《数学分析选讲》 第四次作业解答

合集下载

数学分析课本(华师大三版)-习题及答案第四章

数学分析课本(华师大三版)-习题及答案第四章

篇一:数学分析课本(华师大三版)-习题及答案第八章第八章不定积分一. 填空题x1.若f?(e)?1?x,则f(x)?___________2.设f(x)的一个原函数为xe,则?xf?(x)dx?_____________ 3.若e?xx是f(x)的一个原函数,则?xf(x)dx?________________4.若f(x)?1,则f(x)?____________ 5.?max(x,x)dx?___________________ 6.若f(x)有原函数xlnx,则?xf(x)dx?_______________ 7.?ln(sinx)sin2?32xdx?________________8.若?dx(1?2cosx)2?Asinx1?2cosx?B?dx1?2cosx,则A?__________,B?__________9.设?xf(x)dx?arcsinx?C,则?dxx(4?x)lnx?1x2dxf(x)?_________10.??_________________11.?dx?_________________12.?13.?14.??a?sin(lnx)?cos(lnx)nx?________________?f(x)?xf?(x)?dxdx1?ex?________________?_____________15.?16.?xex2(1?x)dx?_____________________4sinx?3cosxsinx?2cosxdx?______________217.已知f?(2?cosx)?sinx?tan2x,则f(x)?_______________18.?f?(x)1f(x)?2dx?______________19. 若?f(x)dx?F(x)?C,而u(x),则?f(u)du?___________. 20设函数f(x)的二阶导数f(x)连续,那么?xf(x)dx?__________. 21设f(x)的原函数是sinxx,则?xf?(x)dx?__________.11222已知曲线y?f(x)上任一点的切线斜率为3x2?3x?6,且x1时,y?则f(x)?__________;f(x)的极小值是__________.1?x2是极大值,23已知一个函数的导数为f(x)?,并且当x?1时,这个函数值等于32?,则这个函数为F(x)?__________. 24 设f?(sin2x)?cosx(x?1),则f(x)?__________.225 若f(x)为连续函数,且f?(x)?f(x),则?f(x)dx?__________. 26 若(?f(x)dx)lnx,则f(x)?__________. 27 已知e28?x2是f(x)的一个原函数,则?f(tanx)secxdx?__________.22?f()dx?__________. 2xx1?x29 设f(x)dxC,则f(x)?__________.1?x?1?30 在积分曲线族?二、选择填空题 1.设I?1xxdx中,过(1,1)点的积分曲线是y?__________.?xe?1e?1xx,则I?()A.ln(1?e)?CB.2ln(1?e)?x?CC.x?2ln(1?e)?CD.ln(e?1)?C2.设f(x)是连续的偶函数,则期原函数F(x)一定是() A.偶函数B.奇函数C.非奇非偶函数 D.有一个是奇函数xxx3.设I1??1?xdx,I2??du,则存在函数u?u(x),使()x(1?xex)u(1?u)A.I1?I2?xB.I1?I2?xC.I2I1D.I2?I1 4.当n1时,?xnlnxdx?() nn?1A.xn(lnx?1n)?C B.xn?1(lnx?1n?1)?Cn?1C.1?1xn?1xn(lnx?1n?1)?CD.n?1lnx?C7.?(cosx2?sinx2)dx?()A.2(sinx?cosx)?C B.2(cosxx222?sin2)?CC.sinx?cosxxx22?C D.cos2?sin2?C8.?x?sinx1?cosxdx?()A.xcotxxxx2?CB.xtan2?CC.x2cotx?CD.2tan2?C9.若f(x)的导函数是e?x?cosx,则f(x)的一个原函数为()A.e?x?cosxB.?e?x?sinxC.?e?x?cosxD.e?x?sinx10.若f(x)是以l为周期的连续函数,则其原函数()。

