新北师大版八年级上册数学期中评价检测试卷(含答案)[1]

合集下载

北师大版八年级上册数学期中考试试卷含答案

北师大版八年级上册数学期中考试试卷含答案

北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,是无理数的是()A .227B C .-3.14D 2.下列四组线段中,能组成直角三角形的是()A .a=1,b=2,c=3B .a=2,b=3,c=4C .a=2,b=4,c=5D .a=3,b=4,c=53.若点P (a ,b )是第二象限内的点,则点Q (b ,a )在()A .第一象限B .第二象限C .第三象限D .第四象限4.下列计算错误的是()AB C D .5.若函数()15m y m x =--是一次函数,则m 的值是()A .±1B .1-C .1D .26.下列二次根式中,最简二次根式是()A .B CD 7.一次函数24y x =-+的图象与y 轴的交点坐标是()A .(4,0)B .(0,4)C .(2,0)D .(0,2)8.如图,在Rt ABC △中分别以三角形的三条边为边向外作正方形,面积分别记为1S ,2S ,3S ,若14S =,216S =,则3S 的值为()A .10B .6C .12D .209.一次函数23y x =-的图象不经过的象限是()A .第一象限B .第二象限C .第三象限D .第四象限10.如图,在数轴上,点O 对应数字O ,点A 对应数字2,过点A 作AB 垂直于数轴,且AB=4,连接OB ,绕点O 顺时针旋转OB ,使点B 落在数轴上的点C 处,则点C 所表示的数介于()A .2和3之间B .3和4之间C .4和5之间D .5和6之间二、填空题11=________.12.已知点(),1A a 与点()4,B b -关于原点对称,则a-b 的值为________13有意义的x 的取值范围是14.点A(1,a)在直线y =-2x +3上,则a =_________15.如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”,他们仅仅少走了________步路(假设2步为1米),却踩伤了花草.16.直线y =2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x +b =0的解是_____.17.如果正比例函数的图象经过点(2,1),那么这个函数的解析式是__________.三、解答题18.计算(1)-19.计算:(1(2)2(2(2-+.20.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,则梯子的底部向外滑多少米?21.已知点P (a ,b )在第二象限,且|a|=3,|b|=8,求点P 的坐标.22.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?23.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (1,0),B (2,-3),C(4,-2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2,并写出其顶点坐标;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是__________________.24.如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=,CD=BC=8,求四边形ABCD的面积.25.已知一次函数y=-2x+4.求:(1)求图象与x轴、y轴的交点A、B的坐标.(2)画出函数的图象.(3)求△AOB的面积.26.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为1y(元),B套餐为2y(元),月通话时间为x分钟.(1)分别表示出1y与x,2y与x的函数关系式;(2)月通话时间多长时,A,B两种套餐收费一样?(3)某客户每月的通话时间大概是500分钟,他应该选择哪种套餐更省钱?(4)如果某公司规定员工的话费最多是200元,他应该选择哪种套餐?参考答案1.B【解析】【分析】根据有理数和无理数的定义直接求解,无限不循环小数是无理数.【详解】解:A.227是有理数,故本选项不符合题意;C. 3.14-是有理数,故本选项不符合题意;2=是有理数,故本选项不符合题意.故选:B【点睛】本题主要考查了有理数和无理数的判断,熟练掌握有理数和无理数的概念是解答此题的关键.2.D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A.∵12+22=5≠32,∴不能构成直角三角形,故本选项错误;B.∵22+32=13≠42,∴不能构成直角三角形,故本选项错误;C.∵22+42=20≠52,∴不能构成直角三角形,故本选项错误;D.∵32+42=25=52,∴能构成直角三角形,故本选项正确.故选D.【点睛】本题考查了勾股定理的逆定理.解题的关键是,验证两小边的平方和等于最长边的平方即可证明直角三角形.3.D【解析】【分析】应先判断出所求的点的横坐标的符号,进而判断其所在的象限.【详解】解:∵点P (a 、b )在第二象限,∴a<0,b>0,∴点Q (b ,a )在第四象限,故选D .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,-);第二象限(-,+);第三象限(-,-)第四象限(+,-).4.B 【解析】【分析】根据二次根式的运算直接进行计算化简判断即可.【详解】A,正确;BC =D故选:B .【点睛】本题主要考查二次根式的化简运算,熟练掌握二次根式的运算是解题的关键.5.B 【解析】【分析】函数()15my m x =--是一次函数,根据一次函数的定义,求出m 的值即可.【详解】∵函数()15m y m x =--是一次函数,∴1m =,且10m -≠,解得:1m =-,故答案选:B .【点睛】本题考查一次函数的定义:一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,正确判断未知数的次数与系数是解答本题的关键.6.A 【解析】【分析】根据最简二次根式的两个条件逐项判定即可.【详解】解:A 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A 符合题意;B 、被开方数含能开得尽方的因数或因式,故B 不符合题意;C 、被开方数含分母,故C 不符合题意;D 、被开方数含能开得尽方的因数或因式,故D 不符合题意.故选:A .【点睛】本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.7.B 【解析】【分析】求一次函数图像与y 轴的交点坐标,令x=0,求出y 值即可.【详解】令x=0,得y=-2×0+4=4,∴一次函数与y 轴的交点坐标是(0,4),故选B.【点睛】本题考查一次函数与坐标轴的交点坐标问题,求图像与y 轴交点坐标时,令x=0,解出y 即可;求图像与x 轴交点坐标时,令y=0,解出x 即可.8.D【分析】根据勾股定理的验证计算即可;【详解】在Rt ABC △中,222AC AB BC +=,由正方形的面积公式可得21S AB =,222S AC =,223S BC =,∵14S =,216S =,∴31241620S S S =+=+=;故选D .【点睛】本题主要考查了勾股定理的应用,准确分析计算是解题的关键.9.B 【解析】【分析】根据一次函数(0)y ax b a =+≠的a 、b 的符号判定该一次函数所经过的象限即可.【详解】解: 一次函数23y x =-的20k =>,30b =-<,∴一次函数23y x =-经过第一、三、四象限,即一次函数23y x =-不经过第二象限.故选:B .【点睛】本题考查了一次函数的图象,即直线y kx b =+所在的位置与k 、b 的符号有直接的关系.解题的关键是掌握当0k >时,直线必经过一、三象限.0k <时,直线必经过二、四象限.0b >时,直线与y 轴正半轴相交.0b =时,直线过原点;0b <时,直线与y 轴负半轴相交.10.C 【解析】【分析】因为△OAB 是一个直角三角形,且有OC=OB ,所以可求得OB 的长度即得C 点所表示的数,可判断其大小.解:∵AB ⊥OA∴在直角三角形OAB 中有OA 2+AB 2=OB 2∴.OB ==∴45又∵OC=OB∴点C 所表示的数介于4和5之间故选:C .【点睛】此题考查勾股定理,无理数的估算,重点就是由垂直而组成的直角三角形的性质,从而解得答案.11.2【解析】【分析】先根据二次根式的性质化简,再合并即可.【详解】22==,故答案为:2.12.5【分析】直接利用关于原点对称点的性质得出a ,b 的值,代入求解即可.【详解】解:∵点A (a ,1)与点B (﹣4,b )关于原点对称,∴4a =,1b =-,∴5a b -=,故答案为:5.13.x≥3【分析】根据二次根式有意义的条件,可推出30x -≥,然后通过解不等式,即可推出5x ≥【详解】解:若30x -≥,原根式有意义,3x ∴≥,故答案为3x ≥.14.1【详解】将点A 的坐标(1,a)代入直线的解析式y=-2x+3,得a=-2+3=1.故答案为:115.4【分析】少走的距离是AC+BC-AB ,在直角△ABC 中根据勾股定理求得AB 的长即可.【详解】解:如图,∵在Rt ABC 中,222AB AC BC =+,∴5AB ===米,则少走的距离为:3452AC BC AB +-=+-=米,∵2步为1米,∴少走了4步.故答案为:4.16.x=2【解析】由直线y=2x+b 与x 轴的交点坐标是(2,0),求得b 的值,再将b 的值代入方程2x+b=0中即可求解.【详解】把(2,0)代入y=2x+b,得:b=-4,把b=-4代入方程2x+b=0,得:x=2.故答案为:x=2.17.y=12x【详解】设该正比例函数的解析式为y=kx(k≠0).将点(2,1)的坐标代入该正比例函数的解析式y=kx,得2k=1,∴12k=,∴该正比例函数的解析式为12y x =.故答案为:12 y x =18.(1)-1(2)32-【分析】(1)根据平方差公式,结合二次根式的性质进行计算即可;(2)先根据二次根式的性质进行化简,然后再进行运算即可.(1)解:22=-56=-1=-(2)23==32=19.(1)(2)8﹣【分析】(1)先利用二次根式的乘除法则计算,然后化简后合并即可;(2)根据完全平方公式和平方差公式计算即可;【详解】解:(1+=(2)原式=4343-++-=8﹣20.0.8【分析】在直角三角形ABC 中运用勾股定理求出BC 的长,进而求得CE 的长,再在直角三角形EDC 中运用勾股定理求出DC 的长,最后求得AD 的长即可.【详解】解:∵在Rt ABC 中, 2.5,0.7AB AC ==∴ 2.4BC ==∴2CE BC BE =-=∵在Rt CDE 中 2.5DE =∴ 1.5CD ==∴0.8AD CD AC =-=.答:梯子的底部向外滑0.8米.21.(-3,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数确定出a 、b 的值,然后写出点的坐标即可.【详解】解:∵点P(a ,b)在第二象限,且|a|=3,|b|=8,∴a=−3,b=8,∴点P 的坐标为(−3,8).22.发生火灾的住户窗口距离地面14米【分析】在Rt △ACB 中,利用勾股定理求出BC 即可解答.【详解】解:由题意,AB=15,AC=DE=9,CD=AE=2,BD ⊥AC ,在Rt △ACB 中,由勾股定理得:12BC ===,∴BD=BC+CD=14(米),答:发生火灾的住户窗口距离地面14米.23.(1)见解析;(2)A 2(-2,0),B 2(-1,3),C 2(1,2),(3)P (m-3,-n )【分析】(1)直接利用关于x 轴对称点的性质得出答案;(2)利用平移的性质可直接进行作图,然后由图象可得各个顶点的坐标;(3)直接利用平移变换的性质得出点2P 的坐标.【详解】解:(1)如图所示:△111A B C 就是所要求作的图形;(2)如图所示:△222A B C 就是所要求作的图形,其顶点坐标为A 2(-2,0),B 2(-1,3),C 2(1,2);(3)如果AC 上有一点(,)P m n 经过上述两次变换,那么对应22A C 上的点2P 的坐标是:2(3,)P m n --.故答案为:(3,)m n --.【点睛】此题主要考查了平移变换以及轴对称变换,正确得出对应点位置是解题关键.24.4+3【解析】【分析】先根据勾股定理求出BD的长,再根据勾股定理逆定理求得△BCD是直角三角形,四边形ABCD的面积是两个直角三角形的面积之和.【详解】∵AB=AD,∠BAD=90°,AB=22∴BD22AB AD=4,∵BD2+CD2=42+(432=64,BC2=64,∴BD2+CD2=BC2,∴△BCD为直角三角形,∴S四边形ABCD =S△ABD+S△BCD=12×2222+12×43=4+325.(1)A(2,0)B(0,4);(2)见解析;(3)S△AOB=4【解析】【分析】(1)分别让y=0,x=0,即可求得此一次函数的的交点A、B的坐标;(2)根据(1)中求出的交点坐标,过这两点作直线即得函数的图象;(3)直接利用三角形的面积公式求解.【详解】解:(1)让y=0时,∴0=-2x+4解得:x=2;让x=0时,∴y=-2×0+4=4,∴一次函数y=-2x+4的图象与x轴、y轴的交点坐标是A(2,0),B(0,4);(2)如下图是一次函数y=-2x+4的图象;(3)S△AOB=11244 22AO BO⨯⨯=⨯⨯=【点睛】本题考查了一次函数的图象和性质、一次函数的画法、三角形的面积,做题的关键是求出A、B的坐标.26.(1)y1=0.1x+15,y2=0.15x;(2)300分钟;(3)A套餐;(4)A套餐.【解析】【分析】(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;(2)根据两种收费相同列出方程,求解即可;(3)由当12y y <时A 套餐更省钱,即当x >300时,A 套餐优惠;否则B 套餐优惠,据此解答即可;(3)令y 1=200和y 2=200元,分别求得x ,选x 较大的实惠.【详解】解:(1)由题意可知,A 套餐的收费方式:10.115y x =+,B 套餐的收费方式为:20.15y x =.(2)由12y y =,得0.1150.15x x +=,解得300x =,即月通话时间为300分钟时,A ,B 两种套餐收费一样.(3)当12y y <时A 套餐更省钱,即0.1150.15x x +<,解得300x >因为500>300分钟时,所以他应选选A 套餐;(4)令y 1=200,有200=0.1x+15,解得:x=1850;令y 2=200,有200=0.15x ,解得:x≈1333;∵1850>1333∴应选择A 套餐.。

最新北师大新版八年级上学期数学期中考试试卷(含答卷)

最新北师大新版八年级上学期数学期中考试试卷(含答卷)

最新北师大新版八年级上学期数学期中试卷(含答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、16的算术平方根是()A.4B.﹣4C.±4D.82、在2π,,﹣,,3.14,3.868668666…(相邻两个8之间6的个数逐次加1)中,无理数的数是()个A.2B.3C.4D.53、直线y=2x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4、方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限5、下列运算正确的是()A.B.C.D.=2 6、△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.∠A=∠B+∠CC.∠A:∠B:∠C=3:4:5D.a=5,b=12,c=137、如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度8、一个正数的两个平方根分别是2a﹣3和5﹣a,则这个数是()A.49B.25C.16D.79、已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3 B.﹣3 C.3或﹣3 D.k的值不确定10、如图所示,直线y=x+4与两坐标轴分别交于A、B两点,点C是OB的中点,D、E分别是直线AB,y轴上的动点,则△CDE周长的最小值是()A.3B.3C.2D.2二、填空题(每小题3分,满分18分)11、点M(2,4)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是.12、计算:|3.14﹣π|=.13、函数y=2x﹣4+b是正比例函数,则b=.14、如图,长方形OABC放在数轴上,OA=2,OC=1,以A为圆心,AC长为半径画弧交数轴于P点,则P点表示的数为.15、如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为cm.16、如图,在Rt△ABC中,AB=AC,∠BAC=90°,点D,E为BC上两点.∠DAE=45°,F为三角形ABC外一点,且FB⊥BC,F A⊥AE,则结论:①CE =BF;②BD2+CE2=DE2;③S△ADE=AD•EF;④CE2+BE2=2AE2,其中正确的有(横线上填写序号).第14题第15题第16题最新北师大新版八年级上学期数学期中试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算18、已知2a﹣1的算术平方根是3,3a+b﹣1的立方根是2,求a﹣2b的平方根.19、如图,直角坐标系中,每个小正方形边长为单位1,△ABC的三个顶点分别在正方形格点上.(1)请在图中作出△ABC关于原点中心对称的△A′B′C′;(2)求△ABC的面积.20、已知y+4与x﹣3成正比例,且x=1时,y=0.(1)求y与x的函数表达式;(2)点M(m+1,2m)在该函数图象上,求点M的坐标.21、如图,矩形ABCD中,AB=10,BC=7,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD交于点O,且OE=OD.(1)求证:OP=OF;(2)求AP的长.22、已知平面直角坐标系中一点P(m﹣4,2m+1);(1)当点P在y轴上时,求出点P的坐标;(2)当P A平行于x轴,且A(﹣4,﹣3),求出点P的坐标;(3)当点P到两坐标轴的距离相等时,求出m的值.23、小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:制作普通花束(束)制作精致花束(束)所用时间(分钟)10256001530750请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?24、如图,直线y=﹣2x+4交x轴和y轴于点A和点B,点C(0,﹣2)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△APC的面积为4,求点P;(3)过点B的直线BE交x轴于点E(E点在点A右侧),当∠ABE=45°时,求直线BE.25、在平面直角坐标系中,点A(a,0),点B(0,b),且a、b满足(a﹣5)2+|b﹣3|=0.(1)填空:a=,b=;(2)如图1,作等腰Rt△ABC,∠ABC=90°,AB=BC,求C点坐标;(3)如图2,点M(m,0)在x轴负半轴上,分别以AB、BM为腰,点B为直角顶点,在第一、第二象限作等腰Rt△ABD、等腰Rt△MBE,连接DE交y轴于点F,求点F的坐标。

