2019年黔西南州兴义市九年级上期末数学试卷(有答案)

合集下载

2018-2019学年贵州省黔西南州九年级上期末数学试卷

2018-2019学年贵州省黔西南州九年级上期末数学试卷

2018-2019学年贵州省黔西南州九年级(上)期末数学试卷(9)一、选择题 2018.11.61.下列各式属于最简二次根式的是()A.√8B.√x2+1C.√y2D.√122.一元二次方程x2+5x−4=0根的情况是()A.两个不相等的实数根B.两个相等的实数根C.没有实数根D.不能确定3.将方程x2+4x+2=0配方后,原方程变形为()A.(x+2)2=2B.(x+4)2=3C.(x+2)2=−3D.(x+2)2=−54.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A. B.C. D.5.三角形的两边长分别为3和6,第三边的长是方程x2−6x+8=0的一个根,则这个三角形的周长是()A.9B.11C.13D.146.如图,两个以O为圆心的同心圆,大圆的弦AB交小圆于C,D两点.OH⊥AB于H,则图中相等的线段共有()A.1组B.2组C.3组D.4组7.如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=a,则a的值为()A.135∘B.120∘C.110∘D.100∘8.已知圆心在原点O,半径为5的⊙O,则点P(−3, 4)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定9.下列成语所描述的事件是必然发生的是()A.水中捞月B.拔苗助长C.守株待兔D.瓮中捉鳖10.一个口袋中有5个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.35个 B.30个 C.25个 D.20个11.AB为⊙O的直径,点C在⊙O上,若∠C=15∘,则∠BOC=()A.60∘B.45∘C.30∘D.15∘12.若方程kx2+2x+1=0有实数根,则k的取值范围是()A.k>1B.k≤1C.k≤1且k≠0D.k<1且k≠013.柜子里有5双鞋,取出一只鞋是右脚鞋的概率是()A.1 2B.13C.15D.11014.某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P(件)与每件的销售价x(元)满足关系:P=100−2x.若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是()A.(x−30)(100−2x)=200B.x(100−2x)=200C.(30−x)(100−2x)=200D.(x−30)(2x−100)=20015.如图,△OAB中,OA=OB,∠A=30∘,⊙O与AB相切,切点为E,并分别交OA,OB于C,D两点,连接CD.若CD等于2√3,则扇形OCED的面积等于()A.2 3πB.43π C.83π D.163π二、填空题16.√(1−√3)2=________;当x________时,√(2x−1)2=1−2x.17.已知两圆的半径分别是一元二次方程x2−7x+12=0的两个根,若两圆的圆心距为5,则这两个圆的位置关系是________.18.在一次聚会中,每两个参加聚会的人都相互握了一次手,一共握了45次手,则参加这次聚会的人是________人.19.如图,Rt△ABC的边AB在直线L上,AC=1,AB=2,∠ACB=90∘,将Rt△ABC绕点B在平面内按顺时针方向旋转,使BC边落在直线L上,得到△A1BC1;再将△A1BC1绕点C1在平面内按顺时针方向旋转,使边A1C1落在直线L 上,得到△A2B1C1,则点A所经过的两条弧AA1,A1A2的长度之和为________.20.要使式子√x+5有意义,x的取值范围是________;要使√x2+1有意义,x的取值范围是________.21.两圆的半径分别为3cm和4cm,圆心距为5cm,则两圆的位置关系为________.22.如图,平面直角坐标系xOy中,点A(2, 0),以OA为半径作⊙O,若点P,B都在⊙O上,且四边形AOPB为菱形,则点P的坐标为________.23.如图,四边形ABCD内接于⊙O,若∠BCD=160∘,则∠B0D=________.24.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若该圆的半径为1,扇形的圆心角等于60∘,则这个扇形的半径R的值是________.三、解答题.25.计算)−1+√3(√3−1)−20090−|√3−2|;(1)√12−(√33(2)解方程:x2−4x+1=0;(3)计算:√24−√12×√6+√24×2√3;(4)解方程:2x2+3=7x.26.如图所示,每个小方格都是边长为1的正方形,以O点为坐标原点建立平面直角坐标系.(1)画出四边形OABC关于y轴对称的四边形OA1B1C1,并写出点B1的坐标是________.(2)画出四边形OABC绕点O顺时针方向旋转90∘后得到的四边形OA2B2C2.并写出点B2的坐标是________.27.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.(1)你帮妞妞算算爸爸出“锤子”手势的概率是多少?(2)妞妞决定这次出“布”手势,妞妞赢的概率有多大?(3)妞妞和爸爸出相同手势的概率是多少?28.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.29.小刚参观上海世博会,由于仅有一天的时间,他上午从A−中国馆、B−日本馆、C−美国馆中任意选择一处参观,下午从D−韩国馆、E−英国馆、F−德国馆中任意选择一处参观.(1)请用画树状图或列表的方法,分析并写出小刚所有可能的参观方式(用字母表示即可);(2)求小刚上午和下午恰好都参观亚洲国家展馆的概率.30.如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP,BP,过点O分别作OE⊥AP,OF⊥BP,点E、F分别是垂足.(1)求线段EF的长;(2)点O到AB的距离为2,求⊙O的半径.答案1. 【答案】B【解析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、√8含有能开方的因式,不是最简二次根式,故本选项错误;B、√x2+1符合最简二次根式的定义,故本选项正确;C、√y2含有能开方的因式,不是最简二次根式,故本选项错误;D、√1被开方数含分母,故本选项错误;2故选B.2. 【答案】A【解析】要判断方程x2+5x−4=0根的情况只要求出它的判别式,然后根据其正负情况即可作出判断.【解答】解:∵a=1,b=5,c=−4,∴△=25+16=41>0,∴此方程两个不相等的实数根.故选A.3. 【答案】A【解析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.【解答】解:∵x2+4x+2=0,∴x2+4x=−2,∴x2+4x+4=−2+4,∴(x+2)2=2.故选A.4. 【答案】D【解析】此题是一组复合图形,根据平移、旋转的性质解答.【解答】解:A、B、C中只能由旋转得到,不能由平移得到,只有D可经过平移,又可经过旋转得到.故选D.5. 【答案】C【解析】易得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【解答】解:解方程x2−6x+8=0得,x=2或4,∴第三边长为2或4.边长为2,3,6不能构成三角形;而3,4,6能构成三角形,∴三角形的周长为3+4+6=13,故选:C.6. 【答案】D【解析】根据垂径定理求解.【解答】解:由垂径定理知,点H是AB的中点,也是CD的中点,则有CH=HD,AH=HB,所以AD=BC,AC=BD.所以共有4组相等的线段.故选D.7. 【答案】B【解析】先运用“在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半”,再运用周角360∘即可解.【解答】解:∵∠ACB=a∴优弧所对的圆心角为2a∴2a+a=360∘∴a=120∘.故选B.8. 【答案】B【解析】本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d> r时,点在圆外;当d=r时,点在圆上;点在圆外;当d<r时,点在圆内;来确定点与圆的位置关系.【解答】解:∵OP=√32+42=5,∴根据点到圆心的距离等于半径,则知点在圆上.故选B.9. 【答案】D【解析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:A,B选项为不可能事件,故不符合题意;C选项为可能性较小的事件,是随机事件;D项瓮中捉鳖是必然发生的.故选:D.10. 【答案】D【解析】小明共摸了100次,其中20次摸到黑球,则有80次摸到白球;摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.【解答】解:∵小明共摸了100次,其中20次摸到黑球,则有80次摸到白球,∴摸到黑球与摸到白球的次数之比为1:4,∵这个口袋中有5个黑球,∴共有白球5×4=20个,故答案为:D.11. 【答案】C【解析】由等腰三角形的性质,可求得∠A=∠C=15∘,然后由圆周角定理,求得∠BOC的度数.【解答】解:∵OA=OC,∴∠A=∠C=15∘;∴∠BOC=2∠A=30∘.故选C.12. 【答案】B【解析】方程kx2+2x+1=0有实数根,那么利用根的判别可得△=b2−4ac=22−4k⋅1≥0,解得k≤1,而k=0,方程kx2+2x+1=0是一元一次方程,故可确定选项.【解答】解:根据题意可得△=b2−4ac=22−4k⋅1≥0,即4−4k≥0,解得k≤1,而k=0时,方程kx2+2x+1=0是一元一次方程,方程的解为x=−12.故选B.13. 【答案】A【解析】因为左右脚穿的鞋的数目相同,5双鞋中右脚穿的鞋有5只,根据概率公式解答即可.【解答】解:5双鞋就是10只,其中右脚的有5只,所以取出一只鞋是右脚鞋的概率是510=12.故选A.14. 【答案】A【解析】一天的利润=(售价-进价)×销售量,把相关数值代入即可.【解答】解:∵每件商品的利润为(x−30)元,可售出(100−2x)件,∴根据每天的利润为200元可列的方程为(x−30)(100−2x)=200,故选A.15. 【答案】B【解析】根据切线的性质得到直角△AOE,由∠A=30∘,得到∠AOE=60∘,然后在直角△COF中,求出圆的半径,再用扇形面积公式计算出扇形的面积.【解答】解:如图:∵AB与⊙O相切,∴OE⊥AB.∵OA=OB,∠A=30∘,∴∠AOE=∠BOE=60∘,∴OE垂直平分CD.设OE交CD于F,在直角△COF中,CF=12CD=√3,∴CO=2,∴S扇形OCED =120π⋅22360=43π.故选B.16. 【答案】√3−1,≤12【解析】根据√a2=a,(a≥0),可得答案.【解答】解:√(1−√3)2=√(√3−1)2=√3−1,当x<12时,√(2x−1)2=1−2x,故答案为:√3−1,≤12.17. 【答案】相交【解析】先求得方程的根,再根据数量关系来判断两圆的位置关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R−r<d<R+r;内切,则d=R−r;内含,则d< R−r.【解答】解:解方程x2−7x+12=0,化为(x−3)(x−4)=0,解得x1=3,x2=4.因为4−3<5<4+3,即x2−x1<d<x2+x1.则这两个圆的位置关系是相交.18. 【答案】10【解析】设参加这次聚会的人是x人,第一个人和其他所有人握了(x−1)手,而其中甲与乙的握手与乙和甲的握手是同一次,因而共有12x(x−1)次握手,据此即可列方程求解.【解答】解:设参加这次聚会的人是x人,依题意得x(x−1)2=45,∴x2−x−90=0,∴x=10或x=−9(负值舍去).答:参加这次聚会的人是10人.19. 【答案】136π【解析】根据弧长公式可得.【解答】解:150π×2+90π×1180=136π.20. 【答案】x≥−5,任意实数【解析】根据二次根式的性质意义,被开方数大于等于0,即可求得.【解答】解:x+5≥0,解得:x≥−5;对任意实数x2+1>0一定成立,则√x2+1的取值范围是:任意实数.故答案是:x≥−5;任意实数.21. 【答案】相交【解析】根据圆心距与半径之间的数量关系可知两圆的位置关系是相交.【解答】解:∵两圆的半径分别为3cm和4cm,圆心距为5cm,4−3<5<4+3,∴两圆的位置关系是相交.22. 【答案】(−1,√3),(−1,−√3)【解析】根据菱形的性质可知△POB,△AOB是等边三角形,从而得出∠POM=180∘−60∘×2=60∘,再根据三角函数即可求出OM,PM的长度,得到点P的坐标,注意点P可以在x轴的上方和下方.【解答】解:∵四边形AOPB为菱形∴OP=PB=AB=OB,∵OP=OB,∴△POB,△AOB是等边三角形,∴∠POM=180∘−60∘×2=60∘,∴OM=OP⋅cos∠POM=1,PM=OP⋅sin∠POM=√3.当点P在x轴的上方时,P的坐标为(−1, √3);当点P在x轴的下方时,P的坐标为(−1, −√3).故答案为:(−1, √3),或(−1, −√3).23. 【答案】40∘【解析】由四边形ABCD内接于⊙O,若∠BCD=160∘,根据圆的内接四边形的性质,即可求得∠A的度数,又由圆周角定理,即可求得答案.【解答】解:∵四边形ABCD内接于⊙O,∠BCD=160∘,∴∠A=180∘−∠BCD=20∘,∴∠BOD=2∠A=40∘.故答案为:40∘.24. 【答案】6【解析】圆的周长就是扇形的弧长,根据弧长的计算公式即可求得半径的长.【解答】解:∵圆的周长=2π×1=2π.扇形的弧长为60πR,180=2π,∴60πR180解得:R=6.故答案为6.25. 【答案】解:(1)原式=2√3−√3+3−√3−1+√3−2=√3;; (2)x2−4x+4=3,(x−2)2=3,x−2=±√3,所以x1=2+√3,x2=2−√3;; (3)原式=2√6−√2×√6×√6+√2×√12×2√3=2√6−6√2+12√2=2√6+6√2;; (4)2x2−7x+3=0,(2x−1)(x−3)=0,2x−1=0或x−3=0,所以x1=1,x2=3.2【解析】(1)根据零指数幂和负整数指数幂的意义得到原式=2√3−√3+3−√3−1+√3−2,然后合并即可;;(2)利用配方法解方程;; (3)利用二次根式的乘法法则得到原式=2√6−√2×√6×√6+√2×√12×2√3,再根据二次根式的性质化简,然后合并即可;; (4)先移项得到2x2−7x+3=0,然后利用因式分解法解方程.【解答】解:(1)原式=2√3−√3+3−√3−1+√3−2=√3;; (2)x2−4x+4=3,(x−2)2=3,x−2=±√3,所以x1=2+√3,x2=2−√3;; (3)原式=2√6−√2×√6×√6+√2×√12×2√3=2√6−6√2+12√2=2√6+6√2;; (4)2x2−7x+3=0,(2x−1)(x−3)=0,2x−1=0或x−3=0,所以x1=12,x2=3.26. 【答案】(−6, 2);(2, −6).;【解析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点B1的坐标即可;; (2)根据网格结构找出点A、B、C绕点O顺时针旋转90∘的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点B2的坐标即可.【解答】解:(1)如图所示,四边形OA1B1C1,即为所求作的图形,点B1(−6, 2);; (2)如图所示,四边形OA2B2C2,即为所求作的图形,点B2(2, −6).27. 【答案】解:(1)爸爸所出手势的所有可能出现的结果数为3,出“锤子”可能出现的结果数为1,所以出“锤子”手势的概率P(锤子)=13.; (2)画树状图:由树状图可以看出,总共有3种可能,妞妞赢的可能有1种.所以妞妞赢的概率为13.; (3)画树状图:由树状图可知,游戏中共有9种可能,相同手势有3种可能.所以相同手势的概率为39=13.【解析】(1)总数有3种,出“锤子”手势只有一种,那么1÷3即可;; (2)爸爸有3种可能,妞妞赢的只有一种,1÷3即可;; (3)妞妞的手势有3种可能,爸爸也有3种,共有9种可能,相同手势有3种可能,让3÷9即可.【解答】解:(1)爸爸所出手势的所有可能出现的结果数为3,出“锤子”可能出现的结果数为1,所以出“锤子”手势的概率P(锤子)=13.; (2)画树状图:由树状图可以看出,总共有3种可能,妞妞赢的可能有1种.所以妞妞赢的概率为13.; (3)画树状图:由树状图可知,游戏中共有9种可能,相同手势有3种可能.所以相同手势的概率为39=13.28. 【答案】解:(1)先作弦AB的垂直平分线;在弧AB上任取一点C连接AC,作弦AC的垂直平分线,两线交点作为圆心O,OA作为半径,画圆即为所求图形.; (2)过O作OE⊥AB于D,交弧AB于E,连接OB.∵OE⊥AB∴BD=12AB=12×16=8cm由题意可知,ED=4cm设半径为xcm,则OD=(x−4)cm 在Rt△BOD中,由勾股定理得:OD2+BD2=OB2∴(x−4)2+82=x2解得x=10.即这个圆形截面的半径为10cm.【解析】如图所示,根据垂径定理得到BD=12AB=12×16=8cm,然后根据勾股定理列出关于圆形截面半径的方程求解.;【解答】解:(1)先作弦AB的垂直平分线;在弧AB上任取一点C连接AC,作弦AC的垂直平分线,两线交点作为圆心O,OA作为半径,画圆即为所求图形.; (2)过O作OE⊥AB于D,交弧AB于E,连接OB.∵OE⊥AB∴BD=12AB=12×16=8cm由题意可知,ED=4cm设半径为xcm,则OD=(x−4)cm在Rt△BOD中,由勾股定理得:OD2+BD2=OB2∴(x−4)2+82=x2解得x=10.即这个圆形截面的半径为10cm.29. 【答案】解:(1)树状图或列表:; (2)共有9种情况,上午和下午恰好都参观亚洲国家展馆的情况有2种,所以概率是29.【解析】(1)用树状图即可得到小刚所有可能的参观方式;; (2)看恰好参加中国馆,日本馆,韩国馆的情况占总情况的多少即可.【解答】解:(1)树状图或列表:; (2)共有9种情况,上午和下午恰好都参观亚洲国家展馆的情况有2种,所以概率是2.930. 【答案】解:(1)∵OE⊥AP,OF⊥BP,点E、F分别是垂足,∴AE=EP,PF=BF,AB,而AB=10,∴EF=12∴EF=5;; (2)如图,过O作OC⊥AB于C,连接OB,∴C为AB的中点,∴BC=5,而OC=2,∴OB=√22+52=√29,∴⊙O的半径为√29.【解析】(1)由于OE⊥AP,OF⊥BP,点E、F分别是垂足,根据垂径定理可以得到E、F分别是AP、BP的中点,然后利用中位线定理即可求解;; (2)如图,过O作OC⊥AB于C,连接OB,利用垂径定理和勾股定理即可求解.【解答】解:(1)∵OE⊥AP,OF⊥BP,点E、F分别是垂足,∴AE=EP,PF=BF,AB,而AB=10,∴EF=12∴EF=5;; (2)如图,过O作OC⊥AB于C,连接OB,∴C为AB的中点,∴BC=5,而OC=2,∴OB=√22+52=√29,∴⊙O的半径为√29.。

2019-2020学年贵州省黔西南州兴义市九年级(上)期末数学试卷解析版

2019-2020学年贵州省黔西南州兴义市九年级(上)期末数学试卷解析版

2019-2020学年贵州省黔西南州兴义市九年级(上)期末数学试卷一、选择题.(每题只有一个正确答案,请将正确答案填在下面的表格里每题4分,共40分)1.(4分)下列事件中,是必然事件的是()A.两条线段可以组成一个三角形B.a为实数,|a|≥0C.早上的太阳从西方升起D.打开电视机,正在播放兴义市天气预报2.(4分)下列各点在抛物线y=﹣x2+1上的是()A.(1,0)B.(0,0)C.(0,﹣1)D.(1,1)3.(4分)下列说法正确的是()A.圆是轴对称图形B.三点确定一个圆C.大于半圆的弧叫做劣弧D.长度相等的弧叫做等弧4.(4分)在平面直角坐标系中,若点P(m,n)与Q(﹣2,3)关于原点对称,则点M(m,﹣n)在()A.第一象限B.第二象限C.第三象限D.第四象限5.(4分)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m的值为()A.﹣6B.6C.3D.﹣36.(4分)二次函数的图象如图所示,则其解析式是()A.y=﹣x2+2x+3B.y=x2﹣2x﹣3C.y=﹣x2﹣2x+3D.y=﹣x2﹣2x﹣37.(4分)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径的长为()A.πB.2πC.4πD.8π8.(4分)目前仓更及周边板栗种植面积达18万余亩,年产板栗3000万斤,产值5000多万元,是沿江(南盘江)区域支柱性产业.在春节来临之际,兴义市某板栗销售公司开始加大推销力度,10月份获得利润为10万元,由于产品畅销,利润逐月增加,第三季度获利36.4万元,已知11月份和12月份的月增长率相同,设11、12月份的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4B.10(1+2x)=36.4C.10+10(1+x)2=36.4D.10+10(1+x)+10(1+x)2=36.49.(4分)已知二次函数y=ax2+bx+c的图象如图所示,则以下结论正确的是()A.b<0,c<0B.a﹣b>0C.2a+b>0D.abc<010.(4分)如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB =8,CD=2,则△BCE的面积为()A.12B.15C.16D.18二.填空题.(每小题3分,共30分)11.(3分)方程x2﹣4x+1=0的根的情况是.12.(3分)已知圆的直径为13cm,如果直线和圆心的距离为4.5cm,那么直线和圆有个公共点.13.(3分)如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是.14.(3分)现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为.15.(3分)在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.16.(3分)如图,已知圆的内接正六边形ABCDEF,CD=4,则B、E两点间的距离为.17.(3分)如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是.18.(3分)已知关于x的方程2x2+bx+c=0的左边可分解因式为2(x﹣3)(x+1),则b﹣c=.19.(3分)如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=度.20.(3分)在平面直角坐标系中,抛物线y1=a(x﹣2)2+1(a≠0)的顶点为A,过点A作y轴的平行线与顶点为C的抛物线y2=﹣x交于点B,连接CA、CB,则△ABC的面积为.三、(本题共12分)21.(12分)(1)解一元二次方程:x2﹣4x﹣5=0;(2)已知抛物线y=ax2+bx+3的对称轴是x=1,且过点(1,4),求a、b的值.四.(本题共12分)22.(12分)已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.五.(本题共14分)23.(14分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.六.(本题共12分)24.(12分)紫妍生态草莓基地是我市最大的草莓基地之一,到了草莓采摘的季节,基地的草莓送往兴义市区的各大超市.某超市销售草莓,已知草莓的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可获利2000元,经调查发现,每天的销售量y(千克)与售价(元/千克)之间存在一次函数关系.(1)求y与x之间的函数解析式;(2)若草莓的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售草莓所获的利润最大?最大利润是多少元?七.(本题共14分)25.(14分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=2,AC=2,求AD的长.八.(本题共16分)26.(16分)在平面直角坐标系中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的解析式和点B的坐标;(2)将抛物线向上或向下平移,使得新抛物线的顶点C在x轴上,原抛物线一点P平移后对应的点为Q,且OP=OQ,求点Q的坐标.2019-2020学年贵州省黔西南州兴义市九年级(上)期末数学试卷参考答案与试题解析一、选择题.(每题只有一个正确答案,请将正确答案填在下面的表格里每题4分,共40分)1.【解答】解:A、两条线段可以组成一个三角形,是不可能事件;B、a为实数,|a|≥0,是必然事件;C、早上的太阳从西方升起,是不可能事件;D、打开电视机,正在播放兴义市天气预报,是随机事件;故选:B.2.【解答】解:∵当x=1时,y=﹣x2+1=0;当x=0,y=﹣x2+1=1,∴点(1,0)在抛物线y=﹣x2+1上.故选:A.3.【解答】解:A、圆是轴对称图形,正确,符合题意;B、不在同一直线上的三点确定一个圆,故错误,不符合题意;C、小于半圆的弧叫做劣弧,故错误,不符合题意;D、长度相等的弧不一定是等弧,故错误,不符合题意;故选:A.4.【解答】解:∵点P(m,n)与点Q(﹣2,3)关于原点对称,∴,则点M(m,﹣n)坐标为:(2,3).故选:A.5.【解答】解:∵m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m=2(m2﹣2m)=2×3=6.故选:B.6.【解答】解:设抛物线解析式为y=a(x+1)(x﹣3),把(0,3)代入得a•1•(﹣3)=3,解得a=﹣1,所以抛物线解析式为y=﹣(x+1)(x﹣3),即y=﹣x2+2x+3.故选:A.7.【解答】解:∵每个小正方形的边长都为1,∴OA=4,∵将△AOB绕点O顺时针旋转90°得到△A′OB′,∴∠AOA′=90°,∴A点运动的路径的长为:=2π.故选:B.8.【解答】解:设11、12月份的月增长率为x,依题意,得:10+10(1+x)+10(1+x)2=36.4.故选:D.9.【解答】解:根据函数图象,我们可以得到以下信息:a<0,c>0,∵﹣>1,∴b>0,b>﹣2a,∴abc>0,a﹣b<0,2a+b>0故A、B、D错误;C正确;故选:C.10.【解答】解:∵⊙O的半径OD垂直于弦AB,垂足为点C,AB=8,∴AC=BC=AB=4.设OA=r,则OC=r﹣2,在Rt△AOC中,∵AC2+OC2=OA2,即42+(r﹣2)2=r2,解得r=5,∴AE=10,∴BE===6,∴△BCE的面积=BC•BE=×4×6=12.故选:A.二.填空题.(每小题3分,共30分)11.【解答】解:在方程x2﹣4x+1=0中,△=(﹣4)2﹣4×1×1=12>0,∴方程x2﹣4x+1=0有两个不相等的实数根.故答案为:有两个不相等的实数根.12.【解答】解:已知圆的直径为13cm,则半径为6.5cm,又圆心距为4.5cm,小于半径,所以,直线与圆相交,有两个交点.13.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠A+∠C=180°又∵∠C=∠D,∴∠A+∠D=180°.∴AB∥CD.故答案为:AB∥CD.14.【解答】解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.15.【解答】解:∵点P0绕着原点O按逆时针方向旋转60°得点P1,∴P1点的坐标是(,∴P2的坐标是,又∵点P3与P2关于y轴对称,∴点P3的坐标是(﹣1,).16.【解答】解:连接BE、AE,如右图所示,∵六边形ABCDEF是正六边形,∴∠BAF=∠AFE=120°,F A=FE,∴∠F AE=∠FEA=30°,∴∠BAE=90°,∴BE是正六边形ABCDEF的外接圆的直径,∵CD=4,∴正六边形ABCDEF内接于半径为4的圆,∴BE=8,即则B、E两点间的距离为8,故答案为:8.17.【解答】解:由图象得:对称轴是x=1,其中一个点的坐标为(3,0)∴图象与x轴的另一个交点坐标为(﹣1,0)利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴﹣1<x<3故填:﹣1<x<318.【解答】解:由题意可知:2x2+bx+c=2(x﹣3)(x+1),∴b=﹣4,c=﹣6,∴b﹣c=2,故答案为:﹣219.【解答】解:∵∠AOB=40°,OA=OB,∴∠ABO==70°.∵直径CD∥AB,∴∠BOC=∠ABO=70°,∴∠BAC=∠BOC=35°.故答案为:35.20.【解答】解:点A(2,1),点C(﹣2,),当x=2时,y2=﹣x=﹣8,故点B(2,﹣8),△ABC的面积=×AB×(x A﹣x C)=×9×4=18,故答案为18.三、(本题共12分)21.【解答】解:(1)x2﹣4x﹣5=0,即(x﹣5)(x+1)=0,解得:x=5或﹣1;(2)抛物线y=ax2+bx+3的对称轴是x=1,点(1,4),则点(1,4)是抛物线的顶点,故抛物线的表达式为:y=a(x﹣1)2+4=ax2﹣2ax+a+4,故a+4=3,解得:a=﹣1,则b=2.四.(本题共12分)22.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∵BC=6cm,AC=8cm,∴AB=10cm.∴OB=5cm.连OD,∵OD=OB,∴∠ODB=∠ABD=45°.∴∠BOD=90°.∴BD==5cm.(2)S阴影=S扇形﹣S△OBD=π•52﹣×5×5=cm2.五.(本题共14分)23.【解答】解:(1)360°(1﹣40%﹣25%﹣15%)=72°;故答案为:72;全年级总人数为45÷15%=300(人),“良好”的人数为300×40%=120(人),将条形统计图补充完整,如图所示:(2)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、丁的结果有2个,∴P(选中的两名同学恰好是甲、丁)==.六.(本题共12分)24.【解答】解:(1)当x=25时,y=2000÷(25﹣15)=200(千克),设y与x的函数关系式为:y=kx+b,把(20,250),(25,200)代入得:,解得:,∴y与x的函数关系式为:y=﹣10x+450;(2)设每天获利W元,W=(x﹣15)(﹣10x+450)=﹣10x2+600x﹣6750=﹣10(x﹣30)2+2250,∵a=﹣10<0,∴开口向下,∵对称轴为x=30,∴在x≤28时,W随x的增大而增大,∴x=28时,W最大值=﹣10×4+2250=2210(元),答:售价为28元时,每天获利最大为2210元.七.(本题共14分)25.【解答】证明:(1)连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,(2分)∵BD是⊙O的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,(3分)∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE与⊙O相切于点A;(4分)(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,(5分)∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,(7分)∴BD=8,∴在Rt△ABD中,AD====2.(8分)八.(本题共16分)26.【解答】解:(1)∵抛物线的对称轴为x=1,∴x=﹣=1,即=1,解得b=2.∴y=﹣x2+2x+c.将A(2,2)代入得:﹣4+4+c=2,解得:c=2.∴抛物线的解析式为y=﹣x2+2x+2.配方得:y=﹣(x﹣1)2+3.∴抛物线的顶点坐标为(1,3).(2)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上,∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP∥y轴,∴点Q与点P关于x轴对称.∴点Q的纵坐标为﹣.将y=﹣代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣,解得:x=或x=.∴点Q的坐标为(,﹣)或(,﹣).。

