南昌大学第六届高等数学竞赛(理工类)试题答案
高数竞赛试题集
高等数学竞赛一、 填空题⒈ 若5)(cos sin lim0=--→b x ae xx x ,则a = ,b = .⒉ 设2(1)()lim 1n n xf x nx →∞-=+, 则()f x 的间断点为x = .⒊ 曲线y=lnx 上与直线1=+y x 垂直的切线方程为.⒋ 已知xx xe e f -=')(,且f (1) = 0, 则f (x ) = .⒌ 设函数()y x 由参数方程333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值 范围为 . ⒍ 设1ln arctan 22+-=xxxe e e y ,则==1x dx dy.⒎若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .⒏ 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则=-⎰221)1(dx x f . ⒐ 由定积分的定义知,和式极限=+∑=∞→nk n k n n122lim . ⒑1+∞=⎰ . 二、 单项选择题11.把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===0302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是 【 】(A)γβα,,. (B)βγα,,. (C) γαβ,,. (D) αγβ,,.12.设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得 【 】 (A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C )对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .13 . 设()(1)f x x x =-, 则 【 】(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点.(D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.14 .22lim ln (1)n nn→∞+于 【 】(A )221ln xdx ⎰. (B )212ln xdx ⎰. (C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰15 . 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. 【 】(A) (-1 , 0). (B) (0 , 1). (C) (1 , 2). (D) (2 , 3).16 . 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 【 】(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点. (D) g (x )在点x = 0处的连续性与a 的取值有关. 17 . 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是【 】(A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ).(B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.18 . 设⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎰=x dt t f x F 0)()(,则【 】(A) F (x )在x = 0点不连续.(B) F (x )在(-∞ , +∞)内连续,但在x = 0点不可导.(C) F (x )在(-∞ , +∞)内可导,且满足)()(x f x F ='.(D) F (x )在(-∞ , +∞)内可导,但不一定满足)()(x f x F ='.三、解答题19.求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.20.设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式;(Ⅱ)问k 为何值时, ()f x 在0x =处可导.21.设 f (x ),g (x )均在[a , b ]上连续,证明柯西不等式⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡≤⎥⎦⎤⎢⎣⎡⎰⎰⎰ba b a b a dx x g dx x f dxx g x f )()()()(22222.设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-.23曲线2x xe e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值;(Ⅱ) ()lim ()t S t F t →+∞.24.设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤babadx x xg dx x xf )()(.25. 某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h表示千米/小时.高等数学竞赛试卷一、单项选择题1、若2lim()01x x ax b x →∞--=+,则(A )1,1a b == (B )1,1a b =-= (C ) 1,1a b ==- (D )1,1a b =-=-2、设(),0()(0),0f x x F x x f x ⎧≠⎪=⎨⎪=⎩ ,其中()f x 在0x =处可导且'(0)0f ≠,(0)0f =,则0x =是()F x 的(A ) 连续点 (B ) 第一类间断点 (C ) 第二类间断点 (D )以上都不是 3、设常数0k >,函数()ln xf x x k e =-+在(0,)+∞内零点的个数为 (A ) 0 (B ) 1 (C ) 2 (D ) 34、若在[0,1]上有(0)(0)0,(1)(1)0f g f g a ====>,且''()0f x >,''()0g x <,则110()I f x dx=⎰,120()I g x dx =⎰,130I ax dx =⎰的大小关系为(A ) 123I I I ≥≥ (B ) 231I I I ≥≥ (C ) 321I I I ≥≥ (D ) 213I I I ≥≥5、由平面图形0,0()a x b y f x ≤≤≤≤≤绕y 轴旋转所成的旋转体的体积为(A )2()b aV xf x dx π=⎰ (B ) 2()b aV f x dx π=⎰(C ) 2()b aV f x dx π=⎰ (D ) ()baV f x dx π=⎰6、(1,3,4)P -关于平面320x y z +-=的对称点是 (A ) (5,1,0)- (B )(5,1,0) (C )(5,1,0)-- (D )(5,1,0)-7、设D 为222x y R +≤,1D 是D 位于第一象限的部分,()f x 连续,则22()Df x y d σ+⎰⎰=(A )128()D f x d σ⎰⎰ (B )0 (C )22()R R RRdx f x y dy --+⎰⎰(D )1224()D f x y d σ+⎰⎰8、a为常数,则级数21sin()n na n ∞=⎡⎢⎣∑ (A ) 绝对收敛(B )发散C ) 条件收敛(D ) 收敛性与a 的取值有关二、填空题1、340tan 2lim(1)1x x x xx e →-=- 。
南昌大学第三届高等数学竞赛理工类试题及答案
南昌大学第三届高等数学竞赛(理工类)试题南昌大学第三届高等数学竞赛理工类试题答案一、填空题1、 3.2、6π.3、2ln 8π.4、 51arccos或52arcsin 或2arctan . 5、()+∞-,1. 二、 选择题1、B2、C3、D4、A5、C 三、=dx x dy yba⎰⎰1=dy y x ba y 111⎰++=dy y ba⎰+11=()b a y +1ln =()()a b +-+1ln 1ln .四、在0=x 与1=x 处分别将()x f 展成一阶泰勒公式()()()()()2121212100x f x f x f f x f ξξ''=''+'+=,()1,01∈ξ, ()()()()()()()()22221211121111-''+=-''+-'+=x f x f x f f x f ξξ,()1,02∈ξ. 上两式将21=x 代入再相减,得 ()()812=''-''ξξf f .因为()()()()()ξξξξξf f f f f ''≤''+''≤''-''21212,其中()()(){}21,max ξξξf f f ''''='',()1,0∈ξ.从而()4≥''ξf .五、()y xy f y P 21+=,()()122-=xy f y yxQ , =xQ ∂∂, 所以曲线积分与路径无关.设⎪⎭⎫ ⎝⎛32,1C ,则⎰⎰⎰+=CBACL.原式=()dy y y f dx x f ⎰⎰⎪⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+23221313294123 =-3+()1323223213-+⎪⎭⎫⎝⎛⎰⎰dy y f dx x f=-4 六、令0=x ,0=y 得()()002ff =,由()00≠f 得()10=f()()()t x f t x f x f t -+='→0lim=()()()tx f t f x f t -→0lim=()()tt f x f t 1lim 0-→ =()()0f x f '由()00≠f 知对任意x ,()0≠'x f .于是()()()dx f x f x df 0'=, ()()c x f x f ln 0ln +'=,()()x f ce x f 0'=,将()10=f 代入得1=c ,故()()x f e x f 0'=.七、由()211ln lim 20=+-→x x x x 得21111ln 1lim 2=⎪⎭⎫ ⎝⎛+-∞→n n n n , 于是∑∞=⎪⎭⎫⎝⎛+-11ln 1n n n n收敛,从而()⎪⎭⎫⎝⎛+-+++∞→1ln 1211lim n n n Λ存在, 故()0ln 1ln 1211lim=+-+++∞→nn n n Λ,由()1ln 1ln lim=+∞→nn n 得 八、设所求曲线方程为()x f y =, 由题意得()01=f 且()()()3021x x f x dx x f x=+-⎰,两边求导并整理得()()xx x f x x f 2611+-=-', 解一阶非线性微分方程得()cx x x f +-=261,由()01=f 解得5=c ,故()x x x f 5612+-= 九、先计算()dxdy z h I ⎰⎰∑=3.将∑分为六张平面:0:1=∑-x 取后侧;a x =∑+:2取前侧; 0:3=∑-y 取左侧; b y =∑+:4取右侧;0:5=∑-z 取下侧;c z =∑+:6取上侧.由于-∑1,+∑2,-∑3,+∑4在xoy 平面上的投影区域是一线段,故()()()()dxdy z h dxdy z h dxdy z h dxdy z h ⎰⎰⎰⎰⎰⎰⎰⎰+-+-∑∑∑∑===4321=0又()()()00005abh dxdy h dxdy z h by ax -=-=⎰⎰⎰⎰<<<<-∑, ()()()c abh dxdy c h dxdy z h by ax ==⎰⎰⎰⎰<<<<∑+006. 故有()()()ab h c h I 03-=.同理可得()()()()bc f a f dydz x f 0-=⎰⎰∑,()()()()ac g b g dxdz y g 0-=⎰⎰∑.故=()()()ab h c h 0-+()()()bc f a f 0-+()()()ac g b g 0-=()()()()()()⎥⎦⎤⎢⎣⎡-+-+-c h c h b g b g a f a f abc 000 十、令n n n n n n I 1222222221312111⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=Λ, =242ln -+π 从而242lim -∞→=πe I n ,即原式=242-πe十一、令()=x S ()()∑∞=---121121n nn n n x ,则212x+=,1<x 从0到x 积分得 ()x t dt x S x arctan 21202=+='⎰,1<x . 再从0到x 积分得 ()()201ln arctan 2arctan 2x x x dt t x S x +-==⎰,1<x .当1±=x 时,()()∑∞=---121121n n n n n x =()()∑∞=---11121n n n n 也收敛,故收敛域为[]1,1-.十二、22yx x z x +=,22y x y z y +=. 因而 2122=++y x z z ,=2⎰⎰D dxdy ,其中D 是x y x ≤+22,于是⎰⎰D dxdy =4π,故=S π42.。
高等数学竞赛最新试题及答案
