15章 求矩阵特征值和特征向量
《线性代数》矩阵的特征值与特征向量
《线性代数》矩阵的特征值与特征向量矩阵的特征值与特征向量是线性代数中非常重要的概念。
在许多实际问题的分析和求解中,特征值和特征向量扮演着重要的角色。
本文将从定义、性质和应用三个方面来详细介绍矩阵的特征值与特征向量。
一、定义给定一个n阶方阵A,若存在非零向量x和标量λ,使得满足以下等式:Ax=λx则称λ为矩阵A的特征值,x为矩阵A对应于特征值λ的特征向量。
特征向量是描述线性变换的方向,在变换过程中保持方向不变,特征值是对应于特征向量的缩放因子。
二、性质1.特征值与特征向量的存在性和唯一性对于n阶方阵A,它一定存在n个特征值,但不一定有n个线性无关的特征向量。
每个特征值对应的特征向量也不一定唯一2.特征值的性质(1)特征值的和等于方阵的迹,即λ1 + λ2 + ... + λn =tr(A)。
(2)特征值的积等于方阵的行列式,即λ1 * λ2 * ... * λn = det(A)。
3.特征向量的性质(1)对于同一个特征值λ,存在无穷多个线性无关的特征向量。
(2)特征向量的线性组合仍然是一个特征向量。
三、应用矩阵的特征值与特征向量在多个学科和领域中都有广泛的应用。
1.物理学在量子力学中,特征值与特征向量的概念被用来描述量子态和量子测量。
2.工程学在结构力学中,特征值与特征向量可以用来分析弹性体的振动频率和振动模态。
3.数据分析特征值与特征向量可以用于主成分分析(PCA),以降低数据的维度并提取最重要的特征。
4.图像处理特征值与特征向量可以用于图像压缩和图像恢复等领域。
5.机器学习在机器学习算法中,特征值与特征向量可以用于降维、分类和聚类等任务。
总结:矩阵的特征值与特征向量是线性代数中的重要概念,具有很多实际应用。
通过特征值与特征向量,我们可以分析矩阵的性质、求解特征方程、降低数据维度等。
理解和掌握矩阵的特征值与特征向量对于深入理解线性代数以及在实际问题中的应用都具有重要意义。
矩阵特征值与特征向量计算
矩阵特征值与特征向量计算在数学中,矩阵是一种非常基础而且重要的概念,它可以被看做是一种线性变换的表示。
在矩阵中,特征值和特征向量是两个非常重要的概念,它们在运用矩阵进行计算、测量和定量分析时扮演着至关重要的角色。
一、矩阵特征值的计算方法特征值是一个矩阵的固有属性,它表示在进行线性变换时,各个方向上对应的比例因子,具有很重要的几何意义。
计算一个矩阵的特征值需要使用到线性代数的基础知识和运算。
对于一个n阶方阵A,如果存在一个非零向量x和一个标量λ,使得Ax=λx,则λ是矩阵A的一个特征值,而x是对应的特征向量。
在实际计算中,我们首先需要求解方程det(A-λI)=0,其中I是指n阶单位矩阵。
这个方程的解即为矩阵A的特征值,它们可以是实数或复数。
当然,在计算特征值时,使用一些优化的方法可以更快地得出结果,例如使用特征值分析法或雅可比方法。
二、矩阵特征向量的计算方法在获得了矩阵的特征值之后,我们可以通过简单的代数运算来计算它们对应的特征向量。
设λ为矩阵A的一个特征值,x为一个对应的特征向量,我们有以下等式:(A-λI)x=0这可以被看做是一个齐次线性方程组,将它转化成矩阵形式,我们得到以下方程:(A-λI)X=0其中X=[x1,x2,...,xn]为特征向量的矩阵形式。
对于特征向量矩阵X,我们需要求解出它的非零解。
这需要使用到线性代数的基本技巧,例如高斯消元法或LU分解等。
三、矩阵特征值和特征向量的应用矩阵特征值和特征向量的应用非常广泛,从计算机科学到物理学、化学、经济学、金融学等各个领域都有它们的应用。
以下是几个主要的应用领域:1. 机器学习和人工智能在机器学习和人工智能中,特征值和特征向量经常用于降维和数据分析。
通过分析一个数据矩阵的特征值和特征向量,我们可以找到它们对应的主要特征,从而对大型数据进行有效的分析和处理。
2. 物理学和化学在物理学和化学中,特征值和特征向量可以用于计算量子力学、分析分子结构、电子轨道等问题。
矩阵特征值与特征向量的计算方法
矩阵特征值与特征向量的计算方法矩阵是一个广泛应用于线性代数、微积分和物理学等领域的数学对象。
在许多问题中,矩阵和线性变换起着重要作用,并且特征值与特征向量是矩阵理论中的两个核心概念。
本文将介绍矩阵特征值与特征向量的定义、性质以及计算方法。
一、特征值与特征向量的定义给定一个n阶矩阵A,如果存在一个非零向量x,使得A与x的线性组合仍然是x的倍数,即有Ax = λx其中λ为常数,称λ为A的特征值,x为对应于λ的特征向量。
从几何意义上理解,特征向量是不被矩阵变换影响方向,只被影响长度的向量。
特征值则是描述了矩阵变换对于特定方向上的伸缩倍数。
二、特征值与特征向量的性质1. 特征向量构成的向量空间没有零向量。
证明:设x为A的特征向量,有Ax=λx,则A(cx) =cAx=cλx=λ(cx),即A的任意常数倍(cx)仍是x的倍数,因此cx也是A的特征向量。
特别地,对于λ≠0时,x/λ也是A的特征向量。
2. A的特征值的个数不超过n个。
证明:考虑特征值λ1, λ2,…,λt,对应于各自的特征向量x1,x2,…,xt。
利用向量线性无关性可得,至少存在一个向量y不属于x1,x2,…,xt的张成空间内,此时Ay不能被表示成λ1x1,λ2x2,…,λtxt的线性组合,因此Ay与y方向没有重合部分,由此可得λ1, λ2,…,λt最多就是n个。
3. 如果特征向量x1,x2,…,xt彼此不共线,则它们就可以作为Rn空间的一组基。
证明:设x1,x2,…,xt是不共线的特征向量,考虑它们张成的向量空间V,在此空间中,A的作用就是对向量做伸缩变换,且Λ(xj) = λj。
对于每个向量y ∈ V,y可以表示成如下形式:y = c1x1 + c2x2 + ··· + ctxt由于x1,x2,…,xt构成V的基,因此c1,c2,…,ct唯一确定了向量y。
