高中数学 在解析几何中求参数范围的9种方法论文
解析几何中参数取值范围问题(精)
解析⼏何中参数取值范围问题(精)解析⼏何中参数取值范围问题⼀.学习⽬标:1、掌握求参数取值范围的基本思路与⽅法,会解决⼀些简单的求参数取值问题;2、了解双参数问题的求解思路。
⼆.思想⽅法技巧1.利⽤数形结合思想求解:挖掘参数的⼏何意义,转化为直线斜率、距离等问题求解; 2.通过建⽴参数的不等式求解:(1)利⽤题设中已有的不等关系建⽴不等式;(2)利⽤判别式建⽴不等式(3)利⽤图形特征建⽴不等式 3.双参数问题求解策略:建⽴参数的不等式、⽅程的混合组,通过消元转化为⼀元不等式,或转化为求函数值域问题求解。
4、分类讨论思想的运⽤三.基础训练1.已知两点A (-3,4).B (3,2),过点P (2,-1)的直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是()A .[1,3]-B .(1,3)-C .(,1][3,)-∞-?+∞D .(,1)(3,)-∞-?+∞2.直线y kx =与双曲线221169x y -=不相交,则k 的取值范围是 3.已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是()(A )),(2222-(B )),(22-(C )),(4242-(D )),(8181-⼆.典型例题1.若直线y=x+b 与曲线21y x -=恰有⼀个公共点,则有b 的取值范围是。
2.双曲线1422=+ky x 的离⼼率为e ,且e ∈(1,2)则k 的范围是________。
3.若直线y x b =+与曲线224(0)x y y +=≥有公共点,则b 的取值范围是()A . [2,2]-B . [0,2]C .D . [-4.直线y=kx -2与焦点在x 轴上的椭圆1522=+my x 恒有公共点,求m 的取值范围5.已知椭圆C :2214x y += 和直线:2l y x m =+,椭圆C 上存在两个不同的点A 、B 关于直线l 对称,求m 的取值范围三.巩固练习1.若平⾯上两点A (-4,1),B (3,-1),直线2+=kx y 与线段AB 恒有公共点,则k 的取值范围是。
解析几何中求参数取值范围的方法(精)
解析几何中求参数取值范围的方法近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。
学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。
那么,如何构造不等式呢?本文介绍几种常见的方法:一、利用曲线方程中变量的范围构造不等式曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 , 0)求证:-a2-b2a ≤ x0 ≤ a2-b2a分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x 1 =-b2a2 •x2+x1 y2+y1又∵线段AB的垂直平分线方程为y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )令y=0得x0=x1+x22 •a2-b2a2又∵A,B是椭圆x2a2 + y2b2 = 1 上的点∴-a≤x1≤a, -a≤x2≤a, x1≠x2 以及-a≤x1+x22 ≤a∴ -a2-b2a ≤ x0 ≤ a2-b2a例2 如图,已知△OFQ的面积为S,且OF•FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围.分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题.解: 依题意有∴tanθ=2S∵12 < S <2 ∴1< tanθ<4又∵0≤θ≤π∴π4 <θ<ARCTAN4< p>例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是 ( )A a<0B a≤2C 0≤a≤2D 0<A<2< p>分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解.解: 设Q( y024 ,y0) 由|PQ| ≥a得y02+( y024 -a)2≥a2 即y02(y02+16-8a) ≥0∵y02≥0 ∴(y02+16-8a) ≥0即a≤2+ y028 恒成立又∵ y02≥0而 2+ y028 最小值为2 ∴a≤2 选( B )二、利用判别式构造不等式在解析几何中,直线与曲线之间的位置关系,可以转化为一元二次方程的解的问题,因此可利用判别式来构造不等式求解.例4设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线L与抛物线有公共点,则直线L的斜率取值范围是 ( )A [-12 ,12 ]B [-2,2]C [-1,1]D [-4,4]分析:由于直线l与抛物线有公共点,等价于一元二次方程有解,则判别式△≥0解:依题意知Q坐标为(-2,0) , 则直线L的方程为y = k(x+2)由得 k2x2+(4k2-8)x+4k2 = 0∵直线L与抛物线有公共点∴△≥0 即k2≤1 解得-1≤k≤1 故选 (C)例5 直线L: y = kx+1与双曲线C: 2x2-y2 = 1的右支交于不同的两点A、B,求实数k的取值范围.分析:利用直线方程和双曲线方程得到x的一元二次方程,由于直线与右支交于不同两点,则△>0,同时,还需考虑右支上点的横坐标的取值范围来建立关于k的不等式.解:由得 (k2-2)x2 +2kx+2 = 0∵直线与双曲线的右支交于不同两点,则解得 -2<K<-2< p>三、利用点与圆锥曲线的位置关系构造不等式曲线把坐标平面分成三个区域,若点P(x0,y0)与曲线方程f(x,y)=0关系:若P在曲线上,则f(x0,y0)=0;若P在曲线内,则f(x0,y0)<0;若P在曲线外,则f(x0,y0)>0;可见,平面内曲线与点均满足一定的关系。
解析几何中的取值范围问题
解析几何中的取值范围问题
在解析几何中,取值范围问题是非常重要的一个部分。
一般来说,我们需要根据题意来确定自变量的取值范围,进而求解函数的值域或图像。
下面是一些常见的取值范围问题的解决方法:
1. 明确函数的定义域:在求解函数值域时,我们需要明确函数的定义域。
通常情况下,函数的定义域是求解域的子集,但也可能会出现定义域不包含求解域的情况。
2. 分析函数的导数:在求解函数值域时,我们可以利用函数的导数来确定其值域。
一般情况下,函数的导数在区间端点处取值为零,但在一些特殊情况下,导数可能不为零。
3. 利用不等式来确定取值范围:在解析几何中,我们经常利用不等式来确定自变量的取值范围。
例如,利用均值不等式、柯西不等式、排序不等式等。
4. 利用几何图形来确定取值范围:在解析几何中,几何图形是非常重要的一部分。
我们可以通过几何图形来直观理解自变量的取值范围,进而求解函数的值域或图像。
在实际应用中,取值范围问题是非常常见的。
因此,我们需要熟练掌握各种取值范围问题的解决方法,并能够灵活运用这些方法来解决实际的问题。
拓展:
在解析几何中,还有一种非常重要的取值范围问题,那就是参数方程的取值范围问题。
一般来说,参数方程的取值范围取决于参数的取值。
我们需要根据题意来确定参数的取值范围,进而求解参数方程的值域或图像。
在求解参数方程的值域或图像时,我们可以利用参数方程的导数和不等式等方法来确定其取值范围。
高考解析几何求参数范围问题
(二元)求参数范围一、单参数问题引例:(2002年全国高考题)设点P 到点M(-1,0)、N(1,0)距离之差为2m ,到x 轴、y 轴距离之比为2,求m 的取值范围1、利用曲线的定义、标准方程和性质列不等关系例、设椭圆1122=++y m x 的两个焦点是)0)(0,(),0,(21>-c c F c F ,且椭圆上存在一点P ,使得直线PF 1与PF 2垂直。
求实数m 的取值范围。
变式:双曲线)0,1(12222>>=-b a by ax 焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)和(-1,0)到直线l 的距离之和c s 54≥,求双曲线的离心率e 的取值范围。
2、利用方程有实根的充要条件列不等关系 例取值范围。
的求实数的右支交于不同的两点与双曲线:直线k .B ,A 1y 2x :C 1kx y l 22=-+=变式:求F 1、F 2分别是椭圆2214x y +=的左、右焦点,设过定点M (0,2)的直线l 与椭圆交于同的两点A 、B ,且∠ADB 为锐角(其中O 为作标原点),求直线l 的斜率k 的取值范围.3.利用点在曲线内的充要条件列不等关系例:已知椭圆C :14922=+y x 上存在关于直线m x y l +=2:对称的两点,试求m的取值范围。
变式:在抛物线24y x =上恒有两点关于直线y =kx +3对称,求k 的取值范围.二、双参数问题1.双参数且已知其中一个参数的范围 例:给定抛物线F x y C ,4:2=是C 的焦点,过点F 的直线l 与C 相交于BA ,两点,若→→=AF FB λ,若[]9,4∈λ,求l 在y 轴上截得m 的范围2.双参数且没有已知其中一个参数的范围例:已知动点P 与双曲线122=-y x 的两个焦点F 1、F 2的距离和为定值,且21cos PF F ∠的最小值为.31-(1)求动点P 的轨迹方程;(2)设M (0,-1),若斜率为)0(≠k k 的直线l 与P 的轨迹交于不同的两点A 、B ,试求k 的取值范围,使MB MA =。
解析几何中有关参数范围问题的求解策略
( 求 抛 物 线 c 的 I) 方程 ; ( 若 直线 z ’一1 Ⅱ) :,
=
y =6一b 2y 2 2 ; } 2 =6一b
,
。
k 一1 ( ≠0 垂 直 平 ( )k )
图2
从 而 由 一n l 0 一0 2 , ≤ ≤ , ≤ ≤Ⅱ 可得
< < 二 。 。
.
