类比思想是最基本最重要的数学思想方法
初中数学思想方法主要有哪些
一、用字母表示数的思想,这是基本的数学思想之一在代数第一册第一章“代数初步知识”中,主要体现了这种思想。
例如:设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b)(2)甲数的1/3与乙数的1/2差:1/3a-1/2b二、数形结合的思想“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。
实中数学教材中下列内容体现了这种思想。
1、数轴上的点与实数的一一对应的关系。
2、平面上的点与有序实数对的一一对应的关系。
3、函数式与图像之间的关系。
4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。
5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。
6、“圆”这一章中,贺的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。
7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。
实际上就是通过“形”来反映数据扮布情况,发展趋势等。
实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。
三、转化思想在整个初中数学中,转化(化归)思想一直贯穿其中。
转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,它是数学基本思想方法之一。
下列内容体现了这种思想:1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。
2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。
3、“圆”这一章中,证明圆周角定理进所做的分析:证明弦切角定理的思路:求两圆的切线长的问题。
这些转化都是通过辅助线来完成的。
4、把三角形或多边形中的某种线段或面积问题化为相似比问题来解决。
四、分类思想集合的分类,有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关生活经验等都是通过分类讨论的。
小学数学中常见的数学思想方法有哪些
小学数学中常见的数学思想方法有哪些1.归纳法:通过观察一般情况,从而推断出普遍规律。
例如,通过寻找一些数列的规律,利用归纳法可以推出数列的通项公式。
2.逆向思维:通过逆向思考问题,从结果出发逆推回起始状态。
逆向思维常用于解决逻辑推理和问题求解。
例如,将一个求和问题转化为找到使得等式成立的数。
3.分解与组合:将一个大问题分解为若干个较小的子问题,然后通过解决子问题得到解决整个问题的方法。
这种思想方法常用于解决复杂的问题,可以降低问题的难度。
4.比较与类比:通过比较或类比不同的情况或对象,找到相似之处或变化的规律,从而解决问题。
例如,可以通过类比找到两个数的最大公约数和两个数的最大公倍数之间的关系。
5.推理与证明:通过逻辑推理和数学证明解决问题。
推理与证明是数学思维中最基本和最重要的方法之一、通过推理和证明,可以建立数学定理和推理规则,从而解决更复杂的问题。
6.抽象与泛化:将问题抽象为一般性质或模式,从而简化问题,找到问题的本质。
抽象与泛化是数学思想中的核心思维方法之一,通过抽象和泛化,可以建立数学概念和定理。
7.反证法:通过反证得到正证结论。
反证法常用于证明一些结论的唯一性或否定性。
通过假设结论不成立,然后推导出与已知条件矛盾的结果,从而得到结论的成立性。
8.猜想与验证:通过猜想和验证的方法解决问题。
猜想与验证是一种探索性的方法,通过发现规律和验证猜想的正确性,找到问题的解决方法。
9.近似与估算:通过近似和估算的方法解决问题。
近似与估算是数学思维中的实用方法之一,可以在缺乏精确计算方法时得到近似的结果。
以上是小学数学中常见的数学思想方法,请注意,数学思想方法的具体应用还受到问题性质、题型以及学生认识和思维水平的影响,因此,教学中还应根据具体情况灵活运用。
初中数学中的类比思想
初中数学中的类比思想初中数学中的类比,处处可见。
何为“类比”,波利亚曾说过:“类比是一个伟大的引路人”。
在中学数学中,由2个数学系统中所含元素的属性在某些方面相同或相似,推出它们的其他属性也可能相同或相似的思维形式被称为类比推理,运用类比推理的模式解决数学问题的方法称为类比法。
类比既是一种逻辑方法,也是一种科学研究的方法,是最重要的数学思想方法之一。
那么,在初中数学教学中,哪些知识点运用了类比的思想呢?下面谈谈我在初中数学教学中的一些体会。
在讲解“一元一次不等式”时,学生由于刚刚接触不等式,对不等式本来就不是很熟悉,对不等式的解法也就感到陌生。
如果照着书上的例1直接进行讲解,学生可能会感到有点模糊,不那么得心应手,不知道为什么要这样来解题,就会照着按部就班的做题,以至于没有掌握解题的方法,思维会有点混乱。
当然,在经过大量的类似练习后,单纯地通过记忆性质本身,大部分学生都能掌握一元一次不等式的解法。