北师大版八年级上册数学期中考试试题含答案

北师大版八年级上册数学期中考试试题含答案

北师大版八年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案,每小题3分)1.下列哪个点在函数112y x =+的图象上()A .(2,1)B .(2,1)-C .(2,0)-D .(2,0)2.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为()A .4B .8C .16D .643.已知点P (m+3,2m+4)在x 轴上,那么点P 的坐标为()A .(﹣1,0)B .(1,0)C .(﹣2,0)D .(2,0)4.△ABC 的三条边分别为a ,b ,c ,下列条件不能判断△ABC 是直角三角形的是()A .a 2+b 2=c 2B .a=5,b=12,c=13C .∠A=∠B+∠CD .∠A :∠B :∠C=3:4:55.下列各式的计算中,正确的是()A =B =C =D=-6.在函数y =1x -中,自变量x 的取值范围是()A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠17.已知直角三角形两边的长为3和4,则此三角形的周长为()A .12B .C .12或D .以上都不对8.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了()A .2cmB .3cmC .4cmD .5cm9.化简二次根式)AB C D10.如图,在正方形ABCD 纸片上有一点P ,PA =1,PD =2,PC =3,现将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),则∠APD 的度数为A .150°B .135°C .120°D .108°11|1|0-=b ,那么()2017a b +的值为()A .-1B .1C .20173D .20173-12.如图1,点G 为BC 边的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边运动,运动路径为G→C→D→E→F→H ,相应的△ABP 的面积y (cm 2)关于运动时间t (s )的函数图象如图2,若AB =6cm ,则下列结论正确的个数有()①图1中BC 长4cm ;②图1中DE 的长是6cm ;③图2中点M 表示4秒时的y 值为24cm 2;④图2中的点N 表示12秒时y 值为15cm 2.A .4个B .3个C .2个D .1个二、填空题13.-27的立方根为________________,________.14.已知函数y =(a+1)x+a 2﹣1,当a_____时,它是一次函数;当a_____时,它是正比例函数.15.如图,△ABC 的边BC 在数轴上,AB ⊥BC ,且BC =3,AB =1,以C 为圆心,AC 长为半径画圆分别交数轴于点A′、点A″,那么数轴上点A′、点A″所表示的数分别是_____、_____.16.如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线y =x 上,OA 1=1,且△B 1A 1A 2,△B 2A 2A 3,△B 3A 3A 4,…△B n A n A n +1…分别是以A 1,A 2,A 3,…A n …为直角顶点的等腰直角三角形,则△B 10A 10A 11的面积是________.三、解答题17.计算:|13|+(2019﹣20﹣(12)﹣2182818(263)(263)32)2--19.如图,在平面直角坐标系中,正方形ABCD 和正方形EFGC 面积分别为64和16.(1)请写出点A ,E ,F 的坐标;(2)求S △BDF .204792737272,请你观察上述式子规律后解决下面问题.(1)规定用符号[m]表示实数m 的整数部分,例如:[45]=0,[π]=3,填空:10+2]=;[5=.(2)如果a ,5b ,求a 2﹣b 2的值.21.如图,在长方形ABCD 中,AB =8,AD =10,点E 为BC 上一点,将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,且DF =6.(1)试说明:△ADF 是直角三角形;(2)求BE 的长.22.先阅读下面的解题过程,然后再解答.我们只要找到两个数a ,b ,使a b m +=,ab n =,即22m +==0)b => .这里7m =,12n =,由于437+=,4312⨯=,所以227,+=,2+..23.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?24.在平面直角坐标系中,已知点A(-3,-1),B(-1,0),C(-2,3),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.25.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;(3)当a=3,b=4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合(如图4中Rt△AOB的位置).点C为线段OA 上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.①请写出C、D两点的坐标;②若△CMD为等腰三角形,点M在x轴上,请直接写出符合条件的所有点M的坐标.参考答案1.C【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数112y x=+的图象上,(2,0)也不在函数112y x=+的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数112y x=+的图象上,(−2,0)在函数112y x=+的图象上.故选C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.2.D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.3.B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,2m+4)在x轴上,∴2m+4=0,解得m=−2,∴m+3=−2+3=1,∴点P的坐标为(1,0).故选B.【点睛】本题考查的知识点是点的坐标,解题关键是熟记x轴上的点纵坐标为0.4.D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;B、∵52+122=132,∴此三角形是直角三角形,故本选项不符合题意;C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;D、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符号要求;故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.5.D【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【详解】解:A、原式=A选项错误;B、原式==B选项错误;CC选项错误;D=-,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.C【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故x的取值范围是x≥0且x≠1.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.7.C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C8.A 【分析】根据勾股定理可以得到AD 和BD 的长度,然后用AD+BD-AB 的长度即为所求.【详解】根据题意可得BC=4cm ,CD=3cm ,根据Rt △BCD 的勾股定理可得BD=5cm ,则AD=BD=5cm ,所以橡皮筋被拉长了(5+5)-8=2cm .【点睛】主要考查了勾股定理解直角三角形.9.B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】202a a ∴+<∴<-a a a ∴∙=--故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.10.B 【分析】连接PG ,由题意得出PD =GD =2,∠CDP =∠ADG ,得出∠PDG =∠ADC =90°,得出△PDG 是等腰直角三角形,由等腰直角三角形的性质得出∠GPD =45°,PGPD =,得出AP 2+PG 2=AG 2,由勾股定理的逆定理得出∠GPA =90°,即可得出答案.【详解】解:连接PG ,如图所示:∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,AG =PC =3,∵PA =1,PD =2,PC =3,将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),∴PD =GD =2,∠CDP =∠ADG ,∴∠PDG =∠ADC =90°,∴△PDG 是等腰直角三角形,∴∠GPD =45°,PG PD =,∵AG =PC =3,AP =1,PG =,∴AP 2+PG 2=AG 2,∴∠GPA =90°,∴∠APD =90°+45°=135°;故选:B .【点睛】本题考查了勾股定理、勾股定理的逆定理、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握正方形的性质和勾股定理的逆定理是解题的关键.11.A【分析】根据算术平方根和绝对值的非负性,确定a 、b 的值,再代入代数式求值即可.【详解】解:由题意得:a+2=0,b-1=0,即a=-2,b=1所以,()()()201720172017==211=1a b +-+--故答案为A.【点睛】本题主要考查了非负数的性质,利用非负数的性质确定待定的字母的值是解答的关键12.C【分析】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【详解】解:由图象可得:0~2秒,点P在GC上运动,则GC=2×2=4cm,∵点G是BC中点,∴BC=2GC=8cm,故①不合题意;由图象可得:2﹣4秒,点P在CD上运动,则第4秒时,y=S△ABP =12×6×8=24cm2,故③符合题意;由图象可得:4﹣7秒,点P在DE上运动,则DE=2×3=6cm,故②符合题意;由图象可得:当第12秒时,点P在H处,∵EF=AB﹣CD=6﹣4=2cm,∴t=22=1s,∴AH=8+6﹣2×(12﹣5﹣1)=6,∴y=S△ABP =12×6×6=18cm2,故④不合题意,∴正确的是②③,故选:C.【点睛】本题考查了动点问题的函数图象,关键是能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.13.-3;2 ;【分析】根据立方根、平方根的定义和倒数乘积等于1即可解题.【详解】解:(1)∵(-3)×(-3)×(-3)=-27,∴-27的立方根为-3;(24=±2;(3)∵(1⎛⨯= ⎝⎭,∴5的倒数为故答案为:-3;±2;14.≠1,=1【分析】根据一次函数的定义、正比例函数的定义,可得答案.【详解】解:已知函数y =(a+1)x+a 2﹣1,当a=-1时,a+1=0,y=a 2﹣1,∴当a≠﹣1时,它是一次函数;当a =1时,a 2﹣1=0,它是正比例函数,故答案为:≠1,=1.【点睛】本题主要考查了一次函数和正比例函数的定义,一次函数y kx b =+的定义条件是:k 、b 为常数,0k ≠,自变量次数为1,0b =是一次函数是正比例函数.15.1、1【解析】【分析】根据勾股定理求出AC ,得到OA′和OA′′的长,根据数轴的概念解答即可.【详解】由勾股定理得,AC ,则CA′=CA′′,∴OA′﹣1,OA′′+1,∴A′、点A″所表示的数分别是1故答案为:1【点睛】本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c,那么a2+b2=c2.16.217【解析】【分析】根据OA1=1,可得点A1的坐标为(1,0),然后根据△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3…的长度,然后找出规律,求出点B10的坐标.结合等腰直角三角形的面积公式解答.【详解】∵OA1=1,∴点A1的坐标为(1,0).∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1).∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得:B3(22,22),B4(23,23),…B n(2n﹣1,2n﹣1),∴点B10的坐标是(29,29),∴△B10A10A11的面积是:12×29×29=217.故答案为:217.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.17【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解::|1(2019﹣)0﹣(1 2)﹣21+1﹣44【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.18.﹣3【分析】根据二次根式的混合运算顺序,先对各项利用二次根式的乘除化简,再用加减法进行计算即可.【详解】((22222⎡⎤⎡--+-⨯⎢⎥⎢⎣⎦⎣5(243)(29=+---3=.【点睛】本题考查了二次根式的混合运算、平方差公式、完全平方公式,解决本题的关键是熟练运用公式.19.(1)A (0,8),E (8,4),F (12,4);(2)S △BDF =32【分析】(1)根据正方形的面积求出两个正方形的边长,再求出OG ,然后写出各点的坐标即可;(2)根据S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF 列式计算即可得解.【详解】解:(1)∵正方形ABCD 和正方形EFGC 面积分别为64和16,∴正方形ABCD 和正方形EFGC 的边长分别为8和4,∴OG =8+4=12,∴A (0,8),E (8,4),F (12,4);(2)S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF ,=12×8×8+12×(4+8)×4﹣12×(8+4)×4,=32+24﹣24,=32.【点睛】本题考查了坐标与图形性质,三角形的面积,难点在于(2)列出BDF ∆的面积的表达式.20.(1)5,1;(2)a 2﹣b 2的值为7【分析】(1)根据题目中所给规律即可得结果;(2)把无理数的整数部分和小数部分分别表示出来,再代入计算即可.【详解】解:(1的整数部分为33,∴2]5+=;[51=.故答案为5、1.(2)根据题意,得34<< ,859∴<+<,583a ∴=-.152<514b ∴==-1a b ∴+=,7a b -=.22()()a b a b a b ∴-=+-7=-.∴22a b -的值为7.【点睛】本题考查了估算无理数的大小,解决本题的关键是根据无理数的整数部分确定小数部分.21.(1)见解析;(2)BE =4.【分析】(1)由折叠的性质可知AF=AB=8,然后再依据勾股定理的逆定理可证明△ADF 为直角三角形;(2)由题意可证点E 、D 、F 在一条直线上,设BE=x ,则EF=x ,DE=6+x ,EC=10-x ,在Rt △CED 中,依据勾股定理列方程求解即可.【详解】(1)将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,∴AF =AB =8,∵AF 2+DF 2=62+82=100=102=AD 2,∴∠AFD =90°∴△ADF 是直角三角形(2)∵折叠∴BE =EF ,∠B =∠AFE =90°又∵∠AFD =90°∴点D ,F ,E 在一条直线上.设BE =x ,则EF =x ,DE =6+x ,EC =10-x ,在Rt △DCE 中,∠C =90°,∴CE 2+CD 2=DE 2,即(10-x )2+82=(6+x )2.∴x =4.∴BE =4.【点睛】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x 的方程是解题的关键.22.见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+==【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.23.(1)13cm ;(2;(3)13(cm )【分析】(1)利用勾股定理直接求出木棒的最大长度即可.(2)将长方体展开,利用勾股定理解答即可;(3)将容器侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:(1)由题意得:如图,该长方体中能放入木棒的最大长度是:=;cm13()(2)①如图,AG,②如图,AG=,③如图,AG ,;(3) 高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,5A D cm ∴'=,12312BD AE cm =-+=,∴将容器侧面展开,作A 关于EF 的对称点A ',连接A B ',则A B '即为最短距离,13()A B cm '=.【点睛】本题考查了平面展开—最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.24.画图见解析.【解析】分析:首先在平面直角坐标系中描出各点,然后顺次连接得到△ABC ,找出三个顶点关于y 轴对称的点坐标,然后顺次连接,得出对称后的图形.详解:如图所示:点睛:本题主要考查的是图形的轴对称,属于基础题型.关于y 轴对称的两个点,他们的横坐标互为相反数,纵坐标相等.25.(1)见解析;(2)能,见解析;(3)①C 、D 两点的坐标为C (0,32),D (2,0);②符合条件的所有点M 的坐标为:(716,0)、(92,0);、(﹣2,0)、(﹣12,0)【分析】(1)根据梯形的面积的两种表示方法即可证明;(2)根据四边形ABCD 的面积的两种表示方法即可证明;(3)①根据翻折的性质和勾股定理即可求解;②根据等腰三角形的性质分四种情况求解即可.【详解】解:(1)∵S 梯形ABCD =211222ab c ⨯+S 梯形ABCD =()()12a b a b ++21112()()222ab c a b a b ∴⨯+=++22222ab c a ab b ∴+=++222c a b ∴=+.(2)连接BD ,如图:S 四边形ABCD =()21122c a b a +-,S 四边形ABCD =21122ab b +,∴221111()2222c a b a ab b +-=+,222c a b ∴=+.(3)①设OC a =,则4AC a =-,又5AB =,根据翻折可知:5BD AB ==,4CD AC a ==-,532OD BD OB =-=-=.在Rt COD ∆中,根据勾股定理,得22(4)4a a -=+,解得32a =.3(0,)2C ∴,(2,0)D .答:C 、D 两点的坐标为3(0,)2C ,(2,0)D .②如图:当点M 在x 轴正半轴上时,CM DM =,设CM DM x ==,则2223(2)()2x x =-+,解得2516x =,7216x ∴-=,7(16M ∴,0);CD MD =,35422=-=,59222+=,9(2M ∴,0);当点M 在x 轴负半轴上时,CM CD =,2OM OD == ,(2,0)M ∴-;DC DM =,35422=-=,51222OM ∴=-=,1(2M ∴-,0).∴符合条件的所有点M 的坐标为:7(16,0)、9(2,0)、(2,0)-、1(2-,0).【点睛】本题考查了等腰三角形的判定和性质,勾股定理,折叠的性质,是三角形的综合题,解决本题的关键是分情况讨论思想的运用.。

北师大版八年级数学上册期中试卷及答案【完整】

北师大版八年级数学上册期中试卷及答案【完整】

北师大版八年级数学上册期中试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .42.一次函数24y x =+的图像与y 轴交点的坐标是( )A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)3.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②∠EAG=45°;③CE=2DE ;④AG ∥CF ;⑤S △FGC =725.其中正确结论的个数是( )A .2个B .3个C .4个D .5个7.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .69.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .19二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.因式分解:2218x -=__________.3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是________.5.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是________.6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0.3.已知关于的方程2(2)210x k x k -++-=.(1)求证:该方程一定有两个不相等的实数根;(2)若12125x x x x +=-,求k 的值.4.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.5.如图,直线l 1:y 1=﹣x+2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12x+b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.6.随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了A,B两种型号家用净水器.已知购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元,(1)求A,B两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进A,B两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价50%后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进A,B两种型号家用净水器各多少台?(注:毛利润=售价-进价)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、A5、D6、D7、D8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、7或-12、2(x +3)(x ﹣3).3、32或424、x=25、186、4三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、123、(1)见解析;(2)k =84、(1) 65°;(2) 25°.5、(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t+272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或或9﹣或6时,△APQ 为等腰三角形.6、(1)A 型号家用净水器每台进价为1000元,B 型号家用净水器每台进价为1800元;(2)则商家购进A 型号家用净水器12台,购进B 型号家用净水器8台;购进A 型号家用净水器13台,购进B型号家用净水器7台;购进A型号家用净水器14台,购进B型号家用净水器6台;购进A型号家用净水器15台,购进B型号家用净水器5台.。