因此,对于任意的向量y,可以得到:Ay = A(c1x1 + c2x2 + ··· + ctxt)= c1Ax1 + c2Ax2 + ··· + ctAxt= λ1c1x1 + λ2c2x2 + ··· + λtctxt由于{x1,x2,…,xt}是V的一组基,c1,c2,…,ct是唯一确定的,因此Ay也被唯一确定了。
矩阵特征值与特征向量的求法
矩阵特征值与特征向量的求法1. 什么是矩阵的特征值和特征向量?矩阵是线性代数中的一种重要概念,它由行和列组成的二维数组。
在矩阵运算中,特征值和特征向量是非常重要的概念。
特征值(eigenvalue)是一个标量,表示线性变换在某个方向上的缩放因子。
一个方针的特征值是该线性变换在该方向上对原始向量进行缩放或拉伸的倍数。
特征向量(eigenvector)是与特定特征值相关联的非零向量。
它表示在某个方向上进行线性变换后不改变其方向,只改变其长度。
2. 特征值与特征向量的定义设A为n阶矩阵,如果存在数λ和非零列向量x使得Ax = λx则称λ为矩阵A的一个特征值,称x为对应于λ的一个特征向量。
3. 求解矩阵的特征值和特征向量要求解矩阵A的特征值和对应的特征向量,可以通过以下步骤进行:步骤1:求解特征方程特征方程是一个关于λ的多项式方程,可以通过以下公式得到:det(A - λI) = 0其中,A为矩阵,λ为特征值,I为单位矩阵。
步骤2:解特征方程将特征方程化简后,可以得到一个关于λ的代数方程。
解这个方程即可得到矩阵A的特征值。
步骤3:求解特征向量对于每个特征值λ,将其带入原始的特征方程中,并解出对应的特征向量x。
求解过程可以使用高斯消元法或其他方法。
4. 示例假设有一个2x2的矩阵A:A = [[a, b], [c, d]]我们想要求解这个矩阵的特征值和对应的特征向量。
步骤1:求解特征方程根据步骤1,我们需要计算det(A - λI) = 0。
其中,A - λI = [[a-λ, b], [c, d-λ]]det(A - λI) = (a-λ)(d-λ) - bc = 0化简上述等式得到一个二次多项式关于λ:λ^2 - (a+d)λ + (ad-bc) = 0这就是特征方程。
步骤2:解特征方程通过求解特征方程,我们可以得到矩阵A的特征值。
步骤3:求解特征向量对于每个特征值λ,将其带入原始的特征方程中,并解出对应的特征向量x。
矩阵的特征值与特征向量的简易求法
矩阵的特征值与特征向量的简易求法特征值与特征向量对于矩阵的性质和变换有着重要的意义。
矩阵的特征值可以帮助我们判断矩阵的相似性、可逆性以及矩阵的对角化等;而特征向量可以帮助我们理解矩阵的线性变换、寻找矩阵的基矢量等。
求解矩阵的特征值与特征向量可以采用多种方法。
下面介绍两种常见的简易求法:特征多项式法和幂迭代法。
特征多项式法是求解矩阵特征值与特征向量的一种常见方法。
其步骤如下:步骤1:对于n阶方阵A,求解其特征多项式,即特征方程det(A-λI)=0。
其中,I为单位矩阵,λ为未知数。
步骤2:将特征多项式化简,得到一个关于λ的方程,如λ^n+c1λ^(n-1)+c2λ^(n-2)+...+cn=0。
步骤3:解这个n次方程,得到n个特征值λ1,λ2,...,λn。
步骤4:将每个特征值λi带入原方程(A-λI)X=0,求解对应的特征向量。
特征多项式法适用于任意阶数的方阵,但是对于高阶矩阵,其计算过程可能比较复杂,需要借助数值计算工具。
幂迭代法是一种迭代求解特征值与特征向量的方法,适用于对于方阵的特征值为实数且相近的情况。
其步骤如下:步骤1:选取一个初始向量X(0),通常是一个n维非零向量。
步骤2:迭代计算:X(k+1)=A*X(k),其中k为迭代次数,A为待求特征值与特征向量的方阵。
步骤3:计算迭代步骤2中得到的向量序列X(k)的模长,即,X(k)。
步骤4:判断,X(k)-X(k-1),是否满足预定的精度要求,如果满足,则作为矩阵A的近似特征向量;否则,返回步骤2继续进行迭代。
步骤5:将步骤4得到的近似特征向量作为初始向量继续迭代,直至满足精度要求。
幂迭代法的优点是求解简单、易于操作,但由于其迭代过程,只能得到一个特征值与特征向量的近似解,且只适用于特征值为实数的情况。
在实际应用中,根据具体问题的要求,可以选择适合的方法来求解矩阵的特征值与特征向量。
除了特征多项式法和幂迭代法,还有QR分解法、雅可比迭代法等其他方法。
矩阵特征值与特征向量的求法
矩阵特征值与特征向量的求法一、矩阵特征值与特征向量的定义矩阵特征值(eigenvalue)是指一个矩阵在某个非零向量上的线性变换结果等于该向量的常数倍,这个常数就是该矩阵的特征值。
而对应于每个特征值,都有一个非零向量与之对应,这个向量就是该矩阵的特征向量(eigenvector)。
二、求解矩阵特征值与特征向量的方法1. 特征多项式法通过求解矩阵A减去λI(其中λ为待求解的特征值,I为单位矩阵)的行列式det(A-λI)=0来求解其特征值。
然后将每个特征值代入到(A-λI)x=0中,即可求得对应的特征向量x。
2. 幂法幂法是一种迭代方法,通过不断地将A作用于一个初始向量x上,并将结果归一化,最终得到收敛到最大(或最小)特征值所对应的特征向量。
具体步骤如下:(1) 选取任意一个非零初始向量x;(2) 将Ax除以x中最大元素得到新的向量y=A*x/max(x);(3) 将y归一化得到新的向量x=y/||y||;(4) 重复步骤2-3,直到收敛。
3. QR分解法QR分解是将矩阵A分解为Q和R两个矩阵的乘积,其中Q是正交矩阵(即Q^T*Q=I),R是上三角矩阵。
通过不断地对A进行QR分解,并将得到的Q和R相乘,最终得到一个上三角矩阵T。
T的对角线元素就是A的特征值,而对应于每个特征值,都可以通过反推出来QR分解中的Q所对应的特征向量。
4. Jacobi方法Jacobi方法也是一种迭代方法,通过不断地施加相似变换将A转化为对角矩阵D。
具体步骤如下:(1) 选取任意一个非零初始矩阵B=A;(2) 找到B中绝对值最大的非对角元素b(i,j),记其位置为(i,j);(3) 构造Givens旋转矩阵G(i,j,k),使其作用于B上可以消去b(i,j),即B=G^T*B*G;(4) 重复步骤2-3,直到所有非对角元素均趋近于0。