但是我们知道,学生在学习过程中,不但要获取知识,更重要的是要掌握一种学习方法,才会使学生终身受益。
为了让学生一开始就能从根本上弄清楚一元一次不等式的解法,能明白每一步的算理,真正地掌握一种学习的方法,在讲授这节内容时,我类比了解一元一次方程的方法,这样的讲解学生接受起来就容易多了。
例如:解一元一次方程:2x+6=3-x解:移项得:2 x+ x=3-6合并同类项得:3 x=-3系数化为1得:x =-1解一元一次不等式:2x+6﹤3-x解:移项得:2 x+ x﹤3-6合并同类项得:3 x﹤-3两边都除以3得:x ﹤-1学生只要注意最后一步:系数化为1时,不等式的两边如果都乘以或除以同一个负数时,不等号的方向改变即可。
通过这种类比,学生掌握起来就容易得多了。
在讲解“分解因式”这节内容时,教科书提出两个问题:问题1: 993-99能被100整除吗?你是怎样想的?与同伴一起交流。
解:因为993-99=99×992-99×1=99×(992-1)=99×9800=98×99×100这里,我们把一个数式化成了几个数的乘积的形式,所以993-99能被99整除。
数学中的类比思想
时需小议数学中的类比思想王安平关键字:类比的思想数形之间、数数之间的类比所谓类比,是指两种事物之间存在着相互类似的性质或特点。
这个词来源于希腊文“ analogia”原意为比例,后来引申为某种类似的事物。
类比的思想方法在科学发展中占有着十分重要的地位。
例如,著名科学家牛顿的万有引力定律就是把天体运动与自由落体运动做类比而发现的;著名的生物学家达尔文把植物的自花受精与人类的近亲结婚相类比,从而发现了自己子女体弱多病的原因。
类比的思想涉及了对知识的迁移。
所谓迁移就是一种学习对另一种学习的影响。
在教学中我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。
在我们平时的数学教学中,经常发现在数学中有一些相类似的概念,可以利用类比法进行学习;另外,在教学中也可以利用类比的思想进行教学。
的确,类比法是学习数学的一种常用方法。
数学的类比主要体现在以下几个方面:㈠几何图形之间的类比(1)几何形体数量关系的类比在以往的高考题目中,也出现了类似题目。
例如:在某年上海的高考模拟题中的一道题:已知:在平面几何有勾股定理:“假设ABC的两边AB、AC互相垂直,则有关系:AB2 AC2 BC2。
”当我们拓展到空间,类比平面几何的勾股定理并研究三棱锥的侧面面积与底面面积的关系时,我们可得到相应结论:假设三棱锥A BCD的三个侧面ABC、ACD、ADB两两垂直,则S2ABC S2ACD S2ADB S2BCD(2)几何性质之间的类比例如,几何体中的椭圆与双曲线就有很多的相似之处:在平面几何与立体几何中也存在性质之间的类比,例如:------------------------- 布磊Sn/ — ....... .. ...... ..... ......同样是在某年上海的高考模拟题中的一道题:已知:在三角形中存在余弦定理:a 1 2b 2c 3 4 2bccosA ,那么,在三棱柱 ABC A 1B 1C 1中存在关系(假设 表示平面BCC 泪与平面ACC 1A 1所成的二面角):SA B B 1 A5 6BCC 1B 1 S A C C 1 A 2S BCC I B I SA CC I Acos㈡数与形之间的类比众所周知,初等数学可分为代数与几何。
数学教学中类比思想方法
数学教学中类比思想方法
一、类比思维在数学教学中的重要性
数学是一门抽象性高、理论性强的科学学科,学习数学知识的学习者
普遍认为,它难以理解、难以掌握。
这其中,促使学生学习数学的潜力不
能得到充分发挥,一个重要的原因就是缺乏有效的思维方式。
因此,类比
思维在数学教学中是十分重要的。
类比思维在数学教学中的重要性是显而易见的,可以把数学各个知识
点组织起来,使学生在解决问题的过程中,从熟悉中获得新知,实现数学
知识的升华,提高学习数学的运用能力。
二、实施类比思维的方法
1、用生活类比:用生活类比是数学教学中使用类比思维的常见方法。
小学数学的17个思维方式
小学数学最重要的17个思维方式1.对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应的。
2.假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3.比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师要善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4.符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5.类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6.转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7.分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