北师大版八年级上册数学期中考试试卷带答案

北师大版八年级上册数学期中考试试卷带答案

北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,最小的数是()A .-3B .3C .13D .-π2.在下列各数0,13,3.14,π,0.731)A .1B .2C .3D .43.与数轴上的点一一对应的是()A .有理数B .无理数C .实数D .正数和负数4.在平面直角坐标系中,点(5,-7)在()A .第一象限B .第二象限C .第三象限D .第四象限5.点A(-3,4)关于y 轴对称的点的坐标是()A .(3,-4)B .(-3,-4)C .(3,4)D .(-4,-3)6.如图:在△ABC 中,∠C =90°,AB =13,BC =5,则以AC 为直径的半圆面积为()A .6πB .12πC .36πD .18π7.已知△ABC 为直角三角形,在下列四组数中,不可能是它的三边长的一组是()A .3,4,5B .6,8,10C .5,12,13D .3,3,58.下列说法正确的是()A .-4没有立方根B .1的立方根为±1C .5的立方根为D .136的立方根是169.下列函数:①y=8x ;②y=-8x;③y=2x 2;④y=-2x+1.其中是一次函数的个数为A .0B .1C .2D .310.已知一次函数y kx b =+的图象如图示,则k ,b 的取值范围是()A .0,0k b <>B .0,0k b <<C .0,0k b >>D .0,0k b ><二、填空题11.计算:328.12.比较大小(填“>、<或=”)55-121213.若函数y=(a-1)x+2a -1是正比例函数,则a=_____________.14.在坐标系中,已知两点A (3,-2)、B (-3,-2),则直线AB 与x 轴的位置关系是__________.15.如图,在△ABC 中,AB =10,AC =13,AD ⊥BC ,垂足为D ,M 为AD 上任一点,则MC 2﹣MB 2等于_____.16.若实数a ,b 10a a b ++,则代数式20212022a b +=________.17.已知点A(a ,0)和点B(0,4),且直线AB 与坐标轴围成的三角形的面积10,则a 的值是______.三、解答题18.计算:12793(2)(1312364324-⎛⎫----+- ⎪⎝⎭;57)572+;21220482333⎛÷ ⎝19.如图,方格纸中每个小正方形的边长都是1,△ABC的三个顶点都在格点上,如果用(0,0)表示A点的位置,用(4,-1)表示B点的位置.(1)画出直角坐标系;(2)画出与△ABC关于x轴对称的图形△DEF;(3)分别写出点D、E、F的坐标.20.小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面.求旗杆的高度.21.如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.;①求证:EC BD②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.x+3与x轴相交于点A,与y轴相交于点B22.如图,直线y=12(1)直接写出△AOB的面积;(2)若C为y轴上一点,且△ABC的面积是12,求点C的坐标;(3)若P是x轴上一点,且AB=AP,求P的坐标.23.如图,一块直角三角形的纸片,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合.(1)分别求AB、EB的长;(2)求CD的长.24.某教育网站对下载资源规定如下:若注册VIP用户,则下载每份资源收0.2元,另外每年收500元的VIP会员费,若注册普通用户,则下载每份资源收0.4元,不收其它费用()1分别写出注册VIP用户的收费1(y元)和注册普通用户2(y元)与下载数量(x份)之间的函数关系式()2某学校每年要下载1500份资源,那么注册哪种用户比较合算?()3一年内下载多少份资源是两种用户收费一样?25.如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=10cm,AB=8cm,求EF的长参考答案1.D【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:∵-π<−3<13<3,∴最小的数是-π,故选:D.【点睛】此题考查了实数的大小比较,解题的关键是掌握实数的大小比较法则.2.B【解析】【分析】根据无理数的定义即可求解.【详解】解:在下列各数0,13,3.14,π,0.7312π2两个.故选:B【点睛】本题考查了无理数的定义,无理数是指无限不循环小数,熟知无理数的定义是解题的关键.3.C【解析】【详解】∵实数与数轴上的各点是一一对应关系,∴与数轴上的点一一对应的是实数.故选C.4.D【解析】【分析】根据各象限的点的坐标的符号特点判断即可.【详解】解:在平面直角坐标系中,点(5,-7)所在的象限为第四象限.故选:D.【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.C【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】解:点A(-3,4)关于y轴对称的点坐标(3,4).故选:C.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.6.D 【解析】【详解】∵∠C=90°,AB=13,BC=5,∴=12,∴以AC 为直径的半圆的面积=211822AC ππ=(故选D .7.D 【解析】【详解】A 选项:∵32+42=52,∴三条线段能组成直角三角形,故A 选项不符题意;B 选项:∵62+82=102,∴三条线段能组成直角三角形,故B 选项不符题意;C 选项:∵52+122=132,∴三条线段能组成直角三角形,故C 选项不符题意;D 选项:∵32+32≠52,∴三条线段不能组成直角三角形,故D 选项符合题意;故选D .8.C 【解析】【分析】根据正数的立方根是正数,负数的立方根是负数,可以求出题目中各式子的结果,然后分析即可.【详解】解:∵正数的立方根是正数,负数的立方根是负数,∴A .-4有立方根,故选项错误,不符合题意;B .1的立方根是1,故选项错误,不符合题意;C .5的立方根,故选项正确,符合题意;D .136的立方根是故选:C .【点睛】此题考查了立方根,解题的关键是明确正数的立方根是正数,负数的立方根是负数.9.D【解析】【详解】根据一次函数定义可知:③由于的自变量x的指数是2,故不是一次函数,其它都是一次函数,共计有3个.故选D.10.D【解析】【分析】观察图象,找到一次函数y=kx+b的图象过的象限,进而分析k、b的取值范围,即可得答案.【详解】观察图象可得,一次函数y=kx+b的图象过一、三、四象限;故k>0,b<0;故选:D.【点睛】本题要求学生根据图象分析出k、b参数的取值范围,考查学生对一次函数中k、b参数的意义的了解与运用.11【解析】【分析】【详解】解:-=【点睛】本题考查了二次根式的加减,熟知二次根式的加减运算法则是解题关键,注意将二次根式化简后被开方数相同的二次根式才能进行加减运算.12.>>【解析】【分析】根据二次根式比较大小的方法:作差法及平方法进行求解即可.【详解】解:∵25=,22=4,∴5>4,;12=,∴1122->0,∴1122,故答案为:>;>.【点睛】本题考查了二次根式的大小比较,解题的关键是熟练掌握二次根式的大小比较的方法.13.-1【详解】解: 函数y=(a-1)x+2a -1是正比例函数,解得:1,a =-故答案为:1-【点睛】本题考查的是正比例函数的定义,掌握“正比例函数的定义”是解本题的关键.14.平行【解析】【详解】∵A (3,-2)、B (-3,-2),∴点A 、点B 到x 轴的距离相等,∴AB∥x轴,故答案是:平行.15.69【解析】【分析】在Rt△ABD及Rt△ADC中可分别表示出BD2及CD2,在Rt△BDM及Rt△CDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果.【详解】解:在Rt△ABD和Rt△ADC中,BD2=AB2−AD2,CD2=AC2−AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2−AD2+MD2,MC2=CD2+MD2=AC2−AD2+MD2,∴MC2−MB2=(AC2−AD2+MD2)−(AB2−AD2+MD2),=132−102,=69.故答案为:69.【点睛】此题考查了勾股定理的知识,解题的关键是熟练掌握勾股定理,分别两次运用勾股定理求出MC2和MB2.16.0【解析】【分析】首先根据二次根式的非负性,即可求得a,b的值,再把a,b的值代入代数式,即可求得其值.【详解】解: 0+=,0≥0≥100a ab +=⎧∴⎨+=⎩解得11a b =-⎧⎨=⎩20212022∴+a b ()2021202211=-+11=-+0=故答案为:0【点睛】本题考查了利用算术平方根的非负性求参数及代数式的值,熟练掌握和运用利用二次根式的非负性求参数的方法是解决本题的关键.17.±5【解析】【分析】根据坐标先表示,4,OA a OB ==再利用三角形的面积公式列方程即可.【详解】解: 点A(a ,0)和点B(0,4),直线AB 与坐标轴围成的三角形的面积10,故答案为:5±【点睛】本题考查的是坐标与图形,直线与坐标轴围成的图形面积,掌握“表示坐标系内线段的长度”是解本题的关键.18.(1)3;(2)3;(3)0;(4)3-.【解析】(1)333=+33=+2833=;(2)解:(101224-⎛⎫-- ⎪⎝⎭()()(1442=---+-1442=+-+3=(3)解:2+=5-7+2=0;(4)⎛÷ ⎝3⎛÷ ⎝==.【点睛】本题考查了二次根式的混合运算,零指数幂,负整数指数幂,立方根的定义,绝对值的化简等知识,综合性较强,熟练掌握二次根式的运算法则和相关定义是解题关键.19.(1)见解析;(2)见解析;(3)D(0,0),E(4,1),F(1,2)【解析】【分析】(1)根据平面直角坐标系的定义以点A为坐标原点建立即可;(2)根据网格结构找出点A、B、C关于x轴对称的点D、E、F的位置,然后顺次连接即可;(3)根据平面直角坐标系写出各点的坐标即可.【详解】解:(1)如图所示;(2)△DEF如图所示;(3)由图可知:D(0,0),E(4,1),F(1,2).【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.12米【解析】【分析】设旗杆的高度为x米,根据勾股定理列方程求解即可.【详解】解:设旗杆的高度为x米,则绳长为(x+1)米,根据题意得:(x+1)2=x2+52,即2x-24=0,解得:x=12.答:旗杆的高度是12米.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么a 2+b 2=c 2.当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解.有时也可以利用勾股定理列方程求解.21.①证明见解析;②见解析.【分析】①通过AAS 证得CAE BCD ∆≅∆,根据全等三角形的对应边相等证得结论;②利用等面积法证得勾股定理.【详解】①证明:∵90ACB ︒∠=,∴90ACE BCD ︒∠+∠=.∵90ACE CAE ︒∠+∠=,∴CAE BCD ∠=∠.在△AEC 与△BCD 中,CEA BDCCAE BCD AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CAE BCD AAS ∆∆≌.∴EC BD =;②解:由①知:BD CE a==CD AE b==∴1()()2AEDB S a b a b =++梯形221122a ab b =++.又∵AEC BCD ABCAEDB S S S S =++ 梯形2111222ab ab c =++212ab c =+.∴222111222a ab b abc ++=+.整理,得222+=a b c .【点睛】主要考查了同角的余角相等,全等三角形的判定和性质,勾股定理的证明,解本题的关键是判断两三角形全等.22.(1)9;(2)(0,-1)或(0,7);0)或0).【解析】【分析】(1)先求出点A 、B 的坐标,即可求出△AOB 的面积;(2)设点C(0,y),根据△ABC 的面积是12,得到12×6×∣3-y ∣=12,求出y ,问题得解;(3)根据勾股定理求出P 坐标.(1)解:∵直线y=12x+3与x 轴相交于点A ,与y 轴相交于点B ,∴点A(-6,0),点B(0,3),∴AO=6,BO=3,∴△AOB 的面积=12×AO×BO=12×6×3=9;(2)解:设点C(0,y),∵△ABC 的面积是12,∴12×6×∣3-y ∣=12∴y=-1或y=7∴点C 的坐标为(0,-1)或(0,7);(3)解:∵AO=6,BO=3,∠AOB=90°,∴∴∴点0)或0).【点睛】本题为一次函数综合题,考查了一次函数与坐标轴交点问题,面积问题,勾股定理等知识,综合性较强,理解题意,学会用点的坐标表示线段的长是解题关键.23.(1)10cm,4cm AB BE ==(2)3cm CD =【解析】【分析】(1)根据勾股定理求得AB 的长,根据折叠的性质可得AE AC =,根据BE AB AE =-即可求解(2)由勾股定理求得AB=10cm ,然后由翻折的性质求得BE=4cm ,设DC=xcm ,则BD=(8-x )cm ,DE=xcm ,在△BDE 中,利用勾股定理列方程求解即可.【详解】解:(1)∵在Rt △ABC 中,两直角边AC=6cm ,BC=8cm ,10cm AB ∴===.由折叠的性质可知:DC=DE ,AC=AE=6cm ,1064cmBE AB AE ∴=-=-=(2)由折叠的性质可知:DC=DE ,AC=AE=6cm ,∠DEA=∠C=90°,∴∠DEB=90°,设DC=xcm ,则BD=(8-x )cm ,DE=xcm ,在Rt △BED 中,由勾股定理得:BE 2+DE 2=BD 2,即42+x 2=(8-x )2,解得:x=3,3CD ∴=cm【点睛】本题主要考查的是翻折变换以及勾股定理的应用;熟练掌握翻折的性质和勾股定理是解题的关键.24.(1)VIP 用户:10.2500y x =+,普通用户:20.4y x =.(2)当1500x =时,注册普通用户比较合算;(3)当下载量为2500份时,注册两种用户的收费相等.【解析】【分析】(1)依据若注册VIP 用户,则下载每份资源收0.2元,另外每年收500元的VIP 会员费,若注册普通用户,则下载每份资源收0.4元,不收其它费用,即可得到VIP 用户的收费(y 1元)和注册普通用户y 2(元)与下载数量x (份)之间的函数关系式;(2)依据x=1500,分别求得y 1和y 2的值,即可得到结论;(3)由y 1=y 2得:0.2x+500=0.4x ,进而得出当下载量为2500份时,注册两种用户的收费相等.【详解】解:()1VIP 用户:10.2500y x =+,普通用户:20.4y x =.()2 当1500x =时,10.25000.21500500800(y x =+=⨯+=元)20.40.41500600(y x ==⨯=元)12y y ∴>∴当1500x =时,注册普通用户比较合算;()3由1y =2y 得:0.25000.4x x +=,解得:2500x =,所以当下载量为2500份时,注册两种用户的收费相等.【点睛】这道题主要考查了一次函数的定义和综合应用的知识点,只要掌握这个知识点进行计算即可.25.5【解析】【分析】根据折叠的性质得到AF=AD ,DE=EF ,根据勾股定理计算即可.【详解】解:∵四边形ABCD 是长方形,BC=10cm ,AB=8cm ∴AD=BC=10cm ,AB=CD=8cm又∵AF 为AD 折叠所得∴AF=AD=10cm ,,DE EF ∴BF 2=AF 2-AB 2=36∴BF=6cm∴FC=BC-BF=4设CE 长为x cm ,则DE 长为(8-x )cm ,则EF 长为(8-x )cm .在RT △CEF 中,x 2+42=(8-x)2解得:x=3∴CE=3cm∴EF=8-3=5cm故EF 的长为5cm .。

最新北师大版八年级上册数学期中测试题及答案

最新北师大版八年级上册数学期中测试题及答案

最新北师大版八年级上册数学期中测试题及答案班级___________ 姓名___________ 成绩_______一选择题(每题2分,共20分)1、 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是() A 、25 B 、14 C 、7 D 、7或252、下列各数组中,不能作为直角三角形三边长的是()A 、9,12,15B 、3,5,7C 、7,24,25D 、6,8,10 3、下列说法中正确的是()A 、4的算术平方根是±2B 、-a 2一定没有平方根C 、-5表示5的算术平方根的相反数D 、0.9的算术平方根是0.3 4、下列各式正确的是()A 、)25()4(-⨯-=4-×25-=10B 、2232+=2+3=5C 、32=316 D 、545545-=- 5、某次大型活动由大学生组成仪仗队,若同学甲站在第六行第八列,可以表示为(6,8),则乙同学站第20行第7列,表示为() A 、(7,20) B 、(20,7) C 、(7,7) D 、(20,20) 6、已知点A 的坐标为(2,-1),则点A 到原点的距离为() A 、3 B 、3 C 、5 D 、17、已知点A (-1,-3)和点B (3,m ),且AB 平行于x 轴,则点B 坐标为 A 、(3,-3) B 、(3,3) C 、(3,1) D 、(3,-1) 8、关于函数y=8x-m (m 不等于0)下列结论正确的是()A 、函数图像一定经过第一、三B 、函数图像经过点(0,0)C 、y 随x 的增大而减小D 、不论x 取何值,总有y 大于09、如图,一块直角三角形的纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于() A 、2cm B 、3cm C 、4cm D 、5cm10、已知点(-2,y 1),(3 , y 2)都在直线y=kx-1上,且k 小于0,则y 1与y 2的大小关系是() A 、y 1 〈 y 2B 、y 1 = y 2C 、y 1 〉 y 2D 不能比较二、填空题(每题2分,共20分) 11、64的平方根是12、若一个三角形的边长分别是12,16和20,则这个三角形最长边上的高是 13、17的整数部分为a ,小数部分为b ,则a= ,b= 14、点p (2,-5)关于x 轴对称的点的坐标为 15、满足 -2〈 x 〈5的整数有 个16、已知(a-1)2+2-b =0,则a-2b=17、在平静的湖面上有一枝红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,则这里水深是 米18、已知等腰三角形的腰长为5,一腰上的高为4,则以底边为边长的正方形的面积为19、若点A (0,2)和点B (-2,8)在一次函数y=kx+b 的图像上,则该函数关系式为 20、已知三角形ABC 的三个顶点坐标分别为A (0,0)B (4,-2)C (5,3),则三角形ABC 的面积为 三、计算题(每题5分,共20分) 21、212+348-27 22、483250-⨯23、(22—3)224、32—4216+4261四、解方程(每题4分,共8分)25、(1)25(x —1)2=4 (2)2x=16五、解答题(共22分)26、(5分)如图,在四边形ABCD中,AB=6cm,AD=8cm,BC=26cm,CD=24cm,且 A=90度,则四边形ABCD的面积是多少?27、(5分)已知:2a+1的平方根是±3,2a-b+2的平方根是±4,求a2+b的值28、(6分)如图,L1表示某公司一种产品一天的销售收入与销售量的关系,L2表示该ABCD公司这种产品一天的销售成本与销售量的关系(1)当x=1时,销售成本= 万元,盈利= 万元(2)一天销售件时,销售收入等于销售成本(3)L1对应的函数表达式是(4)设利润为P万元,写出P与x的函数表达式29、(6分)实数a,b,c在数轴上的对应关系如图,化简下面的式子a—b —c—a + b—c + a六、解答题(10分)30、已知函数y1=k1x+b1和y2=k2x+b2图像如图所示,直线y1与直线y2交于A点(0,3)(1) 求函数y 1和y 2的函数关系式(2) 求三角形ABC 的面积(3) 已知点D 在x 轴上,且满足三角形ACD 是等腰三角形,直接写出D 点坐标数学答案一、选择题 二、填空题 11、22 12、54813、4 17—4 14、(2 , 5) 15、4 16、—3 17、1.5 18、20,80 19、y=—3x+2 20、9 三、计算题21、133 22、102—4 23、11—46 24、—6350四、解方程 25、(1)57, 53 (2) 2五、解答题26、144平方厘米 27、10 28、(1)1 ,1.5 ,—0.5(2)2(3)y=x(4)p=0.5x—129、—a30、(1)y=—3x+3,y=—x+3(2)3(3)(0,0)(—3,0)(3—32,0)(3+32,0)附:初中数学学习方法总结1.先看笔记后做作业有的同学感到,老师讲过的,自己已经听得明明白白了。

