支路电流法和叠加定理
(完整版)第二章电路分析方法
第二章电路的分析方法电路分析是指在已知电路构和元件参数的情况下,求出某些支路的电压、电流。
分析和计算电路可以应用欧姆定律和基尔霍夫定律,但往往由于电路复杂,计算手续十分繁琐。
为此,要根据电路的构特点去寻找分析和计算的简便方法。
2.1 支路电流法支路电流法是分析复杂电路的的基本方法。
它以各支路电流为待求的未知量,应用基尔霍夫定律(KCL 和KVL )和欧姆定律对结点、回路分别列出电流、电压方程,然后解出各支路电流。
下面通过具体实例说明支路电流法的求解规律。
例2-1】试用支路电流法求如图2-1 所示电路中各支路电流。
已知U S1 130V ,U S2 117V ,R1 1 ,R2 0.6 ,R 24 。
【解】该电路有3 条支路(b=3),2个结点(n=2),3 个回路(L=3 )。
先假定各支路电流的参考方向和回路的绕行方向如图所示。
因为有3 条支路则有3 个未知电流,需列出3 个独立方程,才能解得3个未知量。
根据KCL 分别对点A、B 列出的方程实际上是相同的,即结点A、B 中只有一个结点电流方程是独立的,因此对具有两个结点的电路,只能列出一个独立的KCL 方程。
再应用KVL 列回路电压方程,每一个方程中至少要包含一条未曾使用过的支路(即没有列过方程的支路)的电流或电压,因此只能列出两个独立的回路电压方程。
根据以上分析,可列出3 个独立方程如下:结点A I1 I2 I 0回路ⅠI1R1 I2R2 U S1 U S2回路ⅡI2 R2 IR U S2I1 10A, I2 5A, I=5A 联立以上3 个方程求解,代入数据解得支路电流通过以上实例可以总出支路电流法的解题步骤是:1.假定各支路电流的参考方向,若有n个点,根据KCL 列出(n-1)个结点电流方程。
2.若有b 条支路,根据KVL 列(b-n+1)个回路电压方程。
为了计算方便,通常选网孔作为回路。
5 3.解方程组,求出支路电流。
【例 2-2】如图 2-2 所示电路,用支路电流法求各支路电流。
电工学 第二章 电路的分析方法
例4、用叠加原理求图示电路中的I。 1mA 4kΩ + 10V - 2kΩ I 2kΩ
2kΩ
解:
电流源单独作用时 电压源单独作用时: 10 2 44 mA 1 257mA II 1 mA .0.25mA 4 2 [2+4//2] 4 4 2 [(2+2)//2] 2 I=I′+I″= 1.507mA
返回
第三节 电压源与电流源的等 效变换
等效变换的概念 二端电阻电路的等效变换 独立电源的等效变换 电源的等效变换 无源二端网络的输入电阻 和等效电阻
返回
一、等效变换的概念
1、等效电路
两个端口特性相同,即端口对外的 电压电流关系相同的电路,互为等效电 路。
返回
2、等效变换的条件 对外电路来说,保证输出电压U和 输出电流I不变的条件下电压源和电流 源之间、电阻可以等效互换。
1 1 2 2 S
-US+R2I2+R3I3+R4I4 =0
返回
第二节 叠加原理
叠加原理
原理验证
几点说明
返回
一、叠加原理
在由多个 独立电 源共同 作用的 线性 电路中,任一支路的电流(或电压)等于各 个独立电源分别单独作用在该支路中产 生的电流(或电压)的叠加(代数和) 。
不作用的恒压源短路,不作用的恒流 源开路。
US2单独作用
= 4/3A
返回
三、几点说明
叠加原理只适用于线性电路。
电路的结构不要改变。将不作用的恒压
源短路,不作用的恒流源开路。
最后叠加时要注意电流或电压的方向:
若各分电流或电压与原电路中电流或
电压的参考方向一致取正,否则取负。 功率不能用叠加原理计算。
第二章 电路的分析方法
电路分析基础
回路电流法求解电路的步骤
选取自然网孔作为独立回路,在网孔中标出各回路电流
的参考方向,同时作为回路的绕行方向; 支路上的互阻压降由相邻回路电流而定;
建立各网孔的KVL方程,注意自电阻压降恒为正,公共 联立求解方程式组,求出各假想回路电流. .