・
. .
m :2
+1 。
由
f 一 + , =)1 到 于 的 于 点 J( O,), 明 :一旦 + n 1≥ , 关 一 () , 得 PX 0 证 【 y=
,
元二次方程 , 由其判别式等于 0求得 m=6 , 。 综上所得 , —2 ≤m<1 4 或 m=6 1 +2 3 。 二、 构造含参不等式探求参数范 围 例 2 已知抛 物线 C 的顶 点 在 原 点 , 双 曲线 以 \ /
I ,
一
分 析 : 证 X满 足 关 于 参 数 。 b的 不 等 式 , 欲 0 、 须 从 题 中找 出 不 等 关 系 。 由 椭 圆 的 性 质 可 知 , 圆 上 椭 的 点 的 坐 标 满 足 如 下 条件 : ≤ ≤ , 一o a 因此 问 题 转 化 为 寻 求 X与 的关 系 。 o 简解 : 由题 设 知 , P在 线 段 A 的 垂 直 平 分 线 点 B
图1
1 y≥ 1 为 半 条 曲 ( )
线, 若利用方程观点研究这类问题 , 则需将之转化成 根 的分 布 问题 , 样 做 较 麻 烦 且 易 出 错 。若 用 数 形 这 结合 的思想 来研 究 , 则直 观 易解 。如 图 1 z、2 f ,1 z、3 是 直 线 系 , 一 +m 中 的三 条 直 线 , 三 条 直 线 是 , = 这 直 线 系 中的 直 线 与 半 椭 圆 交 点 个 数 的 “ 线 ” 在 Z 界 , 与 f之 间 的直 线 ( z, 含 z 及 1都 是 与 半 椭 圆 2 含 1不 2 ) 只有 一 个 公 共 点 的 直线 , m 是 这 些 直 线 在 y轴 上 而 的截 距 , 由此 可 求 m 的范 围 。 简 解 :I ( 2 3,) Z过 一 4 1 ,
从一题中看解析几何中参数范围求解策略
从一江苏省宜兴市东山高级中学 214204 陆平 刘国祥解析几何中参数范围问题综合性强,能有机地综合中学数学各种知识,是培养学生各种数学能力的好题型,在竞赛和高考试题中屡屡出现。
这类问题,实质是构造不等式,一般是利用判别式和韦达定理来处理,除了它之外还有其它策略吗?下面就从一道解析几何题中来谈谈其它几种策略。
场景问题:椭圆22221xy ab+=,F1,F2焦点,椭圆的半焦距为c ,椭圆上存在一点M,MF1⊥MF2求离心率e的范围. 分析:求离心率e的范围实质就是构建a,b,c 一、紧扣定义,巧用均值不等式解法一:设MF1=R 1 ,MF2=R 2 由于椭圆定义得R 1 +R 2=2a 又因为MF1⊥MF2所以MF12+MF22=(F1F2)2,即R 12 +R 22=(2c)2 由于2RR 2RR 212221+≥+所以22242a c ≥所以ac ≥22又由于椭圆离心率e定义得22≤e<1.二、抓住存在, 巧用有界性 1、利用点的有界性解法二: 设M(x 0,y 0)由题可知, ⎪⎩⎪⎨⎧=+-+++=+22o 2o 2o 2o22o 22o 2c)(y )c x (y )c x (1by a x 得2ox =22222ba )bc (a --又因为M .在椭圆在上.....,所以0≤2o x ≤a 2,于是得到c 2≥b 2即c 2≥a 2-c 2所以22≤e<1.2、利用三角函数sin ø , cos ø的有界性解法三: 设M(asin ø, b cos ø) 又因为MF1⊥MF2并且O 为F1,F2的中点,所以|MO|=c 于是 (asin ø)2+(bcos ø)2=c 2就可以得到(acos ø)2+b 2(1-sin 2ø) =c2所以(a 2-b 2) cos 2 ø =c 2-b 2 则cos 2ø =2222ba b c -- 有因为0≤cos ø≤1 所以0≤2222ba b c --≤1于是c 2≥b 2则22≤e<1.3、利用角的有界性解法四:设椭圆一点M(x 0,y 0) 设MF1=r 1 ,MF2=r 2由椭圆定义得r 1 +r 2=2a 则cos ∠F 1MF 2=2122221r 2r )2c (r r -+=21221221r 2r )2c (r 2r )r (r --+=212r r b2-1≥2212)2r r (b 2+-1 当且仅当r 1=r 2时,即x o 2=0时,也就是M 在Y 轴上与P 重合时 (cos ∠F 1MF 2)min =22ab 2-1.又∵x ∈(0,π)时,cosx 为减函数 它cos ∠F 1MF 2 取最小值时,∠F 1MF 2在(0,π) 取得最大值 ∴(∠F 1MF 2)max ≤∠F 1PF 2∴∠F 1PF 2≥∠F 1MF 2 即∠F 1PF 2≥90º ∴90 º>∠F 2PO ≥45 º∴1>sin ∠F 2PO ≥22 ∴ 在RT △0PF 2 中 即22≤e<1.三、转换角度,巧构函数解法五:在解法四中,根据椭圆第二定义得MF1=r 1=a+ex 0,MF2=r 2=a-ex 0 得 cos ∠F 1MF 2=212r r b2-1=2222x e a b2--1 ∵02≤X 02≤a 2 ∴当X 02=0时(cos ∠F 1MF 2)min =22ab 2-1(下同法四)四、动中有静, 巧借形辅数 解法六: 在椭圆22ax +22by =1上存在点M 使∠F 1MF 2=900即以点为原点, O M=c 为半径的⊙O 与椭圆相交,而椭圆方程中a 、b 、c 都是动态的,我们可锁定a 、b,即椭圆不动,使得⊙O 与椭圆相交,只要⊙O 足够大即c 2≥b 2即2c 2≥a 2即22≤e<1,得解。
解析几何中的范围问题的解法
解析河北迁安一中 汪昌武 邮编 064400在解析几何中,求参数的取值范围是高考重点考查内容之一。
求参数的取值范围的关键是构建不等关系,现就构造不等关系提供如下方法: 1. 判别式法例1. 曲线()222:10x C y a a-=>与直线:1l x y +=相交于不同两点B A 、。
求双曲线离心率的取值范围。
解:双曲线222:1x C y a-=与直线:l x y + 211220x x a ⎛⎫-+-= ⎪⎝⎭依条件得得22021a a <<≠且 又c e a a=== )2e ⎛∴∈⋃+∞⎝⎭说明:解本题的关键是抓住直线与圆锥曲线有两个不同交点,构造关于a 的不等关系,从而达到求e 得范围的目的。
2. 重要不等式法 例2.椭圆()222210x y a b ab+=>>两焦点为12,F F ,M 是椭圆上一点,且满足120F M F M =。
求椭圆离心率e 的范围。
解:由120F M F M = 得122F M F π∠=,在12Rt F M F 中,22212||||4F M F M c+= 又有椭圆定义 12||||2F M F M a +=()212222212||||4||||22F M F M c F M F M a+∴=+≥=,12e ∴≤<。
说明:解本题的关键是构造a ,b ,c 基本量的不等关系。
3. 比对法例3.求使抛物线()2:10C y ax a =-≠上有不同两点关于直线:0l x y +=对称。
求实数a 的取值范围。
解:设()11,A x y , ()22,B x y 是C 上关于:0l x y +=对称的两点,易知0a >,()00,M x y 是A ,B 的中点。
则有2111y ax =-,2221y ax =- 两式相减得()()121212y y a x x x x -=-+ 又12121y y x x -=- 且 1202x x x +=021ax ∴=, 012x a=, 012y a=-。
处理解析几何中的最值与范围问题的九种方法 廖庆伟
处理解析几何中的最值与范围问题的九种方法ʏ湖北省巴东县第三高级中学 廖庆伟最值与范围问题是解析几何中的重要题型,也是高考的重点,题目难度较大,处理方法灵活多变㊂求解方法一般有:圆锥曲线的性质法㊁二次函数性质法㊁函数的单调性法㊁基本不等式法㊁三角函数性质法㊁三角形边的关系法㊁垂线段性质法㊁柯西不等式法以及仿射变换法㊂一㊁圆锥曲线的性质法例1 (2021年河南省商丘市期末卷)已知F 1㊁F 2是椭圆C :x 2a 2+y2b 2=1(a >b >0)的左㊁右焦点,O 为坐标原点,点M 是椭圆C 上的点(不在坐标轴上),点N 是O F 2的中点,若MN 平分øF 1M F 2,则椭圆C 的离心率的取值范围是( )㊂A.12,1 B .0,12C .13,1D .0,13解析:因为O 是F 1F 2的中点,N 是O F 2的中点,所以|N F 1|=3|N F 2|㊂因为MN 平分øF 1M F 2,所以|M F 1||M F 2|=|N F 1||N F 2|=3㊂因为|M F 1|+|M F 2|=2a ,所以|M F 1|=3a 2,|M F 2|=a2㊂由a -c <|M F 1|=3a2<a +c ,可得椭圆C 的离心率e =c a >12㊂又e <1,故椭圆C 的离心率的取值范围是12,1㊂选A ㊂评注:椭圆上的点到焦点的最大距离为a +c ,最小距离为a -c ㊂二㊁二次函数性质法例2 已知F为抛物线y 2=2x 的焦点,A (x 0,y 0)为抛物线上的动点,点B (-1,0),则2|A B |2|A F |+1的最大值为( )㊂A.12 B .2 C .62 D .5解析:由题意知x 0ȡ0,F 12,0㊂易得|A B |=(x 0+1)2+y 20=x 20+4x 0+1,|A F |=x 0+12㊂所以2|A B |2|A F |+1=2x 20+4x 0+12x 0+2=x 20+4x 0+1x 0+1㊂令t =x 0+1ȡ1,则x 0=t -1㊂所以2|A B |2|A F |+1=(t -1)2+4(t -1)+1t=t 2+2t -2t2=-2t 2+2t +1㊂则当1t =12,即t =2时,2|A B |2|A F |+1取最大值,此时2|A B |2|A F |+1=62㊂故选C ㊂评注:换元后应注意新元素的取值范围㊂三㊁函数的单调性法例3 已知椭圆C 1:x23+y 2=1的左顶点为A ,若曲线C 2的方程为(x -t )2+y2=(t 2+3t )20<t ɤ22,过椭圆C 1的左顶点A 的直线l 与曲线C 