贵州省黔西地区2018-2019年九年级上期末模拟数学试卷及答案

贵州省黔西地区2018-2019年九年级上期末模拟数学试卷及答案

贵州省黔西地区2018-2019学年度第一学期期末模拟九年级数学试卷亲爱的同学:你好!数学就是力量,自信决定成绩。

请你灵动智慧,缜密思考,细致作答,努力吧,祝你成功!一、精心选一选(本大题共15小题,每小题3分,共45分.每小题给出四个答案,其中只有一个是正确的).1.用配方法解方程x 2+x =2,要使方程左边为x 的完全平方式,应把方程两边同时( )A .加41 B .加21C .减41 D .减212.双曲线y = 与直线y =2x +1的一个交点横坐标为﹣1,则k =( )A .﹣2B .﹣1C . 1D .2 3.如果关于x 的一元二次方程kx 2-1k 3 x +1=0有两个不相等的实数根,那么k 的取值范围是( ) A . -31≤k <1且k ≠0 B .k <1且k ≠0 C .-31≤k <1 D .k <14.指出下列定理中存在逆定理的是 ( )。

A.矩形是平行四边形B.内错角相等,两直线平行C.全等三角形对应角相等D.对顶角相等5.已知一个等腰三角形有一个角为50o,则顶角是( )A. 50oB. 50o 或65oC. 50o 或80oD.不能确定 6、sin45°的值等于( ) A.21 B.22 C. 23 D.1 7、一元二次方程x 2=2x 的根是( )A .x=2B .x=0C .x 1=0,x 2=2D .x 1=0,x 2=-2 8、等腰三角形的两条边长分别为3,6,那么它的周长为( ) A .15 B .12 C .12或15 D .不能确定9、如图,空心圆柱的左视图是( )A. B. C. D.10、如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C. △ABC 三条高所在直线的交点D. △ABC 三条角平分线的交点 11、如图,DE 是△ABC 的中位线,若BC 的长为3cm ,则DE 的长是( ) A. 1cm B. 1.2cm C. 1.5cm D. 2cm12、直角三角形两直角边的长分别为x ,y ,它的面积为3,则y 与x 之间的函数关系用图象表示大致是( )A . B. C. D.13、由于国家出台对房屋的限购令,我省某地的房屋价格原价为8400元/米2,通过连续两次降价%a 后,售价变为6000元/米2,下列方程中正确的是( )A.6000)1(84002=-a B.8400)1(60002=-a C.6000)1(84002=+aD.6000)1(84002=-a14、下列命题中真命题是( )A.如果m 是有理数,那么m 是整数B.4的平方根是2C.等腰梯形两底角相等D.如果四边形ABCD 是正方形,那么它是菱形15、图1为两个相同的矩形,若阴影区域的面积为10,则图2的阴影面积等于( )A.40B.30C.20D.10二、细心填一填(本大题共5小题,每小题4分,共20分.请你把答案填在横线的上方).16、已知反比例函数xky =的图象经过点(2,5),则k= . 17、抛物线y=x 2-2x+3的顶点坐标是 .18、命题“平行四边形的对角线互相平分”的逆命题是 .19、如图,在△ABC 中,AB=BC ,∠B=120°,AB 的垂直平分线交AC 于点D .若 AC=6cm ,则AD= cm .20、定义新运算“*”.规则:a*b=a (a ≥b )或者a*b=b (a <b )如1*2=2, (-3)*2=2.若x 2+x-1=0的根为x 1、x 2,则x 1*x 2的值为: .三、用心做一做 (本大题共3小题,每小题7分,共21分). 21、如图,已知AC 平分∠BAD ,AB=AD .求证:△ABC ≌△ADC解:22、如图所示,快下降到地面的某伞兵在灯光下的影子为AB .试确定灯源P 的位置,并画出竖立在地面上木桩的影子EF .(保留作图痕迹,不要求写作法) 解:23、如图,在平行四边形ABCD 中,BF=DE .求证:四边形AFCE 是平行四边形. 解:四、沉着冷静,缜密思考(本大题共2小题,每小题8分,共16分).24、我市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(4分)(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有人达标;(2分)(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?(2分)解:25、如图经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树状图或列表法中的一种列举出这两辆汽行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.解:五、满怀信心,再接再厉(本大题共3小题,每小题8分,共24分).26、(本题满分8分)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:3≈1.732)解:27、(本题满分8分)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量W(台),销售单价x(元)满足W=-2x+80,设销售这种台灯每天的利润为y(元).求y与x之间的函数关系式;解:28、(本题满分8分)如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为l5℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?解:六、灵动智慧,超越自我(本大题共2小题,每小题12分,共24分).29、(本题满分8分)如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.(1)求证:四边形AODE是菱形;(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE的形状是什么?说明理由.解:30. 如图,已知A 、B 两点的坐标分别为A (0,23),B (2,0)直线AB 与反比例函数y =mx的图象交与点C 和点D (-1,a ).(1)求直线AB 和反比例函数的解析式; (2)求∠ACO 的度数.参考答案一、选择题(本大题共10小题,每小题3分,共30分.)1. A2.C3.B4.B5.B6.B7.C8.A9.C 10.D11.C 12.B 13.D 14.C 15.D 二、填空题(本大题共5小题,每小题3分,共15分.)16、10 17、(1,2) 18、对角线互相平分的四边形是平行四边形. 19、2 20、251+- 三、(本大题共3小题,每小题7分,共21分.)21、证明:∵AC 平分∠BAD , ∴∠BAC=∠DAC ,在△ABC 和△ADC 中, ⎪⎩⎪⎨⎧=∠=∠=AC AC DAC BAC AD AB , ∴△ABC ≌△ADC .22、解:如图所示:23、证明:∵平行四边形ABCD ,∴AB ∥CD ,AB=CD . ∵BF=DE , ∴AF=CE .∵在四边形AFCE 中,AF ∥CE , ∴四边形AFCE 是平行四边形. 四、(本大题共2小题,每小题7分,共14分)24、解:(1)成绩一般的学生占的百分比=1-20%-50%=30%,测试的学生总数=24÷20%=120人, 成绩优秀的人数=120×50%=60人, 所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=96.(3)1200×(50%+30%)=960(人). 答:估计全校达标的学生有960人. 25、解法l :(1)根据题意,可以画出出如下的“树状图”:∴这两辆汽乖行驶方向共有9种可能的结果;(2)由(1)中“树状图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P (至少有一辆汽车向左转)=95. 解法2:根据题意,可以列出如下的表格:以下解法同.五、(本大题共3小题,每小题8分,共24分)26、解:∵灯罩BC 长为30cm ,光线最佳时灯罩BC 与水平线所成的角为30°, ∴sin30°=30CMBC CM =, ∴CM =15cm , ∵sin60°=BABF, ∴4023BF =, 解得:320=BF , ∴CE=2+15+320≈51.6cm . 答:此时灯罩顶端C 到桌面的高度CE 是51.6cm . 27、解:y=(x-20)(-2x+80)=-2x 2+120x-1600; 28、解:(1)设加热过程中一次函数表达式为y=kx+b该函数图象经过点(0,15),(5,60)∴⎩⎨⎧=+=60515b k b ∴⎩⎨⎧==59b k∴一次函数的表达式为y=9x+15(0≤x ≤5) 设加热停止后反比例函数表达式为xay =,该函数图象经过点(5,60) 解得:a=300所以反比例函数表达式为xy 300=(x >5) (2)由题意得:⎩⎨⎧=+=30159y x y 解得351=x ;⎪⎩⎪⎨⎧==30300y x y 解得2x =10 则325351012=-=-x x 所以对该材料进行特殊处理所用的时间为325分钟. 六、(本大题共2小题,每小题8分,共16分)29、解:(1)证明:∵矩形ABCD , ∴OA=OC ,OD=OB ,AC=BD , ∴OA=OD , ∵DE ∥CA ,AE ∥BD , ∴四边形AODE 是平行四边形, ∴四边形AODE 是菱形. (2)四边形AODE 的形状是矩形,理由如下: ∵DE ∥CA ,AE ∥BD ,∴四边形AODE 是平行四边形, ∵菱形ABCD , ∴AC ⊥BD , ∴∠AOD=90°, ∴平行四边形AODE 是矩形.30.解:(1)设直线AB 的解析式为y =kx +b ,将A (0,23),B (2,0)代入得⎩⎨⎧b =232k +b =0 解得⎩⎨⎧k =-3b =23∴直线AB 的解析式为y =-3x +23 (2分)将D (-1,a )代入y =-3x +23,得a =33∴D (-1,3 3), (3分)将D (-1,33)代入y =mx中,得m =-33∴反比例函数的解析式为y =-3 3x(4分) (2)解方程组得⎩⎪⎨⎪⎧y =-3x +23y =-33x得⎩⎨⎧x 1=3y 1=- 3 ⎩⎨⎧x 2=-1y 2=33, ∴点C 坐标为(3,-3) (6分)过点C 作CH ⊥x 轴于点H ,在Rt △OMC 中,CH =3,OH =3∴tan ∠COH =CHOH=33,∴∠COH =30° (8分) 在Rt △AOB 中,tan ∠ABO =AOOB=232=3,∴∠ABO =60°(9分) ∴∠ACO =∠ABO -∠COH =30°.。

2019-2020学年黔西南州兴义市九年级上册期末数学试卷(有答案)-最新精品

2019-2020学年黔西南州兴义市九年级上册期末数学试卷(有答案)-最新精品

2019-2020学年贵州省黔西南州兴义市九年级(上)期末数学试卷一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠02.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.如图,AB是⊙O的直径, ==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0B.直线x=1C.直线x=﹣2D.直线x=﹣17.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A.60(1+x)2=80B.(60+x%)2=80C.60(1+x)(1+2x)2=80D.60(1+x%)2=808.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,t表示,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v(m/s)是足球被踢出时的速度,如果要其中t(s)表示足球被踢出后经过的时间,v求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是(填“随机“或“必然”)事件.12.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为.13.点A(﹣2,3)关于原点对称的点的坐标是.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB= .15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).16.为了弘扬中华传统文化,营造书香校园文化氛围,2019-202012月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为度.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC 先向右平移4个单位长度、再向上平移2个单位长度,得到△A 1B 1C 1,画出△A 1B 1C 1;②△A 2B 2C 2与△ABC 关于原点O 成中心对称,画出△A 2B 2C 2.(2)在(1)中所得的△A 1B 1C 1和△A 2B 2C 2关于点M 成中心对称,请直接写出对称中心M 点的坐标.四.(本大题12分) 22.(12分)如图,在⊙O 中,直径AB 与弦CD 相交于点P ,∠CAB=40°,∠APD=65° (1)求∠B 的大小;(2)已知AD=6,求圆心O 到BD 的距离.五.(本大题14分) 23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y (件)与销售单价x (元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w (元)与销售单价x (元)之间的函数关系式; (3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.七.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.八.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y 轴交于点C.(1)写出抛物线顶点D的坐标;(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.2019-2020学年贵州省黔西南州兴义市九年级(上)期末数学试卷参考答案与试题解析一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠0【分析】根据一元二次方程的定义列出关于m,n的方程,求出m,n的值即可.【解答】解:∵(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,∴m﹣2≠0,n=2,解得m≠2,n=2.故选:B.【点评】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图,AB是⊙O的直径, ==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°【分析】由==,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.【解答】解:如图,∵ ==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣78°)=51°.故选:A.【点评】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.【分析】先求出非负数的个数,再根据概率公式计算可得.【解答】解:∵0,﹣3,﹣4,2,5这5个数中,非负数有0,2,5这3个,∴从中随机抽取一张,抽到写有非负数的卡片的概率是,故选:C.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,本题找到非负数的个数是关键.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程【分析】根据旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转进行分析即可.【解答】解:A、足球在草地上滚动,不是旋转,故此选项错误;B、火箭升空的运动,是平移,故此选项错误;C、汽车在急刹车时向前滑行,是平移,故此选项错误;D、钟表的钟摆动的过程,是旋转,故此选项正确;故选:D.【点评】此题主要考查了生活中的旋转,关键是掌握旋转定义.6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0B.直线x=1C.直线x=﹣2D.直线x=﹣1【分析】由二次函数的对称性可求得抛物线的对称轴【解答】解:∵抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,∴抛物线的对称轴为x==﹣2,故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数图象上关于对称轴对称的点所对应的函数值相等是解题的关键.7.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A.60(1+x)2=80B.(60+x%)2=80C.60(1+x)(1+2x)2=80D.60(1+x%)2=80【分析】2016年财政总收入=2014年财政总收入×(1+增长率)2,把相关数值代入即可.【解答】解:2015年财政总收入为60×(1+x),2016年财政总收入为60×(1+x)×(1+x)=60×(1+x)2,可列方程为60(1+x)2=80,故选:A .【点评】本题考查求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .8.如图,四边形ABCD 是⊙O 的内接四边形,∠B=70°,则∠D 的度数是( )A .110°B .90°C .70°D .50°【分析】先根据圆内接四边形的对角互补得出∠D+∠B=180°,即可解答. 【解答】解:∵四边形ABCD 是⊙O 的内接四边形, ∴∠D+∠B=180°,∴∠D=180°﹣70°=110°, 故选:A .【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h (m )可以用公式h=﹣5t 2+v 0t 表示,其中t (s )表示足球被踢出后经过的时间,v 0(m/s )是足球被踢出时的速度,如果要求足球的最大高度达到20m ,那么足球被踢出时的速度应该达到( ) A .5m/sB .10m/sC .20m/sD .40m/s【分析】因为﹣5<0,抛物线开口向下,有最大值,根据顶点坐标公式表示函数的最大值,根据题目对最大值的要求,求待定系数v 0.【解答】解:h=﹣5t 2+v 0•t,其对称轴为t=,当t=时,h 最大=﹣5×()2+v 0•=20,解得:v 0=20,v 0=﹣20(不合题意舍去), 故选:C .【点评】本题考查的是二次函数的应用,关键是利用当对称轴为t=﹣时h 将取到最大值.10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2【分析】从图中可以看出新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,弓形CED的面积又=扇形BCD面积﹣三角形BCD的面积,然后依面积公式计算即可.【解答】解:新月形ACED的面积==R2.故选:B.【点评】本题的关键是看出:新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,然后逐一求面积即可.二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是随机(填“随机“或“必然”)事件.【分析】直接利用随机事件的定义分析得出答案.【解答】解:任意打开一本154页的九年级数学书,正好翻到第127页”这是随机事件.故答案为:随机.【点评】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.12.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为y=x2+1 .【分析】直接利用二次函数的平移规律得出答案.【解答】解:将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为:y=x2+1.故答案为:y=x2+1.【点评】此题主要考查了二次函数的平移变换,正确掌握平移规律是解题关键.13.点A(﹣2,3)关于原点对称的点的坐标是(2,﹣3).【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(﹣2,3)关于原点O的对称点是P′(2,﹣3)【解答】解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).【点评】本题考查了关于原点对称的点的坐标,运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB= 30°.【分析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理求出∠PAB即可.【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°.故答案为:30°.【点评】本题主要考查了正多边形和圆、圆周角定理、弦切角定理;作出适当的辅助线,利用弦切角定理是解答此题的关键.15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1>y2(填“>”、“<”或“=”).【分析】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.【点评】本题考查的是二次函数图象上点的坐标特点,根据题意判断出A、B两点的位置是解答此题的关键.16.为了弘扬中华传统文化,营造书香校园文化氛围,2019-202012月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是【分析】画出树状图,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为2π(结果保留π).【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键..18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为15 度.【分析】此题只需根据旋转的性质发现等腰直角三角形CEF,进行求解.【解答】解:∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.故答案为:15°【点评】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度.难度不大,但易错.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是20 .【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n 的值.【解答】解:根据题意得=30%,解得n=20,所以这个不透明的盒子里大约有20个除颜色外其他完全相同的小球.故答案为20.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.【分析】首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.【解答】解:∵AB=5,AD=12,∴BD==13,∴==,==6π,∴点B 在两次旋转过程中经过的路径的长是: +6π=,故答案为.【点评】此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式l=,是基础题目,解答时要注意旋转中心以及半径的变化.三.(本大题12分) 21.(12分)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣4,3)、B (﹣3,1)、C (﹣1,3). (1)请按下列要求画图:①将△ABC 先向右平移4个单位长度、再向上平移2个单位长度,得到△A 1B 1C 1,画出△A 1B 1C 1;②△A 2B 2C 2与△ABC 关于原点O 成中心对称,画出△A 2B 2C 2.(2)在(1)中所得的△A 1B 1C 1和△A 2B 2C 2关于点M 成中心对称,请直接写出对称中心M 点的坐标.【分析】(1)①根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;②根据网格结构找出A 、B 、C 关于原点O 的中心对称点A 2、B 2、C 2的位置,然后顺次连接即可;(2)连接B 1B 2,C 1C 2,交点就是对称中心M . 【解答】解:(1)①△A 1B 1C 1如图所示; ②△A 2B 2C 2如图所示;(2)连接B 1B 2,C 1C 2,得到对称中心M 的坐标为(2,1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.【分析】(1)先依据三角形的外角的性质求得∠C的度数,然后再根据圆周定理求解即可;(2)利用三角形中位线的性质得出EO=AD,即可得出答案.【解答】解:(1)∵∠APD=∠C+∠CAB,∴∠C=65°﹣40°=25°,∴∠B=∠C=25°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴OE=AD,∴圆心O到BD的距离为3.【点评】此题主要考查了圆周角定理以及三角形中位线定理,根据已知得出EO=AD是解题关键.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?【分析】(1)销售量y件为200件加增加的件数(80﹣x)×20;(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,而76≤x≤80,根据二次函数的性质得到当76≤x≤80时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【解答】解:(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+3000x ﹣108000;(3)根据题意得76≤x≤80,w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤80时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【点评】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.【分析】(1)连接OD,由平行可得∠DAO=∠COB,∠ADO=∠DOC;再由OA=OD,可得出,∠DAO=∠ADO,则∠COB=∠COD,从而证出=;(2)由(1)得,△COD≌△COB,则∠CDO=∠B.又BC⊥AB,则∠CDO=∠B=90°,从而得出CD是⊙O的切线.【解答】证明:(1)连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠DOC,又∵OA=OD,∴∠DAO=∠ADO,∴∠COB=∠COD,∴=;(2)由(1)知∠DOE=∠BOE,在△COD和△COB中,CO=CO,∠DOC=∠BOC,OD=OB,∴△COD≌△COB,∴∠CDO=∠B.又∵BC⊥AB,∴∠CDO=∠B=90°,即OD⊥CD.即CD是⊙O的切线.【点评】本题考查了切线的判定和圆周角定理以及圆心角、弧、弦之间的关系,注:在同圆或等圆中,圆心角、圆周角、弧、弦中有一组量相等,其余各组量也相等.七.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有30种等可能的结果数,再找出小丽和小颖作为本班代表参赛的结果数,然后根据概率公式求解.【解答】解:(1)小明被选中的概率=;(2)画树状图为:共有30种等可能的结果数,其中小丽和小颖作为本班代表参赛的结果数为2,所以小丽和小颖作为本班代表参赛的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.八.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y 轴交于点C.(1)写出抛物线顶点D的坐标(﹣1,4);(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.【分析】(1)根据抛物线的顶点解析式y=﹣(x+1)2+4,即可求出抛物线顶点D的坐标是(﹣1,4);(2)先根据抛物线的解析式y=﹣(x+1)2+4,求出A、C两点的坐标,再利用待定系数法求出直线AC的解析式,根据关于y轴对称的点的坐标特征得出D1(1,4),然后代入直线AC的解析式即可判断点D1在直线AC上;(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),求出EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x,利用配方法化成顶点式,根据二次函数的性质即可求出最大值.【解答】解:(1)∵y=﹣(x+1)2+4,∴抛物线顶点D的坐标是(﹣1,4).故答案为(﹣1,4);(2)点D在直线AC上,理由如下:1∵抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y轴交于点C,∴当y=0时,﹣(x+1)2+4=0,解得x=1或﹣3,A(﹣3,0),B(1,0),当x=0时,y=﹣1+4=3,C(0,3).设直线AC的解析式为y=kx+b,由题意得,解得,∴直线AC的解析式为y=x+3.是点D关于y轴的对称点,D(﹣1,4).∵点D1∴D(1,4),1∵x=1时,y=1+3=4,在直线AC上;∴点D1(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),∵EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+1.5)2+2.25,∴线段EF的最大值是2.25.【点评】本题是二次函数的综合题,其中涉及到二次函数的性质,利用待定系数法求直线的解析式,函数图象上点的坐标特征等知识,难度适中.。

【推荐】黔西南州兴义市九年级上期末数学试卷(有答案)

【推荐】黔西南州兴义市九年级上期末数学试卷(有答案)

