高一数学不等式
高一数学不等式知识点归纳
高一数学不等式知识点归纳数学不等式是高中数学中重要的一部分内容。
在高一数学学习中,了解不等式的概念、性质以及解不等式的方法,对于学习数学和解决实际问题都有着重要的作用。
下面将对高一数学不等式知识点进行归纳和总结。
一、不等式的概念不等式是一种数学关系式,它表达了两个数的大小关系。
一般形式为a ≠ b或a < b或a > b,其中a、b为实数。
不等式中的关系符号有"≠"、“<”、“>”分别表示不等、小于和大于的关系。
二、不等式的性质1. 传递性:如果a < b且b < c,则有a < c。
类似的,大于的情况也满足这个性质。
2. 加减性:对于不等式,可以同时加上一个数或减去一个数,不等号的方向不变。
例如,如果a < b,则有a + c < b + c。
减法的情况也类似。
3. 倍乘性:对于正数k,不等式中的关系符号不改变。
例如,如果a < b,则有ka < kb。
当k为负数时,不等号的方向改变。
4. 乘方性:对于正实数k,不等式中的关系符号不改变。
例如,如果a < b,则有a^k < b^k。
当k为负数时,不等号的方向改变,但必须保证a和b皆大于0。
三、不等式的解集表示方法1. 用图形表示:可以通过将不等式转化为坐标系中的区域表示来解释和表示不等式关系。
2. 用集合表示:通过列举满足不等式的所有实数,将这些实数写成一个集合的形式来表示不等式的解集。
3. 用不等式表示:将不等式的解集写成一个由不等号和式子组成的不等式形式,来表示不等式的解集。
四、不等式的求解方法1. 加减法解不等式:利用加减性质,将不等式中的常数项移到一边,以求得未知数的范围。
2. 乘除法解不等式:利用倍乘性质,将不等式中的系数移到一边,并对系数符号进行考虑,以求得未知数的范围。
3. 绝对值不等式的解法:分为绝对值大于、小于和大于等于、小于等于两种情况,根据不等式的形式分别求解。
高一数学必修 不等式知识点总结
不等式一、基本不等式1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.2、不等式的性质:①a b b a >⇔<;②,a b b c a c >>⇒>;③a b a c b c >⇒+>+;④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+;⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n n a b a b n n >>⇒>∈N >;⑧()0,1n n a b a b n n >>⇒>∈N >.3、设a 、b 是两个正数,则2a b +称为正数a 、b 的算术平均数,ab 称为正数a 、b 的几何平均数.4、均值不等式定理:若0a >,0b >,则2a b ab +≥,即2a b ab +≥.5、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.6、极值定理:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值2p .例:(13-14耀华7)若2-m 与|m |-3异号,则m 的取值范围是A、m >3B、-3<m <3C、2<m <3D、-3<m <2或m >3解析:由题.323,03020302><<-∴⎩⎨⎧>-<-⎩⎨⎧<->-m m m m m m 或或得答案:D例:(13-14蓟县11)已知实数的最小值为则且、yx y x R y x 12,1,+=+∈解析:22323))(12(12+≥++=++=+yx x y y x y x y x 当且仅当222y x =答案:223+二、一元二次不等式1、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.2、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac∆=-0∆>0∆=0∆<二次函数2y ax bx c=++()0a >的图象一元二次方程2ax bx +0c +=()0a >的根有两个相异实数根1,22b x a -±∆=()12x x <有两个相等实数根122b x x a ==-没有实数根一元二次不等式的解集20ax bx c ++>()0a >{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20ax bx c ++<()0a >{}12x x x x <<∅∅若二次项系数为负,先变为正例:(12-13南开区17)已知不等式2230x x --<的解集为A,不等式260x x +-<的解集是B.(I)求A B ;(Ⅱ)若不等式20x ax b ++<的解集是A B ,求20ax x b ++<的解集..,0221,0240-1(-1,2)0(2)(-1,2)).2,3(23-06(-1,3),31-032)1(2222R x x b a b a b a b ax x B A B x x x A x x x 解得解集为解得,的解集是由,得解得解解:<-+-∴⎩⎨⎧-=-=⎩⎨⎧=++=+∴<++=∴-=∴<<<-+=∴<<<--3、⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧图像法(数形结合)根的分布分离参数法恒成立问题:分类讨论(因式分解)含参一元二次不等式:例:(13-14红桥区17)解关于x 的不等式2(1)10ax a x -++<..1;11,111;11,1110;110)1)(1(00)1)(1(0;10 时,不等式的解为当不等式的解为时,当不等式的解为时,当或,不等式的解化为时,原不等是等价于当时,因式分解为当时,不等式解为解:当=<<>><<<<<<><--<>--≠>=a x aa a ax a a ax x x a x a x ax a a x a 例:(13-14蓟县13)已知一元二次不等式02122≥++kx kx 对一切实数x 都成立,则实数k 的取值范围为解析:40040,0021,02≤≤⎩⎨⎧≤-=∆≥≠≥=k k k k k k 得则若,成立;则不等式化为若综上可得40≤≤k 答案:[]4,0例:(12-13南开12)己知一元二次不等式2(2)2(2)40m x m x -+-+>的解集为R,则实数m 的取值范围是_________________.解析:22,2064(2)4(2)0m m m m m ≠-≥⎧<<⎨∆=---<⎩ 不等式为一元二次不等式,则则得2得2<m<6答案:(2,6)三、线性规划1.了解线性约束条件、目标函数、可行域、可行解、最优解2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题.3.解线性规划实际问题的步骤:(1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;(4)验证所求解是否在可行域内。
高一基本不等式题型及解题方法
高一基本不等式题型及解题方法基本不等式是高中数学中的重要概念,它在数学运算中有着重要的作用。
掌握基本不等式的题型及解题方法对于高一学生来说至关重要。
在本文中,我们将对高一基本不等式的常见题型和解题方法进行详细的介绍。
1.绝对值不等式绝对值不等式是基本不等式中的重要内容之一。
它常常以形如|ax + b| < c或者|ax + b| > c的形式出现。
解决绝对值不等式的关键在于将其转化为两个普通的不等式,然后求解。
以下是解决绝对值不等式的基本步骤:例题:求不等式|3x - 2| < 7的解集。
解:首先,我们将不等式转化为两个普通的不等式:1)当3x - 2 > 0时,|3x - 2| = 3x - 2,此时不等式转化为3x - 2 < 7。
2)当3x - 2 < 0时,|3x - 2| = -(3x - 2),此时不等式转化为-(3x - 2) < 7。
接下来,我们分别求解这两个普通的不等式:1)当3x - 2 > 0时,可得3x - 2 < 7,解得x < 3。