又如三角形可以按边分,也可以按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
数学中的类比思想
小议数学中的类比思想王安平关键字:类比的思想数形之间、数数之间的类比所谓类比,是指两种事物之间存在着相互类似的性质或特点。
这个词来源于希腊文“analogia”原意为比例,后来引申为某种类似的事物。
类比的思想方法在科学发展中占有着十分重要的地位。
例如,著名科学家牛顿的万有引力定律就是把天体运动与自由落体运动做类比而发现的;著名的生物学家达尔文把植物的自花受精与人类的近亲结婚相类比,从而发现了自己子女体弱多病的原因。
类比的思想涉及了对知识的迁移。
所谓迁移就是一种学习对另一种学习的影响。
在教学中我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。
在我们平时的数学教学中,经常发现在数学中有一些相类似的概念,可以利用类比法进行学习;另外,在教学中也可以利用类比的思想进行教学。
的确,类比法是学习数学的一种常用方法。
数学的类比主要体现在以下几个方面:㈠几何图形之间的类比(1)几何形体数量关系的类比在以往的高考题目中,也出现了类似题目。
例如:在某年上海的高考模拟题中的一道题:已知:在平面几何有勾股定理:“假设ABC ∆的两边AB 、AC 互相垂直,则有关系:222BC AC AB =+。
”当我们拓展到空间,类比平面几何的勾股定理并研究三棱锥的侧面面积与底面面积的关系时,我们可得到相应结论:假设三棱锥BCD A -的三个侧面ABC 、ACD 、ADB 两两垂直,则2222BCD ADB ACD ABC S S S S ∆∆∆∆=++(2) 几何性质之间的类比例如,几何体中的椭圆与双曲线就有很多的相似之处:在平面几何与立体几何中也存在性质之间的类比,例如:同样是在某年上海的高考模拟题中的一道题:已知:在三角形中存在余弦定理:A bc c b a cos 2222-+=,那么,在三棱柱111C B A ABC -中存在关系(假设α表示平面11B BCC 与平面11A ACC 所成的二面角):αcos 21111111111222A ACC B BCC AACC B BCC A ABB SS S S S-+= ㈡数与形之间的类比众所周知,初等数学可分为代数与几何。
数学教学中类比思想的应用
数学教学中类比思想的应用摘要:类比(格亚斯),意思是用推理的方法或与同类事物相比较。
类比是根据两种事物在某些特征上的相似,做出它们在其他特征上也可能相似的结论。
类比是这样的一种推理,它把不同的两个(两类)对象进行比较,根据两个(两类)对象在一系列属性上的相似,而且已知其中一个对象还具有其他的属性,由此推出另一个对象也具有相似的其他属性的结论。
类比思想是一种重要的思想,在数学的教学中有着至关重要的作用。
关键字:数学、类比思想数学教学过程中,加强类比思想在数学学科教学中的应用,有利于数学课堂的教学,有利于学生对新知识的探究与学习,更有利于数学教学的发展。
课程设计时巧用数学类比思想,优化课堂设计教师认真备课是有效有开展教学活动的前提,而课程设计是备课过程的主要环节,也是提升课堂质量的保障。
数学知识之间存在着紧密的联系,新知识往往是若干旧知识点的重新组合或是旧知识的引伸和扩展。
著名的数学家波利亚所说:“类比是一个伟大的引路人”。
数学中的类比基础,就是数学对象间的相似性。
数学中有些概念是难以让学生理解和接受的,倘若在课程设计时,将类比思想融入新课中,在讲授新知识时联系旧知识,将新旧类比分析,将能让学生更加理解知识,同时也能突破难点,降低教学难度。
因此,教师在进行课程设计时,教师应充分将数学类比思想融入课程中,从而加强对学生数学类比思想的渗透,优化课堂课设,让学生可在原来的基础上进行自我提高,让新知识掌握得更牢固找,进一步优化课堂教学。
探究新知时巧用数学类比思想,激发学生兴趣在数学中,有些新概念比较抽象,学生不太容易理解,用类比法引入新概念,可使学生更好地理解新概念的内涵与外延。
数学中的许多概念有类似的地方,在新概念的提出过程中,运用类比的方法,能使学生易于理解和掌握。
教师在讲授新课引出新知识,将新知识与旧知识联系起来,并将新旧进行类比分析,将能让学生更加理解知识,同时也能突破难点,降低教学难度。
例如,教师在讲授小学数学教学中的“乘法”这一课时,教师在引出“乘法”这一新概念时,可以先让学生复习一下“几个数的加法”这一概念。
小学数学常见的数学思想方法
小学数学常见的数学思想方法在小学数学中,有一些常见的数学思想方法,这些方法不仅帮助学生理解和解决数学问题,还培养了他们的逻辑思维和问题解决能力。
本文将介绍一些常见的小学数学思想方法。
第一、归纳法归纳法是一种从特殊到一般的思维方法。
通过观察和分析特殊情况,再总结规律,推广到一般情况。
例如,学习排列组合时,可以先从2个数字的排列开始归纳,然后推广到更多数字的排列。
这样做可以帮助学生理解和记忆更抽象的概念。
第二、类比法类比法是通过寻找事物之间的共同特征,把问题转化为已知问题的方法。
例如,在学习解方程时,可以把方程看作一个天平,通过移项和化简,使方程两边平衡。
这种类比可以帮助学生把抽象的数学问题转化为更具体和易于理解的形式。