2017-2018学年贵州省黔西南州兴义市九年级(上)期末数学试卷一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)n﹣3n+2=0是关于的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠02.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程6.抛物线y=a2+b+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线=0B.直线=1C.直线=﹣2D.直线=﹣17.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为,则可以列出方程为()A.60(1+)2=80B.(60+%)2=80C.60(1+)(1+2)2=80D.60(1+%)2=808.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t (s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是(填“随机“或“必然”)事件.12.如果将抛物线y=2+2向下平移1个单位,那么所得新抛物线的解析式为.13.点A(﹣2,3)关于原点对称的点的坐标是.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=.15.已知点A(1,y1)、B(2,y2)在二次函数y=(﹣1)2+1的图象上,若1>2>1,则y1 y2(填“>”、“<”或“=”).16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为度.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M 点的坐标.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.七.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.八.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(+1)2+4与轴交于点A、B,与y轴交于点C.(1)写出抛物线顶点D的坐标;(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥轴交线段AC于点F,求线段EF的最大值.2017-2018学年贵州省黔西南州兴义市九年级(上)期末数学试卷参考答案与试题解析一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)n﹣3n+2=0是关于的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠0【分析】根据一元二次方程的定义列出关于m,n的方程,求出m,n的值即可.【解答】解:∵(m﹣2)n﹣3n+2=0是关于的一元二次方程,∴m﹣2≠0,n=2,解得m≠2,n=2.故选:B.【点评】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°【分析】由==,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理求∠AEO的度数.【解答】解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣78°)=51°.故选:A.【点评】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.【分析】先求出非负数的个数,再根据概率公式计算可得.【解答】解:∵0,﹣3,﹣4,2,5这5个数中,非负数有0,2,5这3个,∴从中随机抽取一张,抽到写有非负数的卡片的概率是,故选:C.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,本题找到非负数的个数是关键.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程【分析】根据旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转进行分析即可.【解答】解:A、足球在草地上滚动,不是旋转,故此选项错误;B、火箭升空的运动,是平移,故此选项错误;C、汽车在急刹车时向前滑行,是平移,故此选项错误;D、钟表的钟摆动的过程,是旋转,故此选项正确;故选:D.【点评】此题主要考查了生活中的旋转,关键是掌握旋转定义.6.抛物线y=a2+b+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线=0B.直线=1C.直线=﹣2D.直线=﹣1【分析】由二次函数的对称性可求得抛物线的对称轴【解答】解:∵抛物线y=a2+b+c(a≠0)过(2,8)和(﹣6,8)两点,∴抛物线的对称轴为==﹣2,故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数图象上关于对称轴对称的点所对应的函数值相等是解题的关键.7.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为,则可以列出方程为()A.60(1+)2=80B.(60+%)2=80C.60(1+)(1+2)2=80D.60(1+%)2=80【分析】2016年财政总收入=2014年财政总收入×(1+增长率)2,把相关数值代入即可.【解答】解:2015年财政总收入为60×(1+),2016年财政总收入为60×(1+)×(1+)=60×(1+)2,可列方程为60(1+)2=80,故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为,则经过两次变化后的数量关系为a(1±)2=b.8.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°【分析】先根据圆内接四边形的对角互补得出∠D+∠B=180°,即可解答.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠D+∠B=180°,∴∠D=180°﹣70°=110°,故选:A.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t (s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s【分析】因为﹣5<0,抛物线开口向下,有最大值,根据顶点坐标公式表示函数的最大值,根据题目对最大值的要求,求待定系数v0.【解答】解:h=﹣5t2+v0•t,其对称轴为t=,5×()2+v0•=20,当t=时,h最大=﹣解得:v0=20,v0=﹣20(不合题意舍去),故选:C.【点评】本题考查的是二次函数的应用,关键是利用当对称轴为t=﹣时h将取到最大值.10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2【分析】从图中可以看出新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,弓形CED的面积又=扇形BCD面积﹣三角形BCD的面积,然后依面积公式计算即可.【解答】解:新月形ACED的面积==R2.故选:B.【点评】本题的关键是看出:新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,然后逐一求面积即可.二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是随机(填“随机“或“必然”)事件.【分析】直接利用随机事件的定义分析得出答案.【解答】解:任意打开一本154页的九年级数学书,正好翻到第127页”这是随机事件.故答案为:随机.【点评】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.12.如果将抛物线y=2+2向下平移1个单位,那么所得新抛物线的解析式为y=2+1.【分析】直接利用二次函数的平移规律得出答案.【解答】解:将抛物线y=2+2向下平移1个单位,那么所得新抛物线的解析式为:y=2+1.故答案为:y=2+1.【点评】此题主要考查了二次函数的平移变换,正确掌握平移规律是解题关键.13.点A(﹣2,3)关于原点对称的点的坐标是(2,﹣3).【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(﹣2,3)关于原点O 的对称点是P′(2,﹣3)【解答】解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).【点评】本题考查了关于原点对称的点的坐标,运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=30°.【分析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理求出∠PAB即可.【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°.故答案为:30°.【点评】本题主要考查了正多边形和圆、圆周角定理、弦切角定理;作出适当的辅助线,利用弦切角定理是解答此题的关键.15.已知点A(1,y1)、B(2,y2)在二次函数y=(﹣1)2+1的图象上,若1>2>1,则y1>y2(填“>”、“<”或“=”).【分析】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(﹣1)2+1可知,其对称轴为=1,∵1>2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随的增大而增大,∵1>2>1,∴y1>y2.故答案为:>.【点评】本题考查的是二次函数图象上点的坐标特点,根据题意判断出A、B两点的位置是解答此题的关键.16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是【分析】画出树状图,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为2π(结果保留π).【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键..18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为15度.【分析】此题只需根据旋转的性质发现等腰直角三角形CEF,进行求解.【解答】解:∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.故答案为:15°【点评】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度.难度不大,但易错.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是20.【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值.【解答】解:根据题意得=30%,解得n=20,所以这个不透明的盒子里大约有20个除颜色外其他完全相同的小球.故答案为20.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越越小,根据这个频率稳定性定理,可以用频率的集中趋势估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率估计概率.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.【分析】首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.【解答】解:∵AB=5,AD=12,∴BD==13,∴==,==6π,∴点B在两次旋转过程中经过的路径的长是: +6π=,故答案为.【点评】此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式l=,是基础题目,解答时要注意旋转中心以及半径的变化.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M 点的坐标.【分析】(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;②根据网格结构找出A、B、C关于原点O的中心对称点A2、B2、C2的位置,然后顺次连接即可;(2)连接B1B2,C1C2,交点就是对称中心M.【解答】解:(1)①△A1B1C1如图所示;②△A2B2C2如图所示;(2)连接B1B2,C1C2,得到对称中心M的坐标为(2,1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.【分析】(1)先依据三角形的外角的性质求得∠C的度数,然后再根据圆周定理求解即可;(2)利用三角形中位线的性质得出EO=AD,即可得出答案.【解答】解:(1)∵∠APD=∠C+∠CAB,∴∠C=65°﹣40°=25°,∴∠B=∠C=25°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴OE=AD,∴圆心O到BD的距离为3.【点评】此题主要考查了圆周角定理以及三角形中位线定理,根据已知得出EO=AD是解题关键.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?【分析】(1)销售量y件为200件加增加的件数(80﹣)×20;(2)利润w等于单件利润×销售量y件,即W=(﹣60)(﹣20+1800),整理即可;(3)先利用二次函数的性质得到w=﹣202+3000﹣108000的对称轴为=﹣=75,而76≤≤80,根据二次函数的性质得到当76≤≤80时,W随的增大而减小,把=76代入计算即可得到商场销售该品牌童装获得的最大利润.【解答】解:(1)根据题意得,y=200+(80﹣)×20=﹣20+1800,所以销售量y件与销售单价元之间的函数关系式为y=﹣20+1800(60≤≤80);(2)W=(﹣60)y=(﹣60)(﹣20+1800)=﹣202+3000﹣108000,所以销售该品牌童装获得的利润w元与销售单价元之间的函数关系式W=﹣202+3000﹣108000;(3)根据题意得76≤≤80,w=﹣202+3000﹣108000的对称轴为=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤≤80时,W随的增大而减小,∴=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【点评】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.【分析】(1)连接OD,由平行可得∠DAO=∠COB,∠ADO=∠DOC;再由OA=OD,可得出,∠DAO=∠ADO,则∠COB=∠COD,从而证出=;(2)由(1)得,△COD≌△COB,则∠CDO=∠B.又BC⊥AB,则∠CDO=∠B=90°,从而得出CD是⊙O的切线.【解答】证明:(1)连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠DOC,又∵OA=OD,∴∠DAO=∠ADO,∴∠COB=∠COD,∴=;(2)由(1)知∠DOE=∠BOE,在△COD和△COB中,CO=CO,∠DOC=∠BOC,OD=OB,∴△COD≌△COB,∴∠CDO=∠B.又∵BC⊥AB,∴∠CDO=∠B=90°,即OD⊥CD.即CD是⊙O的切线.【点评】本题考查了切线的判定和圆周角定理以及圆心角、弧、弦之间的关系,注:在同圆或等圆中,圆心角、圆周角、弧、弦中有一组量相等,其余各组量也相等.七.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有30种等可能的结果数,再找出小丽和小颖作为本班代表参赛的结果数,然后根据概率公式求解.【解答】解:(1)小明被选中的概率=;(2)画树状图为:共有30种等可能的结果数,其中小丽和小颖作为本班代表参赛的结果数为2,所以小丽和小颖作为本班代表参赛的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.八.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(+1)2+4与轴交于点A、B,与y轴交于点C.(1)写出抛物线顶点D的坐标(﹣1,4);(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥轴交线段AC于点F,求线段EF的最大值.【分析】(1)根据抛物线的顶点解析式y=﹣(+1)2+4,即可求出抛物线顶点D的坐标是(﹣1,4);(2)先根据抛物线的解析式y=﹣(+1)2+4,求出A、C两点的坐标,再利用待定系数法求出直线AC的解析式,根据关于y轴对称的点的坐标特征得出D1(1,4),然后代入直线AC的解析式即可判断点D1在直线AC上;(3)设点E(,﹣2﹣2+3),则F(,+3),求出EF=(﹣2﹣2+3)﹣(+3)=﹣2﹣3,利用配方法化成顶点式,根据二次函数的性质即可求出最大值.【解答】解:(1)∵y=﹣(+1)2+4,∴抛物线顶点D的坐标是(﹣1,4).故答案为(﹣1,4);(2)点D1在直线AC上,理由如下:∵抛物线y=﹣(+1)2+4与轴交于点A、B,与y轴交于点C,∴当y=0时,﹣(+1)2+4=0,解得=1或﹣3,A(﹣3,0),B(1,0),当=0时,y=﹣1+4=3,C(0,3).设直线AC的解析式为y=+b,由题意得,解得,∴直线AC的解析式为y=+3.∵点D1是点D关于y轴的对称点,D(﹣1,4).∴D1(1,4),∵=1时,y=1+3=4,∴点D1在直线AC上;(3)设点E(,﹣2﹣2+3),则F(,+3),∵EF=(﹣2﹣2+3)﹣(+3)=﹣2﹣3=﹣(+1.5)2+2.25,∴线段EF的最大值是2.25.【点评】本题是二次函数的综合题,其中涉及到二次函数的性质,利用待定系数法求直线的解析式,函数图象上点的坐标特征等知识,难度适中.。

2019年初中毕业升学考试(贵州黔西南州卷)数学【含答案及解析】

2019年初中毕业升学考试(贵州黔西南州卷)数学【含答案及解析】

2019年初中毕业升学考试(贵州黔西南州卷)数学【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列各数是无理数的是()A. B. C. D.2. 分式有意义,则的取值范围是()A. B. C. D.一切实数3. 如图,在菱形ABCD中,AC与BD相交于点O,AC=8,BD=6,则菱形的边长AB等于()A.10 B. C.6 D.54. 已知一组数据:-3,6,2,-1,0,4则这组数据的中位数是()A.1 B. C.0 D.25. 已知△∽△且,则为()A.1:2 B.2:1 C.1:4 D.4:16. 如图,点P在⊙O外,PA、PB分别与⊙O相切于A、B两点,∠P=50°,则∠AOB等于()A.150° B.130° C.155° D.135°7. 某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为米,则可列方程为()A. B.C. D.8. 下面几个几何体,主视图是圆的是()9. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA以1cm/s的速度向A点运动,同时动点Q从C点沿CB以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ的面积y(cm²)与运动时间x(s)之间的函数图像大致是()10. 在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图①;将AB折成正三角形,使点A、B重合于点P,如图②;建立平面直角坐标系,平移此三角形,使它关于轴对称,且点P的坐标为(0,2),PM的延长线与轴交于点N(n,0),如图③,当m=时,n的值为()A. B. C. D.二、填空题11. = .12. 42500000用科学记数法表示为.13. 如图5,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:,可使它成为菱形.14. 如图,AB是⊙O的直径,BC是⊙O的弦,若∠AOC=80°,则∠B= .15. 分解因式:= .16. 如图,点A是反比例函数图像上的一个动点,过点A作AB⊥轴,AC⊥轴,垂足点分别为B、C,矩形ABOC的面积为4,则=17. 已知圆锥的底面圆半径为3,母线长为5,则圆锥的侧面积是.18. 已知,则= .19. 如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.20. 已知=3×2=6,=5×4×3=60,=5×4×3×2=120,=6×5×4×3=360,依此规律= .三、解答题21. (1)计算:(2)解方程:.四、计算题22. 如图所示,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切(2)PO的延长线与⊙O交于点E,若⊙O的半径为3,PC=4.求弦CE的长.五、解答题23. 为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共调查了名学生;(2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.六、计算题24. 某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为吨,应交水费为元,写出与之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?七、解答题25. 求不等式的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得;解②得.∴不等式的解集为或.请你仿照上述方法解决下列问题:(1)求不等式的解集.(2)求不等式的解集.26. 如图,在平面直角坐标系中,平行四边形如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形.抛物线经过点A、C、A′三点.(1)求A、A′、C三点的坐标;(2)求平行四边形和平行四边形重叠部分的面积;(3)点M是第一象限内抛物线上的一动点,问点M在何处时,的面积最大?最大面积是多少?并写出此时M的坐标.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。

兴义初三数学试卷答案

兴义初三数学试卷答案

一、选择题1. 选择题答案:D解析:根据题意,a、b、c、d四个数中,a和b的乘积最大,c和d的乘积最小,因此a和b的和最大,c和d的和最小。

故选D。

2. 选择题答案:A解析:根据勾股定理,直角三角形的两条直角边分别为3和4,斜边为5,所以该直角三角形的面积为1/2×3×4=6。

故选A。

3. 选择题答案:C解析:由题意可知,x-2>0,所以x>2。

故选C。

4. 选择题答案:B解析:由题意可知,函数y=kx+b中,k>0,所以函数图象随着x的增大而增大。

故选B。

5. 选择题答案:D解析:根据有理数的乘法法则,负数乘以负数等于正数,所以-(-2)×(-3)=2×3=6。

故选D。

二、填空题6. 填空题答案:x=3解析:根据题意,2x-1=5,移项得2x=6,除以2得x=3。

7. 填空题答案:π解析:根据圆的周长公式C=2πr,其中r为半径,所以周长为2π。

8. 填空题答案:2解析:由题意可知,3x-2=7,移项得3x=9,除以3得x=3,所以x的值为2。

9. 填空题答案:-1解析:由题意可知,2x+3=1,移项得2x=-2,除以2得x=-1。

10. 填空题答案:36解析:根据勾股定理,直角三角形的两条直角边分别为6和8,斜边为10,所以该直角三角形的面积为1/2×6×8=24,斜边上的高为36。

三、解答题11. 解答题答案:(1)当x=2时,代入方程得y=2×2-3=1;(2)当x=5时,代入方程得y=2×5-3=7;(3)当x=0时,代入方程得y=2×0-3=-3;所以,点A(2,1),B(5,7),C(0,-3)在直线y=2x-3上。

12. 解答题答案:(1)根据题意,三角形ABC中,∠A=90°,∠B=30°,∠C=60°;(2)根据正弦定理,sinB=a/c,sinC=b/c,代入数据得sinB=1/2,sinC=√3/2;(3)根据三角形的面积公式S=1/2×a×b×sinC,代入数据得S=1/2×1×2×√3/2=√3/2;所以,三角形ABC的面积为√3/2。

2018-2019学年贵州黔西南九年级上数学期末试卷

2018-2019学年贵州黔西南九年级上数学期末试卷

2018-2019学年贵州黔西南九年级上数学期末试卷一、选择题1. 方程x(x−1)=0的解是()A.x=1B.x=0C.x=0或x=1D.x=0或x=−12. 抛物线把抛物线y=3x2−1向右平移2个单位,则所得抛物线的表达式为()A.y=3(x+2)2+1B.y=3x2−3C.y=3(x−2)2−1D.y=3x2+13. 下列四个图形中是轴对称图形,但不是中心对称图形的是()A. B. C. D.4. 已知⊙O和直线L相交,圆心到直线L的距离为10cm,则⊙O的半径可能为()A.8cmB.9cmC.11cmD.10cm5. 已知正六边形的边长为2,则它的边心距为()A.2B.1C.2√3D.√36. 已知一条圆弧的度数为60∘,半径为6cm,则此圆弧长为()A.4πcmB.πcmC.6πcmD.2πcm7. 已知在6件产品中,有2件次品,任取1件产品是次品的概率是()A.2 3B.14C.12D.138. 如图,点A、B、C都在⊙O上,若∠ACB=48∘,则∠AOB的度数为()A.42∘ B.96∘ C.24∘ D.48∘9. 2015年贞丰县的粽子产值为7200万元,2017年上升到9500万元.这两年贞丰县粽子的产值平均每年增长的百分率是多少?设平均每年增长的百分率为x,根据题意列方程为()A.9500(1−x)2=7200B.7200(1+x)2=9500C.7200(1−x)2=9500D.9500(1+x)2=720010. 已知函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a−b+c<0;③2a+b<0;④abc>0.其中正确结论的序号是()A.①②③B.①④C.③④D.②③二、填空题抛掷一枚均匀的硬币,前5次都正面朝上,则第6次正面朝上的概率是_________.关于x的方程x2+5x−2m=0的解是x=−1,则m=________.二次函数y=x2+2x−3的顶点坐标是________.已知点A(a,1)与点B(−3,b)关于原点对称,则ab的值为________.已知P是⊙O外一点,PA切⊙O于A,PB切⊙O于B.若PA=6,则PB=________.参加一次聚会的每两人都握了一次手,所有人共握手45次,有________人参加聚会.若二次函数y=(m+1)x2+m2−2m−3的图象经过原点,则m=________.一个直角三角形的两条直角边长是方程x2−7x+12=0的两个根,那么这个直角三角形外接圆的半径等于________.如图所示,在△ABC中,∠B=40∘,将△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,则∠CAE=________度.量角器的直径与直角三角板ABC的斜边AB重合,其中量角器O刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3∘的速度旋转,CP与量角器的半圆弧交于点E,当第20秒时,点E在量角器上对应的读数__________ 度.三、解答题解方程:(1)x2−2x−2=0;(2)(x−2)2−3(x−2)=0.△ABC在直角坐标系内的位置如图所示.(1)分别写出A、B、C的坐标;(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称,并写出B1的坐标;(3)请在这个坐标系内画出△A2B2C2,使△A2B2C2与△ABC关于原点对称,并写出A2的坐标.如图,△OAB中,OA=OB,以O为圆心的圆交BC于点C,D,求证:AC=BD.某小学开展4种课外兴趣小组活动,分别为A;绘画:B;机器人:C;跳舞:D;吉他.每个学生都要选取一个兴趣小组参与活动,小明对同学们选取的活动形式进行了随机抽样调查,根据调查统计结果,绘制了如下的统计图:(1)本次调查学生共________人,a=________,并将条形图补充完整;(2)如果该校有学生500人,则选择“机器人”活动的学生估计有多少人?(3)学校让每班同学在A,B,C,D四种活动形式中,随机抽取两种开展活动,请用树状图或列表法的方法,求每班抽取的两种形式恰好是“绘画”和“机器人”的概率.如图,在Rt△ABC中,∠B=90∘,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,AB=10,EB=6.(1)求证:AC是⊙D的切线;(2)求线段AC的长.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1, 0)和点B,与y轴交于点C(0, 3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.参考答案与试题解析2018-2019学年贵州黔西南九年级上数学期末试卷一、选择题1.【答案】此题暂无答案【考点】解一较燥次延程抗因式分解法【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】二水来数兴象触几何变换【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】轴正算图形中心较称图腾【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】直线与都连位置关系【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】正多验河和圆【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】弧因斯计算【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】等可能表件型概率【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】圆明角研理【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】一元二射方程的象多——爱长率问题【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】二次射数空象与话数流关系【解析】此题暂无解析【解答】此题暂无解答二、填空题【答案】此题暂无答案【考点】概水常式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一元二表方病的解【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二次函表y弹蜡x^2它bx+染(a≠非)的图象的画法【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】关于较洗、y装对氢的点的坐标【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】切根长亮理【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一元二较方程轻应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二次常数图见合点的岸标特征【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角形的常换圆与外心解一较燥次延程抗因式分解法勾体定展【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】旋因末性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】圆明角研理【解析】此题暂无解析【解答】此题暂无解答三、解答题【答案】此题暂无答案【考点】一元二表方病的解解于视二南方创-公式法解因末二什方似-配方法【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】作图三腔转变换作图-射对称变面【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】垂都着理等体三火暗服判定与性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】用样射子计总体扇表统病图条都连计图列表法三树状图州【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】切线的明定养性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】待定正数键求一程植数解析式二次使如综合题【解析】此题暂无解析【解答】此题暂无解答。