谢惠民数学分析习题课讲义部分题目解答

谢惠民数学分析习题课讲义部分题目解答

数学分析习题课讲义问题解答第一章引论1.3.2练习题1.关于Bernoulli 不等式的推广:(1)证明:当12-≤≤-h 时Bernoulli 不等式nh h n+≥+1)1(仍成立;(2)证明:当0≥h 时成立不等式2)1()1(2h n n h n-≥+,并推广之;(3)证明:若),,2,1(1n i a i =->且同号,则成立不等式∑∏==+≥+ni in i iaa 111)1(.2.阶乘!n 在数学分析以及其他课程中经常出现,以下是几个有关的不等式,它们都可以从平均不等式得到:(1)证明:当1>n 时成立nn n )21(!+<;【证明】利用平均值不等式,有n nk nk kk n ∏∑==≥111所以nn n )21(!+≤因为1>n ,所以取等号的条件n === 21不满足,故nn n 21(!+<.(2)利用)1(]2)1)[(1()!(2n n n n ⋅⋅-⋅= 证明:当1>n 时成立nn n 62(!+<;【证明】利用平均值不等式,有n nk nk k n k k n k n ∏∑==-+≥-+11)1()1(1所以nn n n n n 62(]6)2)(1([!+<++≤(3)比较(1)和(2)中两个不等式的优劣,并说明原因;(4)证明:对任意实数r 成立nn k r n rk n n )(1)!(1∑=≤.【证明】利用平均值不等式,有n nk rn k rkk n ∏∑==≥111所以nn k r n rk n n )(1)!(1∑=≤3.证明几何平均值-调和平均值不等式:若0>k a ,n k ,,2,1 =,则有∑∏==≥nk knnk k a n a 1111)(【证明】利用平均值不等式,有n nk kn k ka a n ∏∑==≥11111所以∑∏==≥nk knnk k a n a 1111)(4.证明:当c b a ,,为非负数时成立333cb a ca bc ab abc ++≤++≤.【证明】由于cabc ab c b a a c c b b a ++≥++⇒≥-+-+-2222220)()()(所以33)(3)(2cabc ab cb a ca bc ab c b a ++≥++⇒++≥++利用平均值不等式,有323)(33abc ca bc ab ca bc ab =⋅⋅≥++所以33abc ca bc ab ≥++5.证明下列不等式:(1)b a b a -≥-和b a b a -≥-;【证明】利用三点不等式,有ab b a b b a =+-≥+-)(由对称性知ba b a ≥+-所以ba ab b a b a -=--≥-),max((2)∑∑∑===≤≤-n k k nk knk ka aaa 1121;有问:左边可否为∑=-nk k a a 21?【证明】利用(1)的结论,有∑∑∑====-≤-nk knk knk kaa aaa 21111反复利用三点不等式,有∑∑∑∑∑=====≤≤++≤+≤+=nk knk knk knk k nk ka aa a aa a a a132121211再利用这个结论,有∑∑∑===≤≤-nk knk knk ka aaa 2211(3)bb aa ba b a +++≤+++111;【证明】显然函数x x x x f +-=+=1111)(是单调增加的,所以有bb aa ba b ba a ba b a ba b a +++≤+++++=+++≤+++111111(4)nnnna b a a b a -+≤-+)()(.【证明】利用三点不等式,有nnn n n n n n n b a b a b a a a b a a a b a )()()()(+≤+=+≤+-+=+-+第二章数列极限2.7.3参考题第一组参考题1.设}{12-k a ,}{2k a 和}{3k a 都收敛,证明:}{n a 收敛.【证明】设}{12-k a ,}{2k a 和}{3k a 分别收敛于数c b a ,,.取}{12-k a 的一个子列}{36-k a ,它收敛于数a ,同时它又是}{3k a 的子列,所以也收敛于数c ,所以c a =.取}{2k a 的一个子列}{6k a ,它收敛于数b ,同时它又是}{3k a 的子列,所以也收敛于数c ,所以c b =.于是有b a =.对任给的0>ε,存在正整数1N 与2N ,当1N n >时有εa a n <--12,当2N n >时有εa a n <-2.现取),max(221N N N =,当N n >时有εa a n <-,故}{n a 收敛于a .2.设}{n a 有界,且满足条件2+≤n n a a ,3+≤n n a a ,+∈N n ,证明:}{n a 收敛.【证明】由条件2+≤n n a a 知}{12-k a 与}{2k a 都是单调增加的数列,又有界,故都收敛.由条件3+≤n n a a 知}{3k a 单调增加,又有界,故收敛.利用1的结论知}{n a 收敛.3.设}{1++n n a a 和}{2++n n a a 都收敛,证明:}{n a 收敛.【证明】设}{1++n n a a 和}{2++n n a a 分别收敛于数b a ,.那么有ab a a a a a a n n n n n n n n -=+-+=-++∞→++∞→)]()[(lim )(lim 1212ba a a a a a a n n n n n n n n -=+-+=-+++∞→+∞→)]()[(lim )(lim 2211进而有)]()[(lim )(lim 1122=-+-=-+++∞→+∞→n n n n n n n n a a a a a a 故2)]()[(lim 21lim 22a a a a a a n n n n n n n =--+=++∞→∞→5.设∑=-+=nk n nka 12)11(,+∈N n ,计算n n a ∞→lim .【解】由于∑∑∑∑====++≤++=-+≤++nk n k n k n k nknn k n k n k n k n n 122122121221111111)11(111而2121lim lim 12=+=∞→=∞→∑n n n k n nk n 211111lim2=++∞→n n ,21111lim 2=++∞→nnn 故41lim =∞→n n a 7.设p a a a ,,,10 是1+p 个给定的数,且满足条件010=+++p a a a .求)1(lim 10p n a n a n a p n +++++∞→ 【解】)1(lim 10p n a n a n a p n +++++∞→ 1)[(lim 121p n a n a n a a a p p n +++++----=∞→()1([lim 1n p n a n n a p n -+++-+=∞→ 01(lim 1=++++++=∞→np n pa n n a p n 8.证明:当10<<k 时,0])1[(lim =-+∞→kkn n n 【证明】(这里用到后面将要学习的等价无穷小知识)0lim ]1)11[(lim ])1[(lim 1==-+=-+-∞→∞→∞→k n k k n k k n n k nn n n 12.证明:nnn n n)2(e !)e(<<.【证明】利用数列})11{(nn+单调增加趋于e ,有!)e(!!)1()11()211()111(e 21n nn n n n n n n n n n<⇒>+=+++> 利用1.3.2中题2的结论:nn n )21(!+<,有nn n n n n n n n n n n n )2(e !!2)1()11(e <⇒>+=+>14.设n na n 2131211-++++= ,+∈N n ,证明:}{n a 收敛.【证明】一方面,有01211212111<++-+=++-+=-+nn n n n n a a n n 另一方面,有n n n a n 2124323221-++++++++> n n n 21(2)34(223(21--+++-+-+= 221212221->-++-=n n 根据单调有界定理知}{n a 收敛.15.设已知存在极限na a a n n +++∞→ 21lim ,证明:0lim =∞→n an n .【证明】设T T na a a n n→=+++ 21,∞→n ,于是1)1(---=n n n T n nT a ,2≥n ,由此得0])11([lim lim1=-=--=-∞→∞→T T T nT n a n n n n n 17.设对每个n 有1<n x 和41)1(1≥-+n n x x ,证明}{n a 收敛,并求其极限.【证明】显然有0>n x ,2≥n .所以有1211)21()1(41+++≤⇒+-≤-≤n n n n n n x x x x x x 根据单调有界定理知}{n a 收敛,且可设收敛于数10≤≤A ,于是有41)1(≥-A A ,解得21=A .18.设b a =1,c a =2,在3≥n 时,221--+=n n n a a a ,证明}{n a 收敛,并求其极限.【证明】由于)(21211-----=-n n n n a a a a ,所以)(21()()21(21221b c a a a a n n n n --=--=----,进而有b bc a b c a n n n n +-----=+-++-+--=---)()21(1)21(1]21()21()21)[((11032 ,于是32lim c b a n n +=∞→.第二组参考题1.设n a n +++= 21,+∈N n ,证明:}{n a 收敛.【证明】利用不等式1111211+-=+-+-≤+-n n n n n ,+∈N n 以及221-≤-n n ,3≥n 有2213411231+≤≤+-+-++≤+-+-++≤ n n n n a n 又因为}{n a 是单调增加的数列,利用单调有界定理知}{n a 收敛.2.证明:对每个正整数n ,成立不等式n k n nk n 2e!1)11(0->+∑=.【证明】利用1.3.2中题1的结论:∑∏==+≥+ni in i iaa 111)1(,),,2,1(1n i a i =->且同号,当2≥n 时有∑∑∑===---++=-==+nk n k k n k k k n n n k n k n k n n k n C n 200)11()11(!111)!(!!11)11(∑∑==--++=----++>nk nk n k k k n k n k 22)2)1(1(!111111(!111 n k k n k nk n k nk 2e !1)!2(121!1020->--=∑∑∑===当1=n 时,2e22->显然成立.3.求极限)e !π2sin(lim n n n ∞→.【解】利用命题2.5.4,有1(π21!!(π2e !π2)11!!(π211(π200n N n k n n n k n n N nk n k +=+<<++=++∑∑==所以nn n n n n π2sin e)!π2sin(1π2sin<<+,4≥n 利用夹逼准则知π2)e !π2sin(lim =∞→n n n 4.记n S n 1211+++= ,+∈N n .用n K 表示使得n S k ≥的最小下标,求极限nn n K K 1lim +∞→.【解】由条件知n K K n S n n 1+≤≤与01lim=∞→nn K 因为γn S n n =-∞→)ln (lim 而nn n K n K K n K S K n n 1ln ln ln +-≤-≤-所以)ln (lim )ln (lim n n n n K n γK n -≥≥-∞→∞→于是γK n n n =-∞→)ln (lim 所以11)]ln 1()ln [(lim lnlim 11=+-+--=+∞→+∞→n n n nn n K n K n K K 故elim 1=+∞→nn n K K 5.设∑==nk k n n Cnx 02ln 1,+∈N n ,求n n x ∞→lim .【解】利用Stolz 定理,有220112)1(ln ln lim ln 1limlim n n C CCn x nk kn n k k n n nk k nn n n -+-==∑∑∑=+=+∞→=∞→∞→1211ln lim 12)ln (ln lim 01+-++=+-=∑∑=∞→=+∞→n kn n n C Cnk n nk k nk n n )12()32(11ln 22ln lim 01+-+-++--++=∑∑=+=∞→n n k n n k n n nk n k n 11ln 12ln (lim 2110∑∑==∞→-++--++=n k n k n k n n k n n 2112ln lim 21)12ln 12(ln lim 211=++=+++++=∞→=∞→∑n n n n n n n n n k n 6.将二项式系数⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n n n n ,,1,0 的算术平均值和几何平均值分别记为n A 和n G .证明:(1)2lim =∞→n n n A ;(2)e lim =∞→n n n G .【证明】由于n nnA n n n n =⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+ 10)11(,所以有22lim 2lim lim ===∞→∞→∞→n n n nn nn n nn A 因为)!(!!k n k n k n -=⎪⎪⎭⎫ ⎝⎛,所以21)!!1!0()!(n n G n nn ⨯⨯⨯=+ ,所以有)!!2!1ln(2!ln )1(exp(lim ])!!2!1()!([lim lim 21212n n n n n n G n n n n n n n ⨯⨯⨯-+=⨯⨯⨯=∞→+∞→∞→ 12!ln )1ln(exp(lim )12)!1ln(2!ln )1()!1ln()2(exp(lim +-+=++-+-++=∞→∞→n n n n n n n n n n n n )21exp(212ln)1(exp(lim =+++=∞→n n n n 7.设∑==nk kn aA 1,+∈N n ,数列}{n A 收敛.又有一个单调增加的正数数列}{n p ,且为正无穷大量.证明:lim2211=+++∞→nnn n p a p a p a p【证明】利用Stolz 定理,有nn n n n n n n n p A A p A A p A p p a p a p a p )()(lim lim 1122112211-∞→∞→-++-+=+++ nnn n n n n p A p A p p A p p A p p +-++-+-=--∞→11232121)()()(lim 0lim lim lim )(lim11=+-=+--=∞→∞→∞→++∞→n n n n n n nn nn n n A A A p p A p p 8.设}{n a 满足1)(lim 12=∑=∞→ni i n n aa ,证明:13lim 3=∞→n n a n .【证明】令∑==ni in aS 12.因为1)(lim 12=∑=∞→ni i nn aa ,所以}{n a 不会恒为零,故}{n S 当n 足够大时是单调增加的正数列.若+∞=∞→n n S lim ,则01limlim 12==∑=∞→∞→ni i n n n a a ;若}{n S 收敛,则0lim 0lim 2=⇒=∞→∞→n n n n a a ;即总有0lim =∞→n n a .所以1lim )(lim lim 11211111==-=++∞→++++∞→+∞→n n n n n n n n n n n S a a a S a S a 以及+∞=∞→n n S lim ,故31)(1lim )1(lim lim )(lim lim 2121213313333=++=--+==⋅=+++∞→+∞→∞→∞→∞→n n n n n n n n n n n n n n n nn S S S S a S S n n S n S S a n na 所以13lim 3=∞→n n a n 12.设10<<λ,}{n a 收敛于a .证明:λa a λa λa λa n n n n n -=++++--∞→1)(lim 0221 【证明】令a a b n n -=,那么)]()()[(lim )(lim 010221a b λa b λa b a λa λa λa n n n n n n n n n ++++++=++++-∞→--∞→ λa b λb λb λλa b λb λb n n n n n n n n n n -++++=+++++++=-∞→∞→-∞→1)(lim )1(lim )(lim 0101 故只需要证明)(lim 01=+++-∞→b λb λb n n n n 存在正数M 使得M b n <恒成立.对任给的0>ε,存在正整数N ,当N n >时有εb n <.所以当N n >时有估计11101b λb λb λb λb b λb λb n N N n N N n n n n n n ++++++≤+++-+---- M λλελλn N n N n )()1(1++++++≤--- M λN ελN n -++-≤)1(11因为0lim =-∞→Nn n λ,所以存在正整数N N >1,当1N n >时有εMN λN n )1(1+<-,此时有估计ελb λb λb n n n )111(01+-≤+++- 故)(lim 01=+++-∞→b λb λb n n n n 17.令20≥y ,221-=-n n y y ,+∈N n .设nn y y y y y y S 10100111+++=.证明:24lim 200--=∞→y y S n n 【证明】令10-+=a a y ,1≥a .可归纳得出nna ay n 22-+=,+∈N n ,即12211++=n na a y n .当1=a ,即20=y 时有2≡n y ,于是24121212120012--=→+++=+y y S n n ,∞→n ,命题成立;当1>a 时,有)1111(111)1()1)(1(121211211022222222222210+++++----=--=+++=n n n n n n aa a a a a a a a a a a a a y y y n 于是a a a a a a a a a S n k k n nk n n n 1)1111(lim 1)1111(lim 1lim 2212220222=----=----=+++∞→=∞→∞→∑而aa a a a y y 12)()(2411200=--+=----.第三章实数系的基本定理第四章函数极限4.5.2参考题7.对一般的正整数n 计算极限30sin sin limxxn nx x -→.【解】31030)sin )1sin((sin lim sin sin lim x x x k kx x x n nx nk x x ∑=→→---=-31031021sin 2sin 2sin 4lim ]2cos )21[cos(2sin 2lim x xk x k x x x x k x n k x n k x ∑∑=→=→--=--=6)1()1(2121--=--=∑=n n k k n k 11.设函数f 在),0(+∞上单调增加,且有1)()2(lim =+∞→x f x f x .证明:对每个0>a ,成立1)()(lim =+∞→x f ax f x .【证明】当1>a 时,存在正整数k 使得k k a 221≤≤-,于是)2()(lim )2()()2()2()()2(lim )()(lim 112x f ax f x f ax f x f x f x f x f x f ax f k x k x x -+∞→-+∞→+∞→==)2()(lim )2()()2()2(lim )2()(lim 11x f ax f x f ax f x f x f x f ax f k x k k k x k x +∞→-+∞→-+∞→==由于f 单调增加,所以1)2()(1≥-x f ax f k ,1)2()(≤x f ax f k,所以有)()(lim1)()(limx f ax f x f ax f x x +∞→+∞→≤≤故1)()(lim=+∞→x f ax f x 当10<<a 时,利用上述结果,有1)((1lim )()(1lim )()(lim ===+∞→=+∞→+∞→t f atf ax f x f x f ax f t t ax x x 当1=a 时显然,故对每个0>a ,成立1)()(lim =+∞→x f ax f x .第五章连续函数第六章导数与微分6.1.4练习题6.2.4练习题6.3.4练习题6.4.2参考题第一组参考题1.利用导数的定义计算极限xx x x sin )sin 1()tan 1(lim 10100--+→.【解】利用导数的定义,有xx x x sin )sin 1()tan 1(lim 10100--+→x x x x x x x x sin 1)sin 1(lim sin tan tan 1)tan 1(lim 100100---+-+=→→20))1((1))1((010010='++⨯'+===x x x x 2.设231)(2++=x x x f ,计算)0()100(f ,要求相对误差不超过1%.【解】由于2111)2)(1(1)(+-+=++=x x x x x f 所以101101)100()2(!100)1(!100)(+-+=x x x f 所以)211(!100)0(101)100(-=f 取!100)0()100(≈f,则相对误差为01.0121211(!100)211(!100!100101101101<-=---.3.设f 在点a 处可导,0)(≠a f .计算n n a f n a f ])()1([lim +∞→.【解】)()1(ln exp(lim ])()1([lim a f n a f n a f n a f n n n +=+∞→∞→由于)()(exp(1)()1()(1exp(lim ))()1(ln exp(lim a f a f xa f x a f a f a f x a f x x x '=-+=++∞→+∞→利用Heine 归结原则,有))()(exp()()1([lim a f a f a f n a f n n '=+∞→5.设0)0(=f ,)0(f '存在.定义数列)()2(1(222nn f n f n f x n +++= ,+∈N n ,试求n n x ∞→lim .【解】由于xx f x f x f f x x )(lim 0)0()(lim)0(00→→=--=',所以对任给的0>ε,存在0>δ,当δx <<0时有])0([)(])0([εf x x f εf x +'<<-'取11[+=δN ,当N n >时有δnn<<20,所以有])0()[21(])0(21(222222εf nnn n x εf n n n n n +'+++<<-'+++ 而n n n n n n 2121222+=+++ 所以εf x n nn <'-+)0(12故2)0(lim )0(lim 2)]0(12[lim 0f x f x f x n n n n n n n n '=⇒'-='-+=∞→∞→∞→6.求下列数列极限:(1))sin 2sin 1(sinlim 222n nn n n +++∞→ ;【解】运用上题的结论,考虑函数x x f sin )(=,即得21)0(21)sin 2sin 1(sinlim 222='=+++∞→f n n n n n (2))]1()21)(11[(lim 222n nn n n +++∞→ .【解】运用上题的结论,考虑函数)1ln()(x x f +=,即得e ))0(21exp(1(2111[(lim 222='=+++∞→f n n n n n 7.设xx y -+=11,计算)()(x y n ,+∈N n .【解】由于x xx x y ---=---=1121)1(2,通过求导找规律直接可得2122121)()1(2!)!32()1(2!)!12()(--+----+--=n nn n n x n x n x y ,2≥n 以及xx y -+-='-121)1(238.设f 在R 上有任意阶导数,证明:对每个正整数n 成立)(1)(1)]1([)1()1(1n n n n n xf x x f x -+-=【证明】用数学归纳法,当1=n 时,右式='='-=)1(1])1([2xf x xf 左式;假设当n k =时成立)(1)(1)]1([)1()1(1k k k k k xf x x f x -+-=;当1+=n k 时有)1(11)1(11([)1()]1([)1(+-+++⋅-=-n n n n n n x f x x x f x ∑+=-+-+⎪⎪⎭⎫ ⎝⎛+-=10)1(1)(11([1)1(n k k n n k n x f x x k n })]1()[1()]1([{)1()(1)1(11n n n n n x f x n x f x x -+-+++⋅-=)1(1])1(1[)(1)(1xf x n x f x x n n n n +++-'⋅-=)1(1)]1(1)1(1[)(1)1(3)(2xf x n x f x x f x n x n n n n n n +++++--+-⋅-=1(1)1(2xf x n n ++=由归纳原理知命题成立.10.证明组合恒等式:(1)112-=⋅=⎪⎪⎭⎫ ⎝⎛∑n nk n k n k ,+∈N n ;【证明】考虑恒等式∑=⎪⎪⎭⎫ ⎝⎛=+nk k nx k n x 1)1(,对x 求导得∑=--⎪⎪⎭⎫ ⎝⎛=+nk k n x k n k x n 111)1(,再令1=x 即得112-=⋅=⎪⎪⎭⎫ ⎝⎛∑n nk n k n k (2)2122)1(-=⋅+=⎪⎪⎭⎫ ⎝⎛∑n nk n n k n k ,+∈N n .【证明】由(1)可知∑=-⎪⎪⎭⎫ ⎝⎛=+n k kn x k n k x nx 11)1(,对x 求导得∑=---⎪⎪⎭⎫ ⎝⎛=+-++nk k n n x k n k x x n x n 11221])1()1()1[(再令1=x 即得2122)1(-=⋅+=⎪⎪⎭⎫ ⎝⎛∑n nk n n k n k 第二组参考题1.(1)求∑=n k kx 1sin 和∑=nk kx 1cos ;【解】利用积化和差公式)cos()cos(sin sin 2y x y x y x --+=-可知2cos)21cos(])21cos()21[cos(sin 2sin 211x x n x k x k kx x nk n k -+=--+=-∑∑==于是有2sin2)21cos(2cos sin 1x xn x kx nk +-=∑=,π2k x ≠,Z ∈k 当π2k x =时有0sin 1=∑=nk kx ;同样地,利用公式)sin()sin(cos sin 2x y y x y x --+=可知2sin)21sin(])21sin()21[sin(cos 2sin 211x x n x k x k kx x nk n k -+=--+=∑∑==于是有2sin22sin )21sin(cos 1x xx n kx nk -+=∑=,π2k x ≠,Z ∈k 当π2k x =时∑=nk kx 1cos 发散;(2)求∑=nk kx k 1sin 和∑=n k kx k 1cos .【解】利用(1)的结论,对结果求导即知4.证明:Legendre 多项式nnn n n x xn x P )1(d d !21)(2-=满足方程)()12()()(11x P n x P x P n n n +='-'-+【证明】直接计算可得])1()1(2[d d )!1(21)1(d d )!1(21)(2111122211nn n n n n n n n x x n xn x x n x P -++=-+='++++++++])1(2)1[(d d !21])1([d d !211222211-++-+-=-=n n n n n n n n n x nx x x n x x x n ])1)(11[(d d )!1(21)(1221---+--+=n nn n n x x x n x P ])1[(d d )!1(21)()12(121----++=n nn n n x x n x P n )()()12(1x P x P n n n -'++=5.证明:Legendre 多项式满足方程)()1()(2)()1(2=++'-''-x P n n x P x x P x n n n 【证明】考虑函数nx y )1(2-=,求导得12)1(2--='n x nx y ,即nxy y x 2)1(2='-,两边求1+n 次导数,利用Leibniz 公式,有∑∑+=-+++=-++='-1)1()(11)1()(21)()(2)()1(n k k n k k n n k k n k k n y x C n y x C即])1([2)1()1(2)1()()1()()1()2(2n n n n n y n xy n y n n xy n y x ++=++++-+++整理得)()1()2(2)1(2)1(n n n y n n xy y x +=+-++故0)1(2)1()()1()2(2=++--++n n n y n n xy y x 所以)()1()(2)()1(2=++'-''-x P n n x P x x P x n n n 第七章微分学的基本定理7.2.4练习题10.设f 在]1,1[-上有任意阶导数,0)0()(=n f,+∈∀N n ,且存在常数0≥C ,使得对所有+∈N n 和]1,1[-∈x 成立不等式n n C n x f !)()(≤.证明:0)(≡x f .【证明】写出nn n n n n x n ξf x n ξf x n f x f f x f !)(!)()!1()0()0()0()()()(1)1(=+-++'+=-- ,x ξ≤,所以有nn n Cxξf n x x f ≤=)(!)()(若10<≤C ,那么0)(→≤n C x f ,∞→n 此时有0)(≡x f ,]1,1[-∈x ;若1≥C ,那么当Cx C 2121<<-时有021)(→≤nx f ,∞→n 此时有0)(≡x f ,]21,21[CC x -∈,在这之上有0)0()(=n f ,+∈∀N n ,故以此类推可知分别在]22,21[C C ,]21,22[CC --,…等区间上都有0)(≡x f ,从而有0)(≡x f ,]1,1[-∈x .11.设f 在],[b a 上二阶可微,且0)()(='='b f a f .证明:存在),(b a ξ∈,使得成立)()()(4)(2a fb f a b ξf --≥''.【证明】写出2121))((21)())((21))(()()(a x ξf a f a x ξf a x a f a f x f -''+=-''+-'+=2222))((21)())((21))(()()(b x ξf b f b x ξf b x b f b f x f -''+=-''+-'+=其中b ξx ξa <<<<21.取2ba x +=,则分别有4)(2)()()2(21a b ξf a f b a f -''+=+,4)(2)()(2(22a b ξf b f b a f -''+=+以上两式相减可得4)()]()([21)()(0212a b ξf ξf a f b f -''-''+-=移项后,由三点不等式可得)(])()([21)()()(4122ξf ξf ξf a f b f a b ''≤''+''≤--其中))(,)(max()(21ξf ξf ξf ''''=''.13.设f 在),[+∞a 上二阶可微,且0)(≥x f ,0)(≤''x f ,证明:在a x ≥时0)(≥'x f .【证明】假设存在),[0+∞∈a x 使得0)(0<'x f ,那么当0x x ≥时)()(0x f x f '≤',进而有)()()()()()(0000x f x x ξf x x x f x f '-≤'-=-,x ξx ≤≤0,只需再令)()(000x f x f x x '->便得0)(<x f ,这与0)(≥x f 矛盾,所以在a x ≥时0)(≥'x f .14.设f 在)1,1(-上1+n 阶可微,0)0()1(≠+n f,+∈N n ,在10<<x 上有n n n n x n x θf x n f x f f x f !)()!1()0()0()0()()(1)1(+-++'+=-- ,其中10<<θ,证明:11lim 0+=→n θx .【证明】由导数定义可知xθf x θf fn n x n )0()(lim)0()()(0)1(-=→+1)(1)1(0)0(!])!1()0()0()0()([lim +--→----'--=n nn n n x x θx f n x n f x f f x f 而其中又有1)(1)1(0)0(!])!1()0()0()0()([lim +--→----'--n nn n n x x x f n x n f x f f x f 1)0()0()(lim 11)!1(!)0(!)(lim )1()()(0)()(0+=-+=+-=+→→n f x f x f n x n n f n x f n n n x n n x 所以11lim 1lim 1)0()0(00)1()1(+=⇒+=→→++n θθn f fx x n n 15.证明:在1≤x 时存在)1,0(∈θ,使得2)(1arcsin x θx x -=,且有31lim 0=→θx .【证明】利用Lagrange 中值定理知存在ξ介于0与x 之间使得210arcsin arcsin ξx x -=-当0=x 时任取)1,0(∈θ;当10≤<x 时有10<<x ξ,令xξθ=,故存在)1,0(∈θ使得2)(1arcsin x θx x -=所以31))(arcsin (arcsin lim arcsin arcsin lim arcsin 1lim lim 4022220222020=+-=-=-=→→→→x x x x x x x x x x x x θx x x x 故31lim 0=→θx 16.设f 在)(0x O δ上n 阶可微,且0)()(0)1(0===''-x fx f n ,0)(0)(≠x f n .证明:当δh <<0时,成立h h θx f x f h x f )()()(000+'=-+,10<<θ,且成立11lim -→=n h nθ.【证明】利用Lagrange 中值定理知存在ξ介于0x 与h x +0之间使得hξf x f h x f )()()(00'=-+因而有100<-<h x ξ,令hx ξθ0-=,则成立h h θx f x f h x f )()()(000+'=-+,10<<θ.所以有1100000)()()()()()(--⋅'-+'='--+n n n θh θx f h θx f h h x f x f h x f 而!)(!)(lim )()()(lim 0)(0)1(00000n x f h n h x f h h x f x f h x f n n h n h =+='--+-→→)!1()()!1()(lim )()(lim )()()(lim 0)(0)1(010001000-=-+='-+'='-+'-→-→-→n x f t n t x f t x f t x f h θx f h θx f n n t n t n h 故10101lim 1lim -→-→=⇒=n h n h nθn θ7.3.2参考题第一组参考题1.设有n 个实数n a a a ,,,21 满足12)1(31121=--++--n a a a n n 证明:方程0)12cos(3cos cos )(21=-+++=x n a x a x a x f n 在区间2π,0(中至少有一个根.【证明】构造辅助函数x n n a x a x a x F n )12sin(123sin 3sin )(21--+++= 则可见0)2π()0(==F F .对F 在区间]2π,0[上用Rolle 定理,就知道)()(x f x F ='在区间)2π,0(中有零点.2.设0≠c ,证明:方程0345=+++c bx ax x 至少有两个根不是实根.【证明】设c bx ax x x f +++=345)(,那么22234)345(345)(x b ax x bx ax x x f ++=++='若03452=++b ax x 有两个相同实根,那么0≥'f ,此时f 严格单调增加,故方程只有一个实根,还有四个根不是实根;若03452=++b ax x 无实根,那么f 严格单调增加,同上;若03452=++b ax x 有两不同实根21x x <,那么f 在),(1x -∞,),(2+∞x 上严格单调增加,在),(21x x 上严格单调减少,此时方程至多有3个实根,还有两个根不是实根.3.设0≠a ,证明:方程n n na x a x 222)(+=+只有一个实根0=x .【证明】设n n na x a xx f 222)()(+-+=,那么])([2)(1212--+-='n n a x x n x f 当0>a 时,0)(<'x f ;当0<a 时,0)(>'x f .总之f 是严格单调的,故至多有一个实根,而0=x 是它的一个实根,所以方程只有一个实根0=x .4.设f 在],[b a 上连续,在),(b a 内可微,且满足条件0)()(>b f a f ,0)2()(<+ba f a f 证明:对每个实数k ,在),(b a 内存在点ξ,使成立0)()(=-'ξkf ξf .【证明】因为0)2()(<+b a f a f ,0)2()(<+b a f b f ,所以f 在)2,(b a a +和),2(b ba +上分别存在一个零点1x 与2x .构造辅助函数)(e )(x f x g kx-=,那么0)()(21==x g x g ,于是存在),(21x x ξ∈使得有0)(='ξg ,0)]()([e =-'-ξkf ξf ξk ,故0)()(=-'ξkf ξf .5.设∑==nk xλkk c x f 1e)(,其中n λλ,,1 为互异实数,n c c ,,1 不同时为0.证明:f 的零点个数小于n .【证明】用数学归纳法.当1=n 时xλc x f 1e )(1=,而01≠c ,此时f 没有零点;假设当n 时命题成立;当1+n 时,不妨令01≠+n c ,那么e )(0eee)(11)(11)(11111==⇒===∑∑∑+=-+=-+=n k x λλk n k xλλk xλn k xλk k k k c x g c c x f 而∑+=--='12)(11e )()(n k x λλk kk c λλx g 的零点个数至多有1-n 个,所以g 的零点个数至多有n 个,即f 的零点个数至多有n 个.根据归纳原理知命题成立.7.设f 在],[b a 上连续,在),(b a 内可微,但不是线性函数,证明:存在),(,b a ηξ∈,使成立)()()()(ηf ab a f b f ξf '>-->'【证明】构造辅助函数)()()()()()(a f a x ab a f b f x f x g -----=因为f 不是线性函数,所以g 不恒为零,而0)()(==b g a g ,所以存在),(b a c ∈使得0)(≠c g ,不妨设为0)(>c g .于是存在),(,b a ηξ∈,使成立0)()()(>'=--ξg a c a g c g ,0)()()(<'=--ηg bc b g c g 即有)()()()(ηf ab a f b f ξf '>-->'8.设f 在],[b a 上二阶可微,0)()(==b f a f ,且在某点),(b a c ∈处有0)(>c f ,证明:存在),(b a ξ∈,使0)(<''ξf .【证明】利用Lagrange 中值定理,存在),(1c a ξ∈与),(2b c ξ∈使得0)()()(1>'=--ξf a c a f c f ,0)()()(2<'=--ξf cb c f b f 再次利用此定理,存在),(21ξξξ∈使得)()()(1212<''=-'-'ξf ξξξf ξf 9.利用例题7.1.3的方法(或其他方法)解决以下问题:(1)设f 在],[b a 上三阶可微,且0)()()(=='=b f a f a f ,证明:对每个],[b a x ∈,存在),(b a ξ∈,使成立)()(!3)()(2b x a x ξf x f --'''=【证明】当),(b a x ∈时构造辅助函数)()()()()()()(22t f b t a t b x a x x f t g -----=那么有0)()()(===x g b g a g ,于是存在b ξx ξa <<<<21使得0)()(21='='ξg ξg ,又)())](()(2[)()()()(2t f a t a t b t b x a x x f t g '---+---='所以0)(='a g ,于是存在2211ξηξηa <<<<使得0)()(21=''=''ηg ηg ,最后存在21ηξη<<使得)()(3)()(0)()()()(60)(22b x a x ξf x f ξf b x a x x f ξg --'''=⇒='''---⇒='''当a x =或b x =时任取),(b a ξ∈等式都成立.(2)设f 在]1,0[上五阶可微,且0)1()1()1()32(31(=''='===f f f f f ,证明:对每个]1,0[∈x ,存在)1,0(∈ξ,使成立3)5()1)(32)(31(!5)()(---=x x x ξf x f 【证明】当}32,31{\)1,0[∈x 时构造辅助函数)()1)(3231()132)(31()()(33t f t t t x x x x f t g -------=重复(1)中的操作,最终存在)1,0(∈ξ使等式成立.当31=x 或32=x 或1=x 时任取),(b a ξ∈等式都成立.(3)设f 在],[b a 上三阶可微,证明:存在),(b a ξ∈,使成立)()(121)]()()[(21)()(3ξf a b b f a f a b a f b f '''--'+'-+=【证明】【法一】设2a b c +=,2a b h -=,待证等式化为)(32)]()([)()(3ξf x h c f h c f h h c f h c f '''-+'+-'+-=+令K x h c f h c f h h c f h c f 332)]()([)()(-+'+-'+-=+构造辅助函数K x x c f x c f x x c f x c f x g 332)]()([)()()(++'+-'---+=那么0)()0(==h g g ,利用Rolle 中值定理,存在),0(1h x ∈使得0)(1='x g ,而)(]2)()([)(x xh xK x c f x c f x x g =++''--''='所以0)()0(1==x h h ,于是存在),0(12x x ∈使得0)(2='x h ,而Kx c f x c f x h 2)()()(++'''--'''-='所以有)()(2)()(222ξf K ξf x c f x c f K '''=⇒'''=+'''+-'''=【法二】考虑函数)]()()[(21)()()(a f x f a x a f x f x F '+'---=,3)()(a x x G -=那么0)()()()(='=='=a G a G a F a F ,连续运用Cauchy 中值定理,知)(121)()()()()()()()()()()()()()(ξf ξG ξF a G c G a F c F c G c F a G b G a F b F b G b F '''-=''''='-''-'=''=--=其中b c ξa <<<.(4)设f 在],[b a 上二阶可微,证明:对每个),(b a c ∈,有),(b a ξ∈,使成立))(()())(()())(()()(21b c a c c f a b c b b f c a b a a f ξf --+--+--=''【证明】构造辅助函数)())(())()(())(())()(())(())()(()(x f b c a c b x a x c f a b c b a x c x b f c a b a c x b x a f x g -----+----+----=那么有0)()()(===c g b g a g ,于是存在c ξb ξa <<<<21使得0)()(21='='ξg ξg ,进而知存在),(21ξξξ∈使得0)(=''ξg ,即))(()())(()())(()()(21b c a c c f a b c b b f c a b a a f ξf --+--+--=''10.设b a <<0,f 在],[b a 上可微,证明:存在),(b a ξ∈,使成立)()()()(1ξf ξξf b f a f b a b a '-=-【证明】利用Cauchy 中值定理,知存在),(b a ξ∈,使成立)()(1)()(11)()()()()()(122ξf ξξf ξξξf ξf ξa b a a f b b f b a a bf b af b f a f b a b a '-=--'=--=--=-16.设f 在]2,0[上二阶可微,且1)(≤x f ,1)(≤''x f ,证明:2)(≤'x f .【证明】写出21))((21))(()()0(x ξf x x f x f f -''+-'+=22)2)((21)2)(()()2(x ξf x x f x f f -''+-'+=其中2021≤≤≤≤ξx ξ.两式相减得])()2)(([21)(2)0()2(2122x ξf x ξf x f f f ''--''+'=-所以2122)()2)((21)0()2()(2x ξf x ξf f f x f ''--''+-≤'])2[(21)0()2(22x x f f +-++≤44212=⨯+≤故2)(≤'x f 18.设当],0[a x ∈时有M x f ≤'')(.又已知f 在),0(a 中取到最大值.证明:Ma a f f ≤'+')()0(.【证明】设f 在点),0(a b ∈处取得最大值,由Fermat 定理知0)(='b f .写出))(()()(1a b ξf a f b f -''+'='bξf f b f )()0()(2''+'='其中),(1a b ξ∈,),0(2b ξ∈.由此有估计Mab ξf b a ξf a f f ≤''+-''='+')()()()()0(21第二组参考题5.设f 在],[b a 上可微,)()(b f a f '=',证明:存在),(b a ξ∈,使成立aξa f ξf ξf --=')()()(【证明】考虑函数x a f x f x g )()()('-=,那么0)()(='='b g a g ,待证式为aξa g ξg ξg --=')()()(.考虑辅助函数⎪⎩⎪⎨⎧=≤<--=ax b x a ax a g x g x G ,0,)()()(若)()(a g b g =,那么有0)()(==a G b G ,于是存在),(b a ξ∈使得0)(='ξG ,即aξa g ξg ξg a ξa g ξg a ξξg --='⇒=-+--')()()(0)()()())((2若)()(a g b g >,那么0)()()()()()())(()(22<--=-+--'='a b b g a g a b a g b g a b b g b G 以及0)(>b G ,所以在b x =的某个左邻域],[b δb -内有点c 使得0)()(>>b G c G ,从而)(x G 在),(b a 内取到最大值,故存在),(b a ξ∈使得0)(='ξG .若)()(a g b g <,同理.6.设f 在],[b a 上连续,在),(b a 内可微,又有),(b a c ∈使成立0)(='c f ,证明:存在),(b a ξ∈,满足ab a f ξf ξf --=')()()(【证明】构造辅助函数ab x a f x f x g ---=e)]()([)(那么ab xa b a f x f x f x g -----'='e ])()()([)(.如果0)(='c g ,那么取c ξ=即可.如果0)(>'c g ,那么)()(a f c f <,于是0)(<c g ,所以存在),(0c a x ∈使得0)()()(0<--='ac a g c g x g ,由达布定理知存在),(0c x ξ∈使得0)(='ξg .如果0)(<'c g ,同理.7.设f 在],[b a 上连续,在),(b a 上可微,0)(=a f ,0)(>x f ,],(b a x ∈∀,证明:对每个0>α,存在),(,21b a x x ∈,使成立)()()()(2211x f x f αx f x f '='【证明】只需考虑1>α的情形.构造辅助函数)(ln )(x f x F =,],(b a x ∈,则-∞=+→)(lim x F ax .记λb F =)(,可取),(b a c ∈使得1)(-=λc F ,由Lagrange 中值定理知)()()(11ξF cb c F b F c b '=--=-,),(1b c ξ∈再取),(c a d ∈使得cb ab αλd F ---=)(,由Lagrange 中值定理知)(1)()()(12ξF αcb αc b a b a b αd b d F b F ξF '>-=--->--=',),(2d a ξ∈由达布定理可知存在),(3b a ξ∈使得)()(13ξF αξF '='.8.设f 在),(+∞-∞上二阶连续可微,1)(≤x f ,且有4)]0([)]0([22='+f f ,证明:存在ξ,使成立0)()(=''+ξf ξf .【证明】在]2,0[上利用Lagrange 中值定理,知存在)2,0(1∈x 使得1)(2)0()2()(11≤'⇒-='x f f f x f 同理存在)0,2(2-∈x 使得1)(2)0()2()(22≤'⇒---='x f f f x f 构造辅助函数22)]([)]([)(x f x f x h '+=,]2,2[-∈x ,于是2)(1≤x h ,2)(2≤x h ,4)0(=h ,所以h 在)2,2(-∈ξ处取到最大值,于是0)(='ξh ,即有)()]()([2='''+ξf ξf ξf 由于3)]([4)]([22≥-≥'ξf ξf ,所以0)(≠'ξf ,故0)()(=''+ξf ξf .9.设f 在),(+∞-∞上二阶连续可微,且对所有R ,∈h x 成立。

