评:解答此题的关键是作出辅助线,将阴影部分的面积转化成小正方形的面积的一半,问题即可得解.17.如图,大正方形边长为8cm,小正方形边长为6cm,则阴影部分的面积是32平方厘米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合图形的面积
1、图中两个正方形的边长分别是6厘米、4厘米,求阴影部分
的面积。

2、如图阴影部分的面积是6平方厘米,OC=2AO,求梯形的面积。

3、求四边形ABCD的面积。

(单位:厘米)
4、计算下面图形的面积。

(单位:厘米)
5、求阴影部分的面积。

(单位:米)
6、图中三个正方形的边长分别是1厘米、2厘米和3厘米,求
图中阴影部分的面积。

7、图中两个完全一样的三角形重叠在一起,求阴影部分的面积。

(单位:厘米)
8、下图中梯形的高AD=10厘米,计算图形的面积。

9、求阴影部分的面积。

10、图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。

11、一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?
12、如图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。

求中间长方形的面积。

13、已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。

14、下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?
15、图中三角形ABC的面积是36平方厘米,AC长8厘米,DE
长3厘米,求阴影部分的面积。

16、求图中阴影部分的面积.(单位:厘米)
17、三角形ABC的面积是56平方米,BD=CD.求阴影部分的面积.
18、如图,长方形里有四个三角形,已知其中的三角形面积,
求三角形ADE的面积.
19、求出下面长方形中阴影部分的面积.
20、如图,三角形ABC的面积是24平方厘米,E、F分别为AB、AC的中点,三角形EBF的面积是多少平方厘米?
答案:
1、6×6÷2=18(cm2)
2、6×2=12(cm2) 12×2=24(cm2) 6+12×2+24=54(cm2)
3、7×7÷2-3×3÷2=20(cm2)
4、5×6=30(cm2) 12-6=6(cm)(5+10)×6÷2=45(cm2)
5、10-2=8(m) 16-2=14(m) 14×8=112(m2)
6、2×3÷2=3(cm2) 2×(1+2)÷2=3(cm2) 3+3=6(cm2)
7、(12-4+12)×2÷2=20(cm2)
8、10×10÷2=50(cm2)
9、6+4=10(cm) 6×6+4×4=52(cm2) 6×6÷2=18(cm2) 10×4÷2=20(cm2) 52-18-20=14(cm2)
10、10+6=16(cm) 16×10÷2=80(cm2)
10×10÷2=50(cm2) 80-50=30(cm2)
11、12×12÷4=36(cm2)
12、12÷(2+1)=4(cm) 4×2=8(cm) 12×12=144(cm2) 4×4=16(cm2) 9×8=64(cm2) 144-16-64=64(cm2)13、7×7÷2=24.5(cm2) 14、6×8÷2-4×8÷2=8(cm2)
15、36×2÷8=9(cm)(3+9)×8÷2=48(cm2)
16、8.5×5÷2=21.25(cm2)
17、56÷2=28(m2) 18、37+29-41=25
19、50×20÷2=50 20、24÷2÷2=6(cm2)。

相关文档
最新文档