北师大版八年级上册数学期中考试试卷带答案

北师大版八年级上册数学期中考试试卷带答案

北师大版八年级上册数学期中考试试题一、单选题1.5的算术平方根是()A .5B .±5CD .2.下列四组数据不能作为直角三角形的三边长的是()A .6、8、10B .5、12、13C .7、10、12D .3、4、53.在平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标是()A .(3,﹣2)B .(2,﹣3)C .(﹣3,2)D .(﹣2,﹣3)4.下列二次根式中,是最简二次根式的是()AB C .D 5.点P (m +3,m -1)在y 轴上,则点P 的坐标为()A .(0,-4)B .(5,0)C .(0,5)D .(-4,0)6.若点A 的坐标(x ,y )满足条件20x +=,则点A 在()A .第一象限B .第二象限C .第三象限D .第四象限7.下列运算中,正确的是()A 9=-B 5±C1=-D .(22=-8.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数()A .B .1-+C .1-D .19.在ABC 中,A ∠,B Ð,C ∠的对应边分别是a ,b ,c ,若90B ∠=︒,则下列等式中成立的是()A .222+=a b c B .222b c a +=C .222a cb +=D .222c a b -=10.如图,有一个直角三角形纸片,两直角边AC=5cm ,BC=12cm ,现将直角边AC 沿线段AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长是()cm .A .3B .4C .133D .243二、填空题11.2_________,绝对值是__________.12.点A (4,-3)到x 轴的距离是________,到原点的距离是________.13.斜边的边长为17cm ,一条直角边长为8cm 的直角三角形的面积是_______.14.已知直角三角形的三边分别为6、8、x ,则x =_____.15.如图,一圆柱高8cm ,底面半径为6πcm ,一只蚂蚁从点A 沿侧面爬到点B 处吃食,要爬行的最短路程是_____cm .16.如图,在正方形的网格中建立平面直角坐标系,若B 、C 两点的坐标分别是(0,2)B ,(1,0)C ,则A 点的坐标为________.17.若点A (m-5,1),点B (4,m+1),且直线AB ∥y 轴,则点A 的坐标为________.18.若x ,小数部分是y ,则x-y 的绝对值是________.三、解答题19.计算(15-(2)))(3)02(1+-(41+20.求下列式中的x 的值(1)23750x -=(2)31(3)42x -=-21.已知A (-2,0),B (4,0),C (x ,y )(1)若点C 在第二象限,且44x y ==,,求点C 的坐标,(2)在(1)的条件下,求三角形ABC 的面积;22.一个25米长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24米,如果梯子的顶端A 沿墙下滑4米,那么梯子底端B 也外移4米,对吗?为什么?23.阅读下列材料,然后回答问题:在进行类似于二次根式的运算时,通常有如1===,化简:(1)(2)++24.如图,已知在△ABC 中,∠B=90°,AB=8cm ,BC=6cm ,点P 开始从点A 开始沿△ABC 的边做逆时针运动,且速度为每秒1cm ,点Q 从点B 开始沿△ABC 的边做逆时针运动,且速度为每秒2cm ,他们同时出发,设运动时间我t 秒.(1)出发2秒后,求PQ 的长;(2)在运动过程中,△PQB 能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;(3)从出发几秒后,线段PQ 第一次把直角三角形周长分成相等的两部分?25.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(),0a ,点C 的坐标为()0,b ,且a ,b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动.(1)点B 的坐标为___________;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.参考答案1.C 【解析】【分析】根据算术平方根的定义即可求出结果.【详解】解:5故选C.【点睛】本题考查了算术平方根的定义.注意一个正数只有一个算术平方根.2.C【解析】【分析】根据如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【详解】解:A、62+82=102,能组成直角三角形,故此选项不合题意;B、52+122=132,能组成直角三角形,故此选项不合题意;C、72+102≠122,不能组成直角三角形,故此选项符合题意;D、32+42=52,能组成直角三角形,故此选项不合题意;故选C.【点睛】此题主要考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.3.D【解析】【分析】根据点关于x轴对称,横坐标不变,纵坐标变为相反数解答即可.【详解】解:点P(﹣2,3)关于x轴对称的点的坐标是(﹣2,﹣3).故选:D【点睛】本题考查了直角坐标系中关于x轴对称点的性质,正确记忆横纵坐标的关系是解题的关键.4.C【解析】【分析】化简得到结果,即可做出判断.【详解】A.不是最简二次根式;不是最简二次根式;C.D.不是最简二次根式;故选C.【点睛】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.5.A【解析】【分析】点P在y轴上则该点横坐标为0,可解得m的值,从而得到点P的坐标.【详解】解:∵P(m+3,m-1)在y轴上,∴m+3=0,解得m=-3,即m-1=-3-1=-4.即点P的坐标为(0,-4).故选:A.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.6.B【解析】【分析】根据非负数的性质,易求x、y,从而可求点A的坐标,进而可知A点在哪一个象限.【详解】x+=,解:∵20∴x+2=0,y-2=0,∴x=-2,y=2,∴A点的坐标是(-2,2),在第二象限,故选:B.【点睛】本题考查了非负数的性质、点的坐标,解题的关键是熟练掌握每一个象限内点的坐标的特点.7.C【解析】【分析】直接根据二次根式和立方根的性质进行化简即可判断.【详解】解:A.9=,该选项错误;B.,该选项错误;C.1=-,该选项正确;D.(22=,该选项错误.故选:C.【点睛】此题主要考查二次根式和立方根的化简,熟练掌握二次根式和立方根的性质是解题关键.8.D【解析】【分析】根据勾股定理的公式算出正方形的对角线长,即可得到答案.【详解】解:数轴上正方形的边长为1,则正方形的对角线长为:=OA则点A表示的数为1故答案为D【点睛】本题考查勾股定理及两点间距离公式,熟记勾股定理的公式是解题的关键.9.C 【解析】【分析】根据勾股定理解题.【详解】解:如图,由勾股定理得,222a c b +=,故选:C .【点睛】本题考查勾股定理,是重要考点,难度较易,掌握相关知识是解题关键.10.C 【解析】【分析】设CD xcm =,从而可得()12BD x cm =-,再根据勾股定理可得13AB cm =,然后根据折叠的性质可得,5,90DE CD xcm AE AC cm AED C ====∠=∠=︒,从而可得8BE cm =,最后在Rt BDE 中,利用勾股定理即可得.【详解】设CD xcm =,则()12BD BC CD x cm =-=-,在Rt ABC 中,5,2901,AC cm BC c C m =∠==︒,13AB cm ∴=,由折叠的性质得:,5,90DE CD xcm AE AC cm AED C ====∠=∠=︒,,980BE AB AE c BED m ∠∴===-︒,∴在Rt BDE 中,222DE B D E B +=,即()222812x x +=-,解得13()3x cm =,即133CD cm =,故选:C .【点睛】本题考查了勾股定理、折叠的性质等知识点,熟练掌握折叠的性质是解题关键.11.22-【解析】【详解】12.35【解析】【分析】直角坐标系中,某点到x 轴的距离是它的纵坐标的绝对值,到y 轴的确距离是它的横坐标的.【详解】解:点A (4,-3)到x 轴的距离为3,故答案为:3,5.13.60cm 2【详解】设另一条直角边为x ,由勾股定理得x ==15,直角三角形的面积是12×8×15=60,故直角三角形的面积是60cm 2.故答案为:60cm 214.10或【分析】根据勾股定理的内容,两直角边的平方和等于斜边的平方,分两种情况进行解答.【详解】分两种情况进行讨论:①两直角边分别为6,8,由勾股定理得10x==,②一直角边为6,一斜边为8,由勾股定理得x==;故答案为:10或15.10【分析】将圆柱展开,然后利用两点之间线段最短解答.【详解】解:∵一圆柱高8cm,底面半径为6πcm,∴底面周长为:2×π×6π=12cm,则半圆弧长为6cm,展开得:BC=8cm,AC=6cm,由勾股定理得:10AB==(cm).故答案为:10cm.【点睛】本题考查了勾股定理的实际运用—求最短距离,解题的关键是根据题意画出展开图,表示出各线段的长度.-16.(1,3)【解析】【分析】直接利用已知点坐标得出原点位置,进而得出答案.【详解】解:如图所示:A点的坐标为(−1,3).故答案为:(−1,3).【点睛】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.17.(4,1)【解析】【分析】根据平行于y轴的直线上的点的横坐标相同即可得结果.【详解】解:∵点A(m-5,1),点B(4,m+1),且直线AB∥y轴,∴m-5=4,∴点A的坐标为(4,1),故答案为:(4,1).【点睛】本题考查了坐标与图形性质.需要掌握平行于坐标轴直线上点的坐标特征.18.12【解析】【分析】根据12<+,可得x和y值,代入计算即可.<,可得111012【详解】解:∵12<<,∴111012<+,∴x=11,1,∴111x y =--=12故答案为:12-.【点睛】本题考查了估计无理数的大小,确定x 、y 的值是解题的关键.19.(1)3;(2)﹣1;(3)(4)1.【解析】【分析】(1)先计算二次根式的乘法再算减法;(2)利用平方差公式计算;(3)先算乘法和完全平方公式计算,最后算加减;(4)先化简最简二次根式和去绝对值,最后算加减.【详解】解:(15=8-5=3;(2)原式=22561-=-=-;(3)原式=1+2-(1-+2)=3-;(4)原式=1=1.【点睛】本题考查了二次根式的混合运算、平方差公式、完全平方公式以及零次幂,熟练掌握各运算法则是解题的关键.20.(1)5x =±;(2)1x =.【解析】【分析】(1)利用平方根的性质解方程即可得;(2)利用立方根的性质解方程即可得.【详解】(1)23750x -=,2375x =,225x =,5x =±;(2)31(3)42x -=-,3(3)8x -=-,32x -=-,1x =.【点睛】本题考查了利用平方根和立方根的性质解方程,熟练掌握平方根和立方根的性质是解题关键.21.(1)点C 的坐标为(-4,4);(2)三角形ABC 的面积为12.【解析】【分析】(1)根据点C (x ,y )在第二象限,可得0,0x y <>,再由44x y ==,,即可求解;(2)根据A (-2,0),B (4,0),可得AB=6,即可求解.【详解】解:(1)∵点C (x ,y )在第二象限,∴0,0x y <>,∵44x y ==,,∴4,4x y =-=,∴点C 的坐标为(-4,4);(2)∵A (-2,0),B (4,0),∴AB=6,∴146122ABCS =⨯⨯= .【点睛】本题主要考查了平面直角坐标系内,各象限内点的坐标特征,三角形的面积,熟练掌握平面直角坐标系内,各象限内点的坐标特征是解题的关键.22.不对,8米.【解析】【分析】要判断梯子底端B是否外移4米,即要求BB'的长度,梯子下滑4米,梯子的长度不变始终为25米,利用勾股定理分别求出OB、OB'的长度,进而求出BB'的长度即可.【详解】不对.理由:如图,依题意可知AB=25(米),AO=24(米),∠O=90°,∴BO2=AB2﹣AO2=252-242,∴BO=7(米),移动后,A'O=20(米),B'O2=(A'B')2-(A'O)2=252-202=152,∴B'O=15(米),∴BB'=B'O-BO=15-7=8(米).【点睛】本题主要考查勾股定理的应用.23.(1(2).2【解析】【分析】(1)利用分母有理化的形式进行化简;(2【详解】===;解:(1(2+=+122=+-+1)2=2=.【点睛】本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则和平方差公式是解决问题的关键.24.(1);(2)在运动过程中,△PQB 能形成等腰三角形,出发后83秒后第一次形成等腰三角形.(3)4.【解析】【分析】(1)求出AP 、BP 、BQ ,根据勾股定理求出PQ 即可.(2)根据等腰直角三角形得出BP=BQ ,代入得出方程,求出方程的解即可.(3)根据周长相等得出10+t+(6-2t )=8-t+2t ,求出即可.【详解】解:(1)∵出发2秒后AP=2cm ,∴BP=8﹣2=6(cm ),BQ=2×2=4(cm ),在Rt △PQB 中,由勾股定理得:cm )即出发2秒后,求PQ 的长为.(2)在运动过程中,△PQB 能形成等腰三角形,AP=t ,BP=AB ﹣AP=8﹣t ;BQ=2t由PB=BQ 得:8﹣t=2t解得t=83(秒),即出发83秒后第一次形成等腰三角形.(3)Rt △ABC 中由勾股定理得:=10(cm );∵AP=t ,BP=AB ﹣AP=8﹣t ,BQ=2t ,QC=6﹣2t ,又∵线段PQ 第一次把直角三角形周长分成相等的两部分,∴由分成的周长相等得:AC+AP+QC=PB+BQ10+t+(6﹣2t )=8﹣t+2t解得t=4(s )即从出发4秒后,线段PQ 第一次把直角三角形周长分成相等的两部分.25.(1)(4,6);(2)(2,6);(3)2.5秒或5.5秒.【解析】【分析】(1|6|0b -=,可以求得a 、b 的值,根据长方形的性质,可以求得点B 的坐标;(2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可.【详解】解:(1)a 、b |6|0b -=,40a ∴-=,60b -=,解得4a =,6b =,∴点B 的坐标是(4,6),故答案是:(4,6);(2) 点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,248∴⨯=,4= OA ,6OC =,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:862-=,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度,点P 的坐标是(2,6);(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P 在OC 上时,÷=秒,点P移动的时间是:52 2.5第二种情况,当点P在BA上时.++÷=秒,点P移动的时间是:(641)2 5.5故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.。