数学分析选论习题解答

数学分析选论习题解答

《数学分析选论》习题解答第 一 章 实 数 理 论1.把§1.3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ∉=ξinf ,试证: (1)存在数列ξ=⊂∞→n n n a S a lim ,}{使;(2)存在严格递减数列ξ=⊂∞→n n n a S a lim ,}{使.证明如下:(1) 据假设,ξ>∈∀a S a 有,;且ε+ξ<'<ξ∈'∃>ε∀a S a 使得,,0.现依 次取,,2,1,1==εn nn 相应地S a n ∈∃,使得 ,2,1,=ε+ξ<<ξn a n n .因)(0∞→→εn n ,由迫敛性易知ξ=∞→n n a lim .(2) 为使上面得到的}{n a 是严格递减的,只要从2=n 起,改取,3,2,,1min 1=⎭⎬⎫⎩⎨⎧+ξ=ε-n a n n n ,就能保证,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □2.证明§1.3例6的(ⅱ).证 设B A ,为非空有界数集,B A S ⋃=,试证:{}B A S inf ,inf mininf =.现证明如下.由假设,B A S ⋃=显然也是非空有界数集,因而它的下确界存在.故对任何B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有{}{}B A S B A x inf ,inf min inf inf ,inf min≥⇒≥.另一方面,对任何,A x ∈ 有S x ∈,于是有S A S x inf inf inf ≥⇒≥;同理又有S B inf inf ≥.由此推得{}B A S inf ,inf mininf ≤.综上,证得结论 {}B A S inf ,inf mininf =成立. □3.设B A ,为有界数集,且∅≠⋂B A .证明: (1){}B A B A sup ,sup min )sup(≤⋂; (2){}B A B A inf ,inf max)(inf ≥⋂.并举出等号不成立的例子.证 这里只证(2),类似地可证(1).设B A inf ,inf =β=α.则应满足:β≥α≥∈∈∀y x B y A x ,,,有.于是,B A z ⋂∈∀,必有{}βα≥⇒⎭⎬⎫β≥α≥,max z z z , 这说明{}βα,max 是B A ⋂的一个下界.由于B A ⋂亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf max inf≥⋂成立.上式中等号不成立的例子确实是存在的.例如:设)4,3(,)5,3()1,0(,)4,2(=⋂⋃==B A B A 则,这时3)(inf ,0inf ,2inf =⋂==B A B A 而,故得{}{}B A B A i n f ,i n f m a x i n f >⋂. □ 4.设B A ,为非空有界数集.定义数集{}B b A a b a c B A ∈∈+==+,,证明:(1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.证 这里只证(2),类似地可证(1).由假设,B A inf ,inf =β=α都存在,现欲证β+α=+)(inf B A .依据下确界定义,分两步证明如下:1)因为,,,,β≥α≥∈∈∀y x B y A x 有所以B A z +∈∀,必有β+α≥+=y x z .这说明B A +β+α是的一个下界.2)B y A x ∈∈∃>ε∀00,,0,使得2,200ε+β>ε+α>y x . 从而ε+β+α>+∈+=∃)(,0000z B A y x z 使得,故B A +β+α是的最大下界.于是结论 B A B A inf inf )(inf +=+ 得证. □5.设B A ,为非空有界数集,且它们所含元素皆非负.定义数集{}B b A a ab c AB ∈∈==,,证明:(1)B A AB sup sup )sup(⋅=; (2)B A AB inf inf )(inf ⋅=. 证 这里只证(1),类似地可证(2).⎪⎩⎪⎨⎧⋅≤≤≤=≥≥∈∈∃∈∀,sup sup ,sup ,sup ,,)0,0(,,)(B A c B b A a ab c b a B b A a AB c 且使由于因此B A sup sup ⋅是AB 的一个上界.另一方面,B b A a ∈∈∃>ε∀00,,0,满足ε->ε->B b A a sup ,sup 00,故)(000AB b a c ∈=∃,使得εε-+-⋅>])sup sup ([sup sup 0B A B A c .由条件,不妨设0sup sup >+B A ,故当ε足够小时,εε-+=ε'])sup sup ([B A 仍为一任意小正数.这就证得B A sup sup ⋅是AB 的最小上界,即 B A AB inf inf )(inf ⋅= 得证. □*6.证明:一个有序域如果具有完备性,则必定具有阿基米德性.证 用反证法.倘若有某个完备有序域F 不具有阿基米德性,则必存在两个正元素F ∈βα,,使序列}{αn 中没有一项大于β.于是,}{αn 有上界(β就是一个),从而由完备性假设,存在上确界λ=α}sup{n .由上确界定义,对一切正整数n ,有α≥λn ;同时存在某个正整数0n ,使α-λ>α0n .由此得出α+<λ≤α+)1()2(00n n ,这导致与0>α相矛盾.所以,具有完备性的有序域必定具有阿基米德性. □7.试用确界原理证明区间套定理. 证 设{}],[n n b a 为一区间套,即满足:0)(lim ,1221=-≤≤≤≤≤≤≤≤∞→n n n n n a b b b b a a a .由于{}n a 有上界k b ,{}n b 有下界k a (+∈N k ),因此根据确界原理,存在{}{}β≤α=β=α且,inf,sup n n b a .倘若β<α,则有,2,1,0=>λ=α-β≥-n a b n n ,而这与0)(lim =-∞→n n n a b 相矛盾,故ξ=β=α.又因 ,2,1,=≤β=α≤n b a n n ,所以ξ是一切],[n n b a 的公共点.对于其他任一公共点 ,2,1,],[=∈ηn b a n n ,由于∞→→-≤η-ξn a b n n ,0 ,因此只能是η=ξ,这就证得区间套{}],[n n b a 存在惟一公共点. □8.试用区间套定理证明确界原理.证 设S 为一非空有上界的数集,欲证S 存在上确界.为此构造区间套如下:令],[],[011M x b a =,其中M S S x ,)(0∅≠∈ 为S 的上界.记2111b a c +=,若1c 是S 的上界,则令],[],[1122c a b a =;否则,若1c 不是S 的上界,则令],[],[1122b c b a =.一般地,若记2nn n b a c +=,则令,2,1,,,],[,,],[],[11=⎩⎨⎧=++n S c b c S c c a b a n n n n n n n n 的上界不是的上界当是.如此得到的{}],[n n b a 显然为一区间套,接下来证明这个区间套的惟一公共点ξ即为S 的上确界.由于上述区间套的特征是:对任何+∈Νn ,n b 恒为S的上界,而n a 则不为S 的上界,故S x ∈∀,有n b x ≤,再由ξ=∞→n n b lim ,便得ξ≤x ,这说明ξ是S 的一个上界;又因ξ=∞→n n a lim ,故ε-ξ>∃>ε∀n a ,0,由于n a 不是S 的上界,因此ε-ξ更加不是S 的上界.根据上确界的定义,证得S sup =ξ.同理可证,若S 为非空有下界的数集,则S 必有下确界. □ 9.试用区间套定理证明单调有界定理.证 设{}n x 为递增且有上界M 的数列,欲证{}n x 收敛.为此构造区间套如下:令],[],[111M x b a =;类似于上题那样,采用逐次二等分法构造区间套{}],[n n b a ,使n a 不是{}n x 的上界,n b 恒为{}n x 的上界.由区间套定理,],[n n b a ∈ξ∃,且使ξ==∞→∞→n n n n b a lim lim .下面进一步证明 ξ=∞→n n x lim .一方面,由∞→≤k b x k n 取,的极限,得到,2,1,lim =ξ=≤∞→n b x k k n .另一方面,ε-ξ>∈∃>ε∀+K a K 使,,0Ν;由于K a 不是{}n x 的上界,故K N a x >∃;又因{}n x 递增,故当N n >时,满足N n x x ≥.于是有N n x x a n N K >ξ≤<<<ε-ξ,,这就证得ξ=∞→n n x lim .同理可证{}n x 为递减而有下界的情形. □ 10*.试用区间套定理证明聚点定理.证 设S 为实轴上的一个有界无限点集,欲证S 必定存在聚点.因S 有界,故0>∃M ,使得M x ≤,S x ∈∀.现设],[],[11M M b a -=,则],[11b a S ⊂.然后用逐次二等分法构造一区间套{}],[n n b a ,使得每次所选择的],[n n b a 都包含了S 中的无限多个点.由区间套定理,],[n n b a ∈ξ∃,n ∀.最后应用区间套定理的推论,,0>ε∀当n 充分大时,使得],[n n b a );εξ⊂(U ;由于],[n n b a 中包含了S 的无限多个点,因此);(εξU 中也包含了S 的无限多个点,根据聚点定义,上述ξ即为点集S 的一个聚点. □ 11*.试用有限覆盖定理证明区间套定理.证 设{}],[n n b a 为一区间套,欲证存在惟一的点 ,2,1,],[=∈ξn b a n n . 下面用反证法来构造],[11b a 的一个无限覆盖.倘若{}],[n n b a 不存在公共点ξ,则],[11b a 中任一点都不是区间套的公共点.于是,∈∀x ],[11b a ,使,],[n n b a ∃],[n n b a x ∉.即);(x x U δ∃与某个],[n n b a 不相交( 注:这里用到了],[n n b a 为一闭区间 ).当x 取遍],[11b a 时,这无限多个邻域构成],[11b a 的一个无限开覆盖:{}],[);(11b a x x U H x ∈δ=.依据有限覆盖定理,存在],[11b a 的一个有限覆盖:{}HNi x U U H ix i i ⊂=δ==,,2,1);(~,其中每个邻域N i b a U i i n n i ,,2,1,],[ =∅=⋂.若令{}Nn n n K ,,,max 21 =,则N i b a b a i i n n K K ,,2,1,],[],[ =⊂,从而N i U b a i K K ,,2,1,],[ =∅=⋂. (Ж)但是Ni iU 1=覆盖了],[11b a ,也就覆盖了],[K K b a ,这与关系式(Ж)相矛盾.所以必定存在 ,2,1,],[=∈ξn b a n n .(有关ξ惟一性的证明,与一般方法相同.) □12.设S 为非空有界数集.证明:S S y x Sy x inf sup ||sup ,-=-∈.证 设η<ξ=η=ξ且,sup ,inf S S ( 若η=ξ,则S 为单元素集,结论显然成立 ).记{}Sy x y x E ∈-=,||,欲证ξ-η=Esup .首先,S y x ∈∀,,有ξ-η≤-⇒η≤ξ≥||,y x y x ,这说明ξ-η是E 的一个上界.又因2,0ε-η>ε∀ ⎪⎭⎫⎝⎛ε+ξ2不再S 的上()下界,故S y x ∈∃00,,使ε-ξ-η≥-⇒⎪⎭⎪⎬⎫ε+ξ<ε-η>)(||220000y x y x , 所以ξ-η是E 的最小上界,于是所证结论成立. □13.证明:若数集S 存在聚点ξ,则必能找出一个各项互异的数列{}S x n ⊂,使ξ=∞→n n x l i m.证 依据聚点定义,对S U x ⋂εξ∈∃=ε);(,1111 .一般地,对于⎭⎬⎫⎩⎨⎧-ξ=ε-1,1min n n x n ,,3,2,);(=⋂εξ∈∃n S Ux n n .如此得到的数列{}S x n ⊂必定满足:,3,2,||||11=≠⇒ξ-<ξ---n x x x x n n n n ;ξ=⇒∞→→<ξ-∞→n n n x n nx lim )(01||. □41*.设S 为实轴上的一个无限点集.试证:若S 的任一无限子集必有属于S 的聚点,则(1)S 为有界集;(2)S 的所有聚点都属于S .证 (1)倘若S 无上界,则对1111,,1M x S x M >∈∃=使;一般地,对于{},3,2,,,,max 1=>∈∃=-n Mx S x x n Mnn n n n使.这就得到一个各项互异的点列{}∞=⊂∞→n n n x S x lim,使.S 的这个无限子集没有聚点,与题设条件相矛盾,所以S 必有上界.同理可证S 必有下界,故S 为有界集.(2)因S 为有界无限点集,故必有聚点.倘若S 的某一聚点S ∉ξ0,则由聚点的性质,必定存在各项互异的数列{}0lim,ξ=⊂∞→n n n x S x 使.据题设条件,{}nx 的惟一聚点0ξ应属于S ,故又导致矛盾.所以S 的所有聚点都属于S . □51*.证明:{}{}nn a a ∉ξ=sup,则必有ξ=∞→n n a lim .举例说明,当上述ξ属于{}n a 时,结论不一定成立.证 利用§1.3 例4,{}{}n na a k⊂∃,使ξ=∞→knn a lim ,这说明ξ是{}na 的一个聚点.又因ξ又是{}n a 的上界,故{}n a 不可能再有比ξ更大的聚点.所以ξ是{}n a 的上极限.当{}n a ∈ξ时,结论不一定成立.例如,1,111sup ⎭⎬⎫⎩⎨⎧∈=⎭⎬⎫⎩⎨⎧n n 显然不是⎭⎬⎫⎩⎨⎧n 1的上极限. □61*.指出下列数列的上、下极限:(1){}n)1(1-+; (2)⎭⎬⎫⎩⎨⎧+-12)1(n nn; (3)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧πnn 3cos; (4)⎭⎬⎫⎩⎨⎧π+4sin 12n n n ; (5)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧π+n n n sin12. 解(1)0lim ,2lim ,0,2122==≡≡∞→∞→-n n n n k k a a a a 故.(2))(211412,21142122∞→-→---=→+=-k k k a k k a k k ,故21lim ,21lim -==∞→∞→n n n n a a .(3))(13cos211∞→≤π≤←n n nn, 故1lim lim lim ===∞→∞→∞→n n n n n n a a a .(4)⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧--=+⋅--=+-=+=+++=+⋅=π+=.38,18,12222,8,12,4,0,28,12,38,18,12224sin 12k k n n nk n n nk n k n n n k k n n n n n n a n故2lim ,2lim -==∞→∞→n n n n a a .(5))(sin )1(sin 1222∞→π→ππ⋅+π=π+=n n nnn n n na n ,故π===∞→∞→∞→n n n n n n a a a lim lim lim . □71*.设{}n a 为有界数列,证明:(1)1lim )(lim =-=-∞→∞→n n n n a a ; (2)n n n n a a ∞→∞→-=-lim )(lim .证 由)(sup )(inf ,)(inf )(sup k nk k nk k nk k nk a a a a ≥≥≥≥-=--=-,令∞→n 取极限,即得结论(1)与(2). □81*.设0lim >∞→n n a ,证明:(1)nn n n a a ∞→∞→=lim 11lim; (2)nn nn a a ∞→∞→=lim 11lim;(3)若11limlim =⋅∞→∞→n n n n a a ,或11lim lim =⋅∞→∞→n n n n a a ,则{}n a 必定收敛.证 由)(sup 11inf ,)(inf 11sup k nk k n k k nk k n k a a a a ≥≥≥≥=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛,令∞→n 取极限,即得结论(1)与(2).若11limlim =⋅∞→∞→nn n n a a ,则由(1)立即得到 n n n n a a ∞→∞→=lim lim ,因此极限n n a ∞→lim 存在,即得结论(3). 类似地,若11limlim =⋅∞→∞→nn n n a a ,则由(2)同样可证。

福师《数学分析选讲》在线作业一-0004.4707C98

福师《数学分析选讲》在线作业一-0004.4707C98
如题
A:A B:B C:C D:D 答案:A 如图所示 A:A B:B C:C D:D 答案:C
如题
A:A B:B C:C D:D 答案:B
如题
A:A B:B C:C D:D 答案:D
A:A B:B C:C D:D 答案:C
A:A B:B C:C D:D 答案:D
如题
A:A B:B C:C D:D 答案:B
如题
A:A B:B C:C D:D 答案:B
如题
A:A B:B C:C D:d 答案:D
如题
A:A B:B C:C D:D 答案:D
如题
A:A B:B C:C D:D 答案:D
如题
A:A B:B C:C D:D 答案:C
如题
A:A B:B C:C D:D 答案:A
如题
A:A B:B C:C D:D 答案:A
A:A B:B C:C D:D 答案:B
如题
A:A B:B C:C D:D 答案:D
如题
A:A B:B C:C D:D 答案:D
如题
A:A B:B C:C D:D 答案:C 如图所示 A:A B:B C:C D:D 答案:D
如题
A:A B:B C:C D:D 答案:B A:A B:B C:C D:D 答案:B
福师《数学分析选讲》在线作业一-0004
如题
A:A B:B C:C D:D 答案:D
如题
A:A B:B C:C D:D 答案:C
如题
A:A B:B C:C D:D 答案:D
如题
A:A B:B C:C D:D 答案:D
如题
A:A B:B C:C D:D 答案:B 题面见图片 A:A B:B C:C D:D 答案:C

数学分析课本-习题及答案第四章

数学分析课本-习题及答案第四章

数学分析课本-习题及答案第四章第四章函数的连续性一、填空题1.设>+=<=0 11sin 0 0sin 1)(x x x x k x x x x f ,若函数)(x f 在定义域内连续,则=k ;2.函数??≤>-=0sin 01)(x x x x x f 的间断点是;3.函数x x f =)(的连续区间是; 4.函数321)(2--=x x x f 的连续区间是;5.函数)3(9)(2--=x x x x f 的间断点是;6.函数)4)(1(2)(+++=x x x x f 的间断点是;7.函数)2)(1(1)(-+=x x x f 的连续区间是;8.设=≠-=-00 )(x k x xe e xf x x 在0=x 点连续,则 =k ;9.函数??≤≤+-<≤+-<≤-+=3x 1 31x 0101 1)(x x x x x f 的间断点是; 10.函数0b a 0)(0)(2≠+??<++≥+=x x x b a x b ax x f .则)(x f 处处连续的充要条件是 =b ;11.函数=≠=-0 0 )(21x a x e x f x,则=→)(lim 0x f x ,若)(x f 无间断点,则=a ;12.如果-=-≠+-=11 11)(2x a x xx x f ,当=a 时,函数)(x f 连续二、选择填空1.设)(x f 和)(x ?在()+∞∞-,内有定义,)(x f 为连续函数,且0)(≠x f ,)(x ?有间断点,则( )A.[])(x f ?必有间断点。

B.[]2)(x ?必有间断点C.[])(x f ?必有间断点D.)()(x f x ?必有间断点 2.设函数bx ea xx f +=)(,在()∞∞-,内连续,且)(lim x f x -∞→0=,则常数b a ,满足( ) A.0,0<>b a C.0,0>≤b a D.0,0<≥b a3.设xx e e x f 1111)(-+=,当,1)(;0-=≠x f x 当0=x ,则A 有可去间断点。

福师1203考试批次《数学分析选讲》复习题及参考答案

福师1203考试批次《数学分析选讲》复习题及参考答案

福师1203考试批次《数学分析选讲》复习题及参考答案本课程复习题所提供的答案仅供学员在复习过程中参考之用,有问题请到课程论坛提问。

本复习题页码标注所用教材为:教材名称 单价 作者版本 出版社 数学分析41华东师范大学数学系第三版高等教育出版社如学员使用其他版本教材,请参考相关知识点福师1203考试批次《数学分析选讲》复习题及参考答案一一、(12分)选择题(将符合要求的结论题号,填在题末的括号内,每题至多选两个题号): 1. 与lim n n x a →∞=的定义等价的是:( )A 、0,ε∀> 总有n x a ε-<;B 、0,ε∀> 至多只有{}n x 的有限项落在(,)a a εε-+之外;C 、存在自然数N ,对0,ε∀>当n N >,有n x a ε-<;D 、0(01),εε∀><<存在自然数N ,对,n N ∀>有n x a ε-<; 答案:B,D2.下列命题中正确的是:( )A 、若函数()f x 在[,]a b 内无界,则()f x 在[,]a b 上不可积;B 、若函数()f x 在[,]a b 上不连续,则()f x 在[,]a b 上不可积;C 、若函数()f x 在[,]a b 上可积,则[()]()xaf t dt f x '=⎰;D 、若函数()f x 在[,]a b 上可积,则()f x 在[,]a b 上也可积,反之不然. 答案:AD3.函数()f x 在[a,b]上可积的必要条件是( )A 、有界B 、连续C 、单调D 、存在原函数 答案:A二、填空题:(共10分,每题2分)1.设21(1)nn x∞=-∑收敛,则lim n n x →∞= 。

考核知识点:级数的收敛性。

参见教材(下册)P1-5 提示:利用P3页的推论进行计算。

2.(,)limx y →= 。

考核知识点:二元函数的极限。

参见教材(下册)P93-96.提示:)(,)(,)(0,0)(,)(0,0)1limlimlim1x y x y x y xy→→→==3.设3()sin F x x '=,则()F x = 。

西南大学数学分析作业答案

西南大学数学分析作业答案

西南⼤学数学分析作业答案三、计算题1.求极限 902070)15()58()63(lim --++∞→x x x x .解: 902070902070902070583155863lim)15()58()63(lim=?-??-?→x x x x x x x x 2.求极限 211lim ()2x x x x +→∞+-.解:211lim ()2x x x x +→∞+=-21111lim 2211xx x x x x →∞++ ? ??= ? ? ? ? --?211lim 21xx x x →∞?+= -2(4)21[(1)]lim2[(1)]x x x x x264e e e-==.3.求极限 1 111lim (1)23n n n→∞++++解:由于11 1111(1)23nn n n≤++++≤ ,⼜lim 1n →∞=,由迫敛性定理1111lim (1)123n n n→∞4.考察函数),(,lim)(+∞-∞∈+-=--∞→x nn n n x f xx x xn 的连续性.若有间断点指出其类型.解:当0x <时,有221()limlim11x x x xxxn n n n n f x n nn--→∞→∞--===-++;同理当0x >时,有()1f x =.⽽(0)0f =,所以1,0()sgn 0,01,0x f x x x x -===??>?。