高等数学竞赛最新试题及答案高等数学竞赛试题一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 - 4x + 3 \)的顶点坐标是:A. (2, -1)B. (1, 0)C. (2, 1)D. (2, -1)2. 已知\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),求\( \lim_{x \to 0} \frac{\sin 3x}{3x} \)的值是:A. 1B. 0C. 3D. 无法确定3. 曲线\( y = x^3 - 2x^2 + x \)在点(1,0)处的切线斜率是:A. 0B. -1C. 1D. 24. 以下哪个级数是发散的?A. \( \sum_{n=1}^{\infty} \frac{1}{n^2} \)B. \( \sum_{n=1}^{\infty} \frac{1}{n} \)C. \( \sum_{n=1}^{\infty} (-1)^n \frac{1}{n} \)D. \( \sum_{n=1}^{\infty} \frac{1}{2^n} \)5. 函数\( f(x) = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \frac{\pi}{2} \)D. \( \pi \)6. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = |x| \)D. \( f(x) = \sin x \)7. 已知\( \int_{0}^{1} x^2 dx = \frac{1}{3} \),求\( \int_{0}^{1} x^3 dx \)的值是:A. \( \frac{1}{4} \)B. \( \frac{1}{3} \)C. \( \frac{1}{2} \)D. \( 1 \)8. 以下哪个是二阶常系数线性微分方程?A. \( y'' + 3y' + 2y = 0 \)B. \( y' + y = x^2 \)C. \( y'' + y' = 0 \)D. \( y'' - 2y' + y = \sin x \)9. 以下哪个是二元函数的偏导数?A. \( \frac{\partial^2 f}{\partial x \partial y} \)B. \( \frac{\partial f}{\partial x} \)C. \( \frac{\partial f}{\partial y} \)D. \( \frac{d^2f}{dx^2} \)10. 已知\( \lim_{x \to \infty} \frac{f(x)}{x} = 0 \),那么\( f(x) \)是:A. 常数B. 有界函数C. 无穷小量D. 无穷大量二、填空题(每题4分,共20分)11. 函数\( f(x) = \sqrt{x} \)的定义域是_________。
高数竞赛练习题答案(函数、极限、连续)
高数竞赛练习题答案(函数、极限、连续)第一篇:高数竞赛练习题答案(函数、极限、连续)函数、极限、连续1.f(x),g(x)∈C[a,b],在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(1)∃η∈(a,b),使f(η)=g(η)(2)∃ξ∈(a,b),使f''(ξ)=g''(ξ)证明:设f(x),g(x)分别在x=c,x=d处取得最大值M,不妨设c≤d(此时a<c≤d<b),作辅助函数F(x)=f(x)-g(x),往证∃ξ∈(a,b),使F''(ξ)=0令F(x)=f(x)-g(x),则F(x)在[a,b]上连续,在(a,b)二阶可导,且F(a)=F(b)=0,① 当c<d,由于F(c)=f(c)-g(c)=M-g(c)≥0F(d)=f(d)-g(d)=f(d)-M≤0由“闭.连.”零点定理,∃η∈[c,d]⊂(a,b),使f(η)=g(η)② 当c=d,由于F(c)=f(c)-g(c)=f(c)-g(d)=M-M=0即∃η∈(a,b),使f(η)=g(η) 对F(x)分别在[a,η],[η,b]上用罗尔定理,∃ξ1∈(a,η),ξ2∈(η,b),使在[ξ1,ξ2]上对F(x)在用罗尔定理,F'(ξ1)=F'(ξ2)=0,∃ξ∈(ξ1,ξ2)⊂(a,b),使F''(ξ)=0,∃ξ∈(a,b),使f''(ξ)=g''(ξ).2.设数列{xn}满足0<x1<π,xn+1=sinxn,n=1,2,Λxn存在,并求该极限(1)证明limn→∞xn+1x1n(2)计算lim()n→∞xn分析:(1)确定{xn}为单调减少有下界即可1xn,用洛必达法则.(2)利用(1)确定的limn→∞解:易得0<xn≤1(n=2,3,Λ),所以xn+1=sinxn<xn,n=(2,3,Λ),即{xn}为xn存在,并记为limxn=a,则a∈[0,1],单调减少有下界的数列,所以 lim n→∞n→∞对等式xn+1=sinxn<xn,两边令n→∞取极限,得a=sina,a∈[0,1],所以a=0,即limxn=0.n→∞lim((2)n→∞xn+1sinxn)=lim()n→∞xnxn2xn2xn令t=xn=lim(t→0sint)=et→0ttlimln()tt2由于limt→0tln(sin)ttsintln[1+(sin-1)]-1-1t2sint-t洛cost-11tt2=lim=lim=lim=lim=lim=- t→0t→0t→0t→0t→03t2t2t2t33t26 xn+1xn-1所以lim()=e.n→∞xn3.已知f(x)在[0,1]连续,在(0,1)可导,且f(0)=0,f(1)=1,证明:(1)∃ξ∈(0,1),使f(ξ)=1-ξ,(2)存在两个不同点η,ζ∈(0,1),使f'(η)f'(ζ)=1证:(1)令F(x)=f(x)+x-1,则F(x)在[0,1]上连续,且F(0)=-1<0,F(1)=1>0,由“闭.连.”零点定理,∃ξ∈(0,1),使F(ξ)=0,即f(ξ)=1-ξ(2)f(x)在[0,ξ],[ξ,1]上都满足拉格朗日中值定理,所以∃η∈(0,ξ),ζ∈(ξ,1),使f(ξ)-f(0)=f'(η)(ξ-0),f(1)-f(ξ)=f'(ζ)(1-ξ),即f'(η)=f'(ζ)=f(ξ)ξ=1-ξξ1-f(ξ)1-(1-ξ)ξ==1-ξ1-ξ1-ξ∴f'(η)f'(ζ)=1-ξξ⋅ξ1-ξ=14.设方程xn+nx-1=0,其中n为正整数,证明此方程存在唯一的正α实根xn,并证明当α>1时,级数∑xn收敛.n=1∞证:令f(x)=xn+nx-1,则f(x)在(0,+∞)上连续,且f(0)=-1<0,f()=()n>0nn所以由连续函数的零点定理,所给方程在(0,)内有根,又由f'(x)=n(xn-1+1)>0,即f(x)在(0,)内单调递增,所以所给方程(0,)内只有唯一的根,在(,∞)上无根,即所给方程存在唯一的正实根xn.α<由上述知,对n=1,2,Λ,有0<xn<,有0<xn∞1n1n1n1n1n1,nα此外,由α>1知,级数∑收敛,所以由正项级数比较审敛法,知αn=1n∑xα收敛.nn=1∞5.求lim(cosx)x→01ln(1+x)x→0ln(1+x)解:lim(cosx)x→01ln(1+x)=elimlncosx,其中limln(1+xx→0lncosx)=limx→0ln[1+(cosx-1)]ln(1+x)=limx→0-x22x=-(cosx)所以,limx→0ln(1+x)=e-6.f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f'(0)≠0,若af(h)+bf(2h)-f(0)在h→0时是比h高阶的无穷小,试确定a,b的值.解1:(利用导数定义)0=limaf(h)+bf(2h)-f(0)af(h)-af(0)+af(0)+bf(2h)-bf(0)+bf(0)-f(0)=limh→0h→0hhaf(h)-af(0)bf(2h)-bf(0)[(a+b)-1]f(0)[(a+b)-1]f(0)=l im+lim+lim=(a+b)f'(0)+limh→0h→0h→0h→0hhhh⎧a+b=1'由f(0)≠0,f(0)≠0,得⎨,即a=2,b=-1a+2b=0⎩解2:按解1,只要假定f(x)在x=0处可导即可,但在题中“f(x)在x=0的某邻域内具有一阶连续导数”的假定下,有以下解法:由lim h→0h→0af(h)+bf(2h)-f(0)=0得 limaf(h)+bf(2h)-f(0)=0h→0h即0=limaf(h)+bf(2h)-f(0)=(a+b-1)f(0),由f(0)≠0,得a+b=1(1)af(h)+bf(2h)-f(0)洛=limaf'(h)+2bf'(2h)=(a+2b)f'(0)且f'(0)≠0,又由0=limh→0h→0h所以 a+2b=0(2)由(1)、(2)得a=2,b=-1.⎛2+esinx⎫⎪.7.求lim 4+x→0x⎪⎝1+e⎭解:⎛2e-+e-sinx⎫⎛2+esinx⎫⎪=1⎪=lim lim+4+4++-x→0x→0 x⎪x⎪⎝1+e⎭⎝e+1⎭⎛2+esinx⎫⎛2+esinx⎫ ⎪⎪=1 lim=lim4+4---⎪x→0x⎭x→0⎝1+ex⎪⎝1+e⎭所以原式 = 18.求limx→0143+x+-x-2.2x解1:(泰勒公式)因+x+-x-2=[1+1111x-x2+o(x2)]+[1-x-x2+o(x2)]-22828(x→0)=-x2+o(x2)~-x2所以1-x2+x+-x-2=-1lim=limx→0x→0x2x24解2:(洛必达法则)-+x+-x-2洛必达lim=limx→0x→0x22x1-x-+x1⋅lim=lim x→0+x-x4x→0x1-2x1=lim.=-4x→0x(-x++x)4第二篇:高数课件-函数极限和连续一、函数极限和连续自测题1,是非题(1)无界变量不一定是无穷大量()(2)若limf(x)=a,则f(x)在x0处必有定义()x→x012x(3)极限lim2sinx=limx=0()x→+∞x→+∞33x2,选择题(1)当x→0时,无穷小量1+x-1-x是x的()A.等价无穷小B.同阶但不等价C.高阶无穷小D.低价无穷小⎧x+1-1x≠0⎪(2)设函数f(x)=⎨,则x=0是f(x)的()x⎪0x=0⎩A.可去间断点 B.无穷间断点C 连续点D 跳跃间断点⎧exx<0(3)设函数f(x)=⎨,要使f(x)在x0处连续,则a=()⎩a+xx≥0A.2B 1C 0D -13n2-5n+1=()(4)lim2n→∞6n+3n-2A 151B -C -D ∞ 2321⎧xsinx<0⎪⎪x(5)设f(x)=⎨,则在x=0处f(x) ()⎪1sinx-1x>0⎪⎩xA 有定义B 有极限C 连续D左连续3(6)x=1是函数y=x-1的()x-1A 可去间断点B 无穷间断点C 连续D跳跃间断点3.求下列极限(1)limx→∞x+sinxsin(-2x)x+2-3(2)lim(3)limx→0x→12xln(1+2x)x-1e-2x-1(4)lim(5)limn[ln(1+n)-lnn](6)lim(sinn+1-sinn)n→∞n→∞x→0x2x+3x+2(sinx3)tanx2lim()(7)lim (8)(9)limx(x+1-x)x→∞2x+1x→01-cosx2x→∞cosx-cosaarctanxex-ex0(10)lim(11)lim(12)limx→ax→∞x→x0x-xx-ax0x2+32x2+1sin(x-1))(13)lim(14)lim(2x→∞x→1x-1x+24,求满足下列条件的a,b的值1x2+x+a=b(2)lim(3x-ax2-x+1)=(1)limx→+∞x→26x-2⎧tanaxx<0ax+b⎪=2(4)已知f(x)=⎨x(3)lim且limf(x)存在x→0x→1x-2⎪x+2x≥0⎩x<-1⎧-2⎪2(5)已知f(x)=⎨x+ax+b-1≤x≤1在(-∞,+∞)内连续⎪2x≥1⎩⎧sin2x+e2ax-1x≠0⎪(6)函数f(x)=⎨在x=0点连续x⎪ax=0⎩5.求下列函数的间断点并判断其类型⎧x-1x≤11-cosxx2-1(1)y=2(2)y=⎨(3)f(x)=sinxx-3x+2⎩3-xx>1⎧1x>0x⎪(4)f(x)=⎨ex-1(5)y=tanx⎪⎩ln(1+x)-1<x≤026.已知x→-1时,x+ax+5x+1是同阶无穷小,求a7.证明方程x-4x+2=0在区间(1,2)内至少有一个根8.当x→0时,e+ln(1-x)-1与x是同阶无穷小,求n 9.设函数f(x)=a,(a>0,a≠1),求limxxn41ln[f(1)f(2)K f(n)]n→∞n2第三篇:高数极限和连续第二章极限和连续【字体:大中小】【打印】2.1 数列极限一、概念的引入(割圆术)“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣” ——刘徽正六边形的面积A正十二边形的面积A2n-1正6×2形的面积AnA1,A2,A3,…,An,…→…S二、数列的定义定义:按自然数1,2,3...编号依次排列的一列数x1,x2,...,xn, (1)称为无穷数列,简称数列。
(完整版)大学生高等数学竞赛试题汇总及答案,推荐文档
而此图形绕 x 轴旋转一周而成的旋转体的体积 即
令
V (a) 2 a 1 (1 2a) 8 (1 a) 0 ,
5
3
27
得
即
因此
a 5 ,b 3 ,c 1.