北师大版八年级上册数学期中考试试卷带答案

北师大版八年级上册数学期中考试试卷带答案

北师大版八年级上册数学期中考试试题一、单选题1.下列各数中,是无理数的是()A B .2πC .0D .132.实数7的算术平方根是()A B C .D3.下列各组数中不能作为直角三角形三边长的是()A .1,2B .0.6,0.8,1C .5,12,16D .30,40,504.在平面直角坐标系中,点P (2,﹣3)在()A .第一象限B .第二象限C .第三象限D .第四象限5.下列计算正确的是()A =B=﹣7C D 6x 的取值范围是()A .x >2B .x≥2C .x≠2D .x≤27.下列各式中属于最简二次根式的是()AB C D 8.下列说法正确的是()A .任何实数都有平方根B .任何实数都立方根C .数轴上的每一个点都表示一个有理数D .两个无理数的和还是无理数9.下列问题中,变量y 与x 成一次函数关系的是()A .路程一定时,时间y (h )和速度x (km/h )的关系B .斜边长为5cm 的直角三角形的直角边y (cm )和x (cm )C .圆的面积y (cm 2)与它的半径x (cm )D .10m 长铁丝折成长为y (m ),宽为x (m )的长方形10.已知442=1936,452=2025,462=2116,472=2209,若n 为整数且n <n +1,则n 的值为()A .44B .45C .46D .47二、填空题11的相反数为____.12.若将教室里第5行、第3列的座位表示为(5,3),则第4行、第6列的座位表示为____.13.若()1my m x =-为y 关于x 的正比例函数,则m 的值为____.14.如图,一圆柱形物体高14cm ,底面圆的周长为32cm ,在外侧距下底1cm 的点S 处有一只蜘蛛,与蜘蛛相对的上端外侧距上底1cm 的点F 处有一只苍蝇,则蜘蛛捕获苍蝇的最短路线长为____cm .15.如图,在平面直角坐标系中,O 为坐标原点,等边三角形△OAB 的边OA 在x 轴上,且点A 的坐标为(4,0),则点B 的坐标为____.16.在△ABC 中,∠BAC =90°,AB =AC =4,以AC 为一边,在△ABC 外作等腰直角△ACD ,则线段BD 的长为____.三、解答题17.计算:(1﹣;(2+|5﹣|18.已知x2,y2,求代数式y2+2xy的值.19.如图正方形网格,每个小正方形的边长为1,格点三角形△ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在正方形网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A1B1C1;(3)填空:①点B1的坐标是;②△A1B1C1的面积等于.20.如图,小明将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆5m处,发现此时绳子末端距离地面1m,求旗杆的高度.(滑轮上方的部分忽略不计)21.如图,边长为4的正方形ABCD,点E在AD边上,点F在CD边上,且AE=2,DF =1.(1)求BE的长;(2)请判断△BEF的形状,并说明理由.22.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x 度时,应交电费y 元.(1)当月用电量不超过200时,y 与x 的函数关系式为,当月用电量超过200度时,y 与x 的函数关系式为.(2)小新家十月份用电量为160度,求本月应交电费多少元?(3)小明家十月份交纳电费117元,求本月用电多少度?23362-333333=⨯;6262(62)(62)+=--+624+,以上这种化简的方法叫做分母有理化.请化简下列各题(写出化简过程):(12(2157+(353-(4122334+++ (4950)+24.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在x轴上(点B在点C的左侧),点B,C的坐标分别为B(﹣8,0),C(5,0),点A在y轴正半轴上,且OA=1OB.点P是射线BO上一动点.2(1)填空:点A的坐标是;(2)连接AP,若△ABP的面积为10,求点P的坐标;(3)当点P在线段BO上运动时,在y轴负半轴上是否存在点Q使△POQ与△AOC全等?若存在,请直接写出点Q的坐标;若不存在,请说明理由;(4)当点P在射线BO上运动时,若△APC是等腰三角形,请直接写出点P的坐标.25.等腰Rt△AOB中,∠AOB=90°.点D为射线AB上动点,以OD为腰作等腰Rt△COD (点A,C在直线OB的同侧),∠COD=90°,连接AC.(1)如图1,点D在线段AB上运动,请判断AC与BD的关系;(2)当点D在线段AB的延长线上运动时,(1)的结论是否仍然成立,请在图2中画出相应的图形并说明理由;(3)若OB=,当BD=1时,请直接写出CD的长.参考答案1.B2.A3.C4.D5.A6.B7.D8.B9.D10.C11.【分析】根据实数的性质,相反数的定义求解即可.【详解】的相反数为故答案为:【点睛】本题考查了实数的性质,相反数的定义,掌握实数的性质,相反数的定义是解题的关键.12.()4,6【分析】根据题意用有序实数对表示位置即可,第一个数是行数,第二个数是列数,据此写出即可【详解】4,6;若将教室里第5行、第3列的座位表示为(5,3),则第4行、第6列的座位表示为() 4,6故答案为:()【点睛】本题考查了用有序实数对表示位置,理解题意是解题的关键.【解析】【分析】根据正比例函数为y=kx (k≠0),求出m 的值即可.【详解】若()1my m x =-为y 关于x 的正比例函数,则110m m ⎧=⎨-≠⎩,解得:m=-1,故答案为:-1.【点睛】本题是对正比例函数的考查,熟练掌握正比例函数解析式是解决本题的关键》14.20【解析】将圆柱展开,根据两点之间线段最短构造直角三角形,利用勾股定理求解即可.【详解】如图,将将圆柱展开得到侧面展开图,过点F 作FC AB ⊥,依题意,14AB =,132162CF =⨯=,212CS AB =-=20SF ∴===故答案为:20【点睛】本题考查了圆柱侧面展开图,勾股定理求最短距离,理解题意作出图形是解题的关键.15.(或(2,-【分析】过点B 作BC x ⊥轴,垂足为点C ,根据已知条件求得OC ,OB ,在Rt BOC 中,勾股定理求得BC 的长,进而求得B 的坐标.【详解】如图,过点B 作BC x ⊥轴,垂足为点C ,点A 的坐标为(4,0),4∴=OA ,OC AC ∴=2=,ABC 是等边三角形,4,60OB OA AOB ∴==∠=︒,在Rt BOC 中,BC ==(B ∴,同理当B 点在第四象限时,(2,B -,∴B 点的坐标为(或(2,-.故答案为:(2,或(2,-.【点睛】本题考查了坐标与图形,勾股定理,等边三角形的性质,掌握勾股定理是解题的关键.16.8或【解析】【分析】根据题意分类讨论,①90CAD ∠=︒,②90ACD ∠=︒,③90ADC ∠=︒,分别作出图形,再结合已知条件勾股定理求解即可.【详解】①如图,当90CAD ∠=︒时,904BAC AB AC ∠=︒== ,,ACD △是等腰直角三角形,4AC AD AB ∴===,180BAD BAC CAD ∠=∠+∠=︒448BD AB AD ∴=+=+=②如图,当90ACD ∠=︒时,过点D 作DE BC ⊥,交BC 的延长线于点E ,904BAC AB AC ∠=︒== ,,ACD △,ABC 是等腰直角三角形,4CD AC AB ∴===,18045DCE ACD ACB ∠=︒-∠-∠=︒又 DE BC⊥∴ DEC 是等腰直角三角形DE CE∴=在DEC Rt △中,22222DC CE DE DE =+=∴2DE ==在Rt ABC 中,BC =在Rt BDE 中,BD =③如图,当90ADC ∠=︒时904BAC AB AC ∠=︒== ,,ACD △,ABC 是等腰直角三角形,2CD AD AC ∴===在Rt ABC 中,BC =在Rt BDC 中,BD =综上所述,BD 的长为:8或【点睛】本题考查了勾股定理,等腰三角形的性质,分类讨论是解题的关键.17.(1;(2)8【解析】【分析】根据二次根式的除法运算进行计算,进而根据二次根式的加减计算即可;(2)根据求一个数的立方根,化简绝对值,二次根式的性质化简进行计算即可.【详解】(1﹣===(2|5|356=+--8=【点睛】本题考查了二次根式的性质,二次根式的乘除法运算,求一个数的立方根,正确的计算是解题的关键.18.15-【解析】【分析】将字母的值代入代数式中进而根据完全平方公式和平方差公式计算进而根据实数的运算进行求解即可.【详解】2,2x y =+=-))2222222y xy ∴+=-++-5423=-++⨯15=-【点睛】本题考查了二次根式的计算混合运算,掌握二次根式的性质是解题的关键.19.(1)见解析;(2)见解析;(3)①(2,1),②4.【解析】【分析】(1)根据点A 、C 的坐标作出直角坐标系;(2)分别作出点A 、B 、C 关于y 轴对称的点111,,A B C ,然后顺次连接;(3)①根据直角坐标系的特点写出点1B 的坐标;②根据网格的特点求出面积.【详解】(1)如图,根据点A 、C 的坐标作出直角坐标系;(2)如图,分别作出点A 、B 、C 关于y 轴对称的点111,,A B C ,然后顺次连接,则111A B C △即为所求(3)①点1B 的坐标为(2,1),②111A B C △的面积=3×4−12×2×4−12×2×1−12×2×3=4.故答案为①(2,1),②4.20.13m【分析】根据题意构造直角三角形,然后设旗杆高度为xm ,根据勾股定理即可求解.【详解】如图,设旗杆高度为x m ,即AD x =,1AB x =-,5BC =Rt ABC ∴ 中,222AB BC AC +=即()22215x x -+=解得13x =即旗杆的高度为13米.【点睛】本题考查了勾股定理的应用,构造直角三角形是解题的关键.21.(1)(2)直角三角形,理由见解析【解析】【分析】(1)直接根据勾股定理求解即可;(2)根据勾股定理分别求得,EF BF 的长,利用勾股定理的逆定理进行判断即可.【详解】(1) 四边形ABCD 是正方形,4AB AD DC BC ∴====,90A D C ∠=∠=∠=︒,2,1AE DF == ,BE ∴===,(2)BEF 是直角三角形,理由如下,四边形ABCD 是正方形,4AB AD DC BC ∴====,90A D C ∠=∠=∠=︒,2,1AE DF == ,2DE AD AE ∴=-=,在Rt DEF △中,EF ===413FC DC DF =-=-= ,∴在Rt BFC △中,5BF ===,(22222225,525BE EF BF ∴+=+===,222BE EF BF ∴+=.∴BEF 是直角三角形.【点睛】本题考查了勾股定理以及勾股定理的逆定理,掌握勾股定理是解题的关键.22.(1)0.55y x =()0.730200y x x =->;(2)88;(3)210【详解】当200x >时,y 与x 的函数解析式是0.552000.7(200)y x =⨯+-,即0.730y x =-;(2)160200< 0.5516088y ∴=⨯=(元)答:小明家4月份应交电费145元.(3)因为小明家5月份的电费超过110元,所以把117y =代入0.730y x =-中,得210x =.答:小明家5月份用电210度.【点睛】本题考查一次函数的应用,正确的列出函数关系是解题的关键.23.(1)2;(2)2;(3)522;(4)1【解析】【分析】(1)(2)(3)根据题意分母有理化即可(4)分母有理化后再进行实数的计算【详解】(1=(242==;(3522+=;(4……=⋅⋅⋅+1=⋅⋅⋅1=1=【点睛】本题考查了分母有理化,找到有理化因式是解题的关键.24.(1)()0,4;(2)(3,0)P -;(3)(0,4)Q -或(0,5)Q -;(4)P 点的坐标为()5,0-或(5或(5或9(,0)10【解析】【分析】(1)根据题意直接求得点A 的坐标;(2)设(,0)P p ,根据1=102ABP S BP OA ⋅⋅=△即可求得P 的坐标,(3)90POQ AOC ∠=∠=︒,则分类讨论POQ AOC △≌△或POQ COA △≌△,根据全等三角形的性质即可求得OQ ,进而求得Q 点的坐标,(4)根据题意,分三种情况讨论,根据等腰三角形的性质即可求得P 的坐标.【详解】(1) B (﹣8,0),OA =12OB ,8,4OB OA ∴==()0,4A ∴故答案为:()0,4(2)如图,()8,0B -,点P 是射线BO 上一动点,设(,0)P p ,8p ∴>-1=102ABP S BP OA ⋅⋅= △,4OA =5BP ∴=()85p ∴--=(3,0)P ∴-(3)90POQ AOC ∠=∠=︒POQ AOC ∴△≌△或POQ COA△≌△依题意,设(0,)Q q ,(0)q <,①当POQ AOC △≌△时,5OQ OC ∴==∴5q =-即(0,5)Q -②当POQ COA △≌△时,4OQ OA ==∴4q =-即(0,4)Q -综上所述,(0,4)Q -或(0,5)Q -(4)如图,4,5OA OC ==在Rt AOC △中,AC ===设P 点的坐标为()(),0,8m m >-①当AC AP =时,5OC OP ==()5,0P ∴-②当CA CP =时,CA = 5m ∴=(5P ∴-或(5+③当PA PC =时则Rt OAP △中,222OP OA AP +=即()22245m m +=-解得910m =9(,0)10P ∴综上所述,P 点的坐标为()5,0-或(5或(5+或9(,0)10.【点睛】本题考查了坐标与图形,全等三角形的性质,等腰三角形的性质与判定,分类讨论是解题的关键.25.(1)AC BD =,理由见解析;(2)AC BD =,理由见解析;(3【解析】【分析】(1)根据已知条件,证明AOC BOD ≌ 即可得AC BD =;(2)AC BD =,理由同(1);(3)①当D 点在线段AB 上时,②点D 在线段AB 的延长线上时,勾股定理求解即可.【详解】(1)AC BD =,理由如下,90COD AOB ∠=∠=︒ ,Rt △AOB ,Rt △COD 是等腰直角三角形,,AOC AOD AOD BOD AO BO CO DO∴∠+∠=∠+∠==AOC BOD∴∠=∠AOC BOD∴ ≌∴AC BD=(2)AC BD =,理由如下,如图,90COD AOB ∠=∠=︒ ,Rt △AOB ,Rt △COD 是等腰直角三角形,,AOC AOD AOD BOD AO BO CO DO ∴∠+∠=∠+∠==AOC BOD∴∠=∠AOC BOD∴ ≌∴AC BD=(3) 点D 为射线AB 上动点,①当D 点在线段AB 上时,如图1Rt △AOB 是等腰直角三角形45B OAB ∴∠=∠=︒,AO BO =,AOC BOD ≌ ,45CAO B ∴∠=∠=︒,90CAD CAO OAB ∴∠=∠+∠=︒,在Rt AOB 中,4AB ===,在Rt ADC 中,413AD AB BD =-=-=,1AC BD ==,∴CD ===②点D 在线段AB 的延长线上时,如图,Rt △AOB 是等腰直角三角形45B OAB ∴∠=∠=︒,AO BO =, AOC BOD ≌ ,45CAO B ∴∠=∠=︒,90CAD CAO OAB ∴∠=∠+∠=︒,在Rt AOB 中,4AB ===,1,415AC BD AD AB BD ===+=+= 在Rt ACD △中CD ==综上所述CD =。

新北师大版八年级上册数学期中评价检测试卷附答案

新北师大版八年级上册数学期中评价检测试卷附答案

新北师大版八年级上册数学期中评价检测试卷附答案新北师大版八年级上册数学期中评价检测试卷一、选择题(每题3分,共30分)1、1的平方根是()。

A) (B)−(C)±(D)±答案:(B)−2、长方形的一条对角线的长为10cm,一边长为6cm,它的面积是()。

A) 60cm (B) 64 cm (C) 24 cm (D) 48 cm答案:(C) 24 cm3、若一个三角形三边满足(a+b)−c=2ab,则这个三角形是()。

A) 直角三角形 (B) 等腰直角三角形 (C) 等腰三角形 (D) 以上结论都不对答案:(B) 等腰直角三角形4、估计56的大小应在()。

A) 5~6之间 (B) 6~7之间 (C) 8~9之间 (D) 7~8之间答案:(D) 7~8之间5、已知x,y为实数,且x−1+3(y−2)=2,则x−y的值为()。

A) 3 (B) −3 (C) 1 (D) −1答案:(A) 36、如果点P(m+3,m+1)在x轴上,则点P的坐标为()。

A) (0,2) (B) (2,0) (C) (4,0) (D) (0,−4)答案:(C) (4,0)7、已知点P的坐标为(2−a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标为()。

A) (3,3) (B) (3,−3) (C) (6,−6) (D) (3,3)或(6,−6)答案:(D) (3,3)或(6,−6)8、已知一次函数y=kx−k,若y随着x的增大而减小,则该函数图象经过()。

A) 第一、二、三象限 (B) 第一、二、四象限 (C) 第二、三、四象限 (D) 第一、三、四象限答案:(B) 第一、二、四象限9、下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m、n为常数,且mn≠)的图象的是()。

A) (B) (C) (D)OxOxOxOxyyyy答案:(A)10、点P1(x1,y1),点P2(x2,y2)是一次函数y=−4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()。

