第52届国际数学奥林匹克试题解答(2)

合集下载

2018年度国外数学竞赛试题翻译汇编

2018年度国外数学竞赛试题翻译汇编
2018 年度国外数学 竞赛试题翻译汇编
(升级版)
赵力 2019 - 06 - 19
时间,就像高铁,一眨眼,就过站了……
人生很简单 总有一些风景,注定要错过 与其执着,不如随缘 只要懂得“珍惜、知足、感恩”就可以了!
笑看世事繁华,淡定人生心态 不索不可取,不求不可得 学会感恩,做人做事,无憾我心 不再奢望浮华之梦,不再……
v
纯属公益, 免费使用分享, 只送不卖
2018 年亚太地区数学奥林匹克试题
时间,一点不像高铁,过了站,居然买不到回来的车票!
生命,不就如一场雨吗 你曾无知地在其间雀跃,曾痴迷地在其间沉吟 但更多时候 你得忍受那些寒冷与潮湿,那些无奈与寂寞 并且以晴日的幻想来度日
当你握紧双手,里面什么也没有 当你打开双手,世界就在你手中
纯属公益, 免费使用分享, 只送不卖
目录
2018 年亚太地区数学奥林匹克 ……………………………………… 1 2018 年波罗的海地区数学奥林匹克 ………………………………… 2 2018 年第 10 届 Benelux 数学奥林匹克 ……………………………… 5 2018 年巴尔干地区数学奥林匹克 …………………………………… 6 2018 年巴尔干地区数学奥林匹克预选题…………………………… 7 2018 年巴尔干地区初中数学奥林匹克 ……………………………… 10 2018 年高加索地区数学奥林匹克 …………………………………… 11 2018 年中美洲及加勒比地区数学奥林匹克 ………………………… 13 2018 年 Cono Sur 数学奥林匹克 ……………………………………… 14 2018 年捷克-波兰-斯洛伐克联合数学竞赛 ………………………… 15 2018 年捷克和斯洛伐克数学奥林匹克 ……………………………… 16 2018 年多瑙河地区数学奥林匹克 …………………………………… 17 2018 年欧洲女子数学奥林匹克 ……………………………………… 19 2018 年欧洲数学杯奥林匹克 ………………………………………… 21 2018 年拉丁美洲数学奥林匹克 ……………………………………… 23 2018 年国际大都市数学竞赛(IOM) ………………………………… 24 2018 年第 2 届 IMO 复仇赛 …………………………………………… 25 2018 年第 5 届伊朗几何奥林匹克 …………………………………… 26 2018 年第 17 届基辅数学节竞赛 …………………………………… 30 2018 年地中海地区数学竞赛 ………………………………………… 32 2018 年中欧数学奥林匹克 …………………………………………… 33 2018 年北欧数学奥林匹克 …………………………………………… 35 2018 年泛非数学奥林匹克 …………………………………………… 36 2018 年泛非数学奥林匹克预选题 …………………………………… 38 2018 年罗马尼亚大师杯数学奥林匹克 ……………………………… 42

2020年国际数学奥林匹克(IMO)全部试题解答

2020年国际数学奥林匹克(IMO)全部试题解答

2020年第61届国际数学奥林匹克(IMO)全部试题解答海亮高级中学高三康榕博高二陈昶旭第一天第1题. 考虑凸四边形ABCD. 设P 是ABCD 内部一点. 且以下比例等式成立:∠PAD:∠PBA:∠DPA=1: 2 :3=∠CBP:∠BAP:∠BPC.证明: ∠ADP 的内角平分线、∠PCB 的内角平分线和线段AB 的垂直平分线三线共点.证明:如图,设∠PAD=α,∠PBC=β,则∠ABP=2α,∠BAP=2β, ∠APD=3α,∠BPC=3β,取△ABP外心O, 则∠AOP=4α=π-∠ADP∴A, O, P, D共圆.∴∠ADO=∠APO=∠PAO=∠PDO∴OD平分∠PDA.同理, OC平分∠PCB.而O为△ABP外心, 显然在AB中垂线上.故∠PDA平分线, ∠PCB平分线, AB中垂线均过点O.证毕.第2题. 设实数a, b, c, d 满足a ≥b ≥c ≥d > 0, 且 a + b + c + d = 1. 证明:(234)1a b c d a b c d a b c d +++<. 证明: 由加权AM -GM 不等式, 我们有2222a b c d a b c d a a b b c c d d a b c d <⋅+⋅+⋅+⋅=+++ 故只需证明22223(234)()()cyca b c d a b c d a ++++++<∑ (*)注意到332()36cyc cyc sym cyca a ab abc =++∑∑∑∑, 及32222cyca ab ad a a ++≥∑2232222222cyca b ab b bc bd b a ++++≥∑2222233333cyca cbc ac cd c a +++≥∑22234444cyc a d a b abd acd bcd d a ++++≥∑∴ (*)成立. 故原不等式成立.第3题. 有4n 枚小石子, 重量分别为1, 2, 3, . . . , 4n. 每一枚小石子都染了n 种颜色之一, 使得每种颜色的小石子恰有四枚. 证明: 我们可以把这些小石子分成两堆, 同时满足以下两个条件:• 两堆小石子有相同的总重量;• 每一堆恰有每种颜色的小石子各两枚.证明: 引理:将n 种颜色的点个4个两两分组, 则可取n 组使得每种颜色的点各2个.即证: n 阶4-正则图G(不一定简单)必有2-正则生成子图. n =1, G 为v 的2个自环, 成立.设0n n ≤成立, 则01n n =+时:若G 有点含两自环或有两点含4重边, 对其余部分用归纳假设,该部分取1自环或2重边即可.下设无这样的结构.若G 含三重边,设x,y 间有三条边, 且,(,)xu yv G u y v x ∈≠≠. 考虑将x,y 去掉, 并添入边uv 得到图G ’. 由归纳假设, 图G ’有2-正则生成子图, 若该图含添入的边 uv, 删去该边并加入ux, xy, yv 即可. 若不含, 加入xy, xy 即可.下设无三重边.显然G 有圈. 设最小圈为121,,...,t x x x x . 由G 无2自环,3重边知01t n <+, i x 有两边不指向12,,...t x x x . 设这两边指向,i i u v ,以下下标模t.在G 中删去点12,,...t x x x 并加入边1(1)i i i e u v i t +=≤≤得到G’. 由归纳假设, G ’有2-正则子图G 1.对1≤i ≤t, 若1i e G ∈, 则选择G 中的边11,i i i i x u x v ++, 若1i e G ∉, 则选自1i i x x +, 其余边按G 1中边选择, 则选出的边即为G 的2-正则生成子图的边集.结论成立.回到原题. 将重量为{,41}k n k +-的小石子分为一组.(12)k n ≤≤, 由引理可取n 组使每种颜色的小石子恰2个. 这2n 个分为一组, 其余分为一组, 此即满足条件的分法, 命题成立.第二天第4题. 给定整数n > 1. 在一座山上有n2个高度互不相同的缆车车站. 有两家缆车公司A和B, 各运营k辆缆车; 每辆从一个车站运行到某个更高的车站(中间不停留其他车站). A 公司的k辆缆车的k个起点互不相同,k个终点也互不相同, 并且起点较高的缆车,它的终点也较高. B公司的缆车也满足相同的条件. 我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数k, 使得一定有两个车站被两个公司同时连接.解: 由题意得, 每个缆车与1或2个缆车相连. (否则有两辆缆车起点不同, 终点相同)∴A, B各自的缆车线路图可划分为若干个链.注意到每条链长度大于等于2, 且首尾两点不能作为终点和起点, 故恰有2n k-条链.若21k n n≥-+, 则A最多由n-1条链.由抽屉原理, 其中至少有一条链上有221nnn⎡⎤=+⎢⎥-⎢⎥个点, 设为P. 而B仅有n-1条链, 故P上一定有两个点同时在B 的一条链上, 则这两点可被两个公司同时连接.另一方面, 2k n n=-时, 记2n个车站高度排序为21,2,...n (从低到高)令A的2n n-辆缆车为2(1)i n i i n n→+≤≤-令B的2n n-辆缆车为21(11,|)i i i n n i→+≤≤-/易见此时任两个车站不能被两个公司同时相连.2 min 1k n n∴=-+.第5题. 有一叠n > 1张卡片. 在每张卡片上写有一个正整数. 这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n, 使得可以推出这叠卡片上的数均相等? 解: 设这n 张卡片上的数为1212,,....(...)n n x x x x x x ≤≤. 若12gcd(,,...)1n x x x d =>, 用i x d 代替i x , 不影响结果. 故不妨设12gcd(,,...)1n x x x =.由题意得, 1,2i jx x i j n +∀≤≤≤为代数整数.则2|i j i x x x +⇒模2同余. 又12gcd(,,...)1n x x x =, 故i x 全为奇数.任取一个素数p, p ≥3.记{|1,|},{|1,|}i i i i A x i n p x B x i n p x =≤≤=≤≤/ 则对,,2x y x A y B +∀∈∈不为p 的倍数. 设121(...)2k k i i i x y x x x +=, 则121|(...)2k k i i i x y p x x x +=/ ∴对1,j i j k x B ∀≤≤∈.max 2i i x B x y x ∈+∴≤. 取max ,max i i i i x A x B x x y x ∈∈==, 则max max i i i i x A x B x x ∈∈≤若1n x ≠, 取n x 的奇素因子p, 由12gcd(,,...)1n x x x =知, i ∃, 使|i p x /.取0max{|1,|}i i i i n p x =≤≤/, 由上述结论知0n i x x ≤, 则o n i x x =. 又0|,|i n p x p x /, 矛盾!1n x ∴=. 则1,1i i n x ∀≤≤=.∴对任意n ≥2, 卡片上的所有数均相等.第6题. 证明: 存在正常数c 具有如下性质:对任意整数n > 1, 以及平面上n 个点的集合S, 若S 中任意两点之间的距离不小于1,则存在一条分离S 的直线ℓ, 使得S 中的每个点到直线ℓ 的距离不小于13cn -.(我们称直线ℓ分离点集S, 如果某条以S 中两点为端点的线段与ℓ 相交.)证明: 以每个点为圆心,12为半径作圆, 则这些圆两两公共部分面积为0.引理1: 对凸多边形P, 其内部最多由421s l π++个点在S 中,其中s,l 代表P 的面积和周长. 证明: 如图, 将P 的每条边往外侧平移12, 并以P 上每个点为圆心, 12为半径作圆, 拓展区域面积为124l π+. ∴P 内部最多1422414S l s l πππ+++=+个点. 现在对于一条直线l, 作S 中每个点在l 上的投影. 任取相邻两个投影点, 则这两点连线的中垂线分离点集S, 且所有的到该直线的距离≥12投影点距离.设S 的直径为D, 则可作一个以D 为边长的正方形覆盖S. 由引理1, 122481()D Dn D n π++≥⇒=Ω 设P,Q ∈S, PQ =D. 将PQ 作为上述l, 记我们所能做到的使每个点到一条直线的距离均不小于该数的最大值为d.由于仅与夹角有关, 故d 存在.而l 上除P,Q 外有n -2个投影点.2(1)2D D d n n∴≥>-. 又12()D n =Ω, 故12()d n -=Ω. 需证明13()d n -=Ω .取点集S 的凸包P. 若一直线过P 上一点且使得S 中所有点都在该线一侧, 我们认为其亦分离S. 称其为支撑边. 对于任一常数C, 作两条平行的距离为C 的直线, 满足这两条直线分离S. 作他们的垂线l, 设这个带状区域内有m 个S 中的点, 则11c c d m m d≥⇒≥-+. 不妨设(1)d o =, 则可以认为m 远远大于1. 为使m 尽量小, 应取两直线其中之一为支撑边.∴现在对于一条分离S 的直线l, 设l 与P 围成的区域内部有B 个点. P 中与l 距离最近的点到l 距离为0s , 则01s d B ≥+ (以下用≥代表数量级估计) 我们证明d≥从而311D d n D n ≥⋅= 则13()d n -=Ω. 如图, P 夹在这样一个区域里, 取XY 上一点Z, 使得0YZ s =. 过Z 作MN ⊥XY , 点M,N 在以X 为圆心, D 为半径的圆上. 则B ≤YMN 内S 中点的个数.不妨设XY 为x 轴, 对YMN 内任意两点1122(,),(,)x y x y , 221201212||,()()1x x s x x y y -≤-+-≥, 则12||1y y B -≥⇒≤+.而MN =02s d MN∴≥=+由于0(1)s =Θd ∴≥, 则13d n -≥, 即13()d n -=Ω证毕.。