2018-2019学年贵州省黔西南九年级(上)期末数学试卷

2018-2019学年贵州省黔西南九年级(上)期末数学试卷

2018-2019学年贵州省黔西南九年级(上)期末数学试卷一、选择题.(每题只有一个正确答案,每题4分,共40分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.在不透明的袋子装有9个白球和一个红球,它们除颜色外其余都相同,从袋中随意摸出一个球,则下列说法中正确的是()A.“摸出的球是白球”是必然事件B.“摸出的球是红球”是不可能事件C.摸出的球是白球的可能性不大D.摸出的球有可能是红球3.如图,在⊙O中,弦AB为8mm,圆心O到AB的距离为3mm,则⊙O的半径等于()A.3mm B.4mm C.5mm D.8mm4.方程x2﹣2x=0的解是()A.x=2B.x=0C.x1=0,x2=﹣2D.x1=0,x2=25.将抛物线y=3x2向上平移2个单位,得到抛物线的解析式是()A.y=3x2﹣2B.y=3x2C.y=3(x+2)2D.y=3x2+26.两圆半径分别为6cm和5cm,圆心距为1cm,则这两个圆()A.外切B.内切C.相交D.相离7.2015年琼中县的槟榔产值为4200万元,2017年上升到6500万元.这两年琼中槟榔的产值平均每年增长的百分率是多少?设平均每年增长的百分率为x,根据题意列方程为()A.4200(1+x)2=6500B.6500(1+x)2=4200C.6500(1﹣x)2=4200D.4200(1﹣x)2=65008.抛物线y=x2+2x﹣3的最小值是()A.3B.﹣3C.4D.﹣49.已知⊙O的半径是3,OP=3,那么点P和⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定10.如图,点A、B、C都在⊙O上,若∠ACB=48°,则∠AOB的度数为()A.96°B.48°C.42°D.24°二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是(填“随机“或“必然”)事件.12.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为.13.点A(﹣2,3)关于原点对称的点的坐标是.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=.15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为度.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.七.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.八.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y 轴交于点C.(1)写出抛物线顶点D的坐标;(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.2017-2018学年贵州省黔西南州兴义市九年级(上)期末数学试卷参考答案与试题解析一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠0【分析】根据一元二次方程的定义列出关于m,n的方程,求出m,n的值即可.【解答】解:∵(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,∴m﹣2≠0,n=2,解得m≠2,n=2.故选:B.【点评】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°【分析】由==,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.【解答】解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣78°)=51°.故选:A.【点评】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.【分析】先求出非负数的个数,再根据概率公式计算可得.【解答】解:∵0,﹣3,﹣4,2,5这5个数中,非负数有0,2,5这3个,∴从中随机抽取一张,抽到写有非负数的卡片的概率是,故选:C.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,本题找到非负数的个数是关键.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程【分析】根据旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转进行分析即可.【解答】解:A、足球在草地上滚动,不是旋转,故此选项错误;B、火箭升空的运动,是平移,故此选项错误;C、汽车在急刹车时向前滑行,是平移,故此选项错误;D、钟表的钟摆动的过程,是旋转,故此选项正确;故选:D.【点评】此题主要考查了生活中的旋转,关键是掌握旋转定义.6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0B.直线x=1C.直线x=﹣2D.直线x=﹣1【分析】由二次函数的对称性可求得抛物线的对称轴【解答】解:∵抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,∴抛物线的对称轴为x==﹣2,故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数图象上关于对称轴对称的点所对应的函数值相等是解题的关键.7.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A.60(1+x)2=80B.(60+x%)2=80C.60(1+x)(1+2x)2=80D.60(1+x%)2=80【分析】2016年财政总收入=2014年财政总收入×(1+增长率)2,把相关数值代入即可.【解答】解:2015年财政总收入为60×(1+x),2016年财政总收入为60×(1+x)×(1+x)=60×(1+x)2,可列方程为60(1+x)2=80,故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°【分析】先根据圆内接四边形的对角互补得出∠D+∠B=180°,即可解答.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠D+∠B=180°,∴∠D=180°﹣70°=110°,故选:A.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s【分析】因为﹣5<0,抛物线开口向下,有最大值,根据顶点坐标公式表示函数的最大值,根据题目对最大值的要求,求待定系数v0.【解答】解:h=﹣5t2+v0•t,其对称轴为t=,5×()2+v0•=20,当t=时,h最大=﹣解得:v0=20,v0=﹣20(不合题意舍去),故选:C.【点评】本题考查的是二次函数的应用,关键是利用当对称轴为t=﹣时h将取到最大值.10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2【分析】从图中可以看出新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,弓形CED的面积又=扇形BCD面积﹣三角形BCD的面积,然后依面积公式计算即可.【解答】解:新月形ACED的面积==R2.故选:B.【点评】本题的关键是看出:新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,然后逐一求面积即可.二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是随机(填“随机“或“必然”)事件.【分析】直接利用随机事件的定义分析得出答案.【解答】解:任意打开一本154页的九年级数学书,正好翻到第127页”这是随机事件.故答案为:随机.【点评】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.12.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为y=x2+1.【分析】直接利用二次函数的平移规律得出答案.【解答】解:将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为:y=x2+1.故答案为:y=x2+1.【点评】此题主要考查了二次函数的平移变换,正确掌握平移规律是解题关键.13.点A(﹣2,3)关于原点对称的点的坐标是(2,﹣3).【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(﹣2,3)关于原点O的对称点是P′(2,﹣3)【解答】解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).【点评】本题考查了关于原点对称的点的坐标,运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=30°.【分析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理求出∠PAB即可.【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°.故答案为:30°.【点评】本题主要考查了正多边形和圆、圆周角定理、弦切角定理;作出适当的辅助线,利用弦切角定理是解答此题的关键.15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1>y2(填“>”、“<”或“=”).【分析】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.【点评】本题考查的是二次函数图象上点的坐标特点,根据题意判断出A、B两点的位置是解答此题的关键.16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是【分析】画出树状图,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为2π(结果保留π).【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键..18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为15度.【分析】此题只需根据旋转的性质发现等腰直角三角形CEF,进行求解.【解答】解:∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.故答案为:15°【点评】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度.难度不大,但易错.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是20.【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n 的值.【解答】解:根据题意得=30%,解得n=20,所以这个不透明的盒子里大约有20个除颜色外其他完全相同的小球.故答案为20.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.【分析】首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.【解答】解:∵AB=5,AD=12,∴BD==13,∴==,==6π,∴点B在两次旋转过程中经过的路径的长是: +6π=,故答案为.【点评】此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式l=,是基础题目,解答时要注意旋转中心以及半径的变化.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.【分析】(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;②根据网格结构找出A、B、C关于原点O的中心对称点A2、B2、C2的位置,然后顺次连接即可;(2)连接B1B2,C1C2,交点就是对称中心M.【解答】解:(1)①△A1B1C1如图所示;②△A2B2C2如图所示;(2)连接B1B2,C1C2,得到对称中心M的坐标为(2,1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.【分析】(1)先依据三角形的外角的性质求得∠C的度数,然后再根据圆周定理求解即可;(2)利用三角形中位线的性质得出EO=AD,即可得出答案.【解答】解:(1)∵∠APD=∠C+∠CAB,∴∠C=65°﹣40°=25°,∴∠B=∠C=25°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴OE=AD,∴圆心O到BD的距离为3.【点评】此题主要考查了圆周角定理以及三角形中位线定理,根据已知得出EO=AD是解题关键.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?【分析】(1)销售量y件为200件加增加的件数(80﹣x)×20;(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,而76≤x≤80,根据二次函数的性质得到当76≤x≤80时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【解答】解:(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+3000x﹣108000;(3)根据题意得76≤x≤80,w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤80时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【点评】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.【分析】(1)连接OD,由平行可得∠DAO=∠COB,∠ADO=∠DOC;再由OA=OD,可得出,∠DAO=∠ADO,则∠COB=∠COD,从而证出=;(2)由(1)得,△COD≌△COB,则∠CDO=∠B.又BC⊥AB,则∠CDO=∠B=90°,从而得出CD是⊙O的切线.【解答】证明:(1)连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠DOC,又∵OA=OD,∴∠DAO=∠ADO,∴∠COB=∠COD,∴=;(2)由(1)知∠DOE=∠BOE,在△COD和△COB中,CO=CO,∠DOC=∠BOC,OD=OB,∴△COD≌△COB,∴∠CDO=∠B.又∵BC⊥AB,∴∠CDO=∠B=90°,即OD⊥CD.即CD是⊙O的切线.【点评】本题考查了切线的判定和圆周角定理以及圆心角、弧、弦之间的关系,注:在同圆或等圆中,圆心角、圆周角、弧、弦中有一组量相等,其余各组量也相等.七.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有30种等可能的结果数,再找出小丽和小颖作为本班代表参赛的结果数,然后根据概率公式求解.【解答】解:(1)小明被选中的概率=;(2)画树状图为:共有30种等可能的结果数,其中小丽和小颖作为本班代表参赛的结果数为2,所以小丽和小颖作为本班代表参赛的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.八.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y 轴交于点C.(1)写出抛物线顶点D的坐标(﹣1,4);(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.【分析】(1)根据抛物线的顶点解析式y=﹣(x+1)2+4,即可求出抛物线顶点D的坐标是(﹣1,4);(2)先根据抛物线的解析式y=﹣(x+1)2+4,求出A、C两点的坐标,再利用待定系数法求出直线AC的解析式,根据关于y轴对称的点的坐标特征得出D1(1,4),然后代入直线AC的解析式即可判断点D1在直线AC上;(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),求出EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x,利用配方法化成顶点式,根据二次函数的性质即可求出最大值.【解答】解:(1)∵y=﹣(x+1)2+4,∴抛物线顶点D的坐标是(﹣1,4).故答案为(﹣1,4);(2)点D1在直线AC上,理由如下:∵抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y轴交于点C,∴当y=0时,﹣(x+1)2+4=0,解得x=1或﹣3,A(﹣3,0),B(1,0),当x=0时,y=﹣1+4=3,C(0,3).设直线AC的解析式为y=kx+b,由题意得,解得,∴直线AC 的解析式为y=x +3.∵点D 1是点D 关于y 轴的对称点,D (﹣1,4).∴D 1(1,4),∵x=1时,y=1+3=4,∴点D 1在直线AC 上;(3)设点E (x ,﹣x 2﹣2x +3),则F (x ,x +3),∵EF=(﹣x 2﹣2x +3)﹣(x +3)=﹣x 2﹣3x=﹣(x +1.5)2+2.25,∴线段EF 的最大值是2.25.【点评】本题是二次函数的综合题,其中涉及到二次函数的性质,利用待定系数法求直线的解析式,函数图象上点的坐标特征等知识,难度适中.。

2018-2019学年贵州黔西南九年级上数学期末试卷

2018-2019学年贵州黔西南九年级上数学期末试卷

2018-2019学年贵州黔西南九年级上数学期末试卷一、选择题1. 方程x(x−1)=0的解是()A.x=0B.x=1C.x=0或x=−1D.x=0或x=12. 抛物线把抛物线y=3x2−1向右平移2个单位,则所得抛物线的表达式为()A.y=3x2−3B.y=3x2+1C.y=3(x+2)2+1D.y=3(x−2)2−13. 下列四个图形中是轴对称图形,但不是中心对称图形的是()A. B. C. D.4. 已知⊙O和直线L相交,圆心到直线L的距离为10cm,则⊙O的半径可能为()A.11cmB.10cmC.9cmD.8cm5. 已知正六边形的边长为2,则它的边心距为()A.1B.2C.√3D.2√36. 已知一条圆弧的度数为60∘,半径为6cm,则此圆弧长为()A.πcmB.2πcmC.4πcmD.6πcm7. 已知在6件产品中,有2件次品,任取1件产品是次品的概率是()A.1 4B.13C.23D.128. 如图,点A、B、C都在⊙O上,若∠ACB=48∘,则∠AOB的度数为()A.96∘ B.48∘ C.42∘ D.24∘9. 2015年贞丰县的粽子产值为7200万元,2017年上升到9500万元.这两年贞丰县粽子的产值平均每年增长的百分率是多少?设平均每年增长的百分率为x,根据题意列方程为()A.7200(1+x)2=9500B.9500(1+x)2=7200C.9500(1−x)2=7200D.7200(1−x)2=950010. 已知函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a−b+c<0;③2a+b<0;④abc>0.其中正确结论的序号是()A.③④B.②③C.①④D.①②③二、填空题抛掷一枚均匀的硬币,前5次都正面朝上,则第6次正面朝上的概率是_________.关于x的方程x2+5x−2m=0的解是x=−1,则m=________.二次函数y=x2+2x−3的顶点坐标是________.已知点A(a,1)与点B(−3,b)关于原点对称,则ab的值为________.已知P是⊙O外一点,PA切⊙O于A,PB切⊙O于B.若PA=6,则PB=________.参加一次聚会的每两人都握了一次手,所有人共握手45次,有________人参加聚会.若二次函数y=(m+1)x2+m2−2m−3的图象经过原点,则m=________.一个直角三角形的两条直角边长是方程x2−7x+12=0的两个根,那么这个直角三角形外接圆的半径等于________.如图所示,在△ABC中,∠B=40∘,将△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,则∠CAE=________度.量角器的直径与直角三角板ABC的斜边AB重合,其中量角器O刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3∘的速度旋转,CP与量角器的半圆弧交于点E,当第20秒时,点E在量角器上对应的读数__________ 度.三、解答题解方程:(1)x2−2x−2=0;(2)(x−2)2−3(x−2)=0.△ABC在直角坐标系内的位置如图所示.(1)分别写出A、B、C的坐标;(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称,并写出B1的坐标;(3)请在这个坐标系内画出△A2B2C2,使△A2B2C2与△ABC关于原点对称,并写出A2的坐标.如图,△OAB中,OA=OB,以O为圆心的圆交BC于点C,D,求证:AC=BD.某小学开展4种课外兴趣小组活动,分别为A;绘画:B;机器人:C;跳舞:D;吉他.每个学生都要选取一个兴趣小组参与活动,小明对同学们选取的活动形式进行了随机抽样调查,根据调查统计结果,绘制了如下的统计图:(1)本次调查学生共________人,a=________,并将条形图补充完整;(2)如果该校有学生500人,则选择“机器人”活动的学生估计有多少人?(3)学校让每班同学在A,B,C,D四种活动形式中,随机抽取两种开展活动,请用树状图或列表法的方法,求每班抽取的两种形式恰好是“绘画”和“机器人”的概率.如图,在Rt△ABC中,∠B=90∘,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,AB=10,EB=6.(1)求证:AC是⊙D的切线;(2)求线段AC的长.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1, 0)和点B,与y轴交于点C(0, 3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.参考答案与试题解析2018-2019学年贵州黔西南九年级上数学期末试卷一、选择题1.【答案】D【考点】解一元二次方程-因式分解法【解析】由题知,需要把二次方程化为两个一元一次方程,此题可化为:x=0或x−1=0,解两个一次方程即可求解.【解答】解:∵x(x−1)=0∴x=0或x−1=0∴x1=0,x2=1.故选D.2.【答案】D【考点】二次函数图象与几何变换【解析】此题暂无解析【解答】此题暂无解答3.【答案】A【考点】轴对称图形中心对称图形【解析】此题暂无解析【解答】此题暂无解答4.【答案】A【考点】直线与圆的位置关系【解析】若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【解答】解:∵⊙O和直线L相交,∴d<r∵d=10cm∴r>10∴只有选项A符合条件,故选A.5.【答案】C【考点】正多边形和圆【解析】连接OA、OB,作OC⊥AB于C,由正六边形的性质得出AC=BC=12AB=1,∠AOB=60∘,得出∠AOC= 30∘,求出OC即可.【解答】解:如图所示:连接OA、OB,作OC⊥AB于C,则∠OCA=90∘,AC=BC=12AB=1,∠AOB=60∘,∴∠AOC=30∘,∴OC=√3AC=√3;故选C.6.【答案】B【考点】弧长的计算【解析】此题暂无解析【解答】此题暂无解答7.【答案】B【考点】等可能事件的概率【解析】此题暂无解析【解答】此题暂无解答8.【答案】A【考点】圆周角定理【解析】此题暂无解析【解答】9.【答案】A【考点】一元二次方程的应用--增长率问题【解析】此题暂无解析【解答】此题暂无解答10.【答案】B【考点】二次函数图象与系数的关系【解析】由x=1时,y=a+b+C>0,即可判定①错误;由x=−1时,y=a−b+c<0,即可判定②正确;由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上得到c>0,又对称轴为x=−b2a<1,得到2a+b<0,由此可以判定③正确;由对称轴为x=−b2a>0即可判定④错误.【解答】解:①当x=1时,y=a+b+C>0,∴ ①错误;②当x=−1时,y=a−b+c<0,∴ ②正确;③由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,∴c>0,∵对称轴为x=−b2a<1,∴2a+b<0,∴ ③正确;④对称轴为x=−b2a>0,∴a、b异号,即b>0,∴abc<0,∴ ④错误.故正确结论的序号是②③,故选B.二、填空题【答案】12【考点】概率公式【解析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【解答】解:掷一枚均匀的硬币,前5次抛掷的结果都是正面朝上,那么第6次抛掷的结果正面朝上的概率为12,故答案为:12.【答案】【考点】一元二次方程的解【解析】此题暂无解析【解答】【答案】【考点】二次函数y=ax^2+bx+c (a≠0)的图象的画法【解析】此题暂无解析【解答】此题暂无解答【答案】【考点】关于x轴、y轴对称的点的坐标【解析】此题暂无解析【解答】此题暂无解答【答案】6【考点】切线长定理【解析】根据切线长定理知:PA=PB,由此可求出PB的长.【解答】解:∵PA、PB都是⊙O的切线,且A、B是切点;∴PA=PB,即PB=6.【答案】5【考点】一元二次方程的应用【解析】设有x人参加聚会,每个人都与另外的人握手一次,则每个人握手x−1次,且其中任何两人的握手只有一次,因而共有12x(x−1)次,设出未知数列方程解答即可.【解答】解:设有x人参加聚会,根据题意列方程得,x(x−1)2=45,解得x1=10,x2=−9(不合题意,舍去);答:有10人参加聚会.故答案为:10.【答案】3【考点】二次函数图象上点的坐标特征【解析】将原点(0, 0)代入解析式即可求出m的值.【解答】解:将(0, 0)代入解析式得m2−2m−3=0,解得m1=−1,m2=3.又因为函数为二次函数,可知m+1≠0,m≠−1.所以m=3.故答案为:3.【答案】2.5【考点】三角形的外接圆与外心解一元二次方程-因式分解法勾股定理【解析】根据题意可知,直角三角形的两条直角边长是方程x2−7x+12=0的两个根,解可得方程x2−7x+12=0的两个根为3与4;故直角三角形外接圆的直径即斜边边长为5;故半径等于2.5.【解答】解:解可得方程x2−7x+12=0得,x1=3,x2=4,∴斜边边长为5,即直角三角形外接圆的直径是5,∴半径等于2.5.【答案】100.【考点】旋转的性质【解析】此题暂无解析【解答】旋转的性质可知,旋转前后对应边相等,对应角相等,由此可求出∠ADB的度数;接下来利用三角形的内角和定理即可求出∠BAD的度数.∵△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,∴AB=AD,∠CAE=∠BAD等于旋转角,∴∠B=∠ADB=40∘,∴∠BAD=180∘−∠B−∠ADB=100∘,∴∠CAE=100∘故答案为100.【答案】120【考点】圆周角定理【解析】首先连接OE,由∠ACB=90∘,根据圆周角定理,可得点C在⊙O上,即可得∠EOA=2∠ECA,又由∠ECA的度数,继而求得答案.【解答】解:连接OE,∵射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,∴第20秒时,∠ACE=3∘×20=60∘,∵∠ACB=90∘,∴点C在以AB为直径的圆上,即点C在⊙O上,∴∠EOA=2∠ECA=2×60∘=120∘.三、解答题【答案】【考点】一元二次方程的解解一元二次方程-公式法解一元二次方程-配方法【解析】此题暂无解析【解答】此题暂无解答【答案】解:(1)A(0, 3);B(−4, 4);C(−2, 1);(2)如图:B1的坐标为:(4, 4);(3)如图:A2(0, −3).【考点】作图-旋转变换作图-轴对称变换【解析】(1)观察平面直角坐标系,根据点与坐标系的关系,即可求得A、B、C的坐标;(2)根据关于y轴对称的图形的特点,首先求得各对称点的坐标,继而画出△A1B1C1;(3)根据关于原点对称的图形的特点,首先求得各对称点的坐标,继而画出△A2B2C2.【解答】解:(1)A(0, 3);B(−4, 4);C(−2, 1);(2)如图:B1的坐标为:(4, 4);(3)如图:A 2(0, −3).【答案】证明:如图,过O 作OE ⊥AB 于E , ∵ OA =OB ,OE ⊥AB 于E ∴ AE =BE又∵ CD 是⊙O 的弦,OE ⊥CD ∴ CE =DE∴ AE −CE =BE −DE即AC =BD .【考点】 垂径定理等腰三角形的判定与性质【解析】过O 作OE ⊥AB 于E ,则OE 满足垂径定理,并且OE 是等腰三角形底边上的高线,满足三线合一定理就可以得到. 【解答】证明:如图,过O 作OE ⊥AB 于E ,∵ OA =OB ,OE ⊥AB 于E ∴ AE =BE又∵ CD 是⊙O 的弦,OE ⊥CD ∴ CE =DE∴ AE −CE =BE −DE即AC =BD .【答案】 300,10500×10=50(人),答:选择“机器人”活动的学生估计有50人; 画树状图为:共有12种等可能的结果数,其中某班所抽到的两项方式恰好是“绘画”和“机器人”的结果数为2, 所以某班所抽到的两项方式恰好是“绘画”和“机器人”的概率=212=16.【考点】用样本估计总体 扇形统计图 条形统计图 列表法与树状图法【解析】(1)根据统计图中A 类人数与它所占的百分比可得到调查的总人数,根据百分比之和为1可得a 的值,然后用总人数分别减去A 、C 、D 类的人数得到B 类人数,再补全条形统计图; (2)总人数乘以样本中B 的百分比可得;(3)画树状图展示所有12种等可能的结果数,再找出某班所抽到的两项方式恰好是“绘画”和“机器人”的结果数,然后根据概率公式求解. 【解答】本次调查的学生人数为120÷40%=300(人), a%=1−40%−30%−20%=10%, ∴ a =10,B 类别人数为300×10%=30, 补全图形如下:500×10=50(人),答:选择“机器人”活动的学生估计有50人; 画树状图为:共有12种等可能的结果数,其中某班所抽到的两项方式恰好是“绘画”和“机器人”的结果数为2, 所以某班所抽到的两项方式恰好是“绘画”和“机器人”的概率=212=16. 【答案】(1)证明:过点D 作DF ⊥AC 于F ;如图所示:∵ AB 为⊙D 的切线, ∴ ∠B =90∘ ∴ AB ⊥BC∵ AD 平分∠BAC ,DF ⊥AC ∴ BD =DF∴ AC 是⊙D 的切线;(2)解:在Rt △BDE 和Rt △DCF 中,{DE =DCDB =DF ,∴ Rt △BDE ≅Rt △DCF(HL), ∴ EB =FC . ∵ AB =AF ,∴ AB +EB =AF +FC , 即AB +EB =AC ,∴ AC =10+6=16. 【考点】切线的判定与性质 【解析】(1)过点D 作DF ⊥AC 于F ,求出BD =DF (半径),即可得出AC 是⊙D 的切线.(2)先证明△BDE ≅△DCF(HL),根据全等三角形对应边相等及切线的性质的AB =AF ,得出AB +EB =AC 即可. 【解答】(1)证明:过点D 作DF ⊥AC 于F ;如图所示:∵ AB 为⊙D 的切线, ∴ ∠B =90∘ ∴ AB ⊥BC∵ AD 平分∠BAC ,DF ⊥AC ∴ BD =DF∴ AC 是⊙D 的切线;(2)解:在Rt △BDE 和Rt △DCF 中,{DE =DCDB =DF ,∴ Rt △BDE ≅Rt △DCF(HL), ∴ EB =FC . ∵ AB =AF ,∴ AB +EB =AF +FC , 即AB +EB =AC ,∴ AC =10+6=16.【答案】解:(1)把A(1, 0)和C(0, 3)代入y =x 2+bx +c , {1+b +c =0,c =3,解得:b =−4,c =3,∴ 二次函数的表达式为:y =x 2−4x +3; (2)令y =0,则x 2−4x +3=0, 解得:x =1或x =3, ∴ B(3, 0),∴ BC =3√2,点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP =CB 时,PC =3√2,∴ OP =OC +PC =3+3√2或OP =PC −OC =3√2−3 ∴ P 1(0, 3+3√2),P 2(0, 3−3√2); ②当BP =BC 时,OP =OB =3, ∴ P 3(0, −3); ③当PB =PC 时, ∵ OC =OB =3 ∴ 此时P 与O 重合, ∴ P 4(0, 0);综上所述,点P 的坐标为:(0, 3+3√2)或(0, 3−3√2)或(0, −3)或(0, 0); (3)如图2,设A 运动时间为t , 由AB =2,得BM =2−t , 则DN =2t ,∴ S △MNB =12×(2−t)×2t =−t 2+2t =−(t −1)2+1, 即当M(2, 0)、N(2, 2)或(2, −2)时△MNB 面积最大,最大面积是1.【考点】待定系数法求一次函数解析式 二次函数综合题【解析】(1)代入A(1, 0)和C(0, 3),解方程组即可;(2)求出点B 的坐标,再根据勾股定理得到BC ,当△PBC 为等腰三角形时分三种情况进行讨论:①CP =CB ;②BP =BC ;③PB =PC ;(3)设AM =t 则DN =2t ,由AB =2,得BM =2−t ,S △MNB =12×(2−t)×2t =−t 2+2t ,运用二次函数的顶点坐标解决问题;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【解答】解:(1)把A(1, 0)和C(0, 3)代入y =x 2+bx +c , {1+b +c =0,c =3,解得:b =−4,c =3,∴ 二次函数的表达式为:y =x 2−4x +3; 令y =0,则x 2−4x +3=0, 解得:x =1或x =3, ∴ B(3, 0),∴ BC =3√2,点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP =CB 时,PC =3√2,∴ OP =OC +PC =3+3√2或OP =PC −OC =3√2−3 ∴ P 1(0, 3+3√2),P 2(0, 3−3√2); ②当BP =BC 时,OP =OB =3, ∴ P 3(0, −3); ③当PB =PC 时, ∵ OC =OB =3 ∴ 此时P 与O 重合, ∴ P 4(0, 0);综上所述,点P 的坐标为:(0, 3+3√2)或(0, 3−3√2)或(0, −3)或(0, 0);(3)如图2,设A 运动时间为t , 由AB =2,得BM =2−t , 则DN =2t ,∴ S △MNB =12×(2−t)×2t =−t 2+2t =−(t −1)2+1, 即当M(2, 0)、N(2, 2)或(2, −2)时△MNB 面积最大,最大面积是1.。

2018-2019学年贵州黔西南九年级上数学期末试卷 (1)

2018-2019学年贵州黔西南九年级上数学期末试卷 (1)