三、总结以上介绍了求解矩阵特征值与特征向量的四种方法:特征多项式法、幂法、QR分解法和Jacobi方法。
矩阵特征值和特征向量的计算方法
例:设
4 1 A 1 0
1 1
文档仅供参考,如有不当之处,请联系改正。
D1:| z 4 | 1 孤立圆盘
0 1
D2:| z | 2 D3:| z 4 | 2
3 1 5
4 D diag(1,1,109)
A D1AD
D1:| z 4 | 1
D2:| z | 199 D3:| z 4 | 1.8
x0
(3)
n
min R(x) xR n
x0
8
文档仅供参考,如有不当之处,请联系改正。
幂法及反幂法 幂法 主特征值
A (aij ) Rnn,有一组完全旳特征向量组, Axi i xi (i 1,2,, n)
{ x1, x2 ,, xn}线性无关
| 1 || 2 | | n |
9
幂法旳其本思想
设A Rnn,则存在正交矩阵Q使
R11 QT AQ
R12 R1n
R22
R2
n
Rnn
其中对角块Rii (i 1,2,, m)为一阶或二阶方阵,
且每个一阶Rii 是A的实特征值,每个二阶对角
块的两个特征值是A的一对共轭复特征值。
6
文档仅供参考,如有不当之处,请联系改正。
Def
设A Rnn为对称矩阵,x 0,称 R(x) ( Ax, x) (x, x)
A1的特征值为
|
1
1
|
|
1
2
|
|
1
n
; |
对应的特征向量,x1
,
x2 ,,
xn,
对A1应用幂法即可!
23
文档仅供参考,如有不当之处,请联系改正。
反幂法旳迭代公式
矩阵特征值与特征向量
矩阵特征值与特征向量在线性代数中,矩阵的特征值和特征向量是非常重要的概念。
它们在很多数学和工程领域都有广泛的应用。
本文将详细介绍矩阵特征值和特征向量的定义、性质以及计算方法。
一、特征值与特征向量的定义1. 特征值:对于一个n阶方阵A,如果存在一个非零向量X使得AX=kX,其中k为一个常数,那么k就是矩阵A的特征值。
我们可以把这个等式改写为(A-kI)X=0,其中I是单位矩阵。
这样,求解特征值就等价于求解矩阵(A-kI)的零空间。
2. 特征向量:特征向量是与特征值相对应的非零向量。
对于一个特征值k,其对应的特征向量X满足AX=kX。
二、特征值与特征向量的性质1. 特征值与特征向量是成对出现的,一个特征值对应一个特征向量。
2. 特征值的个数等于矩阵A的阶数。
特征值可以是实数或复数。
3. 特征向量可以乘以一个非零常数得到一个新的特征向量。
4. 如果矩阵A是实对称矩阵,那么其特征值一定是实数。
如果矩阵A是正定或负定矩阵,那么其特征值一定大于0或小于0。
5. 特征向量相互之间线性无关。
三、特征值与特征向量的计算方法1. 求特征值:求解特征值的常用方法是求解矩阵A的特征多项式的根。
特征多项式的形式为|A-kI|=0,其中|A-kI|表示矩阵A-kI的行列式。
2. 求特征向量:已知特征值k后,将k代入(A-kI)X=0即可得到特征向量。
可以使用高斯-约当消元法或者迭代法来求解。
四、矩阵特征值与特征向量的应用1. 特征值与特征向量广泛应用于机器学习和数据分析领域。
在主成分分析(PCA)中,我们可以通过计算数据的协方差矩阵的特征向量来实现数据降维和特征提取。
2. 特征值与特征向量也在图像处理和信号处理中有许多应用。
例如,在图像压缩算法中,我们可以利用矩阵的特征值和特征向量来实现图像的降噪和压缩。
3. 特征值和特征向量还可以应用于动力系统的稳定性分析。
通过求解动力系统的雅可比矩阵的特征值,我们可以判断系统的稳定性和临界点的类型。
矩阵特征值计算矩阵的特征值和特征向量
矩阵特征值计算矩阵的特征值和特征向量矩阵是线性代数中的重要概念之一,它在众多学科领域中都有广泛的应用。
而矩阵的特征值和特征向量则是矩阵分析与应用中的核心内容之一。
本文将详细介绍矩阵特征值的计算方法,以及如何求解矩阵的特征向量。
1. 特征值和特征向量的定义首先,我们来了解一下什么是矩阵的特征值和特征向量。
给定一个n阶方阵A,如果存在一个数λ以及一个非零n维列向量X,使得满足下述条件:AX = λX那么,λ就是矩阵A的一个特征值,而X则是对应于特征值λ的特征向量。
特征值和特征向量的求解在很多应用中都具有重要的意义。
2. 特征值的计算方法接下来,我们介绍几种常见的特征值计算方法。
2.1 特征多项式法特征多项式法是求解特征值的一种常用方法。
它利用方阵A减去λ乘以单位矩阵I之后的行列式为零的性质,构造出特征多项式,并求解多项式的根即可得到特征值。
举个例子,对于二阶方阵A = [a, b; c, d],其特征多项式为:| A - λI | = | a-λ, b; c, d-λ | = (a-λ)(d-λ) - bc = 0解这个方程可以得到A的特征值。
2.2 幂迭代法幂迭代法也是一种常见的特征值计算方法。
它利用特征向量的性质,通过迭代计算来逼近矩阵的特征值。
其基本思想是,给定一个初始向量X0,不断迭代计算:Xk+1 = AXk然后对得到的向量序列进行归一化处理,直到收敛为止。
最后得到的向量X就是对应的特征向量,而特征值可以通过如下公式计算:λ = X^TAX / X^TX2.3 QR方法QR方法是一种数值稳定性较好的特征值计算方法。
它利用矩阵的QR分解的性质来逐步逼近矩阵的特征值。
首先,对矩阵A进行QR分解,得到一个正交矩阵Q和一个上三角矩阵R。
然后,将分解后的矩阵R与矩阵Q逆序相乘,得到一个新的矩阵A'。
重复进行QR分解和相乘的操作,直到收敛为止。
最后,得到的矩阵A'的对角线上的元素即为矩阵A的特征值。
矩阵的特征值和特征向量的计算
矩阵的特征值和特征向量的计算在线性代数中,矩阵的特征值和特征向量是一对重要的概念。
它们可以帮助我们了解矩阵的性质和特点,对于很多问题的求解具有重要的意义。
本文将详细介绍矩阵特征值和特征向量的计算方法。
一、特征值和特征向量的定义对于 n 阶方阵 A,如果存在非零向量 v 使得Av = λv,其中λ 是一个常数,则称λ 为矩阵 A 的特征值,v 称为对应于特征值λ 的特征向量。