所以0是f 的跳跃间断点.四、证明题设a a n n =∞→lim ,b b n n =∞→lim ,且b a <. 证明:存在正整数N ,使得当N n >时,有n n b a <.证由b a <,有b b a a <+<2. 因为2lim ba a a n n +<=∞lim b a b b n n +>=∞→,所以,⼜存在02>N ,使得当2N n >时有2b a b n +>. 于是取},max{21N N N =,当N n >时,有n n b b a a <+<2《数学分析选讲》第⼆次主观题作业⼀、判断下列命题的正误1. 若函数在某点⽆定义,则在该点的极限可能存在.2. 若)(x f 在[,]a b 上连续,则)(x f 在[,]a b 上⼀致连续.3. 若()f x 在[,]a b 上有定义,且()()0f a f b <,则在(,)a b 内⾄少存在⼀点ξ,使得()0f ξ=.4. 初等函数在其定义区间上连续. 5.闭区间[,]a b 的全体聚点的集合是[,]a b 本⾝.⼆、选择题1.下⾯哪些叙述与数列极限A a n n =∞→lim 的定义等价()A )1,0(∈?ε,0>?N ,N n ≥?,ε≤-||A a n ;B 对⽆穷多个0>ε,0>?N ,N n >?,ε<-||A a n ;C 0>?ε,0>?N ,有⽆穷多个N n >,ε<-||A a n ;D 0>?ε,有}{n a 的⽆穷多项落在区间),(εε+-A A 之内2.任意给定0>M ,总存在0>X ,当X x -<时,M x f -<)(,则()A -∞=-∞→)(lim x f x ; B -∞=∞→)(lim x f x ; C ∞=-∞→)(lim x f x ; D ∞=+∞→)(lim x f x3.设a 为定数.若对任给的正数ε,总存在0>X ,当X x -<时,()f x a ε-<,则().A lim ()x f x a →+∞=; B lim ()x f x a →-∞=; C lim ()x f x a →∞=; D lim ()x f x →∞=∞A 2e ;B 2e - ;C 1e - ;D 1 5.21sin(1)lim1x x x →-=-()A 1 ;B 2 ;C 21 ; D 06.定义域为],[b a ,值域为),(∞+-∞的连续函数() A 存在; B 可能存在; C 不存在; D 存在且唯⼀7.设 =)(x f 1(12) , 0 , 0x x x k x ??-≠??=? 在0=x 处连续,则=k ()A 1 ;B e ;C 1- ;D 21e8.⽅程410x x --=⾄少有⼀个根的区间是()A 1(0,)2; B 1(,1)2; C (2,3) ; D (1,2) 三、计算题1.求极限 n nn 313131212122++++++∞→ 2.求极限lim n →∞+++3.求极限 )111)(110()110()13()12()1(lim2222--++++++++∞→x x x x x x x4.求极限 112sin lim-+→x x x四、证明题设,f g 在],[b a 上连续,且()(),()()f a g a f b g b ><. 证明:存在(,),a b ξ∈使得()()f g ξξ=.数学分析选讲作业系统1、若f,g 均为区间I 上的凸函数,则f+g 也为I 上的凸函数。

西南大学《数学分析选讲》网上作业及参考答案

西南大学《数学分析选讲》网上作业及参考答案

===================================================================================================1:[论述题]《数学分析选讲》第一次主观题作业答案一、判断题 1.(正确) 2.( 正确 ) 3.(错误 ) 4.( 正确 ) 5.( 正确) 二、 选择题1、A2、A3、B4、B5、C6、C7、D8、D三、计算题解 1、902070902070902070583155863lim )15()58()63(lim⋅=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=--++∞→+∞→x x x x x x x x 2、211lim()2x x x x +→∞+=-21111lim 2211xx x x x x →∞⎛⎫⎛⎫++ ⎪ ⎪⋅= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭211lim 21xx x x →∞⎛⎫+ ⎪= ⎪ ⎪-⎝⎭2(4)21[(1)]lim 2[(1)]x x x x x→∞--+- 264e e e-==. 3、解:因2n ≤++≤+1n n==, 故 21n n →∞++=+。

4、 当0x <时,有221()lim lim 11x x x x x x n n n n n f x n n n --→∞→∞--===-++;同理当0x >时,有()1f x =.而(0)0f =,所以1,0()sgn 0,01,0x f x x x x -<⎧⎪===⎨⎪>⎩。

所以0是f 的跳跃间断点.四、证明题===================================================================================================证 由b a <,有b b a a <+<2. 因为2lim ba a a n n +<=∞→,由保号性定理,存在01>N ,使得当1N n >时有2b a a n +<。

西南大学《数学分析选讲》网上作业题及答案

西南大学《数学分析选讲》网上作业题及答案

(0088)《数学分析选讲》网上作业题答案1:第一次作业2:第二次作业3:第三次作业4:第四次作业5:第五次作业1:[判断题]两个无穷小量的和一定是无穷小量参考答案:正确1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

2:[判断题]两个无穷大量的和一定是无穷大量参考答案:错误1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

3:[单选题]设f,g在(-a,a)上都是奇函数,则g(f(x))与f(g(x))A:都是奇函数B:都是偶函数C:一是奇函数,一是偶函数D:都是非奇、非偶函数参考答案:A社会实践是检验认识是否具有真理性的唯一标准,这是由真理的本性和实践的特点所决定的。

第一,真理的本性是主观同客观相符合。

要判明认识是否具有真理性的标准,只能通过一种能够把主观同客观联系、沟通起来的桥梁,这就是人们的社会实践,舍此别无它路。

它成为“实践是检验真理的唯一标准”的内在根据。

第二,实践的过程是一个主体能动地使自己的目的物化或对象化的过程,因而它具有直接现实性。

因此实践可以使主观与客观相对照,从而直接检验出主观认识是否与客观相符合以及符合的程度。

4:[判断题]闭区间上的连续函数是一致连续的参考答案:正确1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

5:[单选题]设数列{An}收敛,数列{Bn}发散,则数列{AnBn}A:收敛B:发散C:是无穷大D:可能收敛也可能发散参考答案:D马克思主义认为,劳动创造了人本身,同时也就创造了人类社会。

因此,只有实践,才是社会生活的真正本质。

说实践是社会的本质,主要理由是:首先,实践是社会关系的发祥地。

其次,实践构成了社会生活的基本领域。

最后,实践构成了社会发展的动力。

6:[判断题]最大值若存在必是上确界参考答案:正确1、应注意写出要点;2、注意检查语法和拼写错误;3、文理通顺,中心突出。

7:[判断题]若f,g在区间I上一致连续,则fg在I上也一致连续。

2013年春西南大学《数学分析选讲》1、2、3次客观题答案(已整理)

2013年春西南大学《数学分析选讲》1、2、3次客观题答案(已整理)

2013年春西南大学《数学分析选讲》1、2、3次客观题答案(已整理)第一次作业客观题【判断题】狄利克雷函数D(x)是有最小正周期的周期函数错【选择题】设数列{An}收敛,数列{Bn}发散,则数列{AnBn} D【判断题】收敛数列必有界对【判断题】两个(相同类型的)无穷小量的和一定是无穷小量对【判断题】若函数在某点无定义,则在该点的极限不存在错【选择题】设 f,g 为区间 (a,b)上的递增函数,则 min{f(x),g(x)}是(a,b) 上的A【选择题】设f在[a,b]上无界,且f(x)不等于0,则1/f(x)在[a,b]上D【判断题】闭区间上的连续函数是一致连续的对【判断题】两个收敛数列的和不一定收敛错【判断题】有上界的非空数集必有上确界对【判断题】两个无穷小量的商一定是无穷小量错【选择题】若函数f在(a,b)的任一闭区间上连续,则f B【选择题】一个数列{An}的任一子列都收敛是数列{An}收敛的C【判断题】若f,g在区间I上一致连续,则fg在I上也一致连续。

错【判断题】区间上的连续函数必有最大值错【判断题】两个收敛数列的商不一定收敛对【选择题】设函数f(x)在(a-c,a+c)上单调,则f(x)在a处的左、右极限B【选择题】定义域为[a,b],值域为(-1,1)的连续函数B【选择题】y=f(x)在c处可导是y=f(x)在点(c,f(c))处存在切线的A【判断题】最大值若存在必是上确界对【选择题】设f,g在(-a,a)上都是奇函数,则g(f(x))与f(g(x)) A【判断题】两个无穷大量的和一定是无穷大量错【选择题】函数f在c处存在左、右导数,则f在c点B【判断题】若函数在某点可导,则在该点连续对【判断题】若f(x)在[a,b]上有定义,且f(a)f(b)<0,则在(a,b)内至少存在一点c,使得f(c)=0 错第二次作业客观题【判断题】若f在区间I上连续,则f在I上存在原函数。

对【判断题】不存在仅在一点可导,而在该点的任一空心邻域内皆无连续点的函数。

《数学分析选讲》 第四次主观题 作业

《数学分析选讲》 第四次主观题 作业

《数学分析选讲》 第四次主观题 作业一、判断下列命题的正误1. 闭区间],[b a 上的可积函数)(x f 是有界的. (正确)2.若)(x f 在[,]a b 上可积,则)()(x f x f +在[,]a b 上也可积. (正确) 3.若)(x f 在区间I 上有定义,则)(x f 在区间I 上一定存在原函数. (错误) 4.若)(x f 为],[b a 上的增函数,则)(x f 在],[b a 上可积. (正确)5.若)(x f 在],[b a 上连续,则存在[,]a b ξ∈,使()()()ba f x dx fb a ξ=-⎰. (正确)二、选择题1.对于不定积分⎰dx x f )( ,下列等式中( A ) 是正确的. A)()(x f dx x f dxd =⎰; B ⎰=')()(x f dx x f ;C )()(x f x df =⎰;D ⎰=)()(x f dx x f d 2. 若11()xxf x e dx ec --=-+⎰,则()f x 为( A )A 21x-; B 1x- ; C1x; D21x3.设5sin x 是)(x f 的一个原函数,则⎰='dx x f )(( B )A c x +-sin 5 ;B c x +cos 5 ;C 5sin x ;D x sin 5-4.(1cos )d x -=⎰ ( B )A x cos 1-;B c x +-cos ;C c x x +-sin ;D c x +sin5.若⎰+=c x dx x f 2)(,则⎰=-dx x xf )1(2( C ) A c x +-22)1(2 ; B c x +--22)1(2; C c x +--22)1(21 ; D c x +-22)1(216. =+⎰xdxcos 1 ( C )A tan sec x x c -+ ;B csc cotx x c -++;C tan2x c + ; D tan()24x π-7.=-⎰)d(e x x (D )A c x x +-e ;B c x x x +---e e ;C c x x +--e ;D c x x x ++--e e 8. 已知x e f x +='1)( ,则=)(x f ( D ) A 1ln x c ++ ; B 212x x c ++ ;C 21ln ln 2x x c ++ ;D ln x x c + 三、计算题1.求不定积分21210dx x x ++⎰.解:2211210(1)9dx dx x x x =++++⎰⎰221131111()arctan .11993331()1()33x x dx d C x x ++===+++++⎰⎰2.求不定积分arcsin xdx ⎰. 解:C xx x dx xx x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin3.求不定积分ln xdx ⎰ . 解: C x x x dx xx x x xdx +-=⋅-=⎰⎰ln 1ln ln4.求不定积分xe dx ⎰.解: 令x u =,则22()2(1)xuu u xedx eu du e u e C ex C ==-+=-+⎰⎰四、证明题设f 为连续函数.证明: 0(sin )(sin )2x f x dx f x dx πππ=⎰⎰.证 令t x -=π ,则(sin )xf x dx π⎰⎰---=0)][sin()(πππdt t f t()(sin )t f t dt ππ=-⎰(sin )(sin )(sin )(sin )f t dt t f t dtf x dx xf x dxππππππ=-=-⎰⎰⎰⎰故 0(sin )(sin )2xf x dx f x dx πππ=⎰⎰.。

20年6月西南大学课程考试[0088]《数学分析选讲》 大作业(完整答案)

20年6月西南大学课程考试[0088]《数学分析选讲》 大作业(完整答案)

西南大学培训与继续教育学院课程考试试题卷学期:2020年春季课程名称【编号】: 数学分析选讲【0088】 A 卷考试类别:大作业 满分:100 分一、 判断下列命题的正误(每小题2分,共16分)1. 函数()3sin 2cos f x x x =- 既不是奇函数,也不是偶函数. ( √ ) 2.有界的非空数集必有上确界. ( × ) 3.若数列{}n a 收敛,则数列{}n a 也收敛. ( × ) 4.若数列}{n x 收敛,数列}{n y 发散,则数列{}n n x y +发散. ( √ ) 5.任一实系数奇次方程至少有一个实根. ( √ ) 6.若()f x 在0x 处连续,则()f x 在0x 处一定可导. ( × ) 7.若()f x 在0x 处可导,则()f x 在0x 处的左导数与右导数都存在. ( × ) 8.若函数()f x 在[,]a b 上有无限多个间断点,则()f x 在[,]a b 上一定不可积. ( × )二、选择题(每小题 5分,共30分)1.设21,1()3,1x x f x x x -≤⎧=⎨->⎩, 则 (1)f =( C ) .A 1- ;B 0 ;C 1 ;D 2 2.设()f x 在[,]a b 上无界,且()f x 不等于0,则1()f x 在[,]a b 上 ( B ) A 无界 ; B 有界;C 有上界或有下界 ;D 可能有界,也可能无界 3.定义域为[,]a b ,值域为(1,1)-的连续函数( C )A 存在;B 可能存在;C 不存在;D 存在且唯一4.设f 可导,则 2(cos )d f x = ( B )A 2(cos )f x dx '; B 2(cos )sin 2f x x dx '-; C 22(cos )cos f x xdx '; D 22(cos )sin f x xdx '5.15411x x dx --=⎰( A )A 0 ;B 1- ;C 1 ;D 2 6.2x xe dx +∞-=⎰( C )A 1 ;B 12 ;C 0 ;D 12-三、计算题(每小题9分,共45分)1.求极限11lim 2x x x x +→∞+⎛⎫⎪-⎝⎭.2.设22()2ln(2)f x x x x =+-++,求()f x '.3.求函数543551y x x x =-++在区间[1,2]-上的最大值与最小值.4.求不定积分arctan x dx⎰.5.求定积分⎰10dx e x. `四、证明题(9分)证明:若函数(),()f x g x 在区间[,]a b 上可导,且()(),()()f x g x f a g a ''>=,则在(,]a b 内有()()f x g x >.答:证明:设辅助函数F (x )=f (x )-g(x ),则F (x )在区间[a ,b ]上可导,且F ¢(x )=f ¢(x )-g(x )>0,故F (x )在区间[a ,b ]上是增函数,因此,当x Î(a ,b )时,F (x )>F (a ),而F (a )=f (a )-g (a )=0,即F (x )>0,f (x )-g (x )>0,∴ f (x )>g (x )。

