七年级上学期期末模拟检测C
七年级上学期期末模拟考试数学试卷-附含有答案
七年级上学期期末模拟考试数学试卷-附含有答案学校:班级:姓名:考号:一.选择题(共10小题,满分30分,每小题3分)1.(3分)中国人最早使用负数,可追溯到两千多年前的秦汉时期,2021的相反数是()A.2021B.﹣2021C.−12021D.120212.(3分)数据186亿吨,用科学记数法可表示为()A.186×108吨B.18.6×109吨C.1.86×1010吨D.1.86×1011吨3.(3分)已知代数式−13x b y a−1与22x2y是同类项,则a+b的值为()A.2B.4C.3D.1 4.(3分)下列各式中,去括号正确的是()A.1﹣(a2﹣2ab+b2)=1﹣a2+2ab+b2B.x﹣2(y﹣1)=x+2y+2C.﹣5(﹣a+3)﹣ab=﹣5a﹣15﹣abD.﹣[(x﹣z)﹣y2]=﹣x+z+y25.(3分)如图是一个几何体的侧面展开图,这个几何体可以是()A.圆锥B.圆柱C.棱锥D.棱柱6.(3分)下列各式中,哪个是多项式()A.3a B.0C.12mD.7m﹣8n7.(3分)如图,从教学楼到图书馆有三条道路,从上到下依次记为①,②,③,小明认为走第②条道路最近,其理由是()A.两点确定一条直线B.两点之间线段最短C.经过一点可以画无数条直线D.两点之间线段的长度,叫做这两点之间的距离8.(3分)已知C、D、E三点在直线AB上,P为直线AB外一点,PC=1,PD=2,PE=3,则点P到直线AB的距离()A.小于1B.不小于1C.大于1D.不大于19.(3分)如图,AB为⊙O的直径,点C,D在圆上,若∠D=64°,则∠BAC的度数为()A.64°B.34°C.26°D.24°10.(3分)已知M=79a﹣1,N=a2−119a(a≠1),则M,N的大小关系为()A.M=N B.M<N C.M>N D.不能确定二.填空题(共6小题,满分18分,每小题3分)11.(3分)若min{m,n}表示m,n两数中较小的数,则min{−12,−13}的值为.12.(3分)用度来表示78°29′24″=.13.(3分)一辆汽车行走的路程为5,所用的时间为t,则它的速度为.14.(3分)如图,AE∥CD,若∠1=37°,∠DAC=89°,∠DBC=46°,则∠AEC的度数为.15.(3分)如图,点C,D在线段AB上.若C是线段AB中点,CD=14AC,AB=16,则BD长为.16.(3分)观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;…,则第15个图形中有个三角形.三.解答题(共12小题,满分72分) 17.(4分)计算:(1)(+18)﹣(+6)﹣(+19)﹣(﹣20)﹣(﹣5); (2)(+456)﹣(+335)﹣(﹣316)﹣(+125).18.(4分)小聪是一个聪明而又富有想象力的孩子.学习了“有理数的乘方”后,他就琢磨着使用“乘方”这一数学知识,脑洞大开地定义出“有理数的除方”概念.于是规定:若干个相同有理数(均不能为0)的除法运算叫做除方,如5÷5÷5,(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)等,类比有理数的乘方.小聪把5÷5÷5记作f (3,5),(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)记作f (4,﹣2). (1)直接写出计算结果,f (4,12)= ,f (5,3)= ;(2)关于“有理数的除方”下列说法正确的是 .(填序号) ①f (6,3)=f (3,6); ②f (2,a )=1(a ≠0);③对于任何正整数n ,都有f (n ,﹣1)=1; ④对于任何正整数n ,都有f (2n ,a )<0(a <0).(3)小明深入思考后发现:“除方”运算能够转化成乘方运算,且结果可以写成幂的形式,请推导出“除方”的运算公式f (n ,a )(n 为正整数,a ≠0,n ≥2),要求写出推导过程将结果写成幂的形式;(结果用含a ,n 的式子表示)(4)请利用(3)问的推导公式计算:f (5,3)×f (4,13)×f (5,﹣2)×f (6,12).19.(5分)计算:−12+16[−22+(−3)2×(−2)+(−3)]÷(−52)2. 20.(5分)化简: (1)3a ﹣2a +(﹣a ); (2)3a 2+2a ﹣4a 2﹣7a . (3)13(9x −3)+2(x +1).