2相切,则直线l 被椭圆C 1截得的线段长度的最小值为㊂解析:已知椭圆C 1的方程为x 23+y 2=1,故左顶点A 的坐标为(-3,0)㊂易知直线l 的斜率存在,不妨设直线l 的方程为y =k (x +3)㊂由直线l 与曲线C 2相切得|k (t +3)|k 2+1=(t +3)t ,整理得|k |k 2+1=t ㊂又因为0<t ɤ22,所以0<|k |k 2+1ɤ22,解得0<k 2ɤ1㊂联立x 23+y 2=1,y =k (x +3),消去y 整理得:(3k 2+1)x 2+63k 2x +9k 2-3=0㊂易知直线l 被椭圆C 1截得线段的一个端点为A (-3,0)㊂设椭圆的另一端点为B ,解方程可得点B 的坐标为-33k 2+33k 2+1,23k 3k 2+1㊂所以|A B|=-33k 2+33k 2+1+32+12k2(3k 2+1)2=23k 2+13k 2+1㊂令m =k 2+1(1<m ɤ2)㊂则|A B |=23m 3(m 2-1)+1=233m -2m ㊂由函数y =3m -2m的性质知,y =3m -2m在区间(1,2]上是增函数,所以当m =2时,y =3m -2m 取得最大值22,从而|A B |m i n =62㊂评注:函数y =x -kx (k >0)的单调递增区间为(-ɕ,0),(0,+ɕ)㊂四㊁基本不等式法例4 (2022年河南部分名校联考)已知F 1㊁F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左㊁右焦点,P 为双曲线左支上的任意一点,若|P F 2|2|P F 1|的最小值为8a ,则双曲线的离心率e 的取值范围是( )㊂A.(1,+ɕ) B .(2,3]C .(1,3]D .(1,2]解析:因为F 1㊁F 2是左㊁右焦点,P 为双曲线左支上的任意一点,所以|P F 2|-|P F 1|=2a ㊂代入|P F 2|2|P F 1|,得|P F 2|2|P F 1|=(|P F 1|+2a )2|P F 1|=|P F 1|+4a +4a2|P F 1|ȡ2|P F 1|ˑ4a2|P F 1|+4a =8a ,当且仅当|P F 1|=2a 时取等号㊂又点P 是双曲线左支上任意一点,所以|P F 1|ȡc -a ,即2a ȡc -a ㊂因为e =ca ,所以1<e ɤ3㊂选C ㊂评注:解题的关键是由定义得|P F 2|2|P F 1|=(|P F 1|+2a )2|P F 1|=|P F 1|2+4a |P F 1|+4a2|P F 1|=|P F 1|+4a +4a2|P F 1|㊂五㊁三角函数性质法例5 (2022年江西省丰城市第九中学检测)已知F 1㊁F 2分别为双曲线C :x24-y212=1的左㊁右焦点,E 为双曲线C 的右顶点㊂过F 2的直线与双曲线C 的右支交于A ,B 两点(其中点A 在第一象限),设M ,N 分别为әA F 1F 2,әB F 1F 2的内心,则|M E |-|N E |的取值范围是( )㊂A.-ɕ,-433 ɣ433,+ɕB .-433,433C .-335,335D .-53,53解析:设A F 1㊁A F 2㊁F 1F 2与内切圆M的切点分别为H㊁I㊁J,则|A H|=|A I|, |F1H|=|F1J|,|F2J|=|F2I|㊂由|A F1|-|A F2|=2a,得(|A H|+ |H F1|)-(|A I|+|I F2|)=2a㊂所以|H F1|-|I F2|=2a,即|J F1|-|J F2|=2a㊂设内心M的横坐标为x0,由J Mʅx轴得点J的横坐标也为x0,则(c+x0)-(c-x0)=2a,得x0=a,即E为直线J M与x轴的交点,J与E重合㊂同理可得,әB F1F2的内心在直线J M 上㊂设直线A B的倾斜角为θ(0ɤθ<π),则øE F2M=π-θ2,øE F2N=θ2㊂|M E|-|N E|=(c-a)t a nπ-θ2-(c-a)t a nθ2=(c-a)㊃c o sθ2s i nθ2-s i nθ2c o sθ2=(c-a)2c o sθs i nθ=(c-a)2t a nθ㊂①当θ=π2时,|M E|-|N E|=0㊂②当θʂπ2时,由题意知,a=2,c=4,b a =3㊂因为A,B两点在双曲线的右支上,所以π3<θ<2π3,且θʂπ2,即t a nθ<-3或t a nθ>3㊂所以-33<1t a nθ<33,且1t a nθʂ0㊂因此,|M E|-|N E|=4t a nθɪ-433,0ɣ0,433㊂综上所述,|M E|-|N E|=4t a nθɪ-433,433㊂故选B㊂评注:正切函数y=t a n x在0,π2,π2,π上分别单调递增㊂六㊁三角形边的关系法例6(2022年河南创新发展联盟联考)已知A,B是抛物线y2=-6x上的两点,且|A B|=11,则线段A B的中点到y轴距离的最小值为()㊂A.72B.4C.92D.5解析:由抛物线方程可知,其焦点为F-32,0,准线为l:x=32㊂分别过A,B作准线的垂线,垂足分别为C,D,A C与B D分别交y轴于M,N㊂则|A M|=|A C|-32=|A F|-32, |B N|=|B D|-32=|B F|-32㊂设A B的中点为E,过E作y轴的垂线,垂足为G,所以|E G|=12(|A M|+|B N|) =12|B D|-32+|A C|-32=12(|A F|+ |B F|-3)ȡ12(|A B|-3)=4(当且仅当A, B,F三点共线时,等号成立)㊂所以线段A B的中点到y轴距离的最小值为4㊂选B㊂评注:三角形任意两边之和大于第三边㊂七㊁垂线段性质法例7已知O为坐标原点,A,B为抛物线y2=2p x(p>0)上异于点O的两个动点,且øA O B=90ʎ㊂若点O到直线A B的距离的最大值为8,则p的值为㊂解析:由题意知,直线O A,O B均有斜率且都不为0㊂设直线O A的方程为y=k x,联立方程y=k x,y2=2p x,解得点A2pk2,2p k㊂易知直线O B的方程为y=-1k x,所以B(2p k2,-2p k)㊂因此,直线A B的方程为y+2p k= 2pk+2p k2pk2-2p k2(x-2p k2),即y+2p k=k1-k2㊃(x-2p k2)㊂令y=0,得x=2p,所以直线A B必过定点(2p,0)㊂所以当直线A B垂直于x轴时,点O到直线A B的距离最大,即2p=8,p=4㊂评注:过定点的直线与已知直线垂直时,点到直线的距离最大㊂八㊁柯西不等式法例8(2022年天津西青区杨柳青第一中学期末卷)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且øF1P F2=π3,则椭圆和双曲线的离心率倒数之和的最大值为()㊂A.43B.433C.4D.463解析:设椭圆的长半轴为a,双曲线的实半轴为a1(a>a1),半焦距为c㊂由椭圆和双曲线的定义可设|P F1|= m,|P F2|=n,|F1F2|=2c,椭圆和双曲线对应的离心率分别为e1=c a,e2=c a1㊂因P是它们的一个公共点,且øF1P F2 =π3,故由余弦定理可得:4c2=m2+n2-2m n c o sπ3㊂①在椭圆中,由定义知m+n=2a,①式化简为4c2=4a2-3m n㊂②在双曲线中,由定义知|m-n|=2a1,①式化简为4c2=4a21+m n㊂③由②③两式消去m n得:16c2=4a2+12a21㊂等式两边同除以c2得4=a2c2+3a21c2,即4=1e21+3e22㊂由柯西不等式得1e21+3e221+13ȡ1 e1+3e2㊃132㊂所以1e1+1e2ɤ433㊂选B㊂评注:柯西不等式的代数形式:设a,b, c,d为实数,则(a2+b2)㊃(c2+d2)ȡ(a c+ b d)2,当且仅当a d=b c时等号成立㊂九㊁仿射变换法例9已知椭圆x2a2+y2b2=1(a>b> 0),F1㊁F2分别为椭圆的左㊁右焦点,过F1㊁F2作两条互相平行的弦,分别与椭圆交于M㊁N㊁P㊁Q四点,若两条弦垂直于x轴时,点M㊁N㊁P㊁Q所形成的平行四边形面积最大,则椭圆离心率的取值范围为㊂解析:作仿射变换,令x'=x,y'=a b y,可得仿射坐标系x'O'y'㊂在此坐标系中,上述椭圆变换为圆x'2+ y'2=a2,点F1㊁F2坐标分别为(-c,0)㊁(c, 0),过F1㊁F2作两条平行的弦分别与圆交于M'㊁N'㊁P'㊁Q'四点㊂由平行四边形性质易知,әO'P'Q'的面积为M'㊁N'㊁P'㊁Q'四点所形成的平行四边形面积的14,故只需取әO'P'Q'面积的最大值㊂当cɪ0,22a 时,әO'P'Q'面积的最大值在弦P'Q'与x轴垂直时取到㊂故椭圆离心率的取值范围为0,22 ㊂评注:利用仿射变换将椭圆变换为圆,此时M㊁N㊁P㊁Q四点分别变换为M'㊁N'㊁P'㊁Q'四点,由仿射变换时变换前后对应图形的面积比不变这个性质,将上述题目中的椭圆变换为圆时,M'㊁N'㊁P'㊁Q'四点所形成的平行四边形面积最大值仍在两条弦与x轴垂直时取到㊂只需研究在圆的一条直径上,取关于圆心对称的两点F1㊁F2,当|O F1|为多少时,能使得过F1㊁F2的两条互相平行的弦与此直径垂直,此时与圆的四个交点所形成的面积最大㊂(责任编辑徐利杰)。
高考解析几何题求参数取值范围的九种途径
高考解析几何题求参数取值范围的九种途径解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。
由于不少同学在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,下面通过一些实例介绍这类问题形成的几个背景及相应的解法,期望对同学们的备考有所帮助。
背景之一:题目所给的条件利用题设条件能沟通所求参数与曲线上点的坐标或曲线的特征参数之间的联系,建立不等式或不等式组求解。
这是求范围问题最显然的一个背景。
例1:椭圆),0(12222为半焦距c b c a by a x >>>=+的焦点为F 1、F 2,点P(x , y )为其上的动点,当∠F 1PF 2为钝角时,点P 的横坐标的取值范围是___。