数学奥林匹克竞赛训练题:代数部分(1)集合、数与式

数学奥林匹克竞赛训练题:代数部分(1)集合、数与式

数学奥林匹克竞赛训练题:代数部分(1)集合、数与式B1-001把含有12个元素的集分成6个子集,每个子集都含有2个元素,有多少种分法?【题说】1969年~1970年波兰数学奥林匹克三试题5.【解】将12个元素排成一列有12!种方法.排定后,从左到右每2个一组就得到6个2元子集.同一组中2个元素顺序交换得到的是同一子集.6个子集顺序交换得到的是同样的分法,因此共有种不同的分法.[别解]设a1是集中的一个元素,将a1与其余11个元素中的任一个结合,就得到含a1的2元子集,这种2元子集共有11种.确定含a1的子集后,设a2是剩下的一个元素,将a2与其余9个元素中的任一个结合,就得到含a2的2元子集,这种子集共有9种.如此继续下去,得到6个2元子集.共有11³9³7³5³3=10395种分法.B1-002证明:任一个有限集的全部子集可以这样地排列顺序,使任何两个邻接的集相差一个元素.【题说】1971年~1972年波兰数学奥林匹克三试题5.【证】设有限集A含n个元素.当n=1时,子集序列φ,A即满足条件.假设n=k时命题成立,对于k+1元集A={x1,x2,…,x k+1}由归纳假设,{x1,x2,…,x k}的子集可排成序列B1,B2,…,B t(t=2k)满足要求.因此A的子集也可排成序列B1,B2,…,B t,B t∪{x k+1},B t-1∪{x k+1},…,B2∪{x k+1}B1∪{x k+1},满足要求.于是命题对一切自然数n均成立.B1-003设1≤r≤n,考虑集合{1,2,3,…,n}的所有含r个元素的子集及每个这样的子集中的最小元素,用F(n,r)表示一切这样的子集各自的最小元素的算术平均数.证明:【题说】第二十二届(1981年)国际数学奥林匹克题2.这n-k个数中选出).所以将(1)式右边的和写成一个表将上表每一行加起来,再将这些行和相加便得(1)的右边的分子,现B1-004定义一个数集的和为该集的所有元素的和.设S是一些不大于15的正整数组成的集,假设S 的任意两个不相交的子集有不相同的和,具有这个性质的集合S的和的最大值是多少?【题说】第四届(1986年)美国数学邀请赛题12.【解】先证明S元素个数至多是5.如果多于5个,则元素个数不S的元素个数≤5,所以S的和≤15+14+13+12+11=65.如果S的和≥62,则S的元数为5,并且15、14均在S中(S的和至多比15+14+13+12+11少3).这时S中无其它的连续整数,因而只有一种情况即{15,14,13,11,9),不难看出它不满足条件.所以,S的和≤61.特别地,S={15,14,13,11,8}时,和取最大值61.B1-006对有限集合A,存在函数f:N→A具有下述性质:若|i-j|是素数,则f(i)≠f(j),N={1,2,…}.求有限集合A的元素的最少个数.【题说】1990年巴尔干地区数学奥林匹克题4.【解】1,3,6,8中每两个数的差为素数,所以f(1),f(3),f(6),f(8)互不相同,|A|≥4.另一方面,令A={0,1,2,3}.对每一自然数n,令f(n)为n除以4所得余数,则在f(i)=f(j)时,|i-j|被4整除.因而f是满足条件的函数.于是,A的元素个数最少为4.B1-007集合{1,2,3,…,100}的某些子集,满足条件:没有一个数是另一个数的2倍.这样的子集中所含元素的个数最多是多少?【题说】1991年河南省数学奥林匹克集训班一试题1(6).原题为选择题.【解】令A1={51,52,…,100},A2={26,27,…,50},A3={13,14,…,25},A4=(7,8,9,10,11,12),A5=(4,5,6},A6={2,3},A7={1}.A1∪A3∪A5∪A7共50+13+3+1=67个元素,每一个都不是另一个的两倍.若集合B{1,2,…,100},其中每一个数都不是另一个的两倍,则在a∈B∩A2时,2a B,因此|B∩A2|+|B∩A1|≤50.同样|B∩A4|+|B∩A3|≤13,|B∩A6|+|B∩A5|≤3.因此|B|≤67.本题答案为67.B1-008设集合S n={1,2,…,n).若X是S n的子集,把X中所有数之和称为X的“容量”(规定空集容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.(1)求证:S n的奇子集与偶子集个数相等;(2)求证:当n≥3时,S n的所有奇子集容量之和,与所有偶子集容量之和相等.(3)当n≥3时,求S n所有奇子集的容量之和.【题说】1992年全国联赛二试题2.【证】设S为S n的奇子集,令则T是偶子集,S→T是奇子集的集到偶子集的一一对应,而且每个偶子集T,均恰有一个奇子集与之对应,所以(1)的结论成立.对任一i(1≤i≤n),含i的子集共2n-1个,用上面的对应方法可知在i≠1时,这2n-1个集中有一半是奇子集.在i=1时,由于n≥3,将上边的1换成3,同样可得其中有一半是奇子集.于是在计算奇子集容量之和时,元素i的贡献是2n-2²i.奇子集容量之和是根据上面所说,这也是偶子集容量之和,两者相等.B1-009用σ(S)表示非空整数集S中所有元素的和.设A={a1,a2,…,a n}是正整数集,且a1<a2<…<a11.若对每个正整数n≤1500,存在A的子集S,使得σ(S)=n.试求满足上述要求的a10的最小值.【题说】第二十一届(1992年)美国数学奥林匹克题3.【解】令S k=a1+a2+…+a k(1≤k≤11).若a k>S k-1+1,则不存在S A,使σ(S)=S k-1+1所以,S k=S k-1+a k≤2S k-1+1 (1)又由题设得S1=a1=1.于是由(1)及归纳法易得S k≤2k-1(1≤k≤m)(2)若S10<750,则a11≤1500(否则750无法用σ(S)表出),S11=S10+a11<1500,所以S10≥750.又S8≤28-1=255,于是2a10≥a9+a10=S10-S8≥495所以,a10≥248.另一方面,令A={1,2,4,8,16,32,64,128,247,248,750}当n≤255=27+26+…+2+20时,可找到S{1,2,4,…,128},使σ(S)=n.当n≤255+247=502时,存在S(1,2,4,…,128,247),使σ(S)=n;当n≤502+248=750时,存在S{1,2,4,…247,248},使σ(S)=n;当n≤750+750=1500时,存在S A,使σ(S)=n.于是a10的最小值为248.B1-010给定集合S={Z1,Z2,…,Z1993},其中Z1,Z2,…,Z1993为非零复数(可视为平面上非零向量).求证:可以把S中元素分成若干子集,使得(1)S中每个元素属于且仅属于一个子集;(2)每一子集中任一复数与该子集所有复数之和的夹角不超过90°;(3)将任二子集中复数分别作和,所得和数之间夹角大于90°.【题说】1993年中国数学奥林匹克(第八届数学冬令营)题4.【证】现对任意正整数n给以证明.设非零复数集S={Z1,…,Z n}.对S每个非空子集A,其中所有数之和,称为A之和.S共有2n-1个非空子集,其中必有一个子集S1,其和的模|a1|最大.若S≠S1,对S\S1,取其非空子集S2,使其和的模|a2|最大.如比等等.因S为有限集,故经若干步后,即得S的一个划分:S1,S2,…,S k,它们的和a1,a2,…,a k的模分别是S,S\S1,S\(S1∪S2),…,S\(S1∪S2∪…∪S k-1)的非空子集和的最大模.这样的划分,条件(1)显然满足.若某个S r中有一元素Z与a r的夹角>90°,则如图a,|a r-Z|>|a r|.a r-Z是S\(S1U…US r-1)的非空子集S r\{Z}之和,与S r的选取矛盾.若a r与a t(1≤r<t≤k)的夹角≤90°,则如图(b),|a r+a t|>|a r|.a r+a t是S\(S1∪…∪S r-1)不空子集S r∪S t之和,这又与S r选取矛盾.因此,所述划分满足条件(1)~(3).【注】因为平面上至多有三个向量,它们之间两两的夹角都大于90°,故S至多分为三个子集.B1-011设集合A={1,2,3,…,366}.如果A的一个二元子集B={a,b}满足17|(a+b),则称B具有性质p.(1)求A的具有性质p的二元子集的个数;(2)A一组二元子集,两两不相交并且具有性质P这组二元子集的个数最多是多少?【题说】1994年全国联赛河北省预赛二试题1.【解】将1,2,…,366按17除的余数分为17类:17类:[0],[1],…,[16].因为366=17³21+9,所以[1],[2],…[9]中各有22个数,[10],…,[16],[0]中各有21个数.当且仅当a∈[k],b∈[17-k]时,{a,b}具有性质p.当a∈[k],b∈[17-k],k=1,2,…,7时,具有性质p的子集所以A的具有性质p的二元子集个数共有210+462³7+484=3928(个)(2)为使二元子集两两不变,可如下搭配:a∈[0],b∈[0],有10个子集;a∈[k],b∈[17-k],k=1,2,…,7,有21个子集;a∈[8],b∈[9],有22个子集.故A的具有性质p两两不交的二元子集共有10+21³7+22=179(个)B1-012设|v|、σ(v)和π(v)分别表示由正整数组成的有限集合v的元素的个数,元素的和以及元素的积(如果集合v是空集,则|v|=0,σ(v)=0,П(v)=1).若S是由正整数组成的有限集合.证明对所有的正整数m≥σ(S)成立.【题说】第二十三届(1994年)美国数学奥林匹克题5.【证】设S={a1,a2,…,a n}.长为m的、由m-n个0与n个1将这样的数列分为n+1段,第一段a1个数,第二段a2个数,…,第n段a n个数.前n段的每一段中恰有1个1的数列,由于第i段的1有a i种位置(1≤i≤n),所以这样的数列共有a l a2…a n=П(S)个.个.根据容斥原理,即本题的等式成立.B1-015设M={1,2,…,1995},A是M的子集,且满足条件:当x∈A时,15x A,试求A中元素个数的最大值.【题说】1995年全国联赛一试题2(6).原为填空题.【解】由题设,当k=9,10,…,133时,k与15k不能同时在A中,故至少有133-8=125个数不在A中,即|A|≤1995-125=1870另一方面,M的子集A={1,2,...,8}∪{134, (1997)满足条件.它恰好有1780个元素.故|A|的最大数是1870.B1-016 已知集合{1,2,3,4,5,6,7,8,9,10}.求该集合具有下列性质的子集个数:每个子集至少含有2个元素,且每个子集中任意两个元素的差的绝对值大于1.【题说】1996年爱朋思杯——上海市赛题3.【解】设a n是集合{1,2,…,n}的具有题设性质的子集个数.集合{1,2,…,n,n+1,n+2}的具有题设性质的子集可分为两类:第一类子集包含元n+2,这样的子集有a n+n个(即每个{1,2,…,n}的这种子集与{n+2}的并集,以及{1,n+2},{2,n+2},…,{n,n+2});第二类子集不包含n+2,这样的子集有a n+1个.于是,有a n+2=a n+a n+1+n显然,a3=1,a4=3(即{1,3},{2,4},{1,4}).所以a5=7,a6=14,a7=26,a8=46,a9=79,a10=133.B1-017 对任意非空实数集S,令σ(S)为S的元素之和.已知n个正整数的集A,考虑S跑遍A的非空子集时,所有不同和σ(S)的集.证明这些和可以分为n类,每一类中最大的和与最小的和的比不超过2.【题说】第二十五届(1996年)美国数学奥林匹克题2【解】设A={a1,a2,…,a n},a1<a2<…<a n.令f j=a1+a2+…a j,e j=max{a j,f j-1}},则f j=f j-1+a j≤2e j(1≤j≤n).每个和a i1+a i2+…+a it,i1<i2<…<i t,必在某个区间(f j-1,f j]中.因为a i1+a i2+a it>f j-1=a1+a2+…a j-1所以i t≥j从而a i1+a i2+…+a it≥a j于是a i1+a i2+…+a it∈[e j,f j].这样σ(S)被分为n个类,在e j与f j之间的和为第j类(1≤j≤n),f j本身在第j类,而e j=f j-1时,e j不在第j类;e j>f j-1时,e j在第j类.每一类中最大的和与最小的和的比不超过2.B1-018 设S={1,2,3,4),n项的数列:a1,a2,…,a n有下列性质,对于S的任何一个非空子集B(B的元素个数记为|B|),在该数列中有相邻的|B|项恰好组成集合B.求n的最小值.【题说】1997年爱朋思杯——上海市赛决赛题3.【解】n的最小值为8.首先证明S中的每个数在数列a1,a2,…,a n中至少出现2次.事实上,若S中的某个数在这个数列中只出现1次,由于含这个数的二元子集共有3个,但在数列中含这个数的相邻两项至多只有两种取法,因而3个含这个数的二元子集不可能都在数列相邻两项中出现.由此可见n≥8.另一方面,8项数列:3,1,2,3,4,1,2,4满足条件,因此,所求最小值为8.B1-019 求两个正整数m与n之间(m<n),一切分母为3的既约分数的和.【题说】1962年成都市赛高三二试题1.3(n-m)+1项.其和但其中整数项的和故所求之和S=S1-S2=n2-m2B1-020 证明cos10°是无理数.【题说】1963年合肥市赛高二二试题3.【证】利用公式cos3x=4cos3x-3cos x,可得cos30°=4cos310°-3cos10°(1)即若cos10°是一个有理数,则(1)右端为有理数,而左端是一个无理数,矛盾,故cos10°为无理数.B1-021 求出所有四元实数组(x1,x2,x3,x4),使其中任一个数与其余三数积的和等于2.【题说】第七届(1965年)国际数学奥林匹克题4.本题由原苏联提供.【解】设x1x2x3x4=d,则显然d≤1.有以下五种情况:所以d=1,x1=x2=x3=x4=1.所以d=1,x1=x2=x3=x4=1.综上所述,x1、x2、x3、x4或者全为1;或者其中有三个为-1,一个为3.B1-022设P(x)是自然数x在十进制中各位数字的乘积.试求出所有能使P(x)=x2-10x-22成立的自然数.【题说】第十届(1968年)国际数学奥林匹克题2.本题由捷克斯洛伐克提供.【解】设n位数x满足P(x)=x2-10x-22 (1)若n≥3,则x≥10n-1≥100,9n≥P(x)=x(x-10)-22≥90x-22≥90²10n-1-22=9²10n-22>10n矛盾.若n=1,则x=P(x)=x2-10x-22即x2-11x-22=0但此方程无正整数解.因此n=2.若x≥20,则x2-10x-22=x(x-10)-22≥10x-22≥200-22>92≥P(x)因此x=10+y,y∈{0,1,2,…,9}.(1)变成y=(10+y)2-10(10+y)-22易知y=2,x=12.B1-023证明:如果三个正数的积为1,而它们的和严格地大于它们的倒数之和,那么,它们中恰好有一个数大于1.【题说】第四届(1970年)全苏数学奥林匹克八年级题2.【证】设这三个数为a,b,c,则(a-1)(b-1)(c-1)=abc-(ab+bc+ca)+(a+b+c)-1左边有一个或三个因子为正.但abc=1,所以a、b、c不可能全大于1,从而a、b、c中有且只有一个数大于1.B1-024若干个正整数的和为1976,求这些正整数的积的最大值.【题说】第十八届(1976年)国际数学奥林匹克题4.本题由美国提供.【解】设这些正整数为a1,…,a n,则a1+…+a n=1976不妨设a i<4(1≤i≤n),这是因为当a i≥4时a i≤2(a i-2),故把a i换成2和a i-2不会使积减小.再注意2³2³2<3³3,所以只需考虑积2a²3b,其中a=0,1,2,且2a+3b=1976.由此得a=1,b=658,故所求的最大值为2³3658.B1-025确定最大的实数z,满足x+y+z=5 (1)xy+yz+zx=3 (2)并且x、y也是实数.【题说】第十届(1978年)加拿大数学奥林匹克题3.【解】由(1)得(x+y)2=(5-z)2,由(2)得xy=3-z(5-z).于是0≤(x-y)2=(x+y)2-4xy=(5-z)2-4[3-z(5-z)]=-3z2+10z+13=(13-3z)(1+z)因此有-1≤z≤13/3当x=y=1/3时,z=13/3.因此z最大值是13/3.B1-026已知a、b、c、d、e是满足a+b+c+d+e=8,(1)a2+b2+c2+d2+e2=16 (2)的实数,试确定e的最大值.【题说】第七届(1978年)美国数学奥林匹克题1.【解】由Cauchy不等式,(8-e)2=(a+b+c+d)2≤4(a2+b2+c2+d2)=4(16-e2),即B1-027已知:0.301029<lg2<0.301030,0.477120<lg3<0.477121求20001979的首位数字.【题说】1979年安徽省赛二试题1.【解】因为lg20001979=1979(3+lg2)=5937+1979lg2595.736391<1979lg2<595.738370而lg5=1-lg2<0.70lg6=lg2+lg3>0.77所以6532+lg5<lg20001979<6532+lg6即5³106532<20001979<6³106532所以20001979的首位数字是5.B1-028已知a1,a2,…,a8均为正数,且a1+a2+…+a8=20 (1)a1a2…a8=4 (2)试证:a1,a2,…,a8之中至少有一个数小于1.【题说】1979年湖北省赛二试题5.【证】用反证法.如果a1,a2,…,a8都不小于1,则可设a i=1+b i(b i>0,i=1,2, (8)再由(1)即得B1+b2+…+b8=12于是a1a2…a8=(1+b1)(1+b2)…(1+b8)=1+(b1+b2+…+b8)+…+b1b2…b8≥1+(b1+b2+…+b8)=1+12=13与条件(2)矛盾.所以八个数中至少有一个数小于1.B1-029 求所有实数a,使得存在非负实数x1,x2,x3,x4,x5满足关系:【题说】第二十一届(1979年)国际数学奥林匹克题5.本题由以色列提供.【解】利用柯西不等式及题设条件,有故中间不等式只能取等号,这意味着在x k≠0时,由此推知,x1,x2,x3,x4,x5中至多一个非0.因此,只能有下面两种情况:(1)x1=x2=x3=x4=x5=0,此时a=0;(2)某个x k=c≠0,其余x i=0(i≠k).这时由已知得kc=a,k3c=a2,k5c=a3.从而k2=a,c=k总之,当且仅当a=0,1,4,9,16,25时,存在非负实数x1,x2,x3,x4,x5满足题中三个方程. B1-030下列表中的对数值有两个是错误的,请予纠正.【题说】1981年全国联赛题2.【解】lg3、lg0.27、lg9的值同为正确或同为错误.因表中只有两处错误,故三者都对.同理,lg2、lg5、lg8、lg6都对.再若lg7=2(b+c),则lg14=lg7+lg2=1-a+2b+c,lg0.021=lg3+lg7-3=2a+b+2c-3,lg2.8=2lg2+lg7-1=1-2a+2b.即lg7=2(b+c)对,就推出lg14、lg0.021、lg2.8三个值都错,与题设矛盾,故知lg7不对.应为lg7=lg l4-lg2=2b+c.lg1.5的值也不对,应为lg1.5=lg3+lg5-1=3a-b+c-1.B1-001把含有12个元素的集分成6个子集,每个子集都含有2个元素,有多少种分法?【题说】1969年~1970年波兰数学奥林匹克三试题5.【解】将12个元素排成一列有12!种方法.排定后,从左到右每2个一组就得到6个2元子集.同一组中2个元素顺序交换得到的是同一子集.6个子集顺序交换得到的是同样的分法,因此共有种不同的分法.[别解]设a1是集中的一个元素,将a1与其余11个元素中的任一个结合,就得到含a1的2元子集,这种2元子集共有11种.确定含a1的子集后,设a2是剩下的一个元素,将a2与其余9个元素中的任一个结合,就得到含a2的2元子集,这种子集共有9种.如此继续下去,得到6个2元子集.共有11³9³7³5³3=10395种分法.B1-002证明:任一个有限集的全部子集可以这样地排列顺序,使任何两个邻接的集相差一个元素.【题说】1971年~1972年波兰数学奥林匹克三试题5.【证】设有限集A含n个元素.当n=1时,子集序列φ,A即满足条件.假设n=k时命题成立,对于k+1元集A={x1,x2,…,x k+1}由归纳假设,{x1,x2,…,x k}的子集可排成序列B1,B2,…,B t(t=2k)满足要求.因此A的子集也可排成序列B1,B2,…,B t,B t∪{x k+1},B t-1∪{x k+1},…,B2∪{x k+1}B1∪{x k+1},满足要求.于是命题对一切自然数n均成立.B1-003设1≤r≤n,考虑集合{1,2,3,…,n}的所有含r个元素的子集及每个这样的子集中的最小元素,用F(n,r)表示一切这样的子集各自的最小元素的算术平均数.证明:【题说】第二十二届(1981年)国际数学奥林匹克题2.这n-k个数中选出).所以将(1)式右边的和写成一个表将上表每一行加起来,再将这些行和相加便得(1)的右边的分子,现B1-004定义一个数集的和为该集的所有元素的和.设S是一些不大于15的正整数组成的集,假设S 的任意两个不相交的子集有不相同的和,具有这个性质的集合S的和的最大值是多少?【题说】第四届(1986年)美国数学邀请赛题12.【解】先证明S元素个数至多是5.如果多于5个,则元素个数不S的元素个数≤5,所以S的和≤15+14+13+12+11=65.如果S的和≥62,则S的元数为5,并且15、14均在S中(S的和至多比15+14+13+12+11少3).这时S中无其它的连续整数,因而只有一种情况即{15,14,13,11,9),不难看出它不满足条件.所以,S的和≤61.特别地,S={15,14,13,11,8}时,和取最大值61.B1-006对有限集合A,存在函数f:N→A具有下述性质:若|i-j|是素数,则f(i)≠f(j),N={1,2,…}.求有限集合A的元素的最少个数.【题说】1990年巴尔干地区数学奥林匹克题4.【解】1,3,6,8中每两个数的差为素数,所以f(1),f(3),f(6),f(8)互不相同,|A|≥4.另一方面,令A={0,1,2,3}.对每一自然数n,令f(n)为n除以4所得余数,则在f(i)=f(j)时,|i-j|被4整除.因而f是满足条件的函数.于是,A的元素个数最少为4.B1-007集合{1,2,3,…,100}的某些子集,满足条件:没有一个数是另一个数的2倍.这样的子集中所含元素的个数最多是多少?【题说】1991年河南省数学奥林匹克集训班一试题1(6).原题为选择题.【解】令A1={51,52,…,100},A2={26,27,…,50},A3={13,14,…,25},A4=(7,8,9,10,11,12),A5=(4,5,6},A6={2,3},A7={1}.A1∪A3∪A5∪A7共50+13+3+1=67个元素,每一个都不是另一个的两倍.若集合B{1,2,…,100},其中每一个数都不是另一个的两倍,则在a∈B∩A2时,2a B,因此|B∩A2|+|B∩A1|≤50.同样|B∩A4|+|B∩A3|≤13,|B∩A6|+|B∩A5|≤3.因此|B|≤67.本题答案为67.B1-008设集合S n={1,2,…,n).若X是S n的子集,把X中所有数之和称为X的“容量”(规定空集容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.(1)求证:S n的奇子集与偶子集个数相等;(2)求证:当n≥3时,S n的所有奇子集容量之和,与所有偶子集容量之和相等.(3)当n≥3时,求S n所有奇子集的容量之和.【题说】1992年全国联赛二试题2.【证】设S为S n的奇子集,令则T是偶子集,S→T是奇子集的集到偶子集的一一对应,而且每个偶子集T,均恰有一个奇子集与之对应,所以(1)的结论成立.对任一i(1≤i≤n),含i的子集共2n-1个,用上面的对应方法可知在i≠1时,这2n-1个集中有一半是奇子集.在i=1时,由于n≥3,将上边的1换成3,同样可得其中有一半是奇子集.于是在计算奇子集容量之和时,元素i的贡献是2n-2²i.奇子集容量之和是根据上面所说,这也是偶子集容量之和,两者相等.B1-009用σ(S)表示非空整数集S中所有元素的和.设A={a1,a2,…,a n}是正整数集,且a1<a2<…<a11.若对每个正整数n≤1500,存在A的子集S,使得σ(S)=n.试求满足上述要求的a10的最小值.【题说】第二十一届(1992年)美国数学奥林匹克题3.【解】令S k=a1+a2+…+a k(1≤k≤11).若a k>S k-1+1,则不存在S A,使σ(S)=S k-1+1所以,S k=S k-1+a k≤2S k-1+1 (1)又由题设得S1=a1=1.于是由(1)及归纳法易得S k≤2k-1(1≤k≤m)(2)若S10<750,则a11≤1500(否则750无法用σ(S)表出),S11=S10+a11<1500,所以S10≥750.又S8≤28-1=255,于是2a10≥a9+a10=S10-S8≥495所以,a10≥248.另一方面,令A={1,2,4,8,16,32,64,128,247,248,750}当n≤255=27+26+…+2+20时,可找到S{1,2,4,…,128},使σ(S)=n.当n≤255+247=502时,存在S(1,2,4,…,128,247),使σ(S)=n;当n≤502+248=750时,存在S{1,2,4,…247,248},使σ(S)=n;当n≤750+750=1500时,存在S A,使σ(S)=n.于是a10的最小值为248.B1-010给定集合S={Z1,Z2,…,Z1993},其中Z1,Z2,…,Z1993为非零复数(可视为平面上非零向量).求证:可以把S中元素分成若干子集,使得(1)S中每个元素属于且仅属于一个子集;(2)每一子集中任一复数与该子集所有复数之和的夹角不超过90°;(3)将任二子集中复数分别作和,所得和数之间夹角大于90°.【题说】1993年中国数学奥林匹克(第八届数学冬令营)题4.【证】现对任意正整数n给以证明.设非零复数集S={Z1,…,Z n}.对S每个非空子集A,其中所有数之和,称为A之和.S共有2n-1个非空子集,其中必有一个子集S1,其和的模|a1|最大.若S≠S1,对S\S1,取其非空子集S2,使其和的模|a2|最大.如比等等.因S为有限集,故经若干步后,即得S的一个划分:S1,S2,…,S k,它们的和a1,a2,…,a k的模分别是S,S\S1,S\(S1∪S2),…,S\(S1∪S2∪…∪S k-1)的非空子集和的最大模.这样的划分,条件(1)显然满足.若某个S r中有一元素Z与a r的夹角>90°,则如图a,|a r-Z|>|a r|.a r-Z是S\(S1U…US r-1)的非空子集S r\{Z}之和,与S r的选取矛盾.若a r与a t(1≤r<t≤k)的夹角≤90°,则如图(b),|a r+a t|>|a r|.a r+a t是S\(S1∪…∪S r-1)不空子集S r∪S t之和,这又与S r选取矛盾.因此,所述划分满足条件(1)~(3).【注】因为平面上至多有三个向量,它们之间两两的夹角都大于90°,故S至多分为三个子集.B1-011设集合A={1,2,3,…,366}.如果A的一个二元子集B={a,b}满足17|(a+b),则称B具有性质p.(1)求A的具有性质p的二元子集的个数;(2)A一组二元子集,两两不相交并且具有性质P这组二元子集的个数最多是多少?【题说】1994年全国联赛河北省预赛二试题1.【解】将1,2,…,366按17除的余数分为17类:17类:[0],[1],…,[16].因为366=17³21+9,所以[1],[2],…[9]中各有22个数,[10],…,[16],[0]中各有21个数.当且仅当a∈[k],b∈[17-k]时,{a,b}具有性质p.当a∈[k],b∈[17-k],k=1,2,…,7时,具有性质p的子集所以A的具有性质p的二元子集个数共有210+462³7+484=3928(个)(2)为使二元子集两两不变,可如下搭配:a∈[0],b∈[0],有10个子集;a∈[k],b∈[17-k],k=1,2,…,7,有21个子集;a∈[8],b∈[9],有22个子集.故A的具有性质p两两不交的二元子集共有10+21³7+22=179(个)B1-012设|v|、σ(v)和π(v)分别表示由正整数组成的有限集合v的元素的个数,元素的和以及元素的积(如果集合v是空集,则|v|=0,σ(v)=0,П(v)=1).若S是由正整数组成的有限集合.证明对所有的正整数m≥σ(S)成立.【题说】第二十三届(1994年)美国数学奥林匹克题5.【证】设S={a1,a2,…,a n}.长为m的、由m-n个0与n个1将这样的数列分为n+1段,第一段a1个数,第二段a2个数,…,第n段a n个数.前n段的每一段中恰有1个1的数列,由于第i段的1有a i种位置(1≤i≤n),所以这样的数列共有a l a2…a n=П(S)个.个.根据容斥原理,即本题的等式成立.B1-015设M={1,2,…,1995},A是M的子集,且满足条件:当x∈A时,15x A,试求A中元素个数的最大值.【题说】1995年全国联赛一试题2(6).原为填空题.【解】由题设,当k=9,10,…,133时,k与15k不能同时在A中,故至少有133-8=125个数不在A中,即|A|≤1995-125=1870另一方面,M的子集A={1,2,...,8}∪{134, (1997)满足条件.它恰好有1780个元素.故|A|的最大数是1870.B1-016已知集合{1,2,3,4,5,6,7,8,9,10}.求该集合具有下列性质的子集个数:每个子集至少含有2个元素,且每个子集中任意两个元素的差的绝对值大于1.【题说】1996年爱朋思杯——上海市赛题3.【解】设a n是集合{1,2,…,n}的具有题设性质的子集个数.集合{1,2,…,n,n+1,n+2}的具有题设性质的子集可分为两类:第一类子集包含元n+2,这样的子集有a n+n个(即每个{1,2,…,n}的这种子集与{n+2}的并集,以及{1,n+2},{2,n+2},…,{n,n+2});第二类子集不包含n+2,这样的子集有a n+1个.于是,有a n+2=a n+a n+1+n显然,a3=1,a4=3(即{1,3},{2,4},{1,4}).所以a5=7,a6=14,a7=26,a8=46,a9=79,a10=133.B1-017对任意非空实数集S,令σ(S)为S的元素之和.已知n个正整数的集A,考虑S跑遍A的非空子集时,所有不同和σ(S)的集.证明这些和可以分为n类,每一类中最大的和与最小的和的比不超过2.【题说】第二十五届(1996年)美国数学奥林匹克题2【解】设A={a1,a2,…,a n},a1<a2<…<a n.令f j=a1+a2+…a j,e j=max{a j,f j-1}},则f j=f j-1+a j ≤2e j(1≤j≤n).每个和a i1+a i2+…+a it,i1<i2<…<i t,必在某个区间(f j-1,f j]中.因为a i1+a i2+a it>f j-1=a1+a2+…a j-1所以i t≥j从而a i1+a i2+…+a it≥a j于是a i1+a i2+…+a it∈[e j,f j].这样σ(S)被分为n个类,在e j与f j之间的和为第j类(1≤j≤n),f j本身在第j类,而e j=f j-1时,e j不在第j类;e j>f j-1时,e j在第j类.每一类中最大的和与最小的和的比不超过2.B1-018设S={1,2,3,4),n项的数列:a1,a2,…,a n有下列性质,对于S的任何一个非空子集B(B的元素个数记为|B|),在该数列中有相邻的|B|项恰好组成集合B.求n的最小值.【题说】1997年爱朋思杯——上海市赛决赛题3.【解】n的最小值为8.首先证明S中的每个数在数列a1,a2,…,a n中至少出现2次.事实上,若S中的某个数在这个数列中只出现1次,由于含这个数的二元子集共有3个,但在数列中含这个数的相邻两项至多只有两种取法,因而3个含这个数的二元子集不可能都在数列相邻两项中出现.由此可见n≥8.另一方面,8项数列:3,1,2,3,4,1,2,4满足条件,因此,所求最小值为8.B1-019求两个正整数m与n之间(m<n),一切分母为3的既约分数的和.【题说】1962年成都市赛高三二试题1.3(n-m)+1项.其和但其中整数项的和故所求之和S=S1-S2=n2-m2B1-020证明cos10°是无理数.【题说】1963年合肥市赛高二二试题3.【证】利用公式cos3x=4cos3x-3cos x,可得cos30°=4cos310°-3cos10°(1)即若cos10°是一个有理数,则(1)右端为有理数,而左端是一个无理数,矛盾,故cos10°为无理数.B1-021求出所有四元实数组(x1,x2,x3,x4),使其中任一个数与其余三数积的和等于2.【题说】第七届(1965年)国际数学奥林匹克题4.本题由原苏联提供.【解】设x1x2x3x4=d,则显然d≤1.有以下五种情况:所以d=1,x1=x2=x3=x4=1.所以d=1,x1=x2=x3=x4=1.综上所述,x1、x2、x3、x4或者全为1;或者其中有三个为-1,一个为3.B1-022设P(x)是自然数x在十进制中各位数字的乘积.试求出所有能使P(x)=x2-10x-22成立的自然数.【题说】第十届(1968年)国际数学奥林匹克题2.本题由捷克斯洛伐克提供.【解】设n位数x满足P(x)=x2-10x-22 (1)若n≥3,则x≥10n-1≥100,9n≥P(x)=x(x-10)-22≥90x-22≥90²10n-1-22=9²10n-22>10n矛盾.若n=1,则x=P(x)=x2-10x-22即x2-11x-22=0但此方程无正整数解.因此n=2.若x≥20,则x2-10x-22=x(x-10)-22≥10x-22≥200-22>92≥P(x)因此x=10+y,y∈{0,1,2,…,9}.(1)变成y=(10+y)2-10(10+y)-22易知y=2,x=12.B1-023证明:如果三个正数的积为1,而它们的和严格地大于它们的倒数之和,那么,它们中恰好有一个数大于1.【题说】第四届(1970年)全苏数学奥林匹克八年级题2.【证】设这三个数为a,b,c,则(a-1)(b-1)(c-1)=abc-(ab+bc+ca)+(a+b+c)-1左边有一个或三个因子为正.但abc=1,所以a、b、c不可能全大于1,从而a、b、c中有且只有一个数大于1.B1-024若干个正整数的和为1976,求这些正整数的积的最大值.【题说】第十八届(1976年)国际数学奥林匹克题4.本题由美国提供.【解】设这些正整数为a1,…,a n,则a1+…+a n=1976不妨设a i<4(1≤i≤n),这是因为当a i≥4时a i≤2(a i-2),故把a i换成2和a i-2不会使积减小.再注意2³2³2<3³3,所以只需考虑积2a²3b,其中a=0,1,2,且2a+3b=1976.由此得a=1,b=658,故所求的最大值为2³3658.B1-025确定最大的实数z,满足x+y+z=5 (1)xy+yz+zx=3 (2)并且x、y也是实数.【题说】第十届(1978年)加拿大数学奥林匹克题3.【解】由(1)得(x+y)2=(5-z)2,由(2)得xy=3-z(5-z).于是0≤(x-y)2=(x+y)2-4xy=(5-z)2-4[3-z(5-z)]=-3z2+10z+13=(13-3z)(1+z)因此有-1≤z≤13/3当x=y=1/3时,z=13/3.因此z最大值是13/3.B1-026已知a、b、c、d、e是满足a+b+c+d+e=8,(1)a2+b2+c2+d2+e2=16 (2)的实数,试确定e的最大值.【题说】第七届(1978年)美国数学奥林匹克题1.【解】由Cauchy不等式,(8-e)2=(a+b+c+d)2≤4(a2+b2+c2+d2)=4(16-e2),即B1-027已知:0.301029<lg2<0.301030,0.477120<lg3<0.477121求20001979的首位数字.【题说】1979年安徽省赛二试题1.【解】因为lg20001979=1979(3+lg2)=5937+1979lg2595.736391<1979lg2<595.738370而lg5=1-lg2<0.70lg6=lg2+lg3>0.77所以6532+lg5<lg20001979<6532+lg6即5³106532<20001979<6³106532所以20001979的首位数字是5.B1-028已知a1,a2,…,a8均为正数,且a1+a2+…+a8=20 (1)a1a2…a8=4 (2)试证:a1,a2,…,a8之中至少有一个数小于1.【题说】1979年湖北省赛二试题5.【证】用反证法.如果a1,a2,…,a8都不小于1,则可设a i=1+b i(b i>0,i=1,2, (8)再由(1)即得B1+b2+…+b8=12于是a1a2…a8=(1+b1)(1+b2)…(1+b8)=1+(b1+b2+…+b8)+…+b1b2…b8≥1+(b1+b2+…+b8)=1+12=13与条件(2)矛盾.所以八个数中至少有一个数小于1.B1-029求所有实数a,使得存在非负实数x1,x2,x3,x4,x5满足关系:【题说】第二十一届(1979年)国际数学奥林匹克题5.本题由以色列提供.【解】利用柯西不等式及题设条件,有故中间不等式只能取等号,这意味着在x k≠0时,由此推知,x1,x2,x3,x4,x5中至多一个非0.因此,只能有下面两种情况:(1)x1=x2=x3=x4=x5=0,此时a=0;(2)某个x k=c≠0,其余x i=0(i≠k).这时由已知得kc=a,k3c=a2,k5c=a3.从而k2=a,c=k总之,当且仅当a=0,1,4,9,16,25时,存在非负实数x1,x2,x3,x4,x5满足题中三个方程.B1-030下列表中的对数值有两个是错误的,请予纠正.【题说】1981年全国联赛题2.【解】lg3、lg0.27、lg9的值同为正确或同为错误.因表中只有两处错误,故三者都对.同理,lg2、lg5、lg8、lg6都对.再若lg7=2(b+c),则lg14=lg7+lg2=1-a+2b+c,lg0.021=lg3+lg7-3=2a+b+2c-3,lg2.8=2lg2+lg7-1=1-2a+2b.即lg7=2(b+c)对,就推出lg14、lg0.021、lg2.8三个值都错,与题设矛盾,故知lg7不对.应为lg7=lg l4-lg2=2b+c.lg1.5的值也不对,应为lg1.5=lg3+lg5-1=3a-b+c-1.把n2个互不相等的实数排成下表:a11,a12,…,a1na21,a22,…,a2n…a n1,a n2,…,a nn取每行的最大数得n个数,其中最小的一个是x;再取每列的最小数,又得n个数,其中最大的一个是y,试比较x n与y n的大小.【题说】1982年上海市赛二试题2【解】设x=a ij,y=a pq,则a ij≥a iq≥a pq所以x≥y.(1)当n是奇数时,x n≥y n.(2)当n是偶数时(i)如果x≥y≥0,则x n≥y n;(ii)如果0≥x≥y,则x n≤y n;(iii)如果x≥0≥y,则当x≥-y时,x n≥y n;当x≤-y时,x n≤y n.B1-032对任意实数x、y.定义运算x*y为:x*y=ax+by+cxy其中a、b、c为常数,等式右端运算是通常的实数的加法和乘法.现已知1*2=3,2*3=4,并且有一个非零实数d,使得对于任意实数x,都有x*d=x,求d的值.【题说】1985年全国联赛一试题2(4).原题为填空题.【解】由所设条件,有1*2=a+2b+2c=3 (1)2*3=2a+3b+6c=4 (2)x*d=ax+bd+cxd=(a+cd)x+bd=x(3)由(3)得a+cd=1 (4)B d=0 (5)因d≠0,故由(5)式得b=0.再解方程(1)及(2),得a=5,c=-1,最后由(4)式得d=4.B1-033计算下式的值:【题说】第五届(1987年)美国数学邀请赛题14.注意324=4³34.【解】x4+4y4=(x2+2y2)2-(2xy)2=[(x2+2y2)-2xy][(x2+2y2)+2xy]=[(x-y)2+y2][(x+y)2+y2]。