《数学分析选论》习题解答

《数学分析选论》习题解答

《数学分析选论》习题解答第 三 章 微 分 学1.考察||)(x x f xe =的可导性.解 写出)(x f 的分段表达式:⎩⎨⎧<-≥=.0,,0,)(x x x x x f xx e e它在0≠x 时的导数为⎩⎨⎧<+->+=';0,)1(,0,)1()(x x x x x f xx e e而当0=x 时,由于10lim )0(,10lim )0(00=-='-=--='+-→+→-x e x f x e x f x x x x ,因此f 在0=x 处不可导. □2.设⎩⎨⎧<+≥=.3,,3,)(2x b ax x x x f若要求f 在3=x 处可导,试求b a ,的值.解 首先,由f 在3=x 处必须连续,得到93=+b a ,或a b 39-=-.再由a x x a xb ax f x x =--=--+='--→→-3)3(lim 39lim)3(33,6)3(lim 39lim )3(323=+=--='++→→+x x x f x x ,又得939,6-=-==a b a . □3.设对所有x ,有)()()(x h x g x f ≤≤,且)()(,)()()(a h a f a h a g a f '='==.试证:)(x g 在a x =处可导,且)()(a f a g '='.证 由条件,有)()()()()()(a h x h a g x g a f x f -≤-≤-,从而又有)()()()()()()(a x a x a h x h a x a g x g a x a f x f >--≤--≤--,)()()()()()()(a x ax a h x h a x a g x g a x a f x f <--≥--≥--.由于)()(a h a f '=',因此)()()()()(a h a h a f a f a f -+-+'='='='=',故对以上两式分别取-+→→a x a x 与的极限,得到)()()()()()(a h a g a f a h a g a f ---+++'='=''='='与. 于是有)()(a g a g -+'=',即证得)(x g 在a x =处可导,且)()(a f a g '='. □4.证明:若)(x f 在],[b a 上连续,且0)()(,0)()(>''==-+b f a f b f a f .,则存在点),(b a ∈ξ,使0)(=ξf .证 如图所示,设0)(,0)(>'>'-+b f a f .由极限保号性,在点a 的某一右邻域)(a U +内,使0)(0)()(>'⇒>-'-'x f a x a f x f ,∈'x )(a U +;同理,在点b 的某一左邻域内,有0)(0)()(<''⇒>-''-''x f bx b f x f ,∈''x )(b U -.最后利用连续函数)(x f 在],[x x '''上的介值性,必定),(),(b a x x ⊂'''∈ξ∃,使0)(=ξf . □*5.设),(,)(b a x x f ∈,它在点),(0b a x ∈可导;{}{}n n y x 与是满足b y x x a n n <<<<0),2,1( =n ,且n n n n y x x ∞→∞→==lim lim 0的任意两个数列.证明:)()()(lim0x f x y x f y f nn n n n '=--∞→.证 先作变形:nn n n n n n n n n n n n n x x x f x f x y x x x y x f y f x y x y x y x f y f ----+----=--000000)()()()()()(...由)(0x f '存在,故δ<-<>δ∃>ε∀||0,0,00x x 当时,有ε<'---<ε-)()()(000x f x x x f x f .又由0lim lim x y x n n n n ==∞→∞→,故对上述0>δ,N n N >>∃当,0时,有δ<-<δ<-<n n x x x y 000,0.从而得到ε<'---<ε-)()()(000x f x y x f y f n n ,ε<'---<ε-)()()(000x f x x x f x f nn .分别以正数n n n x y x y --0与nn nx y x x --0乘以上两式,并相加,又得到.⎪⎪⎭⎫⎝⎛--+--ε<'⎪⎪⎭⎫⎝⎛--+-----<⎪⎪⎭⎫ ⎝⎛--+--ε-n n n n n n n n n n n n n n nn nn n n x y x x x y x y x f x y x x x y x y x y x f y f x y x x x y x y 000000000)()()(把它化简整理后,即为)()()()(0N n x f x y x f y f nn n n >ε<'---<ε-.从而证得结论:)()()(lim0x f x y x f y f nn n n n '=--∞→. □6.设)(x f 在],[b a 上连续,在),(b a 内可导,通过引入适当的辅助函数,证明: (1)存在),(b a ∈ξ,使得)()(])()([222ξ'-=-ξf a b a f b f ;(2)存在),(b a ∈η,使得)0()()ln ()()(b a f a ba fb f <<η'η=-.证 (1)在一般形式的中值定理( 定理 . )中,令2)(x x g =,即得本题结论.(2)把欲证的式子改写成)(]ln ln [1])()([η'-=η-f a b a f b f ,且令x x g ln )(=,上式即为关于)(x f 与)(x g 所满足的一般中值公式. □7.证明推广的罗尔定理:若)(x f 在),(∞+∞-上可导,且l x f x f x x ==∞+→∞-→)(lim )(lim( 包括)∞±=l ,则存在ξ,使得0)(=ξ'f .证 关键在于证明存在两点b a ,,使)(a f )(b f =.为此任取一点0x ,使l x f ≠)(0( 这样的点0x 若不存在,则0)()(≡'⇒≡x f l x f ).如图所示,设l x f <)(0.由于l x f x =∞→)(lim ,因此对于02)(0>-=εx f l ,0>∃X ,当X x >||时,满足ε+<<ε-l x f l )(.现取X x X x >''-<',,并使x x x ''<<'0.由于)()(,)()(00x f l x f x f l x f ''<ε-<>ε->',借助连续函数的介值性,必存在),(),(00x x b x x a ''∈'∈与,使得])([21)()(0x f l l b f a f +=ε-==. 于是由罗尔定理,存在),(b a ∈ξ,使得0)(=ξ'f . □8.证明:若)(x f 和)(x g 在],[b a 上连续,在),(b a 内可导,且0)(≠'x g , 则存在),(b a ∈ξ,使得)()()()()()(ξ--ξ=ξ'ξ'g b g a f f g f .证 令)()()()()()()(x g a f b g x f x g x f x --=ϕ,它在],[b a 上连续,在),(b a 内可导,且 )()()()(b g a f b a -=ϕ=ϕ.由罗尔定理,存在),(b a ∈ξ,使得0)()()()()()()()()(=ξ'-ξ'-ξ'ξ+ξξ'=ξϕ'g a f b g f g f g f ,即])()([)(])()([)(a f f g g b g f -ξξ'=ξ-ξ'.由于0)(≠ξ'g ,)()(ξ≠g b g ( 根据0)(≠'x g 和导函数具有介值性,推知)(x g '恒正或恒复,故)(x g 严格单调 ),因此可把上式化为结论式)()()()()()(ξ--ξ=ξ'ξ'g b g a f f g f . □ *9.设),(,|)(|,|)(|20∞+∞-∈≤''≤x M x f M x f .证明:202|)(|M M x f ≤',),(∞+∞-∈x .证 若02=M ,则可相继推出:B Cx x f C x f x f +=⇒≡'⇒≡'')()(0)(,再由0|)(|M x f ≤,可知0)(0≡'⇒=x f C ,结论成立.同理,当00=M 时结论同样成立.现设00>M ,02>M .利用泰勒公式,⎪⎪⎭⎫⎝⎛+∈ξ∃202,M M x x ,使 )(421)(2)(222020ξ''+'+=⎪⎪⎭⎫⎝⎛+f M M x f M M x f M M x f .. 由此得到,42)(2)(2|)(|20220020202M M M M M M f M M x f M M x f x f M M =++≤ξ''--⎪⎪⎭⎫ ⎝⎛+='于是证得 200022421|)(|M M M M M x f =≤'.. □*10.设)(x f 在],[b a 上二阶可导,0)()(='='-+b f a f .证明:),(b a ∈ξ∃,使得|)()(|)(4|)(|2a fb f a b f --≥ξ''.证 将⎪⎭⎫⎝⎛+2b a f 分别在点a 与b 作泰勒展开:⎪⎭⎫ ⎝⎛+2b a f =⎪⎭⎫⎝⎛+∈ξ⎪⎭⎫ ⎝⎛-ξ''+2,,2!2)()(121b a a a b f a f ,⎪⎭⎫ ⎝⎛+2b a f =⎪⎭⎫⎝⎛+∈ξ⎪⎭⎫ ⎝⎛-ξ''+b b a a b f b f ,2,2!2)()(222, 以上两式相减后得到=-)()(a f b f [])()(221212ξ''-ξ''⎪⎭⎫ ⎝⎛-f f a b .设=ξ'')(f {})(,)(max21ξ''ξ''f f ,则有≤-)()(a f b f ())(2)()(2212212ξ''⎪⎭⎫ ⎝⎛-≤ξ''+ξ''⎪⎭⎫ ⎝⎛-f a b f f a b ,于是证得结论: |)()(|)(4|)(|2a fb f a b f --≥ξ''. □*11.设在],0[a 上有M x f ≤'')(,且)(x f 在),0(a 内存在最大值.证明: M a a f f ≤'+')()0(.证 设)(x f 在∈c ),0(a 取得最大值,则)(c f 也是一个极大值,故0)(='c f .由微分中值公式得到),0(,)()0()()()0(111c f c c f c f f ∈ξξ''-=-ξ''+'=', ),(,)()()()()()(222a c f c a c a f c f a f ∈ξξ''-=-ξ''+'=';从而又有M c a f c a a f cM f c f )()()()(,)()0(21-≤ξ''-='≤ξ''=',由此立即证得 M a a f f ≤'+')()0(. □*12.证明:若),(00y x f x '存在,),(y x f y'在点0P ),(00y x 连续,则),(y x f 在点0P 可微.证 =∆z -∆+∆+),(00y y x x f ),(00y x f =-∆+∆+),([00y y x x f ]),(00y x x f ∆+-∆++),([00y x x f ]),(00y x f .因),(y x f y'在点0P 连续,故z ∆的第一部分可表为 -∆+∆+),(00y y x x f ),(00y x x f ∆+=y y y x x f y∆∆θ+∆+'),(00 =y y y x f y ∆β+∆'),(00(其中0lim 0=β→∆→∆y x );又因),(00y x f x '存在,故z ∆的第二部分可表为-∆+),(00y x x f =),(00y x f x x y x f x ∆α+∆'),(00(其中0lim 0=α→∆x ).所以有=∆z +∆'x y x f x ),(00y x y y x f y∆β+∆α+∆'),(00, 而且由于)0,0(0||||22→∆→∆→β+α≤∆+∆∆β+∆αy x yx y x ,便证得),(y x f 在点0P 可微. □13.若二元函数f 与g 满足:f 在点0P ),(00y x 连续,g 在点0P 可微,且0)(0=P g ,则g f .在点0P 可微,且)()()(000P g P f g f P d d =..证 记g f h .=.由于g 在点0P 可微,根据定理3.4(必要性),存在向量函数[])(,)()(21P G P G P G =,它在点0P 连续,且满足.)()(,))(()()()(0000P G P g P P P G P g P g P g ='-=-=由此得到,)()()()()()()()()()()(00000P P P H P P P G P f P g P f P g P f P h P h -=-=-=-其中)()()(P G P f P H =在点0P 连续.仍由定理3.4(充分性),推知h 在点0P 可微,且因)()()()()()(000000P g P f P G P f P H P h '===,进一步证得)()()(000P g P f hg f P P d d d ==.. □14.设⎪⎩⎪⎨⎧=≠+=.)0,0(),(,0,)0,0(),(,),(222y x y x y x y x y x f证明:(1)f 在原点O )0,0(连续;(2)y x f f '',在点O 都存在; (3)y x f f '',在点O 不连续; (4)f 在点O 不可微.证 (1)若令θ=θ=sin ,cos r y r x ,则因0sin cos lim )sin ,cos (lim 20=θθ=θθ→→r r r f r r ,可知f 在0=r 处(即在点O 处)连续.(2) ⎪⎩⎪⎨⎧.0)0,0(),0(lim )0,0(,0)0,0()0,(lim)0,0(0=∆-∆='=∆-∆='→∆→∆yf y f f xf x f f y yx x(3)求出⎪⎩⎪⎨⎧≠≠+-=';)0,0(),(,0,)0,0(),(,)()(),(222222y x y x y x x y y y x f x⎪⎩⎪⎨⎧≠≠+='.)0,0(),(,0,)0,0(),(,)(2),(2223y x y x y x y x y x f y由于当0≠r 时,,sin cos 2)sin ,cos (,)cos sin (sin )sin ,cos (3222θθ=θθ'θ-θθ=θθ'r r f r r f y x它们都不随0→r 而趋于0( 随θ而异 ),因此yx f f '',在点O 都不连续. (4)倘若f 在点O 可微,则.)()0,0()0,0()0,0(),(22222y x o y x y x y f x f f y x f y x ∆+∆=∆+∆∆∆=∆'-∆'--∆∆但是当令θ=∆θ=∆sin ,cos r y r x 时,)0(0\sin cos )(22/3222→→θθ=∆+∆∆∆r y x y x ,所以f 在点O 不可微.□15.设可微函数),(y x f 在含有原点为内点的凸区域D 上满足0),(),(='+'y x f y y x f x yx . 试证:≡),(y x f 常数,D y x ∈),(.证 对于复合函数θ=θ==sin ,cos ,),(y r x y x f z ,由于,)0(0)(1sin cos ≠='+'=θ'+θ'=∂∂'+∂∂'=∂∂r f y f x rf f ry f r x f r z yx yx y x因此在极坐标系里f 与r 无关,或者说f 只是θ的函数( 除原点外 ).如图所示,2121,,OP OP D P P 与∈∀的 极角分别为21θθ与.若21θ=θ,则由上面 讨论知道)()(21P f P f =.若21θ≠θ,此时 利用f 在点O 连续,当动点P 分别沿半直线21θ=θθ=θ与趋向点O 时,f 在1θ=θ上的常值与在2θ=θ上的常值都应等于)(O f .这就证得)()(21P f P f =,即≡),(y x f 常数,D y x ∈),(. □*16.设二元函数),(y x f 在2ℜ上有连续偏导数,且)1,0()0,1(f f =.试证:在单位圆122=+y x 上至少有两点满足),(),(y x f x y x f y yx '='. 证 在单位圆1=r 上,记π≤θ≤θθ=θϕ20,)sin ,cos ()(f .由于y xf f ''与连续,故f 可微,一元函ϕ也可微. 已知)2()1,0()0,1()0(πϕ===ϕf f ,由罗尔定理,)2,0(1π∈θ∃,使得0)(1=θϕ'.同理,由)2()2(πϕ=πϕ,)2,2(2ππ∈θ∃,使得0)(2=θϕ'.而y x yx f x f y f r f r r r f '+'-='θ+'θ-=θθθ∂∂cos sin )sin ,cos (, 1)()(='+'-=θϕ'r yx f x f y ,故在1=r 上存在两点)sin ,cos ()sin ,cos (222111θθθθP P 和,满足2,1,)()(='='i P f x P f y i y i x. □ 17.证明:(1)若),(y x f 在凸开域D 上处处有0),(),(='='y x f y x f y x,则≡),(y x f 常数,D y x ∈),(;*(2)若),(y x f 在开域D 上处处有0),(),(='='y x f y x f y x ,则同样有≡),(y x f 常数,D y x ∈),(.证 (1)由于D 为凸开域,因此D y x y x ∈∀),(,),(21,联结这两点的直线段必含于D , 根据§3.5的例10知道),(y x f 与x 无关;类似地,),(y x f 又与y 无关.这样,f 在D 上各点处的值恒相等.(2)当D 为一般开域时( 如图 ),D Q P ∈∀,,必存在一条全含于D 内、联结Q P ,两点的有限折线.又因这条折线上 的点全为D 的内点,故在每一点处有一邻域含于D限个邻域所覆盖.在这每一个邻域内,由(1)已知≡),(y x f 常数,而相邻两个邻域之交非空,故经有限次推理,可知)()(Q f P f =.由Q P ,在D 内的任意性,这就证得在整个D 上≡),(y x f 常数. □ 18.证明:若),(y x f 存在连续的二阶偏导数,且令θ+θ=θ-θ=cos sin ,sin cos v u y v u x( 其中θ为常量 ),则在此坐标旋转变换之下,yy xxf f ''+''为一形式不变量,即 vv uu yy xxf f f f ''+''=''+''. 证 由条件,x y y xf f ''='',且有 ⎩⎨⎧θ'+θ'-=''+''='θ'+θ'=''+''=';cos sin ,sin cos y x v y vx v y x u y ux u f f y f x f f f f y f x f f⎪⎩⎪⎨⎧θ''+θθ''-θ''=''θ''+θθ''+θ''=θ'''+'''+θ'''+'''=''.2222cos cos sin 2sin ,sin cos sin 2cos sin )(cos )(y y y x x x vv y y y x x x u y y u x y u y x ux x u u f f f f f f f y f x f y f x f f 由此容易推至结论 vv uu yy xxf f f f ''+''=''+''成立. □ *19.设2ℜ⊂D 为一有界闭域,),(y x f 在D 上可微,且满足),(),(),(y x f y x f y x f yx ='+'. 证明:若f 在D ∂上的值恒为零,则f 在D 上的值亦恒为零.证 由于f 在D 上可微,D 为有界闭域,因此f 在D 上存在最大值和最小值,分别设为)()(21P f m P f M ==和.如果D P int 1∈,则)(1P f 为一极大值,故满足0)()(11='='P f P f y x,由条件, 0)()()(111='+'==P f P f P f M yx ; 如果D P int 2∈,则)(2P f 为一极小值,同理有0)(2==P f m ;如果M 与m 都在D 的内部取得,则有0==m M ;如果D P P ∂∈)(21或,则由条件又使M 0)(=m 或.综上,在任何情形下恒有D y x y x f m M ∈≡⇒==),(,0),(0. □20.设),(v u f 为可微函数.试证:曲面0),(=--by z ay x f 的任一切平面恒与某一直线平行.证 由于f 可微,因此该曲面在其上任一点处的法向量为()v v u u f f b f a f z f y f x f n ''-'-'=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂=,,,, .又因0=l n .,其中),1,(b a l = ,所以上述法向量n 恒与常向量l 正交.这说明以n为法向量的切平面恒与以l为方向向量的直线相互平行. □21.证明:以λ为参数的曲线族)(122b a b y a x >=λ-+λ- 是相互正交的( 当相交时 ).证 设曲线族中当21,λλ=λ时所对应的两条曲线相交,则应满足2,1,122==λ-+λ-i b y a x ii ;将此二式相减,经整理得到0))(())((221221=λ-λ-+λ-λ-y a a x b b .另一方面,此二曲线在交点),(y x 处的法向量分别为2,1,,=⎪⎪⎭⎫⎝⎛λ-λ-=i b y a x n i i i . 由于,0))()()(())(())((,,2121221221221121=λ-λ-λ-λ-λ-λ-+λ-λ-=⎪⎪⎭⎫ ⎝⎛λ-λ-⎪⎪⎭⎫ ⎝⎛λ-λ-=b b a a ya a xb b b y a x b ya x n n ..因此这两条曲线在交点),(y x 处互相垂直. □22.设nD ℜ⊂为凸集,ℜ→D f :为凸函数.证明:(1)对任何正数f αα,是D 上的凸函数;(2)若g 也是D 上的凸函数,则g f +仍是D 上的凸函数;(3)若h I D f ,)(⊂是I 上的凸函数,且递増,则f h 亦为D 上的凸函数. 证 (1)据凸函数定义,)1,0(,,∈λ∀∈∀D y x ,有)()()1())1((x f x f y x f λ+λ-≤λ+λ-.以α乘之,得)()()1())1((x f x f y x f αλ+αλ-≤λ+λ-α,此即表示f α亦满足凸函数定义.(2)由)()()1())1((x f x f y x f λ+λ-≤λ+λ-, )()()1())1((x g x g y x g λ+λ-≤λ+λ-,两式相加后得到)()()())(1())1(()(x g f x g f y x g f +λ++λ-≤λ+λ-+,此即表示g f +亦为D 上的凸函数.(3) 由)()()1())1((x f x f y x f λ+λ-≤λ+λ-,以及h 为递増凸函数,得到,))(())(()1())()()1(()))1(((y f h x f h x f x f h y x f h λ+λ-≤λ+λ-≤λ+λ-或者写成,)()()()()1()))1(()(y f h x f h y x f h λ+λ-≤λ+λ-此即表示f h 亦为D 上的凸函数. □23.设)0()()(>=x xx f x F ,其中)(x f 在),0[∞+上为非负严格凸函数,且 0)0(=f .试证:)(x F 与)(x f 都是严格递増函数.证 由条件,0)0()()()(--==x f x f x x f x F .)0(,2121x x x x <<∀,因为)(x f 为严格凸函数,根据严格凸函数的充要条件( 定理 ),有)0()(0)0()(2211--<--x f x f x f x f ,而这就是)()(21x F x F <,所以)(x F 是严格递増函数. 又因0)()()()(])()([1121122121>-=->-x F x F x x f x x f x f x f x , 所以)()(12x f x f >,即)(x f 也是严格递増函数. □24. 证明定理3.13的推论1和推论2.证 这里要证明的是:若f 在开区间I 上为凸函数,则 (1)f 在I 中每一点处都连续;(2)f 在I 中每一点处的左、右导数都存在. 现分别证明如下——(1)由定理3.13,f 在任何I ⊂βα],[上满足利普希茨条件⇒f 在],[βα上一致连续⇒f 在],[βα上连续⇒f 在I 上处处连续.(2)I x ∈∀0,设)0()()()(00>-+=h hx f h x f h F .由定理3.12,知道)(h F 为递増函数.另一方面,因I 为开区间,必存在,1I x ∈使01x x <,于是又有)()()(1010h F x x x f x f ≤--,这说明)(h F 有下界.综合起来,根据关于函数极限的单调有界定理,存在右导数)()(lim 00x f h F h ++→'=. 同理可证存在左导数)(0x f -'. □ ( 注:如果先证得)(0x f -'与)(0x f +'都存在,则立即知道f 在点0x 既是左连续,又是右连续,从而f 在点0x 连续.由0x 在I 中的任意性,便证得f 在I 中处处连续.)25. 证明定理3.14的推论1和推论2.证 这里要证明的是:(1)若f 在区间I 上二阶可导,则有f 在I 上为凸函数I x x f ∈≥''⇔,0)(;(2)若f 在区间I 上是一可微的凸函数,则有I x ∈0是f 的极小值点0)(0='⇔x f .现分别证明如下——(1)当f ''存在时,已知I x x f I x x f ∈'⇔∈≥'',)(,0)(递増.据定理3.14(ⅱ),f '在I 上递増⇔f 在I 上为凸函数,故结论得证.(2)其中“⇒”已由费马定理所保证,这里只要证明“⇐”. 由0)(0='x f ,根据定理3.14(ⅲ),对一切I x ∈恒有)()()()()(0000x f x x x f x f x f =-'+≥,因此)(0x f 是)(x f 在I 上的最小值.由)(0x f '存在,说明0x 是I 的一个内点,所以)(0x f 是)(x f 在I 上的一个极小值. □26.用凸函数方法证明如下不等式: (1)对任何,,b a 恒有 )(212b aba e e e +≤+; (2)对于b a ≤≤0,恒有b a ba arctan arctan 2arctan2+≥+. 证(1)设x x f e =)(,由于0)(>=''xx f e ,因此)(x f 为凸函数.故对=λλ-=121,有 [])()(212b f a f b a f +≤⎪⎭⎫⎝⎛+, 即)(212b aba e e e +≤+. (2)设x x f arctan )(=,由于)0(0)1(2)(,11)(222≥≤+-=''+='x x x x f xx f ,因此在),0[∞+上)(x f 为凹函数.故对=λλ-=121,有 []b a b f a f b a f ≤≤+≥⎪⎭⎫⎝⎛+0,)()(212,即 b a ba arctan arctan 2arctan2+≥+. □ 27.设ABC ∆为正三角形,各边长为a ;P 为ABC ∆内任一点,由P 向三边作垂线,垂足为F E D ,,.试求点P ,使DEF ∆的面积为最大;并求此最大面积.解 如图所示,记x PD =||,y PE =||,z PF =||.因ABC ∆为正三角形,故32π=∠=∠=∠F P D E P F D P E , 所以DEF ∆的面积为.)(43)(3sin 21x z z y y x x z z y y x S S S S PFDPEF PDE ++=++π=++=∆∆∆ 再由ABC PAB PCA PBC S S S S ∆∆∆∆=++,得约束条件为a z y x a z y x a23,43)(22=++=++即. 借助 乘数法,令,000,)23(z y x x y L z x L z y L a z y x x z z y y x L z y x ==⇒⎪⎭⎪⎬⎫=λ++='=λ++='=λ++='-++λ+++=由此求得..2216363343max 63233a a S a z y x a x z y x DEF =⎪⎪⎭⎫ ⎝⎛=⇒===⇒==++∆□(28)在平面上有一个ABC ∆,三边长分别为c AB b CA a BC ===,,.以此三E FCyABDPxz角形为底,h 为高,可作无数个三棱锥,试求其中侧面积为最小者.解 如图所示,三棱锥ABC H -的高为h HO =.在ABC ∆中,由点O 作三条边的垂线:AB OF CA OE BC OD ⊥⊥⊥,,,并记z OF y OE x OD ===||,||,||.于是三棱锥ABC H -的侧面积为 222222212121h z c h y b h x a S +++++=;而约束条件为02S S z c y b x a ABC =⨯=++∆, 其中.)2()()()(c b a p c p b p a p p S A B C++=---=∆由 乘数法,设)(0222222S z c y b x a h z ch y b h x aL -++λ-+++++=,并令⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+---='=λ-+='=λ-+='=λ-+='λ.0,0,0,00222222S z c y b x a L c hz zc L b h y y b L a hx x a L zy x由此易得λ=+=+=+222222hz z hy y hx x .根据实际意义,侧面积无最大值,有最小值.上式表示HFO HEO HDO ∠=∠=∠,这说明侧面积的最小值发生在三侧面与底面成等角的情形.由此式又可解出pc p b p a p p z y x )()()(---===,此时O 适为ABC ∆的内心,并求得BCHOAE h DFxy z,)()()()(212222min h p c p b p a p p h x c b a S +---=+++=其中 )(21c b a p ++=. □ 29.试用条件极值方法证明不等式:nn n y x y x ⎪⎭⎫⎝⎛+≥+22,其中n 为正整数,0,0≥≥y x .证 设目标函数为nn y x y x f +=),(,约束条件为a y x 2=+.用 乘数法,令.a y x a x y x y x y n L xn L a y x y x L n y n x n n ====+⇒=⇒⎪⎭⎪⎬⎫=λ+='=λ+='-+λ++=--,22,00,)2(11当动点沿直线a y x 2=+无限趋近端点)0,2(,)2,0(a a 时,≥→na y x f )2(),(n a a a f 2),(=,故n a a a f 2),(=是条件最小值.于是有不等式:nnnny x a y x y x f ⎪⎭⎫⎝⎛+=≥+=22),(,即证得 nn n y x y x ⎪⎭⎫⎝⎛+≥+22成立. □*30.设n i x b a i i i ,,2,1,0,0,0 =≥≥≥;1,1-=>p pq p ; ∑==ni i i n x a x x x f 121),,,( ,(F1)11=∑=ni pix . (F2)(1)求在条件(F2)的约束下,目标函数(F1)的最大值;(2)由以上结果,导出赫尔德不等式:pni ip q ni q i ni i i b a b a 11111⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛≤∑∑∑===. (F3)证(1)设 函数为⎪⎪⎭⎫ ⎝⎛-λ-=∑∑==111n i p i ni i i x p x a L .由n i x a x Lp i i i,,2,1,01 ==λ-=∂∂-可解出 n i a x i p i,,2,1,1=λ=-.令1-=p pq ,对上式两边取q 次幂,得 n i a x qi p i,,2,1, =⎪⎪⎭⎫ ⎝⎛λ=; 由条件(F2),又得qn i q i n i qi q ni pia a x 111111⎪⎪⎭⎫ ⎝⎛=λ⇒=λ=∑∑∑===.由此求得;.n i a a a a a a x pn i q ip i p q n i q i p i p i pq i i,,2,1,111111111111=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛λ=⎪⎪⎭⎫ ⎝⎛λ=-=---=--*∑∑并有qn i q i pni q i n i q i ni i i na a a x a x x f1111111),,(⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==∑∑∑∑=-===*** . (F4)设由(F2)所表示的集合为D ,D 的边界为(F2)与),,2,1(0n i x i ==的交线.由对称性,只需考虑0=n x 一种情形.因为qn i q i qn i q i a a 11111⎪⎪⎭⎫ ⎝⎛≤⎪⎪⎭⎫ ⎝⎛∑∑=-=,所以(F4)所示即为f 在D 上的最大值.这就得到D x x pq a x a n qni q i ni i i ∈=+⎪⎪⎭⎫ ⎝⎛≤∑∑==),,(,111,1111 . (F5) (2) 在不等式(F5)中,令n i b b b x i p n i pi i i ,,2,1,0,11 =≥⎪⎪⎭⎫⎝⎛=-=∑,这样的i x 满足条件条件(F2),代入(F5)后,即得赫尔德不等式(F3). □ 补充说明:赫尔德不等式也可以用凸函数方法(詹森不等式)来求得——考虑函数qxx f 1)(=.由于0)11(1)(,1)(2111<-=''='--q q x q q x f x q x f ,因此)(x f 在0>x 时为凹函数.根据詹森不等式,对于∑==λ>λ>ni i i i x 1)1(0,0,n i ,,2,1 =,有qn n qn n qx x x x 1111111)(λ++λ≤λ++λ .取n i a a a b x nni p i pi i pi qii ,,2,1,, ==λ=∑=,代入上式得:()()q n i p i qn i q i qp nqnpnqp qp ni pia b a b a a b a a 11111111111⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛≤⎥⎥⎦⎤⎢⎢⎣⎡++∑∑∑=== . 因111=+qp ,故1=-q p p ,于是上式左边可化为40 / 21 ∑∑=--=++=⎥⎦⎤⎢⎣⎡++n i p i n n q p pn n q pp n i pi a b a b aa ba b a 11111111 .从而证得qn i i q p n i p i q n i p i qn i i q n i p i n i i i b a a b a b a 1111111111⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛≤∑∑∑∑∑∑======..显然,此式中交换i a 与i b ,即为(F3).由于上述δ只与ε有关,因此f 在D 上一致连续. □。

数学分析选讲习题答案。我们学校自己编的《数学分析选讲》讲义习题解答,不要乱评论。OK?