第三、分解法分解法是将复杂的问题分解为若干简单的子问题来解决的思维方法。
例如,在学习长除时,可以将被除数分解成各个位的数字,并逐位进行计算。
这种分解的思维方法可以帮助学生理清思路,简化问题,更容易得到答案。
第四、逆向思维法逆向思维法是从问题的结果出发,逆向推导出解决问题的方法。
例如,在学习排序时,可以先思考如何将数字从大到小排列,然后将步骤反转,即可得到从小到大排列的方法。
逆向思维法可以培养学生的逻辑思维和反向推理能力。
第五、模型法模型法是通过建立数学模型,把实际问题转化为数学问题来解决的思维方法。
例如,在学习面积时,可以通过绘制图形模型来计算面积。
这种方法可以帮助学生理解数学概念,并将数学应用于实际问题中。
第六、试错法试错法是通过尝试不同的方法和策略,找到解决问题的最优解的思维方法。
例如,在学习解方程时,可以尝试不同的代入法或变形法,直到找到满足方程的解。
试错法可以培养学生的探索精神和自主解题能力。
小学数学常见的数学思想方法多种多样,每种方法都有其独特的特点和适用范围。
学生在学习数学时,可以根据问题的性质和自己的思维特点选择合适的方法,培养灵活运用数学思想方法的能力。
通过不断练习和思考,学生可以提高数学思维能力,更好地理解和应用数学知识。
小学数学中常见的数学思想方法有哪些
小学数学中常见的数学思想方法有哪些?1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
又如三角形可以按边分,也可以按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
数学思想方法有哪七种
数学思想方法有哪七种
1、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。
“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
2、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。
转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
3、分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
4、整体思想
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。
5、类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某
些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
6、配方法
将一个式子设法构成平方式,然后再进行所需要的转化。
当在求二次函数最值问题、解决实际问题最省钱、盈利最大化等问题时,经常要用到此方法。
7、待定系数法法
当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待定的字母的值就可以了,为此,需要把已知的条件代入到这个待定的式子中,往往会得到含待定字母的方程或者方程组,然后解这个方程或者方程组就可以使问题得到解决。
初中数学思想方法
初中数学思想方法数学思想方法是解决数学问题的灵魂,也是把数学知识转化为数学能力的桥梁。
初中数学中常用的思想方法有:整体思想、分类讨论思想、函数思想、方程思想、转化思想、类比思想、分类讨论思想等。
1、整体思想整体思想是从问题的整体性质出发,通过研究问题的整体形式、整体结构、整体与局部的内在等,找出解决问题的途径。
2、分类讨论思想当一个问题因为某种量或条件的改变,而引起演变结果的改变时,我们就需要对问题从各种不同的角度或分类讨论加以解决。
3、函数思想用运动变化的观点去分析和研究具体问题中的数量关系,用函数的形式,把这种数量关系用函数表示出来。
4、方程思想方程思想就是从分析问题的数量关系入手,通过设定未知数,把问题中的已知量与未知量的数量关系,转化为方程或方程组,然后利用方程的理论和方法,使问题得到解决。
5、转化思想转化思想是将要解决的问题转化成一个或几个已经解决的简单问题。
6、类比思想类比是根据两个具有相同或相似性质的事物之间进行比较,从而找到另外一些具有相同或相似性质的事物。
7、分类讨论思想分类讨论是根据所研究对象的差异,将其划分成不同的种类,分别加以研究,从而分解矛盾,化整为零,化一般为特殊,变抽象为具体,然后再一一加以解决。
分类依赖于标准的确定,不同的标准会有不同的分类方式。
总之数学思想方法是分析解决数学问题的灵魂,也是数学知识的精髓,是把数学知识转化为数学能力的桥梁。
一、引言在现今的初中数学教学中,培养学生的数学思想方法已经成为了一个重要的目标。
《初中数学思想方法导引》这本书,以其独特的视角和深入的剖析,成为了初中数学教师的重要参考书籍。
本书主要介绍了初中数学中的各类思想方法,如方程思想、函数思想、化归思想等,对于提高学生的数学素养,增强他们的解题能力,具有极大的指导意义。
二、数学思想方法的重要性数学思想方法是一种对数学规律和数学本质的深刻认识和理解,是对数学知识进行高度概括和抽象的结果。