学奥数,这里总有一本适合你(奥数图书介绍)

学奥数,这里总有一本适合你(奥数图书介绍)

奥数图书出版大事记2000年《奥数教程》(10种)第一版问世2001年《奥数教程》获优秀畅销书奖2002年《奥数教程》在香港出版繁体字版和网络版2003年《奥数教程》(3~6年级)VCD出版2003~ 陆续出版由IMO中国国家集训队教练组编写的《走向IMO:数学奥林匹克试题集锦》2005年“奥数”图书累计销量近1000万册2005年出版《数学奥林匹克小丛书》(30种)2006年《数学奥林匹克小丛书》(12种)繁体字版在台湾出版2008年《日本小学数学奥林匹克(六年级)》出版2009~ 《高中数学联赛备考手册(预赛试题集锦)》陆续出版2009年《Mathematical Olympiad in China》、《Problems of Number Theory in Mathematical Competitions》和《Graph Theory》相继与新加坡世界科技出版公司联合出版2010年《全俄中学生数学奥林匹克(1993~2006)》出版2010~2011年《高思学校竞赛数学课本》和《高思学校竞赛数学导引》(3~6年级)相继出版2011年《从课本到奥数》(1~9年级A、B版)出版2011年《初中数学联赛考前辅导》和《高中数学联赛考前辅导》出版2012年《数学奥林匹克小丛书》第二版(22种)出版2013年《多功能题典》丛书中的小学、初中和高中数学竞赛修订出版2014年《高思学校竞赛数学课本》(1~6年级)和《高思学校竞赛数学导引》(3~6年级)修订后全新推出2014年《奥数教程》丛书第六版出版,并为1~9年级录制微视频学奥数,这里总有一本适合你2000年华东师范大学出版社出版了《奥数教程》丛书,首次在书名中使用“奥数”一词。

《奥数教程》由国家集训队教练组执笔联合编写,获得第十届全国教育图书展优秀畅销图书奖,深受读者喜爱,被奉为经典奥数蓝皮书。

自《奥数教程》出版以来,华东师范大学出版社聚集国内最顶尖的作者团队,陆续为不同层次、不同需求的读者打造了150余种奥数图书, 形成多品种、多层次、全系列的格局,“奥数”图书累计销量超1500万册,由此奠定了奥数品牌出版社的地位。

国际数学奥林匹克试题分类解析—A数论_A2整数的求解

国际数学奥林匹克试题分类解析—A数论_A2整数的求解

A2 整数的求解A2-001 哪些连续正整数之和为1000?试求出所有的解.【题说】1963年成都市赛高二二试题3.【解】设这些连续正整数共n个(n>1),最小的一个数为a,则有a+(a+1)+…+(a+n-1)=1000即n(2a+n-1)=2000若n为偶数,则2a+n-1为奇数;若n为奇数,则2a+n-1为偶数.因a≣1,故2a+n-1>n.同,故只有n=5,16,25,因此可能的取法只有下列三种:若n=5,则a=198;若n=16,则a=55;若n=25,则a=28.故解有三种:198+199+200+201+20255+56+…+7028+29+…+52A2-002 N是整数,它的b进制表示是777,求最小的正整数b,使得N是整数的四次方.【题说】第九届(1977年)加拿大数学奥林匹克题3.【解】设b为所求最小正整数,则7b2+7b+7=x4素数7应整除x,故可设x=7k,k为正整数.于是有b2+b+1=73k4当k=1时,(b-18)(b+19)=0.因此b=18是满足条件的最小正整数.A2-003 如果比n个连续整数的和大100的数等于其次n个连续数的和,求n.【题说】1976年美国纽约数学竞赛题7.s2-s1=n2=100从而求得n=10.A2-004 设a和b为正整数,当a2+b2被a+b除时,商是q而余数是r,试求出所有数对(a,b),使得q2+r=1977.【题说】第十九届(1977年)国际数学奥林匹克题5.本题由原联邦德国提供.【解】由题设a2+b2=q(a+b)+r(0≢r<a+b),q2+r=1977,所以q2≢1977,从而q≢44.若q≢43,则r=1977-q2≣1977-432=128.即(a+b)≢88,与(a+b)>r≣128,矛盾.因此,只能有q=44,r=41,从而得a2+b2=44(a+b)+41(a-22)2+(b-22)2=1009不妨设|a-22|≣|b-22|,则1009≣(a-22)2≣504,从而45≢a≢53.经验算得两组解:a=50,b=37及a=50,b=7.由对称性,还有两组解a=37,b=50;a=7,b=50.A2-005 数1978n与1978m的最后三位数相等,试求出正整数n和m,使得m+n取最小值,这里n>m≣1.【题说】第二十届(1978年)国际数学奥林匹克题1.本题由古巴提供.【解】由题设1978n-1978m=1978m(1978n-m-1)≡0(mod 1000)理注解:设1978n=1000a+c 1978m=1000b+c 1978n-1978m=1000(a-b)因而1978m≡2m×989m≡0(mod 8),m≣31978n-m≡1(mod 125)注解:1978m(1978n-m-1)这两式的乘积要为1000整除,显然1978m这式为8的倍数,另一式为125的倍数。

初二数学奥林匹克竞赛题及答案

初二数学奥林匹克竞赛题及答案

初二数学奥林匹克竞赛题及答案,连结ECEF=交BC于点F,,AD∥BCDE=EC,EF∥AB1、如图,梯形ABCD中,。

DF 是等腰梯形;试说明梯形ABCD(1) 2 DCFDC=的形状;,试判断△=(2)若AD=1,BC3,是等腰三角形,若存在,,使△PCD下,射线BC上是否存在一点P(3)在条件(2) PB 的长;若不存在,请说明理由。

请直接写出DAECBFCAABCABCDM运动,出发,沿→中,动点→从点2、在边长为6的菱形向终点NDMAC.交连接于点BNMAB.)如图25-1,当点边上时,连接在1(ADNABN≌①求证:△△;ADABC AM M°,到= 4,求点②若∠的距离;= 60xMxABC )运动所经过的路程为≤(6(2)如图25-2,若∠≤= 90°,记点12ADNx. 试问:为等腰三角形为何值时,△ONOMMOONOMM,的方向运动到左转弯继续运动到,点=沿,使3、对于点、OMOMON⊥.,这一过程称为且点完成一次“左转弯运动”点关于PPBABCDPPAPP,左转弯运动到正方形左转弯运动到和点,,点关于关于2211PDCPPPPA左转弯运动到,,关于左转弯运动到关于左转弯运动到…….,关于53344P 1)请你在图中用直尺和圆规在图中确定点的位置;(1 ADP之间有怎样的关系?并说明理由。

BPA、P,判断△ABP与△2()连接111ABDAD y、在第二象限,为轴建立直角坐标系,并且已知点(3)以为原点、直线AB PPPP三点的坐标.)1,请你推断:、、,(),两点的坐标为(04、1201020094O1PNMCD1图2图4、如图1和2,在20×20的等个距网格(每格的宽和高均是1AABC与单位长)中,Rt△从点M1重合的位置开始,以每秒点当个单位长的速度先向下平移,BC边与网的底部重合时,继续C同样的速度向右平移,当点ABCP停止△重合时,Rt与点x秒,△设运动时间为移动.yQAC.的面积为CABABC的位置时,请你在网格中画出Rt1,当Rt△△向下平移到(1)如图111QNCAB Rt△关于直线成轴对称的图形;111xyABC的函数关系式,向下平移的过程中,请你求出2,在Rt△与(2)如图yx取得最大值和最小值?最大值和最小值分别是多并说明当分别取何值时,少?yxABC取得最大值和)在Rt△取何值时,向右平移的过程中,请你说明当(3 最小值?最大值和最值分别是多少?为什么?BCEF点作∥的平分线交于O点,过O5、如图①,△ABC中,AB=AC,∠B、∠C F.AC 于E、交AB、之间有怎样的关系,并说、CF EF与BE猜想:(1)图中有几个等腰三角形? 明理由.如果有,AB≠AC,其他条件不变,图中还有等腰三角形吗?(2)如图②,若?间的关系还存在吗BE、CF问中分别指出它们.在第(1)EF与,过O与三角形外角平分线CO交于ABC中∠B的平分线BO(3)如图③,若△CFBE、F于.这时图中还有等腰三角形吗?EF与BC点作OE∥交AB于E,交ACO理你的?说明系关又如何由。