42
七、(15
分)已知 un (x)
满足 un (x)
un (x)
xn1e x (n
1,2,)
,且 un (1)
e n
,
求函数项级数
收敛;
(2)当
1且 sn
(n ) 时,级数
n1
an Sn
发散。
解:
(1) an >0, sn 单调递增
当
n1
an
收敛时,
an sn
an s1
,而 an
s1
收敛,所以 an
sn
收敛;
当
n1
an
发散时,
lim
n
sn
所以, an s n1 n
a1 s1
n2
sn sn1
dx x
a1 s1
(1) xesin ydy yesin xdx
L
D
x
( xesin
y
)
y
(
ye sin
x
)dxdy
而 D 关于 x 和 y 是对称的,即知
因此
(2)因
故
由
知
即 xesin ydy yesin ydx 5 2
L
2
五、(10 分)已知 y1 xex e2x , y2 xex ex , y3 xex e2x ex 是某
zy 2 y 知 2 zx (x0 , y0 ) x0 ,2 zy (x0 , y0 ) 2 y0 , 即 x0 2, y0 1,又 z(x0 , y0 ) z(2,1) 5 ,于是曲面 2x 2 y z 0 在 (x0 , y0 , z(x0 , y0 )) 处的切平面方程是
高等数学竞赛练习题(含答案)
高等数学竞赛练习题1、单项选择题(1)已知()f x 在区间(,)-∞+∞上单调递减,则2(4)f x +的单调递减区间是( C ) A .()+∞∞-, B .()0,∞- C .[)+∞,0 D .不存在(2)设函数(),0,x a x f x x ⎧=⎨⎩是有理数是无理数,10<<a ,则 ( B )A .当+∞→x 时,()x f 是无穷大B .当+∞→x 时,()x f 是无穷小C .当-∞→x 时,()x f 是无穷大D .当-∞→x 时,()x f 是无穷小 (3)设函数()x f 与()x g 在0x 处都没有导数,则()()()x g x f x F +=和()()()x g x f x G -=在0x 处 ( D )A .一定都没有导数B .一定都有导数C .至少一个有导数D .至多一个有导数(4) 若ln x 是()f x 的一个原函数,则()f x 的另一个原函数是( A )A. ln axB. 1ln ax aC. ln x a +D. 21(ln )2x(5) 设()f x 连续,则[]sin ()()aax f x f x dx -+-⎰等于 ( A )A.0B.aC.a -D. 2a(6) 下列命题中正确的命题有几个? ( A )(1)无界变量必为无穷大量; (2) 有限多个无穷大量之和仍为无穷大量; (3)无穷大量必为无界变量; (4) 无穷大量与有界变量之积仍为无穷大量. (A) 1个; (B) 2个; (C) 3个; (D) 4个. (7). 设1, 0()0, 0x f x x ≠⎧=⎨=⎩,1sin , 0() 1 , 0x x g x x x ⎧≠⎪=⎨⎪=⎩ 则0x =是间断点的函数是 ( B )(A) ()()f x g x +; (B) ()()f x g x -; (C) {}max (), ()f x g x ; (D) {}min (), ()f x g x .. (8) 设ξ为()arctan f x x=在[ 0, ]b 上应用拉格朗日中值定理的“中值”,则 22limb b ξ→=( C )(A) 1; (B) 12; (C) 13; (D) 14.(9) 设() , ()f x g x 连续,当0→x 时,()f x 与()g x 为等价无穷小,令0()()xF x f x t dt=-⎰,1() () G x x g xt dt =⎰, 则当0→x 时,() ()F x G x 是的 ( D )(A) 高阶无穷小; (B) 低阶无穷小; (C) 同阶无穷小但非等价无穷小; (D) 等价无穷小.(10) 设),(y x f 在点)0,0(的某邻域内连续,且满足 220(,)(0,0)lim31sin cos x y f x y f x x y y→→-=-+--,则),(y x f 在点)0,0(处 ( A )(A) 取极大值;(B) 取极小值; (C) 无极值; (D) 不能确定是否有极值. (11)设f 有连续的一阶导数,则 (1,2)(0,0)()d ()d f x y x f x y y +++=⎰( B )(A) 102() d f x x⎰; (B) 3() d f x x ⎰; (C) (3)(0)f f -; (D) 0 .(12) 设任意项级数 1n n a ∞=∑条件收敛,将其中的正项保留负项改为0所组成的级数记为1n n b ∞=∑, 将其中的负项保留正项改为0所组成的级数记为1n n c ∞=∑,则1nn b ∞=∑与1n n c ∞=∑( B )(A) 两者都收敛; (B) 两者都发散; (C)一个收敛一个发散; (D) 以上三种情况都可能发生.(13)设0()f x '存在,则下列四个极限中等于0()f x '的是( B ) (A )000()()lim x f x x f x x →-- ; (B )000()()lim h f x f x h h →--;(C )000()()limx x f x f x x x →--; (D )000()()lim h f x h f x h h →+--.(14)0()0f x ''=是曲线()y f x =有拐点00(,())x f x 的( D )(A )充分而非必要条件; (B )必要而非充分条件;(C )充分必要条件; (D )既非充分又非必要条件.(15)设2222{(,,),0},0x y z x y z R z a Ω=++≤≥≠,则I axdV Ω==⎰⎰⎰( C )( A )0I >; ( B )0I <; ( C )0I =; ( D ) I 的符号与a 有关.2、求极限201sin lim ln x xx x →答案: 22001sin 1sin limln lim ln 1(1)x x x x x x x x →→⎛⎫=+- ⎪⎝⎭ 32000sin cos 1sin 1limlim lim 366x x x x x x x x x x →→→--===-=-3、设220()()()xF x x t f t dt '=-⎰,若0x →时,()F x '与2x 为等价无穷小,求(0)f '答案:220()()()xxF x xf t dt t f t dt ''=-⎰⎰,220()2()()()2()x x F x x f t dt x f x x f x x f t dt '''''=+-=⎰⎰, 由020002()()1limlim lim 2()2(0)xx x x f t dtF x f x f xx→→→''''====⎰,解得1(0)2f '=4、求220081(tan )dxx π+⎰ 答案:令2x t π=-,则2200801tan dx x π+⎰2008022008200802tan 1cot 1tan dt tdt t tππ-==++⎰⎰ 22200820080021tan 21tan dt dx t xππππ=-=-++⎰⎰所以220081tan 4dx x ππ=+⎰ 5、设函数()()10f x t t x dt =-⎰,01x <<,求()f x 的极值和单调区间. 答案: 11220()()()()()xxxxf x t x t dt t t x dt tx t dt t tx dt =-+-=-+-⎰⎰⎰⎰31323x x =-+ 21()2f x x '=-,令()0f x '=,得2x =.由()20(01)f x x x ''=><<知1(263f =-+为极小值,由21()2f x x '=-知,()f x的单调减区间是(0,2,单调增区间是 6、说明级数nn ∞=(1)(1)](1)1(1)11111n n n n n n n ----===----,而交错级数2(1)1nn ∞=-∑收敛,调和级数211n n ∞=-∑发散,故原级数发散 7、已知20()()8f x f x dx '=⎰,且(0)0f =,求2()f x dx ⎰及()f x答案:已知2()f x dx ⎰为一常数,由28()()f x f x dx'=⎰,积分得28()()f x x f x dx=⎰, 再积分得2()4f x dx =±⎰,所以()2f x x =±8、求内接于椭圆12222=+by a x ,而面积最大的矩形的边长答案:设内接矩形的边长分别为2,2u v ,则(,)u v 在椭圆上,所以22221u v a b+=,矩形面积()44S u uv u u a ==<<,222()S u '==,令()0S u '=,得唯一驻点u =,从而v =,由实际问题知,当u =时,有最大面积2S ab =,这时矩形边长分别为a 29、设函数()f x 在[0,1]上连续,在(0,1)内可导,且1233()(0)f x dx f =⎰,求证在(0,1)内至少存在一点c ,使()0f c '=答案:由定积分中值定理得1232(0)3()3()(1)()3f f x dx f f ξξ==-=⎰,其中213ξ≤≤, 在[0,]ξ上应用罗尔定理,至少存在一点(0,)(0,1)c ξ∈⊂,使()0f c '=10、设{}n a 是单调不减的数列,令12nn a a a b n+++=,若lim n n b a →∞=,试证lim n n a a →∞=.若去掉“单调不减”这个条件,试问这个结论是否成立?(要求说明理由)证:因对任意1,n n n a a +≤,故12n nn n a a a na b a n n+++=≤= .(夹逼)固定n ,并令m n >,则1111nk n mk m k k n k k n a m n b a a a m m m ===+-⎛⎫=+≥+ ⎪⎝⎭∑∑∑ 令m →∞,得lim m n m a b a →∞=≥,从而n n a a b ≥≥,令n →∞,得lim n n a a →∞=若去掉“单调不减”这个条件,则结论不一定成立.例如,取1(1),1,2,n n a n -=-= ,则12lim lim 0nn n n a a a b n→∞→∞+++== ,但数列{}n a 发散. 11、设在[0,](0)a a >上|()|f x M ''≤,且()f x 在(0,)a 内取得最大值,试证|(0)||()|f f a Ma ''+≤证:因()f x 在(0,)a 内取得最大值,由费马定理得存在(0,)b a ∈使()0f b '=.对()f x '使用拉格朗日中值定理得,111(0)()()(),(0,)f f b f b bf b ξξξ''''''=-=-∈222()()()()()(),(,)f a f b f a b a b f b a ξξξ''''''=+-=-∈ 从而(0)()()f f a Mb M a b Ma ''+≤+-=.12、设()f x 在[0,]n 上连续(n 为自然数,2n ≥),(0)()f f n =,试证存在,1[0,]n ξξ+∈,使()(1)f f ξξ=+证:令()(1)()g x f x f x =+-,则()g x 在[0,1]n -上连续 令[0,1][0,1]min (),max ()x n x n m g x M g x ∈-∈-==,则11(),0,1,2,,1,()n i m g i M i n m g i M n -=≤≤=-≤≤∑ ,1()()(0)0n i g i f n f -==-=∑,对函数()g x 应用介值定理得,存在[0,1]n ξ∈-,使11()()0n i g g i n ξ-===∑,即存在,1[0,]n ξξ+∈,使()(1)f f ξξ=+.13、设函数()f x 在[,]a b 上可积,且()0baf x dx >⎰,试证存在区间[,][,]a b αβ⊂使()0,[,]f x x αβ>∈.证:反证法. 若不然,则对于[,]a b 的任何子区间[,]αβ上都有点ξ,使()0f ξ≤,从而对于[,]a b 的任何分划T :012n a x x x x b =<<<<= ,在每个子区间1[,]i i x x -上都有点i ξ,使()0i f ξ≤.