解:设P(x 1, y ),∠F 1PF 2是钝角⇔cos ∠F 1PF 2 =||||2||||||212212221PF PF F F PF PF ⋅-+222212221)(||||||0y c x F F PF PF ++⇔<+⇔<2)(c x -+22224y x c y +⇔<+22222222222)(x ab ac x a a b x c -⇔<-+⇔<)(2222222b c c a x b c -<⇔-< 2222b c ca xbc c a -<<--⇔。
说明:利用∠F 1PF 2为钝角,得到一个不等式是解题的关键。
把本题特殊化就可以得到某年全国高考题理科第14题:椭圆14922=+y x 的焦点为F 1、F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,点P 横坐标的取值范围是__________。
(答案为 x 553(-∈,)553)背景之二:曲线自身的范围圆、椭圆、双曲线及抛物线都有自身的范围,如椭圆a by a x (12222=+>b>0)中,x ,10],,[],,[<<-∈-∈e b b y a a ,利用这些范围是确定参数范围的途径之一。
解析几何中求参数取值范围的5种常用方法
解析几何中求参数取值范围的5种常用方法及经典例题详细解析:一、利用曲线方程中变量的范围构造不等式曲线上的点的坐标往往有一定的变化范围,如椭圆x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.例1 已知椭圆x2a2 + y2b2 = 1 (a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0)求证:-a2-b2a ≤ x0 ≤ a2-b2a分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.解: 设A,B坐标分别为(x1,y1),(x2,y2),(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 =-b2a2 •x2+x1 y2+y1又∵线段AB的垂直平分线方程为y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )令y=0得x0=x1+x22 •a2-b2a2又∵A,B是椭圆x2a2 + y2b2 = 1 上的点∴-a≤x1≤a,-a≤x2≤a,x1≠x2 以及-a≤x1+x22 ≤a∴ -a2-b2a ≤ x0 ≤ a2-b2a例2 如图,已知△OFQ的面积为S,且OF•FQ=1,若12 < S <2 ,求向量OF与FQ的夹角θ的取值范围.分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题.解: 依题意有∴tanθ=2S∵12 < S <2 ∴1< tanθ<4又∵0≤θ≤π∴π4 <θ< p>例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是()A a<0B a≤2C 0≤a≤2D 0<2< p>分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解.解: 设Q(y024 ,y0)由|PQ| ≥a得y02+(y024 -a)2≥a2 即y02(y02+16-8a)≥0∵y02≥0 ∴(y02+16-8a)≥0即a≤2+ y028 恒成立又∵ y02≥0而2+ y028 最小值为2 ∴a≤2 选(B )二、利用判别式构造不等式在解析几何中,直线与曲线之间的位置关系,可以转化为一元二次方程的解的问题,因此可利用判别式来构造不等式求解.例4设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线L与抛物线有公共点,则直线L的斜率取值范围是()A [-12 ,12 ]B [-2,2]C [-1,1]D [-4,4]分析:由于直线l与抛物线有公共点,等价于一元二次方程有解,则判别式△≥0解:依题意知Q坐标为(-2,0),则直线L的方程为y = k(x+2)由得k2x2+(4k2-8)x+4k2 = 0∵直线L与抛物线有公共点∴△≥0 即k2≤1 解得-1≤k≤1 故选(C)例5 直线L: y = kx+1与双曲线C: 2x2-y2 = 1的右支交于不同的两点A、B,求实数k 的取值范围.分析:利用直线方程和双曲线方程得到x的一元二次方程,由于直线与右支交于不同两点,则△>0,同时,还需考虑右支上点的横坐标的取值范围来建立关于k的不等式.解:由得(k2-2)x2 +2kx+2 = 0∵直线与双曲线的右支交于不同两点,则解得-2<-2< p>三、利用点与圆锥曲线的位置关系构造不等式曲线把坐标平面分成三个区域,若点P(x0,y0)与曲线方程f(x,y)=0关系:若P 在曲线上,则f(x0,y0)=0;若P在曲线内,则f(x0,y0)<0;若P在曲线外,则f(x0,y0)>0;可见,平面内曲线与点均满足一定的关系。
高中数学解题方法系列:解析几何中求参数范围的6种策略
高中数学解题方法系列:圆锥曲线中求参数范围的六种策略解析几何中求参数范围或与参数有关的问题,往往是高考的热点之一。
本文总结出六种求解这类问题的思考途径与策略。
一、利用题设条件中的不等关系若题设条件中有不等关系,可直接利用该条件求参数的范围。
例1.双曲线的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(-1,0)到直线l的距离之和,求双曲线的离心率e的取值范围。
解析:直线l的方程为,即由点到直线的距离公式,且,得到点(1,0)到直线l的距离同理得到点(-1,0)到直线l的距离由,即于是得即解得由于,所以e的取值范围是[,]。
二、应用判别式建立不等式关系若题设中给出直线(或曲线)与曲线有公共点或无公共点时,可以把直线方程(或曲线方程)与曲线方程联立起来,消去某一个未知数,得到含另一个未知数的一元二次方程,就能利用判别式建立所含参数的不等式。
例2.设,两点在抛物线上,l是AB的垂直平分线。
当直线l的斜率为2时,求直线l在y轴上截距的取值范围。
解析:设直线l在y轴上的截距为b,依题意得l的方程为过点A、B的直线方程可写为由,消y得①即是方程①的两个不同的解,得,且设AB的中点N的坐标为(),则,。
由,于是。
即得直线l 在y 轴上截距的取值范围为。
点评:该题含有两个参数b ,m ,先由直线AB 与抛物线有两个不同的交点,应用判别式求出参数m 的范围,再由题意找出两个参数b ,m 之间的关系式,最后求出参数b 的取值范围。
例3已知中心在原点的双曲线C 的一个焦点是()0,31-F ,一条渐近线的方程是025=-y x . (Ⅰ)求双曲线C 的方程;(Ⅱ)若以()0≠k k 为斜率的直线l 与双曲线C 相交于两个不同的点M ,N ,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为281,求k 的取值范围. 解:(Ⅰ)设双曲线C 的方程为22221x y a b-=(0,0a b >>).由题设得22952a b b a⎧+=⎪⎨=⎪⎩,解得2245a b ⎧=⎪⎨=⎪⎩,所以双曲线方程为22145x y -=. (Ⅱ)解:设直线l 的方程为y kx m =+(0k ≠).点11(,)M x y ,22(,)N x y 的坐标满足方程组22145y kx mx y =+⎧⎪⎨-=⎪⎩将①式代入②式,得22()145x kx m +-=,整理得222(54)84200k x kmx m ----=. 此方程有两个一等实根,于是2504k -≠,且222(8)4(54)(420)0km k m ∆=-+-+>.整理得22540m k +->. ③由根与系数的关系可知线段MN 的中点坐标00(,)x y 满足12024254x x km x k +==-,002554my kx m k =+=-.从而线段MN 的垂直平分线方程为22514()5454m kmy x k k k -=----.此直线与x 轴,y 轴的交点坐标分别为29(,0)54km k -,29(0,)54mk -.由题设可得2219981||||254542km m k k ⋅=--.整理得222(54)||k m k -=,0k ≠. 将上式代入③式得222(54)540||k k k -+->,整理得22(45)(4||5)0k k k --->,0k ≠. 解得50||k <<或5||4k >. 所以k 的取值范围是5555,)(,0)(0,)(,)4224(∞-+--∞U U U . 三、根据曲线的范围建立不等关系由椭圆的简单几何性质知,椭圆上任一点的横、纵坐标是有界的,通过有界性就可能找到变量间的不等关系。
解析几何中求参数取值范围的方法
解析几何中求参数取值范围的方法作者:罗奕辰来源:《环球市场信息导报》2017年第23期几何中的求解参数取值范围是高中数学学习中需要重点掌握的知识点,这不论是在平常的考试或者是高考中都占有较大的比分值。
本文从数形结合、建立不等式、几何图形的性质以及函数与方程思想四个方面对几何中求参数取值范围进行了一定的分析,以期为广大高中生提供参考。
解析几何在高中的学习知识中,涉及的范围广,且大部分具有难度性,所以学生在学习参数取值这方面的知识有一定的困难性。
这类问题考查的综合知识点强,给解题带来了很多困难。
所通过对几何中参数取值范围的解答进行归纳和总结,找出其中的方法对问题进行解决,从而激发学生的学习思维,掌握解题技巧,提高数学成绩。
数形结合求参数取值范围数与形在一定条件下是可以转化的,这也是数学中比较常见的解题方法。
以这样的方式可以使较为抽象的数学题变得更加浅显易懂,利于我们快速的掌握几何中参数取值范围。
在求解中,其基本思路就是数形的结合,重点把握点、线、面三者的性质和关系。
例如:在F(0)可以转化为3/2*sinθ+1/cosθ+2,所以将F(θ)可看为两个点,分别为A (cosθ,sin θ)和B(-2,-1),且线的斜率是3/2倍,求K的取值范围?解题分析:利用三角函数的解题思路,数形结合的即可进行解答。