《数学奥林匹克竞赛题解》第二章 代数部分 第四节 二项式定理、概率、数学归纳法

《数学奥林匹克竞赛题解》第二章 代数部分 第四节  二项式定理、概率、数学归纳法

第二章代数第四节二项式定理、概率、数学归纳法B4-001求(1+x)3+(1+x)4+(1+x)5+…+(1+x)n+2展开式里的x2的系数.【题说】1963年北京市赛高三一试题3.【解】因为(1+x)3+(1+x)4+(1+x)5+…+(1+x)n+2所以展开式中x2的系数为【别解】x2的系数为B4-002设f是具有下列性质的函数:(1)f(n)对每个正整数n有定义;(2)f(n)是正整数;(3)f(2)=2;(4)f(mn)=f(m)f(n),对一切m,n成立;(5)f(m)>f(n),当m>n时.试证:f(n)=n.【题说】第一届(1969年)加拿大数学奥林匹克题8.【证】先用数学归纳法证明f(2k)=2k(k=1,2,…).事实上,由(3),k=1时,f(2)=2成立.假设k=j成立,则由(4)f(2j+1)=f(2·2j)=f(2)f(2j)=2·2j=2j+1.故对所有自然数k,f(2k)=2k.现考虑自然数n=1.由(5)函数f的严格递增性知:f(2)=2>f(1).由(2),f(1)=1.再考虑自然数n:2k<n<2k+1.由(5)有2k=f(2k)<f(2k+1)<f (2k+2)<…<f(2k+1-1)<f(2k+1)=2k+1,故必有f(2k+1)=2k+1,f(2k+2)=2k+2,…,f(2k+1-1)=2k+1-1综上所述,对任何正整数n,都有f(n)=nB4-003证明:对任何自然数n,一定存在一个由1和2组成的n位数,能被2n整除.【题说】第五届(1971年)全苏数学奥林匹克八年级题1.【证】用归纳法.(1)当n=1时,取该数为2即可;(2)设A=2n B是一个能被2n整除的n位数,则2·10n+A和1·10n+A中必有一个能被2n+1整除.从而,命题得证.B4-004假设一个随机数选择器只能从1,2,…,9这九个数字中选一个,并且以等概率作这些选择,试确定在n次选择(n>1)后,选出的n个数的乘积能被10整除的概率.【题说】第一届(1972年)美国数学奥林匹克题3.【解】要使n个数之积被10整除,必须有一个数是5,有一个数是偶数.n次选择的方法总共有9n种,其中A.每一次均不取5的取法,有8n种;B.每一次均不取偶数的取法,有5n种;C.每一次均在{1,3,7,9}中取数的方法有4n种,显然C中的取法既包含于A,也包含于B,所以,取n个数之积能被10整除的概率是B4-005一副纸牌共有N张,其中有三张A,现随机地洗牌(假定纸牌一切可能的分布都有相等机会).然后从顶上开始一张接一张地翻牌,直至翻到第二张A出现为止.求证:翻过的纸牌数的期望(平均)值是(N+1)/2.【题说】第四届(1975年)美国数学奥林匹克题5.【证】设三张A的序号分别是x1、x2、x3.若将牌序颠倒过来,则第二张A的序号为N+1-x2.在这两副纸牌中,第二张A的平均位置(即翻过的纸牌数的期望值)为[x2+(N+1)-x2]/2=(N+1)/2【别证】由题设,除了第1张和最后一张外,其余各张皆可能是第2张A,且是等可能的.因此第2张A所在序号的平均期望值是[2+3+…+(N—1)]/(N-2)=(N+1)/2.B4-006某艘渔船未经允许在A国领海上捕鱼.每撒一次网将使A 国的捕鱼量蒙受一个价值固定并且相同的损失.在每次撒网期间渔船被A 国海岸巡逻队拘留的概率等于1/k,这里k是某个固定的正整数.假定在每次撒网期间由渔船被拘留或不被拘留所组成的事件是与其前的捕鱼过程无关的.若渔船被巡逻队拘留,则原先捕获的鱼全被没收,并且今后不能再来捕鱼.船长打算捕完第n网后离开A国领海.因为不能排除渔船被巡逻队拘留的可能性,所以捕鱼所得的收益是一个随机变量.求n,使捕鱼收益的期望值达到最大.【题说】1975年~1976年波兰数学奥林匹克三试题5.这里ω是撒一次网的收益.由(1)可知f(n)达到最大值.B4-007大于7公斤的任何一种整公斤数的重量都可以用3公斤和5公斤的两种砝码来称,而用不着增添其他不同重量的砝码.试用数学归纳法加以证明.【题说】1978年重庆市赛二试选作题1(3).数a,b,使得n=3a+5b.事实上(1)当n=8,9,10,11时,不难验证命题成立.(2)设k>11并且当8≤n<k时,命题成立,则当n=k时,由归纳假设k-3=3l+5m,m,n为非负整数所以k=(k-3)+3=3l+5m+3=3(l+1)+5m故命题对k成立.B4-008给定三只相同的n面骰子,它们的对应面标上同样的任意整数.证明:如果随机投掷它们,那么向上的三个面上的数的和被3整除的概率大于或等于1/4.【题说】第八届(1979年)美国数学奥林匹克题3.【证】因为问题只涉及和是否被3整除,所以不妨假定,每个面上的数是被3除后的余数;0、1、2.设每个骰子上标“0”的有a个,标“1”的有b个,标“2”的有c个.这里a,b,c是适合下列条件的整数:0≤a,b,c≤n,a+b+c=n (1)随机地投掷三只骰子,总共有n3种等可能情形.其中朝上三个数的和被3整除的情形有以下四种类型:0,0,0;1,1,1;2,2,2;0,1,2第一类共有a3种,第二类共有b3种,第三类有c3种,第四类有3!abc=6abc种.因此,原问题转化为在条件(1)下,证明不等式即4(a3+b3+c3+6abc)≥(a+b+c)3上式可化简为等价的不等式a3+b3+c3+6abc≥a2b+a2c+b2a+b2c+c2a+c2b (2)不妨设a≥b≥c,则a3+b3+2abc-a2b-ab2-a2c-b2c=a2(a-b)+b2(b-a)+ac(b-a)+bc(a-b)=(a-b)(a2-b2-ac+bc)=(a-b)2(a+b-c)≥0,(3)c3+abc-c2a-c2b=bc(a-c)+c2(c-a)=c(a-c)(b-c)≥0(4)(3)、(4)相加得a3+b3+c3+3abc≥a2b+a2c+b2a+b2c+c2a+c2b从而(2)成立.B4-009抛掷一枚硬币,每次正面出现得1分,反面出现得2分.试【题说】第十二届(1980年)加拿大数学奥林匹克题4.【证】令得到n分的概率为P n.因为得不到n分的情况只可能是:先得n-1分,再掷出一次反面.所以有由于P1=1/2B4-010某个国王的25位骑士围坐在一张圆桌旁.他们中的三位被选派去杀一条恶龙(设三次挑选都是等可能的),令P是被挑到的三人中至少有两人是邻座的概率.若P写成一个既约分数,其分子与分母之和是多少?【题说】第一届(1983年)美国数学邀请赛题7.【解】选二相邻的骑士有25种方法.再随着选第三位,有23种,故共有25×23种方法.但其中三者相邻的25种情况重复,应减去.故因此,所求之分子、分母之和为57.【别解】所选3人分两种情况:3人皆相邻,或2人相邻、1人不邻,故有25+25×(25-4)种.B4-011在给定的圆周上随机地选择A、B、C、D、E、F六点,这些点的选择是独立的,对于弧长而言是等可能的.求ABC、DEF这两个三角形不相交(即没有公共点)的概率.【题说】第十二届(1983年)美国数学奥林匹克题1.【解】设圆周上给定6个点,从这6点中取3个点作为△ABC的顶B4-012一个园丁把三棵枫树、四棵橡树和五棵白桦树种成一行.十二棵树的排列次序是随机的,每一种排列都是等可能的.把没有两棵白桦树相邻的概率写成既约分数m/n.试求m+n.【题说】第二届(1984年)美国数学邀请赛题11.【解】先把三棵枫树和四棵橡树排好,有7!种排法,中间6个空所以,m+n=106为所求.B4-013设A、B、C、D是一个正四面体的顶点,每条棱长1米.一只小虫从顶点A出发,遵照下列规则爬行:在每一个顶点相交的三条棱中选一条(三条棱选到的可能性相等),然后从这条棱爬到另一个点.设小虫爬了7米路之后,又回到顶点A的概率为P=m/729,求m的值.【题说】第三届(1985年)美国数学邀请赛题12.【解】设从A出发走过n米回到A点的走法为a n种.由于从A出发走n-1米的走法共3n-1种,其中a n-1种走到A的,下一步一定离开A.除去这an-1种,其余的每一种都可以再走1米到达A点.因此有a n=3n-1-a n-1B4-014某商店有10台电视机,排成一排.已知其中有三台是次品,如果我们对这批电视机作一次随机抽查,那么在前5台电视机中出现所有次品的概率是多少?【题说】1988年新加坡数学奥林匹克(A组)题9.原题为选择题.品的概率是B4-015把一个质地不均匀的硬币抛掷5次,正面朝上恰为一次的可能性不为0,而且与正面朝上恰为二次的概率相同.令既约分数i/j为硬币在5次抛掷中有3次正面朝上的概率.求i+j.【题说】第七届(1989年)美国数学邀请赛题5.【解】令r是掷一次硬币正面朝上的概率,则在n次投掷中k次正面朝上的概率为由已知,有由此得r=0,1或1/3.但r=0,1都不可能,故r=1/3.于是5次投掷3次正面朝上的概率为因此i+j=283B4-016n(n+1)/2个不同的数随机排成一个三角阵:设M k是从上往下数第k行中的最大数,求M1<M2<…<M n的概率.【题说】第二十二届(1990年)加拿大数学奥林匹克题2.【解】设所求概率为p n,显然p1=1,p2=2/3假设p k=2k/(k+1)!对于n=k+1,最大数在最下一行的概率为因此,对所有自然数n,都有p n=2n/(n+1)!B4-017在吐姆巴利亚仅有总统与发言人两名诚实的人.其它人均以概率p(0<P<1)说谎.总统决定再次竞选,并告诉他身边的第一个人,这个人再告诉他身边的人,如此继续下去,直到这链上第n个人将总统的决定告诉发言人.发言人在这以前未听到有关总统的决定的信息,在n=19与n=20中,哪一种情况,发言人宣布的结果与总统决定相符的可能性较大?【题说】1990年匈牙利数学奥林匹克第二轮较高水平题1.【解】设发言人宣布结果与总统决定相符的概率为Q n,则有递推公式Q n+1=P(1-Q n)+(1-P)Q n=P+(1-2P)Q n将n+1换为n得Q n=P+(1-2P)Q n-1所以Q n+1-Q n=(1-2P)(Q n-Q n-1)由于Q0=1,Q1=1-P,所以Q n+1-Q n=(1-2P)n·(-P)时,Q20<Q19.B4-018某生物学家想要计算湖中鱼的数目,在5月1日他随机地捞出60条鱼并给它们做了记号,然后放回湖中.在9月1日他又随机捞出70条鱼,发现其中有3条有标记.他假定5月1日时湖中的鱼有25%在9月1日时已不在湖中了(由于死亡或移居),9月1日湖中40%的鱼在5月1日时不在湖里(由于新出生或刚刚迁入湖中),并且在9月1日捞的鱼能代表整个湖中鱼的情况.问5月1日湖中有多少条鱼?【题说】第八届(1990年)美国数学邀请赛题6.【解】设5月1日湖中有x条鱼因此x=840.【注】题中条件25%可改为任一百分数,不影响结果.B4-019用二项式定理展开(1+0.2)1000,有(1+0.2)1000=A0+A1+…+A1000【题说】第九届(1991年)美国数学邀请赛题3.比较A k-1与A k.B4-020有两串字母aaa与bbb要在电讯线上传送.每一串都是一个一个字母地传送.由于设备的毛病,这些字母的每一个都以1/3的概率被错误地接收到,即该收到a的都收到b,该收到b的都收到a.但每一个字母是否被正确收到与接收其他字母的状况互相独立.以S a记传送aaa 时收到的一串3个字母,以S b记传送bbb时收到的一串3个字母,按词典顺序,S a在S b之前的概率记为P,将P写成既约分数,它的分子是多少?【题说】第九届(1991年)美国数学邀请赛题10.【解】设S a=x1x2x3,S b=y1y2y3.因此所求的数是532.B4-021一只抽屉内装有红袜子和蓝袜子,袜子至多有1991只.现在的情况是:不放回地随机取两只袜子,它们都是红色或都是蓝色的概率恰为1/2,按此情况,抽屉中红袜子的数目最多可能是几只?【题说】第九届(1991年)美国数学邀请赛题13.【解】设红、蓝袜子数分别为x和y.由已知,任取两只袜子其颜色不同的概率是1/2.故有即(x-y)2=x+y令n=x-y,则n2=x+y≤1991B4-022一位网球选手的“赢率”是她赢的场数比参赛的场数.在一个周末开始时,她的赢率恰好是0.500.在这个周末期间她比赛了四场,赢了三场,输了一场,到这个周末结束时,她的赢率大于0.503.在这个周末开始之前,她最多可能赢几场?【题说】第十届(1992年)美国数学邀请赛题3.【解】设W是这网球运动员在周末开始时已赢的局数,M是她已若W=164,M=328,则W/M=0.500.而(W+3)/(M+4)>0.503.因此,在周末开始前,这运动员最多可赢164场.B4-023在贾宪-杨辉三角形中,每一个数值是它上面的二个数值之和,这三角形开头几行如下:在贾宪-杨辉三角形中的哪一行中会出现三个相邻的数,它们的比是3∶4∶5?【题说】第十届(1992年)美国数学邀请赛题4.n组成.如果第n行中有那么3n-7k=-3,4n-9k=5解这个联立方程组,得k=27,n=62.即第62行有三个相邻的数B4-024从集合{1,2,3,…,1000}中随机地、不放回地取出3个数a1、a2、a3,然后再从剩下的997个数中同样随机地、不放回地取出3个数b1、b2、b3.令p为a1×a2×a3的砖能放在b1×b2×b3的盒子中的概率.若将p写成既约分数,那么分子和分母的和是多少?【题说】第十一届(1993年)美国数学邀请赛题7.【解】不妨设a1<a2<a3,b1<b2<b3,当且仅当a1<b1,a2<b2,a3<b3时砖可放入盒中.设c1<c2<c3<c4<c5<c6是从{1,2,…,1000}中选出的6个数,再从中选出3个有种方法.这3个作为a1、a2、a3,剩下3个作为b1、b2、b3.符合要求的a1只能是c1.a2若为c2,则a3可为c3或c4或c5;a2若为c3,则求分子、分母的和为1+4=5.B4-024从集合{1,2,3,…,1000}中随机地、不放回地取出3个数a1、a2、a3,然后再从剩下的997个数中同样随机地、不放回地取出3个数b1、b2、b3.令p为a1×a2×a3的砖能放在b1×b2×b3的盒子中的概率.若将p写成既约分数,那么分子和分母的和是多少?【题说】第十一届(1993年)美国数学邀请赛题7.【解】不妨设a1<a2<a3,b1<b2<b3,当且仅当a1<b1,a2<b2,a3<b3时砖可放入盒中.设c1<c2<c3<c4<c5<c6是从{1,2,…,1000}中选出的6个数,再从中选出3个有种方法.这3个作为a1、a2、a3,剩下3个作为b1、b2、b3.符合要求的a1只能是c1.a2若为c2,则a3可为c3或c4或c5;a2若为c3,则求分子、分母的和为1+4=5.B4-025A和B轮流掷一个均匀的硬币,谁先掷出人头的一面谁获胜,他们玩了n次,而且前一场的输家下一场先掷.若A第一场先掷,数码是什么?【题说】第十一届(1993年)美国数学邀请赛题11.【解】任一场比赛,先掷的人赢的概率为令P k为A赢第k场比赛的概率,则P1=.对k≥2,有所以,m+n=1093,其最后三个数码为093.B4-026一种单人纸牌游戏,其规则如下:将6对不相同的纸牌放入一个书包中,游戏者每次随机地从书包中抽牌并放回,不过当抽到成对的牌时,就将其放到一边,如果游戏者每次总取三张牌,若抽到的三张牌中两两互不成对,游戏就结束,否则抽牌继续进行直到书包中没【题说】第十二届(1994年)美国数学邀请赛题9.【解】设书包中有n(≥2)对互不相同的牌,p(n)为按所说规则抽牌使书包空的概率.则P(2)=1.由于前三张牌中有两张成对的概率为所以,对n≥3,有反复利用这个递推公式,得当n=6时,有所以,p+q=9+385=394.B4-027质点x按下列规则(1),(2)在p、q两点之间移动:(1)x在q处时,1秒后必移到p处;(2)x在p处时,1秒p处的概率.【题说】1995年日本数学奥林匹克预选赛题5.【解】设n秒后x在p处的概率为p n,x在q处的概率为q n.则B4-028在重复掷一枚均匀硬币的过程中,在连得2个反面之前的正整数,求m+n.【题说】第十三届(1995年)美国数学邀请赛题15.【解】设掷k次,不出现连续2个反面的情况有b k种,易知b1=2,b2=3,约定b0=1.由于第一次为正面,再掷k-1次不出现连续2个反面的情况有b k-1种.第一次为反面,第2次必须为正面,再掷k-2次不出现连续2个反面的情况有b k-2种,所以b k=b k-1+b k-2 (1)又设掷k次,无连续2个反面,而有5个连续正面,并且最后一次为正面的情况有a k种.这a k种,倒数1~5次均为正面的情况有b k-5种,倒数1~4次均正、第5次为反面的情况有a k-5种,倒数1~3次均正、第4次为反面的情况有a k-4种,依此类推,从而有递推关系a k=b k-5+a k-5+a k-4+a k-3+a k-2 (2)又显然a1=a2=a3=a4=0,a5=1,a6=2.掷k+2次,最后2次为反面,而且在这前面已有5个连续正面,没利用递推关系(2)有再利用(1)所以m+n=3+34=37B4-029一目标在坐标平面上一步步移动.它从(0,0)出发,每一步移动一个单位长度,可以向左、向右、向上、向下,四个方向是等可能的.设p为该目标移动6步或更少的步数到达(2,2)的概率.p【题说】第十三届(1995年)美国数学邀请赛题3.【解】到达(2,2)需4步或6步.6步到达有两类情况,一类一下三上两右,另一类一左三右两上.概率为4步到达后再走两步仍回到(2,2)的概率为所以数学奥林匹克题解B4-030在五个队参加的比赛中,每个队与别的队都比赛一场.一场比赛中每个参加的队有50%赢的机会(没有平局).整个比赛既没有m+n.【题说】第十四届(1996年)美国数学邀请赛题6.所以m+n=17+32=49第21 页共21 页。