特征值和特征向量的计算可以帮助我们理解矩阵的线性变换效果,以及在某些问题中起到重要的作用。
二、特征值和特征向量的计算方法要计算一个矩阵的特征值和特征向量,我们可以按照以下步骤进行:1. 首先,我们需要求解特征方程 det(A - λI) = 0,其中 A 是待求矩阵,λ 是一个待定常数,I 是单位矩阵。
这个方程是由特征向量的定义出发得到的。
2. 解特征方程可以得到一组特征值λ1, λ2, ... , λn。
这些特征值就是矩阵的特征值,它们可以是实数或复数。
3. 对于每一个特征值λi,我们需要求解方程组 (A - λiI)v = 0,其中 v 是待求特征向量。
这个方程组的解空间就是对应于特征值λi 的特征向量的集合。
4. 对于每一个特征值λi,我们需要求解出它对应的特征向量 vi。
特征向量的计算需要利用高斯消元法或其他适用的方法。
这样,我们就可以计算出矩阵的所有特征值和对应的特征向量。
三、特征值和特征向量的应用矩阵的特征值和特征向量在很多领域有着广泛的应用,以下是其中一些常见的应用:1. 特征值和特征向量可以帮助我们理解矩阵的性质。
例如,特征值的数量可以告诉我们矩阵的维度,而特征向量可以描述矩阵的线性变换效果。
2. 特征值和特征向量在图像处理和模式识别领域有着重要的应用。
通过矩阵的特征向量,我们可以提取图像的特征,进而进行分类和识别。
3. 特征值和特征向量在物理学中也有着广泛的应用。
它们可以用于描述量子力学中的粒子运动,电路中的振动模式等。
矩阵的特征值和特征向量的计算
矩阵的特征值和特征向量的计算矩阵的特征值和特征向量是线性代数中比较重要的概念。
在机器学习、信号处理、图像处理等领域都有着广泛的应用。
本文将会介绍矩阵的特征值和特征向量的概念、意义以及计算方法。
一、特征值和特征向量的定义对于一个n阶方阵A,如果存在一个n维向量v和一个常数λ,使得下面的等式成立:Av=λv那么称λ为矩阵A的特征值,v为矩阵A的特征向量。
特征向量是非零向量,因为如果v为0向量,等式就无法成立。
另外,特征向量不唯一,如果v是A的特征向量,k是任意一个非零常数,那么kv也是A的特征向量。
但特征值是唯一的。
二、特征值和特征向量的意义矩阵的特征值和特征向量有着重要的物理和数学含义。
对于一个矩阵A,它的特征向量v和特征值λ描述的是矩阵A对向量v的作用和量变化。
当一个向量v与矩阵A相乘时,向量v的方向可能会发生变化,而特征向量v就是那些方向不变的向量,仅仅发生了缩放,这个缩放的倍数就是特征值λ。
也就是说,特征向量v在被矩阵A作用后仍保持了原来的方向,并且只发生了缩放。
从物理角度理解,矩阵的特征值和特征向量可以描述线性系统的固有特性。
在某些情况下,如机械振动、电路等自然界现象中,系统本身就带有某种特有的振动频率或固有响应。
而这些系统在一些特殊的情况下可以通过线性代数描述,正是因为它们具有特征值和特征向量。
三、特征值和特征向量的计算矩阵的特征值和特征向量可以通过求解特征方程来计算。
特征方程的形式为det(A-λI)=0,其中det(A-λI)表示A-λI的行列式,I是单位矩阵。
求解特征方程可以得到矩阵A的n个特征值λ1,λ2,…,λn。
接下来,针对每个特征值λi,都可以通过求解线性方程组(A-λiI)v=0来得到一个特征向量vi。
需要注意的是,一个矩阵的特征值和特征向量并不一定都能够求出来,只有在某些情况下才可以求出。
例如,对于一个非方阵,就不存在特征值和特征向量。
另外,如果矩阵的特征值出现重复,那么对应于这些特征值的特征向量可能无法确定,可以使用广义特征向量来处理。
求矩阵的特征值和特征向量技巧
求矩阵的特征值和特征向量技巧求矩阵的特征值和特征向量是线性代数中的一个重要课题,它在许多科学和工程领域中都有广泛的应用。
特征值和特征向量可以帮助我们揭示矩阵的性质,解决许多实际问题。
在本文中,我们将一步一步了解如何计算矩阵的特征值和特征向量以及相关的技巧和应用。
什么是特征值和特征向量?在介绍如何计算特征值和特征向量之前,我们先来了解一下它们的定义。
给定一个n×n的方阵A,如果存在一个非零向量v,使得满足下面的等式: AV = λV其中,λ为常数,称为矩阵A的特征值,有时也用符号λ表示。
而V称为A 对应于特征值λ的特征向量。
特征值和特征向量反映了矩阵A在某个方向上的变换结果不变,即只会进行伸缩。
特征向量是伸缩方向,特征值是伸缩的比例。
计算特征值和特征向量的步骤下面我们将一步一步来计算矩阵的特征值和特征向量,具体步骤如下:Step 1: 计算特征值对于给定的矩阵A,我们首先需要求解它的特征值。
特征值是通过求解矩阵的特征值方程来获得的。
特征值方程可以表示为:det(A - λI) = 0其中,det表示矩阵的行列式,I为单位矩阵,λ为特征值。
根据上述方程,我们需要计算矩阵A减去λ乘以单位矩阵I的行列式,并使其等于0。
这将得到一个关于λ的多项式方程,解该方程即可得到矩阵A 的特征值。
Step 2: 计算特征向量在得到特征值λ后,我们需要计算对应于每个特征值的特征向量。
对于每个特征值λ,我们将其代入特征值方程,并求解该方程得到特征向量。
特征向量是通过将λ带入齐次线性方程组(A - λI)v = 0来获得的。
在这里,齐次线性方程组的解空间是一个向量空间,我们需要找到一个非零向量v,使得(A - λI)v = 0成立。
这样的向量v就是对应于特征值λ的特征向量。
特征向量的计算可以使用高斯消元法或矩阵求逆来完成。
我们需要求解一个线性方程组,将(A - λI)表示为增广矩阵形式并进行行变换,最终得到矩阵A对应于特征值λ的特征向量。
矩阵特征向量的详细求法
矩阵特征向量的详细求法矩阵特征向量是线性代数中的一个重要概念,它在许多数学和物理问题中都有广泛的应用。
矩阵特征向量的求法是线性代数中的一项基本技能,本文将详细介绍它的求法。
一、特征向量的定义对于一个n阶方阵A,如果存在一个n维非零向量x,使得Ax=kx,其中k为常数,则称x为矩阵A的一个特征向量,k为其相应的特征值。