(4)4x +2y ﹣(2x ﹣y ).21.(6分)先化简,后求值:2xy2﹣[3xy﹣(2xy﹣2xy2)],其中x=−12,y=2.22.(6分)如图所示的方格纸中,每小方格的边长都为1cm.请在方格纸上画图并回答问题:(1)在点A的正东方向取一点B,使A、B两点间的距离为4cm.(2)过点A画直线AB的垂线.(3)在点A的正北方向取点C,使AC=AB.(4)以点A为端点,画A点的北偏东45°方向的射线交BC于D点.(5)过点D画直线AB的平行线交AC于点E.(6)在线段AB上取一点F,使得AF=3FB,并画射线EF.(7)写出图中∠ACD的一个同位角,点B到直线AC的距离.(8)用数字1在图上标出∠CDE的对顶角,用数字2标出∠EFB的一个邻补角.23.(6分)如图,直线AB和CD交于点O,OE平分∠DOB.(1)在∠BOC内部,过点O作射线OF⊥CD;(2)在(1)的条件下,若∠EOF=63°,求∠BOF的度数.24.(6分)某学校深入开展足球进校园活动,为了提高足球运动员快速转身抢断能力,体育老师设计了折返跑训练.在足球场上画一条东西方向的直线,如果约定向东为正,向西为负,一运动员折返跑训练的记录如下(单位:米):+15,﹣19,+16,﹣18,+21,﹣30,+35,﹣25,+25,﹣10.请解答下列问题:(1)该运动员最后到达的地方在出发点的哪个方向?距出发点多远?(2)该运动员本次训练结束,共跑了多少米?25.(7分)如图:AB∥CD,AE、DF分别是∠BAO、∠CDO的平分线,求证:AE∥DF.26.(7分)观察下列表格中两个代数式及其相应的值,回答问题:x…﹣2﹣1012…﹣2x+5…9753a…2x﹣7…﹣11﹣9﹣7﹣5b…【初步感知】(1)根据表中信息可知:a=;b=;【归纳规律】(2)表中﹣2x+5的值的变化规律是:x的值每增加1,﹣2x+5的值就都减少2.类似地,2x﹣7的值的变化规律是:;【问题解决】(3)请直接写出一个含x的代数式,要求x的值每增加1,代数式的值就都减小5,且当x=0时,代数式的值为﹣7.27.(8分)如图,AB∥CD,点P为平面内一点.(1)如图①,当点P在CD与之间时,若∠A=20°,∠C=45°,则∠P=°;(2)如图②,当点P在点B右上方时,∠ABP、∠CDP、∠BPD之间存在怎样的数量关系?请证明;(3)如图③,EB平分∠PEG,FP平分∠GFD,若∠PFD=40°,则∠G+∠P=°.28.(8分)如图,数轴上点A表示的数是﹣4,点B表示的数是6,动点P从点A出发,以每秒3个单位长度的速度沿数轴向右运动,运动时间为t秒(t>0).(1)直接写出线段AB的长度;(2)当点P运动到点B的右侧时,直接写出线段BP的长度(用含t的代数式表示);(3)当t=3秒时,点M到点A,点P的距离相等;点N到点B,点P的距离相等,求此时线段MN 的长度;(4)当点P从点A出发时,另一个动点Q同时从B点出发,以每秒1个单位长度的速度沿数轴向右运动.①点P表示的数为:(用含t的代数式表示);点Q表示的数为:(用含t的代数式表示);②请直接写出B,P,Q三点中有一点恰好到另外两点的距离相等时的t值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:2021的相反数是:﹣2021.故选:B.2.【解答】解:186亿吨=186****0000吨=1.86×1010吨.故选:C.3.【解答】解:由题意知,b=2,a﹣1=1解得a=2∴a+b=4故选:B.4.【解答】解:A、1﹣(a2﹣2ab+b2)=1﹣a2+2ab﹣b2,故本选项错误,不符合题意;B、x﹣2(y﹣1)=x﹣2y+2,故本选项错误,不符合题意;C、﹣5(﹣a+3)﹣ab=5a﹣15﹣ab,故本选项错误,不符合题意;D、﹣[(x﹣z)﹣y2]=﹣x+z+y2,故本选项正确,符合题意;故选:D.5.【解答】解:∵圆锥的侧面展开图是扇形∴判断这个几何体是圆锥故选:A.6.【解答】解:A、3a是单项式,不合题意;B、0是单项式,不合题意;C、12m是分式,不合题意;D、7m﹣8n是多项式,符合题意;故选:D.7.【解答】解:从教学楼到图书馆有三条道路,从上到下依次记为①,②,③,小明认为走第②条道路最近,其理由是两点之间,线段最短.故选:B.8.【解答】解:∵垂线段最短∴点P到直线AB的距离不大于PC、PD、PE又∵PC=1,PD=2,PE=3∴点P到直线AB的距离不大于1故选:D.9.【解答】解:连接BC∵∠D=64°∴∠D=∠B=64°∵AB为⊙O的直径∴∠ACB=90°∴∠BAC=90°﹣∠B=26°故选:C.10.