国际数学奥林匹克试题分类解析—A数论_A5整数综合问题

国际数学奥林匹克试题分类解析—A数论_A5整数综合问题

A5 整数综合问题A5-002在n³n(n为奇数)的方格表里的每一个方格中,任意填上一个+1或-1,在每一列的下面写上该列所有数的乘积;在每行的右边写上该行所有数的乘积,证明:这2n个乘积的和不等于0.【题说】1962年全俄数学奥林匹克八、九年级题5.【证】设p1,p2,…,p n是各行数字乘积,q1,q2,…,q n是各列数字乘积,它们都是+1或-1,而应有p1p2…p n=q1q2…q n,所以p1、p2、…、p n、q1、q2…、q n中应有偶数个-1.设为2k个,则其中+1的个数为2(n-k).由于n为奇数,k≠n-k,所以p1+p2+…+p n+q1+q2+…+q n≠0A5-003已知任意n个整数a1,a2,…,a n,由此得到一列新的数.由这n个数依同样法则又得到一列新数,并如此做下去.假如所有这些新数都是整数,证明原来所给各数a i(i=1,2,…,n)都相等.【题说】1964年全俄数学奥林匹克八年级题4.n为偶数时有一种例外情况使结论不成立.【证】对于任给的n个数x i(1≢i≢n),如果它们不全相等,那么施行如上运算若干次后得的新数中,最大值要变小,最小值要变大,因此,如若不能得出一组n个相同的数的话,其中最大数不能永远是整数.假设从一组n个数z1,z2,…,z n得到n个相同的数那么,当n是奇数时,易知z1=z2=…=z n;当n是偶数时,z1,…,z n中奇数项相等,偶数项相等.若z i(1≢i≢n)由y i(1≢i≢n)经运算得出,且设则有 2(y1+y2+…+y n)=2na及 2(y2+y3+…+y n+y1)=2nb从而 2na=2nb,a=b由此得出z1=z2=…=z n=a因此,我们的命题成立.仅当n为偶数时,有一种例外情况:n个整数a,b,a,b,…,a,b,(a与b的奇偶性相同,a ≠b)满足题中条件,但结论不成立.A5-004某整数集合A既含有正整数,也含有负整数,而且如果a和b是它的元素,那么2a 和a+b也是它的元素,证明:集合A包含它的任意两个元素之差.【题说】1967年匈牙利数学奥林匹克题1.【证】不难证明:如果整数c是集合A的元素,而n是自然数,那么nc也属于集合A.因为集合A既含有正整数,也含有负整数,根据最小数原理,集合A存在最小的正整数a和绝对值最小的负整数b.这两个数的和a+b也应该属于集合A,而且满足不等式.b<a+b<a但是集合A不含有小于a的正数和大于b的负数,所以a+b只能等于0.因此,数0属于集合A,且b=-a.根据前面所证,集合A包含数a的所有整数倍.设x∈A,则由带余数除法,存在整数q、r,使x=qa+r(0≢r<a).于是r=x+(-qa)∈A.由于0≢r<a,必有r=0.即A中的数均为a的整数倍.既然集合A的元素都是a的整数倍,因此集合A的任意两个元素之差也是元素a的整数倍,因而属于集合A.A5-005证明:任何不大于n!的自然数,都能表示成不多于n个数的和,在这些加数中,没有两个是相同的,而且任何一个都是n!的因数.【题说】第二届(1968年)全苏数学奥林匹克九年级题5.【证】对n用数学归纳法,n=1时,显然.设n时结论真.对a≢(n+1)!,将a除以n+1得a=d(n+1)+r,这里d≢n!,0≢r<n+1.由归纳假设,d=d1+d2+…+d l,l≢n.且所有d i是n!的不同因数(i=1,2,…,l).于是 a=d1(n+1)+…+d l(n+1)+r这个和中的加数不多于n+1个,其中每一个都是(n+1)!的因数,且全不相等.A5-006找出具有下列性质的所有正整数n:设集合{n,n+1,n+2,n+3,n+4,n+5}可以划分成两个无公共元素的非空子集,使得一个子集中所有元素的乘积等于另一子集中所有元素的乘积.【题说】第十二届(1970年)国际数学奥林匹克题4.本题由捷克斯洛伐克提供.【解】假定n具有所述性质,那么六个数n,n+1,n+2,n+3,n+4,n+5中任一个素因数p 必定还整除另一个数(在另一个子集中).因而p整除这两个数的差,所以p只能为2,3,5.再考虑数n+1,n+2,n+3,n+4.它们的素因数不能为5(否则上面的六个数中只有一个被5整除),因此只能为2与3.这四个数中有两个为连续奇数.它们必须是3的正整数幂(因为没有其它因数),但这样两个幂的差被3整除,决不能等于2.矛盾!这就说明具有所述性质的n是不存在的.A5-007证明:任何一个正的既约真分数m/n可以表示成两两互异的自然数的倒数之和.【题说】1972年~1973年波兰数学奥林匹克三试题5.【证】对m用数学归纳法.m=1时,显然成立.假设对小于m的自然数命题成立,我们证明它对m>1也成立.为此,设n=qm+r(0≢r<m) (1)因为m/n是正的既约真分数,所以q>0,r>0.又因0<m-r<m,所以由归纳假设,其中t1<t2<…<t k为自然数.因为n>m,所以由(3)知:t1>q+1,将(3)代入(2)得所以,命题对任何自然数m都成立.A5-008 8分和15分的邮票可以无限制地取用.某些邮资额数,例如7分、29分,不能够刚好凑成.求不能凑成的最大额数n,即大于n的额数都能够凑成,并证明你的答案.【题说】第六届(1974年)加拿大数学奥林匹克题6.【解】因为98=8²1+15²699=8²3+15²5100=8²5+15²4101=8²7+15²3102=8²9+15²2103=8²11+15²1104=8²13+15²0105=8²0+15²7比105大的数,可用以上8数加上8的适当倍数而得到.而97不能用8与15凑成.故所求的n 值为97.【注】一般地,当正整数p、q互质时,不能用p、q凑成的最大整数pq-p-q.A5-009若整数n可表示成n=a1+a2+…+a k (1)其中a1,a2,…,a k是满足的正整数(不一定相异),那么,我们称n是好数,已知整数33至73是好数,证明:每一个不小于33的整数都是好数.【题说】第七届(1978年)英国数学奥林匹克题3.【证】我们改证命题p n:整数n,n+1,…,2n+7都是好数.已知p33为真.假设p n成立,那么n是好数,即存在正整数a1,a2,…,a k使(1)、从而这表明 2(a1+a2+…+a k)+4+4=2n+82(a1+a2+…+a k)+3+6=2n+9也是好数,因此P n成立.根据数学归纳法,对所有正整数n≣33,P n成立,原命题因而得证.A5-010设f(x)=x2-x+1.证明:对任意的m个自然数(m>1),f(m),f(f(m)),…两两互素.【题说】第十二届(1978年)全苏数学奥林匹克十年级题1.【证】因f(0)=1,所以多项式的常数项p n(0)=1.因而,对于任意的整数m,p n(m)除以m,余数等于1.用m'=p k(m)代替m,就得到p n+k(m)=p n(m')与m'=p k(m)互素.A5-011自然数n的数字和用S(n)来表示.(1)是否存在一个自然数n,使得n+s(n)=1980;(2)证明:在任意两个连续的自然数之中,至少有一个能表示成n+S(n)的形式,其中n为某个自然数.【题说】第十四届(1980年)全苏数学奥林匹克八年级题6.【解】(1)当n=1962时,n+S(n)=1980.(2)令S n=n+S(n),如果n的末位数字是9,则S n+1<S n;否则S n+1=S n+2.对任意两个连续的自然数m(m≣2),m+1,在S n<m的n中,选择最大的,并用N表示.这时S N+1≣m>S N,所以N 的末位数字不是9,从而S N+1=S N+2.由m≢S N+1=S N+2<m+2,即得S N+1=m或S N+1=m+1.A5-012设n为≣2的自然数.证明方程x n+1=y n+1在x与n+1互质时无正整数解.【题说】1980年芬兰等四国国际数学竞赛题3.本题由匈牙利提供.【证】x n=y n+1-1=(y-1)(y n+y n-1+…+1).如果质数p是y-1与y n+y n-1+…+1的公因数,则p整除x n,从而p是x的因数.但y除以p余1,所以y n+y n-1+…+1除以p与n+1除以p 的余数相同,即n+1也被p整除,这与x、n+1互质矛盾.因此y-1与y n+y n-1+…+1互质,从而y-1=s n,y n+y n-1+…+1=t n,其中s、t为自然数,st=x.但y n<y n+y n-1+…+1<(y +1)n,所以y n+y n-1+…+1≠t n,矛盾,原方程无解.A5-013设a、b、c是两两互素的正整数,证明:2abc-be-ac-ab是不能表示为xbc+yac +zab形式的最大整数(其中x、y、z是非负整数).【题说】第二十四届(1983年)国际数学奥林匹克题3.【证】熟知在a、b互素时,对任意整数n有整数x、y,使ax+by=n.当n>ab-a-b时,首先取0≢x<b(若x>b则用x-b、y+a代替x、y),我们有by=n-ax>ab-a-b-ax≣ab-a-b-a(b-1)=-b所以y>-1也是非负整数.即n>ab-a-b时,有非负整数x、y使ax+by=n.因为a、b、c两两互素,所以(bc,ac,ab)=1.令(bc,ac)=d.则(ab,d)=1,所以方程abz+dt=n (1)有整数解,并且0≢z<d(若z>d则用z-d、t+ab代替z、t).设 bc=da1,ac=db1,那么(a1,b1)=1.在n>2abc-bc-ca-ab时,即 t>a1b1-a1-b1从而方程a1x+b1y=t (2)有非负整数解(x,y).由(1)与(2)消去t可得bcx+acy+abz=n有非负整数解.另一方面,若有非负整数x、y、z使2abc-bc-ac-ah=xbc+yac+zab则 bc(x+1)+ac(y+1)+ab(z+1)=2abc于是应有,a整除bc(x+1),因(a,bc)=1.所以,a整除x+1,从而c≢x+1.同理有,b≢y+1,c≢z+1.因此3abc=bca+acb+abc≢bc(x+1)+ac(y+1)+ab(z+1)=2abc由于a、b、c都是正整数,这是不可能的,故2abc-bc-ca-ab不能表成xbc+yca+zab(x、y、z为非负整数)的形式.A5-014能否选择1983个不同的正整数都不大于105,且其中没有三个正整数是算术级数中的连续项,并证明你的论断.【题说】第二十四届(1983年)国际数学奥林匹克题5.本题由波兰提供.【解】考虑三进制表示中,不含数字2并且位数≢11的数所成的集合M.显然|M|=211-1>1983.M中最大的数为若x、y、z∈M并且x+z=2y,则由于2y的各位数字为0或2,所以x+z的各位数字也为0或2.从而x、z在同一位上的数字同为0或同为2,即x=z.因此M中任三个互不相同的数不成等差数列.于是回答是肯定的,M即是一例.A5-015将19分成若干个正整数之和,使其积为最大.【题说】1984年上海市赛一试题2(9).【解】由于分法只有有限种,其中必有一种分法,分成的各数的积最大.我们证明这时必有:(1)分成的正整数只能是2和3.因为4=2+2,且4=2³2,若分出的数中有4,拆成两个2其积不变;若分出的数中有数a≣5.则只要把a拆成2与a-2,由2(a-2)>a知道积将增大.(2)分成的正整数中,2最多两个.若2至少有3个,则由3+3=2+2+2及3³3>2³2³2可知,将3个2换成2个3,积将增大.所以,将19分成5个3与2个2的和,这些数的积35³22=972是最大的.A5-016设a、b、c、d是奇整数,0<a<b<c<d,且ad=bc.证明:如果对某整数k和m有a+d=2k和b+c=2m,那末a=1.【题说】第二十五届(1984年)国际数学奥林匹克题6.【证】因为a[(a+d)-(b+c)]=a2+ad-ab-ac=a2+bc-ab-ac=(a-b)(a-c)>0所以a+d>b+c,即2k>2m,k>m.又由ad=bc,有 a(2k-a)=b(2m-b)2m(b-2k-m a)=b2-a2=(b+a)(b-a)可知2m整除(b+a)(b-a).但b+a和b-a不能都被4整除(因为它们的和是2b,而b是奇数),所以2m-1必整除b+a或b-a之一.因为b+a<b+c=2m,所以b+a=2m-1或b-a=2m-1.因为a、b是奇数,它们的公因数也是奇数,且是b+a和b-a的因数,从而是2m-1的奇因数,即1.所以a与b互质,同理a与c也互质.但由ad=bc,知a能整除bc,故a=1.A5-017对正整数n≣1的一个划分π,是指将n分成一个或若干个正整数之和,且按非减顺序排列(如n=4,划分π有1+1+1+1,1+1+2,1+3,2+2及4共5种).对任一划分π,定义A(π)为划分π中数1出现的个数;B(π)为π中出现不同的数的个数(如对n=13的一个划分π:1+1+2+2+2+5而言,A(π)=2,B(π)=3).求证:对任意正整数n,其所有划分π的A(π)之和等于B(π)之和.【题说】第十五届(1986年)美国数学奥林匹克题5.【证】设p(n)表示n划分的个数.那么第一个位置是1的划分有p(n-1)个,第二个位置上是1的(当然它第一个位置上也是1)的划分有p(n-2)个.等等.第n-1个位置上是1的划分有P(1)=1个,第n个位置上是1的只有1种.若令P(0)=1.则所有划分中含1的数A(π)之和等于P(n-1)+P(n-2)+…+P(1)+P(0).另一方面,从含有1的每个划分中拿去一个1,都成为一个(n-1)的划分,共拿去P(n-1)个1.再从含有2的每个划分中拿去一个2,都成为n-2的划分,共拿去P(n-2)个2.…从含有(n-1)的划分(只有一个:1+(n-1),拿去(n-1),即拿去了P(1)=1个1.再加上含有n的一个划分,n为P(0)=1个,故B(π)总和也等于P(n-1)+P(n-2)+…+P(1)+P(0).因此,A(π)=B(π).A5-018在直角坐标系xoy中,点A(x1,y1)和点B(x2,y2)的坐标均为一位正整数.OA与x轴正方向的夹角大于45°,OB与x轴正方向的夹角小于45°,B在x轴上的射影为B',A在y轴上的射影为A',△OB'B的面积比△OA'A的面积大33.5.由x1、求出所有这样的四位数,并写出求解过程.【题说】1985年全国联赛二试题1.>67.又由于x2、y2均为一位正整数,所以x2y2=72或x2y2=81.因为∠BCB'<45°,所以x2>y2.故由x2y2=72可知x2=9,y2=8.此时x1y1=5.同样可求得x1=1,y1=5.综上可知,1985为符合条件的唯一的四位数.A5-019设n、k为互素自然数,0<k<n,在集合M={1,2,…,n-1}(n≣3)中的各数,要么着蓝色,要么着白色,已知(1)对于各i∈M,i和n-i同色;(2)对于各i∈M,i≠k, i和|i-k|同色.证明:在M中的所有数均同色.【题说】第二十六届(1985年)国际数学奥林匹克题2.本题由澳大利亚提供.【证】设lk=nq l+r l(l=1,2,…,n-1;1≢r l≢n-1).若r l=r l',则(l-l')k被n整除,但n、k互素,所以n|(l-l')这表明在l=1,2…,n-1时,r1,r2,…,r n-1互不相同,所以M={r1,r2,…,r n-1}.若r l<n-k,即r l+k<n,则r l+1=r l+k,由条件(2),r l+1与r l+1-k=r l同色.若r l≣n-k,即r l+k≣n,则r l+1=r l+k-n,于是r l+1与k-r l+1=n-r l同色.再由条件(1)n-r l与r l同色.综上所述,r i+1与r l同色(l=1,2,…,n-2),因此M中所有数同色.A5-020如n是不小于3的自然数,以f(n)表示不是n的因数的最小自然数(例如f(12)=5).如果f(n)≣3,又可作f(f(n)).类似地,如果f(f(n))≣3,又可作f(f(f(n)))果用L n表示n的长度,试对任意的自然数n(n≣3),求L n并证明你的结论.【题说】第三届(1988年)全国冬令营赛题6.【解】很明显,若奇数n≣3,那么f(n)=2,因此只须讨论n为偶数的情况,我们首先证明,对任何n≣3,f(n)=p s,这里P是素数,s为正整数.假若不然,若f(n)有两个不同的素因子,这时总可以将f(n)表为f(n)=ab,其中a、b是大于1的互素的正整数.由f的定义知,a与b都应能整除n,因(a,b)=1,故ab也应整除n,这与f(n)=ab矛盾.所以f(n)=p s.由此可以得出以下结论:(1)当n为大于1的奇数时,f(n)=2,故L n=1;(2)设n为大于2的偶数,如果f(n)=奇数,那么f(f(n))=2,这时L n=2;如果f(n)=2s,其中自然数s≣2,那么f(f(n))=f(2s)=3,从而f(f(f(n)))=f(3)=2,这时L n=3.A5-021一个正整数,若它的每个质因数都至少是两重的(即在这数的分解式中每个质因数的幂指数都不小于2),则称该正整数为“漂亮数”.相邻两个正整数皆为“漂亮数”,就称它们是一对“孪生漂亮数”,例如8与9就是一对“孪生漂亮数”.请你再找出两对“孪生漂亮数”来.【题说】1989年北京市赛高一题5.【解】设(n,n+1)是一对“孪生漂亮数”,则4n(n+1)是漂亮数,并且4n(n+1)+1=4n2+4n+1=(2n+1)2是平方数,而平方数必为漂亮数.所以,(4n(n+1)、4n(n+1)+1)也是一对“孪生漂亮数”.于是,取n=8,得一对“孪生漂亮数”(288,289).再取n=288,得另一对“孪生漂亮数”(332928,332929).两个自然数的平方差,则称这个自然数为“智慧数”比如16=52-32,16就是一个“智慧数”.在自然数列中从1开始数起,试问第1990个“智慧数”是哪个数?并请你说明理由.【题说】1990年北京市赛高一复赛题4.【解】显然1不是“智慧数”,而大于1的奇数2k+1=(k+1)2-k2,都是“智慧数”.4k=(k+1)2-(k-1)2可见大于4且能被4整除的数都是“智慧数”而4不是“智慧数”,由于x2-y2=(x+y)(x-y)(其中x、y∈N),当x,y奇偶性相同时,(x+y)(x-y)被4整除.当x,y奇偶性相异时,(x+y)(x -y)为奇数,所以形如4k+2的数不是“智慧数”在自然数列中前四个自然数中只有3是“智慧数”.此后每连续四个数中有三个“智慧数”.由于1989=3³663,所以2656=4³664是第1990个“智慧数”.A5-023有n(≣2)名选手参加一项为期k天的比赛,每天比赛中,选手的可能得分数为1,2,3,…,n,且没有两人的得分数相同,当k天比赛结束时,发现每名选手的总分都是26分.试确定数对(n,k)的所有可能情况.【题说】第二十二届(1990年)加拿大数学奥林匹克题1.【解】所有选手得分总和为kn(n+1)/2=26n,即k(n+1)=52(n,k)取值可以是(3,13),(12,4),(25,2)及(51,1),但最后一种选择不满足要求.当(n,k)=(3,13)时,3名选手13天得分配置为(1,2,3)+2(2,3,1)+2(3,1,2)+3(1,3,2)+2(3,2,1)+3(2,1,3)=(26,26,26).当(n,k)=(12,4)时,12名选手4天得分配置为2(1,2,…,11,12)+2(12,11,…,2,1)=(26,26,…,26).当(n,k)=(25,2)时,25名选手两天得分配置为(1,2,…,24,25)+(25,24,…,2,1)=(26,26,…,26).A5-024设x是一个自然数.若一串自然数x0=1,x1,x2,…,x t-1,x t=x,满足x i-1<x i,x i -1|x i,i=1,2,…,t.则称{x0,x1,x2,…x t}为x的一条因子链,t为该因子链的长度.T(x)与R(x)分别表示x的最长因子链的长度和最长因子链的条数.对于x=5k³31m³1990n(k,m,n是自然数)试求T(x)与R(x).【题说】第五届(1990年)全国冬令营赛题2.【解】设x的质因数分解式为其中p1、p2、…、p n为互不相同的质数,α1、α2、…、αn为正整数.由于因子链上,每一项至少比前一项多一个质因数,所以T(x)≢α1+α2+…+αn.将α1+α2+…+αn个质因数(其中α1个p1,α2个p2,…,αn个p n)依任意顺序排列,每个排列产生一个长为α1+α2+…+αn的因子链(x1为排列的第一项,x2为x1乘排列的第二项,x3为x2乘第三项,…),因此T(x)=α1+α2+…+αn,R(x)即排列对于x=5k³31m³1990n=2n³5k+n³31m³199n,T(x)=3n+k+mA5-025证明:若则为整数.【题说】1990年匈牙利阿拉尼²丹尼尔数学竞赛低年级普通水平题1.【证】若x+y+z+t=0,则由题设条件可得于是此时(1)式的值等于-4.若x+y+z+t≠0,则由此可得x=y=z=t.于是(1)式的值等于4.A5-026课间休息时,n个学生围着老师坐成一圈做游戏,老师按顺时针方向并按下列规则给学生们发糖:他选择一个学生并给一块糖,隔一个学生给下一个学生一块,再隔2个学生给下一个学生一块,再隔3个学生给下一个学生一块….试确定n的值,使最后(也许绕许多圈)所有学生每人至少有一块糖.【题说】1991年亚太地区数学奥林匹克题4.【解】问题等价于确定正整数n,使同余式1+2+3+…+x=a(modn) (1)对任意正整数a都有解.我们证明当且仅当n是2的方幂时,(1)式总有解.若n不是2的方幂,则n有奇素因数p.由于1,1+2,1+2+3,…,1+2+…+(p-1),1+2+…+p至多表示mod p的p-1个剩余类(最后两个数在同一个剩余类中),所以1+2+…+x也至多表示mod p的p-1个剩余类,从而总有a使1+2+…+x≡a(mod p)无解,这时(1)也无解.若n=2k(k≣1),考察下列各数:0³1,1³2,2³3,…,(2k-1)2k (2)设x(x+1)≡y(y+1)、(mod 2k+1),其中0≢x,y≢2k-1,则x2-y2+x-y≡(x-y)(x+y+1)≡0(mod 2k+1)因为x-y,x+y+1中,一个是奇数,一个是偶数,所以x-y≡0(mod2k+1)或x+y+1≡0(mod 2k +1)由后者得:2k+1≢x+y+1≢2k-1+2k-1+1=2k+1-1矛盾.故 x≡y(mod 2k+1),即x=y.因此(2)中的2k个偶数mod 2k+1互不同余,从而对任意整数a,方程x(x+1)≡2a(mod 2n)有解,即(1)有解.A5-027设S={1,2,3,…,280}.求最小的自然数n使得S的每个有n个元素的子集都含有5个两两互素的数.【题说】第三十二届(1991年)国际数学奥林匹克题3.本题由中国提供.【解】令A i={S中一切可被i整除的自然数},i=2,3,5,7.记A=A2∪A3∪A5∪A7,利用容斥原理,容易算出A中元素的个数是216.由于在A中任取5个数必有两个数在同一个A i之中,从而他们不互素.于是n≣217.另一方面,令B1=(1和S中的一切素数}B2=(22,32,52,72,112,132}B3={2³131,3³89,5³53,7³37,11³23,13³19}B4={2³127,3³83,5³47,7³31,11³19,13³17}B5={2³113,3³79,5³43,7³29,11³17}B6={2³109,3³73,5³41,7³23,11³13}易知B1中元素的个数为60.令B=B1∪B2∪B3∪B4∪B5∪B6,则B中元素的个数为88,S-B中元素的个数为192.在S中任取217个数,由于217-192=25>4³6,于是存在i(1≢i≢6),使得这217个数中有5个数在Bi中.显然这5个数是两两互素的,所以n≢217.于是n=217.A5-028对于每个正整数n,以s(n)表示满足如下条件的最大正整数:对于每个正整数k≢s(n),n2都可以表示成k个正整数的平方之和.1.证明:对于每个正整数n≣4,都有s(n)≢n2-14;2.试找出一个正整数n,使得s(n)=n2-14;3.证明:存在无限多个正整数n,使得s(n)=n2-14.【题说】第三十三届(1992年)国际数学奥林匹克题6.本题由英国提供.【解】用反证法证明如下:假设对某个n≣4,有s(n)≣n2-14,则存在k=n2-13个正整数a1,a2,…,a k,使得于是就有从而3b+8c=13 这表明c=0或1;但相应的b不为整数,矛盾.2.每个大于13的正整数m可以表为3b+8c,其中b、c为非负整数.事实上,若m=3s+1,则s≣5,m=3(s-5)+2³8.若m=3s+2,则s≣4,m=3(s-2)+8.由即知n2可表为n2-m个平方和,从而n2可表为n2-14,n2-15,…,对于n=13,有n2=122+52=122+42+32=82+82+52+42由于82可表为4个42的和,42可表为4个22的和,22可表为4个12的和,所以132=82+82+52+42可表为4,7,10,...,43个平方的和,又由于52=42+32,132可表为5,8,11, (44)平方的和.由于122可表为4个62的和,62可表为4个32的和,所以132=122+42+32可表为3,6,9,…,33个平方的和.为18+2³9=36,18+2³12=42个平方的和.再由42为4个22的和,132也可表为39个平方的和.综上所述,132可表为1,2,…,44个平方的和.3.令n=2k³13.因为132可表为1,2,…,155个平方的和,22可表为4个平方的和,所以132³22可表为1,2,…,155³4个平方的和,132³24可表为1,2,…,155³42个平方的和,…,n2=132³22k可表为1,2,…,155³4k个平方的和.s(n)=n2-14A5-029每个正整数都可以表示成一个或者多个连续正整数的和.试对每个正整数n,求n有多少种不同的方法表示成这样的和.【题说】第一届(1992年)中国台北数学奥林匹克题2.【解】设m为n的正的奇因数,m=nd,则若(1)的每一项都是正的,则它就是n的一种表示(表成连续正整数的和).若(1)式右边有负数与0,则这些负数与它们的相反数抵消(因以略去,这样剩下的项是连续的正整数,仍然得到n的一种表示,其项数为偶数(例如7=(-2)+(-1)+0+1+2+3+4=3+4)于是n的每一个正奇因数产生一个表示.反过来,若n有一个表示,项数为奇数m,则它就是(1)的形式,而m是n的奇因数,若n有一个表示,项数为偶数,最小一项为k+1,则可将这表示向负的方向“延长”,增加2k+1项,这些项中有0及±1,±2,…,±k.这样仍成为(1)的形式,项数是n的奇因数.因此,n的表示法正好是n的正奇因数的个数,如果n的标准分解A5-030 x、y为正整数,x4+y4除以x+y的商是97,求余数.【题说】1992年日本数学奥林匹克预选赛题7.【解】由题知x4+y4<98(x+y),不妨设x≣y,则x4<98³2x,所以x≢5.注意到14=1,24=16,34=81,44=256,54=625.对x,y∈{1,2,3,4,5},x4+y4>97(x+y)的仅有54+44=881=(5+4)³97+8,所以所求的余数为8.A5-031设p=(a1,a2,…,a17)是1,2,…,17的任一排列,令k p是满足不等式a1+a2+…+a k<a k+1+…+a17的最大下标k,求k p的最大值和最小值,并求所有不同的排列p相应的k p的和.【题说】1992年捷克和斯洛伐克数学奥林匹克(最后一轮)题1.【解】若k p≣12,则这与k p的定义相矛盾,所以k p≢11.又当p=(1,2,…,17)时,1+2+…+11=66<87=12+13+…+17,故此时k p=11.所以,k p的最大值为11,并且kp的最小值为5,此时p=(17,16,…,2,1).设p=(a1,a2,…,a17)是1,2,…,17的任一排列,由kp的定义,知且但(2)的等号不可能成立,否则矛盾.所以由(1)和(3)可知,对排列p=(a1,a2,…,a17)的反向排列p'=(a17,a16,…,a1),k p'=17-(k p+2)+1=16-k p所以k p+k p'=16.于是可把1,2,…,17的17!个不同排列与它的反向排列一一配对.所求之和为A5-032确定所有正整数n,使方程x n+(2+x)n+(2-x)n=0有整数解.【题说】1993年亚太地区数学奥林匹克题4.【解】显然,n只能为奇数.当n=1时,x=-4.当n为不小于3的奇数时,方程左边是首项系数为1的非负整系数多项式,常数项是2n+1,所以它的整数解只能具有-2t的形式,其中t为非负整数.若t=0,则x=-1,它不是方程的解;若t=1,则x=-2,也不是方程的解;当t≣2时,方程左边=2n[-2n(t-1)+(1-2t-1)n+(1+2t -1)n],而-2n(t-1)+(1-2t-1)n+(1+2t-1)n≡2(mod 4),从而方程左边不等于零.综上所述,当且仅当n=1时,原方程有一个整数解x=-4.A5-033每一个大于2的自然数n都可以表示为若干个两两不等的正整数之和.记这些相加数个数的最大值为A(n),求A(n).【题说】1993年德国数学奥林匹克(第一轮)题1.【解】对任意自然数n(n≣3),存在自然数m,使-1)之和,所以A(n)=m.A5-034完全平方数对(a,b)满足:(1)a和b的十进制表示位数相同;(2)将b的十进制表示续写在a的十进制表示之后,恰好构成一个新的完全平方数的十进制表示,例如a=16,b=81,1681=412.求证:这样的数对(a,b)有无穷多对.【题说】1993年德国数学奥林匹克(第一轮)题3.【证】取a1=42,a2=492,…,a n=(5³10n-1-1)2,…;b1=92,b2=992,…,b n=(10n-1)2,….其中n为正整数.显然,a n,b n均为2n位数,且=25³104n-2-103n+2³102n-2³102n+1=(5³102n-1-10n+1)2即对任意正整数n,(a n,b n)均满足条件.A5-035证明:对于任意整数x,是一个整数.【题说】1994年澳大利亚数学奥林匹克一试题2.由于连续n个整数中必有一个是n的倍数,所以上式为整数.A5-037设n=231²319.n2有多少个小于n,但不能整除n的正整数因子?【题说】第十三届(1995年)美国数学邀请赛题6.【解】n2的因子必为2α²3β形,其中0≢α≢62,0≢β≢38.于是(α,β)是属于图中矩形的格点,显然对I、IV中的格点(α,β),2α.3β不满足要求(2α²3β|n 或2α²3β≣n),II中任一格点(约定β=19或α=31的点属于I或IV,不属于II或III)(α,β),若2α²3β≣n,则对III中格点(62-α,31-β),有262-α²331-β<n.反之,对III中格点(α,β),若2α²3β≣n,则对II中格点(62-α,31-β),有262-α²331-β<n.因此II、III 中恰有一半的格点(α,β),使2α²3β满足要求.即所求的正整数因子个数为19³31=589A5-038在满足y<x≢100的有序正整数对(x,y)中,有【题说】第十三届(1995年)美国数学邀请赛题8.=49+16+8+4+3+2+1+1+1=85A5-039对于每个正整数n,将n表示成2的非负整数次方的和,令f(n)为正整数n的不同表示法的个数.如果两个表示法的差别仅在于它们中各个数相加的次序不同,这两个表示法就被视为是相同的.例如,f(4)=4,因为4恰有下列四种表示法:4;2+2;2+1+1;1+1+1+1.【题说】第三十八届(1997年)国际数学奥林匹克题6.本题由立陶宛提供.【证】对于任意一个大于1的奇数n=2k+1,n的任一表示中必含一个1.去掉这个1就得到2k 的一个表示.反之,给2k的任一表示加上一个1就得到2k+1的一个表示.这显然是2k+1和2k的表示之间的一个一一对应.从而有如下递归式:f(2k+1)=f(2k) (1)对于任意正偶数n=2k,其表示可以分为两类:含有1的与不含1的.对于前者,去掉一个1就得到2k-1的一个表示;对于后者,将每一项除以2,就得到k的一个表示.这两种变换都是可逆的,从而都是一一对应.于是得到第二个递归式:f(2k)=f(2k-1)+f(k) (2)(1)、(2)式对于任意k≣1都成立.显然f(1)=1.定义f(0)=1,则(1)式对于k=0也成立.根据(1)、(2)式,函数f是不减的.由(1)式,可以将(2)式中的f(2k-1)换成f(2k-2),得到f(2k)-f(2k-2)=f(k),k=1,2,3,…,给定任一正整数n≣1,将上式对于k=1,2,…,n求和,得到f(2n)=f(0)+f(1)+...+f(n),n=1,2,3, (3)下面先证明上界,在(3)式中,右端所有的项都不大于最后一项,对于n≣2,2=f(2)≢f(n).于是有f(2n)=2+(f(2)+…+f(n))≢2+(n-1)f(n)≢f(n)+(n-1)f(n)=nf(n)n=2,3,4,…从而得到f(2n)≢2n-1²f(2n-1)≢2n-1²2n-2²f(2n-1)≢2n-1²2n-2²2n-3²f(2n-3)≢…≢2(n-1)+(n-2)+…+1²f(2)=2n(n-1)/2²2为了证明下界,我们先证明对于具有相同奇偶性的正整数b≣a≣0,有如下不等式成立:f(b+1)-f(b)≣f(a+1)-f(a) (4)事实上,如果a、b同为偶数,则由(1)式知上式两端均等于0.而当a、b同为奇数时,由(2)式知f(b+1)-f(b)=f(b+1)/2),f(a+1)-f(a)=f((a+1)/2).由函数f是不减的即得不等式(4)成立.任取正整数r≣k≣1,其中r为偶数,在(4)式中依次令a=r-j,b=r+j,j=0,1,…,k-1.然后将这些不等式加起来,得到f(r+k)-f(r)≣f(r+1)-f(r-k+1)因为r是偶数,所以f(r+1)=f(r).从而f(r+k)+f(r-k+1)≣2f(r),k=1,…,r对于k=1,…,r,将上述不等式相加,即得f(1)+f(2)+…+f(2r)≣2rf(r)根据(3)式,上式左端等于f(4r)-1.从而对于任意偶数r≣2,f(4r)>2rf(r)+1>2rf(r).取r=2m-2即得f(2m)≣2m-1f(2m-2) (5)要使r=2m-2为偶数,m须为大于2的整数,但是(5)式对于m=2也成立.因此对一切n≣2下界成立.。