2)当3x - 2 < 0时,可得-(3x - 2) < 7,解得x > -1。
因此,原不等式的解集为-1 < x < 3。
2.复合不等式复合不等式是由两个或多个不等式组成的不等式。
解决复合不等式的关键在于找到其交集或并集,然后求解。
以下是解决复合不等式的基本步骤:例题:求解不等式系统{x + 2 > 0, 3x - 4 < 5}的解集。
解:首先,我们分别求解这两个不等式:1)x + 2 > 0,解得x > -2。
2)3x - 4 < 5,解得x < 3。
然后,我们找出这两个不等式的交集,即-2 < x < 3。
因此,不等式系统{x + 2 > 0, 3x - 4 < 5}的解集为-2 < x < 3。
《基本不等式》17种题型高一
基本不等式是高中数学中非常重要且基础的一部分。
它在高一数学中占据着重要的地位,对于学生的数学基础和逻辑推理能力的培养起着至关重要的作用。
在高一数学教学中,基本不等式的学习也是一个重要的环节,不仅需要掌握它的概念和性质,还需要学会运用它解决实际问题。
本文将从基本不等式的概念入手,详细介绍其性质和运用方法,并列举17种题型,帮助学生全面理解和掌握基本不等式的相关知识。
一、基本不等式的概念基本不等式是指在任意三个实数a、b、c之间,必有以下基本不等式成立:1)正数的不等式:a >b ⟹ a +c > b + ca > 0,b > 0 ⟹ ac > bca > b, c > 0 ⟹ ac > bca > b, c < 0 ⟹ ac < bc2)负数的不等式:a <b ⟹ a +c < b + ca < 0,b < 0 ⟹ ac > bca < b, c > 0 ⟹ ac < bca < b, c < 0 ⟹ ac > bc以上基本不等式是学习基本不等式的基础,对于解决实际问题是非常重要的。
二、基本不等式的性质基本不等式还具有一些重要的性质,包括:1)传递性:若a > b,b > c,则a > c2)对称性:若a > b,则-b > -a3)倒置性:若a > b,则1/a < 1/b,且a/b > 0这些性质对于运用基本不等式解决实际问题时起着重要的作用,可以帮助学生更好地理解和运用基本不等式。
三、基本不等式的运用方法基本不等式在解决实际问题时有着广泛的应用,其运用方法主要包括:1)利用基本不等式的性质化简题目;2)利用基本不等式构造等式或方程组,进而求解问题;3)利用基本不等式证明不等式关系,讨论最值等问题。
学生在解决实际问题时,可以根据具体情况选择不同的运用方法,灵活运用基本不等式,解决各种复杂的问题。
高中必修高一数学PPT课件不等式的性质
3.数轴的三要素:
原点、长度单位、正方向
4.如何表示数轴上两个点所对数的大小:
数轴上右边的点所对的数大于左边的点所对的数。
B 。 A 。
bLeabharlann a5.如图,A、B是数轴上的两个点,A、B所对数分别为a、b, 试比较a-b与0的大小
a>b a-b>0
a<b a-b<0
a=b a-b=0
例1.比较(a 3)(a 5)与(a 2)(a 4)的大小。
a+2 > a+1----------------(1) a+3>3a-------------------(2) 3x+1<2x+6--------------(3) x<a------------------------(4)
同向不等式: • 在两个不等式中,如果每一个的左边都 大于右边,或每一个的左边都小于右边. 异向不等式: • 在两个不等式中,如果一个不等式的左 边大于右边,而另一个的左边小于右边.
2 2
(a a 1)(a a 1)的大小。
2 2
课外作业:
1.书P8习题6.1(1—3) 2. 设 a 0 且 a 1 , t 0 1 t 1 的大小. log t 与 log a a 比较 2 2
3.比较M a 1 a和N a a 1的大小(a 1 ).
解:(a 3)(a 5) (a 2)(a 4)
(a 2 2a 15) (a 2 2a 8) 7 0
(a 3)(a 5) (a 2)(a 4)
2 2 4 2 ,比较 ( x 1) 与x x 1 的大小 例2.已知 x 0
高一数学数学不等式知识点
高一数学数学不等式知识点数学不等式是高中数学的一个重要内容,它是代数学和几何学的一个重要分支,也是在解决实际问题中经常会遇到的数学工具。
在高一数学中,不等式的学习是一个重要的环节。
下面我们将介绍一些高一数学中的数学不等式知识点。
一、不等式的基本概念不等式是比较两个数大小关系的一种数学表达式。
在不等式中,常见的符号有“<”、“>”、“≤”和“≥”。
其中“<”表示“小于”,“>”表示“大于”,“≤”表示“小于等于”,“≥”表示“大于等于”。
例如:1) 对于实数a和b,如果a<b,则可表示为a<b。
2) 若a≤b,则表示为a≤b。
二、不等式的性质1. 加减性质对于不等式a<b,如果两边同时加、减同一个数,不等式的大小关系将保持不变。
例如:a<b, 则a+c < b+c。
a>b, 则a-c > b-c。
2. 乘除性质若不等式a<b,且c>0,则ac<bc。
若不等式a<b,且c<0,则ac>bc。
3. 倒置性质若a<b,则b>a。
三、一次不等式的求解求解不等式的目标是找出使得不等式成立的变量的取值范围。
对于一次不等式,我们可以使用加减法和乘除法对其进行求解。
1. 加减法求解对于不等式ax+b<c,我们可以按照以下步骤进行求解:1) 将不等式进行移项,得到ax < c-b。
2) 按照不等式性质,将不等式进行化简。
2. 乘除法求解对于不等式ax<b,我们可以按照以下步骤进行求解:1) 将不等式进行移项,得到ax-b < 0。
2) 将不等式进行因式分解,得到 a(x- b/a) < 0。
3) 按照不等式性质,将不等式进行化简。
四、一元一次不等式组的求解一元一次不等式组是由多个一元一次不等式构成的集合。
对于一元一次不等式组,我们可以通过图像法和代数法进行求解。
对于一元一次不等式组,我们可以将不等式表示为数轴上的区间,并找出满足所有不等式条件的解。
高一数学基本不等式知识点
高一数学基本不等式知识点在高中数学学习的过程中,不等式是一个重要的部分。
不等式是数学中研究各种数量之间大小关系的一种数学关系。
在高一阶段,基本不等式是学习不等式的基础,也是进一步研究不等式的前提。
1. 不等式的定义与性质不等式是指两个数或者两个算式之间的大小关系。
常见的不等式符号包括大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)。
在解不等式的过程中,我们需要注意不等式的性质,比如对称性、传递性以及与等式的关系等。
2. 基本不等式基本不等式是高一阶段不等式学习的核心内容。
在基本不等式中,包括了重要的三个不等式:算术平均数与几何平均数的大小关系、平均数不等式、柯西-施瓦茨不等式。
a. 算术平均数与几何平均数的大小关系:对于任意一组正数,它们的算术平均数大于等于几何平均数。
即若a1、a2、...、an为正数,则有(a1+a2+...+an)/n ≥ (a1*a2*...*an)^(1/n)。
b. 平均数不等式:对于任意一组正数,它们的算术平均数大于等于它们的四次方平均数,四次方平均数大于等于它们的几何平均数。
即若a1、a2、...、an为正数,则有(a1+a2+...+an)/n ≥ ((a1^4+a2^4+...+an^4)/n)^1/4 ≥ (a1*a2*...*an)^(1/n)。
c. 柯西-施瓦茨不等式:对于任意两组实数a1、a2、...、an和b1、b2、...、bn,有(a1*b1+a2*b2+...+an*bn)^2 ≤(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2)。
该不等式在向量和内积的研究中具有重要的应用。
3. 不等式的解法在解不等式的过程中,我们需要运用相关的性质和定理,结合具体的不等式形式进行推导。
a. 基本不等式的应用:基本不等式是解决各类不等式问题的基础。
我们可以将待解决的不等式通过恰当的变形和不等式的运算性质转化成基本不等式,再利用基本不等式求解。
高一数学基本不等式
高一数学基本不等式有哪几个?