【解答】解:∵M=79a﹣1,N=a2−119a(a≠1)∴M﹣N=79a﹣1﹣(a2−119a)=79a﹣1﹣a2+119a=﹣a 2+2a ﹣1 =﹣(a ﹣1)2∵任何数的平方为非负数,且a ≠1 所以N >M . 故选:B .二.填空题(共6小题,满分18分,每小题3分) 11.【解答】解:∵12=36,13=26,36>26∴−12<−13 ∴min {−12,−13}=−12故答案为:−12.12.【解答】解:∵24″=(2460)′=0.4′,29.4′=(29.460)°=0.49°∴78°29'24''=78.49°. 故答案为:78.49°.13.【解答】解:根据题意得,速度为5t .读答案为:5t.14.【解答】解:在△ACD 中,∠1=37°,∠DAC =89° ∴∠D =180°﹣∠DAC ﹣∠1=54° ∵AE ∥CD∴∠BAE =∠D =54°∵∠DBC +∠BAE +∠AEB =180°,∠DBC =46° ∴∠AEB =180°﹣54°﹣46°=80°∴∠AEC =180°﹣∠AEB =180°﹣80°=100° 故答案为:100°.15.【解答】解:∵点C ,D 在线段AB 上.C 是线段AB 中点 ∴AC =CB =12AB ∵CD =14AC ,AB =16∴BD =34AC =38AB =38×16=6.故答案为:6.16.【解答】解:第1个图形中一共有1个三角形 第2个图形中一共有1+4=5个三角形 第3个图形中一共有1+4+4=9个三角形 …第n 个图形中三角形的个数是1+4(n ﹣1)=(4n ﹣3)个 当n =15时,4n ﹣3=4×15﹣3=57 故答案为:57.三.解答题(共12小题,满分72分)17.【解答】(1)(+18)﹣(+6)﹣(+19)﹣(﹣20)﹣(﹣5) =18﹣6﹣19+20+5 =12﹣19+20+5 =﹣7+20+5 =13+5 =18;(2)(+456)﹣(+335)﹣(﹣316)﹣(+125)=+456−335+316−125=+456+316−125−335=8﹣(125+335)=8﹣5 =3.18.【解答】解:(1)f (4,12)=12÷12÷12÷12=4f (5,3)=3÷3÷3÷3÷3=127; 故答案为:4;127.(2)①f (6,3)=3÷3÷3÷3÷3÷3=181,f (3,6)=6÷6÷6=16 ∴f (6,3)≠f (3,6),故错误; ②f (2,a )=a ÷a =1(a ≠0),故正确;③对于任何正整数n ,当n 为奇数时,f (n ,﹣1)=﹣1;当n 为偶数时,f (n ,﹣1)=1.故错误; ④对于任何正整数n ,2n 为偶数,所以都有f (2n ,a )>0,而不是f (2n ,a )<0(a <0),故错误; 故答案为:②.(3)公式f (n ,a )=a ÷a ÷a ÷a ÷…÷a ÷a =1÷(a n ﹣2)=(1a)n ﹣2(n 为正整数,a ≠0,n ≥2).(4)f (5,3)×f (4,13)×f (5,﹣2)×f (6,12)=127×9×(−18)×16 =−23.19.【解答】解:−12+16[−22+(−3)2×(−2)+(−3)]÷(−52)2 =﹣1+16×[﹣4+9×(﹣2)+(﹣3)]÷254 =﹣1+16×(﹣4﹣18﹣3)×425 =﹣1+16×(﹣25)×425 =﹣1+(−23) =−53.20.【解答】解:(1)3a ﹣2a +(﹣a ) =3a ﹣2a ﹣a =0;(2)3a 2+2a ﹣4a 2﹣7a =(3﹣4)a 2+(2﹣7)a =﹣a 2﹣5a ;(3)13(9x −3)+2(x +1)=3x ﹣1+2x +2 =5x +1;(4)4x +2y ﹣(2x ﹣y ) =4x +2y ﹣2x +y =2x +3y .21.【解答】解:原式=2xy 2﹣(3xy ﹣2xy +2xy 2)=2xy2﹣3xy+2xy﹣2xy2=﹣xy当x=−12,y=2时原式=﹣(−12)×2=1.22.【解答】解:(1)如图,线段AB即为所求;(2)如图,直线l即为所求;(3)如图,线段AC即为所求(4)如图,射线AD,点D即为所求;(5)如图,直线DE即为所求;(6)如图,射线EF即为所求;(7)图中∠ACD的一个同位角∠AEF,点B到直线AC的距离4.故答案为:∠AEF(答案不唯一),4;(8)如图,∠1,∠2即为所求.23.