在初中数学教学中,培养学生的数学思想方法不仅可以提高学生的数学成绩,更重要的是可以培养他们的逻辑思维能力、创新能力和解决问题的能力。
国家开放大学《数学思想与方法》网络讨论参考答案
国家开放大学《数学思想与方法》网络讨论参考答案1.谈谈你对学习本课程的认识参考答案:数学思想与方法课程是研究数学思想方法及其教学的一门课程。
随着现代科学技术的迅速发展和素质教育的全面实施,对科学思想、科学方法有着全局影响的数学思想方法其重要性日益凸现。
鉴于数学思想方法在素质教育中的重要作用,数学思想与方法被列为国家开放大学小学教育专业(专升本)的一门重要的必修课。
本课程的主要内容分为三大块:上篇为数学的起源与基本内涵;中篇为各种数学方法的介绍与应用;下篇为数学的素质教育及实施。
课程内容包括数学思想与方法的两个源头、数学思想与方法的几次重要突破、数学的真理性、现代数学的发展趋势、抽象与概括、猜想与反驳、演绎与化归、计算与算法、应用与建模、其他方法、数学思想与方法与素质教育、数学思想与方法教学、数学思想与方法教学案例。
2.西方数学的特质?东方数学的特质?参考答案:古希腊数学和中国古代数学有许多共同之处。
但是,由于希腊和中国这两个文明古国的社会制度、数学和哲学的关系、文化背景及统治阶级对数学的态度等方面的差异.又决定了希腊与中国古代数学的很大不同。
首先,从内容上,古希腊数学以定性研究为主,以几何研究为中心;中国数学则以定量研究为主,以算法研究为中心。
其次,希腊数学不是用来解决实际问题的,他们所研究的内容都是离开具体应用对象的相当抽象的性质。
相反,中国古代数学的目的就是实际应用,并在应用中发展。
离开实际应用的纯理论数学在中国未占主流。
第三,从形式上说,希腊数学都包括命题的证明,并试图构成一个演绎体系。
与此不同,中国传统数学的特色是构造性、计算性和机械化。
中国古代数学著作则采取应用问题集的形式。
第四,由于中国古代数学家追求实际应用的效果,而古希腊数学家强调逻辑的严密,因此中国古代数学家没有像希腊人那样受悖论困扰。
《几何原本》是古希腊数学的代表,而中国古代数学以《九章算术》为代表。
《几章算术》确立了中国古代数学应用题的形式,以算法为中心的特点,理论联系实际的风格,构筑了中国古代数学的基本框架。
初中数学常用的17种思想方法
初中数学常用的17种思想方法1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
又如三角形可以按边分,也可以按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
高中数学教学中类比思想方法
高中数学教学中类比思想方法古语云:授人以鱼,只供一饭。
授人以渔,则终身受用无穷。
学知识,更要学方法。
清华网校的学习方法栏目由清华附中名师结合多年教学经验和附中优秀学生学习心得组成,以帮助学生培养良好的学习习惯为目的,使学生在学习中能够事半功倍。
全日制中学教学大纲指出,要重视能力的培养,使学生逐步学会分析、综合、归纳、类比等重要的思想方法。
在各种逻辑推理方法中,类比思想方法是富于创造的一种方法。
这是因为它可以跨越各个种类进行不同类事物的类比,可以比较本质的特征,也可以比较非本质的特征,因而具有较强的探索和预测作用。
根据高中生的抽象逻辑思维从经验型向理论型急剧转化的心理特点和高中数学教材的特点,教学中恰当地应用类比方法,不仅能突出问题的本质,提高教学质量,而且有助于培养学生的创造能力等思维品质,提高认识问题和解决问题的能力。
南安县教育局陈进兴老师把高中数学教学中的类比形式分成两大类:第一类,同构类比。
这是类比中的一种极端形式。
同构的意义是一个集合M和N之间的一一对应f是一个对于代数运算O和来讲的M和N之间的同构对应,假如在f之下,a∈M,b∈M,如果在M、N之间,对代数运算O和,M和N同构,记为M≅N。
例如,坐标平面上有序实数对(x,y)所组成的集合X与平面上向Z的集合Y的对应f:(x,y)→x+yi,那么X≅Y。
在中学数学中,最常见的同构类比就是数形结合、函数与图像,代数与解析几何等。
由两点间的距离公式得几何意义为点P(X,O)到点A(1,2)与点B(2,3)距离之和的最小值,利用同构类比转化如图,根据几何定理,|PA|+|PB|的最小值为A关于X轴对称点A′(1,2)与点B 的距离,第二类,非同构类比。
即从对象的某些属性相同推出它们的其它属性相同,这是高中数学中大量采用类比形式,常常又可分为:1.相对概念的类比。
数学教育家波利亚说:“类比就是一种相似。
”把两个数学对象进行比较,找出它们相似的地方,从而推出这两个数学对象的其它一些属性也有类似的地方,这在教学中关于概念、性质的教学是最常用的方法。
例谈类比思想在高中数学教学中的应用实践
例谈类比思想在高中数学教学中的应用实践
吴雪光
【期刊名称】《学苑教育》
【年(卷),期】2022()7
【摘要】类比思想是数学课堂教学中的重要方法,是将两个及两个以上的事物、知识或概念进行综合对比分析,探究得出它们之间的相似表现或相异特征,进而再依此推导出它们在其他各方面的相似之处的数学思想。