它们与回路电流之间的关系,求出各支路电流.
返节目录
电路分析基础
思考 练习
用结点电压法求解下图所示电路,与回路电流法相比较, 能得出什么结论? US3 R I A+ - 3 3 B
IS1 I1
R1
I4
R4
I5
R5
I2
R2
IS2
此电路结点n=3,用 结点电压法求解此电 路时,只需列出3-1=2 个独立的结点电压方 程式:
U S3 1 1 1 1 ( + + )V A V B = I S1 + R1 R 3 R 4 R3 R3 ( U 1 1 1 1 + + )V B V A = I S2 S3 R 2 R3 R5 R3 R3
返节目录
电路分析基础
结点电压法应用举例
用结点电压法求解结点n=2的复杂电路时,显然只需 列写出2-1=1个结点电压方程式,即: US
例
① I2 R2 + US2 _ I3 R3 I4 R4
-
V1 =
∑R ∑
S
I1 R1 + US1 _
1 R
+
US4
此式称弥尔曼 定理.是结点 电压法的特例
直接应用弥尔曼定理求V1
返节目录
电路分析基础
第1节 支路电流法
定义
以支路电流为未知量,根据基尔霍夫两定律列出必 要的电路方程,进而求解客观存在的各支路电流的方 法,称支路电流法 支路电流法.
复杂电路的分析方法
电路图25 中,已知参数标在图中,当流过10Ω 电阻的电流为3A时,求ab间的电压是多少?
3.4 戴维南定理
任何一个线性有源二端网络都可以用一个电动势
为E的理想电压源和内阻 R0 串联的电源来等效代替。
aI
aI
有源 +
二端 U 网络 –
RL
R0
+
+U
RL
E_ –
b 等效电源
b
等效电源的电动势E 就是有源二端网络的开路电
1A
图(c)
U
' s
I
' 2
R3
5V
I
2
R3 R2 + R3
IS
5
5 +
5
1
0.5A
U
'' s
I
'' 2
R2
0.5 5
2.5V
I2
I
2
-
I
2
1
-
0.5
0.5A
US
U
S
+
U
S
5
+
2.5
7.5V
注意事项:
1. 叠加定理只适用于线性电路。
2. 线性电路的电流或电压均可用叠加定理计算,
但功率P不能用叠加定理计算。
练习与思考
如下图所示电路有多少支路?在图上画出支路 电流,并自选参考方向, 而后列出求解各支路电流所 需的方程。
+ R1
E1
R5 -- E3 + R3
电路结构的认识:
R2 +
R6
- E2
支路数 b= 6 结点数 n= 4
电路理论第4章-电路定理
本章主要内容
一、叠加定理
四、戴维南定理和诺顿定理 五、最大功率传输定理
第四章、电路定理
一、叠加定理
几个概念 (1)线性电阻:电阻的伏安特性曲线为线性。
R为常数,符合u=iR 。
(2)激励:独立电源又称为激励,由于它的存在, 电路中能够产生电流或电压。
(3)响应:由激励在电路中产生电流或电压称 为响应。
(3)、有源二端网络:二端网络中含有电源。
有源二端网络:
第四章、电路定理 四、戴维南定理和诺顿定理 说明有源一端口网络,其对外的最简等效电路是一
个电压源与电阻的串联.