【解答】解:(1)作图如下:(2)∵OF⊥CD∴∠DOF=90°∵∠EOF=63°∴∠DOE=90°﹣63°=27°∵OE平分∠DOB∴∠BOD=2∠DOE=2×27°=54°∴∠BOF=∠DOF﹣∠BOD=90°﹣54°=36°.24.【解答】解:(1)15﹣19+16﹣18+21﹣30+35﹣25+25﹣10=10(米)∴最后到达的地方在出发点的东边,距出发点10米.(3)|+15|+|﹣19|+|+16|+|﹣18|+|+21|+|﹣30|+|+35|+|﹣25|+|+25|+|﹣10|=15+19+16+18+21﹣30+35+25+25+10=214(米)∴该运动员本次训练结束,共跑了214米.25.【解答】证明:∵AB∥CD∴∠BAO=∠CDO又∵AE、DF分别是∠BAO、∠CDO的平分线∴∠EAO=12∠BAO=12∠CDO=∠FDO∴AE∥DF.26.【解答】解:(1)用2替换代数式中的xa=﹣2×2+5=1b=2×2﹣7=﹣3.故答案为:1;﹣3;(2)观察表格中第三行可以看出,x的值每增加1,2x﹣7的值都增加2故答案为:x的值每增加1,2x﹣7的值都增加2.(3)∵x的值每增加1,代数式的值就都减小5∴x的系数为﹣5.∵当x=0时,代数式的值为﹣7∴代数式的常数项为﹣7.∴这个含x的代数式是:﹣5x﹣7.27.【解答】解:(1)过点P作MN∥AB∵AB∥CD∴AB∥CD∥MN又∵∠A=20°,∠C=45°∴∠APM=∠A=20°∠MPC=∠C=45°∴∠P=∠APM+∠MPC=20°+45°=65°;故答案为:65;(2)∠ABP=∠CDP+∠BPD;理由如下:延长AB交PD于点H∴∠ABP是△PBH的一个外角∵AH∥CD∴∠CDP=∠BHP∴在△PBH,∠BPD+∠BHP=∠ABP∴∠ABP、∠CDP、∠BPD之间存在的数量关系为:∠ABP=∠CDP+∠BPD;(3)延长AB交PF于点H,过点G,作MN∥AB∵AB ∥CD∴MN ∥AB ∥CD∴∠HEG =EGM ,∠EHF =∠PFD ,∠MGF =∠GFD∵EB 平分∠PEG ,FP 平分∠GFD ,若∠PFD =40°∴∠PEH =∠HEG ,∠PFD =∠PFG =40°,∠GFD =80°∴∠G =∠EGM +∠MGF =∠HEG +∠GFD =∠PEH +80°,∠P +∠PEH =∠EHF =∠PFD =40° ∴∠P =40°﹣∠PEH∴∠G +∠P =∠PEH +80°+40°﹣∠PEH =120°.故答案为:120.28.【解答】解:(1)6﹣(﹣4)=10线段AB 的长度是10;(2)P 点表示的数为﹣4+3t线段BP 的长度为﹣4+3t ﹣6=3t ﹣10;(3)当t =3秒时AP =3×3=9点M 表示的数是0.5BP =AB ﹣AP =10﹣9=1点N 表示的数是5.5所以线段MN 的长度是5.5﹣0.5=5;(4)①点P 表示的数为﹣4+3t点Q 表示的数为6+t故答案为:﹣4+3t ,6+t②当B 是P 、Q 中点时,6﹣(﹣4+3t )=6+t ﹣6解得:t =52当P 是B 、Q 的中点时,﹣4+3t ﹣6=6+t ﹣(﹣4+3t )解得:t =4当Q 是B 、P 的中点时,6+t ﹣6=﹣4+3t ﹣(6+t )解得:t =10B ,P ,Q 三点中有一点恰好到另外两点的距离相等时的t 值为52、4或10.。
2025届广西玉林玉州区七校联考数学七年级第一学期期末检测模拟试题含解析
2025届广西玉林玉州区七校联考数学七年级第一学期期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)1.历史上,数学家欧拉最先把关于x 的多项式用记号f(x)来表示,把x 等于某数a 时的多项式的值用f(a)来表示,例如x =﹣1时,多项式f(x)=x 2+3x ﹣5的值记为f(﹣1),那么f(﹣1)等于( )A .﹣7B .﹣9C .﹣3D .﹣12.下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是( )A .把弯曲的河道改直,可以缩短航程B .用两个钉子就可以把木条固定在墙上C .利用圆规可以比较两条线段的大小关系D .连接两点间的线段的长度,叫做这两点之间的距离3.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .4.下列各组两个数中,互为相反数的是( )A .(2)--和2B .22和2(2)-C .32-和3(2)-D .m 和m -5.