北师大版八年级上册数学期中考试试卷含答案

北师大版八年级上册数学期中考试试卷含答案

北师大版八年级上册数学期中考试试题一、单选题1.下列各数中,无理数是()A B.πC.﹣13D.52.已知点A的坐标为(﹣4,﹣3),则点A在()A.第一象限B.第二象限C.第三象限D.第四象限3.分别以下列四组线段为三边,能构成直角三角形的是()A.0.3,0.4,0.5B.1,1,2C.1,2,3D.9,16,254.若y=mx|m﹣1|是正比例函数,则m的值是()A.0B.1C.2D.0或﹣25的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.如图所示,在正方形网格中有A,B,C三个点,若建立平面直角坐标系后,点A的坐标为(2,1),点B的坐标为(1,﹣2),则点C的坐标为()A.(1,1)B.(﹣2,1)C.(﹣1,﹣2)D.(﹣2,﹣1)7.如图,有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,则蚂蚁沿圆柱侧面爬行的最短路程是()A.15cm B.17cm C.18cm D.30cm8.在正比例函数y=kx中,y的值随着x值的增大而减小,则一次函数y=kx+k在平面直角坐标系中的图象大致是()A.B.C.D.9.点P(3,﹣4)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m二、填空题的立方根是________.11.2712.如果一个数的平方根是2x+1和x﹣7,那么这个数是___.13.已知点A(﹣2,y1),B(3,y2)在一次函数y=2x﹣3的图象上,则y1___y2(填“>”,“<”或“=”).14.长方形ABCD在平面直角坐标系中的位置如图所示,若AD=5,点B的坐标为(﹣3,3),则点C的坐标为___.15.如图,在△ABC中,∠ACB=90°,AB=10,BC=6,CD⊥AB于点D,则CD的长为___.16.如图,正方形ABCD是由9个边长为1的小正方形组成的,点E,F均在格点(每个小正方形的顶点都是格点)上,连接AE,AF,则∠EAF的度数是___.17.如图,在平面直角坐标系xOy中,点A1,A2,A3,…分别在x轴上,点B1,B2,B3,…分别在直线y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,则点A2019的坐标为_____.18.若实数x,y满足y=5x-5x-,则2x﹣y=___.三、解答题19.计算:(1)﹣(π﹣3.14)02|(22﹣1)(3)()(3)220.如图,在△ABC中,D是BC边上的一点,若AB=5,BD=3,AD=4,AC=8,求CD的长.21.在弹性限度内,弹簧的长度与所挂物体质量满足一次函数关系,某数学兴趣小组通过实验发现弹簧的长度y(cm)与所挂物体质量x(kg)之间的关系如下表:x/kg0123⋯y/cm14.51515.516⋯(1)根据上表数据求出y与x之间的关系式;(2)求当所挂物体的质量为6千克时弹簧的长度.22.如图,在平面直角坐标中,△ABC各顶点都在小方格的格点上.(1)画出△ABC关于x轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.23.甲、乙两商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原价收费,其余每件优惠20%;乙商场的优惠条件是:每件优惠25%.设所买商品为x(x>1)件,甲商场收费为1y元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当所买商品为5件时,选择哪家商场更优惠?请说明理由.24.如图,在Rt△ABC中,∠B=90°,AB=9,BC=12,D为BC上一点,连接AD,将△ABC沿AD折叠,使点B恰好落在边AC上的点B'处,求DB'的长度.25.如图,直线y=kx+4与x轴相交于点A,与y轴相交于点B,且AB=5(1)求点A的坐标;(2)求k的值;(3)C为OB的中点,过点C作直线AB的垂线,垂足为D,交x轴正半轴于点P,试求点P的坐标及直线CP的函数表达式.26.甲、乙两人分别从同一公路上的A,B两地同时出发骑车前往C地,两人行驶的路程y (km)与甲行驶的时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)A,B两地相距km;乙骑车的速度是km/h;(2)请分别求出甲、乙两人在0≤x≤6的时间段内y与x之间的函数关系式;(3)求甲追上乙时用了多长时间.参考答案1.B【解析】【分析】根据无理数的概念“无限不循环的小数”结合算术平方根可进行排除选项.【详解】3=,∴无理数是π-13、5;故选B .【点睛】本题主要考查无理数及算术平方根,熟练掌握无理数的概念是解题的关键.2.C【解析】【分析】根据平面直角坐标系象限的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-)可直接进行求解.【详解】解:∵点A 的坐标为(﹣4,﹣3),∴点A 在第三象限;故选C .【点睛】本题主要考查平面直角坐标系象限的符号,熟练掌握平面直角坐标系象限的符号特点是解题的关键.3.A【解析】【分析】根据勾股定理的逆定理:若a 、b 、c 为三角形的三边长,满足222+=a b c ,那么这个三角形就是直角三角形,由此进行求解即可.【详解】解:A 、∵2220.30.40.5+=,∴能构成直角三角形,故此选项符合题意;B 、∵2221122+=≠,∴不能构成直角三角形,故此选项不符合题意;C 、∵2221253+=≠,∴不能构成直角三角形,故此选项不符合题意;D 、∵22291633725+=≠,∴不能构成直角三角形,故此选项不符合题意;故选A .【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握勾股定理的逆定理.4.C【解析】【分析】根据正比例函数的概念:形如y=kx ,其中k≠0的函数,可知11,0m m -=≠,进而求解即可.【详解】解:由题意得:11,0m m -=≠,∴2m =;故选C .【点睛】本题主要考查正比例函数的概念,熟练掌握正比例函数的概念是解题的关键.5.B【解析】【分析】利用4<5<91的范围.【详解】∵4<5<9,∴23,∴2+11<3+1,即31<4.故选:B.【点睛】本题主要考查了无理数的估算,估算无理数的基本方法是“两边夹”,即判断所要估算的无理数在哪两个连续的整数之间,则可得到这个无理数的整数部分,从而估算出这个无理数大小.6.D【分析】根据点A的坐标为(2,1),点B的坐标为(1,﹣2)可建立坐标系,进而问题可求解.【详解】解:由点A的坐标为(2,1),点B的坐标为(1,﹣2)可建立如下坐标系:∴点C的坐标为(﹣2,﹣1);故选D.【点睛】本题主要考查平面直角坐标系,解题的关键是根据点A、B的坐标建立平面直角坐标系.7.A【分析】如图把圆柱体展开,连接AB,然后可知AC=9cm,BC=12cm,进而可由两点之间,线段最短可知AB即为所求.【详解】解:如图所示:∵圆柱的高等于12cm,底面上圆的周长等于18cm,∴AC=9cm,BC=12cm,AB==,∴15cm∴蚂蚁沿圆柱侧面爬行的最短路程是15cm;故选A.本题主要考查利用勾股定理求最短路径,熟练掌握利用勾股定理求最短路径是解题的关键.8.D【解析】【分析】根据正比例函数y=kx中,y的值随着x值的增大而减小,可得k<0,从而可以判断一次函数图像经过第二、三、四象限,由此求解即可.【详解】解:∵正比例函数y=kx中,y的值随着x值的增大而减小,∴k<0,∴一次函数y=kx+k与y轴的交点在y轴的负半轴,∴一次函数y=kx+k的图像经过第二、三、四象限,故选D.【点睛】本题主要考查了正比例函数的性质,一次函数的性质,解题的关键在于能够求出k<0.9.D【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:∵3>0,﹣4<0,∴点P(3,﹣4)所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.C【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:C..【点睛】本题主要考查了勾股定理的应用,关键是熟练掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.11.-3【解析】【分析】根据立方根的定义求解即可.【详解】解:-27的立方根是-3,故答案为:-3.【点睛】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.12.25或225【解析】【分析】根据一个正数的两个平方根互为相反数或相等,可知2x+1+x-7=0或2x+1=x-7,求解x,进而问题可求解.【详解】解:由题意得:2x+1+x-7=0或2x+1=x-7,解得:x=2或x=-8,∴这个正数为()222125⨯+=或(-15)²=225,故答案为25或225.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.13.<【解析】【分析】根据题意易得k=2>0,则有y 随x 的增大而增大,再由点A (﹣2,y 1),B (3,y 2)在一次函数y =2x ﹣3的图象上可进行求解.【详解】解:由题意得:k=2>0,∴y 随x 的增大而增大,∵点A (﹣2,y 1),B (3,y 2)在一次函数y =2x ﹣3的图象上,∴12y y <;故答案为<.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.14.(2,3)【解析】【分析】由题意易证BC ∥AD ,则有点B 与点C 的纵坐标相等,然后根据两点距离公式可进行求解.【详解】解:在长方形ABCD 中,BC ∥AD ,∴点B 与点C 的纵坐标相等,设点(),3C x ,∵AD =5,∴BC =5,∴352x =-+=,∴C (2,3);故答案为(2,3).15.4.8【分析】先利用勾股定理求出AC 的长,再由三角形面积公式11=22ABC S AC BC AB CD ⋅=⋅△得到AC BC CD AB⋅=,由此即可得到答案.【详解】解:∵在△ABC 中,∠ACB =90°,AB =10,BC =6,∴8AC ==,∵CD ⊥AB ,∴11=22ABC S AC BC AB CD ⋅=⋅△,∴ 4.8AC BC CD AB⋅==,故答案为:4.8.16.45°【分析】如图,连接EF ,由题意易得△AHE ≌△EGF ,则有∠AEH=∠EFG ,AE=EF ,然后可得∠AEH+∠FEG=90°,则有△AEF 是等腰直角三角形,进而问题可求解.【详解】解:如图,连接EF ,∵AH=EG=2,∠AHE=∠EGF=90°,EH=FG=1,∴△AHE ≌△EGF ,∴∠AEH=∠EFG ,AE=EF ,∵∠EFG+∠FEG=90°,∴∠AEH+∠FEG=90°,∴∠AEF=90°,∴△AEF是等腰直角三角形,∴∠EAF=45°;故答案为45°.【点睛】本题主要考查全等三角形的性质与判定及等腰直角三角形的性质与判定,熟练掌握全等三角形的性质与判定及等腰直角三角形的性质与判定是解题的关键.17.(22018,0)【分析】根据OA1=1,△OA1B1是等腰直角三角形,得到A1和B1的横坐标为1,根据点A1在直线y=x上,得到点B1的纵坐标,结合△B1A1A2为等腰直角三角形,得到A2和B2的横坐标为1+1=2,同理:A3和B3的横坐标为2+2=4=22,A4和B4的横坐标为4+4=8=23,…依此类推,即可得到点A2019的横坐标,即可得到答案.【详解】根据题意得:A1和B1的横坐标为1,把x=1代入y=x得:y=1B1的纵坐标为1,即A1B1=1,∵△B1A1A2为等腰直角三角形,∴A1A2=1,A2和B2的横坐标为1+1=2,同理:A3和B3的横坐标为2+2=4=22,A4和B4的横坐标为4+4=8=23,…依此类推,A2019的横坐标为22018,纵坐标为0,即点A2019的坐标为(22018,0),故答案为:(22018,0).【点睛】此题考查了一次函数的性质,等腰直角三角形的性质;此题是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用等腰直角三角形的性质是解本题的关键.18.2【分析】根据根式有意义的条件可知5x =,然后可知y=8,进而代入求解即可.【详解】解:∵实数x ,y 满足y =,且50,50x x -≥-≥,∴50x -=,解得:5x=,∴y=8,∴22582x y -=⨯-=,故答案为2.19.(1)3(2)2;(3)1-【分析】(1)根据零次幂、立方根及绝对值可直接进行求解;(2)先对二次根式进行化简,然后再进行二次根式的加减运算;(3)利用乘法公式进行二次根式的混合运算即可.【详解】解:(1)原式=2123-+=(2)原式=22=;(3)原式=207591--+=.【点睛】本题主要考查二次根式的混合运算及零次幂,熟练掌握二次根式的混合运算及零次幂是解题的关键.20.CD =【解析】【分析】由题意可知222AB BD AD =+,则有90ADB ADC ∠=∠=︒,然后根据勾股定理可求解.【详解】解:∵AB =5,BD =3,AD =4,∴22225,9,16AB BD AD ===,∴222AB BD AD =+,∴90ADB ADC ∠=∠=︒,在Rt △ADC 中,AC=8,∴DC ==【点睛】本题主要考查勾股定理及其逆定理,熟练掌握勾股定理及其逆定理是解题的关键.21.(1)()0.514.50y x x =+≥;(2)当所挂物体的质量为6千克时弹簧的长度为17.5cm【解析】【分析】(1)设弹簧的长度与所挂物体质量满足一次函数关系式为y kx b =+,然后根据表格中的数据把(0,14.5),(1,15)代入求解即可;(2)令6x =,求出此时y 的值即为弹簧的长度.【详解】解:设弹簧的长度与所挂物体质量满足一次函数关系式为y kx b =+,由题意得:14.515b k b =⎧⎨+=⎩,∴0.514.5k b =⎧⎨=⎩,∴一次函数关系式为()0.514.50y x x =+≥;(2)当当所挂物体的质量为6千克时,即6x =,∴0.5614.517.5y =⨯+=,∴当所挂物体的质量为6千克时弹簧的长度为17.5cm .【点睛】本题主要考查了一次函数的应用,解题的关键在于能够熟练掌握求一次函数解析式.22.(1)图见详解,()()()1112,3,3,2,1,1A B C ------;(2)图见详解,()0,1P 【解析】(1)分别作出点A 、B 、C 关于x 轴的对称点,然后顺次连接即可,最后根据图象得到点的坐标即可;(2)作点A 关于y 轴的对称点D ,然后连接DB 1,交y 轴于点P ,此时点P 即为所求,进而求出直线DB 1的函数解析式即可求解点P 的坐标.【详解】解:(1)如图所示,由图象可知()()()1112,3,3,2,1,1A B C ------;(2)作点A 关于y 轴的对称点D ,然后连接DB 1,交y 轴于点P ,由轴对称的性质可知AP PD =,则有PA+PB 1的最小值即为1DB 的长,∴设直线DB 1的函数解析式为y kx b =+,把点()()12,3,3,2D B --代入得:2332k b k b +=⎧⎨-+=-⎩,解得:11k b =⎧⎨=⎩,∴直线DB 1的函数解析式为1y x =+,令x=0时,则有y=1,∴()0,1P .【点睛】本题主要考查坐标与图形、轴对称的性质及最短路径问题,熟练掌握坐标与图形、轴对称的性质及最短路径问题是解题的关键.23.(1)()124006001y x x =+>,()222501y x x =>;(2)当所买商品为5件时,选择乙商场更优惠,理由见解析【分析】(1)根据两家商场的优惠方案分别求出对应的关系式即可;(2)根据关系式分别求出x=5时的两个商场的收费,即可得解.【详解】解:(1)由题意得:()()()1300030001120%24006001y x x x =+--=+>,()()23000125%22501y x x x =⨯-=>;(2)当5x =时,12400560012600y =⨯+=,22250511250y =⨯=,∴12y y >,∴当所买商品为5件时,选择乙商场更优惠.【点睛】本题考查了列函数关系式和代数式求值,读懂题目信息,理解两家商场的优惠方案是解题的关键.24.92【解析】【分析】由折叠的性质可得9AB AB '==,9DB DB '==,90AB D B '==o ∠∠,先利用勾股定理求出15AC ==,即可得到6B C AC AB ''=-=,设DB DB x '==,则12DC BC BD x =-=-,在直角三角形B CD '中:222CD DB B C ''=+,则()222126x x -=+,解方程即可.【详解】解:由折叠的性质可得9AB AB '==,9DB DB '==,90AB D B '==o ∠∠,∴=180=90CB D AB D ''-o o∠∠∵∠B=90°,AB=9,BC=12,∴15AC ==,∴6B C AC AB ''=-=,设DB DB x '==,则12DC BC BD x =-=-,在直角三角形B CD '中:222CD DB B C ''=+,∴()222126x x -=+,解得92x =,∴92DB '=.【点睛】本题主要考查了折叠的性质,勾股定理,解题的关键在于能够熟练掌握折叠的性质与勾股定理.25.(1)()2,0A -;(2)2k =;(3)()4,0P ,直线CP 的解析式为122y x =-+【解析】【分析】(1)由题意可把x=0代入直线解析式求得点B 的坐标,则有OB=4,然后根据勾股定理可得OA=2,则可得点A 的坐标;(2)由(1)可把点A 的坐标代入解析式求解即可;(3)由题意易得OC=OA=2,然后可证△AOB ≌△COP ,进而可得OP=OB=4,最后问题可求解.【详解】解:(1)把x=0代入直线y =kx+4可得:y =4,∴()0,4B ,∴OB=4,在Rt △AOB 中,AB =2OA ==,∴()2,0A -;(2)由(1)可把点()2,0A -代入直线y =kx+4得:240k -+=,解得:2k =;(3)∵点C 为OB 的中点,OB=4,∴2OC =,∴OC OA =,∵90AOB COP ∠=∠=︒,DP AB ⊥,∴90BAO ABO BAO CPO ∠+∠=∠+∠=︒,∴ABO CPO ∠=∠,又∵∠AOB=∠COP=90°,∴△AOB ≌△COP (AAS ),∴OP=OB=4,∴()4,0P ,设直线CP 的解析式为y ax c =+,则把点()4,0P ,()0,2C 代入得:∴240c a c =⎧⎨+=⎩,解得:212c a =⎧⎪⎨=-⎪⎩,∴直线CP 的解析式为122y x =-+.【点睛】本题主要考查一次函数与几何的综合及勾股定理,熟练掌握一次函数与几何的综合及勾股定理是解题的关键.26.(1)20;5;(2)甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为10y x =,520y x =+;(3)甲追上乙用了4小时的时间【解析】【分析】(1)根据图象可直接求出A 、B 两地的相距距离,然后由图象可知乙行驶10km 所需的时间为2小时,由此问题可求解;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,然后把点()()()6,60,2,30,0,20代入求解即可;(3)由题意可联立(2)中的两个函数关系式进行求解即可.【详解】21解:(1)由图象可知:A 、B 两地的相距20km ;乙骑车的速度为(30-20)÷2=5km/h ;故答案为20;5;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,则由图象可把点()6,60代入甲的函数关系式得:660k =,解得:10k =,∴甲的函数关系式为10y x =;把点()()2,30,0,20代入乙的函数关系式得:23020a b b +=⎧⎨=⎩,解得:520a b =⎧⎨=⎩,∴乙的函数关系式为520y x =+;(3)由(2)可联立关系式得:10520y xy x =⎧⎨=+⎩,解得:440x y =⎧⎨=⎩,∴甲追上乙用了4小时的时间.。

最新北师大版八年级上册数学期中测试试题以及答案

最新北师大版八年级上册数学期中测试试题以及答案

八年级上册数学期中测试试题一、选择题。

(共12道选择题,每道选择题只有一个正确答案)1、下列实数中,是无理数的()A、0B、﹣2C、222D、72、4的算术平方根是()A、2B、﹣2C、±2D、23、能够准确表示汶川这个地点的位置是()A、东经103.5°B、北纬31°C、北纬31°,东经103.5°D、金华的西北方向4、无理数10在()A、2和3之间B、3和4之间C、4和5之间D、5和6之间5、下列式子中,为最简二次根式的是()1A、2B、16C、12D、396、在平面直角坐标系中,点P(3,1)关于x轴对称的坐标是()A、(3,﹣1)B、(3,1)C、(﹣3,1)D、(﹣3,﹣1)7、在平面直角坐标系中,第四象限有个点M。

到x轴距离是4,到y 轴的距离是5,则点M的坐标是()A、(5,﹣4)B、(﹣5,4)C、(4,﹣5)D、(﹣4,5)8、9、如图,在平面直角坐标系中,y=kx+b的图形如图所示,则下列说法正确的是()A、k>0B、b<0C、kb>0D、kb<010、对于函数y=2x-1,下列说法正确的是()。

A、它的图象经过(1,0)B、y随着x的增大而减小C、它的图像经过第二象限D、当x>1时,y>111、12、二、填空题。

13、点(﹣1,2)所在的象限是第象限。

14、值为。

15、已知a=3,则a的倒数是。

16、17、已知函数y=(k-3)x+1经过第一、二、四象限,则k的取值范围是。

18、三、解答题。

19、计算:32215018-20、解方程组:21、22、23、在平面直角坐标系中,四边形ABCD的各个顶点的坐标分别为A (-4,-2)B(4,-2)C(2,2)D(-2,3)。

求这个四边形的面积。

24、25、26、27、。

【北师大版】八年级数学上期中试卷(附答案)

【北师大版】八年级数学上期中试卷(附答案)