等效
第四章、电路定理
四、戴维南定理和诺顿定理
1. 戴维宁定理
任何一个线性含源一端口网络,对外电路来说,
总可以用一个电压源和电阻的串联组合来等效置
+-+-UUoocc
66
66
bb 10V
44
+–
+ Req Uoc
–
Ia Rx b
①求开路电压
Uoc = U1 - U2 = -104/(4+6)+10 6/(4+6) = 6-4=2V
②求等效电阻Req
Req=4//6+6//4=4.8
③ Rx =1.2时,
I= Uoc /(Req + Rx) =0.333A
u(2) (6i(2) 6) (21) 8V u u(1) u(2) 9 8 17V
3A
+ - 6 i (2)
+ u(1)
6 3
1
- 6V
+
3+u(2) - +
12V -
1 2A
电工技术第2章
跳转到第一页
第2章 电路分析方法
假设有电压源 U S 2 单独 作用,则 U S 1 0 即把电压源 U S1 短路,则电路 变成了图2-17c,由此电路图可得
I '' US 2 R1 R1 * U R1R R1 R R1 R2 R1 R R2 R S 2 R1 R1 R
A和C节点间的互导 :G13 G31 0 将上述分析结果代入3个独立节点的节点电压方程的一般 形式,则有如下方程组
U S1 1 1 1 ( R R )U a R U b R I S 2 2 1 1 U b U S 2 1 1 1 U b ( )U c I S R3 R4 R3
电压源与电流源对外电路等效的条件为:
U s I s Ro
或
Us Is Ro
跳转到第一页
且两种电源模型的内阻相等。
第2章 电路分析方法
在进行电源的等效变换时要注意: (1)电源的等效变换只是对外电路而言的,至于对 电源内部,则是不等效的。例如当外电路开路时,电压 源I=0,内电阻R0 不损耗功率,而电流源内部仍有电流 , 内 阻 R0 有 功 率 损 耗 。 当 外 电 路 短 路 时 , 电 压 源 I=ISC=US/R0,内电阻R0损耗功率,而电流源内部,内阻 R0上无电流通过,不损耗功率。 (2)在进行等效变换时,两种电路模型的极性必须 一致,即电流源流出电流的一端与电压源的正极性端相 对应。 (3)理想电压源和理想电流源之间不能进行等效 变换。因为对理想电压源(R0=0),其短路电流IS为无 穷大,对理想电流源(R0=∞),其空载电压UOC为无 穷大,这都是不可能的。
跳转到第一页
第2章 电路分析方法
常见的电路分析讲解
常见的电路分析讲解电路中常用电路分析方法主要有支路电流法、回路电流法、节点电压法、电源等效变换法、叠加定理、戴维南定理和诺顿定理等,每种电路分析方法的原理及其适用范围是不同的,本文主要对几种常用电路分析方法的原理、解题步骤和适用范围进行总结与分析。
一支路电流法1、什么是支路电流法以支路电流为未知量、应用基尔霍夫定律(KCL、KVL)列方程组进行求解。
2、支路电流法的解题步骤(1)确定电路中支路、节点、网孔的数目。
其中,支路个数用b表示、节点个数用n表示、网孔个数用m表示;(2)在图中标出各支路电流的参考方向,对选定的回路标出回路循行方向;(3)应用KCL对结点列出(n-1)个独立的节点电流方程;(4)应用KVL对回路列出b-(n-1)个独立的回路电压方程(通常可取网孔列出);(5)联立求解b个方程,求出各支路电流。
3、支路电流法的适用范围如果用手工进行计算时,一般适用于支路个数不大于3的情况下,用手工计算方程组比较方便,如果支路个数大于3的情况下用手工计算就比较麻烦了。
支路个数较多的情况下可以用矩阵结合matlab进行计算。
二节点电压法采用回路电流法。
对于b个支路,n个节点的电路,只需列出[b-(n-1)]个方程,即网孔m个数方程,就可以解出各个支路电流,比支路电流法要方便的多。
但是有时存在这样的电路,即支路较多而节点较少的电路。
如下图电路中,有5条支路,2个节点,若用回路电流法求解,也需列出4个独立方程式,如果采用节点电压法则更加方便求解。
1、什么是节点电压法以基尔霍夫电流定律为基础,先求出各节点与参考点之间的电压,然后运用欧姆定律求出各支路电流的方法。