下列运算正确的是( )A .B .C .D .6.甲乙两个超市为了促销一种定价相等的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买同样的商品最合算( )A .甲B .乙C .相同D .和商品的价格有关7.将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是( )A .B .C .D .8.下列说法中正确的是( )A .0不是单项式B .b a 是单项式C .2x y 的系数是0D .32x -是整式 9.商家常将单价不同的A B 、两种糖混合成“什锦糖”出售,记“什锦糖”的单价为: A B 、两种糖的总价与A B 、两种糖的总质量的比。
人教版2020-2021学年度七年级数学上册期末模拟测试卷C卷(附答案)
绝密★启用前2020-2021学年度初中数学期中考试卷试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.如图,C,D是线段AB上的两个点,CD=3 cm,M是AC的中点,N是DB的中点,AB =7.8 cm,那么线段MN的长等于( )A.5.4 cm B.5.6 cm C.5.8 cm D.6 cm2.如图,电子蚂蚁P、Q在边长为1个单位长度的正方形ABCD的边上运动,电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A 出发,以个单位长度/秒的速度绕正方形作逆时针运动,则它们第2017次相遇在()A.点A B.点B C.点C D.点D3.如图,已知正六边形ABCDEF,甲、乙两点分别从顶点A和顶点B出发,沿正六边形ABCDEF的边逆时针运动,甲的速度是乙速度的3倍,则点甲、乙的第2018次相遇在( )A.边BC B.边CD C.边DE D.边EF4.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第50个三角形数与第48个三角形数的差为( )A .50B .49C .99D .1005.如图,是一组按照某种规律摆放而成的图案,第1个图有1个三角形,第二个图有4个三角形,第三个图有8个三角形,第四个图有12个三角形,则图5中三角形的个数是( )A .8B .12C .16D .176.式子a b c a b c++的值等于( ) A .3± B .±1 C .3±或±1 D .3或17.如图,数轴上每相邻两点相距一个单位长度,点A 、B 、C 、D 对应的位置如图所示,它们对应的数分别是a 、b 、c 、d ,且d ﹣b+c=10,那么点A 对应的数是( )A .﹣6B .﹣3C .0D .正数8.已知a 与1的和是一个负数,则|a |=( )A .aB .﹣aC .a 或﹣aD .无法确定9.若|3m-5|+(n+3)2=0,则6m-(n+2)=( )A .6B .9C .0D .1110.如果两个数的和是正数,商是负数,那么这两个数的积是( )A .正数B .负数C .零D .以上三种结论都有可能第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.设一列数1232018,,,...,a a a a 中任意三个相邻的数之和都是22,已知32a x =,1913a =,666a x =-,那么2018a =________.12.在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及对角线的几个数之和都相等,具有这种性质的图表,称为“幻方”,中国古代称为“河图”、“洛书”,又叫“纵横图”.3阶幻方也称九宫格,即把1,2,3,4,5,6,7,8,9九个数填入3×3方格中,使每一行,每一列以及两条对角线上的数字之和都相等.请你将1,2,3,4,5,6,7,8,9填入下表的9个空格中,完成三阶幻方.13.若|x ﹣2+3﹣2x|=|x ﹣2|+|3﹣2x|成立,则x 的范围是__.14.观察下列各式数:0,3,8,15,24,…,试按此规律写出第2020个数是_____. 15.已知a 是质数,b 是奇数,且a 2+b=2009,则a+b=____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新元优化七年级数学练习(3)
一、选择题(每小题3分,共30分) 1.下列说法错误的是( )
A .任何非零有理数的平方都大于0