在高中数学课教学中,教师常用类比思想来优化数学探究进程,灵活借助类比,能引导学生学到新知识和新方法,获取新颖的解题思路,探得有益的数学规律和本质。
文章结合高中数学教学实践,通过分析类比思想的基本内涵,以及类比思想在数学课堂教学中的应用价值,加强课堂实例实践,以期更好地提升类比思想的教学应用实效,促进学生数学综合能力和素养的有效培养。
【总页数】3页(P7-8)
【关键词】高中数学教学类比思想;应用价值;课堂实践
【作者】吴雪光
【作者单位】福建省柘荣县第一中学
【正文语种】中文
【中图分类】G63
【相关文献】
1.类比思想在高中数学教学实践中的应用
2.授之以“鱼”,不如授之以“渔”——例谈类比思想在高中数学教学中的渗透
3.摭谈类比思想在高中数学教学中的运用实践
4.摭谈类比思想在高中数学教学中的运用实践
5.让“类比”在初中数学教学中擦出火花——例谈类比思想在初中数学教学中的应用
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类比思想是最基本最重要的数学思想方法内容概述类比思想就是由已知两个(类)事物具有某些相似性质,从而推断它们在其他性质上也可能相似的推理思想(由特殊到特殊)。
类比思想是串联新旧知识的纽带,同时也是培养学生探究能力和创新能力的有力工具.类比往往是猜想的前提,猜想又往往是发现的前兆,类比是数学发现的重要源泉,数学中许多定理、公式和法则都是用类比推理提出的。
在高中数学中,类比是最基本、最重要的数学思想方法之一,它不仅能由已知解决未知,由简单问题解决复杂问题,更能体现数学思想方法之奇妙.恰当的运用类比思想,可以帮助学生举一反三、触类旁通,提高解题能力,也可以引导学生去探索获取新知识,提高学生的创新思维能力.类比思想存在于解决数学问题的过程中,是帮助我们寻找解题思路的一种重要的思想方法.当我们遇到一个“新”的数学问题时,如果有现成的解法,自不必说.否则解决问题的关键就是寻找合适的解题策略,看能否想办法将之转化到曾经做过的、熟悉的、类似的问题上去思考。
通过联系已有知识给我们的启发,将已有知识迁移到新问题中来,把解决已有问题的方法移植过来,为所要解决的问题指引了方向.例题示范例1:等差数列{n a }中,若100a =,则有12n a a a +++1219n a a a -=+++(19,)n n N +<∈成立,类比上述性质,在等比数列{n b }中,若9b =1,则_______.解:在等差数列中,100a =,那么以10a 为中心,前后间隔相等的项和为0,即9118120,0a a a a +=+=,…所以有121219(19,)n n a a a a a a n n N -++++=+++<∈成立.类比过来:同样在等比数列{n b }中,若9b =1,则以9b 为中心,前后间隔相等的项的积为1,即8107111,1b b b b ==,所以有下列结论成立:121217(17,)n n b b b b b b n n N -+=<∈评析:在等差数列和等比数列的性质类比中,常见的运算类比有:和类比为积,差类比为商,算术平均类比几何平均等等。
当然此题中已知等式的左右式子各项特征,特别是下标变化规律是类比的关注点。
例2:在平行四边形ABCD 中,有22222()AC BD AB AD +=+,类比在空间平行六面体1111ABCD A B C D -中,类似的结论是_______。
解:如图,平行四边形ABCD 中,设向量AB a =,AD b = ,则AC a b =+,DB a b =-, 有()22222AC a ba ab b =+=++…①同理,()22222DB a ba ab b =-=-+…②①+②得,()()22222222AC DB a bABAD+=+=+,即C 122222()AC BD AB AD +=+.类似地,在平行六面体1111ABCD A B C D -中,可设AB a =, AD b = 1AA c =则1AC a b c =++,1BD a b c =-++,1CA a b c =--+,1DB a b c =-+同上面方法可计算出下列结论成立:1111222222214()AC BD CA DB AA AB AD +++=++评析:在解决空间几何问题时,有很多可以类比平面几何问题求解,美国数学家、数学教育家波利亚曾指出:“类比是一个伟大的引路人,求解立体几何问题往往有赖于平面几何中的类比问题”平面与空间类比的例子还有很多,如:1、在Rt △ABC 中,∠C=900,CD ⊥AB 于点D ,则222111CD CA CB=+成立,类比此性质,在四面体P-ABC 中,PA 、PB 、PC 两两垂直,PD ⊥平面ABC 于点D ,则可得到的结论是:22221111PD PA PB PC =++. 2、已知△ABC 中,内切圆半径为r ,三边长为a,b,c ,则△ABC 的面积为1()2S r a b c =++,若一个四面体内切球的半径为R ,四个面的面积分别是1234,,,S S S S ,则这个四面体的体积是:12341()3V R S S S S =+++.3、如图,在平面几何中△ABC 的内角平分线AD 分BC 所成的线段比BD :DC=AB :AC ,把这个结论类比空间有: 在三棱锥中中,平面DCE 平分二面角A-CD-B ,且与棱相交于点E ,则有ACD BCDSAE BE S=.