2、节点电压法计算步骤本文主要讨论两节点电路,节点电压法计算步骤如下。
(1)选定电路中一个节点为参考节点用接地符号表示,另一个节点的节点电位作为电路变量。
(2)列写关于节点电位的节点电压方程,如下式所示。
式中,分子表示电源的电流的代数和,电源电流有两部分构成,一部分是电压源的输出的电流等于电压源的数值除以其串联的电阻;另一部分电流源输出的电流。
第四章:电路定理
ik
+
A uk
–
支 路 k
A
+
– uk
A
ik
例: 图a电路,可求得:
U = 8V
6
+
I3 = 1A , I2 = 1A , I1 = 2A
20V -
用 U=S 8V代替支路3 得图b电路,可求得:
6
I3 = 1A , I2 = 1A , I1 = 2A
43;
8
U
-
4
+
4V -
解(1) 电压源单独作用时,
+ 10V
电流源开路,如图b)所示, –
+
4 u 4A (a)
–
u 10 4 4V
6
46
(2) 电流源单独作用时,电压源
+ 10V
+ 4 U '
(b)
短路,如图c)所示,
–
–
u 4 6 4 9.6V 10
6 +
(3) 共同作用时:
4 U ''
4A
u u u 4 9.6 5.6V
–
(C)
例4.2 求图中电压U。
'
解 (1)10V电压源作用时,4A电流源开路,
受控源保留。
I1
10 64
1A
U' = -10I1' + 4I'1 = (-10 + 4) 1 = -6V
(2) 4A电流源作用时,10V电压源短路,受控源保留
U
10
I
'' 1
6
I
'' 1
I 1
第三章 电路的一般分析方法与常用定理
第 3 章电路的一般分析方法与常用定理重点1.KCL和KVL独立方程数的概念;2.支路法、网孔法、节点法等复杂电路的方程法;3.叠加定理;4.戴维宁定理和诺顿定理;5.最大功率传输定理。
难点1.独立回路的确定;2.含独立电源的结点电压方程和回路电流方程的列写;3.各电路定理的应用条件;4、正确作出戴维南定理的等效电路。
3.1 支路电流法电路的一般分析方法是指在给定电路结构和元件参数的条件下,不需要改变电路结构,而是通过选择电路变量(未知量),根据KCL 和KVL 以及支路的VCR 建立关于电路变量的方程组,从而求解电路的方法。
一、支路电流法支路电流法是以支路电流为未知量,根据KCL建立独立节点电流方程,根据KVL 建立独立回路电压方程,然后解联立方程组求出各支路电流。
上图中选定各支路电流参考方向,并设各支路电压与支路电流为关联参考方向。
根据KCL 列出的节点电流方程分别为在上图所示的平面电路中含有3个网孔,若选择网孔作为回路,并取顺时针为回路绕行方向,根据KVL 列出含VCR 的回路电压方程分别为上面这3个回路电压方程也是相互独立的,对应于独立方程的回路称为独立回路。
由此可见,上图所示的电路共设有6条支路电流为未知量,分别列出了3个独立节点电流方程和3个独立回路电压方程,恰好等于6条未知的支路电流数,因此可以解出各支路电流。
二、支路电流法的应用应用支路电流法分析电路的关键在于确定独立节点和独立回路。
可以证明,对于具有n 个节点,b 条支路的电路,其独立节点数为(n -1 ) ,独立回路数为L = b -(n -1)。
对于平面电路,由于网孔数等于独立回路数, 综上所述,应用支路电流法求解电路的一般步骤是:(1) 选定支路电流的参考方向,确定独立节点、独立回路及其绕行方向。
(2)根据 KCL 列出(n-1)个独立节点电流方程。
(3)根据 KVL 列出L = b-(n-1)个独立回路电压方程。
(4)解方程组求出各支路电流。
电工技术--第二章 电路的分析方法
A
R1 Us1 R2
I2
R3 Us2 B
I3
A
I1 '
A
I2' I1"
R1 Us1
R2
R1
R2
I2"
R3
I3'
+
R3 Us2
I3 "
B
B
A
I1
R1 R2
A
I2
R3
A
I2'
R3
I1' I3
R1
R2
I1" I3'
R1
R2
I2"
R3
Us1 Us2
=
Us1
+
Us2
I3"
B
B
B
解: I1