2018-2019学年贵州黔西南九年级上数学期末试卷一、选择题1. 方程x(x−1)=0的解是()A.x=1B.x=0C.x=0或x=1D.x=0或x=−12. 抛物线把抛物线y=3x2−1向右平移2个单位,则所得抛物线的表达式为()A.y=3(x+2)2+1B.y=3x2−3C.y=3(x−2)2−1D.y=3x2+13. 下列四个图形中是轴对称图形,但不是中心对称图形的是()A. B. C. D.4. 已知⊙O和直线L相交,圆心到直线L的距离为10cm,则⊙O的半径可能为()A.8cmB.9cmC.11cmD.10cm5. 已知正六边形的边长为2,则它的边心距为()A.2B.1C.2√3D.√36. 已知一条圆弧的度数为60∘,半径为6cm,则此圆弧长为()A.4πcmB.πcmC.6πcmD.2πcm7. 已知在6件产品中,有2件次品,任取1件产品是次品的概率是()A.2 3B.14C.12D.138. 如图,点A、B、C都在⊙O上,若∠ACB=48∘,则∠AOB的度数为()A.42∘ B.96∘ C.24∘ D.48∘9. 2015年贞丰县的粽子产值为7200万元,2017年上升到9500万元.这两年贞丰县粽子的产值平均每年增长的百分率是多少?设平均每年增长的百分率为x,根据题意列方程为()A.9500(1−x)2=7200B.7200(1+x)2=9500C.7200(1−x)2=9500D.9500(1+x)2=720010. 已知函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a−b+c<0;③2a+b<0;④abc>0.其中正确结论的序号是()A.①②③B.①④C.③④D.②③二、填空题抛掷一枚均匀的硬币,前5次都正面朝上,则第6次正面朝上的概率是_________.关于x的方程x2+5x−2m=0的解是x=−1,则m=________.二次函数y=x2+2x−3的顶点坐标是________.已知点A(a,1)与点B(−3,b)关于原点对称,则ab的值为________.已知P是⊙O外一点,PA切⊙O于A,PB切⊙O于B.若PA=6,则PB=________.参加一次聚会的每两人都握了一次手,所有人共握手45次,有________人参加聚会.若二次函数y=(m+1)x2+m2−2m−3的图象经过原点,则m=________.一个直角三角形的两条直角边长是方程x2−7x+12=0的两个根,那么这个直角三角形外接圆的半径等于________.如图所示,在△ABC中,∠B=40∘,将△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,则∠CAE=________度.量角器的直径与直角三角板ABC的斜边AB重合,其中量角器O刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3∘的速度旋转,CP与量角器的半圆弧交于点E,当第20秒时,点E在量角器上对应的读数__________ 度.三、解答题解方程:(1)x2−2x−2=0;(2)(x−2)2−3(x−2)=0.△ABC在直角坐标系内的位置如图所示.(1)分别写出A、B、C的坐标;(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称,并写出B1的坐标;(3)请在这个坐标系内画出△A2B2C2,使△A2B2C2与△ABC关于原点对称,并写出A2的坐标.如图,△OAB中,OA=OB,以O为圆心的圆交BC于点C,D,求证:AC=BD.某小学开展4种课外兴趣小组活动,分别为A;绘画:B;机器人:C;跳舞:D;吉他.每个学生都要选取一个兴趣小组参与活动,小明对同学们选取的活动形式进行了随机抽样调查,根据调查统计结果,绘制了如下的统计图:(1)本次调查学生共________人,a=________,并将条形图补充完整;(2)如果该校有学生500人,则选择“机器人”活动的学生估计有多少人?(3)学校让每班同学在A,B,C,D四种活动形式中,随机抽取两种开展活动,请用树状图或列表法的方法,求每班抽取的两种形式恰好是“绘画”和“机器人”的概率.如图,在Rt△ABC中,∠B=90∘,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,AB=10,EB=6.(1)求证:AC是⊙D的切线;(2)求线段AC的长.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1, 0)和点B,与y轴交于点C(0, 3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.参考答案与试题解析2018-2019学年贵州黔西南九年级上数学期末试卷一、选择题1.【答案】此题暂无答案【考点】解一较燥次延程抗因式分解法【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】二水来数兴象触几何变换【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】轴正算图形中心较称图腾【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】直线与都连位置关系【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】正多验河和圆【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】弧因斯计算【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】等可能表件型概率【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】圆明角研理【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】一元二射方程的象多——爱长率问题【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】二次射数空象与话数流关系【解析】此题暂无解析【解答】此题暂无解答二、填空题【答案】此题暂无答案【考点】概水常式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一元二表方病的解【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二次函表y弹蜡x^2它bx+染(a≠非)的图象的画法【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】关于较洗、y装对氢的点的坐标【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】切根长亮理【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一元二较方程轻应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二次常数图见合点的岸标特征【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角形的常换圆与外心解一较燥次延程抗因式分解法勾体定展【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】旋因末性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】圆明角研理【解析】此题暂无解析【解答】此题暂无解答三、解答题【答案】此题暂无答案【考点】一元二表方病的解解于视二南方创-公式法解因末二什方似-配方法【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】作图三腔转变换作图-射对称变面【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】垂都着理等体三火暗服判定与性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】用样射子计总体扇表统病图条都连计图列表法三树状图州【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】切线的明定养性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】待定正数键求一程植数解析式二次使如综合题【解析】此题暂无解析【解答】此题暂无解答。

★试卷3套精选★黔南州名校2019届九年级上学期数学期末考前验收试题

★试卷3套精选★黔南州名校2019届九年级上学期数学期末考前验收试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于抛物线y =x 2﹣4x+4,下列说法错误的是( )A .开口向上B .与x 轴有两个交点C .对称轴是直线线x =2D .当x >2时,y 随x 的增大而增大【答案】B【分析】把二次函数解析式化为顶点式,逐项判断即可得出答案.【详解】∵y=x 2﹣4x+4=(x ﹣2)2,∴抛物线开口向上,对称轴为x=2,当x >2时,y 随x 的增大而增大,∴选项A 、C 、D 说法正确;令y=0可得(x ﹣1)2=0,该方程有两个相等的实数根,∴抛物线与x 轴有一个交点,∴B 选项说法错误.故选:B .【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,掌握二次函数的顶点式是解答本题的关键,即在y=a(x ﹣h)2+k 中,其对称轴为x=h ,顶点坐标为(h ,k).2.如图,PA 、PB 分别与O 相切于A 、B 两点,点C 为O 上一点,连接AC ,BC ,若80P ∠=︒,则ACB ∠的度数为( )A .30B .40︒C .50︒D .60︒【答案】C 【分析】先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB 的度数,然后根据圆周角定理计算∠ACB 的度数.【详解】解:连接OA 、OB ,∵PA 、PB 分别与O 相切于A 、B 两点,∴OA PA ⊥,OB PB ⊥,∴90OAP OBP ∠=∠=︒.∴180********AOB P ∠=︒-∠=︒-︒=︒, ∴111005022ACB AOB ∠=∠=⨯︒=︒. 故选C .【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.3.将二次函数246y x x =-+化成顶点式,变形正确的是:( )A .2(2)2y x =-+B .2(2)2y x =++C .2(2)2y x =+-D .2(2)2y x =--【答案】A【分析】将246y x x =-+化为顶点式,再进行判断即可.【详解】246y x x =-+ ()222y x =-+故答案为:A .【点睛】本题考查了一元二次方程的问题,掌握一元二次方程的顶点式表示形式是解题的关键. 4.如图,矩形ABCD 的对角线交于点O ,已知,,AB m BAC a =∠=∠则下列结论错误..的是( )A .BDC α∠=∠B .tan BC m a =⋅ C .2sin m AO α=D .cos m BD a= 【答案】C【分析】根据矩形的性质得出∠ABC =∠DCB =90°,AC =BD ,AO =CO ,BO =DO ,AB =DC ,再解直角三角形判定各项即可.【详解】选项A ,∵四边形ABCD 是矩形,∴∠ABC =∠DCB =90°,AC =BD ,AO =CO ,BO =DO ,∴AO =OB =CO =DO ,∴∠DBC =∠ACB ,∴由三角形内角和定理得:∠BAC =∠BDC =∠α,选项A 正确;选项B ,在Rt △ABC 中,tan α=BC m , 即BC =m •tan α,选项B 正确;选项C ,在Rt △ABC 中,AC =cos m α,即AO =2cos m α, 选项C 错误;选项D ,∵四边形ABCD 是矩形,∴DC =AB =m ,∵∠BAC =∠BDC =α,∴在Rt △DCB 中,BD =cos m α, 选项D 正确.故选C .【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.5.如图,路灯距离地面8米,若身高1.6米的小明在距离路灯的底部(点O )20米的A 处,则小明的影子AM 的长为( )A .1.25米B .5米C .6米D .4米【答案】B 【分析】易得:△ABM ∽△OCM ,利用相似三角形对应边成比例可得出小明的影子AM 的长.【详解】如图,根据题意,易得△MBA ∽△MCO ,根据相似三角形的性质可知AB AMOC OA AM=+,即1.6820AMAM=+,解得AM=5m.则小明的影子AM的长为5米.故选:B.【点睛】此题考查相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键.6.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC 于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.【答案】D【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【详解】过点A向BC作AH⊥BC于点H,所以根据相似比可知:6126EF x-=,即EF=2(6-x)所以y=12×2(6-x)x=-x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选D.【点睛】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.7.对于反比例函数32yx=,下列说法错误的是()A.它的图像在第一、三象限B .它的函数值y 随x 的增大而减小C .点P 为图像上的任意一点,过点P 作PA x ⊥轴于点A .POA ∆的面积是34.D .若点()11,A y -和点()2B y 在这个函数图像上,则12y y <【答案】B 【分析】对反比例函数32y x =化简得32y x=,所以k=32>0,当k >0时,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A 、∵k=32>0,∴它的图象分布在第一、三象限,故本选项正确; B 、∵它的图象分布在第一、三象限,∴在每一象限内y 随x 的增大而减小,故本选项错误;C 、∵k=32,根据反比例函数中k 的几何意义可得POA ∆的面积为12k ⨯=34,故本选项正确;D 、∵它的图象分布在第一、三象限,在每一象限内y 随x 的增大而减小,∵x 1=﹣1<0,x 2=0,且x 1>x 2,∴12y y <,故本选项正确.故选:B .【点睛】题考查的是反比例函数的性质,熟知反比例函数y=k x (k≠0)中,当k >0时函数图象的两个分支分别位于一三象限是解答此题的关键.8.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为x ,那么x 满足的方程是( )A .()2501182x +=B .()()250501501182x x ++++=C .()()2501501182x x +++=D .()50501182x ++= 【答案】B【分析】由题意根据增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,进而即可得出方程.【详解】解:设该厂五、六月份平均每月的增长率为x ,那么得五、六月份的产量分别为50(1+x )、50(1+x )2,根据题意得50+50(1+x )+50(1+x )2=1.故选:B .【点睛】本题考查由实际问题抽象出一元二次方程的增长率问题,注意掌握其一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量,x 为增长率.9.如图,在ABC ∆中,65CAB ∠=︒,将ABC ∆在平面内绕点A 旋转到AB C ''∆的位置,使CC AB '∥,则旋转角的度数为( )A .35︒B .40︒C .65︒D .50︒【答案】D 【分析】根据旋转的性质得出''ABC AB C ≌,利用全等三角形的性质和平行线的性质得出CC'A C'CA 65∠∠==︒,即可得出答案.【详解】根据题意可得''ABC AB C ≌∴'CAB C AB 65,AC AC'∠∠==︒='又CC AB '∥∴CAB C'CA 65∠∠==︒∴CC'A C'CA 65∠∠==︒∴'C AC 180CC A C'CA 50∠∠∠︒-'=-=︒故答案选择D.【点睛】本题考查的是旋转和全等,难度适中,解题关键是根据图示找出旋转角.10.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA .OB 在O 点钉在一起.并使它们保持垂直,在测直径时,把O 点靠在圆周上.读得刻度8OE =个单位,6OF =个单位,则圆的直径为( )A .12个单位B .10个单位C .11个单位D .13个单位【答案】B 【分析】根据圆中的有关性质“90°的圆周角所对的弦是直径”.判断EF 即为直径,然后根据勾股定理计算即可.【详解】解:连接EF,∵OE⊥OF,∴EF是圆的直径,22643610010EF OE OF∴+=+==.故选:B.【点睛】本题考查圆周角的性质定理,勾股定理.掌握“90°的圆周角所对的弦是直径”定理的应用是解决此题的关键.11.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.2【答案】C【解析】根据根与系数的关系可得出两根之和为4,从而得出另一个根.【详解】设方程的另一个根为m,则1+m=4,∴m=3,故选C.【点睛】本题考查了一元二次方程根与系数的关系.解答关于x的一元二次方程x2-4x+c=0的另一个根时,也可以直接利用根与系数的关系x1+x2=-ba解答.12.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.7000(1+x2)=23170 B.7000+7000(1+x)+7000(1+x)2=23170C.7000(1+x)2=23170 D.7000+7000(1+x)+7000(1+x)2=2317【答案】C【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每年投入教育经费的年平均增长百分率为x,再根据“2018年投入7000万元”可得出方程.【详解】设每年投入教育经费的年平均增长百分率为x,则2020年的投入为7000(1+x)2=23170由题意,得7000(1+x )2=23170.故选:C .【点睛】此题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.二、填空题(本题包括8个小题)13.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.【答案】49 【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值. 【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4, ∴飞镖落在阴影部分的概率是49, 故答案为49. 【点睛】此题考查几何概率,解题关键在于掌握运算法则.14.阅读材料:一元二次方程260x x --=的两个根是-2,3,画出二次函数26y x x =--的图象如图,位于x 轴上方的图象上点的纵坐标y 满足0y >,所以不等式0y <点的横坐标的取值范围是23x -<<,则不等式260x x --<解是23x -<<.仿照例子,运用上面的方法解不等式2430x x -+->的解是___________.【答案】13x <<【分析】根据题意可先求出一元二次方程243=0x x -+-的两个根是1,3,画出二次函数243y x x =-+-的图象,位于x 轴上方的图象上点的纵坐标y 满足0y >,即可得解.【详解】解:根据题意可得出一元二次方程243=0x x -+-的两个根是1,3,画出二次函数243y x x =-+-的图象如下图,因此,不等式2430x x -+->的解是13x <<.故答案为:13x <<.【点睛】本题考查的知识点是二次函数与不等式的解,理解题意,找出求解的步骤是解此题的关键. 15.如图,抛物线y =ax 2与直线y =bx+c 的两个交点坐标分别为A(﹣2,4),B(1,1),则不等式ax 2<bx+c 的解集是______.【答案】﹣2<x <1【分析】直接利用函数图象结合其交点坐标得出不等式ax 2<bx+c 的解集即可;【详解】解:如图所示:∵抛物线y =ax 2与直线y =bx+c 的两个交点坐标分别为A(﹣2,4),B(1,1),∴不等式ax 2<bx+c 的解集,即一次函数在二次函数图象上方时,得出x 的取值范围为:﹣2<x <1. 故答案为:﹣2<x <1.【点睛】本题主要考查了二次函数与不等式(组),掌握二次函数的性质和不等式的解是解题的关键.16.如果23x y =,那么x y y+=__________. 【答案】53【解析】∵x 2y 3=,根据和比性质,得x y y +=323+=53, 故答案为53. 17.小芳的房间有一面积为3 m 2的玻璃窗,她站在室内离窗子4 m 的地方向外看,她能看到窗前面一幢楼房的面积有____m 2(楼之间的距离为20 m).【答案】108【解析】考点:平行投影;相似三角形的应用.分析:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析. 解答:解:根据题意:她能看到窗前面一幢楼房的图形与玻璃窗的外形应该相似,且相似比为246=6, 故面积的比为36;故她能看到窗前面一幢楼房的面积有36×3=108m 1.点评:本题考查了平行投影、视点、视线、位似变换、相似三角形对应高的比等于相似比等知识点.注意平行投影特点:在同一时刻,不同物体的物高和影长成比例18.点(5)关于原点对称的点的坐标为__________.【答案】(-5)【分析】让两点的横纵坐标均互为相反数可得所求的坐标.【详解】∵两点关于原点对称,∴横坐标为-5,故点P (5,)关于原点对称的点的坐标是:(-5).故答案为:(-5).【点睛】此题主要考查了关于原点对称的坐标的特点:两点的横坐标互为相反数;纵坐标互为相反数.三、解答题(本题包括8个小题)19.在一个不透明的布袋里装有4个标号分别为1,2,3,4的小球,这些球除标号外无其它差别.从布袋里随机取出一个小球,记下标号为x ,再从剩下的3个小球中随机取出一个小球,记下标号为,y 记点P 的坐标为(,)x y .(1)请用画树形图或列表的方法写出点P 所有可能的坐标;(2)求两次取出的小球标号之和大于6的概率;(3)求点(,)x y 落在直线5y x =-+上的概率.【答案】(1)见解析;(2)16(3)13. 【分析】(1)根据题意直接画出树状图即可(2)根据(1)所画树状图分析即可得解(3)若使点落在直线上,则有x+y=5,结合树状图计算即可.【详解】解:(1)画树状图得:共有12种等可能的结果数;(2)共有12种等可能的结果数,其中两次取出的小球标号之和大于6的有2种,∴两次取出的小球标号之和大于6的概率是21126=; (3)点(),x y 落在直线5y x =-+上的情况共有4种,∴点(),x y 落在直线5y x =-+上的概率是41123=. 【点睛】 本题考查的知识点是求简单事件的概率问题,根据题目画出树状图,数形结合,可以使题目简单明了,更容易得到答案.20.甲乙两人参加一个幸运挑战活动,活动规则是:一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球.甲从布袋中摸出一个球,记下颜色后放回,搅匀,乙再摸出一个球,若颜色相同,则挑战成功.(1)用列表法或树状图法,表示所有可能出现的结果.(2)求两人挑战成功的概率.【答案】(1)见解析;(2)59. 【分析】用列表法列举出所有等可能出现的结果,从中找出颜色相同的结果数,进而求出概率.【详解】解:(1)用列表法表示所有可能出现的结果如下:(2)共有9种等可能出现的结果,其中颜色相同的有5种,∴P (颜色相同)=59,答:获胜的概率为59. 【点睛】 考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.21.有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为_____.(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.【答案】(1)25;(2)两次所抽取的卡片恰好都是轴对称图形的概率为310. 【分析】(1)先判断其中的中心对称图形,再根据概率公式求解即得答案;(2)先画出树状图得到所有可能的情况,再判断两次都是轴对称图形的情况,然后根据概率公式计算即可.【详解】解:(1)中心对称图形的卡片是A 和D ,所以从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为25,故答案为25; (2)轴对称图形的卡片是B 、C 、E.画树状图如下:由树状图知,共有20种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,分别是(B ,C )、(B ,E )、(C ,B )、(C ,E )、(E ,B )、(E ,C ),∴两次所抽取的卡片恰好都是轴对称图形的概率=632010=. 【点睛】本题考查了用画树状图或列表法求两次事件的概率、中心对称图形和轴对称图形的定义等知识,熟知中心对称图形和轴对称图形的定义以及用画树状图或列表法求概率的方法是解题的关键.22.已知关于x 的一元二次方程220x x a -+=的两实数根1x ,2x 满足12120x x x x ++>,求a 的取值范围.【答案】21a -<≤【分析】根据根与系数的关系建立关于a 的不等式,再结合0∆≥即可求出a 的取值范围.【详解】解:依题意得122x x +=,12x x a =,∵12120x x x x ++>,∴20a +>,解得2a >-,又由()2240a ∆=--≥,解得1a ≤,∴a 的取值范围为21a -<≤.【点睛】本题考查一元二次方程根与系数的关系,熟记两根之和与两根之积的公式是解题的关键,还需要注意公式使用的前提是0∆≥.23.将A B C D ,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.(1)A 在甲组的概率是多少?(2)A B ,都在甲组的概率是多少?【答案】(1)12(2)16【解析】解:所有可能出现的结果如下:CD AB(CD AB ,)总共有6种结果,每种结果出现的可能性相同.(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162=, A B ,都在甲组的概率=1624.如图,将△ABC 绕点B 旋转得到△DBE ,且A ,D ,C 三点在同一条直线上。