特征向量的求法是线性代数中的重要课题,它在许多数学和物理问题中都有广泛的应用。
二、特征向量的求法为了求出矩阵A的特征向量和特征值,我们可以按照以下步骤进行:1. 求出矩阵A的特征多项式特征多项式是一个关于λ的多项式,它的次数等于矩阵A的阶数n。
特征多项式的表达式为:|A-λI|=0其中,I是n阶单位矩阵,λ是未知数。
这个方程的解就是矩阵A的特征值λ1,λ2,...,λn。
2. 求出矩阵A的特征向量对于每一个特征值λi,我们都需要求出它对应的特征向量xi。
特征向量的求法是将(A-λiI)x=0代入高斯消元法中求解,其中,I是n阶单位矩阵,0是n维零向量。
3. 验证特征向量求出特征向量后,我们需要验证它是否满足Ax=λx的条件。
如果验证通过,则说明它是矩阵A的一个特征向量,否则需要重新求解。
三、实例分析为了更好地理解特征向量的求法,我们来看一个实例。
假设有一个3阶矩阵A,其表达式为:A = | 1 2 3 || 4 5 6 || 7 8 9 |1. 求出A的特征多项式特征多项式的表达式为:|A-λI| = | 1-λ 2 3 || 4 5-λ 6 || 7 8 9-λ |= (1-λ)[(5-λ)(9-λ)-8×6] - 2[(4)(9-λ)-8×3] +3[(4)(8)-5×7]= λ^3 - 15λ^2 + 18λ2. 求出A的特征值将特征多项式化简,得到:λ(λ-3)(λ-12) = 0因此,A的特征值为λ1=0,λ2=3,λ3=12。
3. 求出A的特征向量对于λ1=0,我们需要求出它对应的特征向量。
矩阵特征值与特征向量的求解方法
矩阵特征值与特征向量的求解方法矩阵特征值与特征向量是线性代数中的重要概念,广泛应用于科学和工程领域。
特征值和特征向量可以帮助我们理解矩阵的性质和变换过程。
在本文中,我们将探讨矩阵特征值与特征向量的求解方法。
一、特征值与特征向量的定义在矩阵A的情况下,如果存在一个非零向量v,使得Av=λv,其中λ是一个标量,那么v称为A的特征向量,λ称为A的特征值。
特征向量表示了在矩阵变换下不变的方向,特征值则表示了特征向量的缩放比例。
二、特征值与特征向量的求解方法1. 特征值与特征向量的几何意义特征向量表示了线性变换下不变的方向,而特征值则表示了这个方向的缩放比例。
例如,对于一个二维平面上的矩阵A,如果存在一个特征向量v,使得Av=2v,那么这个特征向量表示了一个在线性变换下不变的方向,并且这个方向的缩放比例为2。
2. 特征值与特征向量的求解方法求解矩阵的特征值与特征向量有多种方法,其中最常用的方法是特征值分解和幂迭代法。
特征值分解是一种将矩阵分解为特征向量和特征值的形式的方法。
通过特征值分解,我们可以将一个矩阵表示为一个对角矩阵和一个特征向量矩阵的乘积。
特征值分解可以帮助我们简化矩阵的计算和分析。
幂迭代法是一种通过迭代矩阵的幂次来逼近特征值和特征向量的方法。
幂迭代法的基本思想是通过不断迭代矩阵的乘法,使得矩阵的幂次逼近于一个特定的特征向量。
通过幂迭代法,我们可以求解矩阵的特征值和特征向量的近似解。
除了特征值分解和幂迭代法之外,还有其他一些求解特征值和特征向量的方法,如QR分解法、雅可比迭代法等。
这些方法在不同的情况下具有不同的适用性和效率。
三、应用举例矩阵特征值与特征向量的求解方法在科学和工程领域有广泛的应用。
例如,在图像处理中,特征值与特征向量可以用来描述图像的纹理和形状信息。
在量子力学中,特征值与特征向量可以用来描述量子系统的能量和波函数。
在金融领域中,特征值与特征向量可以用来分析股票市场的波动和相关性。
求矩阵特征值的方法
求矩阵特征值的方法矩阵特征值是线性代数中一个重要的概念,它在许多实际问题中都有着重要的应用。
求解矩阵特征值的方法有多种,每种方法都有其适用的场景和特点。
在本文中,我们将介绍几种常见的求解矩阵特征值的方法,希望能够对读者有所帮助。
一、特征值与特征向量的定义。
在介绍求解矩阵特征值的方法之前,我们首先来回顾一下特征值与特征向量的定义。
对于一个n阶方阵A,如果存在一个数λ和一个非零向量v,使得Av=λv成立,则称λ为矩阵A的特征值,v为对应于特征值λ的特征向量。
二、特征值的求解方法。
1. 特征值的定义式。
特征值的定义式是最基本的求解特征值的方法,即通过求解方程|A-λI|=0来得到特征值λ。
其中,|A-λI|表示A-λI的行列式,I为单位矩阵。
这个方法的优点是简单直观,容易理解和应用,但对于高阶矩阵来说,计算起来可能比较繁琐。
2. 幂法。
幂法是一种迭代方法,用于求解矩阵的最大特征值和对应的特征向量。
该方法的思想是通过不断迭代矩阵A的幂次向量,最终收敛到矩阵A的最大特征值和对应的特征向量。
幂法的优点是只需要矩阵A的乘法运算,适用于大规模矩阵的特征值求解。
3. QR方法。
QR方法是一种迭代方法,用于求解矩阵的全部特征值。
该方法的思想是通过不断迭代矩阵A的相似变换,最终将矩阵A转化为上三角矩阵,从而得到矩阵A的全部特征值。
QR方法的优点是适用于求解任意矩阵的特征值,且收敛速度较快。
4. 特征值分解。
特征值分解是一种将矩阵分解为特征值和特征向量的方法,即A=QΛQ^-1,其中Λ为对角矩阵,对角线上的元素为矩阵A的特征值,Q为特征向量组成的矩阵。
特征值分解的优点是可以直接得到矩阵A的全部特征值和对应的特征向量,但对于非对称矩阵来说,计算过程可能比较复杂。
三、总结。
在本文中,我们介绍了几种常见的求解矩阵特征值的方法,包括特征值的定义式、幂法、QR方法和特征值分解。
每种方法都有其适用的场景和特点,读者可以根据具体的问题选择合适的方法来求解矩阵的特征值。
矩阵的特征值求解技巧
矩阵的特征值求解技巧矩阵的特征值和特征向量是线性代数中重要的概念,对于解决矩阵的性质和应用问题有着重要的作用。
特征值求解是矩阵特征值问题的核心内容,本文将介绍特征值求解的技巧和方法。
一、特征值和特征向量的定义首先,我们需要理解特征值和特征向量的概念。
给定一个n阶矩阵A,如果存在数λ和非零向量X使得AX=λX,则称λ为矩阵A的一个特征值,X称为对应于特征值λ的特征向量。