那么由()f x 在[,]a b 上的可积性知,max 01()lim()0i nbiiax i f x dx f xξ∆→==∆≤∑⎰,矛盾.14、设()f x 在点0x =二阶可导,且0()lim 11cos x f x x→=-,求(0),(0)f f '和(0)f ''的值解:0()lim11cos x f x x→=- 0(0)lim ()0x f f x →∴==又00()()1lim lim 1cos sin x x f x f x x x→→'==- 0(0)lim ()0x f f x →''∴==000()(0)()()sin (0)lim lim lim .10sin x x x f x f f x f x xf x x x x→→→''''-''====-15、设(,)()z f x y x y g x ky =-+++,,f g 具有二阶连续偏导数,且0g ''≠,如果222222224z z z f x x y y ∂∂∂''++=∂∂∂∂,求常数k 的值 解:设,,x y u x y x ky w ν-=+=+=,则1212,z zf fg f f kg x y ∂∂''''''=++=-++∂∂ 2111221222zf f f fg x∂''''''''''=++++∂ 211122122zf f f f kg x y∂''''''''''=-+-++∂∂ 22111221222z f f f f k g y∂''''''''''=--++∂ ∴由222222224z z zf x x y y ∂∂∂''++=∂∂∂∂得2(1)0kg ''+=,故1k =-.16、设()f x 在[0,1]上可积,证明22()()01f x f y x y e dxdy π-≤+≤≥⎰⎰证: 2112!xe e x x x ξ=++≥+ ()()1()()f x f y e f x f y -∴≥+-[]2222()()01011()()f x f y x y x y e dxdy f x f y dxdy -≤+≤≤+≤≥+-⎰⎰⎰⎰ 22220101()()x y x y f x dxdy f y dxdy ππ≤+≤≤+≤=+-=⎰⎰⎰⎰17、设函数()f x 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,起点为(,)a b ,终点为(,)c d ,令21[()][()]L xI yf xy dx xf xy dy y y=++-⎰.要求:(1)证明曲线积分I 与路径L 无关;(2)当ab cd =时,求I 的值. 证明(1) 因为211[()]()()yf xy f xy xyf xy y y y ∂'+=-+∂2[()]xxf xy x y∂=-∂在上半平面内处处成立,所以曲线积分I 与上半平面内路径L 无关.解(2) 由于曲线积分I 与路径无关,所以可取积分路径L 为由点(,)a b 到点(,)c b ,再到点(,)c d 的折线段,从而2221[1()][()1]cd ab c I b f bx dx y f cy dyby =++-⎰⎰()()c d a b c a c cbf bx dx cf cy dy b d b -=+++-⎰⎰()()bc cd ab bc c a f t dt f t dt d b =-++⎰⎰ ()cd abc af t dt d b =-+⎰所以,当ab cd =时,c aI d b=-.18、设()f x 在区间(,)-∞+∞连续,01()() d (>0), ()() d 2x ax x aF x f t t aG x f t t a +-==⎰⎰, 试求下列问题:(1)用()G x 表示()F x ;(2)求()F x ';(3)求证:0lim ()()a F x f x →==; (4)设()f x 在[],x a x a -+内的最大值和最小值分别是M m、,求证:()()F x f x M m -≤-.解(1)00111()()[()()][()()]222x a x a x a x a F x f t dt f t dt f t dt G x a G x a a a a ++--==-=+--⎰⎰⎰ (2)11()['()'()][()()]22F x G x a G x a f x a f x a a a'=+--=+--(3)000()()[()()][()()]lim ()lim lim22a a a G x a G x a G x a G x G x G x a F x a a→→→+--+-+--== 1['()'()]'()()2G x G x G x f x =+== (4)11|()()||()()||[()()]()()|22x a x a F x f x f t dt f x x a x a f f x a aξ+--=-=+---⎰|()()|()f f x M m x a x a ξξ=-≤--≤≤+19、求曲线 ln ln 1x y += 所围成的平面图形的面积.[解1]去掉绝对值曲线为:,11,1,101,0111,0101xy e x y y x x y ey ex x y xy x y e =≥≥⎧⎪⎪=≥<<⎪⎨=<<≥⎪⎪=<<<<⎪⎩且且且且11111()()e ee x A ex dx dx e ex x e e =-+-=-⎰⎰ [解2]令ln ,ln ,,,:||||1,uv x u y v x e y e D u v '====+≤则00uuv u v v uv x x e J e e y y e===⋅. ||DD dxdy J dudv '==⎰⎰⎰⎰u vD e e dudv '⋅=⎰⎰01111111u uu v u v u u e du e dv e du e dv e e+-----+=-⎰⎰⎰⎰. 20、设曲面S 为曲线 e 0yz x ⎧=⎨=⎩ (12y ≤≤) 绕z 轴旋转一周所成曲面的下侧,计算曲面积分 24 d d 2 d d (1) d d SI zx y z z z x z x y =-+-⎰⎰[解1]S的方程为22(14)z x y =≤+≤补两平面2222212:(1,):(4,)S z e x y S z e x y =+≤=+≤下侧上侧122S S S VzdV ++=⎰⎰⎰⎰⎰ 2()2e eD z zdz d σ=⎰⎰⎰224252ln 22e ez zdz e e πππ==-⎰1222242(1)(1)(1)(1)xyS D zxdydz zdzdx z dxdy e dxdy e eππ-+-=--=--⋅=-⎰⎰⎰⎰;2121244225(1)4(1);(1)4(1)22xyS D S S S S S e dxdy e I e e e e πππππ44++=-=-=--=-----⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ 42332e e πππ13=--2 [解2]2(4,2,1)(,,1)x y DI zx z z z z dxdy =--⋅-⎰⎰222220142221(4cos 2sin 1)(41)1333(:14)22DD r edxdy dxdyd e r rdr e e D x y πθθθππππ⎡⎤⎥=+-⎥⎦=-+--=--≤+≤⎰⎰⎰⎰⎰⎰21、设幂级数 0n n n a x ∞=∑, 当1n >时2 (1) n n a n n a -=-,且014, 1a a ==; (1)求幂级数0n n n a x ∞=∑的和函数()S x ;(2)求和函数()S x 的极值..解(1)令101(),()nn n n n n S x a x S x na x ∞∞-=='==∑∑则22222()(1)()n n n n n n n n n S x n n a x a x a x S x ∞∞∞---===''=-===∑∑∑,()()0S x S x ''-=1201()(0)4,(0)1x x S x c e c e S a S a -'=+====由,求得125353,,()2222x x c c S x e e -===+(2)由000531313()0ln ,()0,()(ln )222525x x S x e e x S x S x S -'''=-==>∴得又为极小值.22、设函数),(y x f 可微,(,), 0,12ff x y f x π∂⎛⎫=-= ⎪∂⎝⎭, 且满足()c o t y 1 ( 0, )lim e 0,nn f y n f y →∞⎛⎫+ ⎪= ⎪ ⎪ ⎪⎝⎭求 (,)f x y .解 1(0,)(0,)lim (0,)11(0,)(0,)(0,)lim lim 1(0,)(0,)n nnf y f y n f y nn n f y f y f y n n e f y f y →∞+-→∞→∞⎡⎤⎡⎤++-⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(0,)(0,)y f y f y e = (0,)ln (0,)cot (0,)y f y d f y y f y dy==,对y 积分得ln (0,)lnsin ln (0,)sin f y y c f y c y =+= 代入(0,)112f c π==得,(0,)sin ff y y f x∂==-∂又已知(,)()x f x y c y e -⇒=,(0,)sin f y y = ,()sin (,)sin .x c y y f x y e y -∴==故23、如图所示,设河宽为a ,一条船从岸边一点O 出发驶向对岸,船头总是指向对岸与点O 相对的一点B 。
大学生高等数学竞赛试题汇总及答案
前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
)2009-2010年第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(16/15,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f ,则=)(x f ____________.解:令⎰=2d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。
因此3103)(2-=x x f 。
3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面 022=-+z y x 的切平面方程是0122=--+z y x 。
大学生高等数学竞赛试题汇总及答案
前三届高数竞赛预赛试题非数学类参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题;2009-2010年 第一届全国大学生数学竞赛预赛试卷一、填空题每小题5分1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(16/15,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,⎰-=102d 1u uu 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=2d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A ;因此3103)(2-=x x f ; 3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由xz x =,yz y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x ;4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d x y________________. 解: 方程29ln )(y y f e xe =的两边对x 求导,得 因)(29ln y f y xe e =,故y y y f x '=''+)(1,即))(1(1y f x y '-=',因此二、5分求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数. 解 :因 故 因此三、15分设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.解 : 由A x x f x =→)(lim和函数)(x f 连续知,0)(lim lim )(lim )0(000===→→→xx f x x f f x x x因⎰=10d )()(t xt f x g ,故0)0(d )0()0(10===⎰f t f g , 因此,当0≠x 时,⎰=xu u f xx g 0d )(1)(,故 当0≠x 时,xx f u u f x x g x )(d )(1)(02+-='⎰, 这表明)(x g '在0=x 处连续.四、15分已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:1⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;22sin sin 25d d π⎰≥--Ly y x ye y xe .