小学五年级数学奥林匹克竞赛试卷及答案

小学五年级数学奥林匹克竞赛试卷及答案

一、填空(共30分,每小题3分)1. 两个数的和是61.6,其中一个数的小数点向右移动一位,就及另一个数相同。

两个数分别是( )、( )。

2. 有三根木料,打算把每根锯成3段,每锯开一处需要3分钟,全部锯完需要( )分钟。

3. 笑笑同学的家住在5楼,每层楼梯有16级,她从1楼走到5楼,共要走()级楼梯。

4. 把一张边长24厘米的正方形纸对折4次后得到一个小正方形,这个小正方形的面积是()平方厘米。

5. 一副扑克牌有54张,至少抽取()张扑克牌,方能使其中至少有两张牌有相同的点数。

6. 一个长方形的长为9厘米,把它的长的一边减少3厘米,另一边不变,面积就减少9平方厘米,这时变成的梯形面积是()平方厘米。

7. 小明和小英两人同时从甲、乙两地相向而行,小明每分钟行a米,小英每分钟行b米,行了4分钟两人相遇。

甲、乙两地的路程是( )米。

8.街道上有一排路灯,共40根,每相邻两根距离原来是45米,现在要改成30米,可以有( )根路灯不需要移动。

9.小明计算20道题目,规定做对一道题得5分,做错一道题反扣3分。

结果小明20道题都做,却只得了60分,问他做对了()题。

10. 五(1)班的同学去划船。

他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。

这个班共有()名同学。

二、判断(正确的在括号里画“√”,错误的画“×”。

共15分,每小题3分)11. 用10张同样长的纸条接成一条长31厘米的纸带,如果每个接头都重叠1厘米,则每张纸条长4.1厘米。

( )12. 用三个长3厘米、宽2厘米,高1厘米的长方体,拼成一个大长方体,有3种拼法。

()13. 把一批圆木自上而下按1、2、3……14、15根放在一起,这批圆木共有240根。

()14. 在a÷b=5……3中,把a、b同时扩大3倍,商是5,余数是3。

( )15.右图中长方形的面积及()阴影部分的面积相等。

三、选择(把正确答案的序号填在括号里。

第52届国际数学奥林匹克试题解答

第52届国际数学奥林匹克试题解答

第52届国际数学奥林匹克试题解答(胡仁建)1. 解,不妨设所给正整数集合A 满足:1234,a a a a <<< (1)先证4A n ≤:易知324342312141a a a a a a a a a a a a +⎧+>+>>+>+⎨+⎩, 若2341a a a a +=+=12A s ,否则{}23411m a x ,2A a a a a s ++>,而i j A a a s +时,必有12i j A a a s +≤,故4A n ≤(2)若4A n =,由(1)知必有2341a a a a +=+=12A s ,由于i j a a +N *∈,则2,A s k k N *=∈,且存在1210,,(1,2)2i Q i λλλ<<<∈=使得:1211322322a a ka a k a a k λλ+=⎧⎪+=⎨⎪+=⎩,解得:1212123214211()21()21()23()2a k a k a ka k λλλλλλλλ⎧=+-⎪⎪⎪=-+⎪⎨⎪=-+⎪⎪⎪=--+⎩,由10a >知121,2λλ+>取,,,(,)1,1,2,i i i i i i in m n N m n i m λ*=∈==[]12,,2,k p m m p N *=∈此时,由12121132,A A s m s m Z Z a a n a a n =∈=∈++得,121n n ==,又1212111,2m m λλ+=+>故,12123,43,5m m m m ====或由(1),(2)知A n 最大为4,此时{}{},5,7,11,11,19,29,()A p p p p p p p p p N *=∈或4、解:设对所给的n 个砝码,整个过程的操作方法数为n a ,(1)当砝码2n 在最后一步出场时,这步之前的所有操作方法数为n a ,由于12212,n in n i -==-<∑故最后一个砝码2n只能放在左边,即最后一步方法数为1(2)当砝码2n 在前n 步中的任步出场时,都有01()i n i N ≤≤-∈使得砝码2i 在最后一步出场,易知,在这种情况下,对任意01()i n i N ≤≤-∈,前n 步的操作方法仍为n a ,故,前n 步的方法总数为1n n i a -=∑,由于最大号码已经出现,且在左边,故最后一砝码可放天平的任一边,有两种方法,综上可知,110(12)(21)n n n n i a a n a -+==+=+∑,其中11a =故(2)!2!n nn a n =⋅。

5年中考3年模拟试卷初中数学七年级下册第十章素养综合检测

5年中考3年模拟试卷初中数学七年级下册第十章素养综合检测

第十章素养综合检测(满分100分,限时60分钟)一、选择题(每小题3分,共24分)1.(2022广西桂林中考)下列调查中,最适合采用全面调查的是()A.了解全国中学生的睡眠时间B.了解某河流的水质情况C.调查全班同学的视力情况D.了解一批灯泡的使用寿命2.【新独家原创】少年强则国强.2023年第64届国际数学奥林匹克竞赛中,中国队夺得团体总冠军,数学老师想知道班里学生对这次数学竞赛的了解情况,他应采取的收集数据的方法为()A.查阅资料B.试验C.问卷调查D.观察3.小夏为了了解她所在小区(约有3 000人)市民的运动健身情况,她应采用的收集数据的方式是()A.对小区所有成年人发问卷调查B.对小区内所有中小学生发问卷调查C.对小区出入居民随机发问卷调查D.对小区内跳广场舞的爷爷奶奶发问卷调查4.为了解某市2020年参加中考的34 000名学生的视力情况,抽查了其中1 800名学生的视力情况进行统计分析,下面叙述错误的是()A.34 000名学生的视力情况是总体B.本次调查是抽样调查C.1 800名学生的视力情况是总体的一个样本D.样本容量是34 0005.(2023辽宁大连中考)某小学开展课后服务,其中在体育类活动中开设了四种运动项目:乒乓球、排球、篮球、足球.为了解学生最喜欢哪种运动项目,随机选取100名学生进行问卷调查(每名学生仅选一种),并将调查结果绘制成不完整的扇形统计图如下.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生有40名D.“排球”对应扇形的圆心角为10°6.(2022广西玉林中考)垃圾分类利国利民.某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率;②整理采访记录并绘制空矿泉水瓶投放频数分布表;③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比.统计步骤的正确顺序应该是()A.②→③→①B.②→①→③C.③→①→②D.③→②→①7.甲、乙两超市在1—5月间的盈利情况统计图如图所示,下列结论正确的是(M7210004)()A.甲超市的利润逐月减少B.乙超市在6月份的利润必然超过甲超市C.乙超市的利润逐月增加D.3月份两家超市利润相同8.十一假期期间相关部门对到某景点的游客的出行方式进行了随机抽样调查,整理并绘制了两幅统计图(如图,尚不完整),根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5 000B.扇形统计图中的m为10%C.样本中选择公共交通出行的有2 500人D.若十一假期期间到该景点的游客有50万人,则选择自驾方式出行的约有25万人二、填空题(每小题3分,共24分)9.要表示一个家庭一年用于“教育”“服装”“食品”“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”“条形统计图”“折线统计图”中选择一种统计图,最适合的统计图是.10.(2023辽宁大连瓦房店期末)一组数据的最大值是132,最小值是89,将这组数据进行分组时,取组距为5,则组数是.11.(2023湖南株洲攸县一模)一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的个数为.12.(2023北京丰台期末)如图所示的是2018—2022年中国新能源汽车保有量的条形统计图,2022年新能源汽车保有量比2021年增加了万辆,从2019年到2022年新能源汽车保有量年增长率最大的是年.中国新能源汽车保有量条形统计图13.(2023北京期末)小华同学统计了他所在小区居民每天手机阅读的时间,并绘制了频数分布直方图(每组时间含最小值,不含最大值),如图所示:①小华同学一共统计了74人;②每天手机阅读不足20分钟的有8人;③每天手机阅读30~40分钟的人数最多;④每天手机阅读0~10分钟的人数最少.根据图中信息,上述说法中正确的是.14.在某校对若干名青少年进行最喜爱的运动项目的抽样调查中,得到如图所示的统计图.如果最喜爱足球的人数比最喜爱骑自行车的人数多30,那么参加这次调查的总人数是.15.已知全班有40位学生,他们有的步行,有的骑车,还有的乘车来上学,根据表中已知信息完成统计表:上学方式步行骑车乘车划记正正正次数9百分比37.5%16.某中学七年级甲、乙、丙三个班中,每班的学生人数都为40,某次数学考试的成绩统计如下:(统计表和统计图中,每组分数含最小值,不含最大值)甲班数学成绩频数分布直方图乙班数学成绩各分数段人数扇形统计图丙班数学成绩频数分布表分数/分50~6060~7070~8080~9090~100频数1415119 (人数)根据图、表提供的信息,80~90分这一组人数最多的班是.三、解答题(共52分)17.(2022广东东莞一模)(8分)为了解某市人口年龄结构情况,一机构对该市的人口数据进行随机抽样分析,绘制了如下尚不完整的统计表和统计图.类别A B C D 年龄t(岁)0≤t<1515≤t<6060≤t<65t≥65人数(万) 4.711.6m 2.7根据以上信息解答问题:(1)m=,扇形统计图中“C”对应扇形的圆心角度数是.(2)该市现有人口约800万,请根据此次抽查结果,估计该市现有60岁及以上的人数.18.(2023北京朝阳二模)(8分)某校为了解本校学生每天在校体育锻炼时间的情况,随机抽取了若干名学生进行调查,获得了他们每天在校体育锻炼时间的数据(单位:min),并对数据进行了整理、描述,部分信息如下:a.每天在校体育锻炼时间分布情况:每天在校体育频数(人数)百分比锻炼时间x(min)60≤x<701414%70≤x<8040m80≤x<903535%x≥90n11%b.每天在校体育锻炼时间在80≤x<90这一组的数据如下: 80818181828283838484 84848485858585858585 858687878787878888888989898989根据以上信息,回答下列问题:(1)表中m=,n=.(2)若该校共有1 000名学生,估计该校每天在校体育锻炼时间不低于80 min的学生的人数.(3)该校准备确定一个时间标准p(单位:min),对每天在校体育锻炼时间不低于p的学生进行表扬,若要使25%的学生得到表扬,则p的值可以是.19.(2022广东东莞光明中学一模改编)(8分)为了抵制手机诱惑,减少手机影响,七年级各班召开了“放下手机,让我们读书吧!”主题班会,号召全体同学每周读一本好书(从自然科学、文学艺术、社会百科和小说四类书籍中选一本),一周后,七年级(2)班学习委员对全班同学所读书籍进行统计并绘制成如下不完整的统计图表.书籍类型频数百分率自然科学a20%文学艺术2550%社会百科12b小说36%请你根据图表中提供的信息,解答以下问题:(1)该班总人数为.(2)表中a=,b=,将条形图补充完整.(3)七年级共有学生860人,按七年级(2)班统计结果估算,全年级有人阅读的书籍是自然科学类.20.(2023广东佛山禅城期末)(8分)某校兴趣小组想了解球的弹性大小,准备了A、B两个球,分别让球从不同高度自由下落到地面,测量球的反弹高度,记录数据后绘制成如图所示的统计图.请你根据图中提供的信息解答下列问题:(1)当起始高度为80 cm时,B球的反弹高度是起始高度的%.(2)比较两个球的反弹高度的变化情况,球弹性较大.(填“A”或“B”)(3)下列推断合理的是.(只填序号)①根据统计图预测,如果下落的起始高度继续增加,那么A球的反弹高度可能会继续增加;②从统计图上看,两球的反弹高度不会超过它们的起始高度.21.(2022广东广州大学附中期末)(10分)某校为了了解初三年级600名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5 ),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图.(2)C组学生人数所占的百分比为,在扇形统计图中,D组所对应扇形的圆心角是度.(3)请你估计该校初三年级体重超过60.5 kg的学生有多少名.22.(2023福建福州仓山期末)(10分)某学校食堂计划推行午餐套餐制,现随机抽取中午在学校食堂用餐的20名学生,收集到他们午餐消费金额x(单位:元)的数据如下:9,13,14,14,14,11,14,11,13,13,12,13,13,11,12,15,15,12,13,10. 对数据进行整理、描述和分析.下面给出部分信息:①这20名学生午餐消费金额数据的频数分布统计表:午餐消费金额9≤x<1111≤x<1313≤x<1515≤x<17 x(单位:元)频数2a b2②根据①中整理的四组数据绘制成一个不完整的频数分布直方图(如图).根据以上信息,回答下列问题:(1)直接写出频数分布统计表中a与b的值.(2)补全频数分布直方图.(3)学校食堂推出A,B两种价格不同的套餐.据调查,午餐消费金额x(单位:元)在11≤x<13的学生中有50%选择A套餐,在13≤x<15的学生中有80%选择A套餐,其余学生选择B套餐.若每天中午约有600名学生在食堂用餐,估计食堂每天中午需准备B套餐的份数.答案全解全析1.C全面调查得到的调查结果比较准确,但所费人力、物力和时间较多.一般来说,对于调查范围比较小、精确度要求高的、事关重大的调查,往往选用全面调查,对于具有破坏性的、无法进行全面调查的、全面调查意义或价值不大的调查,应选择抽样调查.故“调查全班同学的视力情况”适合采用全面调查.2.C要了解班里学生对这次数学竞赛的了解情况用问卷调查比较好.3.C A,B,D收集数据的方式不具代表性、广泛性.故选C.4.D A.34 000名学生的视力情况是总体,故A中叙述正确,不符合题意;B.本次调查是抽样调查,故B中叙述正确,不符合题意;C.1 800名学生的视力情况是总体的一个样本,故C中叙述正确,不符合题意;D.样本容量是1 800,故D中叙述错误,符合题意.5.D最喜欢排球的人数的占比为1-30%-40%-20%=10%,所以“排球”对应扇形的圆心角为360°×10%=36°.故D选项中说法错误.6.A统计调查的一般过程:(1)收集数据;(2)整理数据;(3)描述数据;(4)分析数据.根据统计调查的一般过程,可知本题统计步骤的正确顺序是②→③→①.7.D甲超市,1月至4月,利润逐月减少,4月至5月,利润增加,故A选项错误;乙超市在6月份的利润不一定超过甲超市,故B选项错误;乙超市,1月至4月,利润逐月增加,4月至5月,利润减少,故C选项错误;3月份两家超市利润相同,故D选项正确.8.D A.本次抽样调查的样本容量是2 000÷40%=5 000,此选项结论正确;B.扇形统计图中的m为1-(50%+40%)=10%,此选项结论正确;C.样本中选择公共交通出行的有5 000×50%=2 500(人),此选项结论正确;D.若十一假期期间到该景点的游客有50万人,则选择自驾方式出行的约有50×40%=20(万人),此选项结论错误.故选D.9.扇形统计图解析扇形统计图能清楚地表示出各部分占总体的百分比.10.9解析(132-89)÷5=8.6,所以应分为9组.11.20解析一个样本中有50个数据,第1、2、3、4组数据的个数分别是2、8、15、5,故前4组共有2+8+15+5=30个数据,故第5组数据的个数是50-30=20.12.526;2022解析 1 310-784=526(万辆).故2022年新能源汽车保有量比2021年增加了526万辆.从2019年到2022年新能源汽车保有量年增长率最大的是2022年. 13.①③④解析①小华同学一共统计了4+8+14+20+16+12=74(人),故①正确;②每天手机阅读不足20分钟的有4+8=12(人),故②错误;③每天手机阅读30~40分钟的人数最多,故③正确;④每天手机阅读0~10分钟的人数最少,故④正确.14.360解析根据题意,可得30÷=360(人),即参加这次调查的总人数是360.15.填表如下:上学方式步行骑车乘车划记正正正正正正正次数15 9 16百分比37.5% 22.5% 40%16.甲班解析由甲班数学成绩频数分布直方图可知,80~90分这一组人数=40-12-8-5-2=13,由乙班数学成绩各分数段人数扇形统计图可知,80~90分这一组人数=40×(1-10%-5%-35%-20%)=12,由丙班数学成绩频数分布表可知,80~90分这一组人数是11,所以80~90分这一组人数最多的班是甲班.17.解析(1)本次抽样调查,共调查的人数是11.6÷58%=20(万), “C”的人数为20-4.7-11.6-2.7=1(万),∴m=1,扇形统计图中“C”对应扇形的圆心角度数为×360°=18°.故答案为1;18°.(2)×800=148(万).答:该市现有60岁及以上的人数约为148万.18.解析(1)调查人数为14÷14%=100,m=40÷100×100%=40%,n=100×11%=11.故答案为40%;11.(2)1 000×(35%+11%)=460(名).答:该校1 000名学生中每天在校体育锻炼时间不低于80 min的学生大约有460名.(3)所调查的学生中,每天在校体育锻炼时间不低于90 min的有11人,在80≤x<90这一组的有35人,根据所列举的数据可知,p的值可以是86.19.解析(1)该班总人数为25÷50%=50.(2)a=50×20%=10,b=12÷50×100%=24%,补全的条形图如图.(3)860×20%=172(人),即全年级大约有172人阅读的书籍是自然科学类.20.解析(1)当起始高度为80 cm时,B球的反弹高度是50 cm,50÷80×100%=62.5%,故答案为62.5.(2)由统计图可得,起始高度相等时,A球的反弹高度比B球的反弹高度大,所以A球的弹性较大,故答案为A.(3)根据统计图预测,如果下落的起始高度继续增加,那么A球的反弹高度可能会继续增加;从统计图上看,两球的反弹高度不会超过它们的起始高度.故答案为①②.21.解析(1)4÷8%=50(人),50-4-16-10-8=12(人),故样本容量为50,补全的频数分布直方图如图:(2)C组学生人数所占的百分比为16÷50×100%=32%,D组所对应扇形的圆心角的度数为360°×=72°.(3)600×=216(名).答:该校600名初三年级的学生中,体重超过60.5 kg的大约有216名.22.解析(1)a=6,b=10.(2)由a=6,b=10,补全频数分布直方图如图:(3)600×=270(份). 答:估计食堂每天中午需准备B套餐270份.。