一、选择题1.如图,在ABC ∆中,90,30C B ︒︒∠=∠= ,以A 为圆心,任意长为半径画弧分别交AB AC 、于点M 和N ,再分别以M N 、为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ︒∠=;③点D 在AB 的垂直平分线上﹔④若2AD =,则点D 到AB 的距离是1,:1:2DAC ABC S S ∆∆=A .2B .3C .4D .52.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .其中正确的是( )A .①②③④B .①②③C .②④D .①③3.北京有许多高校,下面四所高校校徽主体图案是轴对称图形的有( )A .1个B .2个C .3个D .4个 4.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是( )A .30B .60︒C .40︒或50︒D .30或60︒5.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或36.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20°7.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABDACDS:S为( )A .5:4B .5:3C .4:3D .3:48.如图,△ACB ≌△A 'CB ',∠BCB '=25°,则∠ACA '的度数为( )A .35°B .30°C .25°D .20° 9.若过六边形的一个顶点可以画n 条对角线,则n 的值是( )A .1B .2C .3D .410.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52α C .2αD .32α11.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )A .8B .5C .6D .712.如图,△ABC 中AC 边上的高是哪条垂线段.( )A .AEB .CDC .BFD .AF二、填空题13.如图,在ABC 中,22A ∠=︒,D 为AB 边中点,E 为AC 边上一点,将ADE 沿着DE 翻折,得到A DE ',连接A B '.当A B A D ''=时,A EC '∠的度数为______.14.如图,点C 在DE 上,,,45B E AB AE CAD BAE ∠=∠=∠=∠=︒,则ACB =∠_____________.15.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当△ACP 与△BPQ 全等时,点Q 的运动速度为__cm/s .16.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.17.如图,已知点(44)A -,,一个以A 为顶点的45︒角绕点A 旋转,角的两边分别交x 轴正半轴,y 轴负半轴于E 、F ,连接EF .当△AEF 直角三角形时,点E 的坐标是________.18.从n 边形的一个顶点出发,连接其余各顶点,可以将这个n 边形分割成17个三角形,则n =______.19.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.20.如图,ABC 中,40A ∠=︒,72B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥交CE 于F ,则CDF ∠=______.三、解答题21.如图,在ABC ∆中,60B ∠=︒,点M 从点B 出发沿线段BC 方向,在线段BC 上运动.在点M 运动的过程中,连结AM ,并以AM 为边在线段BC 上方,作等边AMN ∆,连结CN .(1)当_________BAM ∠=时,2AB BM =;(2)请添加一个条件:_________,使得ABC ∆为等边三角形;当ABC ∆为等边三角形时,求证:CN CM AC +=;22.已知:点A 在直线DE 上,点B 、C 都在PQ 上(点B 在点C 的左侧),连接AB ,AC ,AB 平分CAD ∠,且ABC BAC ∠=∠.(1)如图1,求证://DE PQ ;(2)如图2,点K 为AB 上一点,连接CK ,若2EAC ACK ∠=∠,求AKC ∠的度数; (3)在(2)的条件下,点F 在直线DE 上,连接FK ,且DAB AFK KCB ∠=∠+∠,若13FKA AKC ∠=∠,则ACB ∠的大小为_________.(要求:在备用图中画出图形,并直接写出答案)23.如图,点D 在边AC 上,BC 与DE 交于点P ,AB DB =,C E ∠=∠,CDE ABD ∠=∠.(1)求证:ABC DBE ≌;(2)已知162ABE ∠=︒,30DBC ∠=︒,求CDE ∠的度数. 24.已知:直线EF 分别与直线AB ,CD 相交于点G ,H ,并且180AGE DHE ∠+∠=︒(1)如图1,求证://AB CD ;(2)如图2,点M 在直线AB ,CD 之间,连接GM ,HM ,求证:M AGM CHM ∠=∠+∠;(3)如图3,在(2)的条件下,射线GH 是BGM ∠的平分线,在MH 的延长线上取点N ,连接GN ,若N AGM ∠=∠,12M N FGN ∠=∠+∠,求MHG ∠的度数.25.已知,a ,b ,c 为ABC 的三边,化简|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|. 26.已知在四边形ABCD 中,90A C ∠=∠=︒.(1)如图1,若BE 平分ABC ∠,DF 平分ADC ∠的邻补角,请写出BE 与DF 的位置关系并证明;(2)如图2,若BF 、DE 分别平分ABC ∠、ADC ∠的邻补角,判断DE 与BF 位置关系并证明;(3)如图3,若BE 、DE 分别五等分ABC ∠、ADC ∠的邻补角(即11,55CDE CDN CBE CBM ∠=∠∠=∠),求E ∠度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD 得到DA=DB ,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比. 【详解】解:由作法得,AD 平分∠BAC ,所以①正确; ∵∠C=90°,∠B=30°, ∴∠BAC=60°, ∴∠BAD=∠CAD=12×60°=30°, ∴∠ADC=90°-∠CAD=60°,所以②正确; ∵∠B=∠BAD , ∴DA=DB ,∴点D 在AB 的垂直平分线上,所以③正确; 在直角△ACD 中,∠CAD=30°, ∴CD=12AD ,∴BC=CD+BD=12AD+AD=32AD ,1124DAC S AC CD AC AD ∆=⋅=⋅. ∴11332224ABC S AC BC AC AD AC AD ∆=⋅=⋅=⋅, ∴13::1:344DAC ABC S S AC AD AC AD ∆∆=⋅⋅=,故④错误. 所以,正确的结论有3个 故选:B . 【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.2.B解析:B 【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC =∠CAD ,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG =∠ACD ,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可. 【详解】 ∵BE 是中线, ∴AE =CE ,∴△ABE 的面积=△BCE 的面积(等底等高的三角形的面积相等),故①正确; ∵CF 是角平分线, ∴∠ACF =∠BCF , ∵AD 为高, ∴∠ADC =90°, ∵∠BAC =90°,∴∠ABC +∠ACB =90°,∠ACB +∠CAD =90°, ∴∠ABC =∠CAD ,∵∠AFG =∠ABC +∠BCF ,∠AGF =∠CAD +∠ACF , ∴∠AFG =∠AGF ,故②正确; ∵AD 为高, ∴∠ADB =90°, ∵∠BAC =90°,∴∠ABC +∠ACB =90°,∠ABC +∠BAD =90°, ∴∠ACB =∠BAD , ∵CF 是∠ACB 的平分线, ∴∠ACB =2∠ACF , ∴∠BAD =2∠ACF ,即∠FAG =2∠ACF ,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.3.B解析:B【分析】根据轴对称图形的概念对各图案逐一进行判断即可得答案.【详解】第一个图案是轴对称图形,第二个图案不是轴对称图形,第三个图案是轴对称图形,第四个图案不是轴对称图形,综上所述:是轴对称图形的图案有2个,故选:B.【点睛】本题考查轴对称图形,判断轴对称图形的关键是寻找对称轴,图形沿对称轴折叠,对称轴两边的图形能够完全重合;熟练掌握轴对称图形的定义是解题关键.4.D解析:D【分析】由三角形的高可在三角形的内部,也可在三角形的外部,所以分锐角三角形和钝角三角形两种情况作出符合题意的图形,再结合等腰三角形的性质与三角形的内角和定理求解即可.【详解】解:如图,分两种情况:①如图,当三角形的高在三角形的内部时,AB=AC,BD⊥AC,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=1802A︒-∠=60°;②如图,当三角形的高在三角形的外部时,AB=AC ,BD ⊥AC ,∠ABD=30°, ∴∠DAB=60°,∠BAC=120°, ∴∠C=∠ABC= 180302BAC︒-∠=︒.故选:D . 【点睛】本题考查了等腰三角形的性质和直角三角形的两锐角互余,三角形的内角和定理的应用,三角形的高的含义,分类讨论的数学思想,掌握分类讨论解决问题是解题的关键.5.D解析:D 【分析】设运动时间为t 秒,由题目条件求出BD=12AB=6,由题意得BP=2t ,则CP=8-2t ,CQ=vt ,然后结合全等三角形的判定方法,分两种情况列方程求解. 【详解】解:设运动时间为t 秒,∵12AB AC cm ==,点D 为AB 的中点. ∴BD=12AB=6, 由题意得BP=2t ,则CP=8-2t ,CQ=vt , 又∵∠B=∠C∴①当BP=CQ ,BD=CP 时,BPD ∆≌CQP ∆ ∴2t=vt ,解得:v=2②当BP=CP ,BD=CQ 时,BPD ∆≌CPQ ∆ ∴8-2t=2t ,解得:t=2 将t=2代入vt=6,解得:v=3综上,当v=2或3时,BPD ∆与CQP ∆全等故选:D【点睛】本题主要考查了全等三角形全等的判定、熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.6.B解析:B【分析】根据正方形的性质得到AB=AD ,∠BAD=90︒,由旋转的性质推出ADE ≌ABF ,求出∠FAE=∠BAD=90︒,即可得到答案.【详解】∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=90︒,由旋转得ADE ≌ABF , ∴∠FAB=∠EAD ,∴∠FAB+∠∠BAE=∠EAD+∠BAE ,∴∠FAE=∠BAD=90︒,∴旋转角的度数是90︒,故选:B .【点睛】此题考查旋转的性质,全等三角形的性质,熟记全等三角形的性质是解题的关键. 7.B解析:B【分析】过D 作DF AB ⊥于F ,根据角平分线的性质得出DF =DC ,再根据三角形的面积公式求出ABD 和ACD 的面积,最后求出答案即可.【详解】解:过D 点作DF AB ⊥于F ,∵AD 平分CAB ∠,C 90∠=(即AC BC ⊥),∴DF CD =,设DF CD R ==,在Rt ABC 中,C 90∠=,AC 3=,BC 4=, ∴22AB 5AC BC =+=, ∴ABD 115SAB DF 5R R 222=⨯⨯=⨯⨯=,ACD 113S AC CD 3R R 222=⨯⨯=⨯⨯=, ∴ABD ACD 5S :S R 2⎛⎫= ⎪⎝⎭:3R 5:32⎛⎫= ⎪⎝⎭, 故选:B.【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质求出DF =CD 是解此题的关键.8.C解析:C【分析】利用全等三角形的性质可得∠A′CB′=∠ACB ,再利用等式的性质可得答案.【详解】解:∵△ACB ≌△A′CB′,∴∠A′CB′=∠ACB ,∴∠A′CB′-∠A′CB=∠ACB-∠A′CB ,∴∠ACA′=∠BCB′=25°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形对应角相等.9.C解析:C【分析】根据从一个n 边形一个顶点出发,可以连的对角线的条数是n-3进行计算即可.【详解】解:6-3=3(条).答:从六边形的一个顶点可引出3条对角线.故选:C .【点睛】本题考查了多边形的对角线,解答此类题目可以直接记忆:一个n 边形一个顶点出发,可以连的对角线的条数是n-3.10.C解析:C【分析】先利用角平分线和三角形外角的性质可得2BED α∠=,再根据平行线的性质定理即可得出ABE ∠的大小.【详解】解:如下图所示,∵CBE ∠和CDE ∠的平分线交于点F ,∴21,22C CBE DE ∠∠==∠∠,∵12F ∠+∠=∠,F α∠=,∴21α∠-∠=,∵EBD BED EDC ∠+∠=∠,∴22212ED D C BE EBD α∠∠-∠=∠-==∠,∵//DE BA ,∴2ABE BED α∠==∠,故选:C .【点睛】本题考查三角形外角的性质,平行线的性质定理,与角平分线有关的计算.正确理解三角形外角等于与它不相邻的两个内角之和是解题关键.11.C解析:C【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】解:①长度分别为5、4、5,能构成三角形,且最长边为5;②长度分别为2、7、5,不能构成三角形;③长度分别为2、3、9,不能构成三角形;④长度分别为7、3、4,不能构成三角形;⑤长度分别为3、5、6,能构成三角形,且最长边为6;⑥长度分别为2、4、8,不能构成三角形;综上所述,得到三角形的最长边长为6.故选:C .【点睛】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.12.C解析:C【分析】根据三角形的高的定义,△ABC 中AC 边上的高是过B 点向AC 作的垂线段,即为BF .【详解】解:∵BF ⊥AC 于F ,∴△ABC 中AC 边上的高是垂线段BF .故选:C .【点睛】本题考查了三角形的高的定义,关键是根据从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高解答.二、填空题13.【分析】根据折叠的性质可得根据及折叠的性质可得为等边三角形再根据三角形的外角性质求解即可【详解】在中将沿着翻折交于点得到如图;∴∴∵为边中点∴为等边三角形∴∴∵即∴故答案为:【点睛】本题考查了全等三 解析:16【分析】根据折叠的性质可得AED A ED '≅,根据A B A D ''=及折叠的性质可得A BD '为等边三角形,再根据三角形的外角性质求解即可【详解】在ABC 中,22A ∠=︒,将ADE 沿着DE 翻折,A D '交AC 于点F ,得到A DE ',如图;∴AED A ED '≅ ∴1=,222AD A D AB EA D A ''===∠∠,∵A B A D ''=,D 为AB 边中点,∴A B A D DB ''==,A BD '为等边三角形,∴=60A DB '∠,∴60A AFD +=∠∠,∵=AFD EA D A EC ''+∠∠∠即()60A EA D A EC ''++=∠∠∠∴=16A EC '∠.故答案为:16【点睛】本题考查了全等三角形的性质,等边三角形的性质,三角形外角的性质等知识点,解题的关键是根据折叠找到对应的边角关系 14.【分析】由条件可证得△ABC ≌△AED 则可求得∠ACB=∠ADEAD=AC 再利用等腰三角形的性质可求得答案【详解】解:∵∠CAD=∠BAE ∴∠CAD+∠CAE=∠BAE+∠CAE 即∠BAC=∠DAE解析:67.5【分析】由条件可证得△ABC ≌△AED ,则可求得∠ACB=∠ADE ,AD=AC ,再利用等腰三角形的性质可求得答案.【详解】解:∵∠CAD=∠BAE ,∴∠CAD+∠CAE=∠BAE+∠CAE ,即∠BAC=∠DAE ,在△ABC 和△AED 中,B E AB AEBAC EAD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△AED (ASA ),∴AD=AC ,∠ACB=∠ADE ,∴∠ACD=∠ADC ,∵∠CAD=45°,∴∠ADC=67.5°,∴∠ACB=67.5°,故答案为:67.5.【点睛】本题主要考查全等三角形的判定和性质及等腰三角形的性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(全等三角形的对应边相等、对应角相等)是解题的关键.15.1或15【分析】分两种情况讨论:当△ACP ≌△BPQ 时从而可得点的运动速度;当△ACP ≌△BQP 时可得:从而可得点的运动速度从而可得答案【详解】解:当△ACP ≌△BPQ 时则AC =BPAP =BQ ∵AC解析:1或1.5【分析】分两种情况讨论:当△ACP ≌△BPQ 时,1AP BQ ==, 从而可得Q 点的运动速度;当△ACP ≌△BQP 时,可得:23AP BP BQ ===,, 从而可得Q 点的运动速度,从而可得答案.【详解】解:当△ACP ≌△BPQ 时,则AC =BP ,AP =BQ ,∵AC =3cm ,∴BP =3cm ,∵AB =4cm ,∴AP =1cm ,∴BQ =1cm ,∴点Q 的速度为:1÷(1÷1)=1(cm/s );当△ACP ≌△BQP 时,则AC =BQ ,AP =BP ,∵AB =4cm ,AC =BD =3cm ,∴AP =BP =2cm ,BQ =3cm ,∴点Q 的速度为:3÷(2÷1)=1.5(cm/s );故答案为:1或1.5.【点睛】本题考查的是全等三角形的判定与性质,分类讨论的数学思想,掌握利用分类讨论解决全等三角形问题是解题的关键.16.2【分析】通过证明≌得到即可求解【详解】解:∵∴∵∴∴∴在和中∴≌∴∴故答案为:2【点睛】本题考查全等三角形的判定与性质掌握全等三角形的判定与性质是解题的关键解析:2【分析】通过证明CBE △≌BAD ,得到7BD CE ==,5BE AD ==,即可求解. 【详解】解:∵90ABC ∠=︒,∴90ABD CBE ∠+∠=︒,∵AD BD ⊥,CE BD ⊥,∴90CEB D ∠=∠=︒,∴90ABD BAD ∠+∠=︒,∴CBE BAD ∠=∠,在CBE △和BAD 中,CEB D CBE BAD CB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴CBE △≌BAD ,∴7BD CE ==,5BE AD ==,∴2DE BD BE =-=,故答案为:2.【点睛】本题考查全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键. 17.或【分析】根据等腰三角形的性质作辅助线构造全等三角形得到对应线段相等即可得到结论【详解】①如图所示:∴∵∴∵∴∴在△和中∴△△FDE ∴∴②当时同①的方法有:∴综上所述满足条件的点坐标为或故答案为:或解析:(8)0,或(40), 【分析】根据等腰三角形的性质,作辅助线构造全等三角形,得到对应线段相等即可得到结论.【详解】①如图所示:90AFE ︒∠=,∴90AFD OFE ︒∠+∠=,∵90OFE OEF ︒∠+∠=,∴AFD OEF ∠=∠,∵90AFE ︒∠=,45EAF ︒∠=,∴45AEF EAF ︒∠==∠,∴AF EF =,在△ADF 和FOE 中,ADE FOE AFD OEF AF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△FDE ,∴4FO AD ==,8OE DF OD FO ==+=,∴(40)E ,. ②当90AEF ︒∠=时,同①的方法有:8OF =,4OE =,∴(40)E ,, 综上所述,满足条件的点E 坐标为(8)0,或(40), 故答案为:(8)0,或(40), 【点睛】本题考查三角形全等性质和判定、等腰直角三角形的性质,注意直角三角形按角分类讨论分三种情况,不要漏解.18.19【分析】根据从n 边形的一个顶点出发连接这个点与其余各顶点可以把一个n 边形分割成(n-2)个三角形的规律作答【详解】解:∵一个多边形从一个顶点出发连接其余各顶点可以把多边形分成(n-2)个三角形∴解析:19【分析】根据从n 边形的一个顶点出发,连接这个点与其余各顶点,可以把一个n 边形分割成(n-2)个三角形的规律作答.【详解】解:∵一个多边形从一个顶点出发,连接其余各顶点,可以把多边形分成(n-2)个三角形, ∴n -2=17,∴19n =.故答案为:19.【点睛】本题主要考查多边形的性质,解题关键是熟记多边形顶点数与分割成的三角形个数的关系.19.【分析】根据求出根据多边形内角和公式求出五边形的内角和即可得到答案【详解】∵∴∵五边形内角和=∴==故答案为:【点睛】此题考查两直线平行同旁内角互补多边形内角和公式熟记多边形内角和计算公式是解题的关键 解析:360︒【分析】根据//AE BC 求出180A B ∠+∠=︒,根据多边形内角和公式求出五边形ABCDE 的内角和,即可得到答案.【详解】∵//AE BC ,∴180A B ∠+∠=︒,∵五边形内角和=5218540(0)-⨯︒=︒,∴C D E ∠+∠+∠=540180︒-︒=360︒,故答案为:360 .【点睛】此题考查两直线平行同旁内角互补,多边形内角和公式,熟记多边形内角和计算公式是解题的关键.20.74°【分析】先根据三角形的内角和定理求得∠ACB的度数再根据CE平分∠ACB求得∠ACE的度数则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE再结合CD⊥ABDF⊥CE就可求解【详解】解:解析:74°【分析】先根据三角形的内角和定理求得∠ACB的度数,再根据CE平分∠ACB求得∠ACE的度数,则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD⊥AB,DF⊥CE就可求解.【详解】解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∵CD⊥AB,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=∠CED=74°,故答案为:74°.【点睛】此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.三、解答题21.(1)30;(2)AB=AC;证明详见解析.【分析】(1)根据含30°角的直角三角形的性质解答即可;(2)利用等边三角形的判定即可解答;利用等边三角形的性质和全等三角形的判定证得△BAM≌△CAN(SAS),利用全等三角形的性质即可求证结论.【详解】(1)当∠BAM=30°时,∴∠AMB=180°﹣60°﹣30°=90°,∴AB=2BM;故答案为30;(2)添加一个条件AB=AC ,可得△ABC 为等边三角形;故答案为AB=AC ;①∵△ABC 与△AMN 是等边三角形,∴BC =AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC ,即∠BAM=∠CAN ,∴△BAM ≌△CAN (SAS ),∴BM=CN ,∴BM +CM=CN +CM即BC =AC =CN +CM .【点睛】本题考查等边三角形的判定及性质、全等三角形的判定及性质、含30°角的直角三角形的性质,解题的关键是熟练掌握所学知识.22.(1)见解析;(2)90AKC ∠=︒;(3)60ACB ∠=︒或20ACB ∠=︒【分析】(1)根据角平分线定义和平行线的判定方法求解;(2)根据平行线的性质和等腰三角形的性质可以得到解答;(3)分F 在A 左边和F 在A 右边两种情况讨论 .【详解】(1)∵AB 平分CAD ∠,∴DAB BAC ∠=∠,∵ABC BAC ∠=∠,∴DAB ABC ∠=∠,∴//DE PQ ;(2)∵//PQ DE ,∴EAC ACB ∠=∠,∵2EAC ACK ∠=∠, ∴1122ACK BCK EAC ACB ∠=∠=∠=∠, ∵∠ABC=∠BAC,∴△CAB 是等腰三角形,∴CK ⊥AB ,∴∠AKC=90°;(3)分两种情况讨论:①如图,F在A左边,延长VK交DE于M,设∠BCK=x°,则由(1)得:∠FKA=1303AKC∠=︒,∠DAB=∠ABC=(90-x)°,∴∠AFK=180°-30°-(90-x)°=(60+x)°,∴由∠DAB=∠AFK+∠KCB 可得:90-x=60+x+x,解之得:x=10,∴∠ACB=2x=20°,②如图,F在A右边,设∠BCK=x°,则∠AFK=∠DAB-∠AKF=90-x-30=(60-x)°,∴由∠DAB=∠AFK+∠KCB 可得:90-x=60-x+x,解之得:x=30,∴∠ACB=2x=60°,∴∠ACB=20°或60°,【点睛】本题考查角平分线、平行线和三角形的综合应用,熟练掌握角平分线的定义、平行线的性质、三角形的综合性质及方程思想的解题方法是解题关键.23.(1)见解析;(2)66°【分析】(1)根据三角形内角和定理说明∠CDE=∠CBE,再证明∠ABC=∠DBE,根据AAS可证明△ABC≌△DBE;(2)根据∠ABE和∠DBC的度数可以算出∠CBE和∠ABD的度数,从而得到∠CDE.【详解】解:(1)∵∠C=∠E ,∠CPD=∠EPB ,∴∠CDE=∠CBE ,∵∠CDE=∠ABD ,∴∠CBE=∠ABD ,∴∠CBE+∠CBD=∠ABD+∠CBD ,即∠ABC=∠DBE ,又∠C=∠E ,AB=DB ,∴△ABC ≌△DBE (AAS );(2)∵162ABE ∠=︒,30DBC ∠=︒,∴∠ABD=∠CBE=(162°-30°)÷2=66°,∴∠CDE=∠CBE=66°.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理的应用,寻找三角形全等的条件是解题的关键.24.(1)见解析;(2)见解析;(3)60°【分析】(1)推出同旁内角互补即可(2)如图,过点M 作//MR AB ,利用平行线性质推出////AB CD MR .得GMR AGM ∠=∠,HMR CHM ∠=∠.利用角的和M GMR HMR ∠=∠+∠代换即可.(3)如图,令2AGM α∠=,CHM β∠=,由N AGM ∠=∠推得2N α∠=,2M αβ∠=+,由射线GH 是BGM ∠的平分线,推得1902FGM BGM α∠=∠=︒-, 则90AGH AGM FGM α∠=∠+∠=︒+,由12M N FGN ∠=∠+∠,求出2FGN β∠=,过点N 作//HT GN ,由平行线的性质22GHM MHT GHT αβ∠=∠+∠=+,求出∠CHG 23αβ=+,利用//AB CD 的性质180AGH CHG ∠+∠=︒,即9023180ααβ︒+++=︒,求出30αβ+=︒,再求()260MHG αβ∠=+=︒即可.【详解】(1)证明:如图,∵180AGE DHE ∠+∠=︒,AGE BGF ∠=∠.∴180BGF DHE ∠+∠=︒,∴//AB CD .(2)证明:如图,过点M 作//MR AB ,又∵//AB CD ,∴////AB CD MR .∴GMR AGM ∠=∠,HMR CHM ∠=∠.∴M GMR HMR AGM CHM ∠=∠+∠=∠+∠;(3)解:如图,令2AGM α∠=,CHM β∠=,∵N AGM ∠=∠则2N α∠=,2M αβ∠=+,∵射线GH 是BGM ∠的平分线, ∴()111809022FGM BGM AGM α∠=∠=︒-∠=︒-, ∴29090AGH AGM FGM ααα∠=∠+∠=+︒-=︒+, ∵12M N FGN ∠=∠+∠, ∴1222FGN αβα+=+∠, ∴2FGN β∠=,过点N 作//HT GN ,则2MHT N α∠=∠=,2GHT FGN β∠=∠=,∴22GHM MHT GHT αβ∠=∠+∠=+,∴CHG CHM MHT GHT ∠=∠+∠+∠2223βαβαβ=++=+,∵//AB CD ,∴180AGH CHG ∠+∠=︒,∴9023180ααβ︒+++=︒,∴30αβ+=︒,∴()260MHG αβ∠=+=︒.【点睛】本题主要考查平行线的性质, 角平分线的定义,解决问题的关键是作平行线构造内错角,和同位角,利用两直线平行,内错角相等,同位角相等来计算是解题关键.25.﹣2a+4b ﹣2c【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负值,然后去绝对值进行计算即可.【详解】解:∵a ,b ,c 为ABC 的三边,∴a+b >c ,b+c >a ,a+c >b∴|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|=|a-(b+c)|-2|b-(c+a)|+ |a+b ﹣c|=﹣[a ﹣(b+c )]+2[b ﹣(c+a )]+(a+b ﹣c )=-a+(b+c)+2b-2(c+a)+a+b-c=﹣a+b+c+2b ﹣2c ﹣2a+a+b ﹣c=﹣2a+4b ﹣2c .【点睛】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理. 26.(1)BE DF ⊥,证明见解析;(2)//DE BF ,证明见解析;(3)54°【分析】(1)结论:BE ⊥DF ,如图1中,延长BE 交FD 的延长线于H ,证明∠DEG+∠EDG=90°即可;(2)结论:DE//BF ,如图2中,连接BD ,只要证明∠EDB+∠FBD=180°即可;(3)延长DC 交BE 于H .由(1)得:180CDN CBM ∠+∠=︒,利用五等分线的定义可求36CDE CBE ∠+∠=︒,由三角形的外角性质得BCD CBE CDE E ∠=∠+∠+∠,代入数值计算即可.【详解】(1)BE DF ⊥.证明:延长BE 、FD 交于G .在四边形ABCD 中,360A ABC C ADC ,90A C ∠=∠=︒,180ABC ADC ∴∠+∠=︒.180ADC CDN ∠+∠=︒,ABC CDN ∴∠=∠.BE 平分ABC ∠,DF 平分CDN ∠, 12ABE ABC ∴∠=∠,12FDN CDN ∠=∠, ABE FDN ∴∠=∠,∵∠ABE+∠AEB=90°,∠AEB=∠DEG ,∠FDN=∠EDG ,∴∠DEG+∠EDG=90°,∴∠EGD=90°,即BE ⊥DF .(2)//DE BF .证明:连接DB .180ABC MBC ∠+∠=︒,180ADC CDN ∠+∠=︒.又180ABC ADC ∠+∠=︒,180MBC CDN ∴∠+∠=︒.BF 、DF 平分ABC ∠、ADC ∠的邻补角,12CBF MBC ∴∠=∠,12CDE CDN ∠=∠, 90CBF CDE ∴∠+∠=︒.在Rt BDC 中,90CDB DBC ∠+∠=︒,180CDB DBC CBF CDE ∴∠+∠+∠+∠=︒,180EDB DBF ∴∠+∠=︒,//DE BF ∴.(3)延长DC 交BE 于H .由(1)得:180CDN CBM ∠+∠=︒.BE 、DE 分别五等分ABC ∠、ADC ∠的邻补角,1180365CDE CBE ∴∠+∠=⨯︒=︒, 由三角形的外角性质得,BHD CDE E ∠=∠+∠,BCD BHD CBE ∠=∠+∠,BCD CBE CDE E∴∠=∠+∠+∠,E∴∠=︒-︒=︒.903654【点睛】本题考查多边形内角和,三角形外角的性质,三角形内角和定理,平行线的判定等知识,解题的关键是学会添加常用辅助线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新北师大版八年级上册数学期中评价检测试卷
一、选择题(每题3分,共30分) 1、
9
1
的平方根是( ) (A) 31
(B) 31- (C) 3
1± (D) 811±
2、 长方形的一条对角线的长为10cm ,一边长为6cm ,它的面积是( ). (A )60cm 2 (B )64 cm 2 (C )24 cm 2 (D )48 cm 2
3、若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )
(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 4、估计56 的大小应在( ).
(A )5~6之间 (B )6~7之间 (C )8~9之间 (D )7~8之间 5、已知y x ,为实数,且()02312
=-+-y x ,则y x -的值为( )
(A ) 3 (B ) 3- (C ) 1 (D ) 1- 6、如果点P ()1,3++m m 在x 轴上,则点P 的坐标为( )
(A) (0,2) (B) (2,0) (C) (4,0) (D) (0,)4- 7、已知点P 的坐标为()63,2+-a a ,且点P 到两坐标轴的距离相等,则点P 的坐标为( ) (A) (3,3) (B) (3, )3- (C) (6, )6- (D) (3,3)或(6, )6- 8、已知一次函数y kx k =-,若y 随着x 的增大而减小,则该函数图象经过( ) (A )第一、二、三象限 (B )第一、二、四象限 (C )第二、三、四象限 (D )第一、三、四象限
9、下列图形中,表示一次函数y = mx + n 与正比例函数y = mnx (m 、n 为常数, 且mn ≠0)的图象的是( )
10、点
P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,
(A ) (B ) (C )
且x 1<x 2,则y 1与y 2的大小关系是( ).
(A )y 1>y 2 (B )y 1>y 2 >0 (C )y 1<y 2 (D )y 1=y 2 二、填空题(每空2分,共20分)
11、点 P (2,a -3)在第四象限,则a 的取值范围是 . 12、函数y =kx 的图象经过点P (3,-1),则k 的值为 。