证 :因被积函数的偏导数连续在D 上连续,故由格林公式知 1y x ye y xe x x ye y xe Dx y Lx y d d )()(d d sin sin sin sin ⎰⎰⎰⎥⎦⎤⎢⎣⎡-∂∂-∂∂=---而D 关于x 和y 是对称的,即知 因此 2因 故 由知即 2sin sin 25d d π⎰≥--Ly y x ye y xe五、10分已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解 设x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是二阶常系数线性非齐次微分方程的三个解,则x x e e y y 212-=--和x e y y -=-13都是二阶常系数线性齐次微分方程 的解,因此0=+'+''cy y b y 的特征多项式是0)1)(2(=+-λλ,而0=+'+''cy y b y 的特征多项式是因此二阶常系数线性齐次微分方程为02=-'-''y y y ,由)(2111x f y y y =-'-''和 x x x e xe e y 212++=',x x x e xe e y 2142++='' 知,1112)(y y y x f -'-''=)(2)2(42222x x x x x x x x e xe e e xe e e xe +-++-++= 二阶常系数线性非齐次微分方程为六、10分设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.解 因抛物线c bx ax y ln 22++=过原点,故1=c ,于是 即而此图形绕x 轴旋转一周而成的旋转体的体积 即 令0)1(278)21(3152)(=---+='a a a a V πππ, 得 即 因此45-=a ,23=b ,1=c .七、15分已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n, 且neu n =)1(, 求函数项级数∑∞=1)(n n x u 之和.解x n n ne x x u x u 1)()(-+=', 即由一阶线性非齐次微分方程公式知 即 因此由)1()1(nC e u n e n +==知,0=C , 于是下面求级数的和:令 则 即由一阶线性非齐次微分方程公式知令0=x ,得C S ==)0(0,因此级数∑∞=1)(n n x u 的和八、10分求-→1x 时, 与∑∞=02n n x 等价的无穷大量.解 令2)(t x t f =,则因当10<<x ,(0,)t ∈+∞时,2()2ln 0t f t tx x '=<,故xt t ex t f 1ln22)(-==在(0,)+∞上严格单调减;因此即()d ()1()d n f t t f n f t t ∞+∞+∞=≤≤+∑⎰⎰,又2()n n n f n x ∞∞===∑∑,21ln 1d 1ln1d d d )(01ln222πxt e xt et x t t f t xt t====⎰⎰⎰⎰∞+-∞+-∞+∞+,所以,当-→1x 时, 与∑∞=02n n x 等价的无穷大量是x-121π;2010-2012年 第二届全国大学生数学竞赛预赛试卷参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题; 一、25分,每小题5分1设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞2求21lim 1x x x e x-→∞⎛⎫+ ⎪⎝⎭;3设0s >,求0(1,2,)sx n I e x dx n ∞-==⎰;4设函数()f t 有二阶连续导数,1(,)r g x y f r ⎛⎫== ⎪⎝⎭,求2222g g x y ∂∂+∂∂;5求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离; 解:122(1)(1)(1)n n x a a a =+++=22(1)(1)(1)(1)/(1)nn x a a a a a =-+++- =222(1)(1)(1)/(1)na a a a -++-==12(1)/(1)n a a +--2 22211ln (1)ln(1)1lim 1lim lim x x x e x x xx xx x x e e e x -++--→∞→∞→∞⎛⎫+== ⎪⎝⎭令x=1/t,则原式=21(ln(1))1/(1)112(1)22lim lim lim t t t t ttt t t eeee +-+---+→→→===30000112021011()()[|](1)!!sx n n sx n sx sx n n sx n n n n n I e x dx x de x e e dx s s n n n n n n e x dx I I I s s s s s ∞∞∞---∞-∞----+==-=--=-=====⎰⎰⎰⎰二、15分设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0,lim ()0,lim ()0,x x f x f x f x αβ→+∞→-∞''''>=>=<且存在一点0x ,使得0()0f x <;证明:方程()0f x =在(,)-∞+∞恰有两个实根;解: 二阶导数为正,则一阶导数单增,fx 先减后增,因为fx 有小于0的值,所以只需在两边找两大于0的值;将fx 二阶泰勒展开: 因为二阶倒数大于0,所以lim ()x f x →+∞=+∞,lim ()x f x →-∞=-∞证明完成;三、15分设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ; 解:这儿少了一个条件22d ydx=由()y t ψ=与22132t u y e du e-=+⎰在1t =出相切得 3(1)2e ψ=,'2(1)eψ= 22d y dx ='3''()(2(/)(/)//(22)2)2()d dy dx d dy dx dt dx dx d t t t t t ψψ==++-=;;; 上式可以得到一个微分方程,求解即可; 四、15分设10,,nn n k k a S a =>=∑证明:1当1α>时,级数1nn na S α+∞=∑收敛; 2当1α≤且()n s n →∞→∞时,级数1nn na S α+∞=∑发散; 解:1n a >0, n s 单调递增 当1n n a ∞=∑收敛时,1n n n a a s s αα<,而1n a s α收敛,所以nna s α收敛; 当1n n a ∞=∑发散时,lim n n s →∞=∞所以,11111211n n n s s n s s n n na a a dx dx s s x s x ααααα-∞∞==<+=+∑∑⎰⎰而1111111111lim 11ns n s n s s a a s dx k x s s αααααααα---→∞-=+=+=--⎰,收敛于k; 所以,1nn na s α∞=∑收敛; 2lim n n s →∞=∞所以1n n a ∞=∑发散,所以存在1k ,使得112k n n a a =≥∑于是,111122212k k k n n n n nk a a a s s s α≥≥≥∑∑∑依此类推,可得存在121...k k <<<使得112i i k n k n a s α+≥∑成立,所以112Nk n na N s α≥⋅∑ 当n →∞时,N →∞,所以1nn na s α∞=∑发散 五、15分设l 是过原点、方向为(,,)αβγ,其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c ++≤,其中0,c b a <<<密度为1绕l 旋转; 1求其转动惯量;2求其转动惯量关于方向(,,)αβγ的最大值和最小值; 解:1椭球上一点Px,y,z 到直线的距离 由轮换对称性, 2a b c >>∴当1γ=时,22max 4()15I abc a b π=+ 当1α=时,22min 4()15I abc b c π=+六、15分设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422()cxydx x dyx yϕ++⎰的值为常数; 1设L 为正向闭曲线22(2)1,x y -+=证明422()0;cxydx x dyx y ϕ+=+⎰2求函数()x ϕ;3设C 是围绕原点的光滑简单正向闭曲线,求422()cxydx x dyx y ϕ++⎰;解:(1) L 不绕原点,在L 上取两点A,B,将L 分为两段1L ,2L ,再从A,B 作一曲线3L ,使之包围原点; 则有 (2) 令42422(),xy x P Q x y x yϕ==++ 由1知0Q P x y∂∂-=∂∂,代入可得 上式将两边看做y 的多项式,整理得 由此可得 解得:2()x x ϕ=-(3) 取'L 为424x y ξ+=,方向为顺时针2011-2012年 第三届全国大学生数学竞赛预赛试卷参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题;一. 计算下列各题本题共3小题,每小题各5分,共15分1.求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭;解:用两个重要极限:2.求111lim ...12n n n n n →∞⎛⎫+++⎪+++⎝⎭; 解:用欧拉公式令111...12n x n n n n=++++++ 其中,()1o 表示n →∞时的无穷小量,3已知()2ln 1arctan tt x e y t e ⎧=+⎪⎨=-⎪⎩,求22d y dx ; 解:222222221211,121121tt t t t t t t t tte dx e dy e dy e e e e dt e dt e dx e e --++==-∴==+++ 二.本题10分求方程()()2410x y dx x y dy +-++-=的通解;解:设24,1P x y Q x y =+-=+-,则0Pdx Qdy +=1,P Q y x ∂∂==∴∂∂0Pdx Qdy +=是一个全微分方程,设dz Pdx Qdy =+ ,P Q y x∂∂=∴∂∂该曲线积分与路径无关 三.本题15分设函数fx 在x=0的某邻域内具有二阶连续导数,且()()()'"0,0,0f f f 均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()1232230lim0h k f h k f h k f h f h→++-=;证明:由极限的存在性:()()()()1230lim 2300h k fh k f h k f h f →++-=⎡⎤⎣⎦即[]()123100k k k f ++-=,又()00f ≠,1231k k k ∴++=①由洛比达法则得由极限的存在性得()()()'''1230lim 22330h k fh k f h k f h →⎡⎤++=⎣⎦即()()'1232300k k k f ++=,又()'00f ≠,123230k k k ∴++=②再次使用洛比达法则得123490k k k ∴++=③由①②③得123,,k k k 是齐次线性方程组1231231231230490k k k k k k k k k ++=⎧⎪++=⎨⎪++=⎩的解设1231111123,,01490k A x k b k ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则Ax b =, 增广矩阵*111110031230010314900011A ⎛⎫⎛⎫⎪ ⎪=- ⎪⎪⎪ ⎪⎝⎭⎝⎭,则()(),3R A b R A ==所以,方程Ax b =有唯一解,即存在唯一一组实数123,,k k k 满足题意, 且1233,3,1k k k ==-=;四.本题17分设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值;解:设Γ上任一点(),,M x y z ,令()222222,,1x y z F x y z a b c=++-,则'''222222,,,x y z x y z F F F a b c ===∴椭球面1∑在Γ上点M 处的法向量为:222,,,x y z t a b c ⎛⎫=∴ ⎪⎝⎭1∑在点M 处的切平面为∏:原点到平面∏的距离为d =,令()222444,,,x y z G x y z a b c =++则1d =现在求()222444,,,x y z G x y z a b c =++在条件2222221x y z a b c++=,222z x y =+下的条件极值,令()()22222222212444222,,1x y z x y z H x y z x y z a b c a b c λλ⎛⎫=+++++-++- ⎪⎝⎭则由拉格朗日乘数法得:'1242'1242'1242222222222222022202220100x y z xx H x a a y y H y b b z z H z c c x y z ab c x y z λλλλλλ⎧=++=⎪⎪⎪=++=⎪⎪⎪=+-=⎨⎪⎪++-=⎪⎪⎪+-=⎪⎩, 解得2222220x b c y z b c =⎧⎪⎨==⎪+⎩或2222220a c x z a c y ⎧==⎪+⎨⎪=⎩, 对应此时的()()442222,,b c G x y z b c b c +=+或()()442222,,a c G x y z a c a c +=+此时的1d =2d =又因为0ab c >>>,则12d d <所以,椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值分别为:2d =1d =五.