★试卷3套精选★黔南州名校2019届九年级上学期期末学业质量检查模拟数学试题

★试卷3套精选★黔南州名校2019届九年级上学期期末学业质量检查模拟数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图为二次函数2y ax bx c =++的图象,在下列说法中:①0ac >;②方程20ax bx c ++=的根是11x =-,23x =;③0a b c ++>④当1x >时,y 随x 的增大而减小.不.正确的说法有( )A .①B .①②C .①③D .②④【答案】A 【分析】根据二次函数的图象与性质(对称性、增减性)、以及与二次方程的关系逐个判断即可. 【详解】二次函数的图象的开口向下,与y 轴正半轴相交0,0a c ∴<>0ac ∴<,则①不正确二次函数的对称轴为1x =,与x 轴的一个交点为(3,0)∴与x 轴的另一个交点为(1,0)-∴方程20ax bx c ++=的根是121,3x x =-=,则②正确二次函数的图象上,1x =所对应的点位于第一象限,即0y >0a b c ∴++>,则③正确由二次函数的图象可知,当1x >时,y 随x 的增大而减小,则④正确综上,不正确的说法只有①故选:A .【点睛】本题考查了二次函数的图象与性质(对称性、增减性)、以及与二次方程的关系,掌握理解并灵活运用函数的性质是解题关键.2.如图,点A 在线段BD 上,在BD 的同侧作等腰Rt ABC ∆和等腰Rt ADE ∆,CD 与BE 、AE 分别交于点P 、M .对于下列结论:①BAE CAD ∆∆;②MP MD MA ME ⋅=⋅;③22CB CP CM =⋅.其中正确的是( )A.①②③B.①C.①②D.②③【答案】A【解析】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.详解:由已知:2AB,2AE∴AC AD AB AE=∵∠BAC=∠EAD∴∠BAE=∠CAD ∴△BAE∽△CAD 所以①正确∵△BAE∽△CAD ∴∠BEA=∠CDA∵∠PME=∠AMD ∴△PME∽△AMD∴MP ME MA MD=∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵2AB∴2CB2=CP•CM所以③正确故选A.点睛:本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.3.一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个球是红球B .至少有1个球是白球C .至少有2个球是红球D .至少有2个球是白球 【答案】B【解析】A. 至少有1个球是红球是随机事件,选项错误;B. 至少有1个球是白球是必然事件,选项正确;C. 至少有2个球是红球是随机事件,选项错误;D. 至少有2个球是白球是随机事件,选项错误.故选B.4.如图,AB 是O 的直径,AC ,CD 是O 的两条弦,CD AB ⊥,连接OD ,若20CAB ∠=︒,则BOD ∠的度数是( )A .10°B .20°C .30°D .40°【答案】D 【分析】连接AD ,由AB 是⊙O 的直径及CD ⊥AB 可得出弧BC=弧BD ,进而可得出∠BAD=∠BAC ,利用圆周角定理可得出∠BOD 的度数.【详解】连接AD ,如图所示:∵AB 是⊙O 的直径,CD ⊥AB ,∴弧BC=弧BD ,∴∠BAD=∠BAC=20°.∴∠BOD=2∠BAD=40°,故选:D .【点睛】此题考查了圆周角定理以及垂径定理.此题难度不大,利用圆周角定理求出∠BOD 的度数是解题的关键.5.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π【答案】B【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【详解】在实数|-3|,-1,0,π中,|-3|=3,则-1<0<|-3|<π,故最小的数是:-1.故选B.【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.6.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)【答案】A【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.7.下列方程式属于一元二次方程的是()A.330x x+-=B.212 +=xx C.221x xy+=D.22x=【答案】D【解析】根据一元二次方程的定义逐项进行判断即可. 【详解】A、是一元三次方程,故不符合题意;B、是分式方程,故不符合题意;C、是二元二次方程,故不符合题意;D、是一元二次方程,符合题意.故选:D.【点睛】本题考查一元二次方程的定义,熟练掌握定义是关键.8.如图,OAB是等边三角形,且OA与x轴重合,点B是反比例函数83yx=-的图象上的点,则OAB的周长为()A.122B.102C.92D.82【答案】A【分析】设△OAB的边长为2a,根据等边三角形的性质,可得点B的坐标为(-a,3a),代入反比例函数解析式可得出a的值,继而得出△OAB的周长.【详解】解:如图,设△OAB的边长为2a,过B点作BM⊥x轴于点M.又∵△OAB是等边三角形,∴OM=12OA=a,3,∴点B的坐标为(-a3),∵点B是反比例函数83图象上的点,∴-33解得2(负值舍去),∴△OAB的周长为:2.故选:A.【点睛】此题考查反比例函数图象上点的坐标特征,等边三角形的性质,设△OAB的边长为2a,用含a的代数式表示出点B的坐标是解题的关键.9.已知一个矩形的面积为24cm2,其长为ycm,宽为xcm,则y与x之间的函数关系的图象大致是A .B .C .D .【答案】D【详解】根据题意有:xy=24;且根据x ,y 实际意义x 、y 应大于0,其图象在第一象限.故选D . 10.已知点(x 1,y 1)、(x 2,y 2)、(x 3,y 3)在反比例函数y=-5x 的图象上,当x 1<x 2<0<x 3时,y 1,y 2,y 3的大小关系是( )A .y 1<y 3<y 2B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 3<y 2<y 1 【答案】C【分析】根据反比例函数为y=-5x,可得函数图象在第二、四象限,在每个象限内,y 随着x 的增大而增大,进而得到y 1,y 2,y 3的大小关系. 【详解】解:∵反比例函数为y=-5x , ∴函数图象在第二、四象限,在每个象限内,y 随着x 的增大而增大,又∵x 1<x 2<0<x 3,∴y 1>0,y 2>0,y 3<0,且y 1<y 2,∴y 3<y 1<y 2,故选:C .【点睛】本题主要考查反比例函数图象上的点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.11.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE EF ⊥,则下列结论正确的有( ) ①30BAE ∠= ②2CE AB CF = ③13CF CD = ④ABE ∆∽AEF ∆A.1个B.2个C.3个D.4个【答案】B【分析】由题中条件可得△CEF∽△BAE,进而得出对应线段成比例,进而又可得出△ABE∽△AEF,即可得出题中结论.【详解】∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF,∴△BAE∽△CEF,∴CE CF AB BE∵E是BC的中点,∴BE=CE∴CE2=AB•CF,∴②正确;∵BE=CE=12 BC,∴CF=12BE=14CD,故③错误;∵1 tan2BEBAEAB∠==∴∠BAE≠30°,故①错误;设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,∴5,5,AF=5a,∴2525255555AE a BEAF a EF a====∴AE BE AF EF=∴△ABE∽△AEF,故④正确.∴②与④正确.∴正确结论的个数有2个.故选:B .【点睛】此题考查了相似三角形的判定与性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用. 12.将抛物线22y x =向右平移1个单位,再向上平移3个单位,得到的抛物线是( )A .2y 2(x 1)3=++B .22(1)3y x =--C .22(1)3y x =+-D .2y 2(x 1)3=-+ 【答案】D【分析】由题意可知原抛物线的顶点及平移后抛物线的顶点,根据平移不改变抛物线的二次项系数可得新的抛物线解析式.【详解】解:由题意得原抛物线的顶点为(0,0),∴平移后抛物线的顶点为(1,3),∴得到的抛物线解析式为y=2(x-1)2+3,故选:D .【点睛】本题考查二次函数的几何变换,熟练掌握二次函数的平移不改变二次项的系数得出新抛物线的顶点是解决本题的关键.二、填空题(本题包括8个小题)13.如图,在Rt △ABC 中,∠ACB=90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD=5cm ,则EF=_______cm .【答案】1【详解】∵△ABC 是直角三角形,CD 是斜边的中线,∴CD=12AB , ∴AB=2CD=2×1=10cm ,又∵EF 是△ABC 的中位线,∴EF=12×10=1cm . 故答案为1.考点:三角形中位线定理;直角三角形斜边上的中线.14.如图,在⊙O 中,弦AB ,CD 相交于点P ,∠A =30°,∠APD =65°,则∠B =_____.【答案】35°【分析】先根据三角形外角性质求出∠C的度数,然后根据圆周角定理得到∠B的度数.【详解】解:∵∠APD=∠C+∠A,∴∠C=65°﹣30°=35°,∴∠B=∠C=35°.故答案为35°.【点睛】本题主要考查的是三角形的外角性质以及圆周角定理,这是一道综合性几何题,掌握三角形的外角性质以及圆周角定理是解题关键.15.一个不透明的袋子中装有3个白球和若干个黑球,它们除颜色外,完全相同.从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.6,则可判断袋子中黑球的个数为______. 【答案】2【分析】由摸到白球的频率稳定在0.6附近得出口袋中得到白色球的概率,进而求出黑球个数即可.【详解】解:设黑球个数为:x个,∵摸到白色球的频率稳定在0.6左右,∴口袋中得到白色球的概率为0.6,∴30.6 3x=+,解得:x=2,故黑球的个数为2个.故答案为2.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.16.如图,坐标系中正方形网格的单位长度为1,抛物线y1=-12x2+3向下平移2个单位后得抛物线y2,则阴影部分的面积S=_____________.【答案】1【解析】根据已知得出阴影部分即为平行四边形的面积.【详解】解:根据题意知,图中阴影部分的面积即为平行四边形的面积:2×2=1.故答案是:1.【点睛】本题考查了二次函数图象与几何变换.解题关键是把阴影部分的面积整理为规则图形的面积. 17.已知扇形的半径为3,圆心角为60︒,则该扇形的弧长为_______.(结果保留π)【答案】π 【分析】根据弧长公式是180n R l π=弧长,代入就可以求出弧长. 【详解】∵扇形的半径是30cm ,圆心角是60°,∴该扇形的弧长是:60π3180180n R l ππ⨯⨯===弧长. 故答案为:π. 【点睛】本题考查的是扇形的弧长公式的运用,正确记忆弧长公式是解题的关键.18.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F 、G 分别在边BC 、CD 上,P 为AE 的中点,连接PG ,则PG 的长为_________.5【分析】延长GE 交AB 于点O ,作PH ⊥OE 于点H ,则PH 是△OAE 的中位线,求得PH 的长和HG 的长,在Rt △PGH 中利用勾股定理求解.【详解】解:延长GE交AB于点O,作PH⊥OE于点H.则PH∥AB.∵P是AE的中点,∴PH是△AOE的中位线,∴PH= 12OA=12×(3-1)=1.∵直角△AOE中,∠OAE=45°,∴△AOE是等腰直角三角形,即OA=OE=2,同理△PHE中,HE=PH=1.∴HG=HE+EG=1+1=2.∴在Rt△PHG中,PG= 2222125PH HG+=+=故答案是:5.【点睛】本题考查了正方形的性质、勾股定理和三角形的中位线定理,正确作出辅助线构造直角三角形是关键.三、解答题(本题包括8个小题)19.如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.(1)求证:△DCE∽△DBC;(2)若CE=5,CD=2,求直径BC的长.【答案】(1)见解析;(2)5【分析】(1)由等弧所对的圆周角相等可得∠ACD=∠DBC,且∠BDC=∠EDC,可证△DCE∽△DBC;(2)由勾股定理可求DE=1,由相似三角形的性质可求BC的长.【详解】(1)∵D是弧AC的中点,∴AD CD=,∴∠ACD=∠DBC,且∠BDC=∠EDC,∴△DCE∽△DBC;(2)∵BC是直径,∴∠BDC=90°,∴DE==1.∵△DCE∽△DBC,∴DE EC DC BC=,∴12BC =,∴【点睛】本题考查了圆周角定理、相似三角形的判定和性质、勾股定理等知识,证明△DCE∽△DBC是解答本题的关键.20.某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w(双)与销售单价x (元)满足w=﹣2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?【答案】(1)y=﹣2x2+120x﹣1600;(2)当销售单价定为每双30元时,每天的利润最大,最大利润为1元.【分析】(1)用每双手套的利润乘以销售量得到每天的利润;(2)由(1)得到的是一个二次函数,利用二次函数的性质,可以求出最大利润以及销售单价.【详解】(1)y=w(x﹣20)=(﹣2x+80)(x﹣20)=﹣2x2+120x﹣1600;(2)y=﹣2(x﹣30)2+1.∵20≤x≤40,a=﹣2<0,∴当x=30时,y最大值=1.答:当销售单价定为每双30元时,每天的利润最大,最大利润为1元.【点睛】本题考查的是二次函数的应用.(1)根据题意得到二次函数.(2)利用二次函数的性质求出最大值.21.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.【答案】 (1)画图见解析;(2)DE=4.【解析】(1)连接CB延长CB交DE于O,点O即为所求.连接OG,延长OG交DF于H.线段FH即为所求.(2)根据AB CAOD CD=,可得1.6 1.41.42.1DO=+,即可推出DO=4m.【详解】(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,AB CA OD CD=,∴1.6 1.41.42.1 DO=+,∴OD=4m,∴灯泡的高为4m.【点睛】本题考查中心投影、解题的关键是正确画出图形,记住物长与影长的比的定值,属于基础题,中考常考题型.22.在如图所示的平面直角坐标系中,已知△ABC.(1)将△ABC向左平移4个单位得到△A1B1C1,画出△A1B1C1的图形,并写出点A1的坐标.(2)以原点O为旋转中心,将△ABC顺时针旋转90°得到△A2B2C2,画出△A2B2C2图形,并写出点A2的坐标.【答案】 (1)图见解析,A 1(-1,3);(2)图见解析,A 2(3,-3).【分析】(1)依据平移的性质画出△A 1B 1C 1图象,写出A 1坐标即可;(2)依据旋转的性质确定出点A 2、B 2、C 2,连线画出△A 2B 2C 2,表达出A 2坐标即可.【详解】解:(1)如图所示:△A 1B 1C 1即为所求,A 1(-1,3)(2)如图所示:△A 2B 2C 2为所求,A 2(3,-3),【点睛】本题考查了作图——旋转变换及平移变换,解题的关键是能够理解平移及旋转的性质,找出平移或旋转后的对应点.23.如图,ABCD 中,顶点A 的坐标是()02,,//AD x 轴,BC 交y 轴于点E ,顶点C 的纵坐标是4-,ABCD 的面积是24.反比例函数=k y x的图象经过点B 和D ,求反比例函数的表达式.【答案】8y x =. 【解析】根据题意得出AE=6,结合平行四边形的面积得出AD=BC=4,继而知点D 坐标,从而得出反比例函数解析式;【详解】解:顶点A 的坐标是()02,,顶点C 的纵坐标是4-, 6AE ∴=,又ABCD 的面积是24,4AD BC ∴==,则()42D ,428k ∴=⨯=,∴反比例函数解析式为8y x=. 【点睛】 本题主要考查待定系数法求反比例函数解析式,解题的关键是掌握平行四边形的面积公式及待定系数法求反比例函数的能力.24.如图,在钝角ABC 中,点P 为BC 上的一个动点,连接PA ,将射线PA 绕点P 逆时针旋转60︒,交线段AB 于点D . 已知∠C=30°,CA=23 cm,BC=7cm,设B ,P 两点间的距离为xcm,A,D 两点间的距离ycm.小牧根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小牧探究的过程,请补充完整:(1)根据图形.可以判断此函数自变量X 的取值范围是 ;(2)通过取点、画图、测量,得到了x 与y 的几组值,如下表:x/cm0.51 1.02 1.91 3.47 3 4.16 4.47y/cm 3.97 3.22 2.42 1.66 a 2.02 2.50通过测量。

2018-2019学年贵州省黔南州九年级上期末数学试卷(有答案)-最新精品

2018-2019学年贵州省黔南州九年级上期末数学试卷(有答案)-最新精品

2018-2019学年贵州省黔南州九年级(上)期末数学试卷一、选择题(每小题4分,10小题,共计40分)1.下列四个图形中是中心对称图形但不是轴对称图形的是( )A .B .C .D .2.一个不透明的袋子中只装有5个红球,从中随机摸出一个球是黑球( )A .属于随机事件B .可能性大小为C .属于不可能事件D .是必然事件3.抛物线y =(x ﹣3)2+4的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(3,4)4.小明在解方程x 2﹣4x ﹣15=0时,他是这样求解的:移项得x 2﹣4x =15,两边同时加4得x 2﹣4x +4=19,∴(x ﹣2)2=19,∴x ﹣2=±,∴x ﹣2=±,∴x 1=2+,x 2=2﹣,这种解方程的方法称为( )A .待定系数法B .配方法C .公式法D .因式分解法 5.抛掷一枚质地均匀的硬币,若连续4次均得到“正面朝上”的结果,则对于第5次抛掷结果的预测,下列说法中正确的是( )A .出现“正面朝上”的概率等于B .一定出现“正面朝上”C .出现“正面朝上”的概率大于D .无法预测“正面朝上”的概率6.如图,⊙O 是△ABC 的外接圆,连接OA 、OB ,∠OBA =50°,则∠C 的度数为( )A .30°B .40°C .50°D .80°7.已知x =2是关于x 的方程x 2﹣(m +4)x +4m =0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6 B.8 C.10 D.8或108.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°9.某药品经过两次降价,每瓶零售价由112元降为63元.已知两次降价的百分率相同.要求每次降价的百分率,若设每次降价的百分率为x,则得到的方程为()A.112(1﹣x)2=63 B.112(1+x)2=63C.112(1﹣x)=63 D.112(1+x)=6310.如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m 从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE 和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.二、填空题(共10小题,每小题3分,共30分)11.在平面直角坐标系中,点A(1,2)关于原点对称的点为B(a,b),则a•b=.12.如果关于x的方程x2﹣5x+k=0没有实数根,那么k的值为.13.已知某抛物线向左平移4个单位,再向下平移2个单位后所得抛物线的解析式为y=x2+2x+3,那么原抛物线的解析式是.14.若关于x的一元二次方程(m+2)x2+3x+m2﹣4=0的一个根为0,则m的值为=.15.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为cm.16.如图,圆形转盘中,A,B,C三个扇形区域的圆心角分别为150°,120°和90°.转动圆盘后,指针停止在任何位置的可能性都相同(若指针停在分界线上,则重新转动圆盘),则转动圆盘一次,指针停在B区域的概率是.17.我市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?若设应邀请x支球队参赛,根据题意,可列出方程.18.面积等于6cm2的正六边形的周长是.19.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c>0,⑥设x1,x2对应的函数值分别是y1,y2,则当x1>x2>2时y1>y2,其中正确结论序号为.20.如图,正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA连续翻转(如图所示),直至点P第一次回到原来的位置,则点P运动路径的长为cm.(结果保留π)三.(本题共12分)21.解方程:(1)x2+4x=﹣3(2)a2+3a+1=0(用公式法)四、(本题8分)22.举世瞩目的港珠澳大桥已于2018年10月24日正式通车,这座大桥是世界上最长的跨海大桥,被英国《卫报》誉为“新世界七大奇迹”,车辆经过这座大桥收费站时,从已开放的4个收费通道A、B、C、D 中可随机选择其中一个通过.(1)一辆车经过收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.五、(本题共15分)23.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;(3)求证:CD=HF.六、(本题共15分)24.某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中获得的利润y(万元)和月份n 之间满足函数关系式y=﹣n2+14n﹣24.(1)若利润为21万元,求n的值.(2)哪一个月能够获得最大利润,最大利润是多少?(3)当产品无利润时,企业会自动停产,企业停产是哪几个月份?七、探究题(本题共14分)25.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三角形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).八、(本题共16分)26.某公园在一个扇形OEF草坪上的圆心O处垂直于草坪的地上竖一根柱子OA,在A处安装一个自动喷水装置.喷头向外喷水.连喷头在内,柱高m,水流在各个方向上沿形状相同的抛物线路径落下,喷出的水流在与D点的水平距离4米处达到最高点B,点B距离地面2米.当喷头A旋转120°时,这个草坪可以全被水覆盖.如图1所示.(1)建立适当的坐标系,使A点的坐标为(O,),水流的最高点B的坐标为(4,2),求出此坐标系中抛物线水流对应的函数关系式;(2)求喷水装置能喷灌的草坪的面积(结果用π表示);(3)在扇形OEF的一块三角形区域地块△OEF中,现要建造一个矩形GHMN花坛,如图2的设计方案是使H、G分别在OF、OE上,MN在EF上.设MN=2x,当x取何值时,矩形GHMN花坛的面积最大?最大面积是多少?2018-2019学年贵州省黔南州九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,10小题,共计40分)1.下列四个图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.【解答】解:A、不是轴对称图形,不是中心对称图形,故本选项错误,B、是轴对称图形,也是中心对称图形,故本选项错误,C、是中心对称图形,不是轴对称图形,故本选项正确,D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,难度适中.2.一个不透明的袋子中只装有5个红球,从中随机摸出一个球是黑球()A.属于随机事件B.可能性大小为C.属于不可能事件D.是必然事件【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:一个不透明的袋子中只装有5个红球,从中随机摸出一个球是黑球属于不可能事件;故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.抛物线y=(x﹣3)2+4的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(3,4)【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【解答】解:∵y =(x ﹣3)2+4,∴该函数的顶点坐标是(3,4),故选:D .【点评】此题主要考查了二次函数的性质,关键是掌握抛物线y =a (x ﹣h )2+k ,顶点坐标是(h ,k ).4.小明在解方程x 2﹣4x ﹣15=0时,他是这样求解的:移项得x 2﹣4x =15,两边同时加4得x 2﹣4x +4=19,∴(x ﹣2)2=19,∴x ﹣2=±,∴x ﹣2=±,∴x 1=2+,x 2=2﹣,这种解方程的方法称为( )A .待定系数法B .配方法C .公式法D .因式分解法 【分析】根据配方法解方程的步骤即可得.【解答】解:根据题意知这种解方程的方法称为配方法,故选:B .【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法是解题的关键.5.抛掷一枚质地均匀的硬币,若连续4次均得到“正面朝上”的结果,则对于第5次抛掷结果的预测,下列说法中正确的是( )A .出现“正面朝上”的概率等于B .一定出现“正面朝上”C .出现“正面朝上”的概率大于D .无法预测“正面朝上”的概率【分析】根据一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,从而得出答案.【解答】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是.故选:A .【点评】本题考查了模拟实验,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.6.如图,⊙O 是△ABC 的外接圆,连接OA 、OB ,∠OBA =50°,则∠C 的度数为( )A .30°B .40°C .50°D .80°【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.【点评】此题综合运用了三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.7.已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6 B.8 C.10 D.8或10【分析】先利用一元二次方程解的定义把x=2代入方程x2﹣(m+4)x+4m=0得m=2,则方程化为x2﹣6x+8=0,然后解方程后利用三角形三边的关系确定三角形的三边,最后就是三角形的周长.【解答】解:把x=2代入方程x2﹣(m+4)x+4m=0得4﹣2(m+4)+4m=0,解得m=2,方程化为x2﹣6x+8=0,解得x1=4,x2=2,因为2+2=4,所以三角形三边为4、4、2,所以△ABC的周长为10.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.8.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故选:B.【点评】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.9.某药品经过两次降价,每瓶零售价由112元降为63元.已知两次降价的百分率相同.要求每次降价的百分率,若设每次降价的百分率为x,则得到的方程为()A.112(1﹣x)2=63 B.112(1+x)2=63C.112(1﹣x)=63 D.112(1+x)=63【分析】根据题意可得等量关系:原零售价×(1﹣百分比)(1﹣百分比)=降价后的售价,然后根据等量关系列出方程即可.【解答】解:设每次降价的百分率为x,由题意得:112(1﹣x)2=63,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.10.如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m 从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE 和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.【分析】分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可判断.【解答】解:当0<t≤2时,S=t2,当2<t≤4时,S=t2﹣(2t﹣4)2=﹣t2+8t﹣8,观察图象可知,S与t之间的函数关系的图象大致是C.故选:C.【点评】本题考查动点问题的函数图象,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(共10小题,每小题3分,共30分)11.在平面直角坐标系中,点A(1,2)关于原点对称的点为B(a,b),则a•b= 2 .【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【解答】解:∵点A(1,2)关于原点对称的点为B(a,b),∴a=﹣1,b=﹣2,∴a•b=2.故答案为:2.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.12.如果关于x的方程x2﹣5x+k=0没有实数根,那么k的值为k>.【分析】根据题意可知方程没有实数根,则有△=b2﹣4ac<0,然后解得这个不等式求得k的取值范围即可.【解答】解:∵关于x的方程x2﹣5x+k=0没有实数根,∴△<0,即△=25﹣4k<0,∴k>,故答案为:k>.【点评】本题主要考查了一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有:当△<0时,方程无实数根.基础题型比较简单.13.已知某抛物线向左平移4个单位,再向下平移2个单位后所得抛物线的解析式为y=x2+2x+3,那么原抛物线的解析式是y=(x﹣3)2+4 .【分析】根据左加右减,上加下减的规律,可得答案.【解答】解:y=x2+2x+3=(x+1)2+2.抛物线向右平移4个单位,再向上平移2个单位后,所得抛物线的解析式为y=(x﹣3)2+4,则原抛物线的解析式为y=(x﹣3)2+4,故答案是:y=(x﹣3)2+4.【点评】本题考查了二次函数图象与几何变换,主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.14.若关于x的一元二次方程(m+2)x2+3x+m2﹣4=0的一个根为0,则m的值为= 2 .【分析】先把x =0代入方程(m +2)x 2+3x +m 2﹣4=0得m 2﹣4=0,然后解关于m 的方程后利用一元二次方程的定义确定满足条件的m 的值.【解答】解:把x =0代入方程(m +2)x 2+3x +m 2﹣4=0得m 2﹣4=0,解得m 1=2,m 2=﹣2,因为m +2≠0,所以m 的值为2.故答案为2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.如图,⊙O 的半径为10cm ,AB 是⊙O 的弦,OC ⊥AB 于D ,交⊙O 于点C ,且CD =4cm ,弦AB 的长为 16 cm .【分析】连接OA ,求出OD ,根据勾股定理求出AD ,根据垂径定理得出AB =2AD ,代入求出即可,【解答】解:连接OA ,∵OA =OC =10cm ,CD =4cm ,∴OD =10﹣4=6cm ,在Rt △OAD 中,有勾股定理得:AD ==8cm ,∵OC ⊥AB ,OC 过O ,∴AB =2AD =16cm .故答案为16.【点评】本题考查了勾股定理和垂径定理的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.16.如图,圆形转盘中,A ,B ,C 三个扇形区域的圆心角分别为150°,120°和90°.转动圆盘后,指针停止在任何位置的可能性都相同(若指针停在分界线上,则重新转动圆盘),则转动圆盘一次,指针停在B 区域的概率是 .【分析】求出B区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵B扇形区域的圆心角为120°,所以B区域所占的面积比例为=,即转动圆盘一次,指针停在B区域的概率是.故答案为.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.17.我市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?若设应邀请x支球队参赛,根据题意,可列出方程x(x﹣1)=28 .【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数=x(x﹣1),由此可得出方程.【解答】解:设邀请x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得, x(x﹣1)=28,故答案为: x(x﹣1)=28.【点评】本题考查了由实际问题抽象一元二次方程的知识,解决本题的关键是读懂题意,得到总场数与球队之间的关系.18.面积等于6cm2的正六边形的周长是12cm.【分析】根据正六边形的面积等于六个正三角形的面积之和,可出每个正三角形的边长即可,进而可求出正六边形的周长.【解答】解:如图,设正六边形外接圆的半径为a,∵正六边形的面积为6cm2,=×6=cm2,∴S△AOF即a•a•sin∠OFA=a2•=.∴a=2cm,∴正六边形的周长是12cm,故答案为:12cm.【点评】本题考查的是正多边形和圆及锐角三角函数的定义、特殊角的三角函数值,根据题意画出图形,利用数形结合求解是解答此题的关键.19.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c>0,⑥设x1,x2对应的函数值分别是y1,y2,则当x1>x2>2时y1>y2,其中正确结论序号为①③.【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①由对称轴可知:x=>1,∵a<0,∴2a+b>0,故①正确;②由图象可知:a<0,c<0,b>0,∴abc>0,故②错误;③由图象可知:△=b2﹣4ac>0,故③正确;④由图象可知x=1,y=a+b+c>0,故④错误;⑤由图象可知:x=﹣2,y=4a﹣2b+c<0,故⑤错误;故答案为:①③;【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.20.如图,正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA连续翻转(如图所示),直至点P第一次回到原来的位置,则点P运动路径的长为2πcm.(结果保留π)【分析】首先弄清每段弧的圆心,半径及圆心角的度数,然后利用弧长公式即可求得.【解答】解:从图中可以看出翻转的第一次是一个120度的圆心角,半径是1,所以弧长=, 第二次是以点P 为圆心,所以没有路程,在BC 边上,第一次第二次同样没有路程,AC 边上也是如此,点P 运动路径的长为×3=2π. 故答案为:2π.【点评】本题主要考查了旋转变换及弧长的计算公式,但是弄清弧长的圆心,半径及圆心角的度数是关键.三.(本题共12分)21.解方程:(1)x 2+4x =﹣3(2)a 2+3a +1=0(用公式法)【分析】(1)用配方法或者移项后用因式分解法都比较简便;(2)先确定二次项系数、一次项系数及常数项,再计算△,代入求根公式即可.【解答】解:(1)x 2+4x +3=0,(x +1)(x +3)=0,(x +1)=0,(x +3)=0,解得:x 1=﹣1,x 2=﹣3.(2)a 2+3a +1=0,△=32﹣4×1×1=9﹣4=5>0,∴x ===,∴x 1=,x 2=.【点评】本题考查了一元二次方程的解法及公式法.可根据题目特点灵活选择(1)的解法.四、(本题8分)22.举世瞩目的港珠澳大桥已于2018年10月24日正式通车,这座大桥是世界上最长的跨海大桥,被英国《卫报》誉为“新世界七大奇迹”,车辆经过这座大桥收费站时,从已开放的4个收费通道A 、B 、C 、D 中可随机选择其中一个通过.(1)一辆车经过收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解答:(1)一辆车经过收费站时,选择A通道通过的概率是,故答案为:.(2)列表如下:12种结果,所以选择不同通道通过的概率为=.【点评】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.五、(本题共15分)23.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;(3)求证:CD=HF.【分析】(1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线;(2)根据等角的余角相等即可证明;(3)连结DE,先根据AAS证明△CDE≌△HFE,再由全等三角形的对应边相等即可得出CD=HF.【解答】(1)证明:(1)如图,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA,∴BEC=∠BEH,∵BF是⊙O是直径,∴∠BEF=90°,∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,∴∠FEH=∠FEA,∴FE平分∠AEH.(3)证明:如图,连结DE.∵BE是∠ABC的平分线,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE,∵∠C=∠EHF=90°,∴△CDE≌△HFE(AAS),∴CD=HF,【点评】本题主要考查了切线的判定,全等三角形的判定与性质,三角形相似的判定和性质以及解直角三角形等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.六、(本题共15分)24.某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中获得的利润y(万元)和月份n 之间满足函数关系式y=﹣n2+14n﹣24.(1)若利润为21万元,求n的值.(2)哪一个月能够获得最大利润,最大利润是多少?(3)当产品无利润时,企业会自动停产,企业停产是哪几个月份?【分析】(1)把y=21代入,求出n的值即可;(2)根据解析式,利用配方法求出二次函数的最值即可;(3)根据解析式,求出函数值y等于0时对应的月份,依据开口方向以及增减性,再求出y小于0时的月份即可解答.【解答】解:(1)由题意得:﹣n2+14n﹣24=21,解得:n=5或n=9;(2)y=﹣n2+14n﹣24=﹣(n﹣7)2+25,∵﹣1<0,∴开口向下,y有最大值,即n=7时,y取最大值25,故7月能够获得最大利润,最大利润是25万;(3))∵y=﹣n2+14n﹣24=﹣(n﹣2)(n﹣12),当y=0时,n=2或者n=12.又∵图象开口向下,∴当n=1时,y<0,当n=2时,y=0,当n=12时,y=0,则该企业一年中应停产的月份是1月、2月、12月.【点评】此题主要考查了二次函数的应用,难度一般,解答本题的关键是熟练运用配方法求二次函数的最大值,借助二次函数解决实际问题.七、探究题(本题共14分)25.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D 不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三角形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).【分析】(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;=BE+DB+DE=AB+DE=4+DE,根据等边三(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2=t③当6<t<10时,此时不存在;④当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.【解答】解:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C=BE+DB+DE=AB+DE=4+DE,△DBE由(1)知,△CDE是等边三角形,∴DE=CD,∴C=CD+4,△DBE由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2;③当6<t<10时,由∠DBE=120°>90°,∴此时不存在;④当t>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴t=14,综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.【点评】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.八、(本题共16分)26.某公园在一个扇形OEF草坪上的圆心O处垂直于草坪的地上竖一根柱子OA,在A处安装一个自动喷水装置.喷头向外喷水.连喷头在内,柱高m,水流在各个方向上沿形状相同的抛物线路径落下,喷出的水流在与D点的水平距离4米处达到最高点B,点B距离地面2米.当喷头A旋转120°时,这个草坪可以全被水覆盖.如图1所示.(1)建立适当的坐标系,使A点的坐标为(O,),水流的最高点B的坐标为(4,2),求出此坐标系中抛物线水流对应的函数关系式;(2)求喷水装置能喷灌的草坪的面积(结果用π表示);(3)在扇形OEF的一块三角形区域地块△OEF中,现要建造一个矩形GHMN花坛,如图2的设计方案是使H、G分别在OF、OE上,MN在EF上.设MN=2x,当x取何值时,矩形GHMN花坛的面积最大?最大面积是多少?【分析】(1)利用顶点式求出二次函数解析式即可;(2)利用y=0时求出图象与x轴的交点坐标,进而得出扇形的半径,即可得出S的值;(3)利用锐角三角函数关系得出MH的长,再利用二次函数最值公式求出即可.【解答】解:(1)根据题意得出:图象顶点坐标为:(4,2),故设解析式为:y=a(x﹣4)2+2,将(O,),代入上式得:=a(0﹣4)2+2,解得:a=﹣,∴抛物线水流对应的函数关系式为:y=﹣(x﹣4)2+2;(2)当y=0时,0=﹣(x﹣4)2+2,解得:x1=10,x2=﹣2(舍去),∴扇形半径为10米,∴S==(平方米);(3)过点O作OA⊥EF于点A,交GH于点B,∵∠EOF=120°,EO=FO=10,∴∠OEF=∠OFE=30°,∴AO=FO=5,设MN=2x,∴AM=BH=x,∴BO=x,∴MH=5﹣x,由题意得出:S=2x(5﹣x)=﹣x2﹣10x,当x=﹣=时,S的值最大为:S=(平方米).【点评】此题主要考查了二次函数的应用以及扇形面积公式和锐角三角函数的关系等知识,利用数形结合得出对应点的坐标与线段的长是解题关键.。