数学分析选讲习题答案。我们学校自己编的《数学分析选讲》讲义习题解答,不要乱评论。OK?
N 7. 用定义证明时模仿例 2. 当 a↔R 时 >0 N↔N n >N : | an a | < / 2. m n > m : s 1 = k 1 (ak a )
pk / (p1+…+pn) < / 2. 故 n > N + m 时 | n k 1 pk ak / (p 1 +…+p n ) a | < s1 + ( / 2) ((p N+1 +…+pn ) / (p 1 +…+p n )) < . 8. 设 bn→b 〖若 . an→a, 则 b = 3a〗 设 a = b/3, n > N 时| bn b | < / 2, 则 | an a | = ½ | (bn b) (an1 a) | ½ | bn b | + ½ |an1 a | < ¼ + ½ |an1 a | <…< ½ + 2 (n N) |an1 a | < . 9. 设各式为 an . (1) n 1 a n n (n 3), a n→1; (2) 分子分母各式均分解因式, a n =
参 考 文 献
1. 庄亚栋, 王慕三 数学分析, 北京, 高等教育出版社, 1990.
2. Rudin, w., Principles of Mathematical Analysis, 3-d. New York, McGraw-Hill, 1976. 中译 本, 数学分析原理(上册), 赵慈庚、蒋铎译, 3. G. 克莱鲍尔, 数学分析, 庄亚栋译, 上海 , 上海科学技术出版社, 1981. 4. Birkhoff, G., and MacLane, S., A Survey of Modern Algebra, 4-d. New York, Macmillan, 1977. 中译本: G. 伯克霍夫, S. 麦克莱恩 , 近世代数概论(上册), 王连祥、徐广善译, 人 民教育出版社, 1979. 5. 杨宗磐, 数学分析入门 , 北京, 科学出版社 , 1958. 6. 华东师范大学数学系 , 数学分析(第二版), 北京, 高等教育出版社, 1990. 7. 庄亚栋, 方洪锦, 姚林, 基础数学试题选解 , 南京 , 江苏科学技术出版社, 1986 8. Dieudonne, J., Foundations of Morden Analysis, New York, Academic, 1969. 中译本: J. 狄厄多尼, 现代分析基础 , 苏维宜译, 科学出版社, 1982. 9. 方企勤, 数学分析, 第一册 , 北京, 高等教育出版社, 1986. 10. 沈燮昌, 数学分析, 第二册, 北京, 高等教育出版社, 1986. 11. 廖可人, 李正元 , 数学分析, 第三册 , 北京 , 高等教育出版社 , 1986. 12. 陈传璋, 金福临 , 朱学炎, 欧阳光中 数学分析(第二版), 北京, 高等教育出版社, 1983. 13. 14. 15. 16. 17. 18. Г .М .菲赫金哥尔茨 , 微积分学教程 , 第二卷二、 三分册 , 北京大学高等数学教研室译, 北京, 高等教育出版社 , 1954. 强文久, 李元章 , 黄雯荣, 数学分析的基本概念与方法, 北京, 高等教育出版社, 1989. 汪林, 数学分析中的问题与反例, 昆明, 云南科技出版社, 1990. 裴礼文, 数学分析中的典型问题与方法, 北京 , 高等教育出版社 , 1993. 周家云, 刘一鸣 , 解际太, 数学分析的方法, 济南, 山东教育出版社, 1991.

数学分析课本(华师大三版)-习题及答案Part-IV

数学分析课本(华师大三版)-习题及答案Part-IV

(1)
fn ( x ) =
(i )
x ∈ [ a, +∞ )
( ii )
x ∈ ( 0, +∞ ) ;
( 2)
∑x e
n =1 ∞

2 − nx
, x ∈ [ 0, +∞ ) .
5. Find the convergence domain of the following series.
(1)
1 n 1 ∑ 1 + + ... + x ; n 2 n =1

1

27. Suppose that the derivative f ′ of f is continuous on ( a, b ) and
fn ( x ) = n f
Show that
1 x + − f ( x ) . n
{ f ( x )}
n n
{ f ( x )}
n
converges
[ a, b ] .
21. Prove that f ( x ) =


sin nx is continuous on (1, +∞ ) . nx n =1
2

nπ x . Find lim f ( x ) and lim f ( x ) . 22. Let f ( x ) = ∑ cos x →1 n →1 x n =1 1 + 2 x
an n +1 r . n =0 n + 1
converges if and only if

{nan } converges.