U S1 R 2R 3 R1 + R2 + R3
例1 :
I1 R1 I3
a
I2 R2 R3 2 +
对结点 a: I1+I2–I3=0 对网孔1: I1 R1 +I3 R3=E1 E2 对网孔2: I2 R2+I3 R3=E2
+ E1
-
1
-
b
联立求解各支路电流
例:试求各支路电流。
a
c
支路中含有恒流源 I3 注意:当支路中含有恒流源 时,若在列KVL方程时,所选 回路中不包含恒流源支路
+
U -
I RL
Ro Uo
+
+ _
I RL
网络
U B
B 有源二端网络
戴维南等效电路
任意一个线性有源二端网络对外都可等 效为等效电压源。
教你几种电路分析的高效方法
教你几种电路分析的高效方法对电路进行分析的方法很多,如叠加定理、支路分析法、网孔分析法、结点分析法、戴维南和诺顿定理等。
根据具体电路及相关条件灵活运用这些方法,对基本电路的分析有重要的意义。
现就具体电路采用不同方法进行如下比较。
支路电流法01支路电流法是以支路电流为待求量,利用基尔霍夫两定律列出电路的方程式,从而解出支路电流的一种方法。
一支路电流分析步骤1) 假定各支路电流的参考方向,对选定的回路标出回路绕行方向。
若有n个节点,根据基尔霍夫电流定律列(n一1)个独立的节点电流方程。
2) 若有m条支路,根据基尔霍夫电压定律列(m-n+1)个的独立回路电压方程。
为了计算方便,通常选网孔作为回路(网孔就是平面电路内不再存在其他支路的回路)。
对于平面电路,独立的基尔霍夫电压方程数等于网孔数。
3) 解方程组,求出支路电流。
【例1】如上图所示电路是汽车上的发电机(US1)、蓄电池(US2)和负载(R3)并联的原理图。
已知US1=12V,US2=6V,R1=R2=1Ω,R3=5Ω,求各支路电流。
分析:支路数m=3;节点数n=2;网孔数=2。
各支路电流的参考方向如图,回路绕行方向顺时针。
电路三条支路,需要求解三个电流未知数,因此需要三个方程式。
解:根据KCL,列节点电流方程(列(n-1)个独立方程):a节点:I1+I2=I3根据KVL,列回路电压方程:网孔1:I1R1-I2R2=Us1- Us2网孔2:I2R2+I3R3=Us2解得:I1=3.8A I2=-2.2A I3=1.6A叠加定理02在线性电路中,所有独立电源共同作用产生的响应(电压或电流),等于各个电源单独作用所产生的响应的叠加。
在应用叠加定理时,应注意以下几点:1) 在考虑某一电源单独作用时,要假设其它独立电源为零值。
电压源用短路替代,电动势为零;电流源开路,电流为零。
但是电源有内阻的则都应保留在原处。
其它元件的联结方式不变。
2) 在考虑某一电源单独作用时,其参考方向应选择与原电路中对应响应的参考方向相同,在叠加时用响应的代数值代入。
电路的分析方法及电路定理
注意:US的正极性端为IS箭头指向的一端
10
对于复杂电路(如下图)仅通过串、并联无法求解, 必须经过一定的解题方法,才能算出结果。
如: I1
I2 I6
I3 I4
R6 I5
+E3
R3
11
2.2 支路电流法
未知数:各支路电流 解题思路:根据基尔霍夫定律,列节点电流
和回路电压方程,然后联立求解。
12
例1
K2 0.1
37
UO 1V
2.5等效电源定理
一、名词解释:
二端网络:若一个电路只通过两个输出端与外电路 相联,则该电路称为“二端网络”。 (Two-terminals = One port)
无源二端网络: 二端网络中没有电源
A
有源二端网络: 二端网络中含有电源
2.1.1 电阻串联
1. 定义: 若干个电阻元件一个接一个顺序相连, 并且流过同一个电流。
2. 等效电阻: R=R1+R2+…+Rn= Rn
+
+
R1 U_1
U
+
_
R2 U_2
4
+
U
R
_
+
+
+
R1 U_1
U
_
+ R2 U_2
U
_
R
U U1 U2 I( R1 R2 ) IR R R1
即电流分配与电阻成反比. 功率P1:P2=R2:R1 4.应用: 负载大多为并联运行。
7
2.1.3.两种电源的等效互换
Ia
RO
+
+
Uab
基尔霍夫定律、支路电流
+
-
u =?