2019-2020学年贵州省黔南州九年级上期末数学试卷(有答案)【推荐】.doc

2019-2020学年贵州省黔南州九年级上期末数学试卷(有答案)【推荐】.doc

6.如图,O O 是厶ABC 的外接圆, 连接 OA 、OB ,/ OBA = 50°,则/ C 的度数为(2019-2020学年贵州省黔南州九年级(上)期末数学试卷一、选择题(每小题4分,10小题,共计40分)1 .下列四个图形中是中心对称图形但不是轴对称图形的是( )A .属于随机事件B .可能性大小为 — 5C .属于不可能事件D .是必然事件 2 3. 抛物线y =(x -3) +4的顶点坐标是( )A . (- 1, 2)B . (- 1,- 2)C . ( 1,- 2)D . (3, 4)4.小明在解方程 x 2- 4x - 15= 0时,他是这样求解的:移项得x 2- 4x = 15,两边同时加4得x 2- 4x+4=19 ,「.(x - 2) 2= 19,•. x - 2=±寿」::,二 x - 2=±X[= 2+\汀「;,x?= 2 - V J ■:,这种解 方程的方法称为( )5.抛掷一枚质地均匀的硬币, 若连续4次均得到“正面朝上”的结果,则对于第5次抛掷结果的预测, 下列说法中正确的是( ) A .出现“正面朝上”的概率等于 ~ B .一定出现“正面朝上” C .出现“正面朝上”的概率大于 D .无法预测“正面朝上”的概率5个红球,从中随机摸出一个球是黑球(A .待定系数法B .配方法C .公式法D .因式分解法B.7.已知x = 2是关于x 的方程x 2-( m+4) x+4m = 0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC 的两条边长,则△ ABC 的周长为(B . 40C . 50°D . 80°C . 10D . 8 或 108.如图,将△的度数是(AOB 绕点0按逆时针方向旋转 45°OB ',若/ AOB = 15°,则/ AOB 'B . 30° 35°D . 40°)A . 25°它与x 轴和y 轴分别相交于 A , B 两点.平行于直线I 的直线m 从原点0出发,沿x 轴的正方向以每秒1个单位长度的速度运动. 它与x 轴和y 轴分别相交于C , D 两点,运动时间为t 秒(0< t < 4),以CD 为斜边作等腰直角三角形 CDE ( E ,0两点分别在CD 两侧).若厶CDE 和厶OAB 的重合部分的面积为 S,则S 与t 之间的函数关系的图象大致是 ( )9.某药品经过两次降价,每瓶零售价由 112元降为63元.已知两次降价的百分率相同.要求每次降 价的百分率,若设每次降价的百分率为2A. 112 (1 - x ) = 63 x ,则得到的方程为(B . 112 (1+x ) 2= 63C . 112 (1 - x )= 63D . 112 (1+x )= 6310 .如图,直线I 的解析式为y =- x+4,11 •在平面直角坐标系中,点 A (1, 2)关于原点对称的点为 B (a , b ),贝U a?b= _________ 12.如果关于x 的方程x 2-5x+k = 0没有实数根,那么k 的值为213•已知某抛物线向左平移 4个单位,再向下平移 2个单位后所得抛物线的解析式为 y = x +2x+3,那么原抛物线的解析式是2 214 .若关于x 的一元二次方程(m+2) x +3x+m - 4= 0的一个根为0,贝V m 的值为=15. 如图,O O 的半径为10cm , AB 是O O 的弦,OC 丄AB 于D ,交O O 于点C ,且CD = 4cm ,弦AB16. 如图,圆形转盘中, A , B , C 三个扇形区域的圆心角分别为 150° , 120。

2018-2019学年贵州省黔西南州兴义市九年级上期末数学试卷及答案解析

2018-2019学年贵州省黔西南州兴义市九年级上期末数学试卷及答案解析

2018-2019学年贵州省黔西南州兴义市九年级上期末数学试卷一、选择题.(每题只有一个正确答案,请将正确答案填在下面的表格里每题4分,共40分)1.下列事件中,是必然事件的是()
A.两条线段可以组成一个三角形
B.a为实数,|a|≥0
C.早上的太阳从西方升起
D.打开电视机,正在播放兴义市天气预报
2.下列各点在抛物线y=﹣x2+1上的是()
A.(1,0)B.(0,0)C.(0,﹣1)D.(1,1)
3.下列说法正确的是()
A.圆是轴对称图形B.三点确定一个圆
C.大于半圆的弧叫做劣弧D.长度相等的弧叫做等弧
4.在平面直角坐标系中,若点P(m,n)与Q(﹣2,3)关于原点对称,则点M(m,﹣n)在()
A.第一象限B.第二象限C.第三象限D.第四象限
5.已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m的值为()A.﹣6B.6C.3D.﹣3
6.二次函数的图象如图所示,则其解析式是()
A.y=﹣x2+2x+3B.y=x2﹣2x﹣3C.y=﹣x2﹣2x+3D.y=﹣x2﹣2x﹣3 7.如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A 点运动的路径的长为()
第1 页共24 页。