数学分析选论习题解.华东师大

数学分析选论习题解.华东师大

《数学分析选论》习题解答第 一 章 实 数 理 论1.把§1.3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ∉=ξinf ,试证: (1)存在数列ξ=⊂∞→n n n a S a lim ,}{使;(2)存在严格递减数列ξ=⊂∞→n n n a S a lim ,}{使.证明如下:(1) 据假设,ξ>∈∀a S a 有,;且ε+ξ<'<ξ∈'∃>ε∀a S a 使得,,0.现依 次取,,2,1,1Λ==εn n n 相应地S a n ∈∃,使得Λ,2,1,=ε+ξ<<ξn a n n .因)(0∞→→εn n ,由迫敛性易知ξ=∞→n n a lim .(2) 为使上面得到的}{n a 是严格递减的,只要从2=n 起,改取Λ,3,2,,1min 1=⎭⎬⎫⎩⎨⎧+ξ=ε-n a n n n ,就能保证Λ,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □2.证明§1.3例6的(ⅱ).证 设B A ,为非空有界数集,B A S ⋃=,试证:{}B A S inf ,inf m in inf =.现证明如下.由假设,B A S ⋃=显然也是非空有界数集,因而它的下确界存在.故对任何B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有{}{}B A S B A x inf ,inf m in inf inf ,inf m in ≥⇒≥.另一方面,对任何,A x ∈ 有S x ∈,于是有S A S x inf inf inf ≥⇒≥;同理又有S B inf inf ≥.由此推得{}B A S inf ,inf m in inf ≤.综上,证得结论 {}B A S inf ,inf m in inf =成立. □3.设B A ,为有界数集,且∅≠⋂B A .证明: (1){}B A B A sup ,sup m in )sup(≤⋂; (2){}B A B A inf ,inf m ax )(inf ≥⋂. 并举出等号不成立的例子.证 这里只证(2),类似地可证(1).设B A inf ,inf =β=α.则应满足:β≥α≥∈∈∀y x B y A x ,,,有.于是,B A z ⋂∈∀,必有{}βα≥⇒⎭⎬⎫β≥α≥,max z z z , 这说明{}βα,max 是B A ⋂的一个下界.由于B A ⋂亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf m ax inf ≥⋂成立.上式中等号不成立的例子确实是存在的.例如:设)4,3(,)5,3()1,0(,)4,2(=⋂⋃==B A B A 则,这时3)(inf ,0inf ,2inf =⋂==B A B A 而,故得{}{}B A B A inf ,inf m ax inf >⋂. □ 4.设B A ,为非空有界数集.定义数集{}B b A a b a c B A ∈∈+==+,,证明:(1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.证 这里只证(2),类似地可证(1).由假设,B A inf ,inf =β=α都存在,现欲证β+α=+)(inf B A .依据下确界定义,分两步证明如下:1)因为,,,,β≥α≥∈∈∀y x B y A x 有所以B A z +∈∀,必有β+α≥+=y x z .这说明B A +β+α是的一个下界.2)B y A x ∈∈∃>ε∀00,,0,使得2,200ε+β>ε+α>y x .从而ε+β+α>+∈+=∃)(,0000z B A y x z 使得,故B A +β+α是的最大下界.于是结论 B A B A inf inf )(inf +=+ 得证. □5.设B A ,为非空有界数集,且它们所含元素皆非负.定义数集{}B b A a ab c AB ∈∈==,,证明:(1)B A AB sup sup )sup(⋅=; (2)B A AB inf inf )(inf ⋅=. 证 这里只证(1),类似地可证(2).⎪⎩⎪⎨⎧⋅≤≤≤=≥≥∈∈∃∈∀,sup sup ,sup ,sup ,,)0,0(,,)(B A c B b A a ab c b a B b A a AB c 且使由于因此B A sup sup ⋅是AB 的一个上界.另一方面,B b A a ∈∈∃>ε∀00,,0,满足ε->ε->B b A a sup ,sup 00,故)(000AB b a c ∈=∃,使得εε-+-⋅>])sup sup ([sup sup 0B A B A c .由条件,不妨设0sup sup >+B A ,故当ε足够小时,εε-+=ε'])sup sup ([B A 仍为一任意小正数.这就证得B A sup sup ⋅是AB 的最小上界,即 B A AB inf inf )(inf ⋅= 得证. □*6.证明:一个有序域如果具有完备性,则必定具有阿基米德性.证 用反证法.倘若有某个完备有序域F 不具有阿基米德性,则必存在两个正元素F ∈βα,,使序列}{αn 中没有一项大于β.于是,}{αn 有上界(β就是一个),从而由完备性假设,存在上确界λ=α}sup{n .由上确界定义,对一切正整数n ,有α≥λn ;同时存在某个正整数0n ,使α-λ>α0n .由此得出α+<λ≤α+)1()2(00n n ,这导致与0>α相矛盾.所以,具有完备性的有序域必定具有阿基米德性. □7.试用确界原理证明区间套定理. 证 设{}],[n n b a 为一区间套,即满足:0)(lim ,1221=-≤≤≤≤≤≤≤≤∞→n n n n n a b b b b a a a ΛΛΛ.由于{}n a 有上界k b ,{}n b 有下界k a (+∈N k ),因此根据确界原理,存在{}{}β≤α=β=α且,inf ,sup n n b a .倘若β<α,则有Λ,2,1,0=>λ=α-β≥-n a b n n ,而这与0)(lim =-∞→n n n a b 相矛盾,故ξ=β=α.又因Λ,2,1,=≤β=α≤n b a n n ,所以ξ是一切],[n n b a 的公共点.对于其他任一公共点Λ,2,1,],[=∈ηn b a n n ,由于∞→→-≤η-ξn a b n n ,0 ,因此只能是η=ξ,这就证得区间套{}],[n n b a 存在惟一公共点. □8.试用区间套定理证明确界原理.证 设S 为一非空有上界的数集,欲证S 存在上确界.为此构造区间套如下:令 ],[],[011M x b a =,其中M S S x ,)(0∅≠∈Θ为S 的上界.记2111b a c +=,若1c 是S 的上界,则令],[],[1122c a b a =;否则,若1c 不是S 的上界,则令],[],[1122b c b a =.一般地,若记2nn n b a c +=,则令 Λ,2,1,,,],[,,],[],[11=⎩⎨⎧=++n S c b c S c c a b a n n n n nn n n 的上界不是的上界当是.如此得到的{}],[n n b a 显然为一区间套,接下来证明这个区间套的惟一公共点ξ即为S 的上确界.由于上述区间套的特征是:对任何+∈Νn ,n b 恒为S的上界,而n a 则不为S 的上界,故S x ∈∀,有n b x ≤,再由ξ=∞→n n b lim ,便得ξ≤x ,这说明ξ是S 的一个上界;又因ξ=∞→n n a lim ,故ε-ξ>∃>ε∀n a ,0,由于n a 不是S 的上界,因此ε-ξ更加不是S 的上界.根据上确界的定义,证得S sup =ξ.同理可证,若S 为非空有下界的数集,则S 必有下确界. □ 9.试用区间套定理证明单调有界定理.证 设{}n x 为递增且有上界M 的数列,欲证{}n x 收敛.为此构造区间套如下:令],[],[111M x b a =;类似于上题那样,采用逐次二等分法构造区间套{}],[n n b a ,使n a 不是{}n x 的上界,n b 恒为{}n x 的上界.由区间套定理,],[n n b a ∈ξ∃,且使ξ==∞→∞→n n n n b a lim lim .下面进一步证明 ξ=∞→n n x lim .一方面,由∞→≤k b x k n 取,的极限,得到Λ,2,1,lim =ξ=≤∞→n b x k k n .另一方面,ε-ξ>∈∃>ε∀+K a K 使,,0Ν;由于K a 不是{}n x 的上界,故K N a x >∃;又因{}n x 递增,故当N n >时,满足N n x x ≥.于是有N n x x a n N K >ξ≤<<<ε-ξ,,这就证得ξ=∞→n n x lim .同理可证{}n x 为递减而有下界的情形. □ 10*.试用区间套定理证明聚点定理.证 设S 为实轴上的一个有界无限点集,欲证S 必定存在聚点.因S 有界,故0>∃M ,使得M x ≤,S x ∈∀.现设],[],[11M M b a -=,则],[11b a S ⊂.然后用逐次二等分法构造一区间套{}],[n n b a ,使得每次所选择的],[n n b a 都包含了S 中的无限多个点.由区间套定理,],[n n b a ∈ξ∃,n ∀.最后应用区间套定理的推论,,0>ε∀当n 充分大时,使得],[n n b a );εξ⊂(U ;由于],[n n b a 中包含了S 的无限多个点,因此);(εξU 中也包含了S 的无限多个点,根据聚点定义,上述ξ即为点集S 的一个聚点. □ 11*.试用有限覆盖定理证明区间套定理.证 设{}],[n n b a 为一区间套,欲证存在惟一的点Λ,2,1,],[=∈ξn b a n n . 下面用反证法来构造],[11b a 的一个无限覆盖.倘若{}],[n n b a 不存在公共点ξ,则],[11b a 中任一点都不是区间套的公共点.于是,∈∀x ],[11b a ,使,],[n n b a ∃],[n n b a x ∉.即);(x x U δ∃与某个],[n n b a 不相交( 注:这里用到了],[n n b a 为一闭区间 ).当x 取遍],[11b a 时,这无限多个邻域构成],[11b a 的一个无限开覆盖:{}],[);(11b a x x U H x ∈δ=.依据有限覆盖定理,存在],[11b a 的一个有限覆盖:{}H N i x U U H i x i i ⊂=δ==,,2,1);(~Λ,其中每个邻域N i b a U ii n n i ,,2,1,],[Λ=∅=⋂.若令{}N n n n K ,,,max 21Λ=,则N i b a b a i i n n K K ,,2,1,],[],[Λ=⊂,从而N i U b a i K K ,,2,1,],[Λ=∅=⋂. (Ж) 但是Y Ni iU 1=覆盖了],[11b a ,也就覆盖了],[K K b a ,这与关系式(Ж)相矛盾.所以必定存在Λ,2,1,],[=∈ξn b a n n .(有关ξ惟一性的证明,与一般方法相同.) □12.设S 为非空有界数集.证明:S S y x Sy x inf sup ||sup ,-=-∈.证 设η<ξ=η=ξ且,sup ,inf S S ( 若η=ξ,则S 为单元素集,结论显然成立 ).记{}Sy x y x E ∈-=,||,欲证ξ-η=E sup .首先,S y x ∈∀,,有ξ-η≤-⇒η≤ξ≥||,y x y x ,这说明ξ-η是E 的一个上界.又因2,0ε-η>ε∀ ⎪⎭⎫ ⎝⎛ε+ξ2不再是S 的上()下界,故S y x ∈∃00,,使ε-ξ-η≥-⇒⎪⎭⎪⎬⎫ε+ξ<ε-η>)(||220000y x y x , 所以ξ-η是E 的最小上界,于是所证结论成立. □13.证明:若数集S 存在聚点ξ,则必能找出一个各项互异的数列{}S x n ⊂,使ξ=∞→n n x lim .证 依据聚点定义,对S U x ⋂εξ∈∃=ε);(,1111ο.一般地,对于⎭⎬⎫⎩⎨⎧-ξ=ε-1,1m in n n x n ,Λο,3,2,);(=⋂εξ∈∃n S U x n n .如此得到的数列{}S x n ⊂必定满足:Λ,3,2,||||11=≠⇒ξ-<ξ---n x x x x n n n n ;ξ=⇒∞→→<ξ-∞→n n n x n n x lim )(01||. □ 41*.设S 为实轴上的一个无限点集.试证:若S 的任一无限子集必有属于S 的聚点,则(1)S 为有界集;(2)S 的所有聚点都属于S .证 (1)倘若S 无上界,则对1111,,1M x S x M >∈∃=使;一般地,对于{}Λ,3,2,,,,max 1=>∈∃=-n M x S x x n M n n n n n 使.这就得到一个各项互异的点列{}∞=⊂∞→n n n x S x lim ,使.S 的这个无限子集没有聚点,与题设条件相矛盾,所以S 必有上界.同理可证S 必有下界,故S 为有界集.(2)因S 为有界无限点集,故必有聚点.倘若S 的某一聚点S ∉ξ0,则由聚点的性质,必定存在各项互异的数列{}0lim ,ξ=⊂∞→n n n x S x 使.据题设条件,{}n x 的惟一聚点0ξ应属于S ,故又导致矛盾.所以S 的所有聚点都属于S . □51*.证明:{}{}n n a a ∉ξ=sup ,则必有ξ=∞→n n a lim .举例说明,当上述ξ属于{}n a 时,结论不一定成立.证 利用§1.3 例4,{}{}n n a a k ⊂∃,使ξ=∞→k n n a lim ,这说明ξ是{}n a 的一个聚点.又因ξ又是{}n a 的上界,故{}n a 不可能再有比ξ更大的聚点.所以ξ是{}n a 的上极限.当{}n a ∈ξ时,结论不一定成立.例如,1,111sup ⎭⎬⎫⎩⎨⎧∈=⎭⎬⎫⎩⎨⎧n n 显然不是⎭⎬⎫⎩⎨⎧n 1的上极限. □61*.指出下列数列的上、下极限:(1){}n)1(1-+; (2)⎭⎬⎫⎩⎨⎧+-12)1(n n n; (3)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧πnn 3cos; (4)⎭⎬⎫⎩⎨⎧π+4sin 12n n n ;(5)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧π+n n n sin 12. 解(1)0lim ,2lim ,0,2122==≡≡∞→∞→-n n n n k k a a a a 故.(2))(211412,21142122∞→-→---=→+=-k k k a k ka k k ,故21lim ,21lim -==∞→∞→n n n n a a . (3))(13cos211∞→≤π≤←n n nn, 故 1lim lim lim ===∞→∞→∞→n n n n n n a a a .(4)⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧--=+⋅--=+-=+=+++=+⋅=π+=.38,18,12222,8,12,4,0,28,12,38,18,12224sin 12k k n n nk n n n k n k n n n k k n n n n n n a n故2lim ,2lim -==∞→∞→n n n n a a . (5))(sin )1(sin 1222∞→π→ππ⋅+π=π+=n nn nn nn n a n ,故π===∞→∞→∞→n n n n n n a a a lim lim lim . □71*.设{}n a 为有界数列,证明:(1)1lim )(lim =-=-∞→∞→n n n n a a ; (2)n n n n a a ∞→∞→-=-lim )(lim .证 由)(sup )(inf ,)(inf )(sup k nk k nk k nk k nk a a a a ≥≥≥≥-=--=-,令∞→n 取极限,即得结论(1)与(2). □81*.设0lim >∞→n n a ,证明:(1)nn n n a a ∞→∞→=lim 11lim; (2)nn n n a a ∞→∞→=lim 11lim;(3)若11limlim =⋅∞→∞→n n n n a a ,或11lim lim =⋅∞→∞→nn n n a a ,则{}n a 必定收敛.证 由)(sup 11inf ,)(inf 11sup k nk k n k kn k k n k a a a a ≥≥≥≥=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛,令∞→n 取极限,即得结论(1)与(2).若11limlim =⋅∞→∞→n n n n a a ,则由(1)立即得到 n n n n a a ∞→∞→=lim lim ,因此极限n n a ∞→lim 存在,即得结论(3).类似地,若11limlim =⋅∞→∞→nn n n a a ,则由(2)同样可证得(3). □ 第 二 章 连 续 性1. 设ny x ℜ∈,,证明:)||||||||(2||||||||2222y x y x y x +=-++.证 由向量模的定义, ∑∑==-++=-++ni i i ni i i y x y x y x y x 121222)()(||||||||∑=+=+=ni ii y x y x 12222)||||||||(2)(2. □ 2*. 设nn x S ℜ∈ℜ⊂点,到集合S 的距离定义为),(inf ),(y x S x Sy ρ=ρ∈.证明:(1)若S 是闭集,S x ∉,则0),(>S x ρ;(2)若dS S S ⋃=( 称为S 的闭包 ),则{}0),(|=ρℜ∈=S x x S n .证 (1)倘若0),(=S x ρ,则由),(S x ρ的定义,S y n ∈∃,使得Λ,2,1,1),(=<ρn ny x n . 因 S x ∉,故x y n ≠,于是x 必为S 的聚点;又因S 是闭集,故S x ∈,这就导致矛盾.所以证得0),(>S x ρ.(2)S x ∈∀.若S x ∈,则0),(=ρS x 显然成立.若S x ∉,则dS x ∈(即x为S 的聚点),由聚点定义,∅≠⋂ε>ε∀S x U );(,0ο,因此同样有0),(),(inf =ρ=ρ∈S x y x Sy .反之,凡是满足0),(=ρS x 的点x ,不可能是S 的外点( 若为外点,则存在正数0ε,使∅=⋂εS x U );(0,这导致0),(inf 0>ε≥ρ∈y x Sy ,与0),(=ρS x 相矛盾).从而x 只能是S 的聚点或孤立点.若x 为聚点,则S S x ⊂∈d ;若x 为孤立点,则S S x ⊂∈.所以这样的点x 必定属于S .综上,证得 {}0),(|=ρℜ∈=S x x S n成立. □3.证明:对任何n S ℜ⊂,dS 必为闭集.证 如图所示,设0x 为dS的任一聚点,欲证∈0x dS ,即0x 亦为S 的聚点.这是因为由聚点定义,y ∃>ε∀,0,使得 d S x U y ⋂ε∈);(0ο.再由y 为S 的聚点,);();(0ε⊂δ∀x U y U ο,有∅≠⋂δS y U );(ο.于是又有∅≠⋂εS x U );(0ο,所以0x 为S 的聚点,即∈0x d S ,亦即dS 为闭集. □4.证明:对任何nS ℜ⊂,S ∂必为闭集.证 如图所示,设0x 为S ∂的任一聚点,欲证S x ∂∈0,即0x 亦为S 的界点. 由聚点定义,y ∃>ε∀,0,使S x U y ∂⋂ε∈);(0ο.再由y 为界点的定义,);();(0ε⊂δ∀x U y U ,0x ο);(δy U);(0εx U οοS S∂ο);(δy U);(0εx U οοSd S0x在);(δy U 内既有S 的内点,又有S 的外点.由此证得在);(0εx U 内既有S 的内点,又有S 的外点,所以0x 为S 的界点,即S ∂必为闭集. □*5.设nS ℜ⊂,0x 为S 的任一内点,1x 为S 的任一外点.证明:联结0x 与1x 的直线段必与S ∂至少有一交点.证 如图所示,把直线段10x x 置于一实轴上,并 为叙述方便起见,约定此实轴上的点与其坐标用同一字 母表示.下面用区间套方法来证明∅≠∂⋂S x x 10.记2,],[],[1111011b a c x x b a +==.若S c ∂∈1,则结论成立;若1c 为S 的内点,则取],[],[1122b c b a =;若1c 为S 的外点,则取],[],[1122c a b a =.一般地,用逐次二等分法构造区间套:记2nn n b a c +=( 不妨设S c n ∂∉),并取Λ,2,1,,],[,,],[],[11=⎩⎨⎧=++n S c c a S c b c b a n nn n n n n n 的外点为的内点为.此区间套的特征是:其中每个闭区间的左端点n a 恒为S 的内点,右端点n b 恒为S 的外点.现设y b a n n n n ==∞→∞→lim lim ,下面证明S y ∂∈.由区间套定理的推论,0>ε∀,当n 足够大时,);(],[ε⊂y U b a n n ,因此在);(εy U 中既含有S 的内点(例如n a ),又含有S 的外点(例如n b ),所以10x x 上的点y 必是S 的界点. □ 6.证明聚点定理的推论2和推论3.(1) 推论2 nℜ中的无限点集S 为有界集的充要条件是:S 的任一无限子集必有聚点.证 [必要性] 当S 为有界集时,S 的任一无限子集亦为有界集,由聚点定理直接 推知结论成立.[充分性] 用反证法来证明.倘若S 为无界集,则必能求得一个点列{}S P k ⊂, 使得+∞=∞→||||lim k k P .这个{}k P 作为S 的一个无限子集不存在聚点,与条件矛盾.故S为有界集. □(2)推论3 nℜ中的无限点集S 为有界闭集的充要条件是:S 为列紧集,即S的任一无限子集必有属于S 的聚点.证 [必要性] 因S 有界,故S 的任一无限子集亦有界,由聚点定理,这种无限子集必有聚点.又因子集的聚点也是S 的聚点,而S 为闭集,故子集的聚点必属于S .[充分性] 由上面(1)的充分性证明,已知S 必为有界集.下面用反证法再来证明S 为闭集.倘若S 的某一聚点S P ∉,则由聚点性质,存在各项互异的点列{}S P k ⊂,使 P P k k =∞→lim .据题设条件,{}k P 的惟一聚点P 应属于S ,故又导致矛盾.所以S 的所有聚点都属于S ,即S 为闭集. □7.设X B A X f X mn ⊂ℜ→ℜ⊂,,,:.证明:(1))()()(B f A f B A f ⋃=⋃; (2))()()(B f A f B A f ⋂⊂⋂;(3)若f 为一一映射,则)()()(B f A f B A f ⋂=⋂.证 (1))(,,)(x f y B A x B A f y =⋃∈∃⋃∈∀使.若)(,A f y A x ∈∈则; 若)(,B f y B x ∈∈则.所以,当)()()(,B f A f x f y B A x ⋃∈=⋃∈时.这表示)()()(B f A f B A f ⋃⊂⋃.反之,)(,,)()(x f y X x B f A f y =∈∃⋃∈∀使.若A x A f y ∈∈则,)(;若B x B f y ∈∈则,)(,于是B A x ⋃∈.这表示)()(B A f x f y ⋃∈=,亦即)()()(B f A f B A f ⋃⊃⋃.综上,结论)()()(B f A f B A f ⋃=⋃得证.(2)y x f B A x B A f y =⋂∈∃⋂∈∀)(,,)(使.因A x ∈且B x ∈,故)()()()(B f x f A f x f ∈∈且,即 )()()(B f A f x f y ⋂∈=,亦即 )()()(B f A f B A f ⋂⊂⋂.然而此式反过来不一定成立.例如]2,1[,]1,2[,)(2-=-==B A x x f ,则有]4,0[)()()()(=⋂==B f A f B f A f ; ]1,0[)(,]1,1[=⋂-=⋂B A f B A .可见在一般情形下,)()()(B A f B f A f ⋂⊄⋂.(3))()(B f A f y ⋂∈∀,B x A x ∈∈∃21,,使)()(21x f x f y ==.当f 为 一一映射时,只能是B A x x ⋂∈=21,于是)(B A f y ⋂∈,故得)()()(B A f B f A f ⋂⊂⋂.联系(2),便证得当f 为一一映射时,等式)()()(B A f B f A f ⋂=⋂成立. □8.设mn m n c b a g f ℜ∈ℜ∈ℜ→ℜ,,,,:,且c x g b x f ax ax ==→→)(lim ,)(lim .证明:(1)0||||,||||||)(||lim ==→b b x f ax 当且时可逆;(2)c b x g x f ax T])()([lim =T →.证 设[][]T T ==)(,,)()(,)(,,)()(11x g x g x g x f x f x f m m ΛΛ,T T T ===],,[,],,[,],,[111m m n c c c b b b a a a ΛΛΛ.利用向量函数极限与其分量函数极限的等价形式,知道m i c x g b x f i i ax i i ax ,,2,1,)(lim ,)(lim Λ===→→.(1)||||)()(lim||)(||lim 221221b b b x f x f x f m m ax ax =++=++=→→ΛΛ.当0||||=b 时,由于||)(||||||||)(||x f b x f =-,因此由0||)(||lim =→x f ax ,推知m i x f i ax ,,2,1,0)(lim 2Λ==→,即得0)(lim =→x f ax .(2)类似地有cb c b c b x g x f x g x f x g x f m m m m ax ax T→T →=+=++=ΛΛ1111])()()()([lim ])()([lim .□9.设mn D f D ℜ→ℜ⊂:,.试证:若存在证数r k ,,对任何D y x ∈,满足r y x k y f x f ||||||)()(||-≤-,则f 在D 上连续,且一致连续.证 这里只需直接证明f 在D 上一致连续即可.0,01>⎪⎭⎫ ⎝⎛ε=δ∃>ε∀rk ,对任何D y x ∈,,只要满足δ<-||||y x ,便有ε<-≤-r y x k y f x f ||||||)()(||.由于这里的δ只与ε有关,故由一致连续的柯西准则(充分性),证得f 在D 上一致连续. □10.设mn D f D ℜ→ℜ⊂:,.试证:若f 在点D x ∈0连续,则f 在0x 近旁局部有界.证 由f 在点0x 连续的定义,对于1=ε,0>δ∃,当)(0δ∈;x U x 时,满足||)(||1||)(||1||)()(||||)(||||)(||000x f x f x f x f x f x f +≤⇒<-≤-,所以f 在0x 近旁局部有界. □11.设m n f ℜ→ℜ:为连续函数,n A ℜ⊂为任一开集,nB ℜ⊂为任一闭集.试问)(A f 是否必为开集?)(B f 是否必为闭集?为什么?解 )(A f 不一定为开集.例如),(,sin )(ππ-∈=x x x f .这里),(ππ-=A 为开集,但]1,1[)(-=A f 却为闭集.当B 为有界闭集时,由连续函数的性质知道)(B f 必为闭集且有界.但当B 为无界 闭集时,)(B f 就不一定为闭集,例如),(,arctan )(∞+-∞∈=x x x f . 这里),(∞+-∞=B 可看作一闭集,而⎪⎭⎫ ⎝⎛ππ-=2,2)(B f 却为一开集. □ 12.设nn D D ℜ→ϕℜ⊂:,.试举例说明:(1)仅有D D ⊂ϕ)(,ϕ不一定为一压缩映射;(2)仅有存在)10(<<q q ,使对任何D x x ∈''',,满足||||||)()(||x x q x x ''-'≤''ϕ-'ϕ,此时ϕ也不一定为一压缩映射.解 (1)例如),0[,1)(∞+∈+=ϕx x x .这里),0[∞+=D 为一闭域,它虽然满足D D ⊂∞+=ϕ),1[)(,但因|||)()(|x x x x ''-'=''ϕ-'ϕ,所以ϕ不是压缩映射.(注:这也可根据压缩映射原理来说明,由x x =+1无解,即ϕ没有不动点,故ϕ不是压缩映射.)(2) 例如]1,1[,12)(-=∈+=ϕD x xx .它虽然满足 )50(||21|)()(|.=''-'=''ϕ-'ϕq x x x x ,但因D D ⊄⎥⎦⎤⎢⎣⎡=ϕ23,21)(,故此ϕ仍不是一个压缩映射. □ 13.讨论b a ,取怎样的值时,能使下列函数在指定的区间上成为一个压缩映射:(1)],[,)(1b a x x x ∈=ϕ; (2)],[,)(22a a x x x -∈=ϕ;(3)],[,)(3b a x x x ∈=ϕ; (4)],0[,)(4a x b ax x ∈+=ϕ.解 (1)由|||)()(|11x x x x ''-'=''ϕ-'ϕ,可知对任何b a ,,1ϕ在],[b a 上都不可能是压缩映射.(2)首先,只有当10≤≤a 时,才能使],[],0[)],[(22a a a a a -⊂=-ϕ.其次,由于对任何],[,a a x x -∈'''都有||2|||||)()(|22x x a x x x x x x ''-'<''-'⋅''+'=''ϕ-'ϕ,因此只要取120<=<a q ,即210<<a ,就能保证2ϕ在],[a a -上为一压缩映射. (3) 由],[],[)],[(3b a b a b a ⊂=ϕ,可知b a ≤≤≤10.再由||21||||x x ax x x x x x ''-'<''+'''-'=''-',又可求得21>a ,即41>a .所以,当取b a ≤≤<141时,就能保证3ϕ在],[b a 上为一压缩映射.(4) 由于0>a ,因此可由a b a b ax b ≤+≤+≤≤20,解出a a ≤2( 即10≤<a ),0≥b .再由||||x x a b x a b x a ''-'=-''-+',可见只要0,10≥<<b a ,就能保证4ϕ在],0[a 上为一压缩映射. □14.试用不动点方法证明方程0ln =+x x 在区间[]3/2,2/1上有惟一解;并用迭代法求出这个解(精确到四位有效数字).解 若直接取x x x x x ln )ln ()(-=+-=ϕ,则因∈>≥=ϕ'x x x ,1231|)(|[]3/2,2/1, 可知ϕ在[]3/2,2/1上不是压缩映射.为此把方程改写成x x -=e ,并设x x x x x --=--=ϕe e )()(.由于在[]3/2,2/1上 11|||)(|<≤-=ϕ'-ee x x ,且[][]3/2,2/1],[)3/2,2/1(2/13/2⊂=ϕ--e e ,所以x x -=ϕe )(在[]3/2,2/1上为一压缩映射,且在[]3/2,2/1上有惟一不动点.取2/10=x ,按kx k x -+=e1迭代计算如下:k k x k k x k k x0 1 2 30.5 0.6065 0.5452 0.57974 5 6 70.5601 0.5712 0.5649 0.5684M M 15 16 170.5672 0.5671 0.5671所以,方程x x -=e 即0ln =+x x 的解(精确到四位有效数字)为17650.=*x . □15.设 nB f ℜ→:,其中{}r x x x B n ≤ρℜ∈=),(|0为一个n 维闭球(球心为0x ).试证:若存在正数)10(<<q q ,使对一切B x x ∈''',,都有||||||)()(||x x q x f x f ''-'≤''-', r q x x f )1(||)(||00-≤-,则f 在B 中有惟一的不动点.证 显然,只需证得了B B f ⊂)(,连同条件便知f 在B 上为一压缩映射,从而有惟一的不动点.现证明如下:)(,x f y B x =∈∀.由r x x ≤-||||0,以及题设条件的两个不等式,得到.r r q r q r q x x q x x f x f x f x y =-+≤-+-≤-+-≤-)1()1(||||||)(||||)()(||||||00000这表示B x f y ∈=)(,即B B f ⊂)(. □第 三 章 微 分 学1.考察||)(x x f xe =的可导性.解 写出)(x f 的分段表达式:⎩⎨⎧<-≥=.0,,0,)(x x x x x f xx e e它在0≠x 时的导数为⎩⎨⎧<+->+=';0,)1(,0,)1()(x x x x x f xx e e而当0=x 时,由于10lim )0(,10lim )0(00=-='-=--='+-→+→-x e x f x e x f x x x x ,因此f 在0=x 处不可导. □2.设⎩⎨⎧<+≥=.3,,3,)(2x b ax x x x f若要求f 在3=x 处可导,试求b a ,的值.解 首先,由f 在3=x 处必须连续,得到93=+b a ,或a b 39-=-.再由a x x a xb ax f x x =--=--+='--→→-3)3(lim 39lim)3(33,6)3(lim 39lim )3(323=+=--='++→→+x x x f x x ,又得939,6-=-==a b a . □3.设对所有x ,有)()()(x h x g x f ≤≤,且)()(,)()()(a h a f a h a g a f '='==.试证:)(x g 在a x =处可导,且)()(a f a g '='.证 由条件,有)()()()()()(a h x h a g x g a f x f -≤-≤-,从而又有)()()()()()()(a x a x a h x h a x a g x g a x a f x f >--≤--≤--, )()()()()()()(a x ax a h x h a x a g x g a x a f x f <--≥--≥--.由于)()(a h a f '=',因此)()()()()(a h a h a f a f a f -+-+'='='='=',故对以上两式分别取-+→→a x a x 与的极限,得到)()()()()()(a h a g a f a h a g a f ---+++'='=''='='与. 于是有)()(a g a g -+'=',即证得)(x g 在a x =处可导,且)()(a f a g '='. □4.证明:若)(x f 在],[b a 上连续,且0)()(,0)()(>''==-+b f a f b f a f .,则存在点),(b a ∈ξ,使0)(=ξf .证 如图所示,设0)(,0)(>'>'-+b f a f .由极限保号性,在点a 的某一右邻域)(a U +ο 内,使0)(0)()(>'⇒>-'-'x f a x a f x f ,∈'x )(a U +ο;同理,在点b 的某一左邻域内,有0)(0)()(<''⇒>-''-''x f bx b f x f ,∈''x )(b U -ο.最后利用连续函数)(x f 在],[x x '''上的介值性,必定),(),(b a x x ⊂'''∈ξ∃,使0)(=ξf . □*5.设),(,)(b a x x f ∈,它在点),(0b a x ∈可导;{}{}n n y x 与是满足b y x x a n n <<<<0),2,1(Λ=n ,且n n n n y x x ∞→∞→==lim lim 0的任意两个数列.证明:)()()(lim0x f x y x f y f nn n n n '=--∞→.证 先作变形:nn n n n n n n n n n n n n x x x f x f x y x x x y x f y f x y x y x y x f y f ----+----=--000000)()()()()()(...由)(0x f '存在,故δ<-<>δ∃>ε∀||0,0,00x x 当时,有ε<'---<ε-)()()(000x f x x x f x f .又由0lim lim x y x n n n n ==∞→∞→,故对上述0>δ,N n N >>∃当,0时,有δ<-<δ<-<n n x x x y 000,0.从而得到ε<'---<ε-)()()(000x f x y x f y f n n ,ε<'---<ε-)()()(000x f x x x f x f nn .分别以正数n n n x y x y --0与nn nx y x x --0乘以上两式,并相加,又得到.⎪⎪⎭⎫⎝⎛--+--ε<'⎪⎪⎭⎫⎝⎛--+-----<⎪⎪⎭⎫ ⎝⎛--+--ε-n n n n n n n n n n n n n n nn nn n n x y x x x y x y x f x y x x x y x y x y x f y f x y x x x y x y 000000000)()()(把它化简整理后,即为)()()()(0N n x f x y x f y f nn n n >ε<'---<ε-.从而证得结论:)()()(lim0x f x y x f y f nn n n n '=--∞→. □6.设)(x f 在],[b a 上连续,在),(b a 内可导,通过引入适当的辅助函数,证明: (1)存在),(b a ∈ξ,使得)()(])()([222ξ'-=-ξf a b a f b f ;(2)存在),(b a ∈η,使得)0()()ln ()()(b a f a ba fb f <<η'η=-.证 (1)在一般形式的中值定理( 定理3 . 8 )中,令2)(x x g =,即得本题结论.(2)把欲证的式子改写成)(]ln ln [1])()([η'-=η-f a b a f b f ,且令x x g ln )(=,上式即为关于)(x f 与)(x g 所满足的一般中值公式. □7.证明推广的罗尔定理:若)(x f 在),(∞+∞-上可导,且l x f x f x x ==∞+→∞-→)(lim )(lim( 包括)∞±=l ,则存在ξ,使得0)(=ξ'f .证 关键在于证明存在两点b a ,,使)(a f )(b f =.为此任取一点0x ,使l x f ≠)(0( 这样的点0x 若不存在,则0)()(≡'⇒≡x f l x f ).如图所示,设l x f <)(0.由于l x f x =∞→)(lim ,因此对于02)(0>-=εx f l ,0>∃X ,当X x >||时,满足ε+<<ε-l x f l )(.现取X x X x >''-<',,并使x x x ''<<'0.由于)()(,)()(00x f l x f x f l x f ''<ε-<>ε->',借助连续函数的介值性,必存在),(),(00x x b x x a ''∈'∈与,使得])([21)()(0x f l l b f a f +=ε-==. 于是由罗尔定理,存在),(b a ∈ξ,使得0)(=ξ'f . □8.证明:若)(x f 和)(x g 在],[b a 上连续,在),(b a 内可导,且0)(≠'x g , 则存在),(b a ∈ξ,使得)()()()()()(ξ--ξ=ξ'ξ'g b g a f f g f .证 令)()()()()()()(x g a f b g x f x g x f x --=ϕ,它在],[b a 上连续,在),(b a 内可导,且 )()()()(b g a f b a -=ϕ=ϕ.由罗尔定理,存在),(b a ∈ξ,使得0)()()()()()()()()(=ξ'-ξ'-ξ'ξ+ξξ'=ξϕ'g a f b g f g f g f ,即])()([)(])()([)(a f f g g b g f -ξξ'=ξ-ξ'.由于0)(≠ξ'g ,)()(ξ≠g b g ( 根据0)(≠'x g 和导函数具有介值性,推知)(x g '恒正或恒复,故)(x g 严格单调 ),因此可把上式化为结论式)()()()()()(ξ--ξ=ξ'ξ'g b g a f f g f . □*9.设),(,|)(|,|)(|20∞+∞-∈≤''≤x M x f M x f .证明:202|)(|M M x f ≤',),(∞+∞-∈x .证 若02=M ,则可相继推出:B Cx x f C x f x f +=⇒≡'⇒≡'')()(0)(,再由0|)(|M x f ≤,可知0)(0≡'⇒=x f C ,结论成立.同理,当00=M 时结论同样成立.现设00>M ,02>M .利用泰勒公式,⎪⎪⎭⎫⎝⎛+∈ξ∃202,M M x x ,使 )(421)(2)(222020ξ''+'+=⎪⎪⎭⎫⎝⎛+f M M x f M M x f M M x f .. 由此得到,42)(2)(2|)(|20220020202M M M M M M f M M x f M M x f x f M M =++≤ξ''--⎪⎪⎭⎫ ⎝⎛+='于是证得 200022421|)(|M M M M M x f =≤'.. □*10.设)(x f 在],[b a 上二阶可导,0)()(='='-+b f a f .证明:),(b a ∈ξ∃,使得|)()(|)(4|)(|2a fb f a b f --≥ξ''.证 将⎪⎭⎫⎝⎛+2b a f 分别在点a 与b 作泰勒展开: ⎪⎭⎫ ⎝⎛+2b a f =⎪⎭⎫ ⎝⎛+∈ξ⎪⎭⎫ ⎝⎛-ξ''+2,,2!2)()(121b a a a b f a f ,⎪⎭⎫ ⎝⎛+2b a f =⎪⎭⎫⎝⎛+∈ξ⎪⎭⎫ ⎝⎛-ξ''+b b a a b f b f ,2,2!2)()(222, 以上两式相减后得到=-)()(a f b f [])()(221212ξ''-ξ''⎪⎭⎫ ⎝⎛-f f a b .设=ξ'')(f {})(,)(max21ξ''ξ''f f ,则有≤-)()(a f b f ())(2)()(2212212ξ''⎪⎭⎫ ⎝⎛-≤ξ''+ξ''⎪⎭⎫ ⎝⎛-f a b f f a b ,于是证得结论: |)()(|)(4|)(|2a fb f a b f --≥ξ''. □*11.设在],0[a 上有M x f ≤'')(,且)(x f 在),0(a 内存在最大值.证明: M a a f f ≤'+')()0(.证 设)(x f 在∈c ),0(a 取得最大值,则)(c f 也是一个极大值,故0)(='c f .由微分中值公式得到),0(,)()0()()()0(111c f c c f c f f ∈ξξ''-=-ξ''+'=', ),(,)()()()()()(222a c f c a c a f c f a f ∈ξξ''-=-ξ''+'=';从而又有M c a f c a a f cM f c f )()()()(,)()0(21-≤ξ''-='≤ξ''=',由此立即证得 M a a f f ≤'+')()0(. □*12.证明:若),(00y x f x '存在,),(y x f y'在点0P ),(00y x 连续,则),(y x f 在点0P 可微.证 =∆z -∆+∆+),(00y y x x f ),(00y x f =-∆+∆+),([00y y x x f ]),(00y x x f ∆+ -∆++),([00y x x f ]),(00y x f .因),(y x f y'在点0P 连续,故z ∆的第一部分可表为 -∆+∆+),(00y y x x f ),(00y x x f ∆+=y y y x x f y∆∆θ+∆+'),(00 =y y y x f y ∆β+∆'),(00(其中0lim 0=β→∆→∆y x );又因),(00y x f x '存在,故z ∆的第二部分可表为-∆+),(00y x x f =),(00y x f x x y x f x ∆α+∆'),(00(其中0lim 0=α→∆x ).所以有=∆z +∆'x y x f x ),(00y x y y x f y∆β+∆α+∆'),(00, 而且由于)0,0(0||||22→∆→∆→β+α≤∆+∆∆β+∆αy x yx y x ,便证得),(y x f 在点0P 可微. □13.若二元函数f 与g 满足:f 在点0P ),(00y x 连续,g 在点0P 可微,且0)(0=P g ,则g f .在点0P 可微,且)()()(000P g P f g f P d d =..证 记g f h .=.由于g 在点0P 可微,根据定理3.4(必要性),存在向量函数[])(,)()(21P G P G P G =,它在点0P 连续,且满足.)()(,))(()()()(0000P G P g P P P G P g P g P g ='-=-=由此得到,)()()()()()()()()()()(00000P P P H P P P G P f P g P f P g P f P h P h -=-=-=-其中)()()(P G P f P H =在点0P 连续.仍由定理3.4(充分性),推知h 在点0P 可微,且因)()()()()()(000000P g P f P G P f P H P h '===,进一步证得 )()()(000P g P f hg f P P d d d ==.. □14.设⎪⎩⎪⎨⎧=≠+=.)0,0(),(,0,)0,0(),(,),(222y x y x y x y x y x f证明:(1)f 在原点O )0,0(连续;(2)y x f f '',在点O 都存在; (3)y x f f '',在点O 不连续; (4)f 在点O 不可微.证 (1)若令θ=θ=sin ,cos r y r x ,则因0sin cos lim )sin ,cos (lim 20=θθ=θθ→→r r r f r r ,可知f 在0=r 处(即在点O 处)连续.(2) ⎪⎩⎪⎨⎧.0)0,0(),0(lim )0,0(,0)0,0()0,(lim)0,0(0=∆-∆='=∆-∆='→∆→∆yf y f f xf x f f y yx x(3)求出⎪⎩⎪⎨⎧≠≠+-=';)0,0(),(,0,)0,0(),(,)()(),(222222y x y x y x x y y y x f x⎪⎩⎪⎨⎧≠≠+='.)0,0(),(,0,)0,0(),(,)(2),(2223y x y x y x y x y x f y由于当0≠r 时,,sin cos 2)sin ,cos (,)cos sin (sin )sin ,cos (3222θθ=θθ'θ-θθ=θθ'r r f r r f y x它们都不随0→r 而趋于0( 随θ而异 ),因此yx f f '',在点O 都不连续. (4)倘若f 在点O 可微,则.)()0,0()0,0()0,0(),(22222y x o y x y x y f x f f y x f y x ∆+∆=∆+∆∆∆=∆'-∆'--∆∆但是当令θ=∆θ=∆sin ,cos r y r x 时,)0(0\sin cos )(22/3222→→θθ=∆+∆∆∆r y x y x ,所以f 在点O 不可微.□15.设可微函数),(y x f 在含有原点为内点的凸区域D 上满足0),(),(='+'y x f y y x f x yx . 试证:≡),(y x f 常数,D y x ∈),(.证 对于复合函数θ=θ==sin ,cos ,),(y r x y x f z ,由于,)0(0)(1sin cos ≠='+'=θ'+θ'=∂∂'+∂∂'=∂∂r f y f x rf f ryf r x f r z yx yx y x因此在极坐标系里f 与r 无关,或者说f 只是θ的函数( 除原点外 ).如图所示,2121,,OP OP D P P 与∈∀的 极角分别为21θθ与.若21θ=θ,则由上面 讨论知道)()(21P f P f =.若21θ≠θ,此时 利用f 在点O 连续,当动点P 分别沿半直线21θ=θθ=θ与趋向点O 时,f 在1θ=θ上的常值与在2θ=θ上的常值都应等于)(O f .这就证得)()(21P f P f =,即≡),(y x f 常数,D y x ∈),(. □*16.设二元函数),(y x f 在2ℜ上有连续偏导数,且)1,0()0,1(f f =.试证:在单位圆122=+y x 上至少有两点满足),(),(y x f x y x f y yx '='. 证 在单位圆1=r 上,记π≤θ≤θθ=θϕ20,)sin ,cos ()(f .由于y xf f ''与连续,故f 可微,一元函ϕ也可微. 已知)2()1,0()0,1()0(πϕ===ϕf f ,由罗尔定理,)2,0(1π∈θ∃,使得0)(1=θϕ'.同理,由)2()2(πϕ=πϕ,)2,2(2ππ∈θ∃,使得0)(2=θϕ'.而y x yx f x f y f r f r r r f '+'-='θ+'θ-=θθθ∂∂cos sin )sin ,cos (, 1)()(='+'-=θϕ'r yx f x f y ,故在1=r 上存在两点)sin ,cos ()sin ,cos (222111θθθθP P 和,满足2,1,)()(='='i P f x P f y i y i x. □ 17.证明:(1)若),(y x f 在凸开域D 上处处有0),(),(='='y x f y x f y x,则≡),(y x f 常数,D y x ∈),(;*(2)若),(y x f 在开域D 上处处有0),(),(='='y x f y x f y x ,则同样有≡),(y x f 常数,D y x ∈),(.证 (1)由于D 为凸开域,因此D y x y x ∈∀),(,),(21,联结这两点的直线段必含于D , 根据§3.5的例10知道),(y x f 与x 无关;类似地,),(y x f 又与y 无关.这样,f 在D 上各点处的值恒相等.(2)当D 为一般开域时( 如图 ),D Q P ∈∀,,必存在一条全含于D 内、联结Q P ,两点的有限折线.又因这条折线上 的点全为D 的内点,故在每一点处有一邻域含于D 限个邻域所覆盖.在这每一个邻域内,由(1)已知≡),(y x f 常数,而相邻两个邻域之交非空,故经有限次推理,可知)()(Q f P f =.由Q P ,在D 内的任意性,这就证得在整个D 上≡),(y x f 常数. □ 18.证明:若),(y x f 存在连续的二阶偏导数,且令θ+θ=θ-θ=cos sin ,sin cos v u y v u x( 其中θ为常量 ),则在此坐标旋转变换之下,yy xxf f ''+''为一形式不变量,即 vv uu yy xxf f f f ''+''=''+''. 证 由条件,x y y xf f ''='',且有 xOy• D•QP⎩⎨⎧θ'+θ'-=''+''='θ'+θ'=''+''=';cos sin ,sin cos y x v y vx v y x u y ux u f f y f x f f f f y f x f f⎪⎩⎪⎨⎧θ''+θθ''-θ''=''θ''+θθ''+θ''=θ'''+'''+θ'''+'''=''.2222cos cos sin 2sin ,sin cos sin 2cos sin )(cos )(y y y x x x vv y y y x x x u y y u x y u y x ux x u u f f f f f f f y f x f y f x f f 由此容易推至结论 vv uu yy xxf f f f ''+''=''+''成立. □ *19.设2ℜ⊂D 为一有界闭域,),(y x f 在D 上可微,且满足),(),(),(y x f y x f y x f yx ='+'. 证明:若f 在D ∂上的值恒为零,则f 在D 上的值亦恒为零.证 由于f 在D 上可微,D 为有界闭域,因此f 在D 上存在最大值和最小值,分别设为)()(21P f m P f M ==和.如果D P int 1∈,则)(1P f 为一极大值,故满足0)()(11='='P f P f y x,由条件, 0)()()(111='+'==P f P f P f M yx ; 如果D P int 2∈,则)(2P f 为一极小值,同理有0)(2==P f m ;如果M 与m 都在D 的内部取得,则有0==m M ;如果D P P ∂∈)(21或,则由条件又使M 0)(=m 或.综上,在任何情形下恒有D y x y x f m M ∈≡⇒==),(,0),(0. □ 20.设),(v u f 为可微函数.试证:曲面0),(=--by z ay x f 的任一切平面恒与某一直线平行.证 由于f 可微,因此该曲面在其上任一点处的法向量为()v v u u f f b f a f z f y f x f n ''-'-'=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂=,,,,ρ.又因0=l n ρρ.,其中),1,(b a l =ρ,所以上述法向量n ρ恒与常向量l ρ正交.这说明以n ρ为法向量的切平面恒与以l ρ为方向向量的直线相互平行. □21.证明:以λ为参数的曲线族。