首先将A(cosθ,sinθ)看做是一个单位圆,且为单位圆X2+Y2=1上的动点,B(-2,-1)为单位圆外的一点,进行作图即可得出。
如图1所示,得出当K的取值范围在[K BA1,K BA2],kBA1等于0,假设出直线方程BA2为:y+1=k(x+2),最后结果K的是4/3,且在区域为[0,2]时,K的取值范围为[0,4/3]。
对于数形这类知识点的解答,其基本思路一定要明确已知的条件,从题中的条件和结论出发,运用圆的公式和定理进行表达,画出相符合的图形,最后得出确定的答案。
建立不等式求参数取值范围几何题中出现的不等式称之为几何不等式,可以利用题中设定的不等式关系,根据相关公式运用不等式求参数的取值范围。
高三解析几何最值及参数范围问题—教师版
解析几何最值及参数范围问题知识梳理圆锥曲线中的最值和参数取值范围问题是解析几何综合问题的重要内容之一,它融解析几何知识、函数、不等式等知识为一体,综合性强,且对于解题者有着相当高的能力要求,正基于此,这类问题近年来成为了数学高考中的难关。
但其解法仍然有章可循,有法可依。
常见的解法主要是联立利用韦达定理,当然也有一些特殊的方法,如几何法,点差法以及代换等方法。
例题解析一、特殊法求解最值及参数取值范围【例1】已知点()()4,1,0,4A B ,在直线:31l y x =-上找一点P 【解析】如图,设点(),C x y 是点B 关于直线l 的对称点, 则由3=l k ,得:31-=BC k ,∴直线BC 的方程为:431+-=x y ,将其与直线31y x =-联立,解得37,22D ⎛⎫⎪⎝⎭,其中D 为BC 中点,利用中点坐标公式,得()3,3C .显然,PA PB PA PC AC -=-≤,当且仅当A 、C 、P 三点共线时,PA PB -最大.可求得,直线AC 方程为092=-+y x ,与l 方程联立解得P 的坐标为()2,5.【例2】求椭圆2212x y +=上的点到直线32+=x y 的距离的最大值和最小值,并求取得最值时椭圆上点的坐标. ,此时点坐标为( 【解析】设椭圆的切线方程为y x b =+,代入椭圆方程,得0224322=-++b bx x 由0)22(34)4(22=-⨯⨯-=∆bb ,得3±=b .当b =y x =与yx =+261=d ,将b =0224322=-++b bx x,解得x =,此时y=,即椭圆上的点(到直线y x =+2b =yx =-yx =+22d =,将b =0224322=-++b bx x ,解得3x =,此时3y =-,即椭圆上的点(33-到直线y x =+. 【例3】已知正OAB ∆的三个顶点都在抛物线22y x =上,其中O 为坐标原点,设圆C 是OAB ∆的内接圆(点C 为圆心).(1)求圆C 的方程;(2)设圆M 的方程为22(47cos )(7cos )1x y θθ--+-=,过圆M 上任意一点P 分别作圆C 的两条切线PE 、PF ,切点为E 、F ,求CE CF ⋅u u u r u u u r的最大值和最小值.【难度】★★【答案】(1)22(4)16x y -+=;(2)最大值为169-,最小值为8- 【解析】(1)设B A ,两点坐标分别为11(,)x y ,22(,)x y ,由题设知22221122x y x y +=+. 又因为2112y x =,2222y x =,可得22112222x x x x +=+.即1212()(2)0x x x x -++=.由10x >,20x >,可知12x x =,故,A B 两点关于x 轴对称,所以圆心C 在x 轴上. 设C 点的坐标为(,0)r ,则A点坐标为3()2r,于是有23)22r =⨯,解得4r =,所以圆C 的方程为22(4)16x y -+=.(2)设2ECF a ∠=,则2||||cos 216cos 232cos 16CE CF CE CF ααα⋅=⋅==-u u u r u u u r u u u r u u u r .在Rt PCE ∆中,4cos ||||x PC PC α==,由圆的几何性质得 ||||17PC MC ≤+=18+=,||||1716PC MC ≥-=-=,所以12cos 23α≤≤,由此可得1689CE CF -≤⋅≤-u u u r u u u r .则CE CF ⋅u u u r u u u r 的最大值为169-,最小值为8-.【例4】已知以4=t 为周期的函数()(](]1,112,1,3x f x x x ⎧∈-⎪=⎨--∈⎪⎩,其中0>m .若方程3()f x x =恰有5个实数解,则m 的取值范围为( ).A.833⎛⎫⎪ ⎪⎝⎭B.3⎛ ⎝ C .48,33⎛⎫ ⎪⎝⎭ D.43⎛ ⎝ 【难度】★★★ 【答案】B【解析】因为当(]1,1x ∈-时,将函数化为方程2221(0)y x y m+=≠,实质上为一个半椭圆, 同时在坐标系中作出当(]1,3x ∈的图像,再根据周期性作出函数其它部分的图像,如图所示.由图易知直线3x y =(1)与第2个椭圆()22241(0)y x y m -+=≠(2),相交,而与第3个半椭圆()22281(0)y x y m-+=≠(3),无公共点时,方程恰有5个实数解,将(1)代入(2)得()222291721350m x m x m +-+= 令29t m=()0t >,则()218150t x tx t +-+=.由()2(8)41510t t t ∆=-⨯+>,得15t >.由2915m >,且0m >,得153m >.同样将(1)代入(3),由0∆<得7m < 综上知157m ∈⎝.故选B .【例5】某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中AC 、BD 是过抛物线Γ焦点F 的两条弦,且其焦点)1,0(F ,0=⋅,点E 为y 轴上一点,记α=∠EFA ,其中α为锐角. (1) 求抛物线Γ方程;(2) 如果使“蝴蝶形图案”的面积最小,求α的大小? 【难度】★★【答案】(1)y x 42=;(2)4πα=“蝴蝶形图案”的面积为8;【解析】(1) 由抛物线Γ焦点)1,0(F 得,抛物线Γ方程为y x 42= (2) 设m AF =,则点)1cos ,sin (+-ααm m A ,所以,)cos 1(4)sin (2ααm m +=-,既04cos 4sin 22=--ααm m 解得αα2sin )1(cos 2+=AF同理: αα2cos )sin 1(2-=BF ,αα2cos )sin 1(2+=DF αα2sin )cos 1(2-=CF “蝴蝶形图案”的面积2)cos (sin cos sin 442121αααα-=⋅+⋅=+=∆∆DF CF BF AF S S S CFD AFB 令 ⎝⎛⎥⎦⎤∈=21,0,cos sin t t αα, [)+∞∈∴,21t ,则121141422-⎪⎭⎫⎝⎛-=-=t t t S , 21=∴t 时,即4πα=“蝴蝶形图案”的面积为8.【例6】已知点()1F、)2F ,平面直角坐标系上的一个动点(),P x y 满足124PF PF +=u u u r u u u u r,设动点P 的轨迹为曲线C .(1)求曲线C 的轨迹方程;(2)点M 是曲线C 上的任意一点,GH 为圆()22:31N x y -+=的任意一条直径,求MG MH ⋅u u u u r u u u u r 的取值范围; (3)已知点,A B 是曲线C 上的两个动点,若OA OB ⊥u u u r u u u r(O 是坐标原点),试证明:直线AB 与某个定圆恒相切,并写出定圆的方程. 【难度】★★★【答案】(1)22142x y +=;(2)[]24,0;(3)略 【解析】(1)依据题意,动点(,)P x y4=.又12||4F F =<,因此,动点(,)P x y 的轨迹是焦点在x轴上的椭圆,且24,2a b c =⎧⎪⇒=⎨=⎪⎩ 所以,所求曲线C 的轨迹方程是22142x y +=. (2) 设00(,)M x y 是曲线C 上任一点.依据题意,可得,MG MN NG MH MN NH =+=+u u u u r u u u u r u u u r u u u u r u u u u r u u u u r.Q GH 是直径,∴NH NG =-u u u u r u u u r .又||=1NG u u u r,22=()() =()() =||||.MG MH MN NG MN GH MN NG MN NG MN NG ∴⋅+⋅++⋅--u u u u r u u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u r∴22200||(3)(0)MN x y =-+-u u u u r =201(6)72x --.由22142x y +=,可得22x -≤≤,即022x -≤≤. 2221||25||||24MN MN NG ∴≤≤≤-≤u u u u r u u u u r u u u r ,0. ∴MG MH ⋅u u u u r u u u u r 的取值范围是024MG MH ≤⋅≤u u u u r u u u u r.(另解21||25MN ≤≤u u u u r :结合椭圆和圆的位置关系,有||||||||||||OM ON MN OM ON -≤≤+(当且仅当M N O 、、共线时,等号成立),于是有1||5MN ≤≤.)(3)证明:因A B 、是曲线C 上满足OA OB ⊥的两个动点,由曲线C 关于原点对称,可知直线AB 也关于原点对称.若直线AB 与定圆相切,则定圆的圆心必在原点.因此,只要证明原点到直线AB 的距离(d )是定值即可.设12||,||OA r OB r ==,点11(cos ,sin )A r r θθ,则 2222(cos(),sin())(sin ,cos )22B r r r r ππθθθθ++=-.利用面积相等,有11||||||22OA OB AB d ⋅=⋅,于是2221222122211111r r d r r r r ==++. 