3
例1
例3
例2
解
4V
+
-
10A
U =?
2
+
-
3A
I
解
10V
+
+
-
-
1A
-10V
I =?
10
I1
例4
例5
求:I1、I2 、I3 能否很快说出结果
?
1
+
+
-
-
3V
4V
1
1
+
-
5V
I1
I2
I3
例6
讨论题
*
R1=1,R2=2,R3=3,E3=3V,I3=3A,求I1、I2与两电源的功率。
M=2
支路:ab、ad、… ... (共6条)
回路:abda、 bcdb、 … ... (共7 个)
结点:a、 b、… ... (共4个)
例
I3
E4
E3
_
+
R3
R6
+
R4
R5
R1
R2
a
b
c
d
I1
I2
I5
I6
I4
-
01
03
02
关于独立方程式的讨论
*
问题:在用基尔霍夫电流定律或电压定律列方程时,可以列出多少个独立的KCL、KVL方程?
a
I1
I2
E2
+
-
R1
R3
R2
+
_
I3
#1
#2
支路电流法和叠加定理
I3 R1 + U1
-
R2 + U2
-
R3
R1 + U1
-
I1
R2 + U2
-
I2 R3
I3
• 设一个不含电流源的电路,具有b条支路,n个节 点,求解该电路的支流电流法的主要步骤是:
– (1)设定各支流电流的参考方向,对于所设电路共有 b条支流电流。 – (2)根据基尔霍夫电流定律列出独立的KCL方程:对 于n个节点,则只要对其中的(n-1)个节点列出独立 的KCL方程即可。 – (3)根据基尔霍夫电压定律列出独立的KVL方程:在 列独立KVL方程时,我们一般以单孔回路作为列方程 的基础,这些单孔回路又叫网孔,上述电路具有 [b-(n-1)]个网孔,即可列出[b-(n-1)]个KVL方程。 – (4)联列求解KCL、KVL方程组,得出各支路电流。
I
U R R R R R R R R R R R R R R R R R
惠斯通电桥
在测量电阻及其它电学实验时,经常会用到惠斯通 电桥的电路,这种电桥是由英国发明家S.克里斯蒂 在1833年发明的,但是由于惠斯通第一个用它来 测量电阻,所以人们习惯上就把这种电桥称作了惠 斯通电桥。
1125叠加定理12在一个有几个电源共同作用的线性电路中某一支路上的电压或电流等于各个电源单独作用时在该支路上产生的电压或电流的代在使用叠加原理时必须注意所谓各电源单独作用就是在某一电源作用时将其它电源看作为零值
I3 R1 + U1
-
R2 + U2
-
R3
2.3 支路电流法
• 支流电流法是分析计算复杂电路的一个基 本方法,它以支路电流为求解变量,根据 基尔霍夫电流定律和基尔霍夫电压定律分 别列出KCL和KVL方程。而后求解出各支 流电流。
2.1.支路电流法与叠加定理
1.5 支路电流法
支路电流法是以支路电流为未知量, 直接应用KCL和KVL,分别对节点和回 路列出所需的方程式,然后联立求解出 各未知电流。
一个具有b条支路、n个节点的电路, 根据KCL可列出(n-1)个独立的节点电 流方程式,根据KVL可列出b-(n-1)个独 立的回路电压方程式。
I2R2 I3R3 Us2
例:如图所示电路,用支路分析法求各支
路电流及各元件功率。
a I1
解:2个电流变量I1和I2, 只需列2个方程。 2A
I2
5Ω
对节点a列KCL方程: 10Ω
+
对图示回路I2列=2K+VI1L方程:
5V -
5I1+10I2=5
b
解得:I1=-1A
I2=1A
I1<0说明其实际方向与图示方向相反。