二、特征值的求解1. 利用特征多项式对于n阶矩阵A,我们可以定义其特征多项式p(λ)=|A-λI|,其中I是n阶单位矩阵。
求解特征多项式的根即为矩阵的特征值。
2. 利用特征值的性质特征值的性质有助于我们求解特征值。
下面列举一些常见的性质:- 特征值与矩阵的行列式相等。
即det(A-λI)=0。
- 矩阵的特征值个数等于其矩阵的阶数。
- 如果矩阵A是n阶矩阵,那么矩阵A的特征值之和等于A的主对角线元素之和。
- 特征值互不相等,特征向量也互不相等。
即不同特征值对应的特征向量是线性无关的。
3. 利用特殊矩阵的性质对于特殊的矩阵,我们可以利用其性质来求解特征值。
例如,对于对称矩阵,其特征值一定是实数;对于三角矩阵,其特征值等于主对角线元素。
三、特征向量的求解特征向量的求解是在已知特征值的情况下进行的。
对于给定的特征值λ,我们可以利用矩阵特征方程(A-λI)X=0,利用高斯消元法或其他行列运算方法求解出特征向量。
四、实际问题中的应用特征值和特征向量在实际问题中有着广泛的应用,如:- 在物理学中,特征值和特征向量可以用来描述量子力学中的量子态和量子力学运算符的本征态和本征值。
- 在工程中,特征值和特征向量可以用来描述系统的振动模态和固有频率。
- 在数据分析中,特征值和特征向量可以用来进行降维处理和特征选取。
总结:特征值和特征向量是矩阵的重要性质,通过求解特征值和特征向量,我们可以了解矩阵的本质、性质和应用。
特征值的求解可以利用特征多项式、特征值的性质和特殊矩阵的性质等方法,特征向量的求解可以通过矩阵特征方程进行求解。
矩阵特征值与特征向量的求解
矩阵特征值与特征向量的求解矩阵是线性代数中最为基础的概念之一,而矩阵的特征值与特征向量则是矩阵在理论和实际应用中的非常重要的概念。
在本文中,将着重介绍矩阵特征值与特征向量的求解方法,以及在实际问题中的应用。
一、矩阵特征值与特征向量的定义矩阵的特征值与特征向量是矩阵代数理论中的重要概念,它们的定义如下:定义1:对于一个n阶方阵A,如果存在一个数λ,和一个n维非零向量p,使得下面的等式成立:Ap=λp其中,λ称为A的特征值,p称为A的特征向量。
定义2:矩阵的特征向量可以是实数向量,也可以是复数向量,而特征值则只能是实数或复数。
定义3:矩阵的特征值λ满足方程式|A-λI|=0,其中I是n阶单位矩阵。
二、求解矩阵特征值与特征向量的方法1、特征值的求解特征值的求解是通过求解|A-λI|=0来完成的。
由于矩阵的行列式是一个多项式函数,所以可以将其转化为特征多项式,例如对于一个3阶方阵,其特征多项式为:f(λ)=|A-λI|=λ³+a₂λ²+a₁λ+a₀然后,将f(λ)的系数带入求解f(λ)=0的公式中即可求出所有的特征值λ。
其中,特征值λ的个数与A的阶数n相同。
2、特征向量的求解特征向量的求解可以通过将特征值带入到( A-λI ) p=0中得到,其中p是特征向量。
进一步地,可以将该方程转换为线性方程组Ax=0的形式,即:(A-λI)p=0假设矩阵A有k个不同的特征值λ₁,λ₂,...,λ_k,则对于每个特征值λ_i,可以得到对应的特征向量p_i,其个数与该特征值的重数r_i有关。
对于一个n阶矩阵,其总共的特征向量数为n。
三、矩阵特征值与特征向量的应用矩阵的特征值与特征向量在科学技术和工程技术中应用广泛,下面列举几个例子:1、在线性代数中,特征值与特征向量可以用于判断矩阵的相似性,同时也可以用于计算矩阵的行列式、逆矩阵、转置矩阵等。
2、在物理学中,矩阵的特征值可以用来描述量子力学的波函数,特征向量则可以用来描述波函数的各项系数。
矩阵特征与特征向量的计算
矩阵特征与特征向量的计算首先,我们来定义矩阵的特征值和特征向量。
设A是一个n阶方阵,如果存在一个数λ和一个n维非零向量v,使得Av=λv,那么称λ是矩阵A的一个特征值,v称为对应于特征值λ的特征向量。
接下来我们来看矩阵特征值的计算。
设A是一个n阶方阵,特征多项式定义为f(λ)=,A-λE,其中E是n阶单位矩阵。
特征多项式f(λ)是一个以λ为变量的n阶多项式。
那么矩阵A的特征值就是使得特征多项式f(λ)为0的λ的解。
特征多项式的根可以通过解方程f(λ)=0得到,但通常这样的计算是非常繁琐的,特别是对于高阶矩阵。
所以我们通常使用特征值的性质和计算方法来简化计算。
首先,特征值有一个非常重要的性质:特征值是与A的行列式相等的。
即特征值的和等于矩阵A的迹(即主对角线上元素的和),特征值的乘积等于矩阵A的行列式。
这个性质可以方便地用于计算特征值的近似值。
其次,特征值还有一个重要的性质:特征值与矩阵A的转置矩阵和逆矩阵相等。
即如果λ是矩阵A的特征值,那么对应的特征向量也是矩阵A的转置矩阵和逆矩阵的特征向量。
这个性质可以方便地用于计算特征向量。
接下来我们来看特征向量的计算。
对于给定的特征值λ,我们要找到对应的特征向量v。
我们可以将特征向量问题转化为求解线性方程组的问题,即求解(A-λE)v=0。
这个线性方程组称为齐次线性方程组,他的解空间就是特征值λ的特征向量的集合。
我们可以使用高斯消元法、矩阵的行列式等方法来求解这个线性方程组。
最后,我们来总结一下计算矩阵特征和特征向量的步骤:1.计算特征多项式f(λ)=,A-λE,展开并化简得到f(λ)=a_nλ^n+a_(n-1)λ^(n-1)+...+a_1λ+a_0。
2.解方程f(λ)=0,得到特征值λ1,λ2,...,λn。
3.对于每个特征值λ_i,求解线性方程组(A-λ_iE)v_i=0,得到对应的特征向量v_i。
4.对特征向量进行归一化处理,使其模长为1实际应用中,矩阵特征和特征向量的计算通常使用计算机进行,可以使用数值方法如幂法、反幂法、QR分解等来近似计算特征值和特征向量。
15方阵的特征值和特征向量
15方阵的特征值和特征向量特征值和特征向量在线性代数中起着非常重要的作用,特别是在矩阵分析和解决线性方程组中。
在这篇文章中,我们将探讨一个15阶方阵的特征值和特征向量。
一个n阶方阵A的特征值是一个标量λ,使得存在一个非零向量v,使得Av=λv。