又A B 、两点在曲线C 上,故222211222222cos sin 1,42sin cos 1.42r r r r θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩ 可得22212222cos sin 1,42sin cos 1.42r r θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩因此,22121134r r +=. 所以,243d =,即d.所以,直线AB 总与定圆相切,且定圆的方程为:2243x y +=. 【例7】给定椭圆C :22221(0)x y a b a b+=>>,称圆心在原点O的圆为椭圆C 的“准圆”.已知椭圆C的一个焦点为F ,其短轴的一个端点到点F(1)求椭圆C 和其“准圆”的方程;(2)过椭圆C 的“准圆”与y 轴正半轴的交点P 作直线12,l l ,使得12,l l 与椭圆C 都只有一个交点,求12,l l 的方程; (3)若点A 是椭圆的“准圆”与x 轴正半轴的交点,,B D 是椭圆C 上的两相异点,且BD x ⊥轴,求⋅的取值范围.【答案】(1)2213x y +=;224x y +=(2)直线1l 的方程为2y x =+,2l 的方程为2y x =-+, 或直线1l 的方程为2y x =-+,2l 的方程为2y x =+;(3)[0,7+【解析】(1)由题意知ca =1b =,故椭圆C 的方程为2213x y +=,其“准圆”方程为224x y +=.(2)由题意可得P 点坐标为(0,2),设直线l 过P 且与椭圆C 只有一个交点,则直线l 的方程可设为2y kx =+,将其代入椭圆方程可得223(2)3x kx ++=,即22(31)1290k x kx +++=,由22(12)36(31)0k k ∆=-+=,解得1k =±,所以直线1l 的方程为2y x =+,2l 的方程为2y x =-+,或直线1l 的方程为2y x =-+,2l 的方程为2y x =+.(3)由题意,可设(,),(,)B m n D m n-(m <,则有2213m n +=,又A 点坐标为(2,0),故(2,),(2,)AB m n AD m n =-=--u u u r u u u r ,故2222(2)44(1)3m AB AD m n m m ⋅=--=-+--u u u r u u u r 2244343()332m m m =-+=-,又m,故243()[0,732m -∈+, 所以AB AD ⋅u u u r u u u r的取值范围是[0,7+.C【例8】已知圆C 过定点)1,0(A ,圆心C 在抛物线y x 22=上,M 、N 为圆C 与x 轴的交点.(1)当圆心C 是抛物线的顶点时,求抛物线准线被该圆截得的弦长. (2)当圆心C 在抛物线上运动时,MN 是否为一定值?请证明你的结论. (3)当圆心C 在抛物线上运动时,记m AM =,n AN =,求mnn m +的最大值,并求出此时圆C 的方程. 【难度】★★★【答案】(1;(2)2MN =是定值;(3)mn n m +取得最大值22,此时圆C 的方程为2)1()2(22=-+±y x 【解析】(1)抛物线y x 22=的顶点为)0,0(,准线方程为21-=y ,圆的半径等于1,圆C 的方程为122=+y x .弦长3232)21(122=⨯=- (2)设圆心)21,(2a a C ,则圆C 的半径222)121(-+=a a r , 圆C 的方程是为:222222)121()21()(-+=-+-a a a y a x 令0=y ,得01222=-+-a ax x ,得11-=a x ,12+=a x ,∴212=-=x x MN 是定值. (3)由(2)知,不妨设)0,1(-a M ,)0,1(+a N ,a a a x m 221)1(12221-+=+-=+=,a a a x m 221)1(12222++=++=+=.4412442424222++=++=+=+a a a a mn n m m n n m .当0=a 时,2=+mnn m . 当0≠a 时,224412441244222424222≤++=++=++=+=+aa a a a a mn n m m n n m .当且仅当2±=a 时,等号成立 所以当2±=a 时,mnn m +取得最大值22,此时圆C 的方程为2)1()2(22=-+±y x . 【巩固训练】1.椭圆1422=+y x 上一动点P ,则P 到直线04:=-+y x l 的距离最小值为 .【难度】★★【答案】210-242.已知点F 是双曲线221412x y -=的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则PA PF +的最小值为________. 【难度】★★【答案】9【解析】设1F 是双曲线的右焦点,根据双曲线定义41=-PF PF ,即14PF PF -= 又115PA PF AF +≥=,将14PF PF -=代入,得45PA PF +-≥,即9PA PF +≥,等号当且仅当1,,F P A 三点共线,故PA PF +的最小值为9.故填9.3.已知P 是抛物线x y 22=上的一个动点,F 为焦点.(1)求点P 到点)2,0(的距离与P 到抛物线准线的距离之和的最小值. (2)点)2,3(A ,求PF PA +得最小值. 【难度】★★【答案】(1)217;(2)274.P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值为( ).A .6B .7C .8D .9【难度】★★【答案】D【解析】由已知双曲线的左右焦点12,F F 即为两圆的圆心,先将P 点看成定点,M 、N 看成动点,则111222max min 2,1PM PF r PF PN PF r PF =+=+=-=-.()()()()1212max 2139PM PN PF PF PF PF ⇒-=+--=-+=.5.如图,在直线:90l x y -+=上任意取一点M ,经过M 点且以椭圆221123x y +=的焦点作椭圆,问当M 在何处时,所作椭圆的长轴最短,并求出最短长轴为多少? 【难度】★★【答案】M 点坐标)45(,-,此时长轴最短为56 【解析】椭圆的两焦点分别为12(3,0),(3,0)F F -,作1F 关于直线l 的对称点'1F ,则直线'11F F 的方程为3x y +=- 由方程组39x y x y +=-⎧⎨-=-⎩ 得P 的坐标)3,6(-,由中点坐标公式得的'1F 坐标)6,9(-,所以直线'21F F 的方程23x y +=.解方程组239x y x y +=⎧⎨-=-⎩ 得M 点坐标)45(,-,此时长轴最短为'122F F a ===.6.已知椭圆22:12x C y +=的两焦点为1F 、2F ,点()00,P x y 满足2200012x y <+<,则12||||PF PF +的取值范围为 .【难度】★★【答案】2,⎡⎣7.已知椭圆1:2222=+by a x C (0>>b a )的焦距为2,且椭圆C 的短轴的一个端点与左、右焦点1F 、2F 构成等边三角形.(1)求椭圆C 的标准方程;(2)设M 为椭圆上C 上任意一点,求12MF MF ⋅u u u u r u u u u r的最大值与最小值;【难度】★★【答案】(1)13422=+y x ;(2)12MF MF ⋅u u u u r u u u u r 的最大值为3,最小值为2 【解析】(1)已知,1=c ,22==c a , 所以3222=-=c a b , 所以椭圆的标准方程为13422=+y x .(2))0,1(1-F ,)0,1(2F ,设),(y x M ,则1(1,)MF x y =---u u u u r ,2(1,)MF x y =--u u u u r ,22121MF MF x y ⋅=+-u u u u r u u u u r (22≤≤-x ),因为13422=+y x ,所以,22222121131244x MF MF x y x x ⎛⎫⋅=+-=+-=+ ⎪⎝⎭u u u u r u u u u r , 由402≤≤x ,得12MF MF ⋅u u u u r u u u u r的最大值为3,最小值为2.8.点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值. 【难度】★★ 【答案】(1)3(2;(2【解析】(1)由已知可得点()()6,0,4,0A F -.设点P 的坐标是(,)x y ,则()()6,,4,AP x y FP x y =+=-u u u r u u u r .由已知得22213620(6)(4)0⎧+=⎪⎨⎪+-+=⎩x y x x y ,则2329180,2x x x +-==或6x =-.由于0y >,只能3,2x =,于是y =点P的坐标是3(2. (2)直线AP 的方程是.063=+-y x 设点M 的坐标是(),0m ,则M 到直线AP 的距离是2|6|+m , 于是|6||6|2m m +=-,又66m -≤≤,解得2m =,椭圆上的点),(y x 到点M 的距离d 满足 ,15)29(94952044)2(222222+-=-++-=+-=x x x x y x d由于66,x -≤≤∴当92x =时,d二、联立韦达定理求解最值及参数范围【例9】已知圆⊙8)1(:22=++y x C ,)0,1(-C 动圆与⊙C 相切且过定点)0,1(B ; (1)求动圆圆心的轨迹E 方程;(2)过点),0(t D ,11<<-t 倾斜角为ο45的直线l 与轨迹E 交于N M ,两点,求N M C B ,,,四点围成的四边形面积的最大值。
也谈解析几何参数取值范围问题的求解策略
狓0狔+0犮=-1狓2 0 +狔2 0 =犿. ①
把 ① 与犿狓+2 01+狔2 0=1联立,可解得狓2 0=犿犿-1,
烄0≤
犿2 -1 犿
≤
犿
+1,
狔2 0
1 =犿
,于是有烅0≤
1 犿
≤1,
犿 ≥1,所以
烆犿 >0 犿 ∈ [1,+ ∞).