例3: .已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 .解:由534c a b c a -≤≤-得534a b a c c c -≤≤-, ∴12a c ≥,742b ac c ≤-≤,由ln ln c b a c c ≥+,得ln b a c c ≥, 设b x c =,ay c=,在处理ln y x ≤时可以类比:y x≤是表示直线y x =的下方区域,所以ln y x ≤表示曲线ln y x =下方区域,这就是线性与非线性的类比.A BCD-BD则x y ,满足ln 72120,0y x x y x y ≤⎧⎪⎪≤⎪⎨⎪≥⎪⎪>>⎩,可先求y x 的取值范围. 作出(x y ,)所在平面区域(如图):利用yx的几何意义:可行域内的任一点和点(0,0)所在直线的斜率, 由图像可知yx分别在点71(,)22和切点分别取得最小值和最大值.设过点(0,0)的直线与ln y x =相切于点00(,)p x y , ∴000ln 1x x x =,解得0x e =,01y =, ∴117y x e≤≤,7b x e a y ≤=≤,即ba 的取值范围是[] 7e ,. 评析:此题求解中充分利用条件和结论的形式特征,将不等条件与线性规划中约束条件类比,将所求分式与斜率类比,将求线性规划问题的方法与非线性的方法进行类比。
解决问题的策略就是把不熟悉的问题类比到熟悉的问题中,降低思维难度。
例4:(2017年浙江21)如图,已知抛物线2x y =,点11(,)24A -,39(,)24B ,抛物线上的点(,)P x y 13()22x -<<,过点B 作直线AP 的垂线,垂足为Q.(1)求直线AP 斜率的取值范围 (2)求PA PQ •的最大值 。
解:(1)设直线AP 的斜率为K. 2114122x k x x -==-+,因为1322x -<<,所以直线AP 斜率的取值范围为()1,1-。
(2)常规解法:设直线AP 的方程:11()24y k x =++,则由211()24y k x x y⎧=++⎪⎨⎪=⎩消y 得:11()[()]022x x k +-+=,则11,22A P x x k =-=+.由于1322p x -<<,则(1,1)k ∈-。
由题yxPA BQ意得AQ BQ ⊥,所以直线BQ :49231++-=k x k y ,联立方程112413924y kx k y x k k ⎧=++⎪⎪⎨⎪=-++⎪⎩,解得22432(1)Q k k x k -++=+, 因为1|PA |)1)2x k =++,2|P |)Q Q x x -= ,所 以 2||||(1)(1)PA PQ k k =--+。
令()f k 3(1)(1)k k =--+,因为 2()(1)(42)f k k k '=-+-,所以()f k 在区间1(1,)2-上单调递增,1[,1)2上单调递减,因此当12k =时,||||PA PQ 取得最大值2716。
当然我们也可以利用不等式的性质直接求解:4311(33)(1)(1)(1)27(1)(1)(33)(1)(1)(1)33416k k k k PA PQ k k k k k k -++++++⎛⎫=--+=-+++≤⨯=⎪⎝⎭ ,当12k =时等号成立。
有没有其他的解决途径呢?重新审视已知条件,直线AP 的垂线BQ 及所求的PA PQ•量有没有什么内在的联系?垂足Q 与已知点,A B 之间有没有特殊的关系呢?如果我们能发现PQ 就是PB 在直线AP 上的射影的话,那么PA PQ •就可直接转化为PA PQ PA PB •=-•,于是问题转化为向量的坐标运算。
解法2:两线段积类比向量数量积的几何意义 设2(,)P t t ,则221139(,),(,)2424AP t t PB t t =+-=--BQ AP ⊥221319cos ()()()()2244AP PQ AP PB BPQ AP PB t t t t ∴=∠==+-+-- ( * )对于(*)式 我们可以直接展开得4233216AP PQ t t t ⋅=-+++ ,下面可求导计算(过程同上)。
解法3:类比于已解决的问题已知直线AB 与抛物线24y x =交于点A,B,点M 为AB 的中点,C 为抛物线上一个动点,若0C 满足{}00min C A C B CA CB =,则下列一定成立的是( B )0.A C M AB ⊥ 0.B C M l ⊥,其中l 是抛物线过 0C 的切线 00.C C A C B ⊥ 0.D C M AB =分析:设AB 的中点为M ,由于221()()()()4CA CB CM MA CM MB CM MA CM MA CM AB =++=+-=-若线段AB 为定值,则当以M 为圆心的圆与抛物线相切时(切点为0C ) 满足{}00min C A C B CA CB =,此时圆与抛物线在0C 处有共同的切线l 。
如果在考场上我们能够回忆起这样一个解题经历,或者能深层地发现本问题中蕴含的几何位置关系,那么下面的解法应该是水到渠成的。