高中数学基本不等式常用的有六个,在以后学习的过程中还要积累一些常见的不等式。
1.基本不等式a^2+b^2≧2ab
对于任意的实数a,b都成立,当且仅当a=b时,等号成立。
证明的过程:因为(a-b)^2≧0,展开的a^2+b^2-2ab≧0,将2ab右移就得到了公式a^2+b^2≧2ab。
它的几何意义就是一个正方形的面积大于等于这个正方形内四个全等的直角三角形的面积和。
2.基本不等式√ab≦(a+b)/2
这个不等式需要a,b均大于0,等式才成立,当且仅当a=b时等号成立。
证明过程:要证(a+b)/2≧√ab,只需要证a+b≧2√ab,只需证(√a-√b)^2≧0,显然(√a-√b)^ 2≧0是成立的。
它的几何意义是圆内的直径大于被弦截后得到直径的两部分的乘积的二倍。
3.b/a+a/b≧2
这个不等式的要求ab>0,当且仅当a=b时等号成立,也就是说a,b可以同时为正数,也可以同时为负数。
证明的过程:b/a+a/b=(a^2+b^2)/ab≧2,只需证a^2+b^2≧2ab即可。
4.基本不等式的拓展公式:a^3+b^3+c^3≧3abc,a,b,c均为正数。
5.(a+b+c)/3≧³√abc,a,b,c均为正数,当且仅当a=b=c时等号成立。
6.柯西不等式。
高一数学必修一第二章第二课基本不等式
第一节从简到繁:基本不等式的核心概念基本不等式在高一数学必修一中是一个非常基础且重要的概念,它为我们理解和解决各类不等式问题奠定了基础。
在本节中,我们将从简到繁,逐步深入探讨基本不等式的定义、特点和应用。
1.1 基本不等式的定义基本不等式是指形如a≥b或a≤b的不等式,其中a和b是两个数。
当a≥b时,我们称a大于等于b;当a≤b时,我们称a小于等于b。
在这里,我们需要深入理解等号的含义:等号在不等式中表示两个数相等或等价。
基本不等式并不仅仅局限于大于或小于的关系,更包括了等于的情况。
1.2 基本不等式的特点基本不等式有许多特点,其中最重要的是传递性和对称性。
传递性指的是如果a≥b且b≥c,则a≥c;如果a≤b且b≤c,则a≤c。
对称性则表示如果a≥b,则-b≥-a;如果a≤b,则-b≤-a。
这些特点使得基本不等式在推导和转化过程中能够起到重要作用,也为后续的应用奠定了基础。
1.3 基本不等式的应用基本不等式在实际问题中有着广泛的应用,例如在代数、几何和概率等领域。
特别是在二元一次不等式的求解中,基本不等式的运用尤为重要。
通过将不等式转化为标准形式,我们可以利用基本不等式的特点进行简化和求解,从而解决各类实际问题。
第二节深入探讨:基本不等式的转化和应用2.1 基本不等式的转化在实际问题中,我们经常会遇到需要将不等式进行转化或简化的情况。
在这里,我们可以运用基本不等式的传递性和对称性进行变形,并通过加减乘除等运算来实现不等式的转化。
通过加减同一个数或式子,我们可以将不等式的左右两边进行平移或合并;通过乘除正数或负数,我们可以改变不等式的方向或大小。
这些转化方法为我们解决实际问题提供了有力的工具。
2.2 基本不等式在二元一次不等式中的应用二元一次不等式是指形如ax+by≤c的不等式,其中a、b和c为已知数,x和y为未知数。
在实际问题中,通过运用基本不等式的转化和特点,我们可以将二元一次不等式转化为标准形式,并利用基本不等式进行求解。
高一数学不等式知识点笔记
高一数学不等式知识点笔记一、不等式的定义和性质不等式是指两个数、两个代数式或两个函数之间的大小关系,通常用不等号(<、>、≤、≥)表示。
1. 不等式的基本性质:- 反身性:任何数与自身之间没有大小关系,即 a = a。
- 对称性:如果 a > b,则 b < a;如果a ≥ b,则b ≤ a。
- 传递性:如果 a > b 且 b > c,则 a > c;如果a ≥ b 且b ≥ c,则a ≥ c。
2. 不等式的加减性质:- 加法:如果 a > b,那么 a + c > b + c。
- 减法:如果 a > b,那么 a - c > b - c(当 c > 0)或 a - c < b - c (当 c < 0)。
3. 不等式的乘除性质:- 正数乘法:如果 a > b 且 c > 0,那么 ac > bc。
- 负数乘法:如果 a > b 且 c < 0,那么 ac < bc。
- 正数除法:如果 a > b 且 c > 0,那么 a/c > b/c。
- 负数除法:如果 a > b 且 c < 0,那么 a/c < b/c。
二、一元一次不等式一元一次不等式是指形如 ax + b > c 或 ax + b < c 的不等式,其中 a、b、c 是已知实数。
1. 解一元一次不等式的方法:- 将不等式转换为等价不等式。
- 使用数轴图,根据系数 a 的正负和不等号的方向确定解集。
- 需要注意的是,当不等式中存在乘法或除法时,需考虑 a 的正负和不等号的方向是否改变。
三、一元二次不等式一元二次不等式是指形如 ax^2 + bx + c > 0 或 ax^2 + bx + c < 0的不等式,其中 a、b、c 是已知实数且a ≠ 0。
1. 求解一元二次不等式的步骤:- 将一元二次不等式转换为二元一次不等式。
高一数学不等式公式
高一数学不等式公式1、不等式的性质是证明不等式和解不等式的基础。
不等式的基本性质有:(1) 对称性:a>bb<a;(2) 传递性:若a>b,b>c,则a>c;(3) 可加性:a>ba+c>b+c;(4) 可乘性:a>b,当c>0时,ac>bc;当c<0时,ac<bc。
不等式运算性质:(1) 同向相加:若a>b,c>d,则a+c>b+d;(2) 异向相减:,.(3) 正数同向相乘:若a>b>0,c>d>0,则ac>bd。
(4) 乘方法则:若a>b>0,n∈N+,则;(5) 开方法则:若a>b>0,n∈N+,则;(6) 倒数法则:若ab>0,a>b,则。
2、基本不等式定理:如果,那么(当且仅当a=b时取“=”号)推论:如果,那么(当且仅当a=b时取“=”号)算术平均数;几何平均数;推广:若,则当且仅当a=b时取“=”号;3、绝对值不等式|x|0)的解集为:{x|-a|x|>a(a>0)的解集为:{x|x>a或x<-a}。
附:不等式证明知识概要不等式的证明问题,由于题型多变、方法多样、技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。
解决这个问题的途径在于熟练掌握不等式的性质和一些基本不等式,灵活运用常用的证明方法。
一、要点精析1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。
(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。
其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。
高一数学不等式知识点总结及例题
高一数学不等式知识点总结及例题一、不等式知识点总结。
(一)不等式的基本性质。
1. 对称性:如果a > b,那么b < a;如果b < a,那么a > b。
2. 传递性:如果a > b,b > c,那么a > c。
3. 加法单调性:如果a > b,那么a + c>b + c。
- 推论1:移项法则,如果a + b>c,那么a>c - b。