B .若│x │=│-2│,那么x=-2
C .0是绝对值最小的有理数
D .如果m 的相反数是-5,那么m=5 2、若x=2是方程ax-3=x+1的解,那么a 等于( ) A .4 B .3 C .3 D .1
3、下面一些角中,可以用一副三角尺画出来的角是( )
(1)15°
的角, (2)65º
的角, (3)75º
的角,(4)135º
的角,(5)145º
的角。
A .(1)(3)(4) B .(1)(3)(5) C .(1)(2)(4) D .(2)(4)(5)
4、若|x -
12
|+(2y -1)2
=0,则22x y +的值是( ) A .38 B .12 C .-18 D .-38
5、下列各式中运算正确的是( )
A .156=-a a
B .4
2
2
a a a =+ C .5
3
2
523a a a =+ D .b a ba b a 2
2
2
43-=- 6、下列一组数:2007
3
2
)1(),82(),1.3(,2,4----+----,π,其中正整数的个数为
( )个
A.1 B.2 C.3 D.4
7、下列各图经过折叠后不能围成一个正方体的 ( )
A B C D
8、下列解方程去分母正确的是 ( )
A.由
1132x x --=,得2x-1=3-3x B.由232
124x x ---=-,得2(x-2)-3x-2=-4
C.由131236y y y y +-=--,得3y+3=2y-3y+1-6y
D.由44
153
x y +-=
,得12x-1=5y+20
9、下列图形是,是左边图形绕直线l 旋转一周后得到的是 ( )
B D
A
C
10、一个两位数的个位数字与十位数字都是x ,如果将个位数字与十位数字分别加2和1,所得的新数比原数大12,则可列的方程是 ( ) A .1232=+x
B .123210=++x
C .12)2()1(10)10(=+-+-+x x x x
D .1210)2()1(10++=+++x x x x 二、填空题:(每小题3分,共30分)
11.3
1
1-的相反数为 ,倒数为 ,绝对值为 。
12.如果水位上升1.2米,记作 1.2+米;那么水位下降0.8米,记作_______米。
13.-2+3-4+5-6+…+99-100=____ _ 。
14.某工程队在修建高速公路时,有时需要将弯曲的道路改直以缩短路程,这样的理论依据是_______。
15.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,•结果每件仍获利15元,这种服装每件的成本为_________。
16.∠1与∠2负余,∠2与∠3∠互补,∠1=34°,则∠3=。
17.用代数式表示阴影的面积 。
18.在800米跑道上有两人练中长路,甲每分钟跑320米, 乙每分钟跑280米,•两人同时同地同向起跑,t 分钟后第 一次相遇,t 等于 分钟.
19.如图,已知直线AB ,CD 相交于点O ,OA 平分∠EOC, ∠EOC=700
,则∠BOD 的度数等于_______。
20.用火柴棍象如图这样搭三角形:你能找出规律猜想出下列两个问题吗?
(1)搭7个需要 根火柴棍;
(2)搭 n 个三角形需要 _________ 根火柴棍。
三、解答题:(60分) 21、(14分) 计算
(1)[]42)3(18)2(2÷⨯--+- (2)-32÷3+(12 -2
3 )÷12-(-1)2008
22、(7分)解方程2151
136
x x +--=
23、(7分)化简求值:3a 2
b -2[2ab 2
-(2ab -3a 2
b )+ab]+3ab 2
,其中a=
1
2
,b=2.
24、(7分)如图所示,OE ,OD 分别平分∠AOB 和∠BOC ,若∠AOB=90°,∠EOD=70°,求∠BOC 的度数.
25、(7分)如图,O 是直线AB 上一点,OC 为任一条射线,OD 平分∠BOC,OE 平分∠AOC.
⑴指出图中∠AOD 与∠BOE 的补角;
⑵试说明∠COD 与∠COE 具有怎样的数量关系.
26、(8分)一轮船航行于两个码头之间,逆水需10小时,顺水需6小时。
已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离。
27、(10分)下面的两种移动电话计费方式表,考虑下列问题。
(1) 一个月本地通话时间150分,计算按两种移动电话计费方式各需要交费多少元? (2) 你如何选择计费方式?为什么?(分类讨论)
O
A C
D
E。