这样的向量v称为A的特征向量。
特征值和特征向量在矩阵代数和运算中具有非常重要的作用,可以用来解决许多线性方程组和矩阵方程的问题。
首先,我们要找到这个15阶方阵的特征值。
设这个15阶方阵为A,我们可以通过解方程det(A-λI)=0来求出A的特征值,其中I是15阶单位矩阵。
这里我们不妨假设这个方阵A是一个随机生成的方阵,我们可以利用计算机软件来求解特征值。
求解特征值的结果可能是一个复数或者实数。
找到特征值之后,我们还需要找到对应的特征向量。
特征向量可以通过解方程组(A-λI)v=0来找到,其中v是特征向量。
一般来说,我们会将这个方程组转化成矩阵形式,然后采用消元法或者其他方法来求解。
综上所述,我们可以得到这个15阶方阵的特征值和特征向量。
这些特征值和特征向量可以帮助我们更好地理解这个方阵的性质和结构,从而为我们解决相关的线性方程组和矩阵问题提供帮助。
特征值和特征向量在数学和工程领域有着广泛的应用。
在工程领域,特征值和特征向量可以用来分析和求解系统的振动模态、结构的稳定性等问题。
在机器学习和数据分析领域,特征值和特征向量可以用来降维、特征选取等问题。
总之,特征值和特征向量在数学中扮演着非常重要的角色,它们可以帮助我们更好地理解矩阵的结构和性质,从而为我们解决相关问题提供帮助。
通过求解15阶方阵的特征值和特征向量,我们可以更深入地理解这个方阵的结构和特点,以及它在实际问题中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15章求矩阵特征值和特征向量幂法幂法规范化算法1. 输入矩阵A、初始向量u(0),误差eps2. k⇐13. 计算V(k)⇐Au(k-1)4. m k⇐max(V(k)), m k-1⇐max(V(k-1))5. u k⇐ V(k)/m k6. 如果| m k - m k-1|<eps,则显示特征值λ1⇐和对应的特征向量x(1),终止7.k⇐k+1,转3注:如上算法中的符号max(V)表示取向量V中绝对值最大的分量。
本算法使用了数据规范化处理技术以防止计算过程中出现益出错误。
规范化幂法程序Clear[a,u,x];a=Input["系数矩阵A="];u=Input["初始迭代向量u(0)="];n= Length[u];eps= Input["误差精度eps ="];nmax=Input[“迭代允许最大次数nmax=”];fmax[x_]:=Module[{m=0,m1,m2},Do[m1=Abs[x[[k]]];If[m1>m,m2=x[[k]];m=m1],{k,1,Length[x]}];m2]v=a.u;m0=fmax[u];m1=fmax[v];t=Abs[m1-m0]//N;k=0;While[t>eps&&k<nmax,u=v/m1;v=a.u;k=k+1;m0=m1;m1=fmax[v];t=Abs[m1-m0]//N;Print["k=",k," 特征值=",N[m1,10]," 误差=",N[t,10]];Print[" 特征向量=",N[u,10]]];If[k>=nmax,Print["迭代超限"]]说明:本程序用于求矩阵A 按模最大的特征值及其相应特征向量。
程序执行后,先通过键盘输入矩阵A 、迭代初值向量u (0)、精度控制eps 和迭代允许最大次数nmax ,程序即可给出每次迭代的次数和对应的迭代特征值、特征向量及误差序列,它们都按10位有效数输出。
其中最后输出的结果即为所求的特征值和特征向量序。
如果迭代超出nmax 次还没有求出满足精度的根则输出迭代超限提示,此时可以根据输出序列判别收敛情况。
程序中变量说明a :存放矩阵Au :初始向量u (0)和迭代过程中的向量u(k )及所求特征向量 v: 存放迭代过程中的向量V (k )m1: 存放所求特征值和迭代过程中的近似特征值nmax:存放迭代允许的最大次数eps:存放误差精度fmax[x]: 给出向量x 中绝对值最大的分量k:记录迭代次数t1:临时变量注:迭代最大次数可以修改为其他数字。
例题与实验例1. 用幂法求矩阵的按模最大的特征值及其相应特征向量,要求误差<10-4。
解:执行幂法程序后在输入的4个窗口中按提示分别输入{{133,6,135},{44,5,46},{-88,-6,-90}},{1,1,1},0.0001,20每次输入后用鼠标点击窗口的“OK ”按扭,得如下输出结果。
k=1 特征值=44.42335766 误差=229.5766423特征向量={1., 0.3467153285, -0.6715328467}k=2 特征值=44.92343082 误差=0.5000731606特征向量={1., 0.3341275058, -0.6672691423}k=3 特征值=44.99546459 误差=0.07203376236特征向量={1., 0.3333729572, -0.6667020234}k=4 特征值=44.99977337 误差=0.004308781874特征向量={1., 0.3333351894, -0.6666684279}k=5 特征值=44.99998937 误差=0.0002160020115特征向量={1., 0.3333334179, -0.6666667492}k=6 特征值=44.99999952 误差=0.0000101441501⎪⎪⎪⎭⎫ ⎝⎛---=90688465441356133A特征向量={1., 0.3333333371, -0.6666666704}此结果说明迭代6次,求得误差为err=0.0000101441501的按模最大的特征值=44.99999952 及其对应的一个特征向量={1., 0.3333333371, -0.6666666704}。
本题矩阵A 的3个特征值为{45., 2., 1.},可见所求结果很好。
但如果执行幂法程序后在输入的4个窗口中按提示分别输入{{133,6,135},{44,5,46},{-88,-6,-90}},{1,1,-1},0.0001,20每次输入后用鼠标点击窗口的“OK ”按扭,得如下输出结果。