- 推论2:同向不等式可加性,如果a > b,c > d,那么a + c>b + d。
4. 乘法单调性:如果a > b,c>0,那么ac > bc;如果a > b,c < 0,那么ac < bc。
- 推论1:同向正数不等式可乘性,如果a > b>0,c > d>0,那么ac > bd。
- 推论2:乘方法则,如果a > b>0,那么a^n>b^n(n∈ N,n≥slant1)。
- 推论3:开方法则,如果a > b>0,那么sqrt[n]{a}>sqrt[n]{b}(n∈N,n≥slant2)。
(二)一元二次不等式及其解法。
1. 一元二次不等式的一般形式。
- ax^2+bx + c>0(a≠0)或ax^2+bx + c < 0(a≠0)。
2. 一元二次函数y = ax^2+bx + c(a≠0)的图象与一元二次不等式的解集关系。
- 当a>0时,Δ=b^2-4ac:- 若Δ>0,方程ax^2+bx + c = 0有两个不同的实根x_1,x_2(x_1,则不等式ax^2+bx + c>0的解集为{xx < x_1或x>x_2},不等式ax^2+bx + c < 0的解集为{xx_1。
- 若Δ = 0,方程ax^2+bx + c = 0有两个相同的实根x_0=-(b)/(2a),则不等式ax^2+bx + c>0的解集为{xx≠-(b)/(2a)},不等式ax^2+bx + c < 0的解集为varnothing。
高一数学不等式知识点
不 等 式1、 不等式的性质是证明不等式和解不等式的基础。
不等式的基本性质有: (1) 对称性:a>b ⇔b<a ;(2) 传递性:若a>b ,b>c ,则a>c ; (3) 可加性:a>b ⇒a+c>b+c ;(4) 可乘性:a>b ,当c>0时,ac>bc ;当c<0时,ac<bc 。
不等式运算性质:(1) 同向相加:若a>b ,c>d ,则a+c>b+d ; (2) 异向相减:b a >,d c <d b c a ->-⇒. (3) 正数同向相乘:若a>b>0,c>d>0,则ac>bd 。
(4) 乘方法则:若a>b>0,n ∈N +,则n n b a >; (5) 开方法则:若a>b>0,n ∈N +,则n n b a >; (6) 倒数法则:若ab>0,a>b ,则b1a 1<。
2、基本不等式定理:假如R b a ∈,,则ab b a222≥+(当且仅当a=b 时取“=”号)推论:假如0,>b a ,则ab ba ≥+2(当且仅当a=b 时取“=”号) 算术平均数2ba +;几何平均数ab ;推广:若0,>ba ,则ba ab b a b a 1122222+≥≥+≥+当且仅当a=b 时取“=”号; 3、肯定值不等式(1)|x |<a (a >0)的解集为:{x |-a <x <a};|x |>a (a >0)的解集为:{x |x >a 或x <-a}。
(2)|b ||a ||b a |||b ||a ||+≤±≤- 4、不等式的证明:(1) 常用方法:比较法,公式法,分析法,反证法,换元法,放缩法; (2) 在不等式证明过程中,应注意与不等式的运算性质联合运用; (3) 证明不等式的过程中,放大或缩小应适度。
高一的不等式知识点归纳总结
高一的不等式知识点归纳总结不等式是数学中重要的一部分,其应用广泛,特别是在代数、几何和数论中。
在高一的数学学习中,不等式是一个重点内容,并为后续的数学学习打下基础。
下面是对高一阶段的不等式知识点进行归纳总结。
一、基础概念1.1 不等式的定义不等式是两个数或者表达式之间用不等号(<、>、≤、≥)联系起来的数学关系。
其中,>表示大于,<表示小于,≥表示大于等于,≤表示小于等于。
1.2 不等式的性质不等式存在传递性,即若a>b且b>c,则有a>c。
不等式两边同时加减一个相同的数,不等式的方向不变。
不等式两边同时乘除一个正数,不等式的方向不变。
不等式两边同时乘除一个负数,不等式的方向改变。
1.3 不等式的解集表示方法解集表示不等式中使得不等式成立的数的集合。
当不等式为严格不等号时,解集用开区间表示。
当不等式为不严格不等号时,解集用闭区间表示。
当不等式为大于号或小于号时,解集用开区间和闭区间表示。
二、一元一次不等式一元一次不等式是形如ax+b<0(或>)的不等式,其中a和b为已知数,x为未知数。
解一元一次不等式的基本思路是找到方程ax+b=0的解,然后根据a的正负情况确定解集。
三、一元二次不等式一元二次不等式是形如ax2+bx+c<0(或>)的不等式,其中a、b和c为已知数,x为未知数。
解一元二次不等式的基本思路是找到方程ax2+bx+c=0的解,然后根据a和二次项的系数的正负情况确定解集。
四、绝对值不等式绝对值不等式是形如|ax+b|<c(或>|)的不等式,其中a、b和c为已知数,x为未知数。
绝对值不等式的解集有两部分组成,即当ax+b>0和ax+b<0时的解集。
五、分式不等式分式不等式是形如f(x)<0(或>)的不等式,其中f(x)为一个分式函数。
解分式不等式的基本方法是找到分式函数的零点,然后根据分式函数的正负情况确定解集。
高一数学必修基本不等式
拓展:多元函数条件极值问题
拉格朗日乘数法
对于多元函数在约束条件下的极值问题,可以使用拉格朗日 乘数法。该方法通过构造一个新的函数(拉格朗日函数), 将约束条件转化为无约束条件,从而简化问题的求解过程。
库恩-塔克条件
库恩-塔克条件是求解不等式约束下多元函数极值问题的必要 条件。它包括一组线性方程和不等式,用于确定极值点的位 置。
常见错误及避免方法
忽视等号成立条件
在使用基本不等式时,必须注意等号成立的条件。例如, 在均值不等式中,等号仅在a=b时成立。忽视这一点可能 导致错误的结论。
误用不等式方向
在解题过程中,要特别注意不等式的方向。例如,在将不 等式两边同时乘以一个负数时,不等号的方向会发生改变 。
忽视变量取值范围
在应用基本不等式时,必须注意变量的取值范围。例如, 在柯西-施瓦茨不等式中,要求序列中的元素为非负实数 。
一元二次不等式解法
配方法
将一元二次不等式化为完 全平方的形式,然后利用 平方根的性质求解。
公式法
利用一元二次方程的求根 公式,求出不等式的两个 根,然后根据不等式的性 质确定解集。
判别式法
计算判别式$Delta = b^2 - 4ac$,根据判别式的正 负和零的情况,分别讨论 不等式的解集。
判别式在解不等式中的应用
用不等号连接两个解析式所组成 的式子,反映了量与量之间的大 小关系。
不等式的表示方法
通常使用“>”、“<”、“≥” 、“≤”等符号表示不等关系。
基本不等式性质
01
02
03
04
对称性
当a=b时,a>b,b>a同时不 成立;当a≠b时,a>b,b>a
高一数学必修 不等式知识点总结
5、常用的基本不等式:① a2 b2 2ab a,b R ;② ab a2 b2 a,b R ;
2
③ ab
ab 2
2
a
0, b
0 ;④
a2
b2 2
a
b 2
2
a,b R .
6、极值定理:设 x 、 y 都为正数,则有
⑴若 x y s (和为定值),则当 x y 时,积 xy 取得最大值 s2 . 4
判别式 b2 4ac
0
0
0
二次函数 y ax2 bx c
a 0 的图象
一元二次方程 ax2 bx
c 0 a 0 的根
有两个相异实数根
x1,2
b 2a
x1 x2
有两个相等实数
根
x1