设AB 的中点为D ,则15(,)24D , 由于222()2AP PQ PA PB PD DA PD =-=--=- ,如图当圆D 与抛物线相切于点P 时PD 值最小,此时DP 与过P 的抛物线的切线垂直。
设2(,)P t t 则2542112t t t -⨯=-- 化简得34310t t --= 即2(1)(21)0t t -+=, 1322t -<< 1t ∴= 。
故(1,1)P 时最大值为。
评析:上面的多维度解析让我们感受了数学问题的解决是多方面的,类比思想体现在数算,形态,及解题策略方面的互通。
配套练习:1、设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.2、把一个直角三角形以两直角边为邻边补成一个矩形,则矩形的对角线长即为直角三角形外接圆直径,以此可求得外接圆半径r =a 2+b 22(其中a ,b 为直角三角形两直角边长).类比此方法可得三条侧棱长分别为a ,b ,c 且两两垂直的三棱锥的外接球半径R =________.222152722(1)(1)2416AP PQ PD ⎡⎤=-=--+-=⎢⎥⎣⎦D CD B CA (P )A3、已知圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为4、对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现, (1)求函数f (x )=13x 3-12x 2+3x -512的对称中心; (2)计算f (12 013)+f (22 013)+f (32 013)+f (42 013)+…+f (2 0122 013).答案: 1、T 8T 4 T 12T 8解析 对于等比数列,通过类比,有等比数列{b n }的前n 项积为T n ,则T 4=a 1a 2a 3a 4,T 8=a 1a 2…a 8,T 12=a 1a 2…a 12,T 16=a 1a 2…a 16,因此T 8T 4=a 5a 6a 7a 8,T 12T 8=a 9a 10a 11a 12,T 16T 12=a 13a 14a 15a 16,而T 4,T 8T 4,T 12T 8,T 16T 12的公比为q 16,因此T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.2 、222a b c ++解析: 由平面类比到空间,把矩形类比为长方体,从而得出外接球半径222a b c ++.3、(22)π+ 解析:类比题(2010北京理科(14))如图放置的边长为1的正方形PABC 沿x 轴滚动 .B C PA PPPP图图设顶点P (x ,y )的轨迹方程是()y f x =,则()f x 的最小正周期为 ;()y f x =在其两个相邻零点间的图像与x 轴所围区域的面积为 .说明:“正方形PABC 沿x 轴滚动”包括沿x 轴正方向和沿x 轴负方向滚动 .沿x 轴正方向滚动指的是先以顶点A 为中心顺时针旋转,当顶点B 落在x 轴上时,再以顶点B 为中心顺时针旋转,如此继续 .类似地,正方形PABC 可以沿x 轴负方向滚动 .分析:此题若想直接求出P 点运动的轨迹方程是有点困难的,但我们可以根据题意画出点P 的轨迹,然后根据图形的特征求出周期和所围成的面积 . 通过动手操作点P 的轨迹是如图2中周期为4的图像,()y f x =在其两个相邻零点间的图像与x 轴所围区域是由两个半径为1的14圆及两个边长为1的弓形组成 .其面积2211121211442S πππ=⨯⨯+⨯-⨯⨯=+在解决原题时我们可以类比操作:如果我们将六边形从A 点处剪开依次重复地平铺在直线上(如图)问题可直接类比转化为上面的高考试题 . 在直线上正方形的顶点A 转动的轨迹是以半径1,弧所对的圆心角为090,交替进行的 . 而在正六边形内转动时,半径变化一致,但弧所对的圆心角为030 .于是A 的轨迹是以半径为1,1,0 为重复呈现的一段弧(圆心角为030),正方形纸片在圆形盖内转了三圈后(即正方形顶点第12次与圆周相碰)回到初始点P, 故点A走过的路径的长度为(110)36π++⨯⨯=.4、解 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1,由f ″(x )=0,即2x -1=0,解得x =12. f (12)=13×(12)3-12×(12)2+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1). (2)由(1),知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1),所以f (12+x )+f (12-x )=2,51即f (x )+f (1-x )=2. 故f (12 013)+f (2 0122 013)=2, f (22 013)+f (2 0112 013)=2, f (32 013)+f (2 0102 013)=2,…f (2 0122 013)+f (12 013)=2. 所以f (12 013)+f (22 013)+f (32 013)+f (42 013)+…+f (2 0122 013)=12×2×2 012=2 012.。