k=1 特征值=2.5 误差=1.5特征向量={1., 0.75, -1.}k=2 特征值=2.2 误差=0.3特征向量={1., 0.7, -1.}k=3 特征值=2.090909091 误差=0.1090909091特征向量={1., 0.6818181818, -1.}k=4 特征值=2.043478261 误差=0.0474*******特征向量={1., 0.6739130435, -1.}k=5 特征值=2.021276596 误差=0.022********特征向量={1., 0.670212766, -1.}k=6 特征值=2.010526316 误差=0.010********特征向量={1., 0.6684210526, -1.}k=7 特征值=2.005235602 误差=0.005290713695特征向量={1., 0.667539267, -1.}k=8 特征值=2.002610966 误差=0.002624636037特征向量={1., 0.6671018277, -1.}k=9 特征值=2.001303781 误差=0.001307185093特征向量={1., 0.6668839635, -1.}k=10 特征值=2.000651466 误差=0.0006523151668特征向量={1., 0.6667752443, -1.}k=11 特征值=2.000325627 误差=0.0003258389664特征向量={1., 0.6667209378, -1.}k=12 特征值=2.000162787 误差=0.0001628399197特征向量={1., 0.6666937978, -1.}k=13 特征值=2.000081387 误差=0.00008140008032特征向量={1., 0.6666802311, -1.}此结果说明迭代13次,求得误差为err=0.00008140008032的按模最大的特征值=2.000081387及其对应的一个特征向量={1., 0.6666802311, -1.}。
选用不同的迭代初值获得两个不同结果,显然第二个特征值=2.000081387不是模最大的特征值。
上面实验说明使用幂法依赖于迭代初值的选取且有时得到的结果不是模最大的特征值(知道是什么原因吗?)。
不过一般情况下,幂法是可以求出按模最大的特征值的。
如果不放心,可以选用两个不同的初值迭代计算,通过计算结果可以马上确定按模最大的特征值。
例2. 用幂法求矩阵 ⎪⎪⎪⎭⎫ ⎝⎛--=131111322A的按模最大的特征值及其相应特征向量,要求误差< 10-5。
解:执行幂法程序后在输入的4个窗口中按提示分别输入{{2.,-2.,3.}, {1,1.,1}, {1.,3,-1}},{1,0,1},0.00001,20每次输入后用鼠标点击窗口的“OK”按扭,得如下输出结果。
…………………………………………………….k=9 特征值=2.990381958 误差=0.0454*******特征向量={1., 0.9810402963, 0.952738931}k=10 特征值=2.974823934 误差=0.01555802398特征向量={0.9684837058, 0.9810717388, 1.}k=11 特征值=2.99573741 误差=0.020********特征向量={1., 0.9915058875, 0.9787802529}k=12 特征值=2.988679144 误差=0.007058265982特征向量={0.985843744, 0.9915041722, 1.}k=13 特征值=2.998102573 误差=0.009423429932特征向量={1., 0.996208617, 0.9905232775}k=14 特征值=2.994943938 误差=0.003158635286特征向量={0.993679344, 0.9962073749, 1.}k=15 特征值=2.999155514 误差=0.004211575789特征向量={1., 0.9983114144, 0.9957787292}k=16 特征值=2.997748176 误差=0.001407337687特征向量={0.9971851559, 0.9983110678, 1.}k=17 特征值=2.999624371 误差=0.001876194866特征向量={1., 0.9992487853, 0.9981219847}k=18 特征值=2.998998284 误差=0.0006260875486特征向量={0.9987478473, 0.9992487055, 1.}k=19 特征值=2.999832987 误差=0.0008347031267特征向量={1., 0.9996659782, 0.9991649479}k=20 特征值=2.999554616 误差=0.0002783707007特征向量={0.9994432692, 0.9996659612, 1.}迭代超限此结果说明迭代20次后还没有得到满足要求的解,但观察特征值序列发现其是收敛的,因此可以增大迭代次数以求得满足要求的解。
本题将最大迭代次数设定为100后得出在迭代第30次时的满足要求的解为k=30 特征值=2.999992274 误差=4.828768325 10-6特征向量={0.9999903425, 0.9999942055, 1.}注意到本题按模最大的特征值为3,因此求解效果较满意。
反幂法反幂法规范化算法1. 输入矩阵A、初始向量u(0),误差eps2. k⇐13. 解方程AV(k) =u(k-1)求出解V(k)4. m k⇐max(V(k)), m k-1⇐max(V(k-1))5. u k⇐ V(k)/m k6. 如果| m k - m k-1|<eps,则显示特征值λ1⇐和对应的特征向量x(1),终止7.k⇐k+1,转3注:如上算法中解方程AV(k)=u(k-1)可以使用Dololittle分解法。