五年级数学奥林匹克竞赛题目精选

五年级数学奥林匹克竞赛题目精选

五年级数学奥林匹克竞赛(一)一.填空题。

1.在括号里填上适当的运算符号。

5()5()5()5=1 5()5()5()5=25()5()5()5=3 5()5()5()5=45()5()5()5=52.填空。

3.5米=()厘米 1.02千克=()吨4米5厘米=()米3吨50千克=()吨3.读题目,回答本图形的内角和。

梯形()六角形()五角形()4.在一个长100米,宽60米的长方形鱼塘的四周,每隔5米在一棵树,一共可以栽()棵树。

5.用3、5、0三个数可以组成不同的三位数有()。

6.学校有一块长14米,宽16米的长方形的花圃,因为建新房,需要将花圃的长缩短5米,如果不改变花圃的面积,花圃的宽就要增加()米、7.有同样大小的红、白、黑珠共80个。

按照3个红的,2个白的,1个黑的顺序排列,白珠有()个,第65个是()色的。

8.2007年元旦是星期三,2008年元旦是星期()。

9.小明与三个好朋友互通电话,一共要打()个电话,互赠1份礼物,一共要()份礼物。

二.简便运算。

5.68-4.28+6.09 8.05-2.97+1.05 125*6420.36-7.98-5.02-4.36 18.6-9.3+1.4-1.7 37*25+63*250.9+9.9+99.9+999.9+9999.9 32+34+36……+296三.图形方面文字题。

一个长方形木板,沿着它的长度不同的两条边各截去5cm,截掉的总面积为200平方厘米,现在这块木板周长是多少?四.应用题。

1.有学生802人,排成两路纵队,相邻两排前后相距0.5米,队伍每分钟走60米,现在要过一座长700米的桥,从排头两人上桥到排尾两人离开桥,共要多少分钟?2.建设小学购进12把椅子和8张桌子,共用2520元,1张桌子和3把椅子的价钱正好相等,每张桌子和每把椅子各多少元?3.有四箱水果,装苹果、橘子、栗子的三箱平均每箱重42千克,装有苹果、桃子的平均每箱重37千克,橘子、桃子、梨子3箱平均每箱重36千克,求苹果有多少千克?4.快、慢两车分别同时从东西两城相对而行,快车每小时行80千米,慢车每小时行65千米,相遇时,快车比慢车多行75千米,东西两城相距多少千米?五年级数学奥林匹克竞赛(二)一.计算。

小学五年级数学奥林匹克竞赛题(含答案)

小学五年级数学奥林匹克竞赛题(含答案)

小学五年级数学奥林匹克竞赛题(含答案)一、小数的巧算(一)填空题1.答案:2.答案:=1.1⨯25+1.01⨯75=103.25。

3.计算2.89⨯4.68+4.68⨯6.11+4.68=_____。

答案:46.8。

解析:4.68×(2.89+6.11+1)=46.84.计算17.48⨯37-17.48⨯19+17.48⨯82=_____。

答案:1748。

解析:5.答案:6.计算75⨯4.7+15.9⨯25=_____。

答案:750。

原式=75⨯4.7+5.3⨯(3⨯25)=75⨯(4.7+5.3)=75⨯10=750。

7.计算28.67⨯67+3.2⨯286.7+573.4⨯0.05=____。

答案:原式8.=172.4⨯6.2+1724⨯0.38+1000⨯0.38=172.4⨯6.2+172.4⨯3.8+380=172.4⨯(6.2+3.8)+380=172.4⨯10+380=1724+380=2104。

9.。

答案:181是三位,11是两位,相乘后181⨯11=1991是四位,三位加两位是五位,因此1991前面还要添一个0,又963+1028=1991,所以0.1.蚁00...0181⨯0.00...011=0.00 (01991)963个01028个01992个0。

10.计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.23。

答案:9个加数中,十位、个位、十分位、百分位的数都是1~9,所以,原式=11.11⨯(1+2+ (9)=11.11⨯45=499.95。

二、数的整除性(一)填空题1.四位数“3AA1”是9的倍数,那么A=_____。

答案:7。

解析:已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之。

设3+A。

2.答案:解析:11整除. 3.答案:, 4.能同时被2、5、7整除的最大五位数是_____。

广东省深圳中学2024-2025学年九年级上学期开学数学试题(解析版)

广东省深圳中学2024-2025学年九年级上学期开学数学试题(解析版)

2024-2025学年第一学期假期学习诊断九年级数学试卷注意事项:1.答题前,务必将自己的姓名、学号等填写在答题卷规定的位置上.2.考生必须在答题卷上按规定作答:凡在试卷、草稿纸上作答的,其答案一律无效.3.全卷共4页,考试时间90分钟,满分100分.一、选择题(本大题共8小题,每题3分,共24分)1. 2024年巴黎奥运会是第三十三届夏季奥林匹克运动会,将于2024年7月26日至8月11日在法国巴黎举行.下面2024年巴黎奥运会项目图标是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查了中心对称图形,根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转关键.【详解】A 、不是中心对称图形,该选项不符合题意;B 、是中心对称图形,该选项符合题意;C 、不是中心对称图形,该选项不符合题意;D 、不是中心对称图形,该选项不符合题意;故选:B .2. 若a b >,则下列不等式不一定成立是( )A. 22a b −>−B. 22a b >C. 33a b −<−D. 22a b >【答案】D【解析】【分析】本题考查不等式的基本性质,根据不等式的基本性质逐项判断即可.【详解】解:A 、不等式两边同时减去2,不等号方向不变,故22a b −>−,本选项的不等式一定成立; B 、不等式两边同乘2,不等号方向不变,故22a b >,本选项的不等式一定成立;的C 、不等式两边同乘13−,不等号方向改变,故33a b −<−,本选项的不等式一定成立; D 、若1a =−,2b =−,满足a b >,但22a b <,故本选项的不等式不成立.故选:D3. 在实数范围内有意义,则 x 的取值范围为( ) A. 0x ≥且3x ≠B. 0x ≥C. 3x ≠D. 0x >且3x ≠ 【答案】A【解析】在实数范围内有意义得到20≥x 且30x −≠,求出结果即可.【详解】解: 在实数范围内有意义, 20x ∴≥且30x −≠,0x ∴≥且3x ≠,故选:A .4. 把多项式22x ax +−分解因式,结果是()()1x x b ++,则a ,b 的值为( )A. 32a b ==,B. 32a b =−=,C. 12a b ==−,D. 12a b =−=−,【答案】D【解析】【分析】本题主要考查了整式乘法,解二元一次方程组,因式分解的定义等知识点,根据多项式乘法将因式展开,然后组成方程组,解方程组即可得解, 熟练掌握整式乘法法则是解决此题的关键.【详解】解:∵()()()22112x x b x b x b x ax ++=+++=+−, ∴12b a b += =−, ∴12a b =− =− . 故选:D .5. 如图,在ABCD 中,按照如下尺规作图的步骤进行操作:①以点B 为圆心,以适当长为半径画弧,分别与AB ,BC 交于点E ,F ;②分别以E ,F 为圆心,以适当长为半径画弧,两弧交于点G ,作射线BG ,与边AD 交于点H ;③以B 为圆心,BA 长为半径画弧,交于边BC 于点M .若5AB =,8BH =,则点A ,M 之间的距离为( )A. 5B. 6C. 7D. 8【答案】B【解析】 【分析】本题考查了作图−基本作图,菱形的判定与性质,勾股定理,证明四边形ABMH 是菱形是解题的关键.连接AM 、MH ,设AM 交BH 于点O ,根据题意证明四边形ABMH 是菱形,从而得出OB 的长,再根据勾股定理即可得出结果.【详解】解:如图,连接AM 、MH ,设AM 交BH 于点O ,由题意可知,BH 是ABC ∠的角平分线,ABH CBH ∴∠=∠,又 四边形ABCD 是平行四边形,AD BC ∴∥,AHB CBH ∴∠=∠,ABH AHB ∴∠=∠,AB AH ∴=,以B 圆心,BA 长为半径画弧,交于边BC 于点M ,AB BM ∴=,AH BM ∴=,又AH BM ∥,∴四边形ABMH 是平行四边形,为又AB AH =,∴四边形ABMH 是菱形,AM BH ∴⊥,142OBOH BH ===,OA OM =, 90AOB ∠=°∴,3OA ∴,26AM OA ∴==,故选:B6. 下列命题中,假命题是( )A. 顺次连接任意四边形各边中点形成的四边形都是平行四边形B. 等腰三角形的高、中线、角平分线重合C. 对角线互相垂直且平分的四边形是菱形D. 用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先要假设“这个三角形中每一个内角都大于60°”【答案】B【解析】【分析】选项A 中根据三角形的中位线定理结合平行四边形的判定即可证明,选项B 根据等腰三角形的性质进行判断,选项C D 根据反证法的步骤进行判断即可.【详解】解:A 、顺次连接任意四边形各边中点形成的四边形都是平行四边形是真命题,如图,∵点,,,E F G H 为,,,AB AD CD BC 的中点,∴,EF BD GH BD∥∥,11,22EF BD GH BD ==, ∴,EF GH EF GH =∥, ∴四边形EFGH 为平行四边形,∴故本选项不符合题意;B 、等腰三角形底边上的高、底边上的中线、顶角平分线互相重合,是假命题,故本选项符合题意;C 、对角线互相垂直且平分的四边形是菱形是真命题,故本选项不符合题意;D 、用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先要假设“这个三角形中每一个内角都大于60°”,是真命题,故本选项不符合题意.故选:B .【点睛】本题考查的是命题的真假判断、反证法的应用,平行四边形的判定与性质,三角形的中位线定理,菱形的判定,等腰三角形的性质,熟练掌握知识点是解题的关键.7. 如图,用长为20m 的篱笆,一面利用墙(墙的最大可用长度为11m ),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1m 的两扇小门,若花圃的面积刚好为240m ,则此时花圃AB 段的长为( )m .A. 4或103B. 103C. 4D. 10【答案】C【解析】【分析】本题考查一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.设AB x =米,则()2032BC x =−+米,根据围成的花圃的面积刚好为40平方米,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合BC 的长度不超过11米,即可确定x 的值,此题得解. 【详解】解:设AB x =米,则()2032BC x =−+米, 依题意,得:203240x x −+=(),整理,得:2322400x x −+=, 解得:1013x =,24x =. 当1013x =时,20321211x −+=>,不合题意,舍去;当4x =时,203210x −+=,符合题意.故选C .8. 如图,在矩形ABCD 中,8AB AD ==,,点E 为边AD 上一动点,点F 为CE 的中点,连接BE ,点G 在BE 上,且EF GF =,则下列结论:①在点E 从点D 运动到点A 的过程中,点F 运动的路径长为AF DF +的最小值为16;③点G 到BC 的中点的距离为定值EFG S 的最小值为24 .其中正确的是( )A. ①②③B. ①②④C. ①③④D. ①②③④【答案】D【解析】 【分析】取CD 的中点H ,连接FH ,根据中位线的性质可得点F 在直线FH 上运动,点F 运动的路径长为12AD ,即可判断结论①;连接AC ,由直角三角形斜边上的中线的性质得到DF CF =,从而AF DF AF CF AC +=+≥,根据勾股定理求出AC 的长,即可判断结论②;取BC 的中点I ,连接GI ,则GI 的长为点G 到BC 的中点的距离,连接DF ,CG ,由DF EF CF GF ===,得到点D ,E ,G ,C 在以点F 为圆心,EC 为直径的圆上,从而得到90BGC ∠=°,根据直角三角形斜边上的中线的性质即可判断结论③;当GI BC ⊥时,BGC 的面积最大,进而由CEGBCE BCG S S S =− 求出CEG 的最EFG 的最小值,从而判断结论④.【详解】解:取CD 的中点H ,连接FH ,∵点F 是CE 的中点,∴FH AD ∥,12FH AD =, ∴点F 在直线FH 上运动,当点E 和点A 重合时,FH 有最大值,∴点F 运动的路径长为1122AD =× 连接AC ,∵在矩形ABCD 中,90ADC ∠=°,又点F 是CE 的中点, ∴12DF CE CF ==, ∴AF DF AF CF AC +=+≥,∵在矩形ABCD 中,8CD AB ==,∴在Rt ACD △中,16AC =,∴AF DF +的最小值为16.故结论②正确;取BC 的中点I ,连接GI ,则GI 的长为点G 到BC 的中点的距离,连接DF ,CG ,∵90CDE ∠=°,点F 是CE 的中点,∴12DF CE =,12EF CF CE ==, ∵EF GF =,∴DF EF CF GF ===,∴点D ,E ,G ,C 在以点F 为圆心,EC 为直径的圆上,∴90CGE ∠=°,∴18090BGC CGE ∠=°−∠=°,∵点I 是BC 的中点,∴1122GI BC ==×∴点G 到BC 的中点的距离为定值 ∵点E 是AD 上的动点,∴11822BCE S BC CD =⋅=××=∵GI BI CI ===∴点G 在以点I 为圆心,∴当GI BC ⊥时,BGC 的面积最大,最大值为114822BGC S BC GI =⋅=×=,此时48CEG BCE BCG S S S =−= 为最小值,∵点F 是EC 的中点,∴EFG 的最小值为()11482422EFG CEG S S ==−= .故结论④正确. 综上所述,结论正确的是①②③④.故选:D【点睛】本题考查直角三角形斜边上的中线的性质,三角形中位线的性质,圆周角定理,矩形的性质,勾股定理等,综合运用相关知识,正确作出辅助线是解题的关键.二、填空题(本大题共5小题,每题3分,共15分)9. 因式分解:22x y xy −=________. 【答案】()xy x y −##()yx x y −【解析】【分析】本题主要考查因式分解,原式提取公因式xy 即可.【详解】解:()22x y xy xy x y −=−, 故答案为:()xy x y −10. 若a 为方程2250x x +−=的解,则2368a a +−的值为______.【答案】7【解析】【分析】本题考查了一元二次方程的解,代数式求值,熟练掌握一元二次方程的解与一元二次方程的关系是解题的关键.由题意得2250a a +−=,将其变形与2368a a +−进行关联,即可求解.【详解】解:∵a 为方程2250x x +−=的解,∴2250a a +−=,∴225a a +=,∴()223683283587a a a a +−=+−=×−=.故答案为:7.11. 如图,在ABCD 中,37AB AD ABC ==∠,,的平分线交AD 于E ,交CD 的延长线于点F ,则DF =______.【答案】4【解析】【分析】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.根据平行四边形的对边相等且平行和利用平行四边形的性质以及平行线的基本性质求解即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB CD ∥,7AD BC ==,3CD ==,ABE CFE ∴∠=∠,∵ABC ∠的平分线交AD 于点E ,ABE CBF ∴∠=∠,CBF CFB ∴∠=∠,7CF BC ∴==,734DF CF CD ∴=−=−=故答案为:4.12. 若关于x 的方程2122x m x x −=−−解为正数,则m 的取值范围是_____. 【答案】2m >且4m ≠【解析】【分析】本题考查了解分式方程.熟练掌握解分式方程是解题的关键.解分式方程得2x m =−,由关于x 的方程2122x m x x −=−−解为正数,可得2022m m −>−≠,,计算求解,然后作答即可. 【详解】解:2122x m x x −=−−, 22x x m −+=,解得,2x m =−,∵关于x 的方程2122x m x x −=−−解为正数, ∴2022m m −>−≠,,解得,2m >,4m ≠,故答案为:2m >且4m ≠.13. 在Rt ABC △中,9035ABC AB BC ∠=°==,,,D 为AC 的中点,MDN ∠分别交直线AB ,BC 于点E ,F ,且90MDN ∠=°,连接EF ,当1AE =时,EF 的长为______.【答案】135【解析】【分析】过点E 作EG AC ⊥于点G ,连接BD ,根据勾股定理求出AC =AGE ABC △∽△,利用相似三角形的性质求出AG ,EG ,进而求出DG ,根据勾股定理求出DE ,由90EDF ABC ∠=∠=°,证得点D 、E 、B 、F 四点共圆,因此DEF DBC ∠=∠,根据直角三角形斜边上的中线的性质与等边对等角得到DEF C ∠=∠,即可证明DEF BCA ∽,根据相似三角形的性质即可解答.【详解】解:过点E 作EG AC ⊥于点G ,连接BD∵9035ABC AB BC ∠=°==,,,∴AC∵EG AC ⊥,∴90EGA ∠=°,∴EGA ABC ∠=∠,∵A A ∠=∠,∴AGE ABC △∽△, ∴AG AE EG AB AC BC ==,即35AG EG =,∴AG =,EG =∵点D 是AC 的中点,∴12AD AC ==∴DG AD AG =−== ∴Rt DEG中,DE === ∵90EDF ABC ∠=∠=°,∴点D 、E 、B 、F 四点共圆,∴DEF DBC ∠=∠,∵点D 是AC 的中点,90ABC ∠=°, ∴12CD AC =,12BD AC =, ∴BD CD =,∴∠=∠DBC C ,∴DEF C ∠=∠,∵90EDF ABC ∠=∠=°,在∴DEF BCA ∽, ∴DE EF BC AC == ∴135EF =. 故答案为:135 【点睛】本题考查勾股定理,直角三角形斜边上的中线的性质,四点共圆的判定,圆周角定理,等边对等角,相似三角形的判定及性质,综合运用相关知识,证明四点共圆是解题的关键.三、解答题(本大题共7小题,共61分)14. (1)解不等式组:()31242113x x x x −≥− +>−①②; (2)解方程:210240x x −−=.【答案】(1)14x −≤<;(2)112x =,22x =− 【解析】【分析】本题考查了解一元一次不等式组,解一元二次方程,熟练掌握解法是解题的关键.(1(2)因式分解法求解即可.【详解】解:(1)解不等式①得,1x ≥−,解不等式②得,4x <,∴不等式组的解集为14x −≤<;(2)210240x x −−=()()1220x x −+=120−=x 或20x +=解得12x =或2x =−,∴原方程的解为:112x =,22x =−.15. 先化简22121124x x x x −+ +÷ −−,然后从1−,1,2-,2中选取一个合适的数作为x 的值代入求值.【答案】21x x +−,12− 【解析】 【分析】本题考查了分式的化简求值, 先把括号内通分,再进行同分母的加法运算,接着把除法运算化为乘法运算,则约分得到原式21x x +−,然后根据分式有意义的条件确定1x =−,最后把1x =−代入计算即可. 【详解】解:原式()()()2222121x x x x x −+−+⋅−− ()()()222121x x x x x −+−==⋅−− 21x x +=− ∵20x −≠且20x +≠且10x −≠,∴1−,1,2-,2中x 只能取1−,当1x =−时,原式121112−+==−−− 16. 如图,在平面直角坐标系中,ABC 的顶点()()()1,14,23,3A B C −−−,,.(1)平移ABC ,若点A 的对应点1A 的坐标为()3,1−,画出平移后的111A B C △;(2)将ABC 以点(0,2)为旋转中心旋转180°,画出旋转后对应的222A B C △;(3)已知将111A B C △绕某一点旋转可以得到222A B C △,则旋转中心的坐标为______;(4)若第二象限内存在点D ,使得以A 、B 、C 、D 四个点为顶点的四边形是平行四边形,则点D 的坐标为______.【答案】(1)见解析 (2)见解析(3)()2,1(4)()6,4-【解析】【分析】本题考查旋转的性质,旋转作图和中心对称作图,平行四边形的性质,掌握旋转和中心对称的性质是解题的关键.(1)根据点A 的对应点1A 的坐标为()3,1−确定平移方式,再根据平移方程确定其它两点的对应点,最后连线即可;(2)根据中心对称的性质,找到三个顶点的对应点,再连线即可;(3)连接对应点,对应点的交点就是旋转中心(对称中心);(4)根据平行四边形的性质即可求解.【小问1详解】解:如图,111A B C △即为所求,【小问2详解】解:如图,222A B C △即为所求.小问3详解】解:如图,连接1212,A A C C ,对应点的交点就是旋转中心(对称中心),即点()21,, 故答案是:()21,.【【小问4详解】解:如图,以A 、B 、C 、D 四个点为顶点的四边形是平行四边形时,AB CD ∥,AB CD =, ∵()()()1,14,23,3A B C −−−,,∴点D 的坐标为()6,4−.故答案为:()6,4−.17. 如图,ABCD 的对角线AC 、BD 相交于点O ,BE AC AE BD ∥,∥,OE 与AB 交于点F .(1)在不添加新的点和线的前提下,增加一个条件:______,使得四边形AOBE 是矩形,并说明理由; (2)若1016AC BD OE AC ⊥==,,,求ABCD 的面积.【答案】(1)AC BD ⊥,理由见解析(2)96【解析】【分析】本题考查平行四边形的性质,矩形的判定及性质,菱形的判定及性质.(1)由BE AC AE BD ∥,∥,可得四边形AOBE 是平行四边形,只需添加条件使得90AOB ∠=°即可得到矩形AOBE ;(2)由(1)可得当AC BD ⊥时,四边形AOBE 是矩形,得到10AB OE ==,根据平行四边形的对角线互相平分并结合勾股定理求出12BD =,证明ABCD 是菱形,根据菱形的性质即可求出面积.【小问1详解】解:添加条件:AC BD ⊥,理由如下:∵BE AC AE BD ∥,∥,∴四边形AOBE 是平行四边形,∵AC BD ⊥,∴90AOB ∠=°,∴AOBE 是矩形.【小问2详解】解:由(1)可得当AC BD ⊥时,四边形AOBE 是矩形,∴10AB OE ==,∵四边形ABCD 是平行四边形, ∴1116822AO AC ==×=,∵AC BD ⊥∴在Rt ABO △中,6BO =,∴在ABCD 中,212BD BO ==,∵AC BD ⊥,∴ABCD 是菱形, ∴1116129622ABCD S AC BD =⋅=××= . 18. 深圳市某商场准备购买足球、排球两种商品,每个足球的进价比排球多30元,用3000元购进足球和2100元购进排球的数量相同.(1)每个足球和排球的进价分别是多少?(2)根据对运动用品的市场调查,商场计划用不超过4800元的资金购进足球和排球共60个,其中足球数量不低于排球数量13倍,该商场有几种进货方案?(不用写出具体方案) 【答案】(1)每个排球进价70元,每个足球进价100元(2)该商场有6种进货方案【解析】【分析】本题考查分式方程、一元一次不等式不等式组,正确理解题意,熟练掌握解法是解题的关键. (1)设排球每个进价为x 元,则足球每个进价为(30)x +元,根据用3000元购进足球和2100元购进排球的数量相同列出方程,解方程即可;(2)设商场购买足球a 个,则购买排球(60)a −个,根据商场计划用不超过4800元的资金购进足球和排球共60个,其中足球数量不低于排球数量的13,列不等式组,解不等式组即可. 【小问1详解】 解:设每个排球进价为x 元,则每个足球进价为()30x +元, 由题意得:3000210030x x=+, 解得:70x =,经检验,70x =是原方程的解且符合题意,∴307030100x +=+=(元), 答:每个排球进价70元,每个足球进价100元;【小问2详解】解:设商场购买足球a 个,则购买排球(60)a −个, 根据题意得:10070(60)48001(60)3a a a a +−≤ ≥−, 解得:1520a ≤≤,a 是正整数,a ∴的取值为15,16,17,18,19,20,∴该商场有6种进货方案.19. 材料1:法国数学家弗朗索瓦·韦达在著作《论方程的识别与订正》中提出一元二次方程()220040ax bx c a b ac ++=≠−≥,的两根12x x ,有如下的关系(韦达定理):1212b c x x x x a a+=−⋅=,; 材料2:如果实数m 、n 满足221010m m n n −−=−−=、,且m n ≠,则可利用根定义构造一元二次方程210x x −−=,然后将m 、n 看作是此方程的两个不相等实数根.请根据上述材料解决下面问题:(1)①已知一元二次方程22350x x −−=的两根分别为12x x ,,则12x x +=______,12x x ⋅=______. ②已知实数a ,b 满足:22430430()a a b b a b +−=+−=≠,,则11a b+=______. (2)已知实数m 、n 、t 满足:22411411m m t n n t −=+−=+,,且0m n <<,求(1)(1)m n ++的取值范围.的(3)设实数a ,b 分别满足22319120121930a a b b ++=++=,,且1ab ≠,求353ab a b++的值. 【答案】(1)①32,52−;②43 (2)()()5119m n <++<(3)1【解析】【分析】本题考查韦达定理,一元二次方程的解,分式的计算与求值.读懂材料是解题的关键. (1)①直接根据韦达定理求解;②根据材料2可得a ,b 是一元二次方程2430x x +−=的两个不相等的实数根,根据韦达定理得到4a b +=−,3ab =−,进而根据分式的加减法则计算后代入求值即可;(2)由材料2可得m ,n 是关于x 的一元二次方程2411x x t −=+,即24110x x t −−−=的两个不相等的实数根,从而0∆>,4m n +=,11mn t =−−,结合0m n <<,可求出t 的取值范围,将()()11m n ++展开代入整理后即可求解;(3)方程2121930b b ++=可变形为211319120b b +⋅+=,从而得到a ,1b 是方程2319120x x ++=的两个不相等的实数根,根据韦达定理得到1193a b+=−,14a b ⋅=,将所求式子变形整理后代入即可解答.【小问1详解】解:①∵一元二次方程22350x x −−=的两根分别为12x x ,,∴根据韦达定理,可得 213322x x −+=−=,125522x x −⋅==−. 故答案为:32,52− ②∵22430430()a a b b a b +−=+−=≠,,∴a ,b 是一元二次方程2430x x +−=的两个不相等的实数根,∴4a b +=−,3ab =−,∴114433a b a b ab +−+===−. 故答案为:43【小问2详解】解:∵实数m 、n 、t 满足:22411411m m t n n t −=+−=+,,∴m ,n 是关于x 的一元二次方程2411x x t −=+,即24110x x t −−−=的两个不相等的实数根, ∴Δ=(−4)2−4(−11−tt )>0,即15t >−, 4m n +=,11mn t =−−,∵0m n <<,∴110mn t =−−>,即11t <−,∴1511t −<<−,∵(1)(1)111416m n mn m n t t ++=+++=−−++=−−, 且569t <−−<,∴()()5119m n <++<;【小问3详解】解:∵实数a ,b 分别满足22319120121930a a b b ++=++=,,且1ab ≠,∴0b ≠,∴方程2121930b b ++=可变形为211319120b b +⋅+=, ∴a ,1b是方程2319120x x ++=的两个不相等的实数根, ∴1193a b +=−,11243a b ⋅ ∴3533119353535413ab a a a a a b b b b b ++ =+⋅+=++⋅=×−+×=. 20. 垂美四边形定义如下:对角线互相垂直的四边形叫做“垂美四边形”.(1)如图1,四边形ABCD 是“垂美四边形”,猜想22AB CD 、与22BC AD 、之间的数量关系:______,并说明理由.(2)如图2,分别以Rt ABC △的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连接BG CE 、,若4AB AC ==,,求EG 的长.(3)如图3,在Rt ABC △中,90ABC ∠=°,点P 是Rt ABC △外一点,连接BP ,10BP AC ==,已知2BC AB −=,若以A 、B 、C 、P 为顶点的四边形为垂美四边形,请直接写出AP 的长. 【答案】(1)2222AD BC AB CD +=+,理由见详解(2)(3)或【解析】【分析】全等三角形的判定与性质,正方形的性质,熟练掌握知识点,正确添加辅助线是解题的关键.(1)分别对Rt ,Rt ,Rt ,Rt AOD BOC AOB DOC △△△△运用勾股定理,再根据等式的性质即可求证; (2)先证明()SAS AGB ACE ≌,得到四边形BCGE 为“垂美四边形”,则2222BC GE GC BE +=+,再运用勾股定理求得24BC =,2232,24BE CG ==,代入即可求解; (3)①当BC AB >时,对Rt ABC △中,由勾股定理求得6AB =,8CB =,过点P 作BA 延长线的垂线,垂足为点D ,可证明BDP CBA △≌△,则6,8PDBA BD BC ====,2AD =,在Rt ADP中,由勾股定理得AP =;②当AB BC >时,同上AP =.【小问1详解】解:数量关系为:2222AD BC AB CD +=+记,AC BD 交于点O ,∵AC BD ⊥,∴在Rt ,Rt AOD BOC △△中,由勾股定理得:222222,AO OD AD BO OC BC +=+=,∴222222AD BC AO OD BO OC +=+++, 同理可得:222222AB CD AO OD BO OC +=+++, ∴2222AD BC AB CD +=+;【小问2详解】解:如图,∵四边形,ACFG ABDE 是正方形,ABC 为直角三角形, ∴,,1290AC AG AB AE ACF ACB ==∠=∠=°=∠=∠, ∴GAB CAE ∠=∠,∴()SAS AGB ACE ≌, ∴3=4∠∠,∵56∠=∠,∴3546∠+∠=∠+∠,∵290∠=°,∴354690∠+∠=∠+∠=°, ∴BG CE ⊥,∴四边形BCGE 为“垂美四边形”, ∴2222BC GE GC BE +=+, 在Rt ACB △中,由勾股定理得:222AC BC AB +=, ∴216124BC =−=,同理可求2232,24BE CG ==, ∴243224GE +=+,解得:GE =;【小问3详解】解:①当BC AB >时,则2BC AB =+,在Rt ABC △中,90ABC ∠=°, ∴由勾股定理得,222AB BC AC += ∴()222100AB AB ++=, 解得:6AB =(舍负),∴8CB =,过点P 作BA 延长线的垂线,垂足为点D ,由题意得,AC BP ⊥,∴21290ACB ∠+∠=∠+∠=°, ∴1ACB ∠=∠,而90D ABC ∠=∠=°,AC BP = ∴BDP CBA △≌△,∴6,8PD BA BD BC ====,∴862AD =−=,∴在Rt ADP 中,由勾股定理得AP =②当AB BC >时, 同上可求此时8,6AB BC ==, 过点P 作PD AB ⊥于点D ,同上可证:BDP CBA △≌△,∴8,6DPBA BD BC ====, ∴2AD =,∴在Rt ADP 中,由勾股定理求得AP =,综上:AP =AP =.。