x2
b 2a
没有实数根
ax2 bx c 0
x x x1或x x2
一元二次 a 0
x
⑵若 xy p (积为定值),则当 x y 时,和 x y 取得最小值 2 p .
例:(13-14 耀华 7)若 2-m 与|m|-3 异号,则 m 的取值范围是
A、m>3
B、-3<m<3
C、2<m<3 D、-3<m<2 或 m>3
2 m 0 2 m 0
解析:由题 得
m
3
0或
m
3
, 3 0
m
2或m
3.
答案:D
例:(13-14 蓟县 11)已知实数 x、y R,且x y 1,则 2 1 的最小值为 xy
解析: 2 1 ( 2 1 )(x y) 3 2 y x 3 2 2 当且仅当 x2 2 y2
高一不等式经典题型
高一不等式经典题型高中数学中,不等式是一个重要的章节,它是解决各种问题的关键。
在高一阶段,学习不等式,需要掌握一些经典的题型,这些题型比较常见,而且难度适中,掌握一定的技巧可以解决大部分的不等式问题。
1. 二次不等式二次不等式是高中数学中比较重要的一类不等式。
它的一般形式是ax+bx+c>0或ax+bx+c<0,其中a、b、c是实数,且a≠0。
解题步骤:(1)化简不等式,将其转化为标准形式ax+bx+c>0或ax+bx+c<0。
(2)判断二次函数的开口方向和顶点坐标。
(3)根据二次函数的图像和不等式的符号关系,求出不等式的解集。
2. 绝对值不等式绝对值不等式也是高中数学中常见的一类不等式。
它的一般形式是|ax+b|>c或|ax+b|<c,其中a、b、c是实数,且a≠0。
解题步骤:(1)化简不等式,将其转化为标准形式|u|>v或|u|<v。
(2)根据绝对值的定义和不等式的符号关系,求出不等式的解集。
3. 算术平均数-几何平均数不等式算术平均数-几何平均数不等式是一种经典的不等式,它的一般形式是对于任意n个正实数a、a、…、an,有(a+a+…+an)/n ≥ (aa…an)^(1/n)其中等号成立的充分必要条件是a=a=…=an。
解题步骤:(1)将不等式中的n个正实数取对数,转化为等价的不等式。
(2)应用AM-GM不等式,得到不等式的解。
以上是高一不等式经典题型的简要介绍,希望能对学习数学的同学有所帮助。
掌握这些经典题型,能够帮助我们更好地理解不等式的性质,提高解题的能力。
数学高一基本不等式知识点
数学高一基本不等式知识点在高一数学学习中,不等式是一个非常重要的知识点。
不等式是数学中一种重要的关系式,它与等式的关系不同,可以表示数值之间的大小关系。
掌握不等式的基本知识,对于解决实际问题和进一步的数学学习都有很大的帮助。
下面将介绍高一数学中的基本不等式知识点。
1. 不等式的符号不等式中常见的符号包括大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。
这些符号在不等式中用于表示数值的大小关系。
例如,a > b 表示 a 大于 b,a ≤ b 表示 a 小于等于 b。
2. 不等式的性质不等式有一些基本的性质,掌握这些性质有助于我们解决不等式问题。
其中包括:- 两边加(减)同一个数,不等号方向不变。
- 两边乘(除)同一个正数,不等号方向不变;两边乘(除)同一个负数,不等号方向改变。
- 如果 a < b 且 b < c,那么 a < c。
- 如果 a > b 且 b > c,那么 a > c。
3. 不等式的解集表示不等式的解可以用解集表示,常用的表示方法有:- 区间表示法:使用数轴上的开区间、闭区间或无穷区间来表示解集。
例如,(a, b) 表示大于 a 小于 b 的开区间。
- 不等式表示法:使用不等式来表示解集。
例如,a < x < b 表示大于 a 小于 b 的解集。
4. 一次不等式一次不等式是指次数最高为一次的不等式,它的一般形式为 ax + b > 0(或 < 0),其中 a 和 b 为常数,且a ≠ 0。
解一次不等式的步骤如下:- 将不等式化简为形如 ax > 0(或 < 0)的不等式。
- 根据 a 的正负确定解集,如果 a > 0,则 x > 0(或 x < 0);如果 a < 0,则 x < 0(或 x > 0)。
5. 二次不等式二次不等式是指次数最高为二次的不等式,它的一般形式为ax² + bx + c > 0(或 < 0),其中 a、b 和 c 为常数,且a ≠ 0。
高一 数学 不等式
一、 思维导图二、 知识点:不等式1、不等式的基本性质 ①(对称性)a b b a >⇔> ②(传递性),a b b c a c >>⇒> ③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>, (异向可减性)d b c a d c b a ->-⇒<>, ④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d>><<⇒>⑥(平方法则)0(,1)n na b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>⇒∈>且⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号).变形公式:22.2a b ab +≤②(基本不等式)2a b+≥ ()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号).⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b aab a b <+≤-若则(当仅当a=b 时取等号)⑦b an b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小.⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤⎪⎝⎭ 222().2a b a b ++≥②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++ ③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立. ⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式: 设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立. ⑧排序不等式(排序原理):设1212...,...n na a ab b b ≤≤≤≤≤≤为两组实数.12,,...,nc c c 是12,,...,nb b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...na a a ===或12...nb b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)kk k <- 211,(1)k k k >+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边. 6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解. 