所以答案为[1,+ ∞). 点评:解答本题的关键是求出点 犘 的坐标(坐标 中含 有 待 求 参 数 ),再 依 据 它 们 的 自 身 范 围 列 关 于 参
(1)试求实数犽 的取值范围. (2)试问:可否存在实数犽,使双曲线犆 的右焦点 位于以线段犃犅 为直径的圆上?若存在,求出犽 的值;
Copyright©博看网 . All Rights高中Reserved. 45
教学 参谋 解法探究 2020年7月
一、审视已知条件,发掘不等关系
求参数的取值范围,最直接、最有效的方法,就是
建立关于参数的不等式关系,而这种不等关系通常隐
含在已知 条 件 中,这 就 要 求 我 们 审 视 已 知 条 件,将 已
知条件中的边的不等关系或角的不等关系挖掘出来,
并“为其所用”.
例1
已知椭圆犆:狓犪22
狔2ห้องสมุดไป่ตู้+犫2
=1(犪
{ λ(1-狓1,-狔1),即 狓2 -1=λ(1-狓1), ① 狔2 =-λ狔1. ②
由 ② 得狔2 2 =λ2狔2 1,因为狔2 1 =4狓1,狔2 2 =4狓2,所以 狓2 =λ2狓1. ③
联立 ① 与 ③ 可解得狓2 =λ,又因为λ >0,所以
犅(λ,2槡λ ),或 犅(λ,-2槡λ ). 又犉(1,0),故可得过点犉 和犅 的直线犾方程为(λ
[高考数学复习]解析几何中求参数取值范围的方法
[高考数学复习]解析几何中求参数取值范围的方法解析几何中求参数取值范围的方法近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。
学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。
那么,如何构造不等式呢?本文介绍几种常见的方法:一、利用曲线方程中变量的范围构造不等式曲线上的点的坐标往往有一定的变化范围,如椭圆x2a2 + y2b2 = 1上的点P(x,y)满足-aa,-bb,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法。
例1 已知椭圆x2a2 + y2b2 = 1 (a0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 ,0)求证:-a2-b2a a2-b2a分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.解: 设A,B坐标分别为(x1,y1),(x2,y2),(x1x2)代入椭圆方程,作差得: y2-y1x2-x1 =-b2a2 x2+x1 y2+y1又∵线段AB的垂直平分线方程为y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )令y=0得x0=x1+x22 a2-b2a2又∵A,B是椭圆x2a2 + y2b2 = 1 上的点-aa,-aa,x1x2 以及-ax1+x22 a-a2-b2a a2-b2a例2 如图,已知△OFQ的面积为S,且OF FQ=1,若12 2 ,求向量OF与FQ的夹角的取值范围.分析:须通过题中条件建立夹角与变量S的关系,利用S的范围解题。
数学解析几何中参数取值范围求解技巧
解析几何中参数取值范围求解技巧 云南省文山州砚山一中,〔663100〕 马兴奎趣题引入动圆P 与定圆B :0315222=-++x y x 内切,且动圆P 经过一定点A 〔5,0〕,〔Ⅰ〕求动圆圆心P 的轨迹方程;〔Ⅱ〕假设点D 〔0,3〕,M 、N 在动点P 的轨迹上,且DM λ=,求实数λ的取值范围.解决此题就要利用到本讲的解法技巧求解。
技巧精髓直线和圆锥曲线的相交问题是解析几何的重要研究对象,也是高考的热点问题,解题所涉及的知识点较多,综合性强,难度大,本将就一类直线和圆锥曲线相交问题求参数取值范围的解法进行探究,介绍一种较为方便的处理方法。
一﹑从圆锥曲线的存在范围出发,产生不等量关系,确定参数的取值范围。
二﹑从直线和二次曲线的位置关系出发,利用判别式的符号,确定参数的取值范围。
三﹑ 利用点与曲线的位置关系,产生不等量关系,确定参数的取值范围。
四、利用题中其他变量的范围,借助于方程产生参变量的函数表达式,确定参数的取值范围.五、从圆锥曲线的内蕴性质中,挖掘不等量关系,确定参变量的取值范围名题面对面[例1] 在平面直角坐标系中,O 为坐标原点,给定两点A 〔1,0〕、B 〔0,2〕,点C 满足OC = αOA +βOB ,其中α ,R ∈β,且.122=+βα 〔Ⅰ〕求点C 的轨迹方程;〔Ⅱ〕过点D 〔2,0〕的直线l 和点C 的轨迹交于不同的两点M 、N ,且M 在D 、N 之间,且DM λ=的取值范围求λ,。
[绿色通道]〔Ⅰ〕设点),(y x C ,由βα+= 即 )2,0()0,1(),(βα+=y x∴⎩⎨⎧==βα2y x 即⎪⎩⎪⎨⎧==2y xβα 代入122=+βα得点C 的轨迹方程为1422=+y x 。
此题第〔II 〕问可用多个切入点求解:由DM λ=得⎩⎨⎧=-=-2121)2(2y y x x λλ,突破口1:利用)2(221-=-x x λ选择消y ,消元中注意把21-x 和22-x 视为一个整体,否那么会陷入解题困境。
处理解析几何中的最值与范围问题的九种方法
处理解析几何中的最值与范围问题的九种方法
廖庆伟
【期刊名称】《中学生数理化:高二数学、高考数学》
【年(卷),期】2022()22
【摘要】最值与范围问题是解析几何中的重要题型,也是高考的重点,题目难度较大,处理方法灵活多变。
求解方法一般有:圆锥曲线的性质法、二次函数性质法、函数
的单调性法、基本不等式法、三角函数性质法、三角形边的关系法、垂线段性质法、柯西不等式法以及仿射变换法。
一、圆锥曲线的性质法例1(2021年河南省商丘市期末卷)已知F_(1)。
【总页数】4页(P24-27)
【作者】廖庆伟
【作者单位】湖北省巴东县第三高级中学
【正文语种】中文
【中图分类】G63
【相关文献】
1.平面解析几何中求最值的几种方法
2.探究一道2010年高考解析几何题求最值的多种方法
3.解析几何法在求函数值域与最值中的研究——用斜率法求一类函数的
值域与最值4.例谈解析几何中最值范围问题的处理5.探求解析几何中动点横(纵)坐标取值范围(最值)的策略
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从高考解几题谈求参数取值范围的九个背景解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。
由于不少考生在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,本文通过一些实例介绍这类问题形成的几个背景及相应的解法,期望对考生的备考有所帮助。
背景之一:题目所给的条件利用题设条件能沟通所求参数与曲线上点的坐标或曲线的特征参数之间的联系,建立不等式或不等式组求解。
这是求范围问题最显然的一个背景。
例1:椭圆),0(12222为半焦距c b c a by a x >>>=+的焦点为F 1、F 2,点P(x , y )为其上的动点,当∠F 1PF 2为钝角时,点P 的横坐标的取值范围是___。
解:设P(x 1, y ),∠F 1PF 2是钝角⇔cos∠F 1PF 2 =||||2||||||212212221PF PF F F PF PF ⋅-+222212221)(||||||0y c x F F PF PF ++⇔<+⇔<2)(c x -+22224y x c y +⇔<+22222222222)(x ab ac x a a b x c -⇔<-+⇔<)(2222222b c c a x b c -<⇔-< 2222b c ca xbc c a -<<--⇔。
说明:利用∠F 1PF 2为钝角,得到一个不等式是解题的关键。
把本题特殊化就可以得到2000年全国高考题理科第14题:椭圆14922=+y x 的焦点为F 1、F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,点P 横坐标的取值范围是__________。
(答案为 x 553(-∈,)553) 例2:(2000年全国高考题理科第22题)如图,已知梯形ABCD 中,AB =2CD ,点E 分有向线段AC 所成的比为λ,双曲线过点C 、D 、E 三点,且以A 、B 为焦点。
当4332≤≤λ时,求双曲线离心率e 的取值范围。
解:如图,以线段AB 的垂直平分线为 y 轴。