2024-2025学年广东省深圳中学九年级(上)开学数学试卷(含详解)

2024-2025学年广东省深圳中学九年级(上)开学数学试卷(含详解)

2024-2025学年广东省深圳中学九年级(上)开学数学试卷一、选择题:本题共8小题,每小题3分,共24分。

1.2024年巴黎奥运会是第三十三届夏季奥林匹克运动会,将于2024年7月26日至8月11日在法国巴黎举行.下面2024年巴黎奥运会项目图标是中心对称图形的是( )A. B. C. D.2.若a>b,则下列不等式不一定成立的是( )A. a−2>b−2B. 2a>2bC. a−3<b−3D. a2>b23.若代数式2xx−3在实数范围内有意义,则x的取值范围为( )A. x≥0且x≠3B. x≥0C. x≠3D. x>0且x≠34.把多项式x2+ax−2分解因式,结果是(x+1)(x+b),则a,b的值为( )A. a=3,b=2B. a=−3,b=2C. a=1,b=−2D. a=−1,b=−25.如图,在▱ABCD中,按照如下尺规作图的步骤进行操作:①以点B为圆心,以适当长为半径画弧,分别与AB,BC交于点E,F;②分别以E,F为圆心,以适当长为半径画弧,两弧交于点G,作射线BG,与边AD交于点H;③以B为圆心,BA长为半径画弧,交于边BC于点M.若AB=5,BH=8,则点A,M之间的距离为( )A. 5B. 6C. 7D. 86.下列命题中,假命题是( )A. 顺次连接任意四边形各边中点形成的四边形都是平行四边形B. 等腰三角形的高、中线、角平分线重合C. 对角线互相垂直且平分的四边形是菱形D. 用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先要假设“这个三角形中每一个内角都大于60°”7.如图,用长为20m的篱笆,一面利用墙(墙的最大可用长度为11m),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料做了宽为1m的两扇小门,若花圃的面积刚好为40m2,则此时花圃AB段的长为( )m.A. 4或103B. 103C. 4D. 108.如图,在矩形ABCD中,AB=8,AD=83,点E为边AD上一动点,点F为CE的中点,连接BE,点G在BE上,且EF=GF,则下列结论:①在点E从点D运动到点A的过程中,点F运动的路径长为43;②AF+DF的最小值为16;③点G到BC的中点的距离为定值43;④S△EFG的最小值为163−24.其中正确的是( )A. ①②③B. ①②④C. ①③④D. ①②③④二、填空题:本题共5小题,每小题3分,共15分。

2011 年第52 届国际数学奥林匹克(IMO)

2011 年第52 届国际数学奥林匹克(IMO)

2011 年第52 届国际数学奥林匹克(IMO)第一天2011年7月18日,星期一考试时间:4 小时30 分每题7 分1. 对任意由4 个不同正整数组成的集合A = {a1,a2 ,a3,a4} ,记A 1 2 3 4 s = a +a +a +a ,设A n 是满足(1 4) i j a +a ≤i < j ≤整除As 的数对(i,j)的个数.求所有由4 个不同正整数组成的集合A,使得A n 达到最大值.(墨西哥提供)2. 设S 是平面上包含至少两个点的一个有限点集,其中没有三点在同一条直线上.所谓一个“风车”是指这样一个过程:从经过S 中单独一点P 的一条直线l 开始,以P 为旋转中心顺时针旋转,直至首次遇到S 中的另一点,记为点Q .接着这条直线以Q 为新的旋转中心顺时针旋转,直到再次遇到S 中的某一点,这样的过程无限持续下去.证明:可以适当选取S 中的一点P ,以及过P 的一条直线l ,使得由此产生的“风车”将S 中的每一点都无限多次用作旋转中心.(英国提供)3.设f : →是一个定义在实数集上的实值函数,满足对所有实数x,y,都有f (x + y) ≤y f (x) + f ( f (x)),证明:对所有实数x ≤ 0,有f (x) = 0.(白俄罗斯提供)第二天2011年7月19日,星期二考试时间:4 小时30 分每题7 分4. 给定整数n > 0.有一个天平和n个重量分别为20 , 21, , 2n−1 K 的砝码.现通过n 步操作逐个将所有砝码都放上天平,使得在操作过程中,右边的重量总不超过左边的重量.每一步操作是从尚未放上天平的砝码中选择一个砝码,将其放到天平的左边或右边,直至所有砝码都被放上天平.求整个操作过程的不同方法个数.(伊朗提供)5.设f 是一个定义在整数集上取值为正整数的函数,已知对任意两个整数m,n,差f (m) − f (n)能被f (m −n)整除.证明:对所有整数m,n,若f (m) ≤f (n) ,则f (n)被f (m)整除.(伊朗提供)6. 设锐角三角形ABC 的外接圆为Γ, l 是圆Γ的一条切线.记切线l 关于直线BC,CA 和AB 的对称直线分别为l a , l b和l c.证明:由直线l a , l b和l c构成的三角形的外接圆与圆Γ相切.(日本提供)。

2022年第50届国际数学奥林匹克竞赛试题(中文版)与参考答案

2022年第50届国际数学奥林匹克竞赛试题(中文版)与参考答案

2022年第50届国际数学奥林匹克竞赛试题(中文版)与参考答案2022年7月15日1、是一个正整数,是n12,,。

,(2)kaaak≥{}1,2,。

,n中的不同整数,并且1(1iinaa+。

对于所有都成立,证明:1,2,。

,1ik=1(1kaa。

不能被n整除。

证明1:由于12(1naa。

令1(,)nap=,nqp=也是整数,则npq=,并且1pa,21qa。

因此,由于2(,)1qa=23(1npqaa=。

故31qa。

;同理可得41qa。

因此对于任意都有2i≥1iqa。

特别的有1kqa。

由于1pa,故1(1knpqaa=。

()。

若结论不成立,则1(1knpqaa=,与()相减可得1(knaa。

矛盾。

综上所述,结论成立。

此题平均得分:4、804分2、外接圆的圆心为O,分别在线段上,ABCΔ,PQ,CAAB,,KLM分别是,,BPCQPQ的中点,圆过Γ,,KLM并且与相切。

证明:OPPQOQ=。

KMLOBCAQP证明:由已知MLKKMQAQP∠=∠=∠,MKLPMLAPQ∠=∠=∠,因此APQMKLΔΔ~。

所以APMKBQAQMLCP==,故APCPAQBQ。

=。

()。

设圆O的半径为R,则由()有222ROPROQ。

=。

因此OPOQ=。

不难发现OP也是圆Γ与相切的充分条件。

OQ=PQ此题平均得分:3、710分3、是严格递增的正整数数列,并且它的子数列和都是等差数列。

证明:是一个等差数列。

123,,,。

SSS123,,,。

SSSSSS123111,,,。

SSSSSS+++123,,,。

SSS问题等价于::fZZ+→是一个严格递增的函数。

()()nbffn=是一个等差数列,也是一个等差数列。

证明:(()1ncffn=()nafn=也是等差数列。

证明:由于是一个严格递增的整值函数,所以对于任意f,y均有()()ffyy。

≥。

令{}{},nnbc的公差分别为,则有,de()()(1)()(1)(dffnffnfnfn=+。

余佑官——数学奥林匹克训练题438439解答

余佑官——数学奥林匹克训练题438439解答

余佑官——数学奥林匹克训练题438439解答余佑官专集2021-09-11 2021年Deux数学奥林匹克平面几何题6解答2021-09-10 2021年Deux数学奥林匹克平面几何题2解答2021-09-08 数学奥林匹克训练题(430)解答2021-09-07 数学奥林匹克训练题429解答2021-09-06 数学奥林匹克训练题428解答2021-09-04 一道新编平面几何训练题2021-09-03 2021年以色列数学奥林匹克平面几何题解答2021-08-29 数学奥林匹克训练题(422):一道新编几何题2021-08-23 数学奥林匹克训练题413解答2021-08-18 2021年美洲与加勒比海数学奥林匹克平面几何题2021-08-14 数学奥林匹克训练题(410)解答2021-08-13 2021年中国女子数学奥林匹克第一天几何题解答2021-08-11 2021年北京大学夏令营平面几何题解答2021-08-09 第二届百年老校数学竞赛平面几何题解答2021-08-08 2021捷波奥数学奥林匹克平面几何题解答2021-08-05 2021年GOWACA模拟几何竞赛两道题的解答2021-08-02 2021年Tuymaada国际数学竞赛高级组第二天平面几何题2021-07-29 2021年陈省身杯数学奥林匹克平面几何题2解答2021-07-28 2021年陈省身杯数学奥林匹克平面几何题解答2021-07-16 2021年GOWACA模拟几何竞赛题4解答2021-06-30 2021年伊朗TST平面几何解答更正2021-06-20 2021欧洲女子数学奥林匹克巴西代表队平面几何题解答2021-06-11 2021年伊朗IMO国家队选拔考试平面几何2021-06-10 2021马其顿IMO国家队选拔考试几何题解答2021-06-06 一个简单优美的几何结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第52届国际数学奥林匹克试题解答(2)(胡仁建)
1. 解,不妨设所给正整数集合A 满足:1234,a a a a <<< (1)先证4A n ≤:易知32
4342312141
a a a a a a a a a a a a +⎧+>+>>+>+⎨
+⎩, 若23
41a a a a +=+=
12
A s ,否则{}
2341
1m a x ,2
A a a a a s ++>
,而i j A a a s +时,必有
12
i j A a a s +≤
,故4A n ≤
(2)若4A n =,由(1)知必有2341a a a a +=+=12
A s ,
由于i j a a +N *∈,则2,A s k k N *
=∈,且存在1210,,(1,2)2
i Q i λλλ<<<
∈=使得:
1211322
322a a k
a a k a a k λλ+=⎧⎪+=⎨⎪+=⎩,解得:1
21212
3214211()2
1()2
1()23()2
a k a k a k
a k λλλλλλλλ⎧
=+-⎪⎪
⎪=-+⎪⎨⎪=-+⎪⎪⎪=--+⎩,由10a >知1
21,2
λ
λ+>
取,,,(,)1,1,2,i i i i i i i
n m n N m n i m λ*
=
∈==[]12,,2,k p m m p N *
=∈
此时,由
1212
113
2
,
A A s m s m Z Z a a n a a n =
∈=
∈++得,121n n ==,
又121
2
11
1,2
m m λλ+=
+
>
故,12123,43,5m m m m ====或
由(1),(2)知A n 最大为4,此时
{}{},5,7,11,11,19,29,()
A p p p p p p p p p N *
=∈或
4、解:设对所给的n 个砝码,整个过程的操作方法数为n a ,
(1)当砝码2n 在最后一步出场时,这步之前的所有操作方法数为n a ,由于
1
2
212,n i
n n i -==-<∑故最后一个砝码2n
只能放在左边,即最后一步方法数为1
(2)当砝码2n 在前n 步中的任步出场时,都有01()i n i N ≤≤-∈使得砝码2i 在最后一步出场,易知,在这种情况下,对任意01()i n i N ≤≤-∈,前n 步的操作方法仍为n a ,故,
前n 步的方法总数为1
n n i a -=∑,由于最大号码已经出现,且在左边,故最后一砝码可放天平的
任一边,有两种方法,
综上可知,1
10
(12)(21)n n n n i a a n a -+==+=+∑,其中11a =
故(2)!2!
n n
n a n =

5解:由已知整数集合
Z 上的取正整数值函数()y f x =满足对,,(
)()()m n Z f m n
f m f n ∀∈-
-都有
,那么分别取00n m ==和得:
()()(0);()(0)()()()()
()(0)()f m f m f f m f f n f n f n f n f n f f n ⎧-
⇒⎪⇒-⇒-⎨
--⎪⎩
,,()()()()
()()f n f n f n f n f n f n
≤-
⎧⇒⇒=
-⎨-≤⎩,, (1)()()f n f m =时,()();f m f n
()()()()0,()()=p ()()=(()())()()()
()(),
()(),()()
()(),()()(),()(),()()()f n f m f n f m p N f n f m f n m f n f n m m f n m f m f n f n m f m f n m f m f m f n f n m f m f n f n m f m f n m f m f n f n m f m *
>->∃∈--------⇒---=->≤---<≤--+(2)当时,则使得①又若代入①得若则与①矛盾若则也与①矛盾综上可()()()()
f m f n f m f n ≤知:当时,。

相关文档
最新文档