8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法:⑴当1a >时,()()()()f x g x aa f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化. 10、对数不等式的解法⑴当1a >时,()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时,()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化. 11、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f xg x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥④()()()()()()(()0)f xg x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论a 与0的大小; ⑵讨论∆与0的大小; ⑶讨论两根的大小. 14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤ ⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题 常见的目标函数的类型: ①“截距”型:;z Ax By =+②“斜率”型:y z x =或;y bz x a -=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.三、 习题及答案一、选择题1.已知x ≥25,则f (x )=4-25+4-2x x x 有( ).A .最大值45B .最小值45C .最大值1D .最小值12.若x >0,y >0,则221+)(y x +221+)(xy 的最小值是( ). A .3B .27C .4D .293.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b +ab1≥22 B .(a +b )(a 1+b1)≥4 C 22a +bD .ba ab +2≥ab4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式xx f x f )()(--<0的解集为( ).A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)5.当0<x <2π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ).A .2B .32C .4D .346.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18B .6C .23D .2437.若不等式组⎪⎩⎪⎨⎧4≤ 34 ≥30 ≥y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ).A .B .C .D .8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为35,则点P 的坐标是( ).A .(-5,1)B .(-1,5)C .(-7,2)D .(2,-7)9.已知平面区域如图所示,z =mx +y (m >0)在平面区域内取得最优解(最大值)有无数多个,则m 的值为( ).A .-207 B .207 C .21D .不存在10.当x >1时,不等式x +11-x ≥a 恒成立,则实数a 的取值范围是( ). A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3]二、填空题11.不等式组⎩⎨⎧所表示的平面区域的面积是 .12.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧ 若目标函数z =ax +y (a >0)仅在点(3,0)处取得最大值,则a 的取值范围是 .73374334(x -y +5)(x +y )≥00≤x ≤3 x +2y -3≤0 x +3y -3≥(第9题)13.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是 .14.设a ,b 均为正的常数且x >0,y >0,x a+yb=1,则x +y 的最小值为 .15.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则m 1+n2的最小值为 . 16.某工厂的年产值第二年比第一年增长的百分率为p 1,第三年比第二年增长的百分率为p 2,若p 1+p 2为定值,则年平均增长的百分率p 的最大值为 .三、解答题17.求函数y =1+10+7+2x x x (x >-1)的最小值.18.已知直线l 经过点P (3,2),且与x 轴、y 轴正半轴分别交于A ,B 两点,当△AOB 面积最小时,求直线l 的方程.19.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元.该企业在一个生产周期内(第18题)消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是多少?20.(1)已知x <45,求函数y =4x -1+5-41x 的最大值; (2)已知x ,y ∈R *(正实数集),且x1+y 9=1,求x +y 的最小值;(3)已知a >0,b >0,且a 2+22b =1,求2+1b a 的最大值.习题答案1.D解析:由已知f (x )=4-25+4-2x x x =)()(2-21+2-2x x =21⎥⎦⎤⎢⎣⎡2-1+2-x x )(, ∵ x ≥25,x -2>0, ∴21⎥⎦⎤⎢⎣⎡2-1+2-x x )(≥21·2-12-2x x ⋅)(=1, 当且仅当x -2=2-1x ,即x =3时取等号. 2.C 解析:221+)(y x +221+)(xy =x 2+22241+++41+xx y y y y x=⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫ ⎝⎛x y y x +.∵ x 2+241x ≥22241x x ⋅=1,当且仅当x 2=241x ,x =22时取等号;41+22y y ≥22241y y ⋅=1,当且仅当y 2=241y ,y =22时取等号; xyy x +≥2x y y x ⋅=2(x >0,y >0),当且仅当y x =xy,y 2=x 2时取等号. ∴⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫⎝⎛x y y x +≥1+1+2=4,前三个不等式的等号同时成立时,原式取最小值,故当且仅当x =y =22时原式取最小值4. 3.D 解析:方法一:特值法,如取a =4,b =1,代入各选项中的不等式,易判断只有ba ab+2≥ab 不成立. 