本题16分已知S 是空间曲线2231x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分0z≥取上侧,∏是S 在(),,P x y z 点处的切平面,(),,x y z ρ是原点到切平面∏的距离,,,λμν表示S 的正法向的方向余弦;计算:1(),,SzdS x y z ρ⎰⎰;2()3S z x y z dS λμν++⎰⎰解:1由题意得:椭球面S 的方程为()222310x y z z ++=≥令22231,Fx y z =++-则'''2,6,2x y z F x F y F z ===,切平面∏的法向量为(),3,n x y z =,∏的方程为()()()30x X x y Y y z Z z -+-+-=,原点到切平面∏的距离()222,,x y z ρ==将一型曲面积分转化为二重积分得:记22:1,0,0xz D x z x z +≤≥≥2方法一:λμν===六.本题12分设fx 是在(),-∞+∞内的可微函数,且()()f x mf x <、,其中01m <<,任取实数0a ,定义()1ln ,1,2,...,n n a f a n -==证明:()11n n n a a ∞-=-∑绝对收敛; 证明:()()112ln ln nn n n a a f a f a ----=-由拉格朗日中值定理得:ξ∃介于12,n n a a --之间,使得()()()'112n n n n f a a a a f ξξ---∴-=-,又()()f mf ξξ<、得()()'f m f ξξ<∴级数1101n n m a a ∞-=-∑收敛,∴级数11nn n aa ∞-=-∑收敛,即()11n n n a a ∞-=-∑绝对收敛;七.本题15分是否存在区间[]0,2上的连续可微函数fx,满足()()021f f ==,()()201,1fx f x dx ≤≤⎰、请说明理由;解:假设存在,当[]0,1x ∈时,由拉格朗日中值定理得: 1ξ∃介于0,x 之间,使得()()()'10,f x f f x ξ=+, 同理,当[]1,2x ∈时,由拉格朗日中值定理得:2ξ∃介于x,2之间,使得()()()()'222f x f f x ξ=+-即()()[]()()()[]''121,0,1;12,1,2f x f x x f x f x x ξξ=+∈=+-∈ ()11f x -≤≤、,显然,()()200,0f x f x dx ≥≥⎰()()()()()1221211111133x dx x dx f x dx x dx x dx ≤-+-≤≤++-=⎰⎰⎰⎰⎰()21f x dx ∴≥⎰,又由题意得()()221,1f x dx f x dx ≤∴=⎰⎰即()21f x dx =⎰,()[][]1,0,11,1,2x x f x x x ⎧-∈⎪∴=⎨-∈⎪⎩ ()'1f ∴不存在,又因为fx 是在区间[]0,2上的连续可微函数,即()'1f 存在,矛盾,故,原假设不成立,所以,不存在满足题意的函数fx;。
第六届全国大学生数学竞赛预赛答案(非数学类)
2014年全国大学生数学竞赛预赛试题参考答案一 填空题(共有5小题, 每小题6分,共30分) (1) 已知1x y e =和2x y xe =是齐次二阶常系数线性微分方程的解,则该方程是___________.答案: ()2()()0y x y x y x ¢¢¢-+=[参考解答] 由题设知该方程的特征方程有二重根1r =,故所求微分方程是()2()()0y x y x y x ¢¢¢-+=. (2)设有曲面22:2S z x y =+和平面:220L x y z ++=, 则与L 平行的S 的切平面方程是________. 答案: 32202x y z +++= [参考解答] 设0000(,,)P x y z 为S 上一点, 则S 在0P 的切平面方程是000002()4()()0x x x y y y z z ----+-=.由于该切平面与已知平面L 平行, 则00(2,4,1)x y --平行于(2,2,1), 故存在常数0k ¹使得00(2,4,1)(2,2,1)x y k --=, 从而1k =. 故得01x =-, 012y -=, 这样就有032z=.所求切面方程是32202x y z +++=. (3)设函数()y y x =由方程21sin 4y xt x dt p -æö=ç÷èøò所确定,求x dy dx == .答案: 3y ¢=[参考解答] 易知在(0)1y =. 对方程的两边关于x 求导,得21sin ()(1),4y x y p æö¢=--ç÷èø于是2csc ()14y y x p æö¢=-+ç÷èø,把0x =代入上式,得3y ¢=.(4)设 1(1)!nn k kx k ==+å,则lim n n x ®¥=___________. 答案:1[参考解答] 1(1)!nn k kx k ==+å=111!(1)!nk k k =æö-ç÷+èøå111111111112!2!3!3!4!!(1)!(1)!n n n æöæöæöæö=-+-+-++-=-®ç÷ç÷ç÷ç÷++èøèøèøèøL .(5 ) 已知130()lim 1xx f x x e x ®æö++=ç÷èø则20()lim x f x x ®=___________. 答案: 2[参考解答] 由13()lim 1xx f x x e x ®æö++=ç÷èø知01()lim ln(13x f x x x x®++=,于是有1()ln(1)3,f x x x x a ++=+ 其中 0(0)x a ®®,即有 32()11x x f x e x xa +-=-,从而 32000()13lim lim 1lim 1 2.x x x x x f x e x x x x xa a +®®®-+=-=-= 二 (本题满分12分) 设n 为正整数, 计算 211cos ln .n ed I dx dx x p-æö=ç÷èøò [参考解答与评分标准]()22111cos ln cos ln n n ee d d I dx x dx dx x dx pp --æö==ç÷èøòò211sin ln .n e x dx x p -=ò ……….….. (6分)令 ln ,x u = 则有 02/220sin sin 4sin 4n n I u du t dtn tdt n pp p-====òòò.……………… (12分)三 (本题满分14分) 设函数()f x 在[0,1]上有二阶导数,且有正常数,A B 使得 |()|,|"()|f x A f x B ££. 证明:对任意[,]01x Î,有|()|22B f x A ¢£+. [参考解答与评分标准] 由泰勒公式,有21(0)()()(0)()(0),(0,),2f f x f x x f x x x x ¢¢¢=+-+-Î 21(1)()()(1)()(1),(,1),2f f x f x x f x x h h ¢¢¢=+-+-Î ………. (5分)上述两式相减,得到2211(0)(1)()()(1)(),22f f f x f x f x h x ¢¢¢¢¢-=---+于是2211()(1)(0)()(1)()22f x f f f x f x h x ¢¢¢¢¢=---+. ………… (8分)由条件|()|,|()|f x A f x B ¢¢££,得到()22|()|2(1)2Bf x A x x ¢£+-+. ………. (11分) 因222(1)221x x x x +-=-+在[,]01的最大值为1, 故|()|22Bf x A ¢£+. ……….. (14分) 四 (本题满分14分) (1)设一球缺高为h ,所在球半径为R .证明该球缺的体积为2(3)3R h h p -,球冠的面积为2Rh p .(2)设球体222(1)(1)(1)12x y z -+-+-£被平面:6P x y z ++=所截的小球缺为W . 记球缺上的球冠为S ,方向指向球外,求第二型曲面积分I xdydz ydzdx zdxdy S=++òò.[参考解答与评分标准] (1)设球缺所在的球体表面的方程为2222x y z R ++=,球缺的中心线为z 轴,且设球缺所在圆锥顶角为2a . 记球缺的区域为W ,则其体积为222()(3)3zRRR hD R hdv dz dxdy R z dz R h h pp W--==-=-òòòòòòò. …… (3分) 由于球面的面积微元是2sin dS R d q q =,故球冠的面积为2220sin 2(1cos )2d Rd R Rh paj q q p a p =-=òò. ………… (6分)(2)记球缺W 的底面圆为1P ,方向指向球缺外,且记1P J xdydz ydzdx zdxdy =++òò. 由Gauss 公式, 有33()I J dv v W+==W òòò, …………. (9分)其中()v W 为W 的体积. 由于平面P 的正向单位法向量为(1,1,1)3,故111()()()3P J x y z dS P P s =++==-, 其中1()P s 是1P 的面积。
数学专业类竞赛试题及答案
数学专业类竞赛试题及答案一、选择题(每题3分,共15分)1. 以下哪个数是无理数?A. 3.14159B. πC. √2D. 0.33333...答案:B、C2. 已知函数f(x) = 2x^2 - 3x + 1,求f(2)的值。
A. 3B. 5C. 7D. 9答案:B3. 集合A = {1, 2, 3},集合B = {2, 3, 4},求A∪B。
A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}答案:B4. 已知等差数列的首项a1=2,公差d=3,求第10项a10。
A. 23B. 25C. 29D. 31答案:C5. 以下哪个命题为真?A. 所有的偶数都是整数B. 所有的整数都是偶数C. 所有的奇数都是质数D. 所有的质数都是奇数答案:A二、填空题(每题2分,共10分)6. 圆的面积公式为:________。
答案:πr^27. 复数z = 3 + 4i的模长为:________。
答案:58. 一个直角三角形的两条直角边分别为3和4,斜边的长度为:________。
答案:59. 函数y = x^3 - 2x^2 + x - 2在x=1处的导数为:________。
答案:-410. 已知A = {1, 2, 3},B = {2, 3, 4},A∩B = {2, 3},求A-B。
答案:{1}三、解答题(每题10分,共30分)11. 解不等式:|x-2| + |x+3| ≥ 10。
解:根据绝对值的性质,我们可以将不等式分为三个部分来解:当x < -3时,不等式变为 -2x + 1 ≥ 10,解得x ≤ -4.5;当-3 ≤ x < 2时,不等式变为5 ≥ 10,这是不可能的,所以此区间内无解;当x ≥ 2时,不等式变为 2x - 1 ≥ 10,解得x ≥ 5.5。
因此,不等式的解集为x ≤ -4.5 或x ≥ 5.5。
12. 证明:对于任意正整数n,n^5 - n 能被30整除。
南昌大学高等数学竞赛(全套)理工类试题和答案
.
z z y x y
.
5、曲面
x2 y2 z 2 a b c , , 1 在 的切平面方程为 a2 b2 c2 3 3 3
.
第 1 页 共 123页
二、 选择题(每题 3 分,共 15 分)
得分 评阅人
1、 设 f x, y 为连续函数,则 lim (B) f 0,0 .
1
0
2
x y2 2
2
f x, y dxdy =( )
(C) f 0,0 . (D) 2f 0,0 .
(A) 0.
1 2 2 , x 2 y 2 0; x y sin 2 2 2、 设二元函数 f x, y x y x 2 y 2 0, 0,
n 1
则 S x x n 2 x n1
x 2 n 1 n x 0 n x dx x nx n1 n1 n 1 x x nx n1 x x 1 x 2 x x 1 = , x 1 1 x 3
设 an 0 ,证明下面级数收敛
an . 1 a1 1 a2 1 an n 1
得分
评阅人
八、 (本题满分 7 分)
计算曲面积分 xz 2 dydz , 其中 是上半球面 z
R 2 x 2 y 2 的上侧.