由以上的计算可知,2A电流源发出20W功率
,其余3个元件总共吸收的功率也是20W,可见
电路功率平衡。
1.6 叠加定理
在任何由线性电阻、线性受控源及独立源 组成的电路中,每一元件的电流或电压等于每 一个独立源单独作用于电路时在该元件上所产 生的电流或电压的代数和。这就是叠加定理。 说明:当某一独立源单独作用时,其他独立 源置零。 US 0 短路 IS 0 开路
图示电路 (1)支路数b=3,支路电流 有I1 、I2、I3三个。 I1 a I2
(2)节点数n=2, +
R1
可列出2-1=1个独
US1 -
Ⅰ
I3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知:R1=R2=R3=2Ω,U1=4V,U2=5V,I=9A,求各支路电流。
• 含n个电流源,m条支路的电路,只需要列 出m-n个方程; • 列电压方程时,选择的网眼不应包含电流 源。
2.5 叠加定理
I3 R1 + U1
-
R2 + U2
-
R3
叠加原理
• 在一个有几个电源共同作用的线性电路中, 某一支路上的电压或电流,等于各个电源单 独作用时在该支路上产生的电压或电流的代 数和。 • 在使用叠加原理时必须注意,所谓各电源单 独作用,就是在某一电源作用时,将其它电 源看作为零值。所谓零值,对理想电压源而 言,将其两端短路;对理想电流源而言,将 其两端开路。
I
U R R R R R R R R R R R R R R R R R
惠斯通电桥
Hale Waihona Puke 在测量电阻及其它电学实验时,经常会用到惠斯通 电桥的电路,这种电桥是由英国发明家S.克里斯蒂 在1833年发明的,但是由于惠斯通第一个用它来 测量电阻,所以人们习惯上就把这种电桥称作了惠 斯通电桥。
-
I2 R3
I3
• 设一个不含电流源的电路,具有b条支路,n个节 点,求解该电路的支流电流法的主要步骤是:
– (1)设定各支流电流的参考方向,对于所设电路共有 b条支流电流。 – (2)根据基尔霍夫电流定律列出独立的KCL方程:对 于n个节点,则只要对其中的(n-1)个节点列出独立 的KCL方程即可。 – (3)根据基尔霍夫电压定律列出独立的KVL方程:在 列独立KVL方程时,我们一般以单孔回路作为列方程 的基础,这些单孔回路又叫网孔,上述电路具有 [b-(n-1)]个网孔,即可列出[b-(n-1)]个KVL方程。 – (4)联列求解KCL、KVL方程组,得出各支路电流。
_
Us +
+
Is
N
U2
_
已知:R1=R2=R3=2Ω,U1=4V,U2=5V,I=9A,求I4电流。
I3 R1 + U1
-
R2 + U2
-
R3
2.3 支路电流法
• 支流电流法是分析计算复杂电路的一个基 本方法,它以支路电流为求解变量,根据 基尔霍夫电流定律和基尔霍夫电压定律分 别列出KCL和KVL方程。而后求解出各支 流电流。
I3 R1 + U1
-
R2 + U2
-
R3
R1 + U1
-
I1
R2 + U2
I3 R1 + U1
-
R2 + U2
-
R3
+
电路如图所示,已知理想电压源US=24V,理想电流 源 IS=1.5A,R1=100Ω ,R2=200Ω 。用叠加原理 计算电流I 和R2的功率.
例:电路如图所示,图中N 为一线性电阻电路。内部结构 不知,已知 US=1V,IS=1A时,U2=0V;当US=10V, IS=0A时,U2=1V。求当US=0V,IS=10A时,U2=?