方法二:可逐项使用均值不等式判断 A :a +b +ab1≥2ab +ab1≥2abab 12⋅=22,不等式成立.B :∵ a +b ≥2ab >0, a 1+b 1≥2ab 1>0,相乘得 (a +b )( a 1+b1)≥4成立.C :∵ a 2+b 2=(a +b )2-2ab ≥(a +b )2-222⎪⎭⎫ ⎝⎛+b a =222⎪⎭⎫⎝⎛+b a ,又ab ≤2b a +⇒ab 1≥ba +2,∴22≥a +b 成立. D :∵ a +b ≥2ab ⇒b a +1≤ab 21,∴b a ab +2≤ab ab 22=ab ,即ba ab+2≥ab 不成立.4.D解析: 因为f (x )是奇函数,则f (-x )=-f (x ),x x f x f )()(--<0xx f )(2⇔<0⇔x x f (x )<0,满足x 与f (x )异号的x 的集合为所求.因为f (x )在(0,+∞)上是增函数,且f (1)=0,画出f (x )在(0,+∞)的简图如图,再根据f (x )是奇函数的性质得到f (x ) 在(-∞,0)的图象.由f (x )的图象可知,当且仅当x ∈(-1,0)∪(0,1)时,x 与f (x )异号. 5.C解析:由0<x <2π,有sin x >0,cos x >0. f (x )=x x x 2sin sin 8+2cos +12=x x x x cos sin 2sin 8+cos 222=xx sin cos +x xcos sin 4≥2x x x x cos sin 4sin cos· =4,当且仅当xx sin cos =x xcos sin 4,即tan x =21时,取“=”. ∵ 0<x <2π,∴ 存在x 使tan x =21,这时f (x )min =4.6.B解析:∵ a +b =2,故3a +3b ≥2b a 33⋅=2b a +3=6,当且仅当a =b =1时取等号.故3a +3b 的最小值是6.7.A解析:不等式组表示的平面区域为如图所示阴影部分 △ABC .由⎩⎨⎧4343=+=+y x y x 得A (1,1),又B (0,4),C (0,Oyx-1 1 (第4题)43). 由于直线y =k x +43过点C (0,43),设它与直线 3x +y =4的交点为D ,则由S △BCD =21S △ABC ,知D 为AB 的中点,即x D =21,∴ y D =25,∴ 25=k ×21+34,k =37. 8.A解析:设P 点的坐标为(x 0,y 0),则⎪⎪⎩⎪⎪⎨⎧ 解得⎩⎨⎧. 1=,5=-00y x∴ 点P 坐标是(-5,1). 9.B解析:当直线mx +y =z 与直线AC 平行时,线段AC 上的每个点都是最优解.∵ k AC =1-5522-3=-207, ∴ -m =-207,即m =207. 10.D 解析:由x +1-1x =(x -1)+1-1x +1, ∵ x >1,∴ x -1>0,则有(x -1)+1-1x +1≥21-11-x x )·(+1=3,则a ≤3. 二、填空题 11.24.解析:不等式(x -y +5)(x +y )≥0可转化为两个.53=56+2, 0<1-- ,0=3+2+000000-y x y x y x二元一次不等式组.⎩⎨⎧⎪⎩⎪⎨⎧⇔ 或⎪⎩⎪⎨⎧这两个不等式组所对应的区域面积之和为所求.第一个不等式组所对应的区域如图,而第二个不等式组所对应的区域不存在.图中A (3,8),B (3,-3),C (0,5),阴影部分的面积为25+113)(⨯=24. 12.⎭⎬⎫⎩⎨⎧21 >a a .解析:若z =ax +y (a >0)仅在点(3,0)处取得最大值,则直线z =ax +y 的倾斜角一定小于直线x +2y -3=0的倾斜角,直线z =ax +y 的斜率就一定小于直线x +2y -3=0的斜率,可得:-a <-21,即a >21.13.a b ≥9.解析:由于a ,b 均为正数,等式中含有ab 和a +b 这个特征,可以设想使用2+ba ≥ab 构造一个不等式. ∵ ab =a +b +3≥ab 2+3,即a b ≥ab 2+3(当且仅当a =b 时等号成立), ∴ (ab )2-ab 2-3≥0,∴ (ab -3)(ab +1)≥0,∴ab ≥3,即a b ≥9(当且仅当a =b =3时等号成立).14.(a +b )2.(x -y +5)(x +y )≥0 x -y +5≥0 x +y ≥0 x -y +5≤0x + y ≤0解析:由已知xay ,y bx均为正数, ∴ x +y =(x +y )(xa +y b )=a +b +x ay +y bx≥a +b +ybx x ay ·2 =a +b +2ab ,即x +y ≥(a +b )2,当且仅当1=+=yb x a y bxx ay 即 ab b y ab a x +=+=时取等号. 15.8.解析:因为y =log ax x 的图象恒过定点(1,0),故函数y =log a (x +3)-1的图象恒过定点A (-2,-1),把点A 坐标代入直线方程得m (-2)+n (-1)+1=0,即2m +n =1,而由mn >0知mn ,n m 4均为正,∴m 1+n2=(2m +n )(m 1+n 2)=4+m n +n m 4≥4+n m m n 42⋅=8,当且仅当1=+24=n m n m m n 即 21=41=n m 时取等号. 16.221p p +.解析:设该厂第一年的产值为a ,由题意,a (1+p )2=a (1+p 1)(1+p 2),且1+p 1>0, 1+p 2>0,所以a (1+p )2=a (1+p 1)(1+p 2)≤a 2212+1++1⎪⎭⎫ ⎝⎛p p =a 2212++1⎪⎭⎫ ⎝⎛p p ,解得p ≤2+21p p ,当且仅当1+p 1=1+p 2,即p 1=p 2时取等号.所以p 的最大值是2+21p p . 三、解答题17.解:令x +1=t >0,则x =t -1,y =t t t 10+1-7+1-2)()(=t t t 4+5+2=t +t4+5≥t t 42⋅+5=9,当且仅当t =t4,即t =2,x =1时取等号,故x =1时,y 取最小值9. 18.解:因为直线l 经过点P (3,2)且与x 轴y 轴都相交, 故其斜率必存在且小于0.设直线l 的斜率为k , 则l 的方程可写成y -2=k (x -3),其中k <0. 令x =0,则y =2-3k ;令y =0,则x =-k2+3. S △AOB =21(2-3k )(-k2+3)=21⎥⎦⎤⎢⎣⎡)()(k k 4-+9-+12≥⎥⎦⎤⎢⎣⎡⋅)()(k k 4-9-2+1221=12,当且仅当(-9k )=(-k 4),即k =-32时,S △AOB 有最小值12,所求直线方程为 y -2=-32(x -3),即2x +3y -12=0. 19.解:设生产甲产品x 吨,生产乙产品y 吨,则有关系:A 原料用量B 原料用量甲产品x 吨 3x 2x 乙产品y 吨y3y 则有⎪⎪⎩⎪⎪⎨⎧++>> 18≤3213≤ 30 0y x y x y x ,目标函数z =5x +3y作出可行域后求出可行域边界上各端点的坐标,可知 当x =3,y =4时可获得最大利润为27万元. 20.解:(1)∵ x <45,∴ 4x -5<0,故5-4x >0. xOAy P (3,2)B(第18题)(第18题)y =4x -1+541x -=-(5-4x +x-451)+4. ∵ 5-4x +x-451≥x -x -451452)(=2,∴ y ≤-2+4=2, 当且仅当5-4x =x -451,即x =1或x =23(舍)时,等号成立, 故当x =1时,y max =2. (2)∵ x >0,y >0,x 1+y9=1, ∴ x +y =(x1+y 9)(x +y )=xy+y x 9+10≥2yxx y 9 · +10=6+10=16. 当且仅当x y =y x 9,且x 1+y 9=1,即⎩⎨⎧12=,4=y x 时等号成立, ∴ 当x =4,y =12时,(x +y )min =16.(3)a 2+1b =a ⎪⎪⎭⎫⎝⎛2+2122b =2·a 2+212b ≤22⎪⎪⎭⎫ ⎝⎛2+21+22b a =423, 当且仅当a =2+212b ,即a =23,b =22时,a 2+1b 有最大值423.。