第 5 页 共 123页
得分
评阅人
= 2 yf1 4 x 2 y 2 f11 4y2 2y y2 f12 3 f 2 4 f 22 x x x
第 9 页 共 123页
2015年第六届全国大学生数学竞赛预赛试题及答案
n +1 n n ∑ n n n 2015 年第七届预赛(非数学类)参考答案一、每小题 6 分,共计 30 分。
⎛ sin π sin 2 π ⎞⎜ n n sin π ⎜ 2 (1) 极限 lim n ⎜ 2 + n +1n + 2 + L + n 2 + n ⎜ =π。
n →∞ ⎜ ⎜ ⎝ ⎟i1 n in sin π n 1 n i 解:由于 ∑sin i =1 π ≤ ∑ i =1n +i n≤ ∑sin i =1 π , 而 nlim 1 ∑sin i π = lim n π ni 1 π 2 sin π = ∫ sin xdx = , n →∞ n +1 i =1 n n →∞ (n +1)π n i =1n π 0 πlim 1 ∑sin i π = lim 1 π ∑sin i π = 1 ∫π sin xdx = 2。
n →∞ n i =1 n n →∞ π n i =1 n π 0 π所以所求极限是 2 .π(2)设函数 z = z ( x , y ) 由方程 F ( x + z, y + z ) = 0 所决定,其中 F (u , v ) 具有连续偏导y x∂z ∂z数,且 xF u + yF v ≠ 0 。
则 x + y = z −xy 。
(本小题结果要求不显含 F 及其 ∂x ∂y偏导数)⎛ 1 ∂z ⎞⎜⎛ 1 ∂z z ⎞ ⎜ ⎜ ⎜ 解:方程对 x 求导,得到⎜1+ ⎜ F u +⎜ − y x x x x ⎜ F v = 0 ⎝⎜ ∂ ⎟⎜⎝⎜ ∂ 2 ⎟⎜∂z y ( z F − x 2 F ) 即 x = v u。
∂x xF u + yF v∂z x ( z F − y 2F ) 同样,方程对 y 求导,得到 y = u v。
∂y xF u + yF v于是 x∂z + y ∂z = z ( x F u + yF v ) − xy ( x F u + yF v )= z − xy ∂x ∂y u + v(3)曲面 z = x 2 + y 2 + 1 在点 M (1,‐1,3)的切平面与曲面 z = x 2 + y 2所围区域的体积为π。
高等数学竞赛试题含答案
高等数学竞赛试题一、求由方程032=-+xy y x所确定的函数()x y y =在()+∞,0内的极值,并判断是极大值还是极小值. 解:对032=-+xy y x两边求导得()2230x y y y xy ''+-+=,223y xy y x-'=- 令0y '=得2yx =,代入原方程解得11,84x y ==.()()()()()2111122,,,08484232613x y x y y y y x y x yy y yx '=====''-----''=-.故当18x =时,y 取极大值14.二、设xyyx u -+=1arctan ,求x u ∂∂, 22x u ∂∂.解:()()2211111xy yy x xy xy y x xu-++-⎪⎪⎭⎫ ⎝⎛-++=∂∂=211x+, 22x u ∂∂=()2212x x +-三、计算曲线积分⎰+-=Lyx ydxxdy I224,其中L 是以点(1,0)为中心,R 为半径的圆周,0>R 1≠R ,取逆时针方向.解:()224,yx yy x P +-=, ()224,y x x y x Q +=, 当()()0,0,≠y x 时,()x Qyx x y y P ∂∂=+-=∂∂2222244, 当10<<R 时()D ∉0,0,由格林公式知,0=I .当1>R 时, ()D ∈0,0,作足够小的椭圆曲线⎪⎩⎪⎨⎧==θεθεsin cos 2:y x C ,θ从0到π2.当>ε充分小时,C 取逆时针方向,使D C ⊂,于是由格林公式得0422=+-⎰-+CL yx ydxxdy , 因此⎰+-L y x ydx xdy 224⎰+-=C yx ydxxdy 224 =θεεπd ⎰202221 =π 四、设函数()x f 在()+∞,0内具有连续的导数,且满足()()()422222t dxdy y xfy x t f D+++=⎰⎰,其中D 是由222t y x =+所围成的闭区域,求当x ∈()+∞,0时()x f 的表达式.解:()()22402tf t d r f r rdr t πθ=+⎰⎰=()3404tr f r dr t π+⎰,两边对t 求导得()()3344f t t f t t π'=+,且()00f =,这是一个一阶线性微分方程,解得()()411t f t e ππ=-五、设dx x x a n n⎰=πsin ,求级数∑∞=+⎪⎪⎭⎫⎝⎛-1111n n na a 的和.解:令t n x -=π, 则()dt t t n a n n ⎰-=ππ0sin=n n a dt t n -⎰ππ0sin .sin 2n nn a t dt ππ=⎰2220sin sin 22n n t dt tdt n πππππ===⎰⎰.⎪⎭⎫ ⎝⎛+-=-+1111111n n a a n n π.1n n k S =⎛⎫=-∑=n k =111n ⎫-⎪+⎭, =S 111n n ⎫-=⎪+⎭六、设()f x 在[)+∞,0上连续且单调增加,试证:对任意正数a ,b ,恒有()()()[]⎰⎰⎰-≥ba ba dx x f a dx x fb dx x xf 0021. 解:令()()0xF x x f t dt =⎰,则()()()0xF x f t dt xf x '=+⎰,()()()ba Fb F a F x dx '-=⎰=()()0bx a f t dt xf x dx ⎡⎤+⎢⎥⎣⎦⎰⎰ ()()ba xf x xf x dx ≤⎡+⎤⎣⎦⎰ =()2baxf x dx ⎰,于是()()()()()001122bba axf x dx F b F a b f x dx a f x dx ⎡⎤≥⎡-⎤=-⎣⎦⎢⎥⎣⎦⎰⎰⎰. 七、设()v u ,ϕ具有连续偏导数,由方程()bz y az x --,ϕ=0确定隐函数()y x z z ,=,求yzb x z a ∂∂+∂∂. 解:两边对x 求偏导得1210z z a b x x ϕϕ∂∂⎛⎫⎛⎫''-+-= ⎪ ⎪∂∂⎝⎭⎝⎭g g ,两边对y 求偏导得1210z z ab y y ϕϕ⎛⎫⎛⎫∂∂''-+-= ⎪ ⎪∂∂⎝⎭⎝⎭g g , 112z x a b ϕϕϕ'∂=∂''+,212z x a b ϕϕϕ'∂=∂''+, yz b x z a ∂∂+∂∂=1.八、设nn x n121112----=Λ,判别数列{}n x 的敛散性.解:定义00x =,令1k k k u x x -=-,则1nk n k u x ==∑,当2n ≥时,1n n n u x x -=-=-,()21-==+.1lim 14n n u →∞=,由1n ∞=1n n u ∞=∑收敛,从而{}n x 收敛. 九、设半径为r 的球面∑的球心在球面0∑:()22220xy z R R ++=>上,问当r 为何值时,球面∑在球面0∑内部的那部分面积最大?解:由对称性可设∑的方程为()2222xy z R r ++-=,球面∑被球面0∑所割部分的方程为zR =z x ∂=∂, z x ∂=∂,=球面∑与球面0∑的交线在xoy 平面的投影曲线方程为422224r x y r R +=-,令l =所求曲面面积为()200l DSr d πθρ==⎰⎰,=222r r r R π⎛⎫- ⎪⎝⎭.令()0S r '=得驻点43r R =,容易判断当43rR =时,球面∑在球面0∑内部的那部分面积最大. 十.计算()ds yx y x IL⎰+-+=22221,其中曲线弧L 为:x y x 222=+,0≥y . 解: 22x x y-=, (1) 221xx x y --=',ds ==, (2)将(1)、(2)代入()ds y x y x IL⎰+-+=22221得 dx x x xI 220212-=⎰ =dx x⎰-2212 =4. 十一.计算曲面积分()3322231Ix dydz y dzdx z dxdy ∑=++-⎰⎰,其中∑是曲面221y x z --=被平面0=z 所截出部分的上侧.解:记1∑为xoy 平面上被园221x y +=所围成的部分的下侧,Ω为由∑与0∑围成的空间闭区域.由高斯公式知()()13322222316x dydz y dzdx z dxdy x y z dv ∑∑Ω+++-=++⎰⎰⎰⎰⎰Ò =()221126r d dr z r rdz πθ-+⎰⎰⎰=()()122320112112r r r r dr π⎡⎤-+-⎢⎥⎣⎦⎰ =2π.()221332122313x y x dydz y dzdx z dxdy dxdy ∑+≤++-=--⎰⎰⎰⎰=3π23I πππ=-=-。
2023年第六届华教杯全国大学生数学竞赛初赛真题【非数学类专业组】
2023年第六届华教杯全国大学生数学竞赛初赛真题(非数学类专业组)一、选择题(10题、3分/题)1.已知xxx +-=11)(α,333)(x x -=β,则当1→x 时().A .)(x α是关于)(x β的2阶无穷小B .)(x α与)(x β是高阶无穷小C .)(x β与)(x α是等价无穷小D .)(x α与)(x β是同阶无穷小,但不是等价无穷小2.=+-⎰dx xx e x2211(().A .Cx e x++1B .C x e x++21C .C x e x++212D .C xe x++2213.=++-⎰dx n x x n x x e x]2sin )sin (cos 2cos)cos [sin ππ().A .C n x e x ++)2cos(πB .Cn x e x++-)2cos(πC .Cn x e x ++-)2tan(πD .C n x e x++-)tan(π4.=++∑∑==∞→n i n j n j i ji n 11221lim ().A .2ln 2+πB .2ln 2+πC .3ln 2+πD .3ln 2+π5.=+⎰πn dx x 0)2sin(1().A .nB .n2C .n 3D .n226.=++∞→nn n n 12)1(lim ().A .0B .1C .2D .37.=+⎰-xdx x x 22322cos )sin (ππ().A .2πB .4πC .6πD .8π8.∑∞==≤≤-=022,,cos n na x nx ax ππ().A .0B .1C .2D .39.=++++++∞→(nn n n nn n n 1221212lim n 21().A .ln2B .ln3C .2ln 1D .3ln 110.设0022>->=b ac a R D ,,,=>+++=⎰⎰)0)2(222p cy bxy ax p dxdyI D ().A .2b ac p -πB .bac p -πC .bac p -2πD .bac p -2π二、填空题(7题、4分/题)1.=--→1cos )sec(sin )sec(tan lim20x x x x .2.=-+⎰dx xe x e x x 2)1()1(.3.点)2,2,2(0M 关于直线32431:-=+=-z y x L 的对称点1M 的坐标为.4.()()()⎰⎰=---Ddxdy xy x y y x 4122.其中y x x y D ==;:及)21,0(,.4122∈=--+y x y x y x 所围成的区域.5.正方形的边长L 以2m/s 的速度增大,当L=4m 时,其内接圆的面积的变化速率为.6.=⎪⎭⎫ ⎝⎛6sin)2023(π.7.设1321242n n x n-=⋅⋅⋅⋅,则=∞→n xn e lim .三、解答题(3题、14分/题)1.设函数)(x f 在][b a ,上具有连续导数,若μλ,为实数且)()(21)(22a b a b dx x f ba-+-=⎰μλ,)(21)(31)(2233a b a b dx x xf ba-+-=⎰μλ,证明:存在)(b a ,∈ξ,使得λξ=)('f .2.若!!21)(2n x x x x f nn ++++= ,其中n 为自然数,求方程0)()(1=+x f x f n n 在)(∞+-∞,内实根的个数.3.曲线],2[,sin ππ∈=x x y 绕y 轴旋转一周,求所得几何体的体积.2023年第六届华教杯全国大学生数学竞赛初赛真题(非数学类专业组)参考答案一、选择题1、D 2、B 3、B 4、B 5、D 6、B 7、D8、B9、C10、A二、填空题1、1-2、C xex+-113、)6,6,6(-4、614415、π46、23-7、1三、解答题1、【参考解析】考虑积分dx x f x b a x ba⎰---))()()(('λ,利用分布积分及)()(21)(22a b a b dx x f ba-+-=⎰μλ,)(21)(31)(2233a b a b dx x xf b a -+-=⎰μλ,有⎰⎰-++-----+b ab a badxx f x a b x f x b a x dx x ab ax bx )()2()())(()(2λ⎰⎰-++-=b a b a dxx xf dx x f b a a b )(2)()()(63λ))(21)(31(2))()(21)(()(62233223a b a b a b a b b a a b -+---+-++-=μλμλλ0=由积分中值定理知,存在)(b a ,∈ξ,使得λξ=)('f .2、【参考解析】由题设知)(x f n 在)(∞+-∞,内连续,当n 为偶数时,,)(lim ,)(lim -∞=+∞=-∞→+∞→x f x f n n n n 故)(x f n 存在极小点0x ,则由()(),!!0000n x n x x f x f nn n n =+'=又(),10=n f 从而(),0>x f n 即()x f n 在()∞+∞-,内无实根.当n 为奇数时,()(),,-∞=+∞=-∞→+∞→x f x f n n n n lim lim 知()x f n 在区间()∞+∞-,内有实根.由()(),1x f x f n n -='而1-n 为偶数,则()0>'x f ,知()x f n 在区间()∞+∞-,严格单增,故其有唯一实根.从而()x f n ()x f n 1+无论n 为奇数还是偶数,它在()∞+∞-,内有唯一实根.3、【参考解析】曲线],2[,sin ππ∈=x x y 的反函数为]1,0[,arcsin ∈-=y y x π,所以所得几何体的体积为:⎰-=12)arcsin (dy y V ππ,设则即,sin ,arcsin u y u y ==⎰⎰-=-=202102cos )()arcsin (πππππudu u dy y V =)88(42-π+ππ.。