13、如果直线m x y +=2不经过第二象限,那么实数m 的取值范围是_________。

14、下列实数:
21,16-,3π-,︱-1︱,7
22,3
9 ,0.1010010001……中无理数的个数有 个。

15、已知点P (x ,一3)在一次函数y =2x +9的图象上,则x = 。

16、已知直角三角形的两直角边长分别为

,则斜边上的高为
.
17、第三象限内的点()P x y ,,满足5x =,29y =,则点P 的坐标是 . 18、52-的相反数是_____ _,绝对值是____ __倒数是____ __。

三、解答题(共70分,写出必要的解题过程) 19、化简计算(每小题5分,共20分)
(1)18282-+ (2)3
1
27112-
+ (3)0)31(3
3
122-++ (4))2332)(2332(-+
20、(12分)△ABC 在直角坐标系内的位置如图右所示。

(1)分别写出A 、B 、C 的坐标(3分)
(2)请在这个坐标系内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 关于y 轴对称,并写出B 1的坐标;(4 分)
(3)请在这个坐标系内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 关于原点对称,并写出A 2的坐
标;(5分);
21、(12分)汽车油箱中的余油量Q (升)是它行驶的时间t (小时)的一次函数.某天该汽车外出时,油箱中余油量与行驶时间的变化关系如右图:
(1) 根据图象,求油箱中的余油Q 与行驶时间t 的函数关系.(7分)
(2) 从开始算起,如果汽车每小时行驶40千米,当油箱中余油 20升时,该汽车行驶了多
少千米?(5分)
22、(12分)一架云梯长25 m ,如图所示斜靠在一面墙上,梯子底端C 离墙7 m .
(1)这个梯子的顶端A距地面有多高?(5分)
(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向也是滑动了4 m吗?(7分)
第22题图
23、(14分)我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收
费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.
(1)若0<x≤6,请写出y与x的函数关系式.(3分)
(2)若x>6,请写出y与x的函数关系式.(3分)
(3)在同一坐标系下,画出以上两个函数的图象.(4分)
(4)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?(4分)
参考答案
一、选择题(每小题3分,共30分)
二、填空题(每空2分,共20分) 11、 a <3 ; 12. 3
1
-
13、___m ≤0____; 14、
3 ; 15、 -6 ; 16、 4.8 . 17、 (-5,-3) ; 18
三、解答题(共70分,写出必要的接题过程)
19、化简(每小题5分,共20分:每小题仅结果错误得3分) (1)
18282-+ (2)
3
1
27112-
+
原式=
2
326222-=-+
39
16
33
1
33132=-+
=原式
(3)
0)31(3
3
122-++ (4) )2332)(2332(-+
6
18122
934)23322
2
-=-=⨯-⨯=-=()(原式
20、解:
(1)(3分)A (0,3);B (-4,4);C (-2,1) (2) (3分) 图略:1B (4,4) (1分) (3)(3分)图略:2A (0,-3) (1分) (作图没有结论得1分)
6
151
3351
33
34=+=+=++=
原式
21、解:(1)设一次函数的表达式为Q =kt +b (k ≠0) 由图象可知:
函数图象过(0,60)和(4,40)两点
分)
(分)(中,得代入将分)7605654046040
43(60+-=∴-==+==+=∴t Q k b k b b k b
(2)当Q =20时
-5t +60=20
解得t =8
40⨯8=320 (4分)
答:汽车行驶了320千米 (5分)
22、解:(1)由题意可知;m AD m BC m DE AC B 4;7;25,900
=====∠ 在ABC Rt ∆中,由勾股定理得:
24
725222
2222=-=-=
∴=+BC AC AB AC BC AB (4分)
因此, 这个梯子的顶端A 距地面有24m 高 (5分) (2)由图可知:
BD =AB -AD =24-4=20 (1分) 在DBE Rt ∆中, 由勾股定理得:
15
20252222222=-=-=∴=+BD DE BE DE BD BE (5分)
8715=-=-=∴BC BE CE (6分)
因此, 如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向不是滑动了4 m ,而是8m (7分
)
23、解:(1)当0<x ≤6,y =2x .(3分)
(2)当x >6,y =3x -6.(3分) (3)略.(4分)
(4)吨水
这个月该用户用了解得:吨
该用户用水量超过1111
x 27
6-x 3612
.27∴==∴∴> (4分)。

相关文档
最新文档