高一数学不等式公式
高一数学不等式公式学习需要讲究方法和技巧,更要学会对知识点进行归纳整理。
下面是店铺为大家整理的高一数学不等式公式,希望对大家有所帮助! 高一数学不等式公式1、不等式的性质是证明不等式和解不等式的基础。
不等式的基本性质有:(1) 对称性:a>bb<a;(2) 传递性:若a>b,b>c,则a>c;(3) 可加性:a>ba+c>b+c;(4) 可乘性:a>b,当c>0时,ac>bc;当c<0时,ac<bc。
不等式运算性质:(1) 同向相加:若a>b,c>d,则a+c>b+d;(2) 异向相减:,.(3) 正数同向相乘:若a>b>0,c>d>0,则ac>bd。
(4) 乘方法则:若a>b>0,n∈N+,则;(5) 开方法则:若a>b>0,n∈N+,则;(6) 倒数法则:若ab>0,a>b,则。
2、基本不等式定理:如果,那么(当且仅当a=b时取“=”号)推论:如果,那么(当且仅当a=b时取“=”号)算术平均数;几何平均数;推广:若,则当且仅当a=b时取“=”号;3、绝对值不等式|x|0)的解集为:{x|-a|x|>a(a>0)的解集为:{x|x>a或x<-a}。
附:不等式证明知识概要不等式的证明问题,由于题型多变、方法多样、技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。
解决这个问题的途径在于熟练掌握不等式的性质和一些基本不等式,灵活运用常用的证明方法。
一、要点精析1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。
(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不 等 式 定 义
1、 不等式的性质是证明不等式和解不等式的基础。
不等式的基本性质有:
(1) 对称性:a>b ⇔b<a ;
(2) 传递性:若a>b ,b>c ,则a>c ;
(3) 可加性:a>b ⇒a+c>b+c ;
(4) 可乘性:a>b ,当c>0时,ac>bc ;当c<0时,ac<bc 。
不等式运算性质:
(1) 同向相加:若a>b ,c>d ,则a+c>b+d ;
(2) 异向相减:b a >,d c <d b c a ->-⇒.
(3) 正数同向相乘:若a>b>0,c>d>0,则ac>bd 。
(4) 乘方法则:若a>b>0,n ∈N +,则n n b a >;
(5) 开方法则:若a>b>0,n ∈N +,则n n b a >;
(6) 倒数法则:若ab>0,a>b ,则b 1a 1<。
2、基本不等式
定理:如果R b a ∈,,那么ab b a 222≥+(当且仅当a=b 时取“=”号)
推论:如果0,>b a ,那么ab b a ≥+2
(当且仅当a=b 时取“=”号) 算术平均数2
b a +;几何平均数ab ; 推广:若0,>b a ,则b
a a
b b a b a 1122222+≥≥+≥+ 当且仅当a=b 时取“=”号;
3、绝对值不等式
(1)|x |<a (a >0)的解集为:{x |-a <x <a};
|x |>a (a >0)的解集为:{x |x >a 或x <-a}。
(2)|b ||a ||b a |||b ||a ||+≤±≤-
4、不等式的证明:
(1) 常用方法:比较法,公式法,分析法,反证法,换元法,放缩法;
(2) 在不等式证明过程中,应注重与不等式的运算性质联合使用;
(3) 证明不等式的过程中,放大或缩小应适度。
5、 不等式的解法:
(1)一元二次型不等式的恒成立问题常用结论:
ax 2
+bx+c>0对于任意的x 恒成立⇔20040a a b ac >⎧=⎨-<⎩或检验; ax 2
+bx+c<0对于任意的x 恒成立⇔20040a a b ac <⎧=⎨-<⎩或检验 (2)解不等式是寻找使不等式成立的充要条件,因此在解不等式过程中应使每一步的变形都要恒等。
一元二次不等式(组)是解不等式的基础,一元二次不等式是解不等式的基本题型。
一元二次不等式与相应的函数,方程的联系
① 求一般的一元二次不等式20ax bx c ++>或20ax bx c ++<(0)a >的解集,要结合20ax bx c ++=的根及二次函数2y ax bx c =++图象确定解集.
② 对于一元二次方程20(0)ax bx c a ++=>,设24b ac ∆=-,它的解按照000∆>∆=∆<,,可分为三种情况.相应地,二次函数2(0)y ax bx c a =++>的图象与x 轴的位置关系也分为三种情况.因此,我们分三种情况讨论对应的一元二次不等式20ax bx c ++>(0)a >的解集,列表如下:
含
参数的不等式
应适当分类讨论。
6、线性规划问题的解题方法和步骤
解决简单线性规划问题的方法是图解法,即借助直线(线性目标函数看作斜率确定的一族平行直线)与平面区域(可行域)有交点时,直线在y 轴上的截距的最大值或最小值求解。
它的步骤如下:
(1)设出未知数,确定目标函数。
(2)确定线性约束条件,并在直角坐标系中画出对应的平面区域,即可行域。
(3)由目标函数z =ax +by 变形为y =-b a x +b
z ,所以,求z 的最值可看成是求直线y =-b a x +b
z 在y 轴上截距的最值(其中a 、b 是常数,z 随x ,y 的变化而变化)。
(4)作平行线:将直线ax +by =0平移(即作ax +by =0的平行线),使直线与可行域有交点,且观察在可行域中使b
z 最大(或最小)时所经过的点,求出该点的坐标。
(5)求出最优解:将(4)中求出的坐标代入目标函数,从而求出z 的最大(或最小)值。
7、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点()00,x y P . ①若 0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方. ②若 0B >,000x y C A +B +<,则点()00,x y P 在直线0x y C A +B +=的下方.
8、在平面直角坐标系中,已知直线0x y C A +B +=.
①若 0B >,则0x y C A +B
+>表示直线0x y C A +B +=上方的区域;0x y C A +B +<表示直线0x y C A +B +=下方的区域.
②若 0B <,则0x y C A +B
+>表示直线0x y C A +B +=下方的区域;0x y C A +B +<表示直线0x y C A +B +=上方的区域.。