高等数学竞赛试题解答
高等数学竞赛试题参考答案一、选择题(15)1. 下列命题中正确的命题有几个? …………………………………………( A ) (1)无界变量必为无穷大量; (2) 有限多个无穷大量之和仍为无穷大量; (3)无穷大量必为无界变量; (4) 无穷大量与有界变量之积仍为无穷大量. (A) 1个; (B) 2个; (C) 3个; (D) 4个.2. 设 1, 0()0, 0x f x x ≠⎧=⎨=⎩,1sin , 0() 1 , 0x x g x x x ⎧≠⎪=⎨⎪=⎩则0x =是间断点的函数是 …( B )(A) ()()f x g x +; (B) ()()f x g x -; (C) {}m ax (), ()f x g x ; (D) {}m in (), ()f x g x3. 设ξ为()arctan f x x =在[ 0, ]b 上应用拉格朗日中值定理的“中值”,则22limb bξ→= …………………( C )(A) 1; (B) 12; (C) 13; (D) 14.4. 设n n n y z x ≤≤,且0)(lim =-∞→n n n x y ,则n n z ∞→lim ( C )(A) 存在且等于零; (B) 存在但不一定等于零; (C) 不一定存在;(D) 一定不存在.5. 设)(x f 是连续函数,)()(x f x F 是的原函数,则( A ) (A) 当)(x f 为奇函数时,)(x F 必为偶函数; (B) 当)(x f 为偶函数时,)(x F 必为奇函数; (C) 当)(x f 为周期函数时,)(x F 必为周期函数; (D) 当)(x f 为单调增函数时,)(x F 必为单调增函数.二、填空(每题3分共15分)6、已知)(x f 在),(∞+-∞内可导,且2e )(lim ='∞→x f x ,()[])1()(lim lim--=-+∞→∞→x f x f ax a x x x x ,则=a 17、设函数)(x f 在0=x 点的某个邻域内连续,且21)(lim 0=-→xx e x f ,则曲线)(x f y = 在0=x 处的法线方程为 02=+y x 8、设)(sin 42x y =,则)(3x d dy =42sin 34x x9、已知2sin ()lim ()tt t xf x t →+∞-=, ()f x '等于x xe 2sin 2sin --10、不定积分1[ln(ln )]ln x dxx+⎰等于C x x +)ln(ln三、计算解答(60) 11、 计算:nn nxnx )21(lim 22++∞→解:nnn n n xn x x n x n x n xn x n x n x n x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-++<++=++<+214)2(1))2(1()21()1(22222易知 ,1x ne n x =⎪⎭⎫ ⎝⎛+对nx n x ⎪⎪⎪⎪⎭⎫⎝⎛-+21进行变量代换,令,2m x n =-则当∞→n 时,∞→m 并且,2xm += 因此有xxm m nn e m x m x x n x=⎥⎦⎤⎢⎣⎡++=⎪⎪⎪⎪⎭⎫⎝⎛-+∞→∞→2)1()1(lim 21lim 由夹逼原理得.)21(lim 22xn n e nxnx =++∞→12、设()1tan 1x f x arc x-=+,求在x=0处的n 阶导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 R 时,球面 Σ 在球面 Σ 0 内部的那部分面积最大. 3
第 5 页 共 6页
十二、 (本题满分 8 分) 注:科技学院考生只作第 1 题, 其他考生只作第 2 题. 1.计算 I = ∫
L
( x − 1)
x2 + y2
2
+y
2
ds ,其中曲线弧 L 为: x 2 + y 2 = 2 x , y ≥ 0 .
D
2π t
(
)
(
x 2 + y 2 dxdy + t 4 ,
)
其中 D 是由 x + y = t 所围成的闭区域,求当 x ∈ (0,+∞ ) 时 f ( x ) 的表达式.
2 2 2
f ( t ) = 2∫ dθ ∫ r 2 f ( r ) rdr + t 4
= 4π 两边对 t 求导得
∫ r f ( r ) dr + t
1 8 1 . 4
令 y′ = 0 得 y = 2 x ,代入原方程解得 x = , y =
y′′
1 1 x= , y= 8 4
=
( y′ − 2 ) ( 3 y 2 − x ) − ( y − 2 x )( 6 yy′ − 1)
(3 y
2
− x)
2
1 1 x = , y = , y′ = 0 8 4
三、求由方程 x 2 + y 3 − xy = 0 所确定的函数 y = y ( x ) 在 (0,+∞ ) 内的极值,并判断是极大值 还是极小值.
对 x 2 + y 3 − xy = 0 两边求导得 2 x + 3 y 2 y′ − ( y + xy′ ) = 0 ,
y′ =
y − 2x , 3y2 − x
(
)
当 0 < R < 1 时 (0,0 ) ∉ D ,由格林公式知, I = 0 .
ε x = cos θ 当 R > 1 时, (0,0 ) ∈ D ,作足够小的椭圆曲线 C : , θ 从 0 到 2π . 2 y = ε sin θ
当 ε > 0 充分小时, C 取逆时针方向,使 C ⊂ D ,于是由格林公式得 ∫
∫
b
a
xf ( x )dx ,
∫
b
a
xf ( x )dx ≥
b a 1 1 F ( b ) − F ( a ) = b ∫ f ( x ) dx − a ∫ f ( x ) dx . 2 0 0 2
九、设 ϕ (u, v ) 具有连续偏导数,由方程 ϕ ( x − az, y − bz ) =0 确定隐函数 z = z ( x, y ) ,求
∫∫
D
2π l rρ ∂z ∂z 1 + + dxdy = ∫ dθ ∫ dρ , 0 0 ∂x ∂ 2 r2 − ρ 2 2 2
= 2π r r −
r2 . 2R
令 S ′ ( r ) = 0 得驻点 r = 容易判断当 r =
4 R, 3
L +C −
xdy − ydx = 0, 4x2 + y 2
因此 ∫
xdy − ydx xdy − ydx = ∫C 2 2 L 4x + y 4x2 + y 2
2π
=∫
0
1 2 ε 2 dθ
ε2
=π
第 2 页 共 6页
六、设函数 f ( x ) 在 (0,+∞ ) 内具有连续的导数,且满足
f (t ) = 2 ∫∫ x 2 + y 2 f
(1)
y = 2x −x2 , 1− x y′ = , 2 2x − x
ds = 1 + y′2 dx =
将(1)、(2)代入 I = ∫
1 2x − x2
dx ,
(2)
L
( x − 1)2 + y 2
2
x2 + y2
ds 得 dx
I = ∫0 2 x
= 2∫ =4. 2.计算曲面积分 I =
2 0
x 0
b x
∫ f ( t )dt + xf ( x ) , F ( b ) − F ( a ) = ∫ F ′ ( x )dx = ∫ ∫ f ( t )dt + xf ( x ) dx
b a
a 0
≤ ∫ xf ( x ) + xf ( x ) dx a
b
=2 于是
a
∂z ∂z +b . ∂x ∂y
∂z ∂z + ϕ 2′ −b = 0 , ∂x ∂x ∂z ∂z 两边对 y 求偏导得 ϕ1′ − a + ϕ 2′ 1 − b = 0 , ∂y ∂y ∂z ϕ1′ ∂z ϕ2′ = , = , ∂x aϕ1′ + bϕ 2′ ∂x aϕ1′ + bϕ 2′
∫∫ 2 x dydz + 2 y dzdx + 3 ( z Σ Σ
3
2
+
− 1) dxdy = ∫∫∫ 6 ( x 2 + y 2 + z ) dv
Ω
1 1− r
2
1
=6
∫
2π
0 1
dθ ∫ dr ∫
0
0
( z + r ) rdz
2
= 12π
2 1 r (1 − r 2 ) + r 3 (1 − r 2 ) dr ∫0 2
1 2x − x 2
1 dx 2− x
3 3 2
被平面 z = 0 所截出部分的上侧. 记 Σ 1 为 xoy 平面上被园 x 2 + y 2 = 1 所围成的部分的下侧, 为由 Σ 与 Σ 0 围成的空间闭 Ω 区域.由高斯公式知
3
∫∫ 2 x dydz + 2 y dzdx + 3 ( z Σ
− 1) dxdy ,其中 ∑ 是曲面 z = 1 − x 2 − y 2
理工类)试题答案 第六届 (理工类)试题答案
一、 单项选择题(每题 3 分,共 15 分) 1、B. 2、D. 3、A. 4、A. 5、C.
二、 选择题(每空 3 分,共 15 分)
1、1.
2、 xf x 2 .
( )
3、 ∫π3 dθ ∫
4
π
2 sec θ
0
f (r )rdr .
4、8 π .
5、 a .
(1 − xy )
2
=
1 , 1+ x2
2x ∂ 2u =− 2 ∂x 1+ x2
(
)
2
.
五、 计算曲线积分 I = ∫
L
xdy − ydx ,其中 L 是以点(1,0)为中心, R 为半径的圆周 4x2 + y 2
R > 0, R ≠ 1 ,取逆时针方向.
P ( x, y ) =
−y x ∂P y 2 − 4x 2 ∂Q , Q ( x, y ) = , 当 ( x, y ) ≠ (0,0) 时, = = 2 2 2 2 2 ∂y ∂x 4x + y 4x + y 4x 2 + y 2
1 1 − , n +1
1 1 1 − = an an +1 π
n 1 1 n 1 1 1 1 Sn = ∑ − − =∑ = a ak +1 k =1 π k k +1 π k =1 k 1 1 1 S = lim 1 − = n →∞ π π n +1
∂z ∂z 1+ + = ∂x ∂ 2
2 2
r r 2 − x2 − y2
.
球面 Σ 与球面 Σ 0 的交线在 xoy 平面的投影曲线方程为 x 2 + y 2 = r 2 −
r4 ,令 4R2
r4 l= r − 2 4R
2
所求曲面面积为 S ( r ) =
∫∫ 2 x dydz + 2 y dzdx + 3 ( z Σ
3 3
1
=2 π .
2
− 1) dxdy = −
∫∫
x 2 + y 2 ≤1
−3dxdy =3 π
I = 2π − 3π = −π
第 6 页 共 6页
= − 32<0. 故当 x =
1 1 时, y 取极大值 . 8 4
第 1 页 共 6页
x+ y ∂u ∂ 2 u 四、 设 u = arctan ,求 , . 1 − xy ∂x ∂x 2
∂u = ∂x
1 x+ y 1+ 1 − xy
2
1 − xy + ( x + y ) y
两边对 x 求偏导得 ϕ1′ 1 − a
a
∂z ∂z + b =1. ∂x ∂y
第 4 页 共 6页
十、设 x n = 2 n −
1 1
−
1 2
−L−
1 n
k
,判别数列 {xn }的敛散性.
定义 x0 = 0 ,令 uk = xk − xk −1 ,则
∑u
k =1
n
= xn ,
当 n ≥ 2 时, un = xn − xn −1 = 2 n −
1 − 2 n −1 , n
=
2 n + n −1
−
1 n − n −1 = = n n n + n −1 n