因为双曲线经过点C 、D ,且A 、B为焦点,由双曲线的对称性知C 、D 关y 轴对称,依题意,记A )0,(c -,C(2c,h),E(x 0,y 0), 其中c =AB 21为双曲线的半焦距,h 是梯形的高。
由定比分点坐标公式得:x 0=λλ++-12cc =)1(2)2(+-λλc ,y 0=λλ+1h。
设双曲线方程为22a x -22by =1,则离心率e =a c 。
由点C 、E 在双曲线上,将点C 、E 的坐标和e =ac代入双曲线方程得 14222=-b h e ①1)1()12(422222=+-+-b h e λλλλ ②由①式得14222-=e bh③将③式代入②式,整理得:23121222+-=+-=e e e λ ∴10743231322≤≤⇒≤+-≤e e 说明:建立λ与e 的函数关系式,再利用已知λ的范围,即可求得e 的范围。
背景之二:曲线自身的范围圆、椭圆、双曲线及抛物线都有自身的范围,如椭圆a by a x (12222=+>b>0)中,x ,10],,[],,[<<-∈-∈e b b y a a ,利用这些范围是确定参数范围的途径之一。
例3:(2002年全国高考题)设点P 到点M(-1,0)、N(1,0)距离之差为2m ,到x 轴、y 轴距离之比为2,求m 的取值范围。
解:设点P 的坐标为(x ,y),由题设得2||||=x y ,即y =0,2≠±x x ① 由于x 0≠,所以点P(x ,y)、M(-1,0)、N(1,0)三点不共线,得1||02||||2||||0<<⇒=<=-<m MN m PN PM因此,点P 在以M 、N 为焦点,实轴长为2m 的双曲线上,故22221my m x --=1 ②将①式代入②,解得222251)1(mm m x --= 由22m x ≥且012>-m ,得<<⇒>-m m 55051255,又m 0≠ ∴ )0,55(-∈m (0, )55说明:P 到x 轴、y 轴距离之比为2,所以P 不能在x 轴上,由此得到m 0≠,这一隐含条件容易忽视。
例4:(2004年全国卷Ⅲ理科21题 文科22题)设椭圆1122=++y m x 的 两个焦点是F 1(-c, 0)与F 2(c, 0) (c > 0),且椭圆上存在一点P ,使得直线PF 1与PF 2垂直。
(1)求实数m 的取值范围;(2)设l 相应于焦点F 2的准线,直线PF 2与l 相交于Q ,若32||2-=PF QF ,求直线PF 2的方程。
解:(1)依题设有m +1>1,即m > 0,c =m ,设点P 的坐标为(x 0, y 0),由PF 1⊥PF 2 ,得m y x cx y c x y =+⇒-=+⋅-202000001 ① 将①与112020=++y m x 联立,解得x m y m m 1,12020=-= 由此得⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤+≤-≤01101102m m m m m 1≥⇒m 故m 1[∈, +∞)(2)答案为y =±(23-) (x-2) ( 解答略)背景之三:二次方程有解的条件直线和圆锥曲线的关系,是解析几何中最常见的关系,它们联立消元后所得的判别式非负是直线和圆锥曲线有公共点的充要条件;若有限制条件,则还应考虑根的分布情况等,这是确定参数取值范围的一个常见背景。
例5:(全国高考题)给定双曲线x 2-22y = 1,过点B(1,1)能否作直线l ,使l 与所给双曲线交于P 1及P 2,且点B 是线段P 1P 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由。
解:画出图像知,当直线斜率不存在时,满足题设条件的l 不存在。
当直线l 斜率存在时,设为k ,则l 方程为y = k (x -1)+1,联立1222=-y x ,得032)22()2(2222=-+--+-k k x k k x k 。
设,22222,12),,(),,(2221222111=⇒=--=+k k kk x x y x P y x P 即则此时 002,0)32)(2(4)22(22222>∆≠-<-+----=∆且不满足k k k k k k 。
故满足已知条件的直线l 不存在。
例6:(2004年湖北省高考题理科20题 文科20题)直线1:+=kx y l 与双曲线12:22=-y x C 的右支交于不同的两点A 、B 。
(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由。
解:(1)将直线1+=kx y 代入双曲线方程,并整理得022)2(22=++-kx x k依题意,直线l 与双曲线C 的右支交于不同两点,故⎪⎪⎪⎩⎪⎪⎪⎨⎧>->-->--=∆≠-022220)2(8)2(0222222k k k k k k 22-<<-⇒k(2)答案是存在566+-=k 满足题设。
说明:问题(1)涉及到直线与双曲线右支相交的问题,转化为方程有不等 的两正根,由方程根的分布的充要条件建立不等式组即可。
背景之四:已知变量的范围利用题中给出的某个已知变量的范围,或由已知条件求出某个变量的范围,然后找出这个变量与欲求的参变量之间的关系,进而求解。
1、双参数中知道其中一个参数的范围;例7:(2004年浙江省高考题理科21题 文科22题)已知双曲线的中心在原点,右顶点为A(1, 0),点P 、Q 在双曲线的右支上,点M(m, 0)到直线AP 的距离为1。
(1)若直线AP 的斜率为k ,且]3,33[||∈k ,求实数m 的取值范围; (2)当12+=m 时,APQ ∆的内心恰好是点M ,求此双曲线的方程解:(1)由条件知直线AP 的方程为0),1(=---=k y kx x k y 即,因为点 M 到直线AP 的距离为1,所以22211||1|1|11||kk k m k k mk +=+=-⇒=+-。
∵]3,33[||∈k ∴33211313322|1|332-≤≤-≤≤+⇒≤-≤m m m 或 故]3,3321[]3321,1[+--∈ m (2)答案是1)122(22=--y x (解答略)例8:(2004年全国高考卷Ⅱ理科21题)给定抛物线x y C 4:2=,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。
(1)设l 的斜率为1,求与的夹角的大小;(2)设]9,4[,∈=λλ若AF FB ,求l 在y 轴上截距m 的变化范围。
解:(1)答案为41143arccos-π(解答略)。
(2)F(1, 0), 设A(x 1, y 1), B(x 2, y 2), 由题设λ=, 得),1(),1(1122y x y x --=-λ,即⎩⎨⎧-=-=-)1(11212y y x x λλ由得②得21222y y λ= ∵2221214,4x y x y ==∴122x x λ=③联立①、③解得λ=2x ,依题意有0>λ ∴)0,1(),2,(),2,(F B B 又或λλλλ-得直线l 方程为:)1(2)1(),1(2)1(--=--=-x y x y λλλλ或当]9,4[∈λ时,方程l 在y 轴上的截距1212--=-=λλλλm m 或。
由1212)1)(1(2)1(212-++=-++-=-λλλλλλλ,可知在]9,4[上是递减的。
∵]9,4[∈λ ∴43343443-≤≤-≤≤m m 或。
故直线l 在y 轴上截距m 的变化范围是]34,43[]43,34[ --。
说明:例7和例8都是已知一个变量的范围求另一变量的范围,可先利用题设条件建立变量的关系式,将所求变量和另一已知变量分离,得到函数关系,再由已知变量的范围求出函数的值域,即为所求变量的范围。
这类背景也可归结为背景一。
2、双参数中的范围均未知例9:(2004年全国卷Ⅰ文2 理21)设双曲线)0(1:222>=-a y ax C 与直线1:=+y x l 相交于不同的点A 、B 。
(1)求双曲线C 的离心率e 的取值范围; (2)设直线l 与y 轴的交点为P ,且PB PA 125=,求a 的值。
解:(1)由C 与l 相交于两个不同的点,故知方程⎪⎩⎪⎨⎧=+=-11222y x y a x 有两个不同的实数解,消去y 并整理得:022)1(2222=-+-a x a x a由1200)2)(1(4)2(0122222≠<<⇒⎪⎩⎪⎨⎧>---=∆≠-a a a a a a 且 ∴双曲线的离心率11122+=+=aaa e ∵120≠<<a a 且∴226≠>e e 且 故),2()2,26(∞+∈ e (2)略说明:先求出a 的范围,再建立e 与a 的函数关系式,即可求出e 的范围。