数学分析讲义 第四版 (刘玉琏 傅沛仁 著) 高等教育出版社 课后答案 第四单元

数学分析讲义 第四版 (刘玉琏 傅沛仁 著) 高等教育出版社 课后答案 第四单元

[a, b].
, n(
)
:
{(yi − δyi, y + δyi)|yi ∈ [a, b], i = 1, 2, · · · , n}
[a, b].∀x ∈ (yi − δyi, y + δyi) ∩ [a, b],
f (x) = f (yi), i = 1, 2, · · · , n. 2
m = min{f (yi)|i = 1, 2, · · · , n} > 0.
1 − ε < sin x0(
sup{sin x|x ∈ (0, 2π]} = 1.
arcsin(1 − ε) < x0).
,
inf{sin x|x ∈ (0, 2π]} = −1.
5. : A
,sup A = a( inf A = b).
sup A = a,
1 ∀x ∈ A x ≤ a; 2 ∀ε > 0∃x0 ∈ A, a − ε < x0. , 1 ∀(−x) ∈ −A, −x0 < −a &#, c − ε < f (x0) ≤ c.
∃δ = b − x0 > 0, ∀x : b − δ < x < b ∀x : x0 < x < b, c−ε < f (x0) ≤ f (x) ≤ c
lim f (x) = c.
x→b−
2.4 14
17
.
,
c
,
9.1( )(244) 9.1( )(266) 9.2( )(290) 9.4(309)
9.1( )(252) 9.2( )(273) 9.3(298)
1
10.1(323) 10.3(334)
11.1(366) 11.3(378)

数学分析选讲复习资料参考答案

数学分析选讲复习资料参考答案

数学分析选讲复习资料参考答案一、选择题(将符合要求的结论题号,填在题末的括号内,每题至多选两个题号):1、下列命题中,正确的是:A 、若()f x 在点0x 连续,则()f x 在0x 连续;B 、若 ()f x 在(,)a b 上连续;则对0,()f x ε∀>在[,]a b εε+-上连续;C 、若()f x 是初等函数,其定义域为(,)a b ,则()f x 在(,)a b 有界;D 、函数()y f x =在0x 点连续的充要条件是()f x 在0x 点的左、右极限存在. 答:( B ) 2、当0x x →时,()f x 以B 为极限,则A 、0,0,εδ∀>∀>存在x 满足00,x x δ<-<有()f xB ε-<; B 、0,0,εδ∀>∃>00x x δ<-<当时,有()f x B ε-<;C 、存在00{},(1,2),()n n n x x x n x x n ≠=→→∞L ,使{()}n f x 不以B 为极限;D 、0x x →时,()f x 的极限存在. 答:( B D )3、设函数()f x 在[,]a b 上连续,则在[,]a b 上有A 、()()ba d f x dx f x dx =⎰; B 、()()xad f t dt f x dx =⎰;C 、;()f x 在[,]a b 上单调;D 、()f x 在[,]a b 上未必有最大值. 答:( B ) 4、设级数n u ∑收敛,则A 、0,N ∃> 当n m N >>时,11/2m m n u u u ++++<L .B 、{}1n n u =∞有界;C 、绝对收敛;D 、 lim n n u →∞未必存在答:( AB ) 5、若数列{}1n n a =∞满足lim nn a a →∞=,则下列说法正确的是( B )A 、0,ε∀> 0,N ∀>当n N >时,都有n a a ε-<。

奥鹏福建师范大学21年8月《数学分析选讲》网考复习题答案.doc

奥鹏福建师范大学21年8月《数学分析选讲》网考复习题答案.doc

单选题1.设,则当时,有( ).A.与是等价无穷小B.与同阶但非是等价无穷小C.是比高阶的无穷小D.是比低阶的无穷小答案: B2.设函数,则是的( )A.可去间断点B.第二类间断点C.跳跃间断点D.连续点答案: C3.等于( ).A.B.C.D.答案: B4.在点处偏导数连续是在该点连续的( )条件.A.充分非必要B.必要非充分C.充分必要D.既不充分也不必要答案: A5.如果级数和均发散,则以下说法正确的是( ).A.一定都收敛B.一定都发散C.可能收敛,但一定发散D.都可能收敛答案: D6.设,则当时,有( )A.与是等价无穷小B.与是同阶但非等价无穷小C.是比高阶的无穷小D.是比低阶的无穷小答案: B7.设函数在处可导,且,则( ) A.B.C.D.答案: A8.等于( )A.B.C.D..答案: A9.设在上连续,则等于( )A.B.C.D.答案: A10.下列结论正确的是( ).A.若和均发散,则一定发散;B.若发散,发散,则一定发散;C.若发散,发散,则一定发散; D.若收敛,发散,则一定发散.答案: A11.等于( )A.B.C.D..答案: A12.函数单调增加且图形为凹的区间是( ).B.C.D.答案: C13.设二元函数存在偏导数,则(A.0B.C.D.答案: A14.若,则=( )A.B.C.D.答案: C15.部分和数列有界是正项级数收敛的( )条件,则( )A.充分非必要B.必要非充分C.充分必要D.非充分非必要答案: C16.当时,与比较是( ).A.等价无穷小B.高阶无穷小C.低阶无穷小D.同阶无穷小答案: B17.设,则方程( ).A.在内没有实根B.在内没有实根C.在内有两个不同的实根D.在内有两个不同的实根答案: C18.设,则在处的( ).A.左右导数都存在B.左导数存在,右导数不存在C.左右导数都不存在D.左导数不存在,右导数存在答案: B19.设和均为区间内的可导函数,则在内,下列结论正确的是A.若, 则B.若,则C.若,则D.若,则答案: A20.在有界是在可积的( ).A.充分非必要条件B.必要非充分条件C.充分且必要条件D.既非充分又非必要条件答案: B21.设为可导函数,且满足, 那么曲线在点处的切线斜率为 ( )A.B.C.D.答案: A判断题1.若不是无穷大量,则必存在收敛子列. ( )T.对F.错答案: T2.在上连续是存在的充要条件 . ( )T.对F.错答案: F3.若是初等函数,其定义域为,,则.( )T.对F.错答案: T4.若,级数收敛,则不一定收敛.( )T.对F.错答案: T5.已知函数在点的某个邻域内连续,且,则点是的极小值点. ( )F.错答案: F6.若不是无穷大量,则任一子列均不是无穷大量. ( )T.对F.错答案: F7.若函数在上可积,则在上也可积. ( )T.对F.错答案: F8.当时,不以A为极限,则存在,使不以A为极限.( )T.对F.错答案: T9.若,则级数收敛但和不一定是0 . ( )T.对F.错答案: F10.对, 偏导数连续,则全微分存在. ( )T.对F.错答案: T11.若不是无穷大量,则必存在有界子列. ( )F.错答案: T12.若在点连续,则在既是右连续,又是左连续. ( )T.对F.错答案: F13.函数展开成x的幂级数为. ( )T.对F.错答案: T14.二元函数,在点处连续,偏导数存在.T.对F.错答案: T填空题1.若,则的值为##答案: 0或12.设收敛,则=##答案: 20213.级数的收敛区间是##答案: (2,4)或[2,4)4.设收敛,则= ##答案: 105.##.答案: 46.级数的收敛区间是##答案: (1,3)7.广义积分,则## 答案: 58.##答案: e9.设,则##. 答案: 1计算题1..答案: 解原式=2.求的导数.答案: 解:3.求积分.答案: 解:===4.将函数展成的幂级数.答案:收敛域为.综合题1.. (请说明理由)答案: 答: 原式=0(有界量乘以无穷小量)2.叙述一元函数可导,可微,连续的关系.答案: 答:一元函数可导与可微是等价的,可导推出连续,连续不一定可导.。

数学分析讲义 第四版 (刘玉琏 傅沛仁 著) 高等教育出版社 课后答案 第十四单元

数学分析讲义 第四版 (刘玉琏 傅沛仁 著) 高等教育出版社 课后答案 第十四单元

C [x cos(n, x)
+ y cos(n, y )]ds = ,
C
[x cos(n, x) + y cos(n, y )]ds = 2
C
xdy − ydx = 2A.
C
14.
f (x, y )
,
G ∂2f ∂2f + = 0, ∂x2 ∂y 2 6
f (x, y ) G
.
f (x, y ) G ∂f ds = 0. ∂n
2+y , 1 + x2
Q(x, y ) =
x(y + 1) . 2+y
∂P 1 = , ∂y 2+y , ln
C
∂Q y+1 = . ∂x 2+y , y+1 1 − dxdy 2+y 2+y
D
.
2+y x(y + 1) dy = dx + 2 1+x 2+y y dxdy = 2+y
1 1
D
=
D
2 [x2 + (2 − x)2 ]dx + [x2 − (2 − x)2 ](−dx) = . 3 4 = . 3 (0,0,0) (1,1,1),
C2
,
= C
C1
+ .
1)
;2)
(0,0,0)
,
(1,0,0) 1)
(1,1,0) C1 ,
(1,1,1)
x = t, y = t, z = t, 0
14.1
392 1. (2)
c xyds,
c
: c : |x| + |y | = a(a > 0). , 14.a. c = c1 + c2 + c3 + c4 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学分析选讲》 第四次作业解答
一、判断下列命题的正误
1. 若)(x f 在区间I 上有定义,则)(x f 在区间I 上一定存在原函数.(错误)
2.若)(x f 在[,]a b 上可积,则)()(x f x f +在[,]a b 上也可积.(正确)
3.闭区间],[b a 上的可积函数)(x f 是有界的. (正确)
4.若)(x f 是],[b a 上的单调函数,则)(x f 在],[b a 上可积.(正确)
5.若)(x f 在],[b a 上连续,则存在[,]a b ξ∈,使()()()b
a f x dx f
b a ξ=-⎰.(正确)
二、选择题
1.对于不定积分
⎰dx x f )( ,下列等式中( D ) 是正确的. A ⎰=
)()(x f dx x f d ; B ⎰=')()(x f dx x f ; C )()(x f x df =⎰; D )()(x f dx x f dx d =⎰ 2. 若
1
1()x x f x e dx e c --=-+⎰,则()f x 为( B ) A 1x - ; B 21x - ; C 1x ; D 21x
3.设5sin x 是)(x f 的一个原函数,则⎰='dx x f )(( D )
A c x +-sin 5 ;
B x sin 5- ;
C c x +sin 5;
D c x +cos 5
4.(1cos )d x -=⎰ ( C )
A x cos 1-;
B c x x +-sin ;
C c x +-cos ;
D c x +sin
5.若⎰+=c x dx x f 2)(,则⎰=-dx x xf )1(2( D )
A c x +-22)1(2 ;
B c x +--22)1(2; C
c x +-22)1(21 ; D c x +--22)1(2
1 6. =+⎰x
dx cos 1 ( C ) A tan sec x x c -+ ; B csc cotx x c -++; C tan 2x c + ; D tan()24x π-
7.=-⎰)d(e x x ( B )
A c x x +-e ;
B c x x x ++--e e ;
C c x x +--e ;
D c x x x +---e e
8. 已知x e f x +='1)( ,则=)(x f ( D )
A 1ln x c ++ ;
B 212x x c ++ ;
C 21ln ln 2
x x c ++ ; D ln x x c + 三、计算题
1.求不定积分
.
解:
C x x d x dx x x +--=---=-⎰⎰22221)1(11211.
2.求不定积分arcsin xdx ⎰.
解:C x x x dx x x
x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin
3.求不定积分ln xdx ⎰ .
解: C x x x dx x x x x xdx +-=⋅
-=⎰⎰ln 1ln ln
4.求不定积分dx ⎰.
解:令
u =,则22()21)u u u dx e u du e u e C C ==-+=+⎰⎰
四、证明题
若)(x f 在]1,0[上连续,证明
(1)22
00(sin )(cos )f x dx f x dx ππ
=⎰⎰; (2)00(sin )(sin )2x f x dx f x dx πππ=⎰⎰.
证 :
(1)令t x -=2π
,则
2
2220000(sin )(sin())(cos )(cos )2f x dx f t dt f t dt f x dx πππ
ππ=--==⎰⎰⎰⎰ . (2)令t x -=π ,则
0(sin )xf x dx π⎰
⎰---=0)][sin()(πππdt t f t 0()(sin ),t f t dt ππ=-⎰ 0000(sin )(sin )(sin )(sin )xf x dx f t dt t f t dt f x dx ππππππ=-=⎰
⎰⎰⎰0(sin ),xf x dx π-⎰ 00(sin )(sin )2xf x dx f x dx πππ∴=⎰⎰。

相关文档
最新文档