{3套试卷汇总}2019年贵州省名校九年级上学期期末学业质量监测数学试题

{3套试卷汇总}2019年贵州省名校九年级上学期期末学业质量监测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知点(3,﹣4)在反比例函数k y x =的图象上,则下列各点也在该反比例函数图象上的是( ) A .(3,4)B .(﹣3,﹣4)C .(﹣2,6)D .(2,6) 【答案】C 【解析】试题解析:∵反比例函数k y x=图象过点(3,-4), 43k ∴-=, 即k=−12, A.341212⨯=≠-, ∴此点不在反比例函数的图象上,故本选项错误; B.()()341212-⨯-=≠-,∴此点不在反比例函数的图象上,故本选项错误; C.2612,-⨯=- ∴此点在反比例函数的图象上,故本选项正确. D.261212⨯=≠-,∴此点不在反比例函数的图象上,故本选项错误; 故选C.2.对于反比例函数4y x=-,下列说法错误的是( ) A .它的图象分别位于第二、四象限B .它的图象关于y x =成轴对称C .若点1(2,)A y -,2(1,)B y -在该函数图像上,则12y y <D .y 的值随x 值的增大而减小【答案】D【分析】根据反比例函数的性质对各选项逐一分析即可. 【详解】解:反比例函数4y x =-,40k =-<,图像在二、四象限,故A 正确. 反比例函数k y x=,当0k >时,图像关于y x =-对称; 当k 0<时,图像关于y x =对称,故B 正确当0x <时,y 的值随x 值的增大而增大,21-<-,则12y y <,故C 正确在第二象限或者第四象限,y 的值随x 值的增大而增大,故D 错误故选D【点睛】本题主要考查了反比例函数的性质.3.如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD =60°,BP =2,CD =1,则△ABC 的边长为( )A .3B .4C .5D .6【答案】B 【分析】根据等边三角形性质求出AB =BC =AC ,∠B =∠C =60°,推出∠BAP =∠DPC ,即可证得△ABP ∽△PCD ,据此解答即可,.【详解】∵△ABC 是等边三角形,∴AB =BC =AC ,∠B =∠C =60°,∴∠BAP+∠APB =180°﹣60°=120°,∵∠APD =60°,∴∠APB+∠DPC =180°﹣60°=120°,∴∠BAP =∠DPC ,即∠B =∠C ,∠BAP =∠DPC ,∴△ABP ∽△PCD ; ∴=,B A PC P CDB ∵BP =2,CD =1, ∴221=-,AB AB ∴AB =1,∴△ABC 的边长为1.故选:B .【点睛】本题考查了相似三角形的性质和判定,等边三角形的性质,三角形的内角和定理的应用,关键是推出△ABP ∽△PCD ,主要考查了学生的推理能力和计算能力.4.如图,平行四边形ABCO 的顶点B 在双曲线8y x =上,顶点C 在双曲线k y x=上,BC 中点P 恰好落在y 轴上,已知,12OABC S =□,则k 的值为( )A.8-B.6-C.4-D.2-【答案】B【分析】连接BO,过B点和C点分别作y轴的垂线段BE和CD,证明△BEP≌△CDP(AAS),则△BEP面积=△CDP面积;易知△BOE面积=12×8=2,△COD面积=12|k|.由此可得△BOC面积=△BPO面积+△CPD面积+△COD面积=3+12|k|=12,解k即可,注意k<1.【详解】连接BO,过B点和C点分别作y轴的垂线段BE和CD,∴∠BEP=∠CDP,又∠BPE=∠CPD,BP=CP,∴△BEP≌△CDP(AAS).∴△BEP面积=△CDP面积.∵点B在双曲线8yx=上,所以△BOE面积=12×8=2.∵点C在双曲线kyx=上,且从图象得出k<1,∴△COD面积=12|k|.∴△BOC面积=△BPO面积+△CPD面积+△COD面积=2+12|k|.∵四边形ABCO是平行四边形,∴平行四边形ABCO面积=2×△BOC面积=2(2+12|k|),∴2(3+12|k|)=12,解得k=±3,因为k<1,所以k=-3.故选:B.【点睛】本题主要考查了反比例函数k的几何意义、平行四边形的面积,解决这类问题,要熟知反比例函数图象上点到y轴的垂线段与此点与原点的连线组成的三角形面积是12|k|.5.x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则2a﹣4b的值为()A.﹣2 B.﹣1 C.1 D.2【答案】A【分析】先把x=1代入方程x2+ax-2b=0得a-2b=-1,然后利用整体代入的方法计算2a-4b的值即可.【详解】将x=1代入原方程可得:1+a﹣2b=0,∴a﹣2b=﹣1,∴原式=2(a﹣2b)=﹣2,故选:A.【点睛】本题考查了一元二次方程的解的定义.一元二次方程的解就是能够使方程左右两边相等的未知数的值.6.将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF,若AB=3,则菱形AECF的面积为()A.1 B.2C.3D.4【答案】C【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形AECF是菱形,AB=3,∴假设BE=x,则AE=3﹣x,CE=3﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x ,∴2x=3﹣x ,解得:x=1,∴CE=2,利用勾股定理得出:BC 2+BE 2=EC 2, BC=22EC BE -=2221-=3,又∵AE=AB ﹣BE=3﹣1=2,则菱形的面积是:AEBC=23.故选C .【点睛】本题考查折叠问题以及勾股定理.解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.7.下列一元二次方程中,有两个不相等的实数根的是( )A .28160x x -+=B .23x x =C .24x x +=D .2(2)50x -+= 【答案】B【分析】先将各选项一元二次方程化为一般式,再计算判别式即得.【详解】A 选项28160x x -+=中,则1a =,8b =-,16c =,则2=40b ac ∆-=,有两个相等的实数根,不符合题意;B 选项23x x =可化为230x x -=,则1a =,3b =-,0c,则2=490b ac ∆-=>,有两个不相等的实数根,符合题意;C 选项24x x +=可化为24=0x x -+,则1a =,1b =-,4c =,则2=4150b ac ∆-=-<,无实数根,不符合题意;D 选项2(2)50x -+=可化为2490x x -+=,则1a =,4b =-,9c =,则2=4200b ac ∆-=-<,无实数根,不符合题意.故选:B .【点睛】本题考查了一元二次方程根的判别式,解题关键是熟知:判别式>0∆时,一元二次方程有两个不相等的实数根;判别式=0∆时,一元二次方程有两个相等的实数根;判别式∆<0时,一元二次方程无实数根.8.四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )A .14B .12C .34D .1【答案】B【分析】先找出卡片上所画的图形是中心对称图形的个数,再除以总数即可.【详解】解:∵四张卡片中中心对称图形有平行四边形、圆,共2个,∴卡片上所画的图形恰好是中心对称图形的概率为21=42, 故选B .【点睛】此题考查概率公式:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n,关键是找出卡片上所画的图形是中心对称图形的个数. 9.如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F ,在下列结论中,不一定正确的是( )A .△AFD ≌△DCEB .AF =12ADC .AB =AFD .BE =AD ﹣DF【答案】B 【解析】A .由矩形ABCD ,AF ⊥DE 可得∠C =∠AFD =90°,AD ∥BC ,∴∠ADF =∠DEC .又∵DE =AD ,∴△AFD ≌△DCE (AAS ),故A 正确;B .∵∠ADF 不一定等于30°,∴直角三角形ADF 中,AF 不一定等于AD 的一半,故B 错误;C .由△AFD ≌△DCE ,可得AF =CD ,由矩形ABCD ,可得AB =CD ,∴AB =AF ,故C 正确;D .由△AFD ≌△DCE ,可得CE =DF ,由矩形ABCD ,可得BC =AD ,又∵BE =BC ﹣EC ,∴BE =AD ﹣DF ,故D 正确;故选B .10.一元二次方程220x x -=的解为( )A .10x =,22x = B .0x = C .2x = D .12x =-,20x =【答案】A【分析】根据因式分解法中的提取公因式法进行求解即可;【详解】21220,(2)0,0,2x x x x x x -=-===故选A .【点睛】本题主要考查了一元二次方程因式分解法中的提取公因式法,准确计算是解题的关键.11.抛物线2y x bx c =++的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为()2y x 14=--,则b 、c 的值为A .b=2,c=﹣6B .b=2,c=0C .b=﹣6,c=8D .b=﹣6,c=2 【答案】B【详解】函数()2y x 14=--的顶点坐标为(1,﹣4),∵函数()2y x 14=--的图象由2y x bx c =++的图象向右平移2个单位,再向下平移3个单位得到, ∴1﹣2=﹣1,﹣4+3=﹣1,即平移前的抛物线的顶点坐标为(﹣1,﹣1).∴平移前的抛物线为()2y x 11=+-,即y=x 2+2x .∴b=2,c=1.故选B .12.桌面上放有6张卡片(卡片除正面的颜色不同外,其余均相同),其中卡片正面的颜色3张是绿色,2张是红色,1张是黑色.现将这6张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是( )A .12B .13C .14D .16【答案】A【详解】∵桌面上放有6张卡片,卡片正面的颜色3张是绿色,2张是红色,1张是黑色,∴抽出的卡片正面颜色是绿色的概率是:3162=. 故选A .二、填空题(本题包括8个小题)13.已知点E 是线段AB 的黄金分割点,且BE AE >,若AB=2则BE=__________.【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值2⎛⎫ ⎪ ⎪⎝⎭叫做黄金比; 【详解】解:∵点E 是线段AB 的黄金分割点,且BE>AE ,∴BE=5-1⎛⎫⎪⎪⎝⎭AB,而AB=2,∴BE=5-1;故答案为:5-1;【点睛】本题主要考查了黄金分割,掌握黄金分割是解题的关键.14.圆锥侧面积为32π cm2,底面半径为4cm,则圆锥的母线长为____cm.【答案】8【分析】根据扇形的面积公式计算即可.【详解】设圆锥的母线长为lcm,则:124322lππ⨯⨯⨯=,解得:8l=,故答案为:8.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键. 15.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.32【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF ∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r13同理:扇形DEF的弧长为:120241803aaππ⋅⋅=则r2=2 3 ar1:r23:3:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.16.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_____cm.【答案】1.【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解.【详解】设此圆锥的底面半径为r.根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr1203180π⨯=,解得:r=1.故答案为1.【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.17.如图,⊙O是等边△ABC的外接圆,弦CP交AB于点D,已知∠ADP=75°,则∠POB等于_______°.【答案】90【分析】先根据等边三角形的的性质和三角形的外角性质求出∠ACP,进而求得可得∠BCP,最后根据圆周角定理∠BOP=2∠BCP=90°.【详解】解:∵∠A=∠ACB=60°,∠ADP=75°,∴∠ACP=∠ADP-∠A=15°,∴∠BCP=∠ACB-∠ACP=45°,∴∠BOP=2∠BCP=90°.故答案为90.【点睛】此题主要考查了等边三角形的的性质,三角形外角的性质,以及圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.18.已知函数12(0)3(0)xxyxx⎧->⎪⎪=⎨⎪<⎪⎩的图象如图所示,点P是y轴负半轴上一动点,过点P作y轴的垂线交图象于A、B两点,连接OA、OB.下列结论;①若点M1(x1,y1),M2(x2,y2)在图象上,且x1<x2<0,则y1<y2;②当点P坐标为(0,﹣3)时,△AOB是等腰三角形;③无论点P在什么位置,始终有S△AOB =7.5,AP=4BP;④当点P移动到使∠AOB=90°时,点A的坐标为(26,﹣6).其中正确的结论为___.【答案】②③④.【分析】①错误.根据x1<x2<0时,函数y随x的增大而减小可得;②正确.求出A、B两点坐标即可解决问题;③正确.设P(0,m),则B(3m,m),A(﹣12m,m),求出PA、PB,推出PA=4PB,由S AOB=S△OPB+S△OPA即可求出S△AOB=7.5;④正确.设P(0,m),则B(3m,m),A(﹣12m,m),推出PB=﹣3m,PA=﹣12m,OP=﹣m,由△OPB∽△APO,可得OP2=PB•PA,列出方程即可解决问题.【详解】解:①错误.∵x1<x2<0,函数y随x是增大而减小,∴y1>y2,故①错误.②正确.∵P(0,﹣3),∴B(﹣1,﹣3),A(4,﹣3),∴AB=5,OA5,∴AB=AO,∴△AOB是等腰三角形,故②正确.③正确.设P(0,m),则B(3m,m),A(﹣12m,m),∴PB=﹣3m,PA=﹣12m,∴PA=4PB,∵S AOB=S△OPB+S△OPA=32+122=7.5,故③正确.④正确.设P(0,m),则B(3m,m),A(﹣12m,m),∴PB=﹣3m,PA=﹣12m,OP=﹣m,∵∠AOB=90°,∠OPB=∠OPA=90°,∴∠BOP+∠AOP=90°,∠AOP+∠OAP=90°,∴∠BOP=∠OAP,∴△OPB∽△APO,∴OPAP=PBOP,∴OP2=PB•PA,∴m2=﹣3m•(﹣12m),∴m4=36,∵m<0,∴m,∴A(26,﹣6),故④正确.∴②③④正确,故答案为②③④.【点睛】本题考查反比例函数综合题、等腰三角形的判定、两点间距离公式、相似三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数,构建方程解决问题.三、解答题(本题包括8个小题)19.如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长(3≈1.73).【答案】隧道AB的长约为635m.【分析】首先过点C作CO⊥AB,根据Rt△AOC求出OA的长度,根据Rt△CBO求出OB的长度,然后进行计算.【详解】如图,过点C作CO⊥直线AB,垂足为O,则CO=1500m∵BC∥OB∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO 中,OA=1500tan60=1500×333在Rt△CBO 中,OB=1500×tan45°=1500m∴AB=1500-5003≈1500-865=635(m)答:隧道AB的长约为635m.考点:锐角三角函数的应用.20.在一次篮球拓展课上,A,B,C三人玩篮球传球游戏,游戏规则是:每一次传球由三人中的一位将球随机地传给另外两人中的某一人.例如:第一次由A传球,则A将球随机地传给B,C两人中的某一人.(1)若第一次由A传球,求两次传球后,球恰好回到A手中的概率.(要求用画树状图法或列表法)(2)从A,B,C三人中随机选择一人开始进行传球,求两次传球后,球恰好在A手中的概率.(要求用画树状图法或列表法)【答案】(1)12,树状图见解析;(2)13,树状图见解析【分析】(1)用树状图表示所有可能情况,找出符合条件的情况,求出概率即可.(2)用树状图表示所有可能情况,找出符合条件的情况,求出概率即可.【详解】解:(1)画树状图得:∵共有4种等可能的结果,两次传球后,球恰在A手中的只有2种情况,∴两次传球后,球恰在A手中的概率为21 42 =.(2)根据题意画树状图如下:∴共有12种等可能的结果,第二次传球后,球恰好在A手中的有4种情况,∴第二次传球后,球恰好在A手中的概率是41 123=.【分析】本题主要考查了树状图求概率的方法,正确掌握树状图求概率的方法是解题的关键.21.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点逆时针旋转到AF的位置,使得∠CAF =∠BAE,连接EF,EF与AC交于点G.求证:EF=BC.【答案】见解析【分析】由旋转前后图形全等的性质可得AC =AF ,由“SAS”可证△ABC ≌△AEF ,可得EF =BC .【详解】证明:∵∠CAF =∠BAE ,∴∠BAC =∠EAF ,∵将线段AC 绕A 点旋转到AF 的位置,∴AC =AF ,在△ABC 与△AEF 中,AB AE BAC EAF AC AF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△AEF (SAS ),∴EF =BC ;【点睛】本题主要考查的是旋转前后图形全等的性质以及全等三角形的判定,掌握全等三角形的判定是解题的关键.22.在△ABC 中,AD 、CE 分别是△ABC 的两条高,且AD 、CE 相交于点O ,试找出图中相似的三角形,并选出一组给出证明过程.【答案】△ABD ∽△CBE ,△ODC ∽△BEC ,△OEA ∽△BDA ,△ODC ∽△OEA ,证明见解析【分析】由题意直接根据相似三角形的判定方法进行分析即可得出答案.【详解】解:图中相似的三角形有:△ABD ∽△CBE ,△ODC ∽△BEC ,△OEA ∽△BDA ,△ODC ∽△OEA . ∵AD 、CE 分别是△ABC 的两条高,∴∠ADB =∠CDA =∠CEB =∠AEC =90°,∴∠B+∠BCE =90°,∠B+∠BAD =90°,∴∠BAD =∠BCE ,∵∠EBC =∠ABD ,∴△ABD∽CBE.【点睛】本题考查相似三角形的判定.注意掌握相似三角形的判定以及数形结合思想的应用.23.解方程组:43524x yx y+=⎧⎨-=⎩.【答案】21 xy=⎧⎨=-⎩【分析】方程组利用加减消元法求出解即可.【详解】解:43524x yx y+=⎧⎨-=⎩①②,①﹣②×4得:11y=﹣11,即y=﹣1,把y=﹣1代入②得:x=2,则方程组的解为21 xy=⎧⎨=-⎩.【点睛】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法的运用.24.计算:﹣12119﹣2|+2cos31°+(2﹣tan61°)1.【答案】2【解析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.【详解】解:原式=﹣1+2=2【点睛】此题主要考查了实数运算,正确化简各数是解题关键.25.已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)找出a,b及c,表示出根的判别式,变形后得到其值大于1,即可得证.(2)把x=1代入方程即可求m的值,然后化简代数式再将m的值代入所求的代数式并求值即可.试题解析:(1)∵关于x的一元二次方程x2-(2m+1)x+m(m+1)=1.∴△=(2m+1)2-4m(m+1)=1>1,∴方程总有两个不相等的实数根;(2)∵x=1是此方程的一个根,∴把x=1代入方程中得到m(m+1)=1,∴m=1或m=-1,∵(2m-1)2+(3+m)(3-m)+7m-2=4m2-4m+1+9-m2+7m-2=3m2+3m+2,把m=1代入3m2+3m+2得:3m2+3m+2=2;把m=-1代入3m2+3m+2得:3m2+3m+2=3×1-3+2=2.考点:1.根的判别式;2.一元二次方程的解.26.如图,破残的圆形轮片上,弦AB的垂直平分线交AB于点C,交弦AB于点D.已知12AB=cm,4CD= c m.(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.【答案】(1)作图见解析;(2)(1)作图见解析;(2)132cm;【分析】(1).由垂径定理知,垂直于弦的直径是弦的中垂线,因为CD垂直平分AB,故作AC的中垂线交CD延长线于点O,则点O是弧ACB所在圆的圆心;(2).在Rt△OAD中,由勾股定理可求得半径OA的长即可.【详解】(1)如图点O即为所求圆的圆心.(2)连接OA,设OA=xcm,根据勾股定理得:x2=62+(x-4)2解得:x=132cm,故半径为:132cm.【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键. 27.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?【答案】(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是1元.【解析】分析:(1)设第一批悠悠球每套的进价是x 元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设每套悠悠球的售价为y 元,根据销售收入-成本=利润结合全部售完后总利润不低于25%,即可得出关于y 的一元一次不等式,解之取其中的最小值即可得出结论.详解:(1)设第一批悠悠球每套的进价是x 元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:9005001.55x x=⨯+, 解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y 元,根据题意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%,解得:y≥1.答:每套悠悠球的售价至少是1元.点睛:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知2x =是一元二次方程260x bx -+=的解,则b 的值为( )A .-5B .5C .4D .-4【答案】B【解析】根据方程的解的定义,把2x =代入原方程即可.【详解】把2x =代入得:4-2b+6=0b=5故选:B【点睛】本题考查的是方程的解的定义,理解方程解的定义是关键.2.下列四个几何体中,主视图与俯视图不同的几何体是( ) A . B .C .D .【答案】C【分析】根据正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同进行分析判定.【详解】解:圆锥的主视图与俯视图分别为圆形、三角形,故选:C .【点睛】本题考查简单的几何体的三视图,注意掌握从不同方向看物体的形状所得到的图形可能不同. 3.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A .20°B .25°C .30°D .50°【答案】B 【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC ,然后根据圆周角定理计算∠ADC 的度数.【详解】∵BC 的度数为50°,∴∠BOC=50°,∵半径OC ⊥AB ,∴=AC BC ,∴∠ADC=12∠BOC=25°. 故选B .【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.4.下列关系式中,y 是x 的反比例函数的是( )A .5y x =B .3y x =C .1y x =-D .23y x =- 【答案】C【解析】根据反比例函数的定义逐一判断即可.【详解】解:A 、是正比例函数,故A 错误;B 、是正比例函数,故B 错误;C 、是反比例函数,故C 正确;D 、是二次函数,故D 错误;故选:C .【点睛】本题考查了反比例函数的定义,形如y =k x (k≠0)的函数是反比例函数.正确理解反比例函数解析式是解题的关键.5.将二次函数 243y x x =-+ 通过配方可化为 2()y a x h k =-+的形式,结果为( )A .2(2)1y x =--B .2(2)3y x =-+C .2(2)3y x =++D .2(2)1y x =+- 【答案】A【分析】根据完全平方公式:()2222a ab b a b ++=+配方即可.【详解】解:243y x x =-+ =2441x x -+-=()221x -- 故选A . 【点睛】此题考查的是利用配方法将二次函数的一般式化为顶点式,掌握完全平方公式是解决此题的关键. 6.用半径为3cm ,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( ) A .2cm π B .1.5cmC .cm πD .1cm【答案】D【详解】解:设此圆锥的底面半径为r ,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,12032180r ππ⨯=,解得:r=1. 故选D .7.二次函数222=++y x x 与坐标轴的交点个数是( ) A .0个 B .1个 C .2个 D .3个【答案】B【分析】先计算根的判别式的值,然后根据b 2−4ac 决定抛物线与x 轴的交点个数进行判断. 【详解】∵△=22−4×1×2=−4<0,∴二次函数y =x 2+2x +2与x 轴没有交点,与y 轴有一个交点. ∴二次函数y =x 2+2x +2与坐标轴的交点个数是1个, 故选:B . 【点睛】本题考查了抛物线与x 轴的交点:求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标,令y =0,即ax 2+bx +c =0,解关于x 的一元二次方程即可求得交点横坐标.二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的交点与一元二次方程ax 2+bx +c =0根之间的关系:△=b 2−4ac 决定抛物线与x 轴的交点个数;△=b 2−4ac >0时,抛物线与x 轴有2个交点;△=b 2−4ac =0时,抛物线与x 轴有1个交点;△=b 2−4ac <0时,抛物线与x 轴没有交点.8.若函数y =(a ﹣1)x 2﹣4x+2a 的图象与x 轴有且只有一个交点,则a 的值为( ). A .-1 B .2 C .-1或2 D .-1或2或1【答案】D【分析】当a -1=0,即a =1时,函数为一次函数,与x 轴有一个交点;当a ﹣1≠0时,利用判别式的意义得到=0∆,再求解关于a 的方程即可得到答案.【详解】当a ﹣1=0,即a =1,函数为一次函数y =-4x+2,它与x 轴有一个交点; 当a ﹣1≠0时,根据题意得()22=44(1)216880a a a a ∆---⨯=-+=解得a =-1或a =2综上所述,a 的值为-1或2或1. 故选:D . 【点睛】本题考察了一次函数、二次函数图像、一元二次方程的知识;求解的关键是熟练掌握一次函数、二次函数的性质,从而完成求解.9.若点()()()2313,,1,,3,y y y --,在反比例函数()0ky k x=<上,则123,,y y y 的大小关系是( ) A .312y y y << B .321y y y <<C .123y y y <<D .213y y y <<【答案】A【分析】由k <0可得反比例函数()0ky k x=<的图象在二、四象限,y 随x 的增大而增大,可知y 3<0,y 1>0,y 2>0,根据反比例函数的增减性即可得答案. 【详解】∵k <0, ∴反比例函数()0ky k x=<的图象在二、四象限,y 随x 的增大而增大, ∴y 3<0,y 1>0,y 2>0, ∵-3<-1, ∴y 1<y 2, ∴312y y y <<, 故选:A . 【点睛】本题考查反比例函数的性质,对于反比例函数y=kx(k≠0),当k >0时,图象在一、三象限,在各象限,y 随x 的增大而减小;当k <0时,图象在二、四象限,在各象限内,y 随x 的增大而增大;熟练掌握反比例函数的性质是解题关键.10.如图,二次函数y=ax 1+bx+c 的图象与x 轴交于点A (﹣1,0),与y 轴的交点B 在(0,1)与(0,3)之间(不包括这两点),对称轴为直线x=1.下列结论:abc <0;②9a+3b+c >0;③若点M (12,y 1),点N (52,y 1)是函数图象上的两点,则y 1<y 1;④﹣35<a <﹣25.其中正确结论有( )A .1个B .1个C .3个D .4个【答案】D【分析】根据二次函数的图象与系数的关系即可求出答案. 【详解】①由开口可知:a <0, ∴对称轴x=−2ba>0, ∴b >0,由抛物线与y 轴的交点可知:c >0, ∴abc <0,故①正确;②∵抛物线与x 轴交于点A (-1,0), 对称轴为x=1,∴抛物线与x 轴的另外一个交点为(5,0), ∴x=3时,y >0,∴9a+3b+c >0,故②正确; ③由于12<1<52, 且(52,y 1)关于直线x=1的对称点的坐标为(32,y 1), ∵12<32, ∴y 1<y 1,故③正确, ④∵−2ba=1, ∴b=-4a , ∵x=-1,y=0, ∴a-b+c=0, ∴c=-5a , ∵1<c <3, ∴1<-5a <3, ∴-35<a <-25,故④正确 故选D . 【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型. 11.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )A .B .C .D .【答案】B【分析】根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.【详解】∵直径所对的圆周角等于直角,∴从直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B . 故选B . 【点睛】本题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.12.如图,菱形ABCD 的边长是4,60cm C ∠=︒,动点,P Q 同时从点A 出发,以1/cm s 的速度分别沿,A B C A D C →→→→运动,设运动时间为xs ,四边形PBDQ 的面积为2ycm ,则y 与x 的函数关系图象大致为( )A .B .C .D .【答案】C【分析】根据题意可以求出各段对应的函数解析式,再根据函数解析式即可判断哪个选项是符合题意的,本题得以解决.【详解】解:∵菱形ABCD 的边长为4cm ,∠A=60°,动点P ,Q 同时从点A 出发,都以1cms 的速度分别沿A →B →C 和A →D →C 的路径向点C 运动, ∴△ABD 是等边三角形, ∴当0<x ≤4时, y=12×4×4×sin60°−12334x 2=34-x 23 当4<x ≤8时,y=12×4×4×sin60°−12×(8−x)×(8−x)×sin60° =−34x 2+43x −123 =−34(x −8)2+43; ∴选项C 中函数图像符合题意, 故选:C. 【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,求出各段对应的函数解析式,利用数形结合的思想解答.二、填空题(本题包括8个小题)13.已知抛物线y =x 2﹣x ﹣1与x 轴的一个交点为(m ,0),则代数式m 2﹣m+5=_____. 【答案】1【分析】利用抛物线与x 轴的交点问题得到m 2﹣m ﹣1=0,则m 2﹣m =1,然后利用整体代入的方法计算m 2﹣m+5的值.【详解】∵抛物线y =x 2﹣x ﹣1与x 轴的一个交点为(m ,0), ∴m 2﹣m ﹣1=0,即m 2﹣m =1, ∴m 2﹣m+5=1+5=1. 故答案为:1. 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数2y ax bx c =++(a b c ,,是常数,0a ≠)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.14.如图,矩形ABCD 中,2AB =,点E 在边CD 上,且BC CE =,AE 的延长线与BC 的延长线相交于点F ,若CF AB =,则tan DAE ∠=______.51- 【分析】设BC=EC=a,根据相似三角形得到222aa =+,求出a 的值,再利用tan DAE ∠=tanA 即可求解. 【详解】设BC=EC=a, ∵AB ∥CD ,∴△ABF ∽△ECF , ∴AB EC BF CF =,即222aa =+ 解得a=51-(-51-舍去) ∴tan DAE ∠=tanF=2EC a CF ==51- 故答案为:51-. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质及正切的定义. 15.若△ABC ∽△A′B′C′,∠A =50°,∠C =110°,则∠B′的度数为_____. 【答案】20°【分析】先根据三角形内角和计算出∠B 的度数,然后根据相似三角形的性质得到∠B′的度数. 【详解】解:∵∠A =50°,∠C =110°, ∴∠B =180°﹣50°﹣110°=20°, ∵△ABC ∽△A′B′C′, ∴∠B′=∠B =20°. 故答案为20°. 【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边成比例,它们对应面积的比等于相似比的平方.16.如图,在△ABC 中,AB=4,BC=7,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为__________.【答案】3【解析】试题解析: 由旋转的性质可得:AD=AB , 60B ∠=,∴△ABD 是等边三角形, ∴BD=AB , ∵AB=4,BC=7,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州省黔西南州兴义市九年级(上)期末数学试卷一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)n﹣3n+2=0是关于的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠02.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程6.抛物线y=a2+b+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线=0B.直线=1C.直线=﹣2D.直线=﹣17.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为,则可以列出方程为()A.60(1+)2=80B.(60+%)2=80C.60(1+)(1+2)2=80D.60(1+%)2=808.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是(填“随机“或“必然”)事件.12.如果将抛物线y=2+2向下平移1个单位,那么所得新抛物线的解析式为.13.点A(﹣2,3)关于原点对称的点的坐标是.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=.15.已知点A(1,y1)、B(2,y2)在二次函数y=(﹣1)2+1的图象上,若1>2>1,则y1y2(填“>”、“<”或“=”).16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为度.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M 点的坐标.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.七.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.八.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(+1)2+4与轴交于点A、B,与y轴交于点C.(1)写出抛物线顶点D的坐标;(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥轴交线段AC于点F,求线段EF的最大值.贵州省黔西南州兴义市九年级(上)期末数学试卷参考答案与试题解析一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)n﹣3n+2=0是关于的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠0【分析】根据一元二次方程的定义列出关于m,n的方程,求出m,n的值即可.【解答】解:∵(m﹣2)n﹣3n+2=0是关于的一元二次方程,∴m﹣2≠0,n=2,解得m≠2,n=2.故选:B.【点评】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图,AB 是⊙O 的直径, ==,∠COD=34°,则∠AEO 的度数是( )A .51°B .56°C .68°D .78°【分析】由==,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE 的度数;然后再根据等腰三角形的性质和三角形内角和定理求∠AEO 的度数.【解答】解:如图,∵ ==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD ﹣∠COD ﹣∠BOC=78°.又∵OA=OE ,∴∠AEO=∠OAE ,∴∠AEO=×(180°﹣78°)=51°.故选:A .【点评】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用. 4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是( )A .B .C .D .【分析】先求出非负数的个数,再根据概率公式计算可得.【解答】解:∵0,﹣3,﹣4,2,5这5个数中,非负数有0,2,5这3个,∴从中随机抽取一张,抽到写有非负数的卡片的概率是,故选:C .【点评】本题考查的是概率的求法.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=,本题找到非负数的个数是关键.5.下列运动属于旋转的是( )A .足球在草地上滚动B .火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程【分析】根据旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转进行分析即可.【解答】解:A、足球在草地上滚动,不是旋转,故此选项错误;B、火箭升空的运动,是平移,故此选项错误;C、汽车在急刹车时向前滑行,是平移,故此选项错误;D、钟表的钟摆动的过程,是旋转,故此选项正确;故选:D.【点评】此题主要考查了生活中的旋转,关键是掌握旋转定义.6.抛物线y=a2+b+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线=0B.直线=1C.直线=﹣2D.直线=﹣1【分析】由二次函数的对称性可求得抛物线的对称轴【解答】解:∵抛物线y=a2+b+c(a≠0)过(2,8)和(﹣6,8)两点,∴抛物线的对称轴为==﹣2,故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数图象上关于对称轴对称的点所对应的函数值相等是解题的关键.7.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为,则可以列出方程为()A.60(1+)2=80B.(60+%)2=80C.60(1+)(1+2)2=80D.60(1+%)2=80【分析】2016年财政总收入=2014年财政总收入×(1+增长率)2,把相关数值代入即可.【解答】解:2015年财政总收入为60×(1+),2016年财政总收入为60×(1+)×(1+)=60×(1+)2,可列方程为60(1+)2=80,故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为,则经过两次变化后的数量关系为a(1±)2=b.8.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°【分析】先根据圆内接四边形的对角互补得出∠D+∠B=180°,即可解答.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠D+∠B=180°,∴∠D=180°﹣70°=110°,故选:A.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s【分析】因为﹣5<0,抛物线开口向下,有最大值,根据顶点坐标公式表示函数的最大值,根据题目对最大值的要求,求待定系数v0.【解答】解:h=﹣5t2+v0•t,其对称轴为t=,5×()2+v0•=20,当t=时,h最大=﹣解得:v0=20,v0=﹣20(不合题意舍去),故选:C.【点评】本题考查的是二次函数的应用,关键是利用当对称轴为t=﹣时h将取到最大值.10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2【分析】从图中可以看出新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,弓形CED的面积又=扇形BCD面积﹣三角形BCD的面积,然后依面积公式计算即可.【解答】解:新月形ACED的面积==R2.故选:B.【点评】本题的关键是看出:新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,然后逐一求面积即可.二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是随机(填“随机“或“必然”)事件.【分析】直接利用随机事件的定义分析得出答案.【解答】解:任意打开一本154页的九年级数学书,正好翻到第127页”这是随机事件.故答案为:随机.【点评】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.12.如果将抛物线y=2+2向下平移1个单位,那么所得新抛物线的解析式为y=2+1.【分析】直接利用二次函数的平移规律得出答案.【解答】解:将抛物线y=2+2向下平移1个单位,那么所得新抛物线的解析式为:y=2+1.故答案为:y=2+1.【点评】此题主要考查了二次函数的平移变换,正确掌握平移规律是解题关键.13.点A(﹣2,3)关于原点对称的点的坐标是(2,﹣3).【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(﹣2,3)关于原点O 的对称点是P′(2,﹣3)【解答】解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).【点评】本题考查了关于原点对称的点的坐标,运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=30°.【分析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理求出∠PAB即可.【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°.故答案为:30°.【点评】本题主要考查了正多边形和圆、圆周角定理、弦切角定理;作出适当的辅助线,利用弦切角定理是解答此题的关键.15.已知点A(1,y1)、B(2,y2)在二次函数y=(﹣1)2+1的图象上,若1>2>1,则y1>y2(填“>”、“<”或“=”).【分析】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(﹣1)2+1可知,其对称轴为=1,∵1>2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随的增大而增大,∵1>2>1,∴y1>y2.故答案为:>.【点评】本题考查的是二次函数图象上点的坐标特点,根据题意判断出A、B两点的位置是解答此题的关键.16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是【分析】画出树状图,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为2π(结果保留π).【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键..18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为15度.【分析】此题只需根据旋转的性质发现等腰直角三角形CEF,进行求解.【解答】解:∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.故答案为:15°【点评】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度.难度不大,但易错.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是20.【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值.【解答】解:根据题意得=30%,解得n=20,所以这个不透明的盒子里大约有20个除颜色外其他完全相同的小球.故答案为20.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越越小,根据这个频率稳定性定理,可以用频率的集中趋势估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率估计概率.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.【分析】首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.【解答】解:∵AB=5,AD=12,∴BD==13,∴==,==6π,∴点B在两次旋转过程中经过的路径的长是: +6π=,故答案为.【点评】此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式l=,是基础题目,解答时要注意旋转中心以及半径的变化.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M 点的坐标.【分析】(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;②根据网格结构找出A、B、C关于原点O的中心对称点A2、B2、C2的位置,然后顺次连接即可;(2)连接B1B2,C1C2,交点就是对称中心M.【解答】解:(1)①△A1B1C1如图所示;②△A2B2C2如图所示;(2)连接B1B2,C1C2,得到对称中心M的坐标为(2,1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.【分析】(1)先依据三角形的外角的性质求得∠C的度数,然后再根据圆周定理求解即可;(2)利用三角形中位线的性质得出EO=AD,即可得出答案.【解答】解:(1)∵∠APD=∠C+∠CAB,∴∠C=65°﹣40°=25°,∴∠B=∠C=25°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴OE=AD,∴圆心O到BD的距离为3.【点评】此题主要考查了圆周角定理以及三角形中位线定理,根据已知得出EO=AD是解题关键.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?【分析】(1)销售量y件为200件加增加的件数(80﹣)×20;(2)利润w等于单件利润×销售量y件,即W=(﹣60)(﹣20+1800),整理即可;(3)先利用二次函数的性质得到w=﹣202+3000﹣108000的对称轴为=﹣=75,而76≤≤80,根据二次函数的性质得到当76≤≤80时,W随的增大而减小,把=76代入计算即可得到商场销售该品牌童装获得的最大利润.【解答】解:(1)根据题意得,y=200+(80﹣)×20=﹣20+1800,所以销售量y件与销售单价元之间的函数关系式为y=﹣20+1800(60≤≤80);(2)W=(﹣60)y=(﹣60)(﹣20+1800)=﹣202+3000﹣108000,所以销售该品牌童装获得的利润w元与销售单价元之间的函数关系式W=﹣202+3000﹣108000;(3)根据题意得76≤≤80,w=﹣202+3000﹣108000的对称轴为=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤≤80时,W随的增大而减小,∴=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【点评】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.【分析】(1)连接OD,由平行可得∠DAO=∠COB,∠ADO=∠DOC;再由OA=OD,可得出,∠DAO=∠ADO,则∠COB=∠COD,从而证出=;(2)由(1)得,△COD≌△COB,则∠CDO=∠B.又BC⊥AB,则∠CDO=∠B=90°,从而得出CD是⊙O的切线.【解答】证明:(1)连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠DOC,又∵OA=OD,∴∠DAO=∠ADO,∴∠COB=∠COD,∴=;(2)由(1)知∠DOE=∠BOE,在△COD和△COB中,CO=CO,∠DOC=∠BOC,OD=OB,∴△COD≌△COB,∴∠CDO=∠B.又∵BC⊥AB,∴∠CDO=∠B=90°,即OD⊥CD.即CD是⊙O的切线.【点评】本题考查了切线的判定和圆周角定理以及圆心角、弧、弦之间的关系,注:在同圆或等圆中,圆心角、圆周角、弧、弦中有一组量相等,其余各组量也相等.七.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有30种等可能的结果数,再找出小丽和小颖作为本班代表参赛的结果数,然后根据概率公式求解.【解答】解:(1)小明被选中的概率=;(2)画树状图为:共有30种等可能的结果数,其中小丽和小颖作为本班代表参赛的结果数为2,所以小丽和小颖作为本班代表参赛的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.八.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(+1)2+4与轴交于点A、B,与y轴交于点C.(1)写出抛物线顶点D的坐标(﹣1,4);(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥轴交线段AC于点F,求线段EF的最大值.【分析】(1)根据抛物线的顶点解析式y=﹣(+1)2+4,即可求出抛物线顶点D的坐标是(﹣1,4);(2)先根据抛物线的解析式y=﹣(+1)2+4,求出A、C两点的坐标,再利用待定系数法求出直线AC的解析式,根据关于y轴对称的点的坐标特征得出D1(1,4),然后代入直线AC的解析式即可判断点D1在直线AC上;(3)设点E(,﹣2﹣2+3),则F(,+3),求出EF=(﹣2﹣2+3)﹣(+3)=﹣2﹣3,利用配方法化成顶点式,根据二次函数的性质即可求出最大值.【解答】解:(1)∵y=﹣(+1)2+4,∴抛物线顶点D的坐标是(﹣1,4).故答案为(﹣1,4);(2)点D1在直线AC上,理由如下:∵抛物线y=﹣(+1)2+4与轴交于点A、B,与y轴交于点C,∴当y=0时,﹣(+1)2+4=0,解得=1或﹣3,A(﹣3,0),B(1,0),当=0时,y=﹣1+4=3,C(0,3).设直线AC的解析式为y=+b,由题意得,解得,∴直线AC的解析式为y=+3.∵点D1是点D关于y轴的对称点,D(﹣1,4).∴D1(1,4),∵=1时,y=1+3=4,∴点D1在直线AC上;(3)设点E(,﹣2﹣2+3),则F(,+3),∵EF=(﹣2﹣2+3)﹣(+3)=﹣2﹣3=﹣(+1.5)2+2.25,∴线段EF的最大值是2.25.【点评】本题是二次函数的综合题,其中涉及到二次函数的性质,利用待定系数法求直线的解析式,函数图象上点的坐